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Abstract. In this work, we analyze the regularizing property of stochastic gradient descent for the4
numerical solution of a class of nonlinear ill-posed inverse problems in Hilbert spaces. At each step of5
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1. Introduction. This work is concerned with the numerical solution of the system of15

nonlinear ill-posed operator equations16

(1.1) Fi(x) = y†i , i = 1, . . . , n,17

where each Fi : D(Fi)→ Y is a nonlinear mapping with its domain D(Fi) ⊂ X, and X and18

Y are Hilbert spaces with inner products 〈·, ·〉 and norms ‖·‖, respectively. The number n of19

nonlinear equations in (1.1) can potentially be large. The notation y†i ∈ Y denotes the exact20

data (corresponding to the reference solution x† ∈ X to be defined below). Equivalently,21

(1.1) can be rewritten as22

(1.2) F (x) = y†,23

with F : X → Y n (Y n denotes the product space Y × · · · × Y ) and y† ∈ Y n defined by24

F (x) =
1√
n

 F1(x)
. . .

Fn(x)

 and y† =
1√
n

 y†1
. . .
y†n

 ,25

respectively. The scaling n−
1
2 is introduced for the convenience of later discussions. In26

practice, we have access only to the noisy data yδ of a noise level δ ≥ 0, i.e.,27

‖yδ − y†‖ = δ.28

Nonlinear inverse problems of the form (1.1) arise naturally in many real-world appli-29

cations, especially parameter identifications for partial differential equations, e.g., electrical30

impedance tomography and diffuse optical spectroscopy. Due to the ill-posed nature of31

problem (1.1), i.e., a solution may not exist and even if it does exist, the solution may32
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be nonunique and highly unstable with respect to the perturbation in the noisy data yδ,33

regularization is often needed for their stable and accurate numerical solutions, and many ef-34

fective techniques have been proposed over the past few decades (see, e.g., [5, 15, 23, 12, 24]).35

Among existing techniques, iterative regularization represents a very powerful class of solvers36

for problem (1.1), including Landweber method, (regularized) Gauss-Newton method, con-37

jugate gradient methods, and Leverberg-Marquardt method etc; see the monographs [15]38

and [24] for overviews on iterative regularization methods in Hilbert spaces and Banach39

spaces, respectively. In this work, we are interested in the convergence analysis of stochastic40

gradient descent (SGD) for problem (1.1) with noisy data yδ. The basic version of SGD41

reads: given the initial guess xδ1 = x1, uppdate the iterate xδk by42

(1.3) xδk+1 = xδk − ηkF ′ik(xδk)∗(Fik(xδk)− yδik); k = 1, 2, . . . ,43

where the index ik is drawn uniformly from the index set {1, . . . , n}, and ηk > 0 is the44

corresponding step size. SGD was pioneered by Robbins and Monro in statistical inference45

[22] (see the monograph [17] for asymptotic convergence results). It has demonstrated46

encouraging numerical results on diffuse optical tomography [2]. Further, a variant of SGD,47

i.e., randomized Kaczmarz method (RKM), has been successful in the computed tomography48

community [9, 10] with revived interest in linear regression and phase retrieval [25, 27].49

Algorithmically, SGD is a randomized version of the classical Landweber method [18]50

(1.4) xδk+1 = xδk − ηkF ′(xδk)∗(F (xδk)− yδ),51

which may be obtained from gradient descent applied to the functional52

(1.5) J(x) =
1

2
‖F (x)− yδ‖2 =

1

n

n∑
i=1

1

2
‖Fi(x)− yδi ‖2.53

Compared with the Landweber method, SGD requires only evaluating one randomly se-54

lected (nonlinear) equation at each iteration, instead of the whole nonlinear system, which55

substantially reduces the computational cost per iteration and enables excellent scalability56

to truly massive data sets (i.e., large n), which are increasingly common in practice due to57

advances in data acquisition technologies. This highly desirable property has attracted much58

recent interest in machine learning, where currently SGD and its variants are the workhorse59

for many challenging training tasks involving deep neural networks [32, 26, 16, 1].60

Note that due to the ill-posed nature of problem (1.1) (in the sense that the minimizer61

depends sensitively on the data perturbation), the minimization problem (1.5) is also ill-62

posed, and due to the inevitable presence of noise in the observational data yδ, the global63

minimizer (if it exists at all!) often represents a poor approximation to the exact solution x†64

and thus is not of interest. The goal of iterative regularization is to iteratively construct an65

approximate minimizer that converges to the exact solution x† as the noise level δ → 0+, and66

further, to derive convergence rates in terms of δ. This is achieved by equipping an iterative67

algorithm, e.g., Landweber method or SGD, with an early stopping strategy. Early stopping68

allows properly balancing the deleterious effect of the perturbation δ and the approximation69

error of the iterates for the perturbed data yδ, which respectively grows and decreases as the70

iteration proceeds. Thus the setting differs greatly from well-posed optimization problems71

that are extensively studied in the optimization and machine learning literature.72

For a class of nonlinear inverse problems, the Landweber method is relatively well un-73

derstood in terms of the regularizing property, since the influential work [8] (see also [20, 30]74

for linear inverse problems), and the results were refined and extended in different aspects75

[15]. In contrast, the stochastic counterparts, e.g., SGD, remains largely under-explored76
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for inverse problems, despite their computational appeals. The theoretical analysis of sto-77

chastic iterative methods for inverse problems has just started, and some first theoretical78

results were obtained in [13, 14] for linear inverse problems. The regularizing property of79

SGD for linear inverse problems was proved in [14], by drawing on relevant developments in80

statistical learning theory [31, 4, 19], whereas in [13], the preasymptotic convergence behav-81

ior of RKM was analyzed. In this work, we study in depth the regularizing property and82

convergence rates of SGD for a class of nonlinear inverse problems, under an a priori choice83

of the stopping index and standard assumptions on the nonlinear operator F ; see section 284

for further details and discussions. The analysis borrows techniques from the works [14, 8],85

i.e., handling iteration noise [14] and coping with the nonlinearity of forward map [8]. To86

the best of our knowledge, this work gives a first thorough analysis of SGD for nonlinear87

ill-posed inverse problems in the lens of iterative regularization.88

There is a vast literature on the convergence of SGD and its variants in optimization and89

machine learning; see [1, Section 4] for a comprehensive overview; see also [7] and references90

therein for recent results and [6] for recent results in a Hilbert space setting. For general91

nonconvex optimization problems, most of the results are concerned with the convergence92

in terms of either expected optimality gap or expected norm of its gradient, with respect to93

the iteration index k. However, these works focus on well-posed optimization problems, and94

the ultimate goal is to find a global minimizer. This differs substantially from the setting of95

ill-posed problems, e.g., (1.5). In particular, the existing convergence results of SGD cannot96

be applied directly to deduce convergence (and rate) for problem (1.5), due to its least-97

squares structure and different assumptions (on the forward map, instead of the objective98

functional J ; see Remark 2.1 below for further discussions. More closely related to this99

work are the works [31, 28, 4, 19] on generalization error in statistical learning. Ying and100

Pontil [31] studied an online least-squares gradient descent algorithm in a reproducing kernel101

Hilbert space (RKHS), and derived bounds on the generalization error. Lin and Rosasco102

[19] analyzed the influence of batch size on the convergence of mini-batch SGD. See also103

the recent work [4] on averaged SGD for nonparametric regression in RKHS. There are also104

major differences between these interesting works and this study. First, in these prior works,105

the noise arises mainly due to finite sampling, whereas for inverse problems, it arises from106

imperfect data acquisition process and enters into the data yδ directly. Second, the main107

focus of these works is to bound the generalization error, instead of error estimates on the108

iterate. Third, these prior works analyzed only linear problems (similar to [14]), instead of109

nonlinear problems of this work. Nonetheless, our proof strategy of decomposing the mean110

squared error into the bias and variance components shares similarity with these works.111

Throughout, we denote the iterate for the exact data y† by xk. The notation Fk denotes112

the filtration generated by the random indices {i1, . . . , ik−1} up to the (k − 1)th iteration.113

The notation c, with or without a subscript, denotes a generic constant, which may differ at114

each occurrence, but it is always independent of the noise level δ and the iteration number115

k. We shall abuse ‖ · ‖ for the operator norm on Y n and from X to Y (or Y n). The rest116

of the paper is organized as follows. In section 2, we state the main results and provide117

relevant discussions. Then in section 3 and section 4, we give the proofs on the regularizing118

property and convergence rate, respectively. The paper concludes with further discussions119

in section 5. In the appendix, we collect some useful inequalities.120

2. Main results and discussions. To analyze SGD for nonlinear inverse problems,121

suitable conditions are needed. For example, for Tikhonov regularization, both nonlinearity122

and source conditions are often employed to derive convergence rates [5, 11, 24, 12]. Below123

we make a number of assumptions on the nonlinear operators Fi and the reference solution124

x†. Since the solution to problem (1.1) may be nonunique, the reference solution x† is taken125
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to be the minimum norm solution (with respect to the initial guess x1), which is known to126

be unique under Assumption 2.1(ii) below [8].127

Assumption 2.1. The following conditions hold:128

(i) The operator F : X → Y n is continuous, with a continuous and uniformly bounded129

Frechét derivative on X.130

(ii) There exists an η ∈ (0, 1
2 ) such that for any x, x̃ ∈ X,131

(2.1) ‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ ≤ η‖F (x)− F (x̃)‖.132

(iii) There are a family of uniformly bounded operators Rix such that for any x ∈ X,133

F ′i (x) = RixF
′
i (x
†) and Rx = diag(Rix) : Y n → Y n, with134

‖Rx − I‖ ≤ cR‖x− x†‖.135

(iv) The source condition holds: there exist some ν ∈ (0, 1
2 ) and w ∈ X such that136

x† − x1 = (F ′(x†)∗F ′(x†))νw.137

The conditions in Assumption 2.1 are standard for analyzing iterative regularization138

methods for nonlinear inverse problems [8, 15]. (i) is smilar to the λ-smoothness commonly139

used in optimization. (ii)–(iii) have been verified for a class of nonlinear inverse problems140

[8], e.g., parameter identification for PDEs and nonlinear integral equations. The inequality141

(2.1) is often known as tangential cone condition, and it controls the degree of nonlinearity142

of the operator F . Roughly speaking, it requires the map F be not far from a linear map; see143

Lemma 3.1 for the consequences. The fractional power (F ′(x†)∗F ′(x†))ν in (iv) is defined144

by spectral decomposition (e.g., via Dunford-Taylor integral). Customarily, it represents a145

certain smoothness condition on the exact solution x† (relative to the initial guess x1). The146

restriction ν < 1
2 is due to technical reasons. It is worth noting that most results require only147

(i)–(ii), especially the convergence of SGD, whereas (iii)–(iv) are only needed for proving148

the convergence rate of SGD.149

Remark 2.1. It is instructive to compare Assumption 2.1 with the canoical conditions150

for the usual finite-sum optimization:151

(2.2) F(x) = n−1
n∑
i=1

fi(x).152

Clearly problem (1.5) is a special case of (2.2), with the choice fi(x) = 1
2‖Fi(x)− yδi ‖2. In153

the literature on SGD for problem (2.2), the following two conditions are often adopted154

• L-smoothness: ‖F ′(x)−F ′(x̃)‖ ≤ L‖x− x̃‖155

• λ-convexity: F(x) ≥ F(x̃) + (F ′(x̃), x− x̃) + λ
2 ‖x− x̃‖

2.156

Under these conditions, various convergence results have been established; see [1, Section 4].157

Assumption 2.1(i) imposes boundness and continuity on the derivative F ′(u), which158

does not imply directly the L-smoothness condition. Nonetheless, the Lipschitz continuity of159

F ′(u) can be verified for a number of inverse problems, which then implies the L-smoothness160

condition. Assumption 2.1(ii) requires the forward map being not too far from a linear map,161

and thus one might expect a link with the λ-convexity, which, however, seems not evident.162

