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Abstract

UKRmol+ is a new implementation of the UK R-matrix electron-molecule
scattering code. Key features of the implementation are the use of quantum
chemistry codes such as Molpro to provide target molecular orbitals; the
optional use of mixed Gaussian – B-spline basis functions to represent the
continuum and improved configuration and Hamiltonian generation. The
code is described, and examples covering electron collisions from a range of
targets, positron collisions and photionisation are presented. The codes are
freely available as a tarball from Zenodo.
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PROGRAM SUMMARY
Program Title: UKRmol+
Licensing provisions: GNU GPLv3
Programming language: Fortran 95 with use of some Fortran 2003 features
Program repository available at: https://gitlab.com/UK-AMOR/UKRmol
Computers on which the program has been tested: Cray XC30 ARCHER, Lenovo
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SD530 node (UCL’s Myriad), TACC Stampede2, Intel pcs.
Number of processors used: Min: 1, Max tested: program dependent, up to 100
cores for the parallel ones
Number of lines in program: 158178 in UKRmol-in (including GBTOlib) and 79760
in UKRmol-out
Distribution format: Tarball available from Zenodo (https://zenodo.org/)
External routines/libraries: LAPACK, BLAS; optionally MPI, ScaLAPACK, Arpack,
SLEPc

Nature of problem: The computational study of electron and positron scatter-
ing from a molecule requires the determination of multicentric time-independent
wavefunctions describing the target+projectile system. These wavefunctions can
also be used to calculate photoionization cross sections (in this case the free par-
ticle is the ionized electron) or provide input for time-dependent calculations of
laser-induced ultrafast processes.

Solution method: We use the R-matrix method [1], that partitions space into
an ‘inner’ and an ‘outer’ region. In the inner region (within a few tens of a0
of the nuclei at most) exchange and correlation are taken into account. In the
outer region, where the free particle is distinguishable from the target electrons, a
single-centre multipole potential describes its interaction with the molecule. The
key computational step is the building and diagonalization of the target + free par-
ticle Hamiltonian in the inner region, making use of integrals generated using the
GBTOlib library. The eigenpairs obtained are then used as input to outer region
suite programs to determine scattering quantities (K-matrices, etc.) or transition
dipole moments and, from them, photoionization cross sections. The suite also
generates input data for the R-matrix with time (RMT) suite [2].

Additional comments: CMake scripts for the configuration, compilation, testing
and installation of the suite are provided. This article describes the release version
UKRmol-in 3.0, that uses GBTOlib 2.0, and UKRmol-out 3.0.
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1. Introduction

The R-matrix method is a form of embedding method which involves
the division of space into a (spherical) inner region and an outer region.
It is widely used for theoretical studies in atomic, molecular and optical
physics [1, 2], nuclear physics [3] and recently ultra-cold chemistry [4]. A
feature of the R-matrix method for scattering applications is that the inner
region problem is independent of the scattering energy. This means that
solution of the inner region only needs to be performed once and that the
energy dependence of the problem is confined to the physically simpler outer
region. This facilitates, for example, the use of fine energy meshes which can
be important for finding and characterising resonances (metastable states
embedded in the continuum).

The UK molecular R-matrix codes are an implementation of the R-matrix
method originally designed for treating electron-molecule collisions. They
have been subsequently generalised to treat other processes such photoion-
isation, positron molecule collisions [5] and studies of diffuse bound states.
Theses codes have been developed over a number of years [6, 7, 8].

The present paper reports the release of a new version of the codes, known
as UKRmol+. UKRmol+ represents a major improvement in functionality,
algorithms and parallelisation compared to the previous version known as
UKRmol. In particular, UKRmol+ allows the optional use of B-spline ba-
sis functions to represent the continuum which facilitates calculations with
higher kinetic energies of the free electron and the use of greatly enlarged
inner regions allowing both large targets and targets with more diffuse elec-
tronic states to be studied. Previous versions of the UKRmol codes have
incorporated a (limited) quantum chemistry capability to provide target or-
bitals. In a change from this, UKRmol+ utilizes external electronic structure
codes (e.g. Molpro [9]) to provide molecular orbitals allowing considerably
more flexibility in the representation of the molecular targets. Algorithmic
improvements include use of the new GBTOlib library [10] for computing
integrals, generating configurations and constructing the Hamiltonian ma-
trix among others. These new modules are designed to take advantage of
MPI, where available, an option not available in the older code. In addition,
UKRmol+ contains an option to compute photoionisation dipoles and cross
sections [11, 12] plus these dipoles can also be used as the input for the RMT
(R-matrix with time) code [13] which can treat molecules in intense, ultra-
short, arbitrarily-polarized laser pulses. A number of other improvements in
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functionality are discussed below.
We note that some of the works containing results that are referenced

throughout the papers actually used the UKRmol suite. UKRmol+ should
be able to reproduce virtually all the old results (some functionality has yet
to be implemented in the new suite); this has indeed been tested for a number
of targets.

This paper is structured as follows. Section 2 introduces the molecular
R-matrix theory: a succinct derivation in Section 2.1 will help those read-
ers interested in a deeper understanding of the background of the method;
those interested in how the quantities generated by the suite combine to solve
the scattering/photoionization problem and the R-matrix scattering models
used in practice can safely avoid this derivation. Section 3 details the input
data required and the capabilities of each program in the suite. Sections 4,
5 and 6 describe how the programs in suite are combined to study elec-
tron/positron scattering, photoionization and to produce input for the RMT
suite respectively. The test suite is described in Section 7 followed by Sec-
tion 8 containing several examples of practical applications which illustrate
the current capabilities of the suite.

2. Overview of the R-matrix approach

In the R-matrix method space is divided by a so-called R-matrix sphere
of radius a. This radius needs to be set large enough to ensure that the
wavefunction representing the target can be assumed to have zero amplitude
on the boundary (in fact, all target orbitals used should have approximately
zero amplitude on the boundary). As explained below, this division allows us
to solve the Schrödinger equation separately in these two parts and join the
solution on the R-matrix sphere. A full exposition of the R-matrix theory
can be found in the monographs [14, 15]. In this Section, we start by deriving
the fundamental equations of the R-matrix method. Readers interested only
in the main equations implemented in the suite can skip this derivation and
start with Section 2.2.

2.1. Derivation of the approach

We wish to find the solution of the multi-electron Schrödinger equation
in the whole space for a problem where one of the (total) N+1 electrons
(or a positron) can be found outside of the R-matrix sphere (r ≥ a). Here
correlation and exchange with the inner region can be neglected and the
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outer-region particle can be regarded as moving in a generally non-spherical
static potential of the molecule (Appendix A.2 in [13] details the form of
this potential). The total wavefunction in the outer region can therefore be
written using the channel expansion

|Ψout(E)〉 =
n
∑

p

Fpp′(rN+1)

rN+1
Φ

Γ

p (XN ; r̂N+1σN+1), (1)

where Φ
Γ

p (XN ; r̂N+1σN+1) is the channel wavefunction given by a product
of the wavefunction representing a target electronic state and the angular
(spherical harmonic) part of the wavefunction of the outer region electron and
n is the total number of channels. XN stands for all spin-space coordinates
of the N electrons confined to the inner region and r̂N+1σN+1 are the angular
and spin coordinates of the (N+1)th particle (electron/positron) and rN+1

is its radial coordinate. From now on we drop the index of the (N+1)th
particle when referring to its coordinates. The functions Fpp′(r) are the
reduced radial wavefunctions of the outer region particle and p′ labels the
linearly independent solutions of the single-particle Schrödinger equation.
As the analytic form of these functions is well known in the asymptotic
region [16, 11], we can match outer region solutions with the ones from the
inner region, |Ψin(E)〉:

HN+1|Ψin(E)〉 = E|Ψin(E)〉, (2)

〈ΦΓ

p
1
r
|Ψin(E)〉

∣

∣

r=a
= 〈ΦΓ

p
1
r
|Ψout(E)〉

∣

∣

r=a
, p = 1, . . . , n, (3)

d

dr
〈ΦΓ

p
1
r
|Ψin(E)〉

∣

∣

∣

∣

r=a

=
d

dr
〈ΦΓ

p
1
r
|Ψout(E)〉

∣

∣

∣

∣

r=a

, p = 1, . . . , n. (4)

Here E is the total energy and HN+1 is the non-relativistic molecular Hamil-
tonian in the fixed-nuclei approximation

HN+1 =
N+1
∑

i=1

(

−1

2
∇2

i +
N+1
∑

i>j

1

|ri − rj|
−

Nuclei
∑

k=1

Zk

|ri −Rk|

)

. (5)

where Zk is the charge and Rk is the position of the nucleus. Note that
equations (3-4) are equivalent to:

Fpp′,in(a) = Fpp′,out(a), (6)

F
′

pp′,in(a) = F
′

pp′,out(a). (7)
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The R-matrix method is an equivalent formulation of this boundary value
problem which uses the Bloch operator, L, to embed the second (derivative)
boundary condition into the solution of the Schrödinger equation (2)

(HN+1 + L)|Ψin(E)〉 = E|Ψin(E)〉+ L|Ψout(E)〉, (8)

〈ΦΓ

p
1
r
|Ψin(E)〉

∣

∣

r=a
= 〈ΦΓ

p
1
r
|Ψout(E)〉

∣

∣

r=a
, p = 1, . . . , n, (9)

L =
N+1
∑

i=1

1

2
δ(ri − a)

d

dri
. (10)

The Bloch operator ensures that the operator HN+1 + L is self-adjoint and
that the boundary condition given by Eq. (4) is included in Eq. (8). Using
Eq. (8) to express |Ψin(E)〉 we obtain

|Ψin(E)〉 = GN+1(E)L|Ψout(E)〉, (11)

GN+1(E) = (HN+1 + L− E)−1, (12)

where GN+1(E) is the Green’s operator for the inner region. Next we take
advantage of the spectral decomposition of the Green’s operator

GN+1(E) =
∑

k

|ψN+1
k 〉〈ψN+1

k |
Ek −E

, (13)

where |ψN+1
k 〉 and Ek are the so-called R-matrix basis functions and poles

respectively:

(HN+1 + L)|ψN+1
k 〉 = Ek|ψN+1

k 〉, (14)

which are defined only in the inner region; due to the Bloch operator the
exact eigenvectors have zero derivative on the boundary. We insert Eq. (13)
back into Eq. (11) obtaining

|Ψin(E)〉 =
∑

k

|ψN+1
k 〉〈ψN+1

k |L|Ψout(E)〉
Ek − E

. (15)

We can now project this equation on the channel functions and obtain a
formula for the corresponding reduced radial wavefunctions:

〈ΦΓ

p
1
r
|Ψin(E)〉 =

∑

k

〈ΦΓ

p
1
r
|ψN+1

k 〉〈ψN+1
k |L|Ψout(E)〉

Ek −E
. (16)

The next section shows shows how this leads to the definition of the R-
matrix.
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2.2. Fundamental equations of the R-matrix approach

The matrix elements defined by Eq. (16) can be evaluated with the help
of Eqns. (1), (10). Applying the boundary condition given by Eq. (9) yields
the result

FE(a) = RE(a)F
′

E(a), (17)

RE(a) =
1

a
w(a)[Ek − E]−1wT(a), (18)

where RE(a) is the R-matrix in the basis of the channel wavefunctions (the
Green’s function evaluated on the R-matrix sphere) and FE(a) is the matrix
of the channel reduced radial wavefunctions evaluated at r = a. The matrix
[Ek −E]−1 is diagonal and the matrix of the reduced boundary amplitudes
w(a) is defined as:

wpk(a) =
1√
2

〈

Φ
Γ

p

1

r

∣

∣

∣

∣

ψN+1
k

〉
∣

∣

∣

∣

r=a

=
1√
2

〈

ΦN
ip

1

r
Xlp,mp

(r̂)

∣

∣

∣

∣

ψN+1
k

〉
∣

∣

∣

∣

r=a

, (19)

where ΦN
ip
= ΦN

ip
(x1, . . . ,xN) is the N-electron wavefunction representing the

target electronic state ip corresponding to channel p and Xlp,mp
(r̂) is the real

spherical harmonic of the outer region particle in that channel. For the full
expression of the boundary amplitudes in terms of the raw (single-particle)
boundary amplitudes, see Appendix A. From Eqns. (17-18) and the known
(asymptotic) form of FE(a) we can compute the K-matrix and all scattering
observables. In practice, especially in the case of scattering calculations, the
radius r = a typically does not lie in the asymptotic region. Therefore the
R-matrix is first propagated [17, 18, 19] in the static multipole molecular
potential, see Appendix A.2 in [13], to a large distance ap (typically 100 a0)
where the matching of the radial functions to known asymptotic expressions
is performed [20, 15].

If the inner region wavefunction is required (as in the case of photoioniza-
tion calculations) it can be determined through Eq. (15) inserting in it the
now fully specified outer region wavefunction. The result is1:

|Ψin(E)〉 =
∑

k

Ak(E)|ψN+1
k 〉, (20)

1It is often stated that Eq. (20) is an expansion in the basis of the |ψN+1

k 〉 functions.
However, rigorously |ψN+1

k 〉 do not form a basis in the Hilbert space of the solutions
since the equivalent derivative series generally does not converge to the derivative of the
wavefunction at r = a, see [21] for a detailed discussion.
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where the form of the coefficients Ak(E) depends on the choice of the asymp-
totic boundary conditions in the outer region (photoionization or scatter-
ing) [11].

The strength of the R-matrix method lies in the energy factorisation of the
inner-region’s Green function (see Eqns. (13-14)) which requires, to obtain
the Ek and ψN+1

k , only one diagonalization of the inner-region Hamiltonian.
Consequently, the R-matrix can be constructed easily for an arbitrary grid
of energies and the desired solutions determined efficiently. Not surprisingly
the construction of the R-matrix basis functions |ψN+1

k 〉 is typically the most
important and the most difficult part of the whole calculation. These wave-
functions are represented by a close-coupling expansion of the form:

ψN+1
k = Â

∑

i,j

cijkΦ
N
i (x1, . . . ,xN)ηij(xN+1) +

∑

m

bmkχ
N+1
m (x1, . . . ,xN+1).

(21)
The first of the terms on the right-hand side of the equation represents the
product of the wavefunctions describing the target, ΦN

i (x1, . . . ,xN), with
continuum orbitals, ηij(xN+1) which are non-zero on the boundary; the anti-

symmetriser Â ensures that this product obeys the Pauli principle.
UKRmol+ allows the use of both Gaussian type orbitals (GTOs) and

B-spline orbitals (BTOs) [22] to represent the continuum: options allow
ηij(xN+1) to be represented by GTOs, a hybrid set of GTOs and BTOs
or simply a set of BTOs, see Section 3.1. The UKRmol code [8] used GTOs
only to represent the continuum [23].

The second, so-called L2, terms in Eq. (21) comprises configurations
where the scattering electron is placed in target orbitals; they describe short
range correlation/polarisation. The coefficients cijk and bmk are determined
variationally by constructing and diagonalising the inner region Hamiltonian
matrix using Eq. (14). This step normally dominates the computational
requirements.

2.3. R-matrix scattering models

Within the framework described above there are a variety of different
models and procedures that can be used. Key ones are discussed below, but
for more details on these and the use of the molecular R-matrix method in
general see the review by Tennyson [24].

Static exchange (SE) is the simplest scattering model which uses a
single target wavefunction represented at the Hartree-Fock (HF) level. In
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this model the L2 configurations are given simply by placing the scattering
electron in unoccupied target (virtual) orbitals of the appropriate symmetry.
For a closed shell target, the N+1 configurations can be written:

(HF)N (cont)1,

(HF)N (virt)1,

where HF represents a single Hartree-Fock determinant, virt is an unoccupied
target orbital and cont is a continuum orbital. The SE model is rather
crude but does have the advantage that it is well defined so can be used for
benchmarks against other methods and codes.

Static exchange plus polarisation (SEP) builds on the SE model by
also including L2 configurations which involve promoting an electron from the
HF target wavefunction to a virtual orbital while also placing the scattering
electron in a target virtual orbital. For a closed shell target, the SEP model
augments the SE configurations with configurations of the type

(core)Nc(valence)(Nv−1)(virt)2,

where Nc is the number of electrons in doubly occupied orbitals and Nv is the
number of electrons in the “valence” orbitals so that N = Nc +Nv. Experi-
ence shows that many more virtuals are required to achieve a good description
of the scattering for SEP than SE calculations [25]. The extra configurations
included in the SEP model allow for the inclusion of short-range target po-
larisation effects in the model. The SEP model is still relatively simple but is
found to provide a good representation of low-lying shape resonances which
are, in particular, important for providing a gateway for dissociative electron
recombination and are also involved in dissociative electron attachment.

Close-coupling (CC) expansions involve including several target states
in Eq. (21). This model normally uses a complete active spaces (CAS) de-
scription of these states and, when possibe, (state-averaged) CASSCF or-
bitals. Within a CAS model with M active electrons in the CAS, the N+1
configurations can generally be represented as

(core)(N−M) CASM(cont)1

(core)(N−M) CAS(M+1)

(core)(N−M) CASM(virt)1

(core)(N−M) CAS(M−1)(virt)2

9



although other models have been used [26]. The first and second type of
configurations are always used whereas the last two are not (they tend to
be needed for targets with large polarizabilities; the last type is actually
rarely included). Use of the CC method is essential for describing electronic
excitation and is also best for studying Feshbach resonances. However CC
calculations can be computationally demanding and there are subtle ques-
tions that need to be addressed over how best to build a model. [27, 28].

R-matrix with pseudostates (RMPS) is a generalisation of the CC
method. Given that there are an infinite number of states below each ioni-
sation threshold, it is not possible to work with complete CC expansion of
physical states. The RMPS method [29] uses an extra set of target orbitals,
known as pseudo-continuum orbitals (PCOs), to provide a representation of
the discretized continuum in the inner region. The molecular implementation
of this uses even-tempered GTOs [30, 31]. The RMPS model leads to fairly
complex set of configurations of the type:

(core)(N−M) CASM(cont)1

(core)(N−M) CASM−1(PCO)1(cont)1

(core)(N−M) CASM+1

(core)(N−M) CASM(PCO)1

(core)(N−M) CASM−1(PCO)2

(core)(N−M) CASM(virt)1

(core)(N−M) CASM−1(PCO)1(virt)1

(core)(N−M) CAS(M−1)(virt)2.

Again, here the first four types of configurations are always used, whereas
the last four are optional. Construction of the configuration set has to be
performed with care as the choice of the number of core, CAS, virt and
PCO orbitals has to be balanced with computational demands [32]. The
RMPS approach has very useful properties in terms of extending the energy
range of the calculations [30] and allowing polarisation effects to be rigorously
converged [33], but are computationally very demanding [32, 34] so as yet
the RMPS procedure is only rarely used.

A word on nomenclature: as seen above, the R-matrix method requires
the determination of energies and wavefunctions for N- and N+1-electron
systems. In scattering calculations, the N-electron system is normally called
the target and the N+1 electron wavefunctions are referred to as the scatter-
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ing wavefunctions. In the context of photoionization (and RMT calculations)
the N-electron system is referred to as the residual (molecular) ion and the
N+1-electron system as the neutral system. All these names will be used, as
appropriate, throughout the paper.

3. Programs in the suite

The UKRmol+ suite consists of about a dozen computer programs writ-
ten in various versions of Fortran. The programs are provided in two suites:
UKRmol-in, containing those necessary for the target and inner region cal-
culations and UKRmol-out, containing those needed for the outer region
scattering calculation and the interface programs (e.g. to produce the input
for RMT). The UKRmol-in suite has been almost completely rewritten over
the last few years and that is the one we will describe here in detail. The
UKRmol-out suite has remained relatively unchanged since Ref. (author?)
[8], so will not be discussed in detail in this paper. We will, however, detail
the existing interface programs.

Each of the programs is responsible for a specific set of tasks within
the scattering or photoionization calculation workflow. The execution of
the programs is controlled using case-insensitive input namelists, which are
either read from the standard input, from disk files with hard-coded names,
or from disk files in paths provided on the command line. The programs
communicate with each other using intermediate disk files. In most cases, the
files are not standard named files, but Fortran numerical units, represented
by most compilers as disk files with name “fort.n”, where n is a number that
can be changed via the program’s input namelist. Some UKRmol+ programs
are serial, some are multi-threaded, and some are capable of running in MPI
(distributed) mode, as detailed below.

UKRmol+ supports the following Abelian point groups: C1, C2, Cs, Ci,
C2h, C2v and D2h. Molecules that belong to other (non-Abelian) points
groups (e.g. those belonging to C∞v and D∞h) need to be assigned to the
closest smaller group, with C1 as the last-resort option. The irreducible rep-
resentations of these groups are frequently referenced in the input namelists.
They are labelled using what is often often referred to as “M-values”, in anal-
ogy to linear molecules (the first molecular implementation of the R-matrix
method was for diatomic molecules [6]), for which “M-values” referred to the
projection of the angular momentum on the molecular axis. The assignment
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ofM-values to individual irreducible representations is given in Appendix B
in Table B.21.

The UKRmol+ suite requires as input a file generated by an external
Quantum Chemistry suite, containing geometrical information about the
molecule as well as the bound orbitals to be used in the description of the
process (see next section for more details). The file should be in Molden
format [35]; for most of the tests provided in the test suite included in the
release (and the calculations performed so far) the files have been generated
using Molpro [9], although Psi4 [36] has also been used for some calculations.

The continuum GTO basis sets are generated using two programs in the
suite: NUMCBAS and GTOBAS [23]. These programs do not need to be
run for each calculation: the basis is generated once for a specific R-matrix
radius and charge of the N-electron system and a range of kinetic energies of
the free electron. Briefly, the exponents of the GTOs are optimized for each
angular momentum by fitting to a set of numerical Bessel (if neutral targets
are going to be studied) or Coulomb (if charged targets are to be investigate)
functions within a specified radial range given by the R-matrix radius to be
used. The number of numerical functions to be fitted is given by a selected
maximum wavenumber.

The sections that follow describe all the other programs in the suite and
the input they require. Sections 4 to 6 describe how these programs are used
in three different types of calculations: electron-scattering ones (including
calculations to determine bound states), photoionization calculations and
those to produce input for the RMT suite. Brief summaries on the inputs are
provided to illustrate key points; full documentation of the inputs is provided
with the release. Section 7 briefly describes the test suite and finally Section 8
presents some of the results obtained with the latest version of the codes.

3.1. SCATCI INTEGRALS

The program SCATCI INTEGRALS performs all the calculations related
to basis functions and orbitals: it evaluates all the required 1- and 2-particle
integrals for the atomic basis functions, orthogonalizes bound and continuum
orbitals, transforms the integrals from the atomic to the molecular basis, etc.

The program uses a stand-alone library GBTOlib [10] that offers the
choice of using centre-of-mass centred Gaussian-type orbitals (GTOs) and/or
B-spline type orbitals (BTOs) as the single-particle orbitals, as illustrated in
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Fig. 1. The BTOs and GTOs are defined as follows:

Bi,l,m(r) = Ni

Bi(r)

r
Xl,m(r̂), (22)

Gα,l,m(r−A) = NGTO
α,l Sl,m(r−A) exp[−α|r−A|2], (23)

where Bi(r) is the radial B-spline with index i and Xl,m(r̂) is a real spherical
harmonic [37]. Sl,m(r −A) is a real solid harmonic centred on the point A
(atomic centre or the centre-of-mass) and is defined via the real spherical
harmonic:

Sl,m(r̂) =

√

4π

2l + 1
rlXl,m(r̂). (24)

In both cases the factors Ni and N
GTO
α,l are chosen to normalize the functions

to a unit integral of their modulus squared. If contracted GTOs (linear
combinations of primitive GTOs) are used an overall normalization factor is
needed to ensure unit integral over modulus squared of the contracted GTO.

The BTOs and GTOs can be used to build three types of bases: atomic
(representing the orbitals of the target molecule), continuum (representing
the unbound particle) and pseudocontinuum. These three bases can be in-
cluded in the calculation in an arbitrary combination. Table 1 lists these
bases together with the type of 1-particle orbitals that can be included in
each of them and the namelist required to specify the details of each basis.

Table 1: Basis sets and 1-particle orbitals supported by SCATCI INTEGRALS together
with the namelists used to specify the input.

1-particle orbital supported
Basis type Namelist GTO BTO GTO+BTO

Target molecule &target data YES NO NO
Continuum &continuum data YES YES YES
Pseudocontinuum &pco data YES NO NO

The use of the continuum and pseudocontinuum bases is optional (and
therefore the code can be used for pure GTO-based bound-state quantum
chemistry calculations) but the basis representing the target molecule must
always be present. Obviously, the continuum basis is required for UKRmol+
calculations involving the construction of continuum states of the molecule.

In addition to the namelists &target data, &continuum data and &pco data

listed in Table 1, input is provided via the namelist &process control.
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Below we describe the most relevant input parameters for each of those
namelists.

3.1.1. Namelist target data

SCATCI INTEGRALS reads a formatted file in Molden format [35] con-
taining the geometry, the GTO atomic basis and the molecular orbitals,
specified in this namelist by molden file. This file can be generated by a
range of external quantum chemistry software and thus enables the use in
UKRmol+ of molecular orbitals produced at various levels of theory (Hartree-
Fock, CASSCF, etc.). The namelist, see Table 2, also contains information
on the molecular symmetry of the target molecule and how many (externally
generated) molecular orbitals are used for its description.

Table 2: Selected parameters in the &target data namelist in the input for
SCATCI INTEGRALS

&target data

a R-matrix radius (in a0) (default:−1.0)
no symop Number of symmetry operators required to define

the point group
sym op Symmetry operators to be used
molden file Path and name of the input file in Molden format
nob Number of target orbitals of each irreducible representation

to be read from the Molden file

The choice of the R-matrix radius a is, perhaps, counter-intuitively, done
in the &target data namelist rather than in the continuum one. The reason
is that it is the spatial extent of the target electronic orbitals that deter-
mines the size of the R-matrix sphere required. Integrals involving only the
target functions are always computed over all space, in agreement with the
assumption of the R-matrix method that the electronic density associated
to the target molecular states is completely contained inside the R-matrix
sphere. If, on input, a ≤ 0 then all integrals, including those involving the
continuum functions, are computed over all space.

The definition of the symmetry (using the common symmetry operators
’X’, ’Y’, ’Z’, ’XY’, ’YZ’, ’XZ’ and ’XYZ’) is necessary to perform the
transformation of the integrals from the atomic to the (symmetry adapted)
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molecular basis. The parameter nob is an array with the length of the num-
ber of irreducible representations; again, Table B.21 indicates the order of
these. nob specifies the number of molecular orbitals to include in the inte-
gral calculation. One should pick here both the orbitals that will be used to
describe the target and those to be used (if required) for the L2 functions
(i.e. the virtual orbitals, see Section 2.3).

3.1.2. Namelist continuum data

The important parameters defining the continuum basis are listed in Ta-
ble 3. They are used to define both the GTO and/or the BTO continuum
bases centred on the centre of mass. As noted above both types of functions
can be mixed freely to define the continuum orbitals.

Using a pure GTO continuum is straightforward. The exponents of the
GTO continuum basis are generated, as explained, using the programs NUM-
CBAS and GTOBAS [23] and provided as input, as a list of values for each
partial wave l in the array exponents(:,l). Note that if neither min l or
max l are given non-zero values, then no GTO continuum is included in the
calculation.

An illustration of the set-up using either a pure BTO or a mixed GTO
+ BTO continuum is shown in Fig. 1. If the BTO basis is used care must
be taken to include only those radial B-spline functions which are compli-
ant with the boundary conditions: if the B-spline basis starts at the origin
the first B-spline must not be included and if the B-spline basis starts at
r > 0 then the first two B-splines must not be included. The values of
bspline indices(1,l) and bspline indices(2,l) determine the starting
and the final index of the radial B-spline to include in the BTO basis for par-
tial wave l: only if bspline indices(1,l) ≤ bspline indices(2,l) are BTOs
for that partial wave included. The radius at which the radial B-spline basis
starts is controlled by the parameter bspline grid start. The order of the
B-spline [22] to be used is given by bspline order; typical values are 8 to
11.

The deletion threshold to be used for each irreducible representation in
the symmetric orthogonalization is given by del thresh (see Section 3.1.5).

If the free scattering calculation is requested using the flag run free scattering

then the program uses the R-matrix methodology (with the R-matrix radius
given in the namelist &target data) and the target + continuum orbitals as
a basis to solve the 1-particle “scattering” problem with zero potential (i.e.
with Hamiltonian H = −∇2

2
) and computes the eigenphase sums in each
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0 Atom R-matrix
radiusDistance from the center of mass of the molecule

Set-up of a pure BTO continuum basis

B-spline radial continuum functions
B-spline function not satisfying b.c.

Atomic GTO function

0 Atom R-matrix
radius

bspline_grid_start
(adjustable start of B-spline grid)

Distance from the center of mass of the molecule

Set-up of a mixed GTO+BTO continuum basis

GTO radial continuum functions
B-spline radial continuum functions

B-spline functions not satisfying b.c.
Atomic GTO function

Figure 1: Set-up of the continuum basis in a UKRmol+ calculation. The GTO and the
BTO continuum functions centred on the centre of mass can be mixed freely inside the
R-matrix sphere. An additional pseudocontinuum basis built from GTOs centred on the
centre of mass can also be included (not shown). The parameter bspline grid start sets
the radial distance for start of the B-spline basis. The B-spline functions plotted using
the dashed lines are those not satisfying the boundary conditions, see text.
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Table 3: Selected parameters in the &continuum data namelist in the input for
SCATCI INTEGRALS. Most default values not indicated are set to −1.

&continuum data

min l The lowest GTO partial wave to include
max l The highest GTO partial wave to include
exponents(:,l) Exponents of the continuum GTOs for

partial wave l
min bspline l The lowest BTO partial wave to include
max bspline l The highest BTO partial wave to include
bspline grid start The radial distance from which the BTOs

start, see Fig. 1
bspline order Order of the B-splines to be included in

the calculation
no bspline The number of radial B-splines in the basis
bspline indices(1,l) Indices of the first and the last radial B-spline
bspline indices(2,l) to be included for the partial wave l
del thresh Deletion thresholds for each irreducible

representation used in the symmetric
orthogonalization of the continuum

run free scattering Logical flag that enables the running of a
free scattering calculation (default:.false.).

min energy Minimum scattering energy in Hartree in the
free scattering calculation

max energy Maximum energy in Hartree the free
scattering calculation

nE Number of energies between min energy
and max energy
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spatial symmetry for a range of energies by matching to spherical Bessel
functions at r = a. For free scattering, the exact result should be zero eigen-
phase sums. Therefore the size of the deviations from zero give an idea of
the quality of the continuum basis. A rule of thumb for a good continuum
representation are eigenphase sums less than or equal to 10−2 rad. The en-
ergy range and grid for this caculations can be adjusted if required using the
namelist parameters min energy, max energy (in Hartree) and nE. If several
free scattering calculations are run in order to tune the continuum basis, this
can be made more efficient setting the flag do two particle integrals =

.false. in the namelist &process control, see below.

3.1.3. Namelist pco data

The basis for the pseudocontinuum is built from even-tempered GTOs
centred on the centre of mass. The pseudocontinuum exponents are generated
using the formula:

αj,l = α0,lβ
(j−1)
l , j = 1, . . . nl, (25)

where the parameters α0,l, βl and nl correspond to the values PCO alpha0,
PCO beta and num PCOs respectively in the namelist &pco data, see Table 4.
Usual values of βl range from and 1.1 to 1.5.

Table 4: Parameters in the &pco data namelist in the input for SCATCI INTEGRALS.
All default values are set to −1/− 1.0.

&pco data

PCO alpha0 Parameters α0,l in Eq (25).
PCO beta Parameters βl in Eq (25).
num PCOs Parameter nl in Eq (25): number of pseudocontinuum

exponents per partial wave to be generated.
min PCO l The lowest angular momentum for PCOs
max PCO l The highest angular momentum for PCOs
PCO gto thrs Thresholds, per partial wave, for removal of

exponents of continuum GTOs, see text for details.
PCO del thrs Deletion thresholds for each irreducible representation

used in the symmetric orthogonalization of the
pseudocontinuum
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If the GTO continuum is included in the calculation too then the ex-
ponents of the continuum GTOs for each partial wave are scanned and
those greater than or equal to the smallest PCO exponent (minus the value
PCO gto thrs) in the same partial wave removed. This procedure improves
numerical stability of generation of the continuum orbitals. PCO del thrs

are the deletion thresholds for the symmetric orthogonalization of this basis.

3.1.4. Namelist process control

This namelist, see Table 5, controls mainly how the integrals are calcu-
lated and how much memory or whether scratch space is requested for some
auxiliary quantities needed during the computation of the mixed GTO/BTO
integrals. Most importantly, the parameters max l legendre 1el and max l legendre 2el

control the highest partial wave included in the Legendre expansion of the
Coulomb potential when calculating the mixed GTO/BTO integrals. The
minimum sensible numbers for these quantities is twice the value of the
highest (pseudo)continuum angular momentum included in the calculation.
Careful convergence checks of the final results with respect to these param-
eters are recommended. The length of the Legendre expansion significantly
affects both the computational time and the memory requirements of the cal-
culation. Values as high as 75 have been used in calculations [38]. The flag
calc radial densities is useful for testing whether the R-matrix radius
chosen is sufficiently large.

3.1.5. Orbital orthogonalization

It is a requirement of the UKRmol+ suite that all the orbitals used form
a single orthonormal set; orthogonalization steps are therefore required. The
target orbitals are usually orthonormal on input but as the first step they are
preemptively reorthogonalized using the Gram-Schmidt method. The flow of
the orthogonalization process is shown in or ig. 2.

In a standard scattering calculation only the target and the continuum
bases are included and only steps 1 and 3 from Fig. 2 are performed. In this
case the Gram-Schmidt orthogonalization of the continuum basis with the
target orbitals (step 3a) leaves the latter unchanged. The second (step 3b),
symmetric orthogonalization [39], ensures that the continuum orbitals (now
expanded in a a linear combination of the continuum and atomic bases) are
orthogonal among themselves.

Deletion thresholds for each irreducible representation are provided by the
user for the symmetric orthogonalization in the namelist &continuum data:
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Table 5: Selected parameters in the &process control namelist in the input for
SCATCI INTEGRALS.

&process control

max ijrs size Maximum size (in MiB) of the auxiliary array
used during 2-electron integral transformation.
For distributed (MPI) calculation this value
represents memory per MPI task. This value
always has to be set by the user.

do two particle integrals Logical flag requesting calculation of 2-electron
integrals (useful for tuning of the continuum
basis) (default:.true.)

two p continuum Flag requesting calculation of 2-electron
integrals with two particles in the continuum.
(default:.false.)

mixed ints method Method to use for evaluation of the mixed
GTO/BTO integrals (see documentation)

max l legendre 1el Highest partial wave in the Legendre expansion
of the mixed GTO/BTO nuclear attraction
integrals

max l legendre 2el Highest partial wave in the Legendre expansion
of the mixed GTO/BTO two-electron integrals.

calc radial densities Logical flag requesting calculation of the radial
charge densities of the orbitals included
in the calculation (default: .false.)

scratch directory Path to the scratch directory. Only used
in case of mixed integrals. If not set the
auxiliary quantities will be kept in memory (default).

delta r1 Length in a0 of the elementary
Gauss-Legendre quadrature used for evaluation
of the mixed integrals (default: 0.25)
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Gram-Schmidt
orthogonal-
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target orbitals
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Figure 2: Workflow of the orbital orthogonalization. The steps 2 and 3 are only performed
if the basis includes, respectively, the corresponding pseudocontinuum atomic orbitals
(PCOs) and continuum orbitals (COs). The dashed arrows represent the workflow in the
case PCOs and/or COs are not included in the calculation.
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those continuum orbitals with eigenvalues of the overlap matrix smaller than
this threshold are deleted. The appropriate value for this threshold varies
depending on the type of continuum basis used and typically lies in the
range 10−7 to 10−9 for a pure GTO continuum basis. Lowering the deletion
threshold corresponds to decreasing the relative precision of the transformed
integrals and therefore increasing the risk of running into numerical linear
dependence problems when diagonalizing the inner-region Hamiltonian. In-
creasing the deletion threshold, on the other hand, means more continuum
functions are deleted from the basis, lowering the quality of the continuum
description. The numerical problems can be avoided (and the deletion thresh-
olds set to a value low enough ensuring no continuum orbitals are deleted) by
compiling and running SCATCI INTEGRALS in quadruple precision albeit
at the expense of a much increased compute time (see below for details). For
this reason quad precision calculations have only been performed using pure
GTO continuum in which case all integrals have analytic form. In calcula-
tions using either a mixed GTO+BTO or a pure BTO continuum the deletion
thresholds can be set to a much higher value (typically 10−5). The higher
value of the deletion threshold means that the numerical linear dependence
problems are essentially absent in this case (as expected for a B-spline basis)
thus removing the need to run the integral calculation in quad precision.

If a pseudocontinuum basis is included in the calculation, additional or-
thogonalization steps are required: this basis needs to be orthogonalized to
the target orbitals and among itself (step 2) before the continuum is orthog-
onalized to the joint target + pseudocontinuum basis (step 3). The deletion
threshold to be used for the symmetric orthogonalization of the pseudocon-
tinuum orbitals is provided in the namelist &pco data and is usually set to a
relatively high value of about 10−4; some pruning of the continuum orbitals
may also be necessary in this case to avoid problems with linear dependence.

3.1.6. Integrals evaluated by SCATCI INTEGRALS

The one-electron integrals are defined as:

〈a|Ô|b〉 =
∫

d3ra(r)Ôb(r), (26)

where Ô is a one-electron operator and a, b are either atomic or molecular
orbitals. SCATCI INTEGRALS generates by default the following types of
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1-electron integrals:

overlap: Ô = 1, (27)

kinetic energy: Ô = −∇2

2
+ L, (28)

nuclear attraction: Ô =

Nuclei
∑

k=1

− Zk

|r−Rk|
, (29)

multipole: Ô = Sl,m(r), l ≤ 2, (30)

1-electron Hamiltonian: Ô = −∇2

2
+ L+

Nuclei
∑

k=1

− Zk

|r−Rk|
, (31)

where L = 1
2
δ(r − a) d

dr
, the Bloch operator, is included only if both a and

b are continuum functions (the multielectronic form of this operator was
introduced in Eq. (10)). The two-electron (Coulomb) integrals are:

〈ab||bc〉 =
∫

d3ra(r1)b(r1)
1

|r1 − r2|
c(r2)d(r2). (32)

Depending on the particular combination of the functions a, b, c, d the inte-
gral will belong in one of six unique classes:

〈TT ||TT 〉, 〈TC||TT 〉, 〈TC||TC〉, 〈CC||TT 〉, 〈CC||CT 〉, 〈CC||CC〉,

where T and C stand for atomic/molecular orbitals representing the target
(or pseudocontinuum) and continuum respectively. The last two classes of
integrals (with at least three C-type functions) are only needed in calcula-
tions where two particles are in the continuum. Since UKRmol+ supports
only calculations with one particle in the continuum these integrals are not
generated by default. However, they can be generated setting the variable
two p continuum = .true. in the namelist &process control, see Table 5
(Section 3.1.3). In the current version this option is not available if the basis
contains BTOs but it will be implemented in the future.

In the case of the class 〈CC||TT 〉 and the one-electron integrals 〈C|C〉,
when on input the R-matrix radius is a> 0, the atomic integrals are computed
only over the interior of the R-matrix sphere with radius a. The other classes
of integrals are computed over all space unless the continuum functions are
all BTOs.
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GBTOlib [10] uses object oriented features from the Fortran 2003 stan-
dard and involves distributed and shared-memory parallelization to evaluate
the 1-electron and 2-electron integrals defined above. The program proceeds
by generating first the 1-electron and 2-electron integrals in the atomic basis
and then transforming them into the molecular basis. The whole calcula-
tion is performed in core (perhaps with exception of the mixed integrals, see
namelist &process control). Only the final array of the transformed molec-
ular integrals is saved to disk (along with the full basis set information). It
is the integrals in the molecular basis which are used by the other programs
in the UKRmol+ suite.

A very useful feature of the GBTOlib is that it can be compiled and run
in quad precision: this does not amount to a mere recompilation using a dif-
ferent kind parameter but to actual evaluation of the integrals with increased
relative precision (i.e. using more accurate versions of special functions and
higher-order quadratures which evaluate to near-full quad precision accu-
racy). This feature has been used extensively over the last couple of years
mostly in photoionization calculations requiring large GTO continuum bases,
see e.g. [40, 41] but also in calculations with molecular clusters [42, 43] and
biomolecules [44].

In the current release version of GBTOlib distributed evaluation is not al-
lowed when mixed GTO/BTO 2-electron integrals are required: only shared-
memory parallelism is available for this type of calculation. However, dis-
tributed evaluation of these integrals will be implemented in the next major
release of the code along with the option to save the atomic integrals to disk.

3.2. CONGEN

The program CONGEN generates the configuration state functions (CSF)
that will be used in building the N or N+1 electron wavefunctions. As such,
input to this program defines to a large extent the model that will be used in
the description of the scattering/photoionization process; it is in the input
required by CONGEN that the SE, SEP, CC and RMPS approximations are
most different. This can make the input of CONGEN complex to generate.

CONGEN does not require any input (data) files generated by other
programs. The only information needed from earlier parts of the calculation
is the number of target orbitals (specified by the parameter nob0, see Table 6)
belonging to each irreducible representation and the total number of orbitals
resulting from the orthogonalization of the continuum to the bound orbitals
(again, for each irreducible representation and specified by the parameter
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nob). This is provided by the user in the input, together with detailed
information specifying the construction of the CSF. When the projectile is a
positron, the number of orbitals needs to be doubled: the same orbitals that
can be occupied by the electrons will have a differnet index when they are
occupied by the positron.

Two namelists are required for CONGEN: &state and &wfngrp. Only
one occurrence of the former is allowed, but several instances of the second
one may be required to define all the CSFs to be generated.

Table 6: Selected parameters in the &state namelist in the input of CONGEN. The
storage size and memory allocation is indicated in words.

&state

iscat Indicates whether N, if set to 1 (no phase correction) or N+1
electron calculation, if set to 2 (phase correction) (default:0)
(see next section for details on the phase correction)

qntot Triplet that indicates the space-spin symmetry of CSFs
generated

nelect Total number of electrons
megul File unit for the output CSFs (default: 13).
nob Total number of orbitals for each irreducible representation
nob0 NUmber of target orbitals for each irreducible representation
nrefo Number of quintets in reforb

reforb Quintets that describe the reference determinant
lndo Controls assignment of temporary storage (default: 5000)
lcdo Controls assignment of temporary storage (default: 500)
nbmx Memory allocation for CSFs generation (default: 2000000)
iposit Lepton charge flag (default; 0, indicates electron; 1, positron)

CONGEN generates CSFs as differences from a reference configuration.
This configuration, specified using nrefo and reforb in the namelist &state,
should have the correct space-spin symmetry (given by qntot), but does not
need to be physically meaningful. However, use of a ‘sensible’ configuration
is recommended, as the number of differences that need to be stored will
be reduced. The iposit flag in the namelist &state indicates whether the
calculation is for a positron or electron in the continuum.

When CONGEN is used for the N+1 system, the CSFs to be generated
are those described by the two terms in Eq. (21). This means that there are
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two types of CSFs (a) those which correspond to the product of a target state
(whose symmetry must be given by the parameter qntar, see Table 7) and a
continuum orbital and (b) those L2 CSFS where all electrons occupy target
orbitals. There are some rules about the order in which these configurations
must be generated, namely: (1) all CSFs of the target plus continuum type
must precede the L2 ones and (2) all CSFs associated with a single target
symmetry, and hence value of qntar, must be grouped together and gener-
ated in a canonical order which is used in all parts of the calculation (eg for
the target only calculation). As the first step in the SCATCI algorithm [45]
is based on the use of Yoshimine’s prototype configurations [46], CONGEN
only actually generates CSFs of the first type (a) corresponding to the first
two continuum orbitals for each scattering symmetry. Note that it is possible
to treat CSFs of the form target times virtual orbital in same fashion as the
target times continuum orbitals, see Ref. [27] for a discussion of this.

Table 7: Selected parameters in the &wfngrp namelist in the input of CONGEN.

&wfngrp

qntar Space-spin symmetry of the target states being coupled to
nelecg Number of ’movable’ electrons
nrefog Number of reforg quintets needed to describe movable electrons
reforg Quintets which describe the movable electrons
ndprod Number of sets of orbitals into which the electrons will be

distributed
nelecp Number of electrons to be distributed into each set of orbitals
nshlp Number of pqn triplets needed to describe each set of orbitals
pqn Triplets that describe each set of orbitals in which the movable

electrons will be distributed
mshl For each pqn, the irreducible representation the described

orbitals belong to

The namelist &wfngrp contains the information that specifies the CSFs
to be built. The ‘movable’ electrons are those that are going to be promoted
from the reference configuration to generate the desired CSFs. If all the
CSFs to be generated contain the same set of core electrons (in other words,
the same set of doubly occupied orbitals), then the number of movable elec-
trons, specified by nelecg in the &wfngrp namelist, will be smaller than the
total number of electrons of the system. In that case, nreforg and reforg
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will specify the orbitals in the reference configuration from which electrons
are going to be promoted (if nelecg=nelect then reforg and reforb will
specify the same configuration). The CSFs themselves are specified using th
parameters nelecp, nshlp, pqn and mshl.

The details of the syntax for the qntot and qntar triplets, reforb and
reforg quintets as well as the pqn triplets can be found in the documenta-
tion of CONGEN. Special care should be exercised in the case of positron
scattering because of the doubling up of the orbital labels.

CONGEN runs serially and does not require linking to any external li-
braries for compilation. The program needs to be run for each space-spin
symmetry for which CSFs are required. It was initially written in Fortran 66
as part of the Alchemy I suite [47] and recently modernized to use Fortran 95
and 2003 features.

3.3. SCATCI and MPI-SCATCI

The main task performed by UKRmol-in is the construction and diago-
nalization of a Hamiltonian matrix in order to obtain the bound and (dis-
cretized) continuum wavefunctions describing the molecule + free (N+1)
electron system. This task uses an algorithm [45] especially designed to ef-
ficiently construct Hamiltonian matrices with the close-coupling structure of
Eq. (21); this is carried out by either SCATCI or MPI-SCATCI [48]. The
latter is a parallel implementation of a re-engineered version of the algorithm
employed by SCATCI that makes use of modern computer architectures and
has added functionality (see Section 6).

Table 8: Diagonalization modes and methods of SCATCI and MPI-SCATCI depending
on the number of requested eigenvectors and library used. Except for the Davidson di-
agonalization routine [49], all other depend on external libraries: LAPACK, Arpack [50],
ScaLAPACK [51], or SLEPc [52]. The classifications “few” and “many” is automatically
assigned using built-in percentages of requested eigenpairs and the size of the Hamiltonian.
The diagonalization method can also be specified manually, in the &cinorn namelist.

eigenvectors SCATCI/serial MPI-SCATCI parallel MPI-SCATCI

“few” Davidson Krylov-Shur (SLEPc)
“many” Arnoldi (Arpack) Krylov-Shur (SLEPc)

all dense (LAPACK) dense (ScaLAPACK)

In typical situations, SCATCI/MPI-SCATCI require two files on input:
the CSFs constructed by CONGEN and the molecular integrals file gener-
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ated by SCATCI INTEGRALS. These files must be generated specifying the
same number of target orbitals. The calculated eigenvectors and eigenvalues
(eigenpairs) are either written to a new file as a first “dataset”, or appended
to an already existing file as another “dataset”.

As with CONGEN, SCATCI/MPI-SCATCI is executed for each space-
spin symmetry independently and operates either in target or in scattering
mode. In the case of diagonalization of the scattering, N+1-electron Hamilto-
nian, SCATCI can either calculate the target, N-electron eigenstates needed
in Eq. (21) on its own, or read them from a file produced before by diago-
nalization of the target Hamiltonian (nftg in namelist &input). The former
method is sufficient for scattering calculations of integral cross sections. The
latter method is needed to ensure phase consistency [53] across all irreducible
representations of the (N+1)-electron system; the same target eigenstates are
supplied to all independent diagonalizations of the scattering Hamiltonians.
If this was not done, some of the independently on-the-fly re-calculated tar-
get eigenstates for two different scattering irreducible representations might
end up with different phases, introducing random relative signs to the ob-
tained coefficients cijk in Eq. (21) and causing errors in the calculation of
matrix elements between the (N+1)-electron eigenstates. This is important
in calculations of angular distributions in electron impact electronic exci-
tation [54, 55] and is crucial when using CDENPROP for photoionization
calculations (see below).

Depending on the setup of the calculation, SCATCI/MPI-SCATCI may
either produce all eigenpairs, or just the requested number of lowest-lying
ones. Target calculations usually only request a few low-lying states. Tra-
ditional R-matrix calculations require all solutions of the N+1 inner region
Hamiltonian; however, when the Hamiltonian is very large the partitioned
R-matrix approach provides an alternative which only requires a subset of
the solutions [56] (this approach, available in the UKRmol suite, will be
implemented for scattering calculations in a forthcoming release of UKR-
mol+). The number of eigenpairs to be calculated determines the choice of
diagonalization method, not all of which are available if the programs are
not compiled with all optional libraries; Table 8 summarizes the choices and
availability.

SCATCI/MPI-SCATCI require two namelists in its standard input, called
&input and &cinorn. The first one defines the construction of the Hamil-
tonian, while the second one specifies details of the diagonalization method
and how and where the produced eigenpairs will be stored. Tables 9 and 10
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Table 9: Selected members of the SCATCI and MPI-SCATCI &input namelist. Entries
labelled with an asterisk are only used in scattering runs. Detailed information is provided
in the program documentation.

&input

icitg Indicates target (= 0, default) or scattering (= 1), i.e.
with target contraction, run.

iexpc* Expand (= 1) continuum in scattering prototype CSFs
(default: 0).

idiag Hamiltonian evaluation flag (see documentation);
often 1 (default) for target, 2 for scattering.

nfti File unit with molecular integrals (default: 16).
nfte File unit for Hamiltonian output (default: 26).
megul File unit with CONGEN generated CSFs (default: 13).
ntgsym* Number of different target space-spin symmetries

included in the Hamiltonian construction
numtgt* Number of target eigenstates per ntgsym
mcont* M-value of continuum orbitals per target ntgsym
notgt* Number of continuum orbitals used per target ntgsym
nftg* File unit for input target eigenstates; if 0, not read

(default: 39)
ntgtf* For each target state used in CONGEN, index of the set

in nftg containing it (default: 0)
ntgts* For each target state used in CONGEN, sequence number

of the state within the ntgtf set

29



summarize the most important members of the two namelists.
When a target calculation is run, the namelist input is rather simple: in

&input one should make sure to indicate the correct unit for the CONGEN
output (using megul) and in &cinorn one should indicate how many states
(eigenpairs) of that particular space-spin symmetry are requested (nstat)
and which set they will be stored in (nciset). In the case of an N+1 calcu-
lation, the parameters in the &input namelist will specify how many target
states per space-spin symmetry (numtgt) and how many space-spin symme-
tries (ntgsym) are being used to build the wavefunctions; mcont indicates the
symmetry of the continuum orbitals each set of target states is coupled to
in order to generate eigenfunctions of the appropriate (N+1) symmetry and
notgt indicates how many of these orbitals there are.

MPI-SCATCI shares most serial capabilities with SCATCI when executed
in a single process, and also supports parallel execution based on MPI. In the
latter case the construction of the Hamiltonian matrix is distributed among
all processes and the diagonalization performed by the appropriate paral-
lelized SLEPc or ScaLAPACK subroutine. On top of that, MPI-SCATCI
allows concurrent diagonalization of many Hamiltonians in one run, which
is particularly advantageous when only matrix elements between the calcu-
lated eigenstates (possibly of different irreducible representations) are desired
rather than the states themselves. Concurrent in-core diagonalization then
avoids the need of writing the eigensolutions to disk and enables immediate
fast in-memory processing once all diagonalizations finish.

Table 10: Selected members of the SCATCI and MPI-SCATCI &cinorn namelist.

&cinorn

igh Force iterative (= 0 Davidson, =-1 Arpack) or dense (= 1)
diagonalization method.

nstat Number of eigenvectors to be calculated (default: 0 = all).
nftw File unit for output of eigenvectors (default: 25).
nciset Output dataset index in nftw (default: 1).
vecstore Indicates whether all coefficients of the expansion, Eq. (21),

are to be saved (=0, default) or only those that multiply
configurations of the type ’target state + continuum’ (=1).

To this end, MPI-SCATCI features some advanced wave function post-
processing capabilities which can be used as a simplified alternative to CDEN-
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Table 11: Members of MPI-SCATCI optional input namelist &outer interface.

&outer interface

write amp If .true., produce boundary amplitudes file (unit 21).
write dip If .true., produce transition dipoles file (unit 624).
write rmt If .true., produce RMT input file molecular data.
rmatr R-matrix radius, for evaluation of boundary amplitudes.
ntarg (See SWINTERF, Table 14.)
idtarg (See SWINTERF, Table 14.)
delta r (See RMT INTERFACE, Table 15.)
nfdm (See RMT INTERFACE, Table 15.)

PROP ALL, SWINTERF and RMT INTERFACE described below: it can
directly evaluate the permanent and transition dipole moments between the
eigenstates or produce the input for UKRmol-out. These additional stages
are controlled by an optional namelist &outer interface summarized in Ta-
ble 11. The outer interface built into MPI-SCATCI takes advantage of MPI
parallelization and carries out all matrix multiplications needed to evaluate
wave function properties and amplitudes in parallel, using the ScaLAPACK
subroutines. This also has the advantage of evenly distributing the memory
requirements, which might otherwise become insurmountable for the serial
codes.

3.4. DENPROP

The program DENPROP calculates the permanent and transition dipole
and quadropole moments between states of the target (N-electron system).
In order to do this, the program calculates density matrices. In addition, the
program can determine the spherical polarizability of the target molecule [33]
using the perturbative sum-over-states formula; this quantity can be used to
determine approximately how well polarization effects are being modelled in
the calculation [30, 31]. DENPROP produces as its main output a target
property file that is used by the interface programs. This file contains all the
permanent and transition moments as well as the energy of the target states
(read in from the output of SCATCI/MPI-SCATCI).

DENPROP requires as input the property integrals determined by SCATCI INTEGRALS,
the target CSFs generated by CONGEN and the wavefunctions obtained from
SCATCI or MPI-SCATCI, respectively. Further input to DENPROP is pro-

31



Table 12: Selected parameters in the DENPROP &input namelist.

&input

nftg File unit number for the output of SCATCI/MPI-SCATCI
(default: 25)

ntgt Number of different space-spin symmetries to be read in
from nftg

ntgtf Set number in unit nftg in which the eigenvectors for a
specific space-spin symmetry are found (default: 1,2,3, ...)

ntgs Sequence number, within a specific ntgtf, of the first
eigenvector to be used (default: 1 for all ntgtf)

ntgtl Sequence number, within a specific ntgtf, of the last
eigenvector to be used (default: 1 for all ntgtf)

nftsor File unit numbers of the CONGEN output files for each
space-spin symmetry

ipol Flag for the calculation of the polarizability (default: 1, calculate)
zlast Set to .true. to save CPU time (default: .false.)

vided via the namelist &input; the main parameters are given in Table 12.
This namelist provides information on which target states and of which sym-
metry the moments are to be determined for, as well as which intermediate
files contain the relevant input data.

The program CDENPROP ALL (described in he next section) can be
used instead of DENPROP, providing the same input. It is expected that, in
the medium term, CDENPROP will replace DENPROP, possibly with the
exception of very large target calculations for which the algorithms used by
DENPROP are more suitable.

3.5. CDENPROP and CDENPROP

The program CDENPROP constructs the 1-particle reduced density ma-
trix represented in the close-coupling basis of Eq. (21). For a concise notation
we rewrite Eq. (21) in the more compact form

Ψk =
∑

i

ckiΦi (33)

where Φi ∈ {AΦN
mηn,Φ

(N+1)
p }. The expressions AΦN

mηn and Φ
(N+1)
p indicate

the two types of terms used in Eq. (21). The 1-particle density matrix is
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then

ρij(xN+1) = (N + 1)

∫

ΦiΦ
∗
j d

3x1 . . . d
3xN (34)

and can be used to calculate the transition moment matrix M,

Mij =

∫

µρij d
3x , (35)

and finally the transition moments, i.e. elements of the multipole (dipole,µ,
quadrupole, etc.) operators, between the inner region wavefunctions,

Mkl = 〈Ψk|µ|Ψl〉 =
∑

kl

ckicljMij . (36)

When the coefficients for the bound (N +1)-electron system are supplied on
input (Ak(E) in Eq. (20)), CDENPROP can also evaluate the Dyson orbitals
(overlaps of neutral and ionic bound state wave functions)

Dij(xN+1) =
√
N + 1

∫

ΦN
i Ψ

N+1∗
j d3x1 . . .d

3xN (37)

and write them to disk in the Molden format. For a detailed description of
the code and algorithms used see [57].

The UKRmol+ suite contains two programs with similar functionality
that are based on CDENPROP code: CDENPROP itself and CDENPROP ALL.
The first one calculates transition dipole and quadrupole moments between a
chosen number of N+1-electron states belonging to two identical or distinct
space-spin symmetries. This is useful for photoionization, where transition
moments are usually calculated between the initial ground state of the neutral
molecule and states from only those symmetries coupled to it by the dipole
operator. Table 13 contains the most frequently used namelist parameters
for CDENPROP. The first of the two numbers assigned to the parameters
lucsf, lucivec, nstat and nciset correspond to the ground (“ket”) state,
while the second one corresponds to the final (“bra”) states. See also the
Section 5 a for detailed description of the photoionization calculations.

On the other hand, CDENPROP ALL calculates matrix elements for
transitions between all pairs of states in all symmetries provided, not lim-
ited to two of them. As such, it can act as an alternative to DENPROP,
when applied on target eigenstates. When applied on scattering eigenstates,
it may produce a massive amount of data, currently only needed by RMT
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Table 13: Selected parameters in the CDENPROP input namelist.

&deninp

luprop Input file unit with the molecular integrals (default: 17).
lutdip Input file unit with target properties (default: 24).
lutargci Input file unit with target eigenstates (default: 26).
lupropw Output file unit for moments (default: 624).
lucsf Two input file units containing ket and bra CSFs.
lucivec Two input file units containing ket and bra eigenstates.
nstat Numbers of ket and bra states to consider (0 = all).
nciset Datasets in lucivec to read states from.
numtgt Number of target states per space-spin symmetry as used

in SCATCI.

(see below). The input namelist for CDENPROP ALL is identical to that of
DENPROP, except that in the case of evaluation of (N+1)-electron proper-
ties, it also needs to contain the entry numtgt explained in Table 13.

3.6. Interfaces

The inner region wave functions obtained by UKRmol+, or their prop-
erties, can be used to provide input for other suites or programs. The in-
terfaces SWINTERF and RMT INTERFACE are responsible for extracting
useful data from the inner region solutions that are passed further.

Once the interfaces have run, the output files from the target and inner
region calculations can be deleted and further outer region/RMT calculations
can be run using the interfaces output.

3.6.1. SWINTERF

SWINTERF interfaces with UKRmol-out, the suite of outer region codes
that perform the R-matrix propagation to obtain K-matrices and, from these,
various scattering quantities: cross sections, eigenphase sums, resonance pa-
rameters, etc. It is also used by RMT INTERFACE (see the next section).

The information required by the program is: the target properties (gen-
erated by DENPROP and including the energies and permanent and tran-
sition moments), the raw boundary amplitudes (see Appendix A) produced
by SCATCI INTEGRALS and the inner region eigenpairs, generated by
SCATCI or MPI-SCATCI.
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The namelist &swintfin is the only one needed by the program. The
main parameters provided via this namelist are summarized in Table 14.

As is the case for the construction and diagonalization of the N+1 Hamil-
tonian, the outer region calculation is performed separately for each space-
spin symmetry of the N+1 system; this symmetry needs to be indicated on
input using mgvn and stot. The user should also indicate how many (ntarg)
and which (idtarg) target states are to be considered (for the definition of
the scattering channels) in the outer region: it is possible, and sometimes
desirable, to use a smaller number than those included in the inner region
calculation as this reduces the number of scattering channels and therefore
the computational cost of the outer region calculation. It is inadvisable,
however, to exclude energetically open states.

The radius of the R-matrix sphere (rmatr) needs to be provided too as
it is used later on to calculate the R-matrix elements following Eq. (18).
The user can also decide (using ismax) whether dipoles or both dipoles and
quadrupoles are retained for the expansion of the projectile-target interac-
tion potential in the outer region. In addition, if virtual orbitals are used
’as continuum’ in CONGEN (see Section 3.2) the number of these has to
be specified, for each target state, using the vector nvo. Finally, iposit
indicates whether the projectile is an electron or a positron.

SWINTERF produces two output files: one containing the channel data
and another containing the raw boundary amplitudes (see Appendix A) re-
quired for the construction of the R-matrix, and the coefficients of the cou-
pling potentials. We note that these two files also provide a convenient
medium for archiving the results of a calculation for use in possible future
runs.

3.6.2. RMT INTERFACE

The RMT INTERFACE prepares the molecular input file for the RMT
package [13]. RMT solves the time-dependent Schrödinger equation of the
molecule in a variable electric field, allowing for ionization of one electron into
the continuum. Like UKRmol+, RMT splits the configuration space into an
inner, fully correlated, region and an outer region where a one-electron chan-
nel expansion is used. The connection between these two regions is realized
by an overlap that still counts as the inner region. However, this overlap of
the two regions needs to be already free of bound orbitals, which means that
when preparing input for RMT the inner region (i.e. the R-matrix radius)
has to be somewhat larger than the smallest physical one typically used when
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Table 14: Selected parameters in the &swintfin namelist in the input of SWINTERF.

&swintfin

mgvn Symmetry (irreducible representation) of the scattering
wavefunction.

stot Spin multiplicity of the scattering wavefunction.
ntarg Number of target electronic states to be included in

the outer region calculation
idtarg Array specifying which ntarg target states to select
luamp Input file unit containing the raw boundary amplitudes

(default:22)
luci Input file unit containing the N+1 eigenpairs (default:25)
lutarg Input file unit containing the target data (default:24)
luchan Output file unit containing the channel information

(default: 10)
lurmt Output file unit for the R-matrix poles, boundary

(default: 21)
amplitudes and coefficients of the multipole potential

icform Format flag for channel data file, ’F’ for formatted, ’U’ for
unformatted (default)

irform Format flag for R-matrix data file, ’F’ for formatted, ’U’
for unformatted (default)

nvo Number of virtual orbitals used ’as continuum’ in CONGEN,
also used to skip target states.

rmatr R-matrix radius
ismax Maximum multipole retained in expansion of long range

potentials (default: 2)
iposit Controls the charge sign for asymptotic potential

interactions (=0, default, for electrons; =1 for positrons)
last coeff saved Index of the last CI coefficient of all eigenvector

saved by SCATCI/MPI-SCATCI.
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dealing with standard stationary scattering or photoionization. The continu-
ity of the inner and outer wave function is maintained using the amplitudes
wik(rj) of the inner-region eigenstates i in the outer region channel k; these
are similar to the boundary amplitudes defined in Eq. (19) but they are eval-
uated at several uniformly spaced radii rj still within the R-matrix sphere,
see Fig. 3. The number of these extra evaluation radii (nfdm in the namelist
&rmt interface inp) and their spacing (delta r) must be consistent with
the RMT setup. The parameter nfdm is related to the finite difference order
D used in the outer region of RMT and to the time propagation order Q as
nfdm = D(Q + 1). While D is a compile-time constant in RMT and set to
2 (resulting in a 5-point discretization scheme), the propagation order Q is
an input parameter to RMT. A typical value is Q = 8, which results in the
recommended nfdm = 18. The spacing between the evaluation radii needs to
be equal to the finite difference discretization of the RMT outer region, and
is usually in the 0.1 a0 range.

rmatr

delta r

123...
nfdm + 1

inner region

outer region

Figure 3: Parameters for finite-difference discretization of the inner wave function in
RMT. Each number j indicates a sphere of radius rj .The physical R-matrix radius (i.e.
fully containing the target orbitals) must be smaller than or equal to the radius 1.

RMT INTERFACE also correctly transforms boundary amplitudes be-
tween the UKRmol+ and RMT normalization conventions which differ by a
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factor of
√
2; RMT expects wik such that Eq. (18) becomes

Rij(a, E) =
1

2a

∑

k

wRMT
ik (a)wRMT

jk (a)

Ek −E
. (38)

Table 15: Parameters in the RMT INTERFACE input namelist &rmt interface inp.

&rmt interface inp

nfdm Number of in-sphere boundary evaluation radii...
delta r ... and spacing between them in atomic units.
lutarg Input file unit containing the target data (default: 24).
lunp1 Input file unit containing the (N+1)-electron

moments (default: 667).
n symmetries Number of &swintfin namelists to process.

The program RMT INTERFACE builds on SWINTERF, which is—under
the hood—automatically called once for every (N+1)-electron spin-symmetry
included in the calculation to obtain the channel information and the ampli-
tudes at all requested radii. The input file follows this need and must contains
enough copies of the SWINTERF input namelist &swintfin, one for each
space-spin symmetry required. Apart from these namelists, the input for
RMT INTERFACE contains only a short additional namelist &rmt interface inp,
which is expected at the beginning of the standard input (before all &swintfin
namelists) and whose parameters are summarized in Table 15.

The output of RMT INTERFACE is the binary stream filemolecular data

directly readable in RMT.

4. Scattering calculations

A typical workflow for the part of a scattering calculation using the
UKRmol-in programs together with the interface is illustrated in Fig. 4.

For SE and SEP calculations, the determination of the target properties
is straightforward and the only significant choice is that of the basis set. For
the inner region part of the calculation, the main choice is that of the virtual
orbitals to be used in the construction of the L2 functions (see Section 2). The
R-matrix radius will be given by the orbitals used and can be checked with
SCATCI INTEGRALS (using the option calc radial densities) and the
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molden file

scatci integrals

molecular integrals

congen

target CSFs

scatci

target states

congen

scattering CSFs

scatci

scattering states

denprop

target properties

swinterf

channel data

boundary amps.

1

2

3

4

5

6

7

+

UKRmol-out

Figure 4: Workflow for the inner region and interface parts of a scattering calculation. Red
indicates the molecular orbital (Molden) file produced by a compatible quantum chemistry
package, white are intermediate files, green are the final outputs. Programs in the orange
box need to be executed for all the required (target) space-spin symmetries and those in
the grey box for all (scattering) space-spin symmetries. Each program needs also its own
input namelist(s) not shown in the diagram. The numbers next to individual programs
indicate the typical execution order.
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choice of the type of continuum basis is linked to it and the scattering energies
to be investigated. Since scattering calculations are normally performed for
energies up to no more than few eV higher than the ionization threshold, the
energies to be covered are normally up to around 20 eV. This means that,
in general, for R-matrix radii smaller than 15 a0, GTOs only will suffice
(see, for example, [58, 59]). Use of BTOs only as well as mixed bases have
been tested for diatomic and triatomic targets [38, 60]. The choice of type
of continuum basis is independent of the scattering model being used. The
interface (SWINTERF) calculation is also straightforward, with the only
significant choice being whether to use only dipoles or include quadrupole
moments too in the expansion of the static multipole molecular potential.

For CC calculations, the choices in terms of describing the target are
several, and more difficult to make. The first choice is that of the orbitals
to be used: it is now customary to use State-Averaged CASSCF orbitals
generated by an external Quantum Chemistry code. An active space, and
the states to be averaged need to be specified in the input to those codes.
The former choice is usually limited, due to the requirement for balance
[24] between the N and N+1 electron wavefunctions, by the number of N+1
electron CSFs that a specific active space will generate; this is particularly
the case for molecules with large polarizabilites that require the use of several
types of L2 functions.

The states to be averaged will normally be a subset of those included in
the scattering calculation: usually, a few active spaces and state-averaging
schemes are tested and the excitation thresholds and the ground state energy
and dipole moment (if the molecule is polar) of the target are checked to
decide on the best choice.

We note that the symmetry of the target molecules is critical here: for
a molecule with no symmetry, the size of the Hamiltonian to diagonalize is
given by the total number of CSFs. For a molecule belonging to the D2h this
number will be split roughly equally between the 8 irreducible representations
leading to 8, much smaller, Hamiltonian blocks that need to be diagonalized
(for this reason, it can be convenient to study higher symmetry molecules as
models for more complex targets [61]).

For the inner region calculation, one needs to choose, once again, the
R-matrix radius and continuum basis to use: the same considerations as for
SE/SEP calculations apply here. Under certain conditions (e.g. large num-
ber of bound orbitals, high-quality continuum description involving BTOs,
large R-matrix radii) SCATCI INTEGRALS can become the computation-
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ally heaviest part of a calculation.
In terms of the target states to include in the construction of the N+1

electron wavefunctions, it is customary to use all those that are energetically
accessible in the scatting energy range of interest (if pseudostates are used,
other considerations, like a good description of polarization effects, should
be taken into account).

Increasing the number of target states does not contribute to the size of
the Hamiltonian as much as increasing the number of L2 function (by, for
example, choosing a bigger active space). This increase, however, will have
an effect in the outer region calculation since the number of channels is linked
to the number of target states.

4.1. UKRmol-out

A workflow for the part of a scattering calculation using the UKRmol-out
programs is illustrated in Fig. 5. Unlike the target and inner region part of
the calculations, where most programs are run in a predetermined sequence,
which UKRmol-out programs are run depends on the scattering data the
user requires.

The first step in most outer region calculations (the most significant ex-
ception is the study of bound states; see next section) is the propagation of
the R-matrix from the R-matrix boundary to an asymptotic region where, by
matching to asymptotic expressions [20], the K-matrices can be determined.
It is this step, performed by the program RSOLVE, that becomes resource
consuming when a large number of channels are included in the calculation.
For this reason, a parallelized version of it, MPI-RSOLVE is also available
(it requires identical input to the serial version). In addition, the highly effi-
cient, parallel program PFARM [19] can also be used for large calculations to
perform the propagation and generate the K-matrices; the suite provides an
interface program, PFARM INTERFACE, that ensures the inner region data
is in the correct format for input to PFARM. The namelist of RSOLVE/MPI-
RSOLVE is described in Table 16. For large calculations it may be desirable
to compute directly the T-matrices for the selected transitions of interest
rather than full K-matrices: additional namelist variables available only in
MPI-RSOLVE allow for this mode to be selected, see source code.

In order to perform the propagation, RSOLVE calls the propagator pack-
age RPROP [18]. Input for this package is provided via the namelist &bprop
and includes the propagation radius raf and a flag igail that determines
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channels & boundary amplitudes

rsolvetimedel(n) bound

resonance parameters

K-matrices

bound energies

tmatrx eigenp

T-matrices eigenphase sums

ixsecs reson

integral cross sections resonance parameters

Figure 5: Workflow for the outer region of a scattering calculation. The channel informa-
tion and boundary amplitudes produced by the inner region (Fig. 4) are used as input.
This whole workflow (or its subset if not all output data are needed) is repeated for all
space-spin symmetries relevant for the calculation. The color coding is as in Fig. 4.

42



Table 16: Selected namelist variables in the namelist &rslvin for RSOLVE.

&rslvin

mgvn Symmetry (irreducible representation) of scattering system
(as in SWINTERF)

stot Spin multiplicity of the scattering system (as in
SWINTERF)

nerang Number of subranges of scattering energies
nescat Number of input scattering energies in each subrange
einc(1,i ) Initial energy in subrange i
einc(2,i ) Energy increment (step) in subrange i
range ienut Units in which scattering energies are input; 1= Ryd

(default), 2= eV
luchan Input file unit containing the channel information

(default: 10)
lurmt Input file unit for the R-matrix poles, boundary amplitudes

and coefficients of the multipole potential (default: 21)
lukmt Output file unit for the K-matrices
icform Format flag for input channel data file, ’F’ for formatted,

’U’ for unformatted (default)
ikform Format flag for output K-matrix data file, ’F’ for formatted,

’U’ for unformatted (default)
irform Format flag for input R-matrix data file, ’F’ for formatted,

’U’ for unformatted (default)
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the type of asymptotic expansion used (0=Burke+Schey [62], 1=Gailitis [16],
2=Bessel/Coulomb functions; default is 1).

UKRmol-out contains a number of routines that use the K-matrices to
generate scattering data: TMATRX calculates T-matrices that are then used
to calculate integral cross sections using IXSECS. Cross section can be de-
termined for a set of chosen initial and final states. EIGENP calculates the
eigenphase sum that can then be fitted by RESON [63] to determine res-
onance positions and widths. Another way of determining the energy and
width of resonances is by fitting the largest eigenvalues of the time-delay
matrix. TIMEDEL [64] (and it’s parallel implementation TIMEDELn [65],
not distributed with the UKRmol+ suite, but available for download) can
either use existing K-matrices or call RSOLVE to calculate K-matrices for an
adaptive energy grid in order to calculate time-delays (an alternative version
of a couple of subroutines is provided with the UKRmol-out suite for use
with TIMEDELn for this purpose). Finally, for ionic targets the K-matrices
generated can be fed into MCQD [66] which computes (complex) multichan-
nel quantum defects at each threshold in the calculation. Use BOUND to
calculate bound states of the N+1 electron system is discussed below.

The CMake files provided will compile each program individually but
will also generate an executable, called OUTER, that includes the most fre-
quently run routines: the interface SWINTERF, RSOLVE, EIGENP, TMA-
TRX, IXSEC and RSOLVE.

It is, of course, possible to use the K- or T-matrices obtained in a UKR-
mol calculation as input for other programs. One that is regularly used is
POLYDCS [67] that enables the calculation of (electronically) elastic rota-
tionally resolved differential and integral cross sections. Use of this code also
allows for the inclusion of a Born-approximation based correction [68] to the
integral elastic cross sections, to account for the higher partial waves not
included in the R-matrix calculation.

Elastic integral and differential (using an external program) cross sections
can be calculated very accurately, although polar molecules present more
of a problem [69, 70]. The suite is able to model electronic excitation for
small and mid-size molecules very accurately as well as describe their core-
excited resonances [71, 72]. Among the largest targets studied (in terms of
number of atoms in the system) are the molecular clusters pyridine-(H2O)5
and thymine-(H2O)5 for which SE and SEP calculations have been performed
[42, 43].
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4.2. Bound states

While UKRmol+ is primarily a scattering code it also has the capability
to find bound states. This can be useful for photoionization calculations (see
next section) which require (bound) target wavefunctions computed using the
same model as the ionized wavefunctions. However, given that one is most
often interested in computing the photoionization cross sections for compact,
deeply bound (ground) states, it is usually not necessary to consider the
outer region contribution to their wavefunction. Conversely, highly-excited
states of molecules become increasingly diffuse and Rydberg-like. Such states
can be much more easily characterised using a negative energy scattering
procedure than by standard quantum chemistry methods; for example Little
and Tennyson computed potential energy curves of N2 up to states with
n = 10 when standard electronic structure procedures struggled to give full
results even for the n = 4 states [73].

The original implementation of bound state finding, in outer region mod-
ule BOUND, was by Sarpal et al. [74] which detected bound states using the
method of Seaton [75]. This implementation has been improved by both the
use of a quantum-defect-based search grid [76] and improved computation
of outer-region wavefunctions [5] using a Runge-Kutta-Nystrom procedure
[77]. The need to compute wavefunctions in the outer region makes bound
state finding numerically less stable than standard scattering calculations.
For this reason it is recommended that the range of the R-matrix propa-
gation is restricted to values below 50 a0; a = 30 a0 is typical whereas in
calculations aimed at determining cross sections and resonance parameters
it is more usual to propagate out to 100 a0, sometimes further.

There is one further use for bound state finding which is important for
positron collisions. Positrons can annihilate with target electrons giving an
effective annihilation parameter Zeff which can be determined experimentally.
Bound state wavefunctions are required for the computation of Zeff which was
done in the UKRmol outer region module ZEFF, see Zhang et al. [5, 34] for
further details (ZEFF will be implemented in the suite in a forthcoming
release).

5. Photoionization calculations

The capacity to calculate single photon ionization/recombination was
added to the UKRmol suite [11] since the last publication detailing its code
base in 2012 [8] and was used, via the Quantemol implementation [78], for a
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number of photodetachment studies [79]. The common need to treat higher
photoelectron energies in photoionization/recombination applications pro-
vided one of the motivations for the development of UKRmol+. The first
application of UKRmol+ to photoionization was for NO2 [80], where par-
allelization and the use of quad-precision allowed the photoelectron energy
range to be doubled. In a following study [81] this calculation was extended
to many different molecular geometries, and was then one of the key compo-
nents used to model time-resolved laser controlled non-adiabatic dynamics in
the vicinity of a conical intersection [82]. The UKRmol CO2 photoionization
calculation [11, 83] were revisited, and extended to higher energies and the
inclusion of many more target states, again made possible by parallelization
and the use of quad-precision in UKRmol+; the CO2 recombination dipole
matrix elements and Dyson orbitals (produced by CDENPROP) were then
used to model the recombination step in high harmonic generation studies
[84, 85]. Finally, recombination dipoles and Dyson orbitals for substituted
benzenes were calculated for use in a study on the role of tunnel ionizaton
in high harmonic generation [86]. Tunnel ionization is sensitive to the ex-
ponential tail of the bound state wave function and the inclusion of diffuse
continuum orbitals in the description of the Dyson orbitals was key for an
accurate representation of this exponential decay.

One-photon photoionization (in the perturbative regime) requires the cal-
culation of transition dipole matrix elements between an initial N+1 electron
bound state, ΨN+1

i , and a final continuum state, Ψ
(−)
f (kf ; Ω), with photoelec-

tron momentum kf , and resultant ion in state f ,

dfi(kf ; Ω) = 〈Ψ(−)
f (kf ; Ω)|d|ΨN+1

i 〉. (39)

where the dipole operator, d, has 3 components, dp, corresponding to the
possible polarizations of the photon. The UKRmol+ suite uses a molecular
frame angular momentum basis for the continuum electron, so Eq. (39) has
to be rewritten in the form

dfi(kf ; Ω) =
∑

l

i−leiσlY l(k̂f)D
l(Ω)dfl,i(E)D

1†(Ω), (40)

where the molecular frame partial wave dipoles (for a photoelectron with
energy E), dfl,i(E), have components

dp,flm,i(E) =
∑

k

A
(−)∗
flm,k(E)〈ψN+1

k |dp|ΨN+1
i 〉, (41)
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and we have made explicit the representation of the final scattering state
in terms of the inner region wave functions ψN+1

k and the expansion coef-

ficients of the scattering wave function in the inner region basis A
(−)
flm,k(E)

(see Eqs (20) and (21)). σl is the Coulomb phase, and Y l(k̂f ) is a vector of

spherical harmonics Yl,m(k̂f). D
l(Ω) are the Wigner rotation matrices and

Ω = α, β, γ are the Euler angles that relate lab and molecular frame (our con-
ventions for these follow Brink and Satchler [87]) and hence the orientation
of the molecule.

A typical workflow for photoionization is illustrated in Fig. 6. Two
programs belonging to the UKRmol+ suite are included: RSOLVE and
DIPELM. The former contains routines to determine the A

(−)
flm,k(E) for each

photoelectron energy E, and then use the transition dipoles from CDEN-
PROP, dki = 〈ψN+1

k |d|ΨN+1
i 〉 to construct the partial wave photoionization

dipoles of Eq. (41) for input to DIPELM. In the current implementation we
consider the initial state to be fully contained within the R-matrix sphere.
This is a good approximation for the ground and low-lying excited states of
many cations.

The additional variables in the namelist input of RSOLVE needed for
photoionization calculations are described in Table 17.

Table 17: Additional namelist variables for RSOLVE to be included in the namelist
&rslvin.

&rslvin

calcak Number of final (ionic) states, for which to calculate scattering
wavefunction coefficients (default: 0).

calcdip Controls calculation of partial wave photoionization dipoles.
calcdip(1): Calculate dipoles (= 1) or not (= 0, default).
calcdip(2): The number of parent (neutral) states.
calcdip(3): The number of final (ionic) states to consider.

DIPELM calculates photoionization cross sections and asymmetry param-
eters. These can be resolved for the final ionic state, molecular orientation,
and photoelectron direction. For photoionization from oriented molecules,
the transformation from the angular momentum basis to the momentum
basis (see Eq. (40)) needs to be performed. The photoelectron angular dis-
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Figure 6: Workflow for a photoionization calculation. Red indicates the molecular orbital
(Molden) file produced by a compatible quantum chemistry package, white are intermedi-
ate files, green are the final outputs. Programs in the orange box need to be executed for
all required (residual ion) spin-symmetries, while programs in the pink box need to be run
for the initial neutral state and all (final) spin-symmetries coupled to it by a component of
the dipole operator. Programs in the blue box are run for each of the final spin-symmetries.
Each program also needs its own namelist input not shown in the diagram. The numbers
next to individual programs indicate the typical execution order.
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tribution is given by:

dσfi
dkf

(Ω) = C(ω)|dfi(kf ; Ω) · ǫ̂|2. (42)

where C(ω) is a photon energy dependent coefficient whose precise form
depends on the gauge of the dipole operator (the current implementation uses
the length gauge, C(ω) = 4π2αa20ω, where α is the fine structure constant
and a0 the Bohr radius), and ǫ̂ is the polarization vector of the ionizing light.

For randomly oriented molecules, the energy dependent partial photoion-
ization cross sections σfi(E) and asymmetry parameters (β1(E) and β2(E))
can be obtained from the partial wave dipoles of Eq. (41) (see, for example
[88]). The photoelectron angular distribution is then:

dσfi
dθ

(E) =
σfi(E)

4π
[1 + pβ1(E) sin(θ) + β2(E) cos(θ)], (43)

where p = 0 for linear polarization and p = ±1 for circular polarization. θ
is the angle between the photoelectron emission direction and the photon
polarization(/propagation) direction in the case of linear(/circular) polariza-
tion. We note that β1(E) (also known as the dichroic parameter) only exists
for the case of the photoionization of chiral molecules by circularly polarized
light.

The default outputs of DIPELM are the partial photoionization cross
sections and asymmetry parameters of Eq. (43). Optionally, DIPELM also
outputs the molecular (obtained by setting Ω = 0) and lab frame dipoles and
photoelectron angular distributions of Eq. (40) and Eq. (42).

The namelists controlling DIPELM are described in Table 18. If only the
default output is required (i.e. orientationally averaged cross sections and
asymmetry parameters) then only the namelist &dipelminp is needed.

5.1. DIPOLE TOOLS

This program allows to post-process the partial wave dipoles, bound state
dipoles (for the initial and the final states), Dyson orbitals and package all
this data in a formatted file for use in other programs. This program was
used to generate data for the calculations in Refs. [89] and [84].

The main functionality of this program lies in transforming the partial
wave dipoles into momentum space in the molecular frame using the equation:

d
q
fi(kf) =

∑

l,m

Xl,m(k̂f )dflm,i(E)ı
−leıσl , (44)
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Table 18: Selected parameters in the DIPELM input namelists: &dipelminp specifies the
input file data, &diptrans controls the calculation of oriented photoionization observ-
ables and &smooth allows for smoothing of the partial wave dipoles to remove narrow
pseudoresonances (this will also remove narrow real resonances).

&dipelminp

lu pw dipoles File unit(s) containing partial wave dipoles.
nset pw dipoles Set number(s) containing partial wave dipoles in

lu pw dipoles.

&diptrans

ngrdproj No. of angular grid points (electron emission
direction (Nθ, Nφ)).

ngrdalign No. of angular grid points (orientation (Nα, Nβ, Nγ)).
scat angle limits Grid limits for photoelectron emission

direction (θmin, φmin, θmax, φmax); default =
(0,0,180,360)

euler angle limits Grid limits for molecular orientation.
(αmin, βmin, γmin, αmax, βmax, γmax); default =
(0,0,0,360,180,360)

&smooth

ismooth Controls various smoothing options.
0 = No smoothing.
1 = Gaussian smoothing (no interpolation).
2 = Gaussian smoothing (with interpolation).

eleft Photoelectron energy to start smoothing from.
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where i and f are indices of the initial and the final states, q are spherical
components of the photon polarization in the molecular frame, see Eq (41),
E is the total energy, σl is the Coulomb phase and kf is the final momentum
of the photoelectron. In input for DIPOLE TOOLS the user specifies the
initial and the final states, the angular grid of photoelectron directions and
the range of photoelectron energies.

The angular grid can be one of three types:

• Lebedev grid of order n.

• Regular angular grid of n points lying in one of zy, zx, xy planes.

• Custom grid of n Cartesian points.

The program also processes the Dyson orbitals generated by CDEN-
PROP: it evaluates (a) the signs of the Dyson orbitals for the given radius
and angular grid and optionally (b) the orbital amplitudes in one of the
chosen planes (xy, zy, zx).

Finally, the program allows phase corrections to be applied to the initial
(bound) states: this affects the phases of the final set of photoelectron dipoles,
Dyson orbitals and the initial-state transition dipoles.

The input data for the program consists of

• Partial wave dipole files for each irreducible representation dipole-coupled
to the initial state as produced by UKRmol-out (RSOLVE).

• Dyson orbitals saved in the UKRmol+ format as output by CDEN-
PROP (typically dyson orbitals.ukrmolp).

• Dyson orbitals saved in the CDENPROP format (typically fort.123 ).

• Property file for the final (ionic) states as produced by DENPROP
(typically fort.24 ).

• Property file for the initial (bound) states as produced by CDENPROP
(typically fort.667 ).

The program requires three namelists on input:

• &dipelminp: controls the input of the partial wave dipoles and is the
same as the one required by DIPELM, see Table 18.

51



• &input: controls the input of the Dyson orbital files, property files,
the selection of the initial and final states, phase correction factors for
the bound states, the photoelectron energy grid and the precise format
of the output data. The numerous but straightforward parameters are
described in the source file dipole tools.f90.

• &anggrid: specifies one of the three angular grids described above. The
input parameters are described in the source file dipole tools.f90.

5.2. PHASE MATCH and PHASE MATCH ORBITALS

These programs are not part of the standard workflow of the scattering
or photoionization calculation. Instead, they have been developed as a tool
that can enable phase-matching of the partial wave photoionization matrix
elements, see Eq. (44), calculated for different geometries of the molecule.
There are two arbitrary phases that can vary randomly with the molecu-
lar geometry that manifest themselves in the partial wave photoionization
amplitudes:

1. Phase of the final (ionic) state(s) of the molecule.

2. Phase of the initial (neutral) state of the molecule.

When both of these phases are fixed, the photoionization amplitudes are a
smooth function of geometry and can be used in various applications, e.g.
in time-resolved photoelectron spectroscopy studies of ultrafast nuclear dy-
namics [89]. A concrete example of using these programs can be found in
[89].

The program PHASE MATCH can be used to fix the phase of the final
states by calculating the overlap (relative phase) between the final state wave-
functions of different geometries. The namelist &input contains all the input
parameters required and is described in Table 19. The program requires the
output of the target calculations (molecular integrals file, the CSFs file, the
CI vectors file – i.e. unit nftw defined in Table 10 containing the eigenvec-
tors) calculated for each geometry and supplied in the order in which the
phase-matching will be done. It is recommended that the order in which
these files are listed corresponds to the nearest-neighbour geometries. This
choice typically maximises the reliability of the phase-matching process.

The program makes use of GBTOlib to evaluate the overlap integrals
between the molecular orbitals from the neighbouring geometries. This over-
lap matrix is then used, together with the Slater rules for non-orthogonal
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Table 19: Namelist variables for the program PHASE MATCH.

&input

n geom Number of geometries.
moints List of the n geom file names of the molecular integral

files produced by SCATCI INTEGRALS.
lucivec List of the n geom unit numbers containing the CI

vectors in the format produced by SCATCI.
nciset List of the n geom set numbers on lucivec

corresponding to sets of CI vectors to match.
nciset List of the n geom unit numbers corresponding

to the CSF files produced by CONGEN.
energies file Name of the file where the energies of the

phase-matched states will be saved.
replace with phase if set to .true. the phase-matched CI vectors will
corrected vectors replace the original eigenvectors saved on lucivec

orbital sets [90, p. 140-141], to calculate overlap integrals between the mul-
ticonfigurational wavefunctions representing the final states. The sign of the
overlap is used to phase correct the wavefunction for the geometry currently
processed. Optionally, see Table 19, the phase-matched CI vectors can be
saved back to disk replacing the original set of CI vectors. It is highly rec-
ommended that the user carefully inspects the generated file (named using
the variable energies file in the namelist) which lists the energies of the
phase-matched states: smooth energy curves for the states whose phases are
required signifies that no mismatch has occurred.

The program PHASE MATCH ORBITALS can be used to phase-match
orbitals from different geometries. This program has been used to phase-
match the Dyson orbitals (i.e. single particle orbitals obtained calculating the
overlap integrals between the initial (N+1)-electron and the final N-electron
wavefunctions) generated by CDENPROP from photoionization calculations
which are using the phase-consistent final state wavefunctions obtained by
PHASE MATCH.

The input for PHASE MATCH ORBITALS is straightforward and is
summarized in Table 20. The program operates similarly to PHASE MATCH
by calculating overlap integrals between the orbitals from neighbouring ge-
ometries saved on separate integral files produced by SCATCI INTEGRALS.
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However, unlike PHASE MATCH, the program by default does not perform
automatic matching of the orbitals from the neighbouring geometries: in-
stead the user provides, via the namelist &input, a list of orbitals for each
geometry which will be compared directly against the set from the previ-
ous geometry. The reason for this set-up is that in case of Dyson orbitals
their norm can vary from geometry to geometry which could potentially lead
to a mismatch of orbitals since the (optional) matching orbital is found as
the one with the largest magnitude of the overlap integral. A sign change
of the overlap of the Dyson orbitals from two neighbouring geometries can
be used to phase-correct the corresponding initial neutral state (if the ionic
states have been phase-matched before). The output of the program is the
list of phase-correction factors for each orbital and geometry. The orbitals
themselves are not modified.

Table 20: Namelist variables for the program PHASE MATCH ORBITALS. The
linear arrays orbital num and orbital sym emulate 2D arrays with dimensions
(n orbitals to match,n geom).

&input

n geom Number of geometries
n orbitals to match Number of orbitals to be matched.
moints List of n geom file names of the molecular integral

files produced by SCATCI INTEGRALS.
orbital num Linear array containing indices, for each geometry,

of the orbitals selected for phase-matching.
orbital sym Linear array containing the symmetries,

for each geometry, of the orbitals indicated by
orbital num.

find matching orbitals Selects automatic matching of orbitals from
the neighbouring geometries, see text.

6. Producing input for R-matrix with time (RMT) calculations

The RMT (R-matrix with time) code [13] solves the time-dependent
Schrödinger equation to describe molecules in intense, ultrashort, arbitrarily-
polarized laser pulses. It requires the following data from UKRmol+:
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• elements of the dipole operator between all pairs of inner region, (N+1)-
electron states (produced by CDENPROP ALL),

• elements of the dipole operator, as produced by DENPROP, between
all pairs of final (N-electron) states,

• energies of both the N+1-electron and N-electron states (produced by
SCATCI/MPI-SCATCI),

• the list of outer region channels and coefficients for reconstruction of
the long-range potentials that couple the channels (produced by SWIN-
TERF; see Appendix A in [13] for a detailed description of these),

• the (boundary) amplitudes wik(rj) of the inner eigenstate wave func-
tions at several radii smaller than and equal to the radius of the R-
matrix sphere (produced by SWINTERF) for maintaining the continu-
ity between inner and outer region

and some other auxiliary data computed directly by the RMT INTERFACE
program itself. In order to generate the RMT data, one must perform a
“target” run, where eigenstates and properties of the ionized (N-electron)
molecule are evaluated, and a “scattering” run, where similar data are ob-
tained for the neutral (N+1-electron) system. As discussed in Section 3.6.2
the R-matrix radius needs to be larger than in similar scattering/photoionization
calculations.

The two alternative workflows for generating RMT data are illustrated in
the diagrams in Figs. 7 and 8. The first of the two methods allows greater con-
trol over input parameters by exposing the full SWINTERF input namelists
to the user for each scattering symmetry. The other method, on the other
hand, has the advantage of not needing to write out the inner region eigen-
states and their properties to disk, which can save considerable storage space
and speed up the full task. Nevertheless, the resulting file molecular data

tends to be large even for modest physical systems, so to achieve efficient
writing even in distributed mode MPI-SCATCI uses MPI-IO facilities, where
each process writes its own part of the distributed data directly to the proper
location in the output file.

In the alternative method shown in Fig. 8, MPI-SCATCI is executed just
twice: once for all ionic, N-electron, space-spin symmetries and once for all
neutral, N+1-electron, space-spin symmetries. The input for each of these
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Figure 7: Workflow for production of the RMT input file. Red indicates the molecular
orbital (Molden) file produced by a compatible quantum chemistry package, white are
intermediate files, green is the output file needed for input to RMT. Programs in the
orange box need to be executed for all the required (target) space-spin symmetries and
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numbers next to individual programs indicate the typical execution order.
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runs consists of directly concatenated inputs like those used for the corre-
sponding SCATCI executions in Fig. 7, without any changes. Attention needs
to be paid, though, to the numbering of the scratch file units, so that differ-
ent irreducible representations data are not written to the same ones. In the
“scattering” (neutral) calculation, the additional namelist &outer interface

is required, as explained earlier, to provide RMT-related inputs (see Tab. 11).
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RMT datadenprop
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Figure 8: Alternative workflow for production of the RMT input file using the outer
interface built into MPI-SCATCI. The colour-coding and numbering are as in Fig. 7.

7. Test suite

A test suite is provided with the UKRmol+ release. It contains:

• an extensive set of electron scattering tests that cover all point groups
for which calculations can be run

• a photoionization test for H2

• an H2 run that generates input for RMT.

The electron scattering calculations can be run for all or each point group
and from beginning to end or in stages: target, inner region and outer re-
gion. Both HF and CAS target model inputs are provided as well as SEP
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and CC scattering inputs. In addition, when possible, the target calculations
are performed for different orientations of the molecule with respect to the
coordinate frame. All tests can be run using Molden files provided; the scat-
tering tests use GTO-only continuum basis sets whereas the photoionization
and RMT ones use BTOs. The tests can either be run serially or as a par-
allel job (two processes). In the latter case, SCATCI INTEGRALS is run
in parallel, MPI-SCATCI is used instead of SCATCI and MPI-RSOLVE, an
MPI-enabled version of RSOLVE is used in the outer region.

Details of how to use the test suite are provided with the release. Exe-
cuting the suite will generate a set of output files that summarize the main
data produced. A set of benchmark outputