
Accepted Manuscript

Title: Viability study of automobile shredder residue as fuel

Author: Mar Edo Ignacio Aracil Rafael Font Manuela Anzano Andrés Fullana Elena Collina<ce:footnote id="fn0005"><ce:note-para id="npar0005">Visiting at the University of Milano-Bicocca</ce:note-para></ce:footnote><ce:footnote id="fn0010"><ce:note-para id="npar0010">Tel.: + 34 96 590 38 67; fax: + 34 96 590 38 26</ce:note-para></ce:footnote>

PII: DOI: Reference:	S0304-3894(13)00439-1 http://dx.doi.org/doi:10.1016/j.jhazmat.2013.06.039 HAZMAT 15185
To appear in:	Journal of Hazardous Materials
Received date:	13-4-2013

 Revised date:
 14-6-2013

 Accepted date:
 17-6-2013

Please cite this article as: M. Edo, I. Aracil, R. Font, M. Anzano, A. Fullana, E. Collina, VIABILITY STUDY OF AUTOMOBILE SHREDDER RESIDUE AS FUEL, *Journal of Hazardous Materials* (2013), http://dx.doi.org/10.1016/j.jhazmat.2013.06.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	VIABILITY STUDY OF AUTOMOBILE
3	SHREDDER RESIDUE AS FUEL
4 5	Mar Edo ^{a1*} , Ignacio Aracil ^a , Rafael Font ^a , Manuela Anzano ^b , Andrés Fullana ^a , Elena Collina ^b
6	
7	^a University Institute for Chemical Processes. University of Alicante. P.O. Box 99,
8	03080 Alicante (Spain). Phone: + (34) 96 590 38 67, Fax: + (34) 96 590 38 26
9	^b Department of Earth and Environmental Science. University of Milano Bicocca.
10	Piazza della Scienza 1, I-20126 Milano (Italy).
11	
12	
13	
14	
15	
16	¹ Visiting at the University of Milano-Bicocca
17	* Corresponding Author. Tel.: +34 965 90 34 00; Fax: +34 365 90 38 26
18	Email address: mar.edo@ua.es
19	Abstract

20 Car Fluff samples collected from a shredding plant in Italy were classified based on 21 particle size, and three different size fractions were obtained in this way. A comparison 22 between these size fractions and the original Light Fluff was made from two different 23 points of view: i) the properties of each size fraction as a fuel were evaluated; and ii) the 24 pollutants evolved when each size fraction was subjected to combustion were studied. 25 The aim was to establish which size fraction would be the most suitable for the purposes 26 of energy recovery. The Light Fluff analyzed contained up to 50 wt.% fines (particle 27 size < 20 mm). However, its low calorific value and high emissions of polychlorinated 28 dioxins and furans (PCDD/Fs), generated during combustion, make the fines fraction 29 inappropriate for energy recovery, and therefore, landfilling would be the best option. 30 The 50-100 mm fraction exhibited a high calorific value and low PCDD/F emissions 31 were generated when the sample was combusted, making it the most suitable fraction 32 for use as refuse-derived fuel (RDF). Results obtained suggest that removing fines from 33 the original ASR sample would lead to a material product that is more suitable for use 34 as RDF.

35

36 Keywords

37 ASR; Light Fluff; PCDD/Fs; Energy Recovery; RDF.

38

39 1. INTRODUCTION

40 Once vehicles are no longer useful, they are deregistered and become End-of-life 41 vehicles (ELVs). Only in Europe, more than 9 million tons per year of ELV waste are 42 produced. The volume of ELV waste continues to increase every year, and it is expected 43 to rise to about 10-14 million tons by 2015 [1]. If ELV residues are not properly 44 managed, they can have a negative impact on the environment. In addition, ELVs are

rich in valuable materials, such as metals, and possess a high calorific potential due totheir high content in combustibles such as plastics.

47	ELVs are subjected to depolluting and dismantling; afterwards, hulks are baled and sent
48	to a shredder plant. The main objective at a shredder plant is to recover as many metals
49	as possible (ferrous and non-ferrous). Two material fractions are generated as by-
50	products of the process: Light and Heavy Fluff, which constitute automobile shredder
51	residue (ASR). The light fraction, also called car fluff, is the fraction lifted up by a zig-
52	zag sorter after shredding the bales, while the heavy fluff is the fraction remaining after
53	ferrous metal separation by means of magnetic drums. The light fraction accounts
54	approximately for 75 wt. % of the total ASR [2], heavily depending on the shredder mill
55	input material. In Europe, light fluff residue is mainly landfilled. ASR has a very
56	heterogeneous composition, which has been pointed out by a great number of studies [3,
57	4]: it is a complex mixture of plastics (19-35%), rubber (20%), textile (10-40%), wood
58	(2-5%), metals (8%), oils (5%) and others unidentifiable materials (10%) [4, 5].
59	Polymers such as polyvinyl chloride (PVC), polyethylene (PE) or polypropylene (PP)
60	[6] constitute some of the most valuable components of ASR; they provide it with a
61	high heating value (about 21 MJ/kg [5, 7]), which makes ASR suitable for energy
62	recovery as a refuse derived fuel.
63	The European Directive 2000/53/CE states that by 2015, a minimum of 95% (in average
64	weight per vehicle and year) of ELVs must be reused or recovered (including energy
65	recovery), and that at least 85% must be reused or recycled, so as to reduce the disposal
66	of this waste in landfills. In 2009, Spain and Italy achieved yields of 86.0 $\%$ and 84.2 $\%$
67	in reuse and recovery, and 82.6 % and 81.8 % in reuse and recycling, respectively[1].
68	The high costs associated with waste disposal in landfills, attached to meeting the
69	required rates stipulated by the European Directive, have led to the development of new

70 technologies focused on energy recovery from combustible fractions of ASR as well as 71 new recovery and recycling techniques. Similarly, the European Waste Incineration 72 Directive 2000/76/EC establishes that waste containing more than 1% of halogenated 73 organic substances, expressed as chlorine, should comply with specific operational 74 conditions that result in the destruction of as many organic pollutants as possible. The 75 use of ASR as a fuel in a thermal process is a controversial issue since the combustible 76 fraction contains chlorine. On one hand, gases evolved from the combustion process can 77 be corrosive, which can damage the facilities. On the other hand, toxic pollutants such 78 as polychlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) 79 can be generated as by-products during the incineration if operational conditions and 80 gas cleaning systems are not carefully controlled. 81 The classification of Light Fluff based on its particle size consists of an easy and cheap 82 physical separation that can be carried out at shredding plants. The aim of this work is 83 to discuss which one of these size fractions would be more suitable for use in an energy 84 recovery treatment than the original Light Fluff; this would allow shredding plants to 85 achieve the ELV targets in a suitable way, since some recent studies have concluded 86 that the option of energy recovery combined with recycling is the most sustainable 87 alternative for this kind of waste [8]. Each size fraction was analyzed from two 88 perspectives: as a solid fuel and as a source of pollutants when subjected to a 89 combustion process. 90

91 2. MATERIALS AND METHODS

92 **2.1. Raw Material**

A sample of about 50 kg was collected from the Light Fluff output flow of a shredder

94 plant located in the North of Italy. This plant produces about 175 tons per day of ASR,

95	so the light fluff production is about 131 tons per day. Hereinafter, this material will be
96	referred to as raw material or RM. The RM sample was stored in suitable containers to
97	avoid humidity loss and contamination. Because of the heterogeneity of the ASR, a
98	quartering procedure following the Italian standardized methodology [9] was performed
99	to ensure that the sample was representative. An extensive characterization of the
100	sample was carried out, and the results are interpreted in terms of the composition of the
101	sample; this is useful when the composition of the residue obtained varies.
102	Particle sizes were classified according to three different-sized sieves: 20 mm, 50 mm
103	and 100 mm. The fraction with particulate size lower than 20 mm was called <i>fines</i>
104	although, some authors refer to samples of particulate size smaller than 2 mm as <i>fines</i>
105	<i>fraction</i> in the literature [10].
106	Afterwards, each size fraction was separately ground using a Pulverisette 19 (Fristch)
107	laboratory mill and passed through a 1 mm sieve, thereby obtaining homogeneous
108	samples. Finally, samples were stored until they were needed for analysis. Four
109	different size fractions were studied: the RM and the other three obtained after sieving.
110	
111	2.2. Chemical Analyses
112	Humidity and ash content were measured and calculated according to Italian standard
113	UNI 9903-7:2004 [11]. The humidity was determined by drying homogeneous samples

114 of about 1 g at 105 °C for two hours and measuring the weight loss. Ash content was

calculated from the weight loss of 1 g dried and homogenized sample after combustion

116 in a muffle for 4 h at 550°C.

117 Elemental Analysis was conducted in a TruSpec Microanalyzer (LECO), and 3-5 mg

118 samples were combusted at 1000°C during each run. Sulphur was determined by means

119	of a TruSpec	Analyzer	(LECO),	which	required	samples	of about	100 mg	each per
-----	--------------	----------	---------	-------	----------	---------	----------	--------	----------

- 120 analysis.
- 121 For the heating value determination, the combustion of 0.5-1 g samples was performed
- 122 in a LECO AC-350 bomb calorimeter.
- 123 Finally, IR analysis was carried out in a Bruker IFS 66/S spectrometer in ATR mode.

124

125 **2.3. Thermal Analyses**

- 126 Each size fraction sample underwent thermal decomposition in an oxidative
- 127 atmosphere. Thermogravimetric (TG) runs were carried out in a STA 6000 Perkin-
- 128 Elmer thermobalance. The total gas flow was 100 mL/min air, and a two-step
- 129 temperature program was used: 1- Heating from 25 °C to 800 °C at 10°C/min; 2-
- 130 Constant heating for 5 min at 800°C. A sample of about 5 mg was used for each run.
- 131 A blank experiment was performed and used to correct for the buoyancy effect caused
- by the gas flow in the sample runs; the reproducibility of the runs was also tested. Apart
- 133 from this, an experiment suggested by the literature [12] was carried out with Avicel
- 134 cellulose to test that the equipment worked properly. Results were in agreement with
- those in the literature [12].
- 136

137 2.4. Total Chlorine Analyses

- 138 Sample preparation was carried out following the US EPA Method 5050 [13].
- 139 Hydrogen chloride evolved from chlorine in complete combustion was collected over a
- 140 NaHCO₃/Na₂CO₃ solution which was later analyzed by ion chromatography. The
- 141 instrument used was a Dionex DX-500 with an AS9HC (Dionex) column. Operational
- 142 conditions were 9 mM Na₂CO₃, 1 mL/min flow rate and ASRS 300 suppressor
- 143 (Dionex).

144

145 **2.5. Heavy Metal Analyses**

146	Samples were subjected to complete decomposition by microwave digestion with HNO ₃
147	and H_2O_2 prior to the determination of the heavy metal content. Two different analytical
148	techniques were used depending on the targeted metal: Inductively Coupled Plasma
149	Optical Emission Spectrometry (ICP-OES) was employed to determine Al, Mn, Fe, Ni,
150	Cu, Zn, Pb and total Cr content – a 7300DV dual vision (Perkin Elmer) was the
151	instrument used for this. On the other hand, volatile metals such as As, Cd and Hg were
152	analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) using a 7700x
153	(Agilent) instrument.
154	All analyses reported so far were performed at least in duplicate; the results presented
155	are averages. Minimal variations in results were obtained, and therefore, no statistical
156	information is supplied.
167	
157	
157	2.6. Combustion experiments and PCDD/Fs Analyses
	2.6. Combustion experiments and PCDD/Fs Analyses Combustion of samples was carried out at 850 °C, considered as the minimum
158	
158 159	Combustion of samples was carried out at 850 °C, considered as the minimum
158 159 160	Combustion of samples was carried out at 850 °C, considered as the minimum temperature conditions required by the Directive 2000/76/CE for materials with less
158 159 160 161	Combustion of samples was carried out at 850 °C, considered as the minimum temperature conditions required by the Directive 2000/76/CE for materials with less than 1% of halogenated organic substances [14]. Substoichiometric oxygen conditions
158 159 160 161 162	Combustion of samples was carried out at 850 °C, considered as the minimum temperature conditions required by the Directive 2000/76/CE for materials with less than 1% of halogenated organic substances [14]. Substoichiometric oxygen conditions were chosen as a way of simulating those areas inside a furnace with lack of oxygen,
158 159 160 161 162 163	Combustion of samples was carried out at 850 °C, considered as the minimum temperature conditions required by the Directive 2000/76/CE for materials with less than 1% of halogenated organic substances [14]. Substoichiometric oxygen conditions were chosen as a way of simulating those areas inside a furnace with lack of oxygen, which can denote unfavorable combustion conditions that lead to incomplete
158 159 160 161 162 163 164	Combustion of samples was carried out at 850 °C, considered as the minimum temperature conditions required by the Directive 2000/76/CE for materials with less than 1% of halogenated organic substances [14]. Substoichiometric oxygen conditions were chosen as a way of simulating those areas inside a furnace with lack of oxygen, which can denote unfavorable combustion conditions that lead to incomplete combustion and formation of undesired compounds. The oxygen/stoichiometric oxygen
158 159 160 161 162 163 164 165	Combustion of samples was carried out at 850 °C, considered as the minimum temperature conditions required by the Directive 2000/76/CE for materials with less than 1% of halogenated organic substances [14]. Substoichiometric oxygen conditions were chosen as a way of simulating those areas inside a furnace with lack of oxygen, which can denote unfavorable combustion conditions that lead to incomplete combustion and formation of undesired compounds. The oxygen/stoichiometric oxygen ratios (λ) were estimated on the basis of an elemental analysis of all runs (λ = 0.65-
 158 159 160 161 162 163 164 165 166 	Combustion of samples was carried out at 850 °C, considered as the minimum temperature conditions required by the Directive 2000/76/CE for materials with less than 1% of halogenated organic substances [14]. Substoichiometric oxygen conditions were chosen as a way of simulating those areas inside a furnace with lack of oxygen, which can denote unfavorable combustion conditions that lead to incomplete combustion and formation of undesired compounds. The oxygen/stoichiometric oxygen ratios (λ) were estimated on the basis of an elemental analysis of all runs (λ = 0.65-0.70). The equipment used to carry out the experiments consisted of a tubular reactor

169	gas passing	through it.	This	particular	reactor s	setup	has a	lready	been	describ	bed

- 170 previously [15]. A resin trap containing Amberlite® XAD-2 resin was placed at the
- 171 outlet of the reactor to retain pollutants. Following the US EPA Method 1613 [16],
- 172 PCDD/Fs were determined by HRGC-HRMS in a Micromass Autospec-Ultima NT
- 173 with a capillary Restex column RTx Diox2 (60 m; 0.25 mm; 0.25 μm).
- 174 Before each experiment, a blank run to detect possible interferences was carried out
- 175 following the same analytical procedure as the sample run.
- 176

177 **3. RESULTS AND DISCUSSION**

178 **3.1. Particle Size Distribution**

- 179 The results of the particle size distribution are presented in Figure 1. It is important to
- 180 mention that material containing particles bigger than 100 mm was not found in the RM
- 181 collected at the shredder plant. As reported by other authors [2, 4], this fraction usually
- 182 corresponds to 2% of the total weight, and consists of big pieces of foam, rubber or
- 183 plastics. The presence or absence of this size fraction in a Light Fluff fraction can be
- related to the effectiveness of the hammer mill used during the shredding process.
- 185 Therefore, three size fractions were obtained: fines, 20-50 mm and 50-100 mm. These
- 186 fractions were analyzed, and the RM as well.
- 187 It can be observed that about 55 wt. % of the Light Fluff material had a particle size
- bigger than 20 mm: most of this was a 20-50 mm size fraction that made up 45.9 % of
- the total weight, while the 50-100 mm fraction accounted for the smallest percentage,
- 190 9.4 %.
- 191 The raw material (RM) contained a high percentage of fines (about 44.7 wt. %). The
- 192 fines fraction is a mixture of a great variety of small particles, which makes it
- 193 heterogeneous.

194	Although it is possible to distinguish sand, small glass pieces or metals, it is impossible
195	to carry out more accurate composition analyses [2, 4]. Some information can be
196	derived from IR analysis for the raw material (RM) and the three fractions (fines, 20-50
197	mm and 50-100 mm). The results are shown in Figure 2. According to the IR spectra, in
198	every fraction the main signal, around 2900-3000 cm ⁻¹ , can be ascribed to the presence
199	of C-H groups and indicates the presence of polymers. The other signals are coherent
200	with the presence of polymers such as PU, PVC, PP and PE, which are car fluff
201	constituents, as reported in the literature.
202	
203	3.2. Light Fluff: Properties as Fuel
204	Table 1 shows the results for the four particle size fractions in terms of parameters that
205	are useful for the characterization of a fuel.
206	Lower heating values varied from 15000 kJ/kgdry sample to 24600 kJ/kgdry sample, similar to
207	those of wet wood and town gas respectively, which are in line with values reported in
208	the literature. The calorific values are consistent with ash and carbon content. Morselli
209	et al. [4] stated that 20-50 mm and 50-100 mm fractions are the richest in polymers, and
210	this is in agreement with the observation that these two fractions have the highest
211	heating values.
212	The fines fraction presented the highest ash content (50 wt. %) and, as a consequence,
213	the lowest calorific value. The 20-50 mm and 50-100 mm fractions exhibited very
214	similar properties. Lastly, RM sample results were in agreement with those in the
215	literature reviewed [17]. None of the fractions presented a high sulphur content (0.4-0.8

216 wt. %).

- 217 Figure 3 shows the experimental variation of mass loss with temperature obtained for
- the four samples under the same atmosphere and at the same heating rate. In the figure,
- w is defined as:
- 220 $w = (m m_{\infty})/(m_{o} m_{\infty})$ (1)
- where *m* is the mass at any time; m_{∞} the final mass of the solid residue and m_o the initial solid mass.
- 223 Three of the four samples (RM, 20-50 mm and fines) exhibited similar behaviour during
- thermal degradation. The RM sample is mainly composed of the fines and 20-50 mm
- fraction, which explains the very similar curves obtained. Fines decomposed slower
- than the RM and 20-50 mm fractions. The 50-100 mm fraction underwent the slowest
- decomposition. This fact did not affect the RM curve because the 50-100 mm fraction is
- only 9.5 wt. % of the total.
- All the samples presented a slight loss in mass at temperatures below 150 °C, which can
- 230 be explained by water volatilization of the sample. The first important mass loss to be
- observed in any sample only started at a temperature of 250 °C. RM presented only one
- decomposition step from 250 °C to 500 °C, which coincides with Guo et al.'s results
- 233 [18].
- 234

235 **3.3. Heavy Metals**

- 236 The results for the metal content of the four material fractions are shown in Table 2. The
- fines material contained the highest metal concentration compared to RM, 20-50 mm
- and 50-100 mm respectively. As the data show, Al, Cr, Mn, Fe, Ni and Zn exhibited the
- same trend. It can be clearly observed that copper and iron were the most abundant
- 240 metals in all samples. These two metals can act as catalysts for PCDD/Fs formation
- during or after combustion processes [19-21]. The 50-100 mm fraction had the lowest

242 iron and copper content compared to the other three material fractions. Copper values 243 reached up to 55600 mg/kg dry sample in the 20-50 mm material fraction. A high content in 244 copper can be ascribed to the wiring and electrical components of a vehicle and Light 245 Fluff can contain around 3 wt. % of these components [22]. Wire copper fragments can 246 be easily recovered by means of suitable equipment, reducing copper content in the 247 residue. The content of iron reached up to 117000 mg/kg_{drv sample} in the fines fraction, 248 and can be put down to the fact that wheel rims and chassis are made of this metal. Zinc, 249 which is used as anti-corrosion agent for the chassis, was among the three top metals 250 found in the ASR samples analyzed. Zinc concentrations varied from 1700 to 11210 mg/kg_{dry sample} in 50-100 mm and fines, respectively. Aluminium is also an abundant 251 252 metal in car fluff since it is used in the manufacturing of many car components: frame, 253 engine or rims. It is important to pay attention to Pb, Cd, As and Hg because of their 254 high volatility and toxicity. The mercury content of all samples analyzed was around 255 0.30 mg/kg_{drv sample}, which can be considered as low; cadmium and arsenic 256 concentrations were higher than that of mercury. It may be assumed that all samples had 257 the same lead concentration (630-705 mg/kg_{drv sample}) except for the 50-100 mm sample, whose concentration was lower, 130 mg/kg dry sample. The results obtained are in 258 259 agreement with those in the scientific literature [4, 5, 23, 24].

260

261 3.4. Chlorine and chlorinated organic pollutants

262 The chlorine present in car fluff can come from polymeric components of the vehicle

[6], as well as from inorganic loads. If car fluff is to be used as RDF, chlorine content

- could be an indicator of the possible formation of chlorinated pollutants, such as
- 265 PCDD/Fs, during combustion processes. Total chlorine was determined in all particle
- size fraction samples, and results are shown in Table 3: the 50-100 mm fraction had the

267 lowest chlorine concentration; all samples contained less than 1% of chlorine in

268 compliance with Directive 2000/76/CE [14].

269 Several scientific papers have been published reporting information about 270 measurements of chlorinated organic pollutants such as PCDD/Fs in both original Light 271 Fluff samples and emissions from industrial processes. According to Santini et al. [24], 272 Light Fluff contains about 3-4 pg i-TEQ/g of PCDD/Fs, in agreement with Mancini et 273 al.'s results [5]. Van Canenghem et al. [25] obtained a total PCDD/Fs concentration of 274 9 pg/kg_{DW} in a raw ASR sample – approximately ten times higher than in sludge from 275 waste water treatment (WWT); high chlorinated congeners were the most abundant. 276 On the other hand, there has been research done into the measurement of PCDD/Fs 277 emissions from industrial combustion of ASR mixed with other fuels. According to the 278 literature [25], adding ASR to the RDF and WWT sludge in the usual waste feed to a 279 real-scale fluidized bed combustor increased the concentration of PCDD/Fs in the flue 280 gas. 281 To determine PCDD/Fs levels in the gases evolved under a substoichiometric oxygen 282 atmosphere, combustion experiments were carried out for each particle size fraction in

the laboratory reactor described previously in section 2.6. The aim of these runs was to study the performance of the different ASR size fractions under critical operating conditions. All congeners, from MoCDD/Fs to OCDD/Fs were analyzed for ASR samples.

Figure 4 shows the total dioxins and furans concentration (from TeCDD/Fs to

288 OCDD/Fs) emitted during the combustion of the different-sized material fractions

- analyzed. According to the results, if each of the different size fractions were
- 290 incinerated without proper control of operating parameters, the fines fraction would be
- the most toxic (800 pg i-TEQ/g), followed by 20-50 mm (298 pg i-TEQ/g), RM (212 pg

292	i-TEQ/g) and 50-100 mm (11 pg i-TEQ/g). PCDD/Fs emissions for fines are of the
293	same order of magnitude as the results obtained by Font et al. [26] for mobile phone
294	case combustion. High levels of copper and iron present in the fines fraction could be
295	responsible for the high PCDD/Fs concentration in the outlet gases. It is important to
296	mention that the 50-100 mm fraction contained the least amount of copper (7490
297	mg/kg _{dry sample}) and chlorine (2120 mg/kg _{dry sample}); so this might explain why its
298	PCDD/Fs concentration was the lowest. Total furans content was higher than total
299	dioxins in all samples studied, except for the 20-50 mm material.
300	2,3,7,8-Cl substituted PCDD/F congener patterns emitted from the different ASR size
301	fractions are shown in Figure 5. It can be clearly observed that there is no similarity
302	between the profiles obtained. This fact suggests that a complicated network of
303	reactions take place during the combustion process. RM and fines patterns are
304	dominated by higher chlorinated PCDFs congeners. 1,2,3,7,8-PeCDD was the isomer
305	that most contributed to the total toxicity in 20-50 mm material, while 1,2,3,4,7,8-
306	HxCDF was the most abundant isomer in the 50-100 mm sample.
307	The total PCDD/Fs emissions produced by each fraction during the combustion runs
308	were as follows: 29000 pg/gdry sample in fines, 14000 pg/gdry sample in 20-50 mm fraction,
309	6850 pg/g _{dry sample} in RM and 4700 pg/g _{dry sample} in 50-100 mm fraction. PCDD/Fs were
310	generated in greatest quantities in the smallest size fraction.
311	It must be emphasized that the laboratory combustion runs carried out under fuel rich
312	conditions are useful for analyzing and comparing the potential of the residue to form
313	PCDD/Fs. In a combustion furnace with oxygen excess, PCDD/Fs emissions will
314	probably be much lower. In fact, the gas cleaning system used to clean/ treat the
315	combustion gases will reduce the amount of these pollutants emitted into the
316	atmosphere. Once formed, PCDD/F emissions can be controlled in the post-combustion

317	zone with activated carbon [27] or with the presence of a dechlorination catalyst [28-
318	29]. Moreover, the addition of CaO/ Ca(OH) ₂ or similar compounds can be effective to
319	minimize the release of hydrogen chloride during the thermal treatment [30-32]. On the
320	other hand, the addition of nitrogenated or sulphur compounds in the combustion
321	chamber has been stated to be an effective way to prevent specifically the formation of
322	chlorinated micropollutants such as PCDD/Fs [33-34].
323	
324	4. CONCLUSIONS
325	Based on the heating value and metal content of the samples, as well as pollutants
326	concentration in the gases evolved when samples are subjected to combustion, the 50-
327	100 mm size fraction would be the most suitable for use as RDF.
328	The fines fraction presented a low heating value (LHV: 15000 kJ/kg _{dry sample}); the high
329	amount of PCDD/Fs formed during the combustion experiments (800 pg-iTEQ/g $_{dry}$
330	sample) are probably related to the high content in metals seen in the results of analyses
331	for metals. All these results suggest that the fines fraction would be the least suitable to
332	be used as RDF – both from an energetic and an environmental point of view.
333	Therefore, landfilling disposal is proposed as the best option for this ASR size fraction.
334	From the point of view of toxic pollutants emissions, the RM and 20-50 mm material
335	behaved similarly, although the latter had a higher low-heating value (18700 vs 23700
336	kJ/ kg _{dry sample}) making it more suitable to be used as RDF.
337	Thus, based on the above considerations, the material obtained after removal of the
338	fines fraction from the RM would be suitable for use as RDF. In this case, a high
339	heating value, low metal content and low concentration of toxic pollutants resulted from
340	incineration, would be expected. Further research will be carried out on the matter.
341	

342 Acknowledgments

- 343 Support for this work was provided by the Spanish MEC, research project CTQ2008-
- 344 05520 and by the Valencian Community Government with the research projects
- 345 Prometeo/2009/043/FEDER.
- 346

347 **References**

- 348 [1] Eurostat, End-of-life Vehicles (ELVs). Available via:
- 349 http://epp.eurostat.ec.europa.eu/portal/page/portal/waste/key_waste_streams/end_of_life
- 350 _vehicles_elvs, in 2009.
- 351 [2] I. Vermeulen, J. Van Caneghem, C. Block, J. Baeyens, C. Vandecasteele,
- 352 Automotive shredder residue (ASR): Reviewing its production from end-of-life vehicles
- 353 (ELVs) and its recycling, energy or chemicals' valorisation, J. Hazard. Mater. 190
- 354 (2011) 8-27.
- 355 [3] O. Gonzalez-Fernandez, M. Hidalgo, E. Margui, M.L. Carvalho, I. Queralt, Heavy
- 356 metals' content of automotive shredder residues (ASR): Evaluation of environmental
- 357 risk, Environ. Pollut. 153 (2008) 476-482.
- 358 [4] L. Morselli, A. Santini, F. Passarini, I. Vassura, Automotive shredder residue (ASR)
- 359 characterization for a valuable management, Waste Manage. 30 (2010) 2228-2234.
- 360 [5] G. Mancini, R. Tamma, P. Viotti, Thermal process of fluff: Preliminary tests on a
- 361 full-scale treatment plant, Waste Manage. 30 (2010) 1670-1682.
- 362 [6] M.S. Reddy, K. Kurose, T. Okuda, W. Nishijima, M. Okada, Selective recovery of
- 363 PVC-free polymers from ASR polymers by ozonation and froth flotation, Resour.
- 364 Conserv. Recycl. 52 (2008) 941-946.
- 365 [7] H. Joung, Y. Seo, K. Kim, J. Hong, T. Yoo, Distribution and characteristics of
- 366 pyrolysis products from automobile shredder residue using an experimental semi-batch
- 367 reactor, Korean J. Chem. Eng. 24 (2007) 996-1002.

- 368 [8] I. Vermeulen, C. Block, J. Van Caneghem, W. Dewulf, S.K. Sikdar, C.
- 369 Vandecasteele, Sustainability assessment of industrial waste treatment processes: The
- 370 case of automotive shredder residue, Resour. Conserv. Recycl. 69 (2012) 17-28.
- 371 [9] UNI, UNI 10802. Waste Liquid, granular, pasty wastes and sluges. Manual
- 372 sampling and preparation and analysis of eluates, in: Italian Organization for
- 373 Standarization, 2004.
- 374 [10] M. Day, J. Graham, R. Lachmansingh, E. Chen, Characterization of auto shredder
- 375 residue a Canadian perspective, Resour. Conserv. Recycl. 9 (1993) 255-279.
- 376 [11] UNI, UNI 9903 -(3-7). Non mineral refuse derived fuel (RDF). Sampling and
- 377 sample reduction, in: Italian Organization for Standarization, 2004.
- 378 [12] M. Grønli, M.J. Antal, G. Várhegyi, A Round-Robin Study of Cellulose Pyrolysis
- 379 Kinetics by Thermogravimetry, Ind. Eng. Chem. Res. 38 (1999) 2238-2244.
- 380 [13] US EPA, Method 5050. Bomb preparation method for solid waste, in: US EPA
- 381 (Ed.), National Technical Information Service, Springfield, 1994.
- 382 [14] European Comission, Directive 2000/76/EC on the incineration of waste, in:
- 383 Official Journal of the European Communities, Brussels, 2003.
- 384 [15] R. Font, I. Aracil, A. Fullana, I. Martin-Gullón, J.A. Conesa, Semivolatile
- 385 compounds in pyrolysis of polyethylene, J. Anal. Appl. Pyrolysis 68–69 (2003) 599-
- 386 611.
- 387 [16] US EPA, Method 1613. Tetra- through Octa-Chlorinated Dioxins and Furans by
- 388 Isotope Dilution HRGC/HRMS, in: US EPA (Ed.) SW-846, National Technical
- 389 Information Service, Springfield, 1994.
- 390 [17] D. Mirabile, M.I. Pistelli, M. Marchesini, R. Falciani, L. Chiappelli, Thermal
- 391 valorisation of automobile shredder residue: injection in blast furnace, Waste Manage.
- 392 22 (2002) 841-851.

- 393 [18] Q. Guo, X. Zhang, C. Li, X. Liu, J. Li, TG–MS study of the thermo-oxidative
- behavior of plastic automobile shredder residues, J. Hazard. Mater. 209–210 (2012)
 442, 448
- **395 443-448**.
- 396 [19] B.K. Gullett, K.R. Bruce, L.O. Beach, The effect of metal catalysts on the
- 397 formation of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran
- 398 precursors, Chemosphere 20 (1990) 1945-1952.
- 399 [20] P. Weber, E. Dinjus, L. Stieglitz, The role of copper(II) chloride in the formation of
- 400 organic chlorine in fly ash, Chemosphere 42 (2001) 579-582.
- 401 [21] S.P. Ryan, E.R. Altwicker, Understanding the Role of Iron Chlorides in the De
- 402 Novo Synthesis of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans, Environ. Sci.
- 403 Technol. 38 (2004) 1708-1717.
- 404 [22] K.-H. Kim, H.-T. Joung, H. Nam, Y.-C. Seo, J. Hee Hong, T.-W. Yoo, B.-S. Lim,
- 405 J.-H. Park, Management status of end-of-life vehicles and characteristics of automobile
- 406 shredder residues in Korea, Waste Manage. 24 (2004) 533-540.
- 407 [23] G. Granata, E. Moscardini, G. Furlani, F. Pagnanelli, L. Toro, Automobile
- 408 shredded residue valorisation by hydrometallurgical metal recovery, J. Hazard. Mater.
- 409 185 (2011) 44-48.
- 410 [24] A. Santini, L. Morselli, F. Passarini, I. Vassura, S. Di Carlo, F. Bonino, End-of-
- 411 Life Vehicles management: Italian material and energy recovery efficiency, Waste
- 412 Manage. 31 (2011) 489-494.
- 413 [25] J. Van Caneghem, I. Vermeulen, C. Block, A. Van Brecht, P. Van Royen, M.
- 414 Jaspers, G. Wauters, C. Vandecasteele, Destruction and formation of PCDD/Fs in a
- 415 fluidised bed combustor co-incinerating automotive shredder residue with refuse
- 416 derived fuel and wastewater treatment sludge, J. Hazard. Mater. 207–208 (2012) 152-
- 417 158.

- 418 [26] R. Font, J. Moltó, S. Egea, J.A. Conesa, Thermogravimetric kinetic analysis and
- 419 pollutant evolution during the pyrolysis and combustion of mobile phone case,
- 420 Chemosphere 85 (2011) 516-524.
- 421 [27] G. Skodras, I. Diamantopoulou, P. Natas, A. Palladas, G.P. Sakellaropoulos,
- 422 Postcombustion measures for cleaner solid fuels combustion: Activated carbons for
- 423 toxic pollutants removal from flue gases, Energy Fuels 19 (2005) 2317-2327.
- 424 [28] S.H. Chang, J.W. Yeh, H.M. Chein, L.Y. Hsu, K.H. Chi, M.B. Chang, PCDD/F
- 425 adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe
- 426 catalysts supported on carbon, Environ. Sci. Technol. 42 (2008) 5727-5733.
- 427 [29] D.P. Debecker, R. Delaigle, P.C. Hung, A. Buekens, E.M. Gaigneaux, M.B.
- 428 Chang, Evaluation of PCDD/F oxidation catalysts: Confronting studies on model
- 429 molecules with tests on PCDD/F-containing gas stream, Chemosphere 82 (2011) 1337-
- 430 1342.
- 431 [30] C.E. Weinell, P.I. Jensen, K. Dam-Johansen, H. Livberg, Hydrogen chloride
- 432 reaction with lime and limestone: kinetics and sorption capacity, Ind. Eng. Chem. Res.
- 433 31 (1992) 164-171.
- 434 [31] J. Partanen, P. Backman, R. Backman, M. Hupa, Absorption of HCl by limestone
- in hot flue gases. Part II: importance of calcium hydroxychloride, Fuel 84 (2005) 16741684.
- 437 [32] S. Poskrobko, D. Król, J. Łach, Hydrogen chloride bonding with calcium
- 438 hydroxide in combustion and two-stage combustion of fuels from waste, Energy Fuels
- 439 26 (2012) 842-853.
- 440 [33] P. Samaras, M. Blumenstock, D. Lenoir, K.W. Schramm, A. Kettrup, PCDD/F
- 441 prevention by novel inhibitors: Addition of inorganic S- and N-compounds in the fuel
- 442 before combustion, Environ. Sci. Technol. 34 (2000) 5092-5096.

443	[34] K. Shao, J. Yan, X. Li, S. Lu, Y. Wei, M. Fu, Inhibition of de novo synthesis of
444	PCDD/Fs by SO ₂ in a model system, Chemosphere 78 (2010) 1230-1235.
445	
446	Table caption
447	
448	Table 1. Chemical analyses results
449	Table 2. Metal Content (mg/kg dry sample) of ASR fractions
450	Tabla 3. Total chlorine content of ASR samples
451	
452	Figure caption
453	
454	Figure1. Particle size distribution corresponding to raw material (RM)
455	Figure 2. IR emission spectrum of all each different size fractions
456	Figure 3. Thermogravimetric analyses results
457	Figure 4. Comparison of total PCDDS and PCDFs in different ASR size fractions after
458	combustion at 850°C (in pg-iTEQ/g).
459	Figure 5. 2,3,7,8-Cl Substituted PCDD/F congener pattern for emissions from different

- 460 ASR size fractions after combustion at 850 °C (in pg i-TEQ/g)
- 461

461

		RM	FINES	20-50 mm	50-100 mm	
Humidity	wt.%	1.2	1.3	1.2	1.1	=
Ash Content ²	wt.%	38.5	50.6	25.5	29.0	
C ³	wt. $\%^1$	41.2	35.0	59.9	49.1	
H ³	wt.% ¹	5.0	4.8	8.6	67	
N^3	wt.% ¹	1.3	0.6	1.8	1.3	
S ³	wt.% ¹	0.5	0.4	0.5	0.8	
UHV	kJ/kg ¹	19900	16100	25700	26200	
LHV	kJ/kg ¹	18700	15000	23700	24600	

462 Table1. Chemical analyses results 463

¹ Calculated on dry basis ²Experiment carried out at 550°C ³ Experiment carried out at 1000°C

HHV/LHV: Higher and Lower Heating Value

463

464 Table2. Metal content (mg/kg_{dry sample}) of ASR fractions 465

			20.50	466	3
	RM	FINES	20-50 mm	50-100 mm	- -
Chlorine mg/kg		8440	8800	2120	1
¹ Calculated on dr	y basis			472	_
(mg/kg _{dry sample}) of	ASR sample			172	
			N.O.		

474 <u>HIGHLIGHTS</u>

475	-	Four different particle size fractions from a Car Fluff sample were studied
476	-	Chlorine and metal content was analyzed in all samples
477	-	PCDD/Fs from combustion of the samples in lab scale were measured and discussed
478 479	-	The combustion of fraction smaller than 20 mm produced the highest PCDD/F emissions
480 481		
482 483		

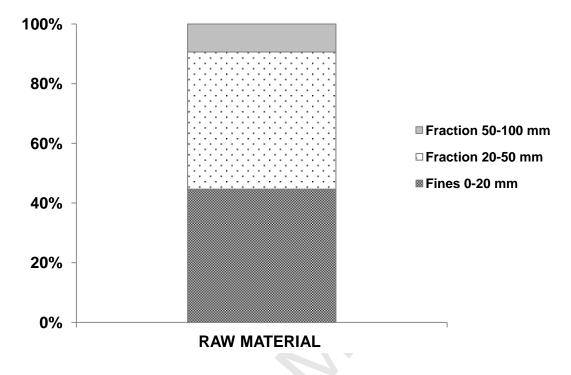


Figure 1. Particle size distribution corresponding to raw materila (RM)

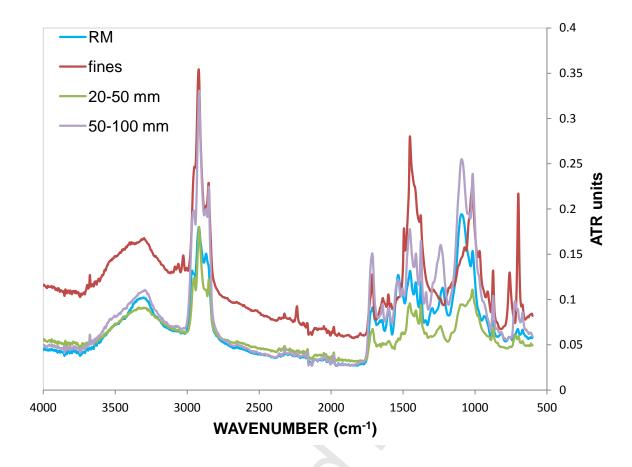


Figure 2. . IR emission spectrum of all each different size fractions

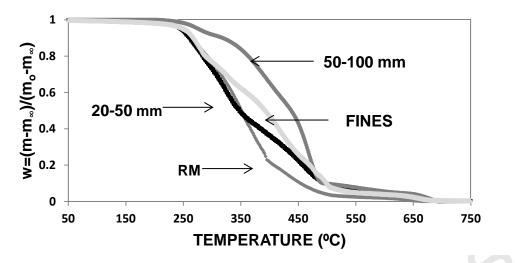


Figure 3. Thermogravimetric analyses results

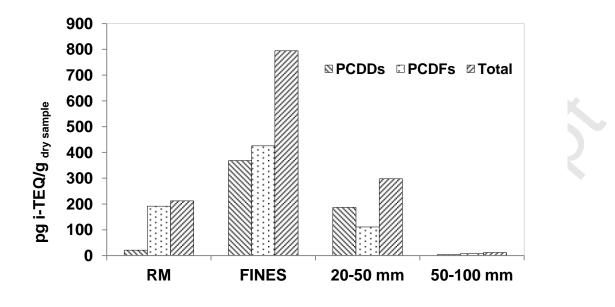
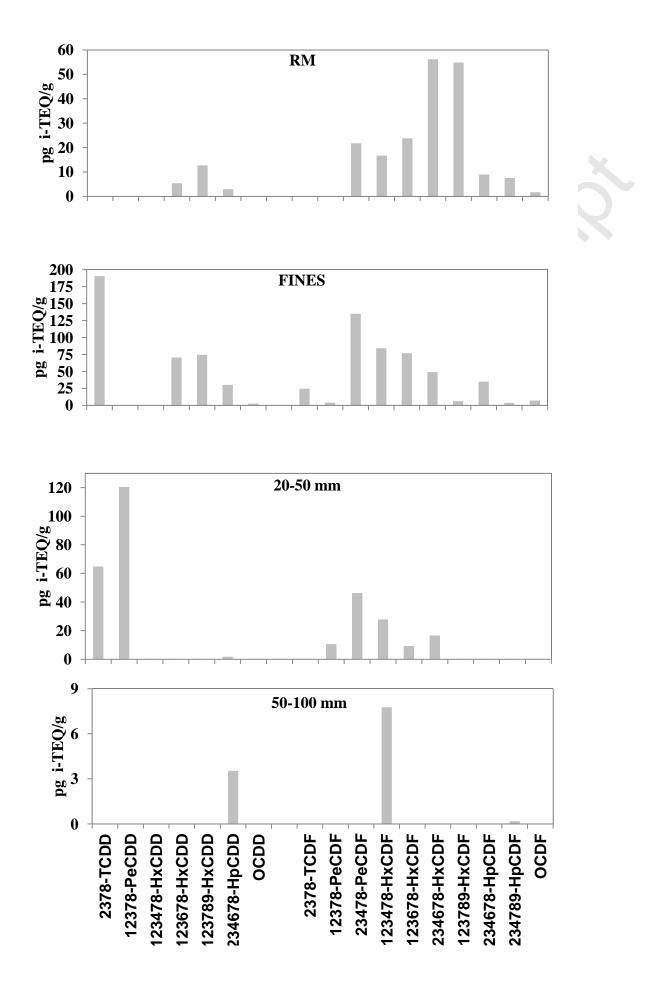



Figure 4. Comparison of total PCDDS and PCDFs in different ASR size fractions after combustion at 850^e