Straightforward computation gives ∇2J(x) = F ′(x)∗F ′(x) +∇2F (x)∗(F (x)− yδ). First, the163

map F is not assumed a priori twice differentiable so that J(x) admits a Hessian ∇2J(x).164

Second, if the Hessian ∇2F does exist, then Taylor expansion gives165

‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ = ‖ 1
2∇

2F (x̃)(x− x̃)2 +O
(
|x− x̃|3

)
‖ ≤ η‖F (x)− F (x̃)‖.166
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Unfortunately it does not imply directly that ∇2F is small. Further, F ′(x)∗F ′(x) is usually167

only positive semidefinitive, since the linearized operator F ′(x) is degenerate (e.g. compact)168

for most ill-posed inverse problems, so even if ∇2F (x̃) is small, generally one cannot ensure169

∇2J(x) ≥ 0, i.e., the convexity. In sum, (2.1) does not imply the λ-convexity condition.170

Thus Assumption 2.1 is not directly comparable with standard assumptions for SGD, and171

the convergence results in [1] cannot be applied directly.172

We also need suitable assumptions on the step size schedule {ηk}∞k=1. The choice is viable173

since maxi supx∈X ‖F ′i (x)‖ <∞, by Assumption 2.1(i). The choice in Assumption 2.2(i) is174

more general than (ii). The latter choice is often known as a polynomially decaying step175

size schedule in the literature.176

Assumption 2.2. The step sizes {ηk}k≥1 satisfy one of the following conditions.177

(i) ηk maxi supx∈X ‖F ′i (x)‖2 < 1 and
∑∞
k=1 ηk =∞.178

(ii) ηk = η0k
−α, with α ∈ (0, 1) and η0 ≤ (maxi supx∈X ‖F ′i (x)‖2)−1.179

Due to the random choice of the index ik, the SGD iterate xδk is random. There are180

several different ways to measure the convergence. We shall employ the mean squared norm181

defined by E[‖·‖2], where the expectation E[·] is with respect to the filtration Fk. Clearly, the182

iterate xδk is measurable with respect to Fk. The first result gives the regularizing property183

of SGD for problem (1.1) under a priori parameter choice. The notation N (·) denotes the184

kernel of a linear operator.185

Theorem 2.1 (convergence for noisy data). Let Assumption 2.1(i)-(ii) and Assump-186

tion 2.2(i) be fulfilled. If the stopping index k(δ) ∈ N satisfies limδ→0+ k(δ) = ∞ and187

limδ→0+ δ2
∑k(δ)
i=1 ηi = 0, then there exists a solution x∗ ∈ X to problem (1.1) such that188

lim
δ→0+

E[‖xδk(δ) − x
∗‖2] = 0.189

Further, if N (F ′(x†)) ⊂ N (F ′(x)), then190

lim
δ→0+

E[‖xδk(δ) − x
†‖2] = 0.191

Remark 2.2. The conditions on k(δ) in Theorem 2.1 are identical with that for the192

Landweber method [8, Theorem 2.4]. Note that consistency does not require a monotonically193

decreasing step size schedule, and holds for a constant step size.194

Next we make an assumption on the nonlinearity of the operator F in a stochastic sense.195

Assumption 2.3. There exist some θ ∈ (0, 1] and cR > 0 such that for any function196

G : X → Y n and zt = txδk + (1− t)x†, t ∈ [0, 1], there hold197

E[‖(I −Rzt)G(xδk)‖2]
1
2 ≤ cRE[‖xδk − x†‖2]

θ
2E[‖G(xδk)‖2]

1
2 ,198

E[‖(I −R∗zt)G(xδk)‖2]
1
2 ≤ cRE[‖xδk − x†‖2]

θ
2E[‖G(xδk)‖2]

1
2 .199200

Assumption 2.3 is a stochastic version of Assumption 2.1(iii), and strengthens the cor-201

responding estimate in the sense of expectation. The case θ = 0 follows trivially from202

Assumption 2.1(iii), by the boundedness of the operator Rx, whereas with θ = 1, it recovers203

the latter when specialized to a Dirac measure. It will play a role in the convergence rate204

analysis, by taking G(x) = F (x)−yδ and G(x) = F ′(x†)(x−x†) (see the proofs in Lemma 4.1205

and Lemma 4.6), and it enables bounding the terms involving conditional dependence.206

The next result gives a convergence rate under a priori parameter choice, i.e., bound on207

the error eδk := xδk − x†, in terms of δ and k etc. The notation [·] denotes taking the integral208
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part of a real number, provided that ‖F ′(x†)∗F ′(x†)‖ ≤ 1 and η0 ≤ 1. The assumptions in209

Theorem 2.2 are identical with that for the Landweber method [8], except Assumption 2.3.210

The strategy of the error analysis is to split the mean squared error E[‖eδk‖2] using bias-211

variance decomposition: with bias ‖E[eδk]‖2 and variance E[‖eδk − E[eδk]‖2],212

(2.3) E[‖eδk‖2] = ‖E[eδk]‖2 + E[‖eδk − E[eδk]‖2].213

The former contains the approximation error and data error, whereas the latter arises from214

the random choice of the index ik. Due to the nonlinearity of the operator F , the two terms215

interact with each other (and also E[‖F ′(x†)eδk‖2]); see Theorem 4.4 and Theorem 4.7. This216

leads to a coupled system of recursive inequalities for E[‖eδk‖2] and E[‖F ′(x†)eδk‖2], and217

thus the analysis differs substantially from that for linear inverse problems in [14] and the218

Landweber method for nonlinear inverse problems [8].219

Theorem 2.2. Let Assumption 2.1, Assumption 2.2(ii) and Assumption 2.3 be fulfilled220

with ‖w‖ and η0 being sufficiently small, and xδk be the SGD iterate defined in (1.3). Then221

for all k ≤ k∗ = [( δ
‖w‖ )

− 2
(2ν+1)(1−α) ] and small ε ∈ (0, α2 ), there hold222

E[‖eδk‖2] ≤ c∗k−min(2ν(1−α),α−ε)‖w‖2 and E[‖F ′(x†)eδk‖2] ≤ c∗k−min((1+2ν)(1−α),1−ε)‖w‖2,223224

where the constant c∗ depends on ν, α, η0, n and θ, but is independent of k and δ.225

Remark 2.3. When α ∈ (0, 1) is close to 1, setting k = k∗ gives226

E[‖eδk∗‖2] ≤ c∗‖w‖
2

2ν+1 δ
4ν

2ν+1 and E[‖F ′(x†)eδk∗‖2] ≤ c∗‖w‖
4ν

2ν+1 δ
2

2ν+1 .227

These rates are comparable with that for the Landweber method for nonlinear inverse prob-228

lems [8, Theorem 3.2 ] and SGD for linear inverse problems [14, Theorem 2.2]. The restric-229

tion O(k−(α−ε)) is due to the computational variance arising from the random index ik, and230

for small α, the convergence rate may suffer from a loss. It is noteworthy that for ν > 1/2,231

the convergence rate is suboptimal, just as the classical Landweber method, and thus SGD232

may suffer from a saturation phenomenon. It is an interesting open question to remove the233

saturation phenomenon.234

Remark 2.4. In practice, the domain D(F ) ⊂ X is often not the whole space X, es-235

pecially for parameter identifications for PDEs, where box constraints arise naturally due236

to physical constraints. When the domain D(F ) ⊂ X is a closed convex set, e.g., box con-237

straints, it can be incorporated into the algorithm by a projection operator P [29], i.e.,238

xδk+1 = P (xδk − ηkF ′ik(xδk)∗(Fik(xδk)− yδik)).239

However, the presence of the projection P significantly complicates the analysis. The exten-240

sion to the constrained case is an interesting open question.241

3. Convergence of SGD. Now we analyze the convergence of SGD, and give the242

proof of Theorem 2.1. We first recall a useful characterization of an exact solution x∗ [8,243

Proposition 2.1].244

Lemma 3.1. The following statements hold under Assumption 2.1(i)–(ii).245

(i) The following upper and lower bounds hold:246

1
1+η‖F

′(x)(x− x̃)‖ ≤ ‖F (x)− F (x̃)‖ ≤ 1
1−η‖F

′(x)(x− x̃)‖.247

(ii) If x∗ is a solution of problem (1.1), then any other solution x̃∗ satisfies x∗ − x̃∗ ∈248

N (F ′(x∗)), and vice versa.249

6

This manuscript is for review purposes only.



The next result gives a crucial monotonicity result of the mean squared error.250

Proposition 3.1. Under Assumption 2.1(i)-(ii) and Assumption 2.2(i), for any solu-251

tion x∗ to problem (1.1), there holds252

E[‖x∗ − xδk+1‖2]− E[‖x∗ − xδk‖2] ≤− (1− 2η)ηkE[‖F (xδk)− yδ‖2]253

+ 2ηk(1 + η)δE[‖F (xδk)− yδ‖2]
1
2 .254255

Proof. Completing the square using the definition of the iterate xδk in (1.3) gives256

‖x∗ − xδk+1‖2 − ‖x∗ − xδk‖2257

=− 2ηk〈F ′ik(xδk)(xδk − x∗), Fik(xδk)− yδik〉+ η2
k‖F ′ik(xδk)∗(Fik(xδk)− yδik)‖2.258259

Using the splitting F ′ik(xδk)(xδk − x∗) = (Fik(xδk) − yδik) + (yδik − y†ik) + (y†ik − Fik(xδk) −260

F ′ik(xδk)(x∗ − xδk)), by the condition ηk‖F ′ik(x)‖2 < 1 in Assumption 2.2(i), we obtain261

‖x∗ − xδk+1‖2 − ‖x∗ − xδk‖2262

=− 2ηk〈Fik(xδk)− yδik , Fik(xδk)− yδik〉+ η2
k‖F ′ik(xδk)∗(Fik(xδk)− yδik)‖2263

− 2ηk〈yδik − y
†
ik
, Fik(xδk)− yδik〉264

− 2ηk〈y†ik − Fik(xδk)− F ′ik(xδk)(x∗ − xδk), Fik(xδk)− yδik〉265

≤− ηk〈Fik(xδk)− yδik , Fik(xδk)− yδik〉 − 2ηk〈yδik − y
†
ik
, Fik(xδk)− yδik〉266

− 2ηk〈y†ik − Fik(xδk)− F ′ik(xδk)(x∗ − xδk), Fik(xδk)− yδik〉.267268

Next, by the measurability of xk with respect to Fk, Cauchy-Schwarz inequality and As-269

sumption 2.1(i), we have270

E[‖x∗ − xδk+1‖2 − ‖x∗ − xδk‖2|Fk]271

≤− ηk‖F (xδk)− yδ‖2 − 2ηk〈yδ − y†, F (xδk)− yδ〉272

− 2ηk〈y† − F (xδk)− F ′(xδk)(x∗ − xδk), F (xδk)− yδ〉273

≤− ηk‖F (xδk)− yδ‖2 + 2ηkδ‖F (xδk)− yδ‖+ 2ηkη‖F (xδk)− y†‖‖F (xδk)− yδ‖274

≤ηk‖F (xδk)− yδ‖
(
(2η − 1)‖F (xδk)− yδ‖+ 2(1 + η)δ

)
.275276

Last, taking full conditional yields the desired assertion277

Below we analyze the convergence of SGD for exact and noisy data separately.278

3.1. Convergence for exact data. The next result is direct from Proposition 3.1.279

Corollary 3.2. Let Assumption 2.1(i)-(ii) and Assumption 2.2(i) be fulfilled. Then280

for the exact data y†, any solution x∗ to problem (1.1) satisfies281

E[‖x∗ − xk+1‖2]− E[‖x∗ − xk‖2] ≤ −(1− 2η)ηkE[‖F (xk)− y†‖2],282

∞∑
k=1

ηkE[‖F (xk)− y†‖2] ≤ 1
1−2η‖x

∗ − x1‖2.283

284

Remark 3.1. Corollary 3.2 shows that the mean squared error E[‖xk − x∗‖2] is mono-285

tonically decreasing, but the mean squared residual E[‖F (xk) − y†‖2] is not necessarily so.286

The latter reflects the fact that the estimated gradient is not guaranteed to be descent.287
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The next result shows that the sequence {xk}k≥1 is a Cauchy sequence.288

Lemma 3.3. Under Assumption 2.1(i)-(ii) and Assumption 2.2(i), for the exact data289

y†, the sequence {xk}k≥1 generated by SGD (1.3) is a Cauchy sequence.290

Proof. The argument below follows closely [8, Theorem 2.3], which can be traced back291

to [21]. Let x∗ be any solution to problem (1.1), and let ek := xk − x∗. By Corollary 3.2,292

E[‖ek‖2] is monotonically decreasing to some ε ≥ 0. Next we show that the sequence {xk}k≥1293

is actually a Cauchy sequence. First we note that E[〈·, ·〉] defines an inner product. For any294

j ≥ k, choose an index ` with j ≥ ` ≥ k such that295

(3.1) E[‖y† − F (x`)‖2] ≤ E[‖y† − F (xi)‖2], ∀k ≤ i ≤ j.296

By the inequality E[‖ej − ek‖2]
1
2 ≤ E[‖ej − e`‖2]

1
2 + E[‖e` − ek‖2]

1
2 and the identities297

(3.2)
E[‖ej − e`‖2] = 2E[〈e` − ej , e`〉] + E[‖ej‖2]− E[‖e`‖2],

E[‖e` − ek‖2] = 2E[〈e` − ek, e`〉] + E[‖ek‖2]− E[‖e`‖2],
298

it suffices to prove that both E[‖ej − e`‖2] and E[‖e` − ek‖2] tend to zero as k → ∞. For299

k → ∞, the last two terms on each of the right-hand side of (3.2) tend to ε − ε = 0, by300

the monotone convergence of E[‖ek‖2] to ε, cf. Corollary 3.2. Next we show that the term301

E[〈e` − ek, e`〉] also tends to zero as k →∞. Actually, by the definition of xk, we have302

e` − ek =

`−1∑
i=k

(ei+1 − ei) =

`−1∑
i=k

ηiF
′
ii(xi)

∗(y†ii − Fii(xi)).303

By triangle inequality and Cauchy-Schwarz inequality, we have304

|E[〈e` − ek, e`〉]| ≤
`−1∑
i=k

ηi|E[〈F ′ii(xi)
∗(y†ii − Fii(xi)), e`〉]|305

=

`−1∑
i=k

ηi|E[〈y†ii − Fii(xi), F
′
ii(xi)(x

∗ − xi + xi − x`)〉]|306

=

`−1∑
i=k

ηi|E[〈y† − F (xi), F
′(xi)(x

∗ − xi + xi − x`)〉]|307

≤
`−1∑
i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F ′(xi)(x∗ − xi)‖2]

1
2308

+

`−1∑
i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F ′(xi)(xi − x`)‖2]

1
2 := I + II.309

310

By Assumption 2.1(ii) and Lemma 3.1(i), we bound the first term I by311

I ≤ (1 + η)

`−1∑
i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F (x∗)− F (xi)‖2]

1
2312

= (1 + η)

`−1∑
i=k

ηiE[‖y† − F (xi)‖2].313

314
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Likewise, we bound the term II by triangle inequality and the choice of ` in (3.1) as:315

II ≤ (1 + η)

`−1∑
i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖(F (x`)− y†) + (y† − F (xi))‖2]

1
2316

≤ 2(1 + η)

`−1∑
i=k

ηiE[‖y† − F (xi)‖2].317

318

The last two estimates together imply |E[〈e` − ek, e`〉]| ≤ 3(1 + η)
∑`−1
i=k ηiE[‖y† − F (xi)‖2].319

Similarly, one can deduce E[〈ej − e`, e`〉]| ≤ 3(1 + η)
∑j−1
i=` ηiE[‖y† − F (xi)‖2]. These two320

estimates and Corollary 3.2 imply that the right-hand sides of (3.2) tend to zero as k →∞.321

Hence both {ek}k≥1 and {xk}k≥1 are Cauchy sequences.322

Lemma 3.4. Under Assumption 2.1(i)-(ii) and Assumption 2.2(i), there holds323

lim
k→∞

E[‖F (xk)− y†‖2] = 0.324

Proof. Lemma 3.3 implies that {xk}k≥1 is a Cauchy sequence. By Assumption 2.2(i),325

supx∈X ‖F ′(x)‖ ≤ cF for some cF > 0. Further, for any x, x̃ ∈ X, there holds326

‖F (x)− F (x̃)‖ ≤ (1− η)−1‖F ′(x)(x− x̃)‖ ≤ cF (1− η)−1‖x− x̃‖.327

Thus, {F (xk) − y†}k≥1 is a Cauchy sequence, and E[‖F (xk) − y†‖2] converges. Now we328

proceed by contradiction, and assume that limk→∞ E[‖F (xk) − y†‖2] > 0. Then there329

exist some ε > 0 and k∗ ∈ N, such that E[‖F (xk) − y†‖2] ≥ ε for all k ≥ k∗. Hence, by330

Assumption 2.2(i),331

∞∑
k=1

ηkE[‖F (xk)− y†‖2] ≥
∞∑

k=k∗

ηkE[‖F (xk)− y†‖2] ≥ ε
∞∑

k=k∗

ηk =∞,332

which contradicts the inequality
∑∞
k=1 ηkE[‖F (xk)− y†‖2] <∞ from Corollary 3.2.333

Now we can state the convergence of SGD for the exact data y†. Below x† denotes the334

unique solution to problem (1.1) of minimal distance to x1.335

Theorem 3.5 (Convergence for exact data). Let Assumption 2.1(i)-(ii) and Assump-336

tion 2.2(i) be fulfilled. Then for the exact data y†, the sequence {xk}k≥1 generated by SGD337

converges to a solution x∗ of problem (1.1):338

lim
k→∞

E[‖xk − x∗‖2] = 0.339

Further, if N (F ′(x†)) ⊂ N (F ′(x)), then340

lim
k→∞

E[‖xk − x†‖2] = 0.341

Proof. Since {xk}k≥1 is a Cauchy sequence, it has a limit, denoted by x∗. Further, x∗342

is a solution, since by Lemma 3.4, the mean squared residual E[‖y† − F (xk)‖2] converges343

to zero as k → ∞. Note that problem (1.1) has a unique solution of minimal distance to344

the initial guess x1 that satisfies x† − x1 ∈ N (F ′(x†))⊥; see Lemma 3.1. If N (F ′(x†)) ⊂345

N (F ′(xk)) for all k = 1, 2, . . ., then clearly, xk − x1 ∈ N (F ′(x†))⊥, k = 1, 2, . . . . Hence,346

x† − x∗ = x† − x1 + x1 − x∗ ∈ N (F ′(x†))⊥. This and Lemma 3.1 imply x∗ = x†.347
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Remark 3.2. Theorem 3.5 does not impose any constraint on the step size schedule348

{ηk}∞k=1 directly, apart from the fact that it should not decay too fast to zero. In particular,349

it can be taken to be a constant step size. This result slightly improves that in [14, Theorem350

2.1], where a decreasing step size is required (for linear inverse problems). The improvement351

is achieved by exploiting the quadratic structure of the functional J(x) in (1.5) (and the352

tangential cone condition in Assumption 2.1(i)), whereas in [14] the consistency is derived353

by means of bias-variance decomposition.354

3.2. Convergence for noisy data. The next result gives the stability of the SGD355

iterate xδk with respect to the noise level δ (at δ = 0).356

Lemma 3.6. Let Assumption 2.1(i) be fulfilled. For any fixed k ∈ N and any path357

(i1, . . . , ik−1) ∈ Fk, let xk and xδk be the SGD iterates along the path for exact data y† and358

noisy data yδ, respectively. Then359

lim
δ→0+

E[‖xδk − xk‖2] = 0.360

Proof. We prove the assertion by mathematical induction. It holds trivially for k = 1.361

Now suppose that it holds for all indices up to k and any path in Fk. By the definition, for362

any fixed path (i1, . . . , ik), we have363

xδk+1 − xk+1 = (xδk − xk)− ηk
(
(F ′ik(xδk)∗ − F ′ik(xk)∗)(Fik(xδk)− yδik)364

+ F ′ik(xk)∗((Fik(xδk)− yδik)− (Fik(xk)− y†ik))
)
.365366

Thus, by triangle inequality,367

‖xδk+1 − xk+1‖ ≤ ‖xδk − xk‖+ ηk‖F ′ik(xδk)∗ − F ′ik(xk)∗‖‖Fik(xδk)− yδik‖(3.3)368

+ ηk‖F ′ik(xk)∗‖‖(Fik(xδk)− yδik)− (Fik(xk)− y†ik)‖.369370

Next we show that for any fixed k, sup(i1,...,ik−1)∈Fk ‖xk‖ is bounded. Indeed, by Assump-371

tion 2.1(i), maxi supx∈X ‖F ′i (x)‖ ≤ cF for some cF > 0. Then, by Lemma 3.1(i)372

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖+ ηk‖F ′ik(xk)∗‖‖Fik(xk)− y†ik‖ ≤ (1 + ηk
c2F

1−η )‖xk − x∗‖.373
374

This and an induction argument show that the claim. Similarly,375

‖Fik(xδk)− yδik‖ ≤ ‖Fik(xδk)− Fik(xk)‖+ ‖Fik(xk)− y†ik‖+ ‖y†ik − y
δ
ik
‖376

≤ cF
1−η
(
‖xδk − xk‖+ ‖xk − x∗‖

)
+ δ,377

378

and consequently,379

‖xδk+1 − xk+1‖ ≤ ‖xδk − xk‖+ ηk( cF
1−η (‖xδk − xk‖+ ‖xk − x∗‖) + δ)‖F ′ik(xδk)∗ − F ′ik(xk)∗‖380

+ cF ‖((Fik(xδk)− yδik)− (Fik(xk)− y†ik))‖381

≤ ‖xδk − xk‖+ 2ηkcF ( cF
1−η (‖xδk − xk‖+ ‖xk − x∗‖) + δ)382

+ cF ‖((Fik(xδk)− yδik)− (Fik(xk)− y†ik))‖,383384

This and mathematical induction shows that for any fixed k, sup(i1,...,ik−1)∈Fk ‖x
δ
k − xk‖385

is uniformly bounded. Let c = cF
1−η sup(i1,...,ik−1)∈Fk(‖xδk − xk‖ + ‖xk − x∗‖) + δ. Then it386

follows from (3.3) that387

lim
δ→0+

‖xδk+1 − xk+1‖ ≤ lim
δ→0+

‖xδk − xk‖2 + cηk lim
δ→0+

‖F ′ik(xδk)∗ − F ′ik(xk)∗‖388
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+ cF lim
δ→0+

‖(Fik(xδk)− yδik)− (Fik(xk)− y†ik)‖.389
390

Then the desired assertion follows from the continuity of the operators Fi and F ′i in As-391

sumption 2.1(i), the induction hypothesis, and taking full expectation.392

Now we can prove Theorem 2.1 on the regularizing property of SGD.393

Proof of Theorem 2.1. Let {δn}n≥1 ⊂ R be a sequence converging to zero, and yn := yδn394

a corresponding sequence of noisy data. For each pair (δn, yn), we denote by kn = k(δn)395

the stopping index. Further, we may assume that kn increases strictly monotonically with396

n. By Proposition 3.1 and Young’s inequality 2ab ≤ εa2 + ε−1b2, with the choice a =397

E[‖F (xδk)− yδ‖2]
1
2 , b = (1 + η)δ and ε = 1− 2η > 0:398

E[‖x∗ − xδk+1‖2]− E[‖x∗ − xδk‖2] ≤− (1− 2η)ηkE[‖F (xδk)− yδ‖2]399

+ 2ηk(1 + η)δE[‖F (xδk)− yδ‖2]
1
2 ≤ (1 + η)2

1− 2η
ηkδ

2.400
401

Then for any m < n, summing the inequality with δ = δn from km to kn − 1 and applying402

triangle inequality lead to403

E[‖xδnkn − x
∗‖2] ≤ E[‖xδnkm − x

∗‖2] +
(1 + η)2

1− 2η
δ2
n

kn−1∑
j=km

ηj404

≤ 2E[‖xδnkm − xkm‖
2] + 2E[‖xkm − x∗‖2] +

(1 + η)2

1− 2η
δ2
n

kn−1∑
j=1

ηj .405

406

By Theorem 3.5, we can fix a large m so that the term E[‖xkm − x∗‖2] is sufficiently407

small. Since the index km is fixed, we may apply Lemma 3.6 to conclude that the term408

E[‖xδnkm − xkm‖2] tends to zero as n → ∞. The last term also tends to zero under the409

condition limn→∞ δ2
n

∑kn
i=1 ηi = 0. This completes the proof of the first assertion. The case410

N (F ′(x†)) ⊂ N (F ′(x)) follows similarly as Theorem 3.5.411

4. Convergence rates. Now we prove convergence rates for SGD under Assump-412

tion 2.1, Assumption 2.2(ii) and Assumption 2.3; see Theorem 4.8 and Theorem 2.2 for the413

results for exact and noisy data, respectively. We employ some shorthand notation. Let414

Ki = F ′i (x
†), K =

1√
n

 K1

...
Kn

 and B = K∗K =
1

n

n∑
i=1

K∗iKi.415

Further, we frequently adopt the shorthand notation416

(4.1) Πk
j (B) =

k∏
i=j

(I − ηiB),417

with the convention Πk
j (B) = I for j > k, and for s ≥ 0 and j ∈ N, we define,418

s̃ = s+ 1
2 and φsj = ‖BsΠk

j+1(B)‖.419

The rest of this section is organized as follows. By bias variance decomposition, we first420

derive two important recursions for the mean ‖BsE[eδk]‖ and variance E[‖Bs(eδk −E[eδk])‖2],421

for any s ≥ 0, in subsection 4.1 and subsection 4.2, respectively, and then use the recursions422

to derive convergence rates under a priori parameter choice in subsection 4.3.423
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4.1. Recursion on the bias. First, we derive a recursion on the bias of the SGD424

iterate xδk. The following bound on the linearization error is useful.425

Lemma 4.1. Under Assumption 2.1(iii), there holds426

‖F (x)− F (x†)−K(x− x†)‖ ≤ cR
2 ‖K(x− x†)‖‖x− x†‖.427

Further, under Assumption 2.3, there holds428

E[‖F (xδk)− F (x†)−K(xδk − x†)‖2]
1
2 ≤ cR

1+θE[‖K(xδk − x†)‖2]
1
2E[‖xδk − x†‖2]

θ
2 .429

Proof. Let zt = tx+ (1− t)x†. By the mean value theorem and Assumption 2.1(iii),430

‖F (x)− F (x†)−K(x− x†)‖ ≤ ‖
∫ 1

0

(F ′(zt)−K)(x− x†)dt‖431

≤
∫ 1

0

‖(Rzt − I)K(x− x†)‖dt ≤ cR
2
‖K(x− x†)‖‖x− x†‖.432

433

This shows the first estimate. Similarly, using Assumption 2.1(iii) and Assumption 2.3 with434

the choice G(x) = K(x− x†), we obtain435

E[‖F (xδk)− F (x†)−K(xδk − x†)‖2]
1
2 ≤

∫ 1

0

E[‖(Rzt − I)K(xδk − x†)‖2]
1
2 dt436

≤cRE[‖K(xδk − x†)‖2]
1
2

∫ 1

0

E[‖zt − x†‖2]
θ
2 dt ≤ cR

1 + θ
E[‖K(xδk − x†)‖2]

1
2E[‖xδk − x†‖2]

θ
2 .437

438

This completes the proof of the lemma.439

The next result gives a useful representation of the mean E[eδk] of the error eδk ≡ xδk−x†.440

Lemma 4.2. Under Assumption 2.1(iii), the error eδk satisfies441

E[eδk+1] = Πk
1(B)e1 +

k∑
j=1

ηjΠ
k
j+1(B)K∗(−(y† − yδ) + E[vj ]),442

with the vector vk ∈ Y n given by443

(4.2) vk = −(F (xδk)− F (x†)−K(xδk − x†)) + (I −R∗xδk)(F (xδk)− yδ).444

Proof. The definition of the SGD iterate xδk in (1.3) and the relation F ′ik(xδk)∗ =445

(Rik
xδk
F ′ik(x†))∗ = K∗ikR

ik∗
xδk

from Assumption 2.1(iii) directly imply446

eδk+1 = eδk − ηkK∗ikKik(xδk − x†)− ηkK∗ik(y†ik − y
δ
ik

) + ηkK
∗
ik
vk,ik ,447448

with the random variable vk,i defined by449

(4.3) vk,i = −(Fi(x
δ
k)− Fi(x†)−Ki(x

δ
k − x†)) + (I −Ri∗xδk)(Fi(x

δ
k)− yδi ).450

Thus, by the measurability of xδk (and thus eδk) with respect to Fk, E[eδk+1|Fk] is given by451

E[eδk+1|Fk] = (I − ηkB)eδk − ηkK∗(y† − yδ) + ηkK
∗vk.452453

Then taking full conditional and applying the recursion repeatedly complete the proof.454
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Remark 4.1. The term vk in (4.2) includes both the linearization error (F (xδk)−F (x†)−455

K(xδk−x†)) of the nonlinear operator F and the range invariance of the derivative F ′(x) in456

Assumption 2.1(ii)–(iii).457

The next result gives a useful bound on E[vj ].458

Lemma 4.3. Under Assumption 2.1(i)–(iii), for vj defined in (4.2), there holds459

‖E[vj ]‖ ≤ (3−η)cR
2(1−η) E[‖eδj‖2]

1
2E[‖B 1

2 eδj‖2]
1
2 + cRE[‖eδj‖2]

1
2 δ.460

Proof. By the triangle inequality, there holds461

‖E[vj ]‖ ≤ ‖E[F (xδj)− F (x†)−K(xδj − x†)]‖+ ‖E[(I −R∗xδj )(F (xδj)− yδ)]‖ := I + II.462
463

The bound on I follows from Lemma 4.1 and Cauchy-Schwarz inequality as464

I ≤ cR
2 E[‖eδj‖‖Keδj‖] ≤ cR

2 E[‖eδj‖2]
1
2E[‖Keδj‖2]

1
2 .465466

For the term II, by triangle inequality, Cauchy-Schwarz inequality and Lemma 3.1,467

II := ‖E[(I −Rxδj )(y
δ − F (xδj))]‖ ≤ E[‖(I −Rxδj )(y

δ − F (xδj))‖]468

≤ cR
1−ηE[‖eδj‖‖Keδj‖] + cRE[‖eδj‖]δ ≤ E[‖eδj‖2]

1
2 ( cR

1−ηE[‖Keδj‖2]
1
2 + cRδ).469

470

Combining these estimates with the identity ‖Keδj‖ = ‖B 1
2 eδj‖ gives the assertion.471

Last, we bound the error E[eδk] in a weighted norm. The cases s = 0 and s = 1
2 will be472

employed in the convergence analysis.473

Theorem 4.4. Under Assumption 2.1, for any s ≥ 0, there holds474

‖BsE[eδk+1]‖ ≤ φs+ν0 ‖w‖+

k∑
j=1

ηjφ
s̃
j

(
(3−η)cR
2(1−η) E[‖eδj‖2]

1
2E[‖B 1

2 eδj‖2]
1
2 + cRE[‖eδj‖2]

1
2 δ + δ

)
.475

476

Proof. By Lemma 4.2 and triangle inequality,477

‖BsE[eδk+1]‖ ≤ I +

k∑
j=1

ηjIIj .478

with I = ‖BsΠk
1(B)(x1 − x†)‖ and IIj = ‖BsΠk

j+1(B)K∗(E[vj ] − (y† − yδ))‖. It suffices to479

bound the terms I and IIj . By Assumption 2.1(iv),480

I = ‖BsΠk
1(B)Bνw‖ ≤ ‖Πk

1(B)Bs+ν‖‖w‖.481482

To bound the terms IIj , we have483

IIj ≤ ‖BsΠk
j+1(B)K∗(E[vj ]− (y† − yδ))‖ ≤ ‖Bs+ 1

2 Πk
j+1(B)‖(‖E[vj ]‖+ δ).484485

This, Lemma 4.3 and the notation φsj complete the proof.486

Remark 4.2. The bound on E[eδk] depends on the variance of the iterate xδk (via the487

terms like E[‖eδk‖2] etc.), which differs from the linear case [14]. This is one of the com-488

plications for nonlinear inverse problems. The weighted norm ‖BsE[eδk]‖ is useful since the489

upper bound in Theorem 4.4 involves E[‖B 1
2 eδk‖2], i.e., s = 1

2 . For linear inverse problems,490

Rx = I and cR = 0, and the recursion simplifies to ‖BsE[eδk+1]‖ ≤ φs+ν0 ‖w‖+
∑k
j=1 ηjφ

s̃
jδ,491

i.e., the approximation error and data error, respectively.492
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4.2. Recursion on variance. Now we turn to the computational variance E[‖Bs(xδk−493

E[xδk])‖2], which arises from the random index ik. First, we bound on the variance in terms494

of iteration noises Nj,1 and Nj,2 (defined in (4.4) below).495

Lemma 4.5. Under Assumption 2.1(iii), for the SGD iterate xδk, there holds496

E[‖Bs(xδk+1 − E[xδk+1])‖2] ≤
k∑
j=1

η2
j (φs̃j)

2E[‖Nj,1‖2] + 2

k∑
i=1

k∑
j=i

ηiηjφ
s̃
iφ
s̃
jE[‖Ni,1‖‖Nj,2‖]497

+

k∑
i=1

k∑
j=1

ηiηjφ
s̃
iφ
s̃
jE[‖Ni,2‖‖Nj,2‖],498

499

with the random variables Nj,1 and Nj,2 respectively given by500

(4.4)
Nj,1 = (K(xδj − x†)−Kij (x

δ
j − x†)ϕij ) + ((y† − yδ)− (y†i − y

δ
i )ϕij ),

Nj,2 = −E[vj ] + vj,ijϕij ,
501

where vk and vk,i are given in (4.2) and (4.3), and ϕi = (0, . . . , 0, n
1
2 , 0, . . . , 0) denotes the502

canonical ith Cartesian basis vector in Rn scaled by n
1
2 .503

Proof. Similar to the proof of Lemma 4.2, we rewrite the SGD iteration (1.3) as504

(4.5) xδk+1 = xδk − ηkK∗ikKik(xδk − x†)− ηkK∗ik(y†ik − y
δ
ik

) + ηkK
∗
ik
vk,ik ,505

with vk,i defined in (4.3). By the definition of vk in (4.2) and the measurability of xδk with506

respect to Fk, we obtain507

E[xδk+1|Fk] = xδk − ηkB(xδk − x†)− ηkK∗(y† − yδ) + ηkK
∗vk.508509

Taking full conditional yields510

E[xδk+1] = E[xδk]− ηkBE[xδk − x†]− ηkK∗(y† − yδ) + ηkK
∗E[vk].(4.6)511512

Thus, subtracting (4.6) from (4.5) shows that zk := xδk − E[xδk] satisfies513

zk+1 = (I − ηkB)zk + ηkMk,(4.7)514515

with z1 = 0 and the iteration noise Mj given by Mj = Mj,1 +Mj,2, where516

Mj,1 = (B(xδj − x†)−K∗ijKij (x
δ
j − x†)) + (K∗(y† − yδ)−K∗ij (y

†
ij
− yδij )),517

Mj,2 = −(K∗E[vj ]−K∗ijvj,ij ).518
519

Repeatedly applying the recursion (4.7) with z1 = 0 leads to520

zk+1 =

k∑
j=1

ηjΠ
k
j+1(B)Mj .521

With the decomposition of Mj = Mj,1 +Mj,2, we directly obtain522

E[‖Bszk+1‖2] =

k∑
i=1

k∑
j=1

ηiηjE[〈BsΠk
i+1(B)Mi,1, B

sΠk
j+1(B)Mj,1〉]523
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+ 2

k∑
i=1

k∑
j=1

ηiηjE[〈BsΠk
i+1(B)Mi,1, B

sΠk
j+1(B)Mj,2〉]524

+

k∑
i=1

k∑
j=1

ηiηjE[〈BsΠk
i+1(B)Mi,2, B

sΠk
j+1(B)Mj,2〉] := I + II + III.525

526

Below we simplify the three terms. Since xδj is measurable with respect to Fj , we have527

E[Mj,1|Fj ] = 0, which directly implies the independence E[〈BsMi,1, B
sMj,1〉] = 0, i 6= j.528

Indeed, for i > j, E[〈BsMi,1, B
sMj,1〉|Fi] = 〈BsE[Mi,1|Fi], BsMj,1〉 = 0, and taking full529

conditional yields the claim. Thus, the term I simplifies to530

I =

k∑
j=1

η2
jE[‖BsΠk

j+1(B)Mj,1‖2].531

Further, for i > j, a similar argument yields E[〈BsMi,1, B
sMj,2〉] = 0 and thus532

II = 2

k∑
i=1

k∑
j=i

ηiηjE[〈BsΠk
i+1Mi,1, B

sΠk
j+1Mj,2〉].533

Now we further simplify Mj,1 and Mj,2. By the definitions of Nj,1 and Nj,2, with (K∗)†534

being the pseudoinverse of K∗, we have (K∗)†Mj = Nj,1+Nj,2. Thus, by triangle inequality,535

E[‖Bszk+1‖2] ≤
k∑
j=1

η2
jE[‖Bs+ 1

2 Πk
j+1(B)‖2‖Nj,1‖2]536

+ 2

k∑
i=1

k∑
j=i

ηiηj‖Bs+
1
2 Πk

i+1(B)‖‖Bs+ 1
2 Πk

j+1(B)‖E[‖Ni,1‖‖Nj,2‖]537

+

k∑
i=1

k∑
j=1

ηiηj‖Bs+
1
2 Πk

i+1(B)‖‖Bs+ 1
2 Πk

j+1(B)‖E[‖Ni,2‖‖Nj,2‖].538

539

This completes the proof of the lemma.540

The next result bounds the iteration noises Nj,1 and Nj,2.541

Lemma 4.6. Under Assumption 2.1(i)–(iii) and Assumption 2.3, for Nj,1 and Nj,2 de-542

fined in (4.4), there hold543

E[‖Nj,1‖2]
1
2 ≤ n 1

2 (E[‖B 1
2 eδj‖2]

1
2 + δ),(4.8)544

E[‖Nj,2‖2]
1
2 ≤ n 1

2 ( cR(2+θ−η)
(1+θ)(1−η)E[‖B 1

2 eδj‖2]
1
2 + cRδ)E[‖eδj‖2]

θ
2 .(4.9)545

546

Proof. By the measurability of xδj with respect to Fj , we have E[Kij (x
δ
j − x†)ϕij |Fj ] =547

K(xδj − x†). Then by bias-variance decomposition, we have548

E[‖(K(xδj − x†)−Kij (x
δ
j − x†)ϕij )‖2|Fj ] ≤ E[‖Kij (x

δ
j − x†)ϕij‖2|Fj ]549

=n−1
n∑
i=1

‖Ki(x
δ
j − x†)‖2n = n‖K(xδj − x†)‖2,550

551
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and then by taking full expectation, we obtain552

E[‖(K(xδj − x†)−Kij (x
δ
j − x†)ϕij )‖2]

1
2 ≤ n 1

2E[‖K(xδj − x†)‖2]
1
2 .553

Similarly, E[‖(y† − yδ) − (y†ij − y
δ
ij

)ϕij‖2]
1
2 ≤ n

1
2 δ. This and triangle inequality show the554

estimate (4.8). Similarly, by the measurability of xδj with respect to Fj and bias variance555

decomposition, we deduce (with EFj denoting taking expectation in Fj)556

E[‖(E[vj ]− vj,ijϕij )‖2] ≤EFj [E[‖vj,ijϕij‖2|Fj ]] = nE[‖vj‖2],557558

i.e., E[‖(E[vj ] − vj,ijϕij )‖2]
1
2 ≤ n

1
2E[‖vj‖2]

1
2 . Then by triangle inequality, Assumption 2.3559

and Lemma 4.1,560

E[‖vj‖2]
1
2 ≤ E[‖(F (xδj)− F (x†)−K(xδj − x†))‖2]

1
2 + E[‖(I −R∗xδj )(F (xδj)− yδ)‖2]

1
2561

≤ cR
1+θE[‖Keδj‖2]

1
2E[‖eδj‖2]

θ
2 + cR( 1

1−ηE[‖Keδj‖2]
1
2 + δ)E[‖eδj‖2]

θ
2562

= ( (2+θ−η)cR
(1+θ)(1−η)E[‖Keδj‖2]

1
2 + cRδ)E[‖eδj‖2]

θ
2 .563

564

This completes the proof of the lemma.565

Remark 4.3. Note that the convergence analysis in [14] relies on the independence566

E[〈BsMj , B
sM`〉] = 0 for j 6= `. This identity is no longer valid for nonlinear inverse567

problems, although it still holds for the linear part Mj,1: E[〈BsMj,1, B
sM`,1〉] = 0 for j 6= `.568

The conditional dependence among the iteration noises Mj,2 poses one big challenge to the569

convergence analysis, and the splitting of the conditionally dependent and independent com-570

ponents will plays a role in the analysis below. Assumption 2.3 is to compensate the condi-571

tional dependence.572

Remark 4.4. The constants in Lemma 4.6 involve an unpleasant dependence on n as573

n
1
2 , due to the variance inflation of the estimated gradient. It can be reduced by various574

strategies, e.g., mini-batch or variance reduction.575

Last, we give a bound on the variance E[‖Bs(xδk − E[xδk])‖2]. This result will play an576

important role in the error analysis in subsection 4.3.577

Theorem 4.7. Let Assumption 2.1(i)–(iii) and Assumption 2.3 be fulfilled. Then for578

any s ∈ [0, 1
2 ], there holds579

E[‖Bs(E[xδk+1]− xδk+1)‖2] ≤ n
k∑
j=1

η2
j (φs̃j)

2(E[‖B 1
2 eδj‖2]

1
2 + δ)2

580

+ 2n

k∑
i=1

k∑
j=i

ηiηjφ
s̃
iφ
s̃
j(E[‖B 1

2 eδi ‖2]
1
2 + δ)( (2+θ−η)cR

(1+θ)(1−η)E[‖B 1
2 eδj‖2]

1
2 + cRδ)E[‖eδj‖2]

θ
2581

+ n
( k∑
j=1

ηjφ
s̃
j(

(2+θ−η)cR
(1+θ)(1−η)E[‖B 1

2 eδj‖2]
1
2 + cRδ)E[‖eδj‖2]

θ
2

)2

.582

583

Proof. The assertion follows directly from Lemma 4.5 and Lemma 4.6.584

4.3. Convergence rates. This part is devoted to convergence rates analysis of SGD585

under Assumption 2.1(ii). We analyze the cases of exact and noisy data separately. For exact586

data, the bounds involve constants that are more transparent in terms of their dependence587

on various algorithmic parameters. First we analyze the case of exact data y†, and the bound588
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boils down to the approximation error and computational variance. Further, we assume that589

‖B‖ ≤ 1 and η0 ≤ 1 below, which can be easily achieved by rescaling the operator F and590

the data y†/yδ. The analysis relies heavily on various technical estimates in Appendix A,591

especially Proposition A.1.592

Theorem 4.8. Let Assumption 2.1, Assumption 2.2(ii) and Assumption 2.3 be fulfilled593

with ‖w‖, θ and η0 being sufficiently small. Then the error ek = xk − x† satisfies594

E[‖ek‖2] ≤ c∗‖w‖2k−min(2ν(1−α),α−ε), E[‖B 1
2 ek‖2] ≤ c∗‖w‖2k−min((1+2ν)(1−α),1−ε),595596

where ε ∈ (0, α2 ) is small, and c∗ is independent of k, but depends on α, ν, η0, n, and θ.597

Proof. For any s ≥ 0, Theorem 4.4 and Theorem 4.7 give (with c0 = (2+θ−η)cR
(1+θ)(1−η) )598

E[‖Bsek+1‖2] ≤
(
c0

k∑
j=1

ηjφ
s̃
jE[‖ej‖2]

1
2E[‖B 1

2 ej‖2]
1
2 + φs+ν0 ‖w‖

)2

599

+ 2nc0

( k∑
i=1

ηiφ
s̃
iE[‖B 1

2 ei‖2]
1
2

)( k∑
j=1

ηjφ
s̃
jE[‖B 1

2 ej‖2]
1
2E[‖ej‖2]

θ
2

)
(4.10)600

+ nc20

( k∑
j=1

ηjφ
s̃
jE[‖B 1

2 ej‖2]
1
2E[‖ej‖2]

θ
2

)2

+ n

k∑
j=1

η2
j (φs̃j)

2E[‖B 1
2 ej‖2].601

602

Under Assumption 2.2(ii), Lemma A.1 and Lemma A.2 directly give603

φs+ν0 ≤ (s+ ν)s+ν

es+ν(
∑k
i=1 ηi)

s+ν
≤ (s+ ν)s+ν(1− α)ν+s

es+νην+s
0 (1− 2α−1)ν+s

(k + 1)−(1−α)(ν+s).604

605

Note that the function ss

es is decreasing in s over the interval [0, 1], and the function 1−α
1−2α−1606

is decreasing in α over the interval [0, 1] (and upper bounded by 2). Thus, for η0 ≤ 1 and607

any 0 ≤ ν, s ≤ 1
2 , there holds (with cν = 2νν

η0eν
)608

φs+ν0 ≤ cν(k + 1)−(ν+s)(1−α).(4.11)609610

Let aj ≡ E[‖ej‖2] and bj ≡ E[‖B 1
2 ej‖2]. Since ‖B‖ ≤ 1, we have φsj ≤ φs̄j for any 0 ≤ s̄ ≤ s.611

Then setting s = 0 and s = 1/2 in the recursion (4.10) and applying (4.11) lead to612

ak+1 ≤
(
c0

k∑
j=1

ηjφ
1
2
j a

1
2
j b

1
2
j + cν‖w‖(k + 1)−ν(1−α)

)2

+ n

k∑
j=1

η2
j (φ

1
2
j )2bj613

+ 2nc0

( k∑
i=1

ηiφ
1
2
i b

1
2
i

)( k∑
j=1

ηjφ
1
2
j b

1
2
j a

θ
2
j

)
+ nc20

( k∑
j=1

ηjφ
1
2
j b

1
2
j a

θ
2
j

)2

,(4.12)614

bk+1 ≤
(
c0

k∑
j=1

ηjφ
1
ja

1
2
j b

1
2
j + cν‖w‖(k + 1)−( 1

2 +ν)(1−α)
)2

+ n
( [ k2 ]∑
j=1

η2
j (φrj)

2bj615

+

k∑
j=[ k2 ]+1

η2
j (φ

1
2
j )2bj

)
+ 2nc0

( k∑
i=1

ηiφ
1
i b

1
2
i

)( k∑
j=1

ηjφ
1
jb

1
2
j a

θ
2
j

)
+ nc20

( k∑
j=1

ηjφ
1
jb

1
2
j a

θ
2
j

)2

,(4.13)616

617

with r = min( 1
2 + ν, 1−ε

2(1−α) ) ∈ ( 1
2 , 1). The rest of the proof is to prove618

ak ≤ c∗‖w‖2k−β and bk ≤ c∗‖w‖2k−γ .(4.14)619
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620

where β = min(2ν(1 − α), α − ε) and γ = min((1 + 2ν)(1 − α), 1 − ε), and c∗ > 0 is to be621

specified. The proof is based on mathematical induction. When k = 1, (4.14) holds trivially622

for any large c∗. Now we assume that (4.14) holds up to the case k, and prove it for the case623

k + 1. Actually, it follows from (4.12) and the induction hypothesis that (with % = c∗‖w‖2)624

ak+1 ≤
(
c0%

k∑
j=1

ηjφ
1
2
j j
− β+γ2 + cν‖w‖(k + 1)−ν(1−α)

)2

+ n%

k∑
j=1

η2
j (φ

1
2
j )2j−γ625

+ 2nc0%
1+ θ

2

( k∑
i=1

ηiφ
1
2
i i
− γ2
)( k∑

j=1

ηjφ
1
2
j j
− γ+θβ2

)
+ nc20%

1+θ
( k∑
j=1

ηjφ
1
2
j j
− γ+βθ2

)2

.(4.15)626

627

Next we bound the terms on the right-hand side. By Proposition A.1, we have628

k∑
j=1

ηjφ
1
2
j j
− γ2 ≤ c1(k + 1)−

β
2 and

k∑
j=1

η2
j (φ

1
2
j )2j−γ ≤ c2(k + 1)−β ,629

630

with c1 = 2
β
2 η

1
2
0 (2−1B( 1

2 , ζ) + 1), ζ = ( 1
2 − ν)(1−α) > 0, and c2 = 2βη0(α−1 + 2). Then we631

derive from (4.15) that632

ak+1 ≤
(
(c0c1%+ cν‖w‖)2 + nc2%+ 2nc0c

2
1%

1+ θ
2 + nc20c

2
1%

1+θ
)
(k + 1)−β .(4.16)633634

Next we bound bk similarly. It follows from (4.13) (with r = min( 1
2 + ν, 1−ε

2(1−α) ) ∈ ( 1
2 , 1))635

and the induction hypothesis that636

bk+1 ≤
(
c0%

k∑
j=1

ηjφ
1
jj
− β+γ2 + cν‖w‖(k + 1)−( 1

2 +ν)(1−α)
)2

637

+ n%
( [ k2 ]∑
j=1

η2
j (φrj)

2j−γ +

k∑
j=[ k2 ]+1

η2
j (φ

1
2
j )2j−γ

)
(4.17)638

+ 2nc0%
1+ θ

2

( k∑
i=1

ηiφ
1
i i
− γ2
)( k∑

j=1

ηjφ
1
jj
− γ+θβ2

)
+ nc20%

1+θ
( k∑
j=1

ηjφ
1
jj
− γ+θβ2

)2

.639

640

By Proposition A.1, there hold641

k∑
j=1

ηjφ
1
jj
− β+γ2 ≤ c′1(k + 1)−

γ
2 ,

[ k2 ]∑
j=1

η2
j (φrj)

2j−γ +

k∑
j=[ k2 ]+1

η2
j (φ

1
2
j )2j−γ ≤ c′2(k + 1)−γ ,642

( k∑
i=1

ηiφ
1
i i
− γ2
)( k∑

j=1

ηjφ
1
jj
− γ+θβ2

)
≤ c′23 (k + 1)−γ ,

k∑
j=1

ηjφ
1
jj
− γ+θβ2 ≤ c′4(k + 1)−

γ
2 ,643

644

with c′1 = 2
γ
2 (ζ−1 + 2β−1 + 1), c′2 = 2γη2−2r

0 (3α−1 + 1), c′3 = 2
γ
2 ((( 1

2 − ν − θν)(1− α))−1 +645

4(θβ)−1 + 1) and c′4 = 2
γ
2 (ζ−1 + 2(θβ)−1 + 1). These estimates and (4.17) yield646

bk+1 ≤ ((c0c
′
1%+ cν‖w‖)2 + nc′2%+ 2nc0c

′2
3 %

1+ θ
2 + nc20c

′2
4 %

1+θ)(k + 1)−γ .(4.18)647648
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In view of (4.16) and (4.18), upon dividing by %, assertion (4.14) holds if we can show the649

existence of a c∗ > 0 such that650

(c0c1%
1
2 + cνc

∗− 1
2 )2 + nc2 + 2nc0c

2
1%

θ
2 + nc20c

2
1%
θ ≤ 1,651

(c0c
′
1%

1
2 + cνc

∗− 1
2 )2 + nc′2 + 2nc0c

′2
3 %

θ
2 + nc20c

′2
4 %

θ ≤ 1.652653

Since the constants c2 and c′2 are proportional to η0 and η2−2r
0 (with the exponent 1 >654

2 − 2r > 0), respectively, for sufficiently small η0, there holds nmax(c2, c
′
2) < 1. Now for655

sufficiently small ‖w‖ and large c∗ such that ρ is small, the above two inequalities hold. This656

completes the induction step and the proof of the theorem.657

Remark 4.5. E[‖B 1
2 ek‖2] decays as E[‖B 1

2 ek‖2] ≤ ck−min((1+2ν)(1−α),1−ε), which, for α658

close to unit, is comparable with that for the Landweber method [8]: ‖B 1
2 ek‖ ≤ ck−(ν+ 1

2 )(1−α).659

The factor k−(1−ε) limits the fastest possible rate. This restriction arises from the compu-660

tational variance, due to the random selection of the row index ik, which limits the conver-661

gence rate E[‖ek‖2] to O(k−min(2ν(1−α),α−ε)). Thus for order optimality, the largest possible662

smoothness index is ν = 1
2 , beyond which SGD suffers from suboptimality, similar to the663

Landweber method for nonlinear inverse problems [8]. Further, it shows the impact of the664

exponent α: a smaller α may restrict the error E[‖ek‖2] to O(k−(α−ε)).665

Remark 4.6. The exponent α in the step size schedule in Assumption 2.2(ii) enters666

into the constant c∗ via the constants c1, . . . , c
′
4 etc, and the constant c0 is independent of α.667

The constants c1, . . . , c
′
4 blow up either like (1−α)−1 as α→ 1−, according to the well-known668

asymptotic behavior of the Beta function, or like α−1 as α→ 0+. These dependencies partly669

exhibit the delicacy of choosing a proper step size schedule for SGD.670

Remark 4.7. We briefly comment on the “smallness” conditions on w, η0 and θ in671

the analysis. The smallness assumption on w in the source condition in Assumption 2.1(iv)672

appears also for the classical Landweber method [8] and the standard Tikhonov regularization673

[5, 11], and thus it is not surprising. The smallness condition on η0 is to control the influence674

of the computational variance, and in a slightly different context of statistical learning theory,675

similar conditions also appear in the convergence analysis of variants of SGD. The smallness676

condition on θ is only to facilitate the analysis, i.e., a concise form of the constant c′3, and the677

assumption can be removed at the expense of a less transparent (but more benign) expression678

for c′3; see the proof in Proposition A.1 and also Remark A.1.679

Last, we prove the main result in this work, i.e., Theorem 2.2, which gives the conver-680

gence rate of SGD (1.3) for noisy data yδ.681

Proof of Theorem 2.2. The main proof strategy is similar to that of Theorem 4.8. Let682

aj ≡ E[‖eδj‖2] and bj ≡ E[‖B 1
2 eδj‖2]. Then with c0 = (2+θ−η)cR

(1+θ)(1−η) , repeating the argument of683

Theorem 4.8 leads to684

ak+1 ≤
( k∑
j=1

ηjφ
1
2
j

(
c0a

1
2
j b

1
2
j + cRa

1
2
j δ + δ

)
+ cν‖w‖(k + 1)−ν(1−α)

)2

685

+ n

k∑
j=1

η2
j (φ

1
2
j )2(b

1
2
j + δ)2 + n

( k∑
j=1

ηjφ
1
2
j (c0b

1
2
j + cRδ)a

θ
2
j

)2

686

+ 2n
( k∑
i=1

ηiφ
1
2
i (b

1
2
i + δ)

)( k∑
j=1

ηjφ
1
2
j (c0b

1
2
j + cRδ)a

θ
2
j

)
,687
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bk+1 ≤
( k∑
j=1

ηjφ
1
j

(
c0a

1
2
j b

1
2
j + cRa

1
2
j δ + δ

)
+ cν‖w‖(k + 1)−(ν+ 1

2 )(1−α)
)2

688

+ n

k∑
j=1

η2
j (φ1

j )
2(b

1
2
j + δ)2 + n

( k∑
j=1

ηjφ
1
j (c0b

1
2
j + cRδ)a

θ
2
j

)2

689

+ 2n
( k∑
i=1

ηiφ
1
i (b

1
2
i + δ)

)( k∑
j=1

ηjφ
1
j (c0b

1
2
j + cRδ)a

θ
2
j

)
.690

691

Like in the proof of Theorem 4.8, the goal is to show692

(4.19) ak ≤ c∗‖w‖2k−β and bk ≤ c∗‖w‖2k−γ ,693

for all k ≤ k∗ = [( δ
‖w‖ )

− 2
(2ν+1)(1−α) ], with β = min(2ν(1−α), α−ε) and γ = min((1+2ν)(1−694

α), 1− ε), and the constant c∗ > 0 to be specified. By the choice of k∗, for any k ≤ k∗,695

(4.20) k
1−α
2 δ ≤ k−ν(1−α)‖w‖.696

Now the proof proceeds by mathematical induction. When k = 1, (4.19) holds trivially for697

any sufficiently large c∗. Now we assume (4.19) holds up to some k < k∗, and prove it for698

k + 1 ≤ k∗. Upon substituting the induction hypothesis, with % = c∗‖w‖2, we obtain699

ak+1 ≤
( k∑
j=1

ηjφ
1
2
j

(
c0%j

− β+γ2 + cR%
1
2 j−

β
2 δ + δ

)
+ cν‖w‖(k + 1)−ν(1−α)

)2

700

+ n

k∑
j=1

η2
j (φ

1
2
j )2(%

1
2 j−

γ
2 + δ)2 + 2n

( k∑
i=1

ηiφ
1
2
i (%

1
2 i−

γ
2 + δ)

)
(4.21)701

×
( k∑
j=1

ηjφ
1
2
j (c0%

1
2 j−

γ
2 + cRδ)%

θ
2 j−

θβ
2

)
+ n

( k∑
j=1

ηjφ
1
2
j (c0%

1
2 j−

γ
2 + cRδ)%

θ
2 j−

θβ
2

)2

.702

703

Next, using Proposition A.2, we obtain704

ak+1 ≤
(

(c1(c0%+ (cR%
1
2 + 1)‖w‖) + cν‖w‖)2 + 2n(c2%+ c3‖w‖2)(4.22)705

+ 2nc21(%
1
2 + ‖w‖)(c0%

1
2 + cR‖w‖)%

θ
2 + nc21(c0%

1
2 + cR‖w‖)2%θ

)
(k + 1)−β ,706

707

with the constants c1, . . . , c3 given in Proposition A.2. Similarly, it follows from the induction708

hypothesis that709

bk+1 ≤
( k∑
j=1

ηjφ
1
j

(
c0%j

− β+γ2 + cR%
1
2 j−

β
2 δ + δ

)
+ cν‖w‖(k + 1)−(1−α)(ν+ 1

2 )
)2

710

+ n

k∑
j=1

η2
j (φ1

j )
2(%

1
2 j−

γ
2 + δ)2 + 2n

( k∑
i=1

ηiφ
1
i (%

1
2 i−

γ
2 + δ)

)
(4.23)711

×
( k∑
j=1

ηjφ
1
j (c0%

1
2 j−

γ
2 + cRδ)%

θ
2 j−

θβ
2

)
+ n

( k∑
j=1

ηjφ
1
j (c0%

1
2 j−

γ
2 + cRδ)%

θ
2 j−

θβ
2

)2

,712

713
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from which and Proposition A.2, it follows that714

bk+1 ≤
(

(c0c
′
1%+ c′5(cR%

1
2 + 1)‖w‖+ cν‖w‖)2 + 2n(c′2%+ c3‖w‖2)715

+ 2n(c′3%
1
2 + c′5‖w‖)(c0c′3%

1
2 + cRc

′
5‖w‖)%

θ
2 + n(c0c

′
4%

1
2 + cRc

′
5‖w‖)2%θ

)
(k + 1)−γ ,(4.24)716

717

with the constants c′1, . . . , c
′
5 given in Proposition A.2. In view of (4.22) and (4.24), for small718

‖w‖ and η0, repeating the argument for Theorem 4.8 (and noting that c1,c2, c3, c
′
2 tend to719

zero as η0 → 0+) concludes the existence of a c∗ > 0 such that (4.19) hold. This completes720

the induction step and the proof of Theorem 2.2.721

5. Concluding remarks. In this work, we have provided a convergence analysis of722

stochastic gradient descent for a class of nonlinear ill-posed inverse problems. The method723

employs an unbiased estimate of the gradient, computed from one randomly selected equa-724

tion of the nonlinear system, and admits excellent scalability to the problem size. We725

proved that it is regularizing under the traditional tangential cone condition with a priori726

parameter choice, and also showed a convergence rate under canonical source condition and727

range invariance condition (and its stochastic variant), for a polynomially decaying step size728

schedule. The analysis combines techniques from both nonlinear regularization theory and729

stochastic calculus, and the results extend the existing works [8] and [14].730

There are several avenues in both theoretical and practical aspects for further research.731

First, it is important to verify the assumptions for concrete nonlinear inverse problems,732

especially nonlinearity conditions in Assumption 2.1(ii)–(iii) and Assumption 2.3, for e.g.,733

parameter identifications for PDEs, which would justify the usage of SGD. Several important734

inverse problems in medical imaging are of the form (1.1), e.g., electrical impedance tomog-735

raphy and diffuse optical spectroscopy. These applications often involve natural physical736

constraints, e.g., positivity, which the algorithm should be adapted to preserve. Second, the737

source condition employed in the work is canonical, and alternative approaches, e.g., varia-738

tional inequalities and conditional stability, should also be studied for convergence rates [24],739

or the Frechét differentiability of the forward operator in Assumption 2.1 may be relaxed740

[3]. Third, the influence of various algorithmic parameters, e.g., mini-batch, random sam-741

pling, step size schedules (including adaptive rules) and a posteriori stopping rule, should742

be analyzed to provide useful practical guidelines.743

Acknowledgements. The authors are grateful to the associate editor, Professor Frank744

E. Curtis, and two anonymous referees for helpful comments.745

Appendix A. Auxiliary estimates. In this appendix, we collect several auxiliary746

inequalities that have been used in the convergence rates analysis. Most estimates follow747

from routine but rather tedious computations. We begin with a well known estimate on748

operator norms (see, e.g., [19] [14, Lemma A.1]).749

Lemma A.1. For any j < k, and any symmetric and positive semidefinite operator S750

and step sizes ηj ∈ (0, ‖S‖−1] and p ≥ 0, there holds751

‖
k∏
i=j

(I − ηiS)Sp‖ ≤ pp

ep(
∑k
i=j ηi)

p
.752

Below we need the Beta function B(a, b) =
∫ 1

0
sa−1(1 − s)b−1ds for any a, b > 0. Note753

that for fixed a, the function B(a, ·) is monotonically decreasing.754
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Lemma A.2. For ηj = η0j
−α with α ∈ (0, 1), r ∈ [0, 1), β ∈ [0, 1], and γ = α + β, the755

following estimates hold756

k∑
i=1

ηi ≥ (1− 2α−1)(1− α)−1η0(k + 1)1−α,757

k−1∑
j=1

ηj

(
∑k
`=j+1 η`)

r
j−β ≤ η1−r

0 B(1− r, 1− γ)krα+1−r−γ , r ∈ [0, 1), γ < 1,758

k−1∑
j=1

ηj∑k
`=j+1 η`

j−β ≤

 2γ(1− γ)−1k−β , γ < 1,
4kα−1 ln k, γ = 1,
2γ(γ − 1)−1kα−1, γ > 1,

+ 21+γk−β ln k.759

760

Proof. The first estimate follows from the fact 1− (k+ 1)α−1 ≥ 1− 2α−1 for k ≥ 1 that761

k∑
i=1

ηi ≥ η0

∫ k+1

1

s−αds = η0(1− α)−1((k + 1)1−α − 1) ≥ η0(1− α)−1(1− 2α−1)(k + 1)1−α .762
763

To prove the second estimate, we note ηi ≥ η0k
−α for any i = j + 1, . . . , k and thus764

(A.1) η−1
0

k∑
i=j+1

ηi ≥ k−α(k − j).765

Thus, if γ = α+ β < 1 and r < 1,766

k−1∑
j=1

ηj

(
∑k
`=j+1 η`)

r
j−β ≤η1−r

0 krα
k−1∑
j=1

(k − j)−rj−γ ≤ η1−r
0 krα

∫ k

0

(k − s)−rs−γds767

=η1−r
0 B(1− r, 1− γ)krα+1−r−γ .768769

Similarly, if r = 1, it follows from (A.1) that770

k−1∑
j=1

ηj∑k
`=j+1 η`

j−β ≤ kα
k−1∑
j=1

(k − j)−1j−γ771

=kα
[ k2 ]∑
j=1

j−γ(k − j)−1 + kα
k−1∑

j=[ k2 ]+1

j−γ(k − j)−1
772

≤2kα−1

[ k2 ]∑
j=1

j−γ + 2γk−β
k−1∑

j=[ k2 ]+1

(k − j)−1.773

774

Simple computation gives775

(A.2)

k−1∑
j=[ k2 ]+1

(k − j)−1 ≤ 2 ln k and

[ k2 ]∑
j=1

j−γ ≤

 (1− γ)−1(k2 )1−γ , γ ∈ [0, 1),
2 ln k, γ = 1,
γ(γ − 1)−1, γ > 1.

776

Combining the last three estimates gives the assertion for the case r = 1.777

Next we recall two useful estimates.778
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Lemma A.3. For ηj = η0j
−α with α ∈ (0, 1), β ∈ [0, 1] and r ≥ 0, there hold779

[ k2 ]∑
j=1

η2
j

(
∑k
`=j+1 η`)

r
j−β ≤ cα,β,rk−r(1−α)+max(0,1−2α−β),780

k−1∑
j=[ k2 ]+1

η2
j

(
∑k
`=j+1 η`)

r
j−β ≤ c′α,β,rk−((2−r)α+β)+max(0,1−r),781

782

where we slightly abuse the notation k−max(0,0) for ln k, and cα,β,r and c′α,β,r are given by783

cα,β,r = 2rη2−r
0


2α+β

2α+β−1 , 2α+ β > 1,

2, 2α+ β = 1,
22α+β−1

1−2α−β , 2α+ β < 1,

and c′α,β,r = 22α+βη2−r
0


r
r−1 , r > 1,

2, r = 1,
2r−1

1−r , r < 1.

784

785

Proof. The proof is based on (A.1) and (A.2) and essentially given in [14, Lemma A.3],786

but the constants are corrected.787

The next result collects some lengthy estimates needed in the proof of Theorem 4.8.788

Proposition A.1. Let β = min(2ν(1− α), α− ε), γ = min((1 + 2ν)(1− α), 1− ε) and789

r = min(1
2 + ν, 1−ε

2(1−α) ). Then under the conditions in Theorem 4.8, i.e., ‖B‖ ≤ 1, η0 ≤ 1790

and θ being sufficiently small, with ζ = ( 1
2 − ν)(1− α), the following estimates hold:791

k∑
j=1

ηjφ
1
2
j j
− γ2 ≤ c1(k + 1)−

β
2 ,

k∑
j=1

η2
j (φ

1
2
j )2j−γ ≤ c2(k + 1)−β ,(A.3)792

[ k2 ]∑
j=1

η2
j (φrj)

2j−γ +

k∑
j=[ k2 ]+1

η2
j (φ

1
2
j )2j−γ ≤ c3(k + 1)−γ ,

k∑
j=1

ηjφ
1
jj
− β+γ2 ≤ c4(k + 1)−

γ
2 ,(A.4)793

( k∑
i=1

ηiφ
1
i i
− γ2
)( k∑

j=1

ηjφ
1
jj
− γ+θβ2

)
≤ c5(k + 1)−γ ,

k∑
j=1

ηjφ
1
jj
− γ+θβ2 ≤ c6(k + 1)−

γ
2 .(A.5)794

795

with c1 = 2
β
2 η

1
2
0 (2−1B( 1

2 , ζ)+1), c2 = 2βη0(α−1+2), c3 = 2γη2−2r
0 (3α−1+1), c4 = 2

γ
2

(
ζ−1+796

2β−1 + 1), c5 = 2γ((( 1
2 −ν− θν)(1−α))−1 + 4(θβ)−1 + 1

)2
and c6 = 2

γ
2 (ζ−1 + 2(θβ)−1 + 1).797

Proof. It follows from Lemma A.1 and the condition ‖B‖ ≤ 1 that798

k∑
j=1

ηjφ
1
2
j j
− γ2 ≤ (2e)−

1
2

k−1∑
j=1

ηj

(
∑k
`=1 η`)

1
2

j−
γ
2 + η0k

−α− γ2799

≤ (η
1
2
0 2−1B( 1

2 , 1− α−
γ
2 ) + η0)k

1−α
2 −

γ
2 .800801

By the definitions of β and γ, we have 1−α
2 −

γ
2 = −β2 , and 1−α− γ

2 ≥ ( 1
2 − ν)(1−α) := ζ.802

Thus, the monotonicity of the Beta function, and the inequality 2k ≥ k+ 1 for k ≥ 1 imply803

the first inequality of (A.3). Now by Lemma A.1 and Lemma A.3,804

k∑
j=1

η2
j (φ

1
2
j )2j−γ ≤ (2e)−1

k−1∑
j=1

η2
j∑k

`=j+1 ηj
j−γ + η2

0‖B
1
2 ‖2k−2α−γ(A.6)805
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≤ η0

(
(2e)−1 2(2α+ γ)

2α+ γ − 1
k−(1−α) + (2e)−121+2α+γk−α−γ ln k + η0‖B

1
2 ‖2k−2α−γ

)
.806

807

Now, for any r > 0, there holds808

(A.7) s−r ln s ≤ (er)−1, ∀s ≥ 0,809

and thus k−α−γ ln k = k−β(k−1 ln k) ≤ e−1k−β . Further, by the definition of γ, 2α + γ ≤810

min(2, 1 + 2α) ≤ 2, and since ε < α
2 , 2α+ γ − 1 ≥ α,811

(A.8) 2α+γ
2α+γ−1 = 1 + 1

2α+γ−1 ≤ 1 + α−1.812

Then, the last three estimates (with ‖B‖ ≤ 1) imply813

k∑
j=1

η2
j (φ

1
2
j )2j−γ ≤ 2βη0

(
α−1 + 2

)
(k + 1)−β .814

This proves the second inequality in (A.3).815

Next, by letting r = min( 1
2 + ν, 1−ε

2(1−α) ) ∈ ( 1
2 , 1), and using (A.7) and (A.8), Lemma A.1816

and Lemma A.3 and the monotonicity of s
s

es for s ∈ [0, 1], the first part of (A.4) follows from817

[ k2 ]∑
j=1

η2
j (φrj)

2j−γ +

k∑
j=[ k2 ]+1

η2
j (φ

1
2
j )2j−γ818

≤ (2e)−1
( [ k2 ]∑
j=1

η2
j

(
∑j
`=1 η`)

2r
j−γ +

k−1∑
j=[ k2 ]+1

η2
j∑k

`=j+1 η`
j−γ

)
+ η2

0k
−2α−γ

819

≤ η2−2r
0

22r(2α+ γ)

2e(2α+ γ − 1)
k−γ +

21+2α+γ

2e
η0k
−(α+γ) ln k + η2

0k
−2α−γ ≤ c3(k + 1)−γ .820

821

Now, we bound the sum
∑k
j=1 ηjφ

1
jj
−σ for any σ ∈ [γ2 ,

γ+β
2 ], and then set σ to γ

2 , γ+θβ
2 and822

γ+β
2 to complete the proof. By Lemma A.1 and Lemma A.2, there hold823

[ k2 ]∑
j=1

ηjφ
1
jj
−σ ≤ e−1


2α+σ

1−α−σk
−σ, α+ σ < 1,

4kα−1 ln k, α+ σ = 1,
2(α+σ)
α+σ−1k

α−1, α+ σ > 1,

(A.9)824

k∑
[ k2 ]+1

ηjφ
1
jj
−σ ≤ e−121+α+σk−σ ln k + η0k

−σ.(A.10)825

826

First, we choose σ = β+γ
2 . By (A.7), since (1 − α − γ

2 )−1 ≤ ζ−1, α + γ
2 < 1, ‖B‖ ≤ 1 and827

η0 ≤ 1, we obtain828

k∑
j=1

ηjφ
1
jj
− β+γ2 ≤

[ k2 ]∑
j=1

ηjφ
1
jj
− γ2 +

k∑
j=[ k2 ]+1

ηjφ
1
jj
− β+γ2829

≤2α+ γ
2 e−1(1− α− γ

2 )−1k−
γ
2 + 21+α+ γ+β

2 e−1k−
γ+β

2 ln k + η0k
− γ2 ≤ c4(k + 1)−

γ
2 ,830831
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due to the inequality 21+α+ β+γ
2 < e2, from the definitions of the exponents β and γ. This832

shows the second inequality of (A.4). Since θ is small, we may assume θ < 1
2ν − 1 ≤833

1−α
β − 1. Then by the relations γ = 1−α+ β and β ≤ 2ν(1−α), direct computation shows834

1−α− γ+θβ
2 ≥ ( 1

2 −ν−θν)(1−α) > 0. Further, since θ < 1−α
β −1, min( θβ2 , 1−α−

γ
2 ) = θβ

2 .835

Hence, it follows from (A.9) and (A.10), with σ = γ
2 and γ+θβ

2 that836

( k∑
i=1

ηiφ
1
i i
− γ2
)( k∑

j=1

ηjφ
1
jj
− γ+θβ2

)
≤
( 2α+ γ

2

e(1− α− γ
2 )

+
21+α+ γ

2

e
ln k + 1

)
837

×
( 2α+ γ+θβ

2

e(1− α− γ+θβ
2 )

k−min( θβ2 ,1−α−
γ
2 ) +

21+α+ γ+θβ
2

e
k−

θβ
2 ln k + k−

θβ
2

)
k−γ .838

839

Then we move one factor k−
θβ
4 from the second bracket to the first and bound by (A.7):840

( k∑
i=1

ηiφ
1
i i
− γ2
)( k∑

j=1

ηjφ
1
jj
− γ+θβ2

)
≤
( 2α+ γ

2

e(1− α− γ
2 )

+
21+α+ γ

2

e
k−

θβ
4 ln k + 1

)
841

×
( 2α+ γ+θβ

2

e(1− α− γ+θβ
2 )

+
21+α+ γ+θβ

2

e
k−

θβ
4 ln k + 1

)
k−γ842

≤ 2γ((( 1
2 − ν − θν)(1− α))−1 + 4(θβ)−1 + 1

)2
(k + 1)−γ ,843844

proving the first inequality of (A.5). The other estimate in (A.5) follows similarly by choosing845

σ = γ+θβ
2 , and hence omitted.846

Remark A.1. The proof of Proposition A.1 implies
∑k−1
j=1 ηjφ

1
jj
− γ2 ≤ (ζ−1+2 ln k)k−

γ
2 .847

The log factor ln k seems not removable, and precludes a direct application of mathemati-848

cal induction in the proof of Theorem 4.8. The extra factor j−
θβ
2 due to Assumption 2.3849

gracefully compensates the log factor ln k using (A.7). The smallness condition on θ can850

be removed at the expense of less transparent dependence. Specifically, by Lemma A.2, with851

σ = α+ γ+θβ
2 , there holds852

k∑
j=1

ηjφ
1
jj
− γ+θβ2 ≤ 1

ek
γ
2


2σ

1−σk
− θβ2 , σ < 1

4k−(1−α− γ2 ) ln k, σ = 1
2σ
σ−1k

−(1−α− γ2 ), σ > 1

+ 21+σe−1k−
γ
2−

θβ
2 ln k + k−(α+ γ+θβ

2 ).853

854

Instead of applying (A.7) directly, we rearrange the terms and discuss the cases σ < 1, σ = 1855

and σ > 1 separately with the argument in the proof of Proposition A.1 and obtain856

( k∑
i=1

ηiφ
1
i i
− γ2
)( k∑

j=1

ηjφ
1
jj
− γ+θβ2

)
≤cσ2γ(k + 1)−γ ,857

858

with the constant cσ given by859

cσ =

 (1− σ)−1 + 4(θβ)−1 + 1, σ < 1,
ζ−1 + 8(θβ)−1 + 1, σ = 1,
2(σ − 1)−1 + 3ζ−1 + 1, σ > 1.

860

861

The next result gives some basic estimates used in the proof of Theorem 2.2.862
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Proposition A.2. Under the induction hypothesis of Theorem 2.2 and (4.20), there863

hold864

ak+1 ≤
(

(c1(c0%+ (cR%
1
2 + 1)‖w‖) + cν‖w‖)2 + 2n(c2%+ c3‖w‖2)865

+ 2nc21
(
%

1
2 + ‖w‖

)(
c0%

1
2 + cR‖w‖

)
%
θ
2 + nc21(c0%

1
2 + cR‖w‖)2%θ

)
(k + 1)−β ,866

bk+1 ≤
(

(c0c
′
1%+ c′5(cR%

1
2 + 1)‖w‖+ cν‖w‖)2 + 2n(c′2%+ c3‖w‖2)867

+ 2n(c′3%
1
2 + c′5‖w‖)(c0c′3%

1
2 + c′5cR‖w‖)%

θ
2 + n(c0c

′
4%

1
2 + c′5cR‖w‖)2%θ

)
(k + 1)−γ ,868

869

where the constants c1, c2, c3 and c′1, . . . , c
′
5 are given in the proof.870

Proof. First, it follows directly from Lemma A.1, Lemma A.2, and Lemma A.3 and the871

assumptions ‖B‖ ≤ 1 and η0 ≤ 1 that for any σ ∈ [0, 1− α),872

k∑
j=1

ηjφ
1
2
j j
−σ ≤ η

1
2
0 (2−1B( 1

2 , 1− α− σ) + 1)k
1−α
2 −σ,(A.11)873

k∑
j=1

η2
j (φ

1
2
j )2 ≤ η0(|1− 2α|−1 + α−1 + 1) := c3,(A.12)874

875

where we have abused the writing 0−1 for 1. Meanwhile, by Proposition A.1, we have876

k∑
j=1

ηjφ
1
2
j j
− γ2 ≤ c1(k + 1)−

β
2 and

k∑
j=1

η2
j (φ

1
2
j )2j−γ ≤ c2(k + 1)−β ,(A.13)877

878

with c1 = 2
β
2 η

1
2
0 (2−1B( 1

2 , ζ)+1), ζ = ( 1
2−ν)(1−α) and c2 = 2βη0(α−1+2). By (A.11)-(A.13)879

and the monotonicity of the Beta function, and k + 1 ≤ k∗ (cf. (4.20)), we obtain880

k∑
j=1

ηjφ
1
2
j

(
c0%j

− β+γ2 + cR%
1
2 j−

β
2 δ + δ

)
≤c0c1%(k + 1)−

β
2 + (cR%

1
2 + 1)c1(k + 1)

1−α
2 δ881

≤c1
(
c0%+ (cR%

1
2 + 1)‖w‖

)
(k + 1)−

β
2 ,882

k∑
j=1

η2
j (φ

1
2
j )2(%

1
2 j−

γ
2 + δ)2 ≤2(c2%+ c3‖w‖2)(k + 1)−β .883

884

Likewise, by the monotonicity of the Beta function, we deduce885 ( k∑
i=1

ηiφ
1
2
i (%

1
2 i−

γ
2 + δ)

)( k∑
j=1

ηjφ
1
2
j (c0%

1
2 j−

γ
2 + cRδ)%

θ
2 j−

θβ
2

)
886

≤c21(%
1
2 + ‖w‖)(c0%

1
2 + cR‖w‖)%

θ
2 (k + 1)−β ,887

k∑
j=1

ηjφ
1
2
j (c0%

1
2 j−

γ
2 + cRδ)%

θ
2 j−

θβ
2 ≤ c1(c0%

1
2 + cR‖w‖)%

θ
2 (k + 1)−

β
2 .888

889

The last four estimates give (4.21). Now we prove (4.23). By Proposition A.1, we have890

k∑
j=1

ηjφ
1
jj
− β+γ2 ≤ c′1(k + 1)−

γ
2 ,

[ k2 ]∑
j=1

η2
j (φrj)

2j−γ +

k∑
j=[ k2 ]+1

η2
j (φ

1
2
j )2j−γ ≤ c′2(k + 1)−γ ,891
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( k∑
i=1

ηiφ
1
i i
− γ2
)( k∑

j=1

ηjφ
1
jj
− γ+θβ2

)
≤ c′23 (k + 1)−γ ,

k∑
j=1

ηjφ
1
jj
− γ+θβ2 ≤ c′4(k + 1)−

γ
2 ,892

893

with c′1 = 2
γ
2 (ζ−1 + 2β−1 + 1), c′2 = 2γη2−2r

0 (3α−1 + 1), c′3 = 2
γ
2 ((( 1

2 − ν − θν)(1− α))−1 +894

4(θβ)−1+1) and c′4 = 2
γ
2 (ζ−1+2(θβ)−1+1). Further, by (A.9) and (A.10), for any σ ∈ [0, γ2 ],895

k−ν(1−α)
k∑
j=1

ηjφ
1
jj
−σ ≤ ζ−1 + 2(ν(1− α))−1 + 1 := c′5.896

897

With these estimates and (4.20), we deduce898

k∑
j=1

ηjφ
1
j

(
c0%j

− β+γ2 + cR%
1
2 j−

β
2 δ + δ

)
≤(c0c

′
1%+ c′5(cR%

1
2 + 1)‖w‖)(k + 1)−

γ
2 ,899

k∑
j=1

η2
j (φ1

j )
2(%

1
2 j−

γ
2 + δ)2 ≤2(c′2%+ c3‖w‖2)(k + 1)−γ ,900

k∑
j=1

ηjφ
1
j (c0%

1
2 j−

γ
2 + cRδ)%

θ
2 j−

θβ
2 ≤(c0c

′
4%

1
2 + c′5cR‖w‖)%

θ
2 (k + 1)−

γ
2 ,901

902

where the second line is due to (A.12) and the inequality
∑k
j=1 η

2
j (φ1

j )
2 ≤

∑k
j=1 η

2
j (φ

1
2
j )2903

(since ‖B‖ ≤ 1). Last, repeating the argument in Proposition A.1 gives904

( k∑
i=1

ηiφ
1
i (%

1
2 i−

γ
2 + δ)

)( k∑
j=1

ηjφ
1
j (c0%

1
2 j−

γ
2 + cRδ)%

θ
2 j−

θβ
2

)
905

≤(c′3%
1
2 + c′5‖w‖)(c0c′3%

1
2 + c′5cR‖w‖)%

θ
2 (k + 1)−γ .906907

Then combining the last four estimates yields the desired bound on bk+1.908
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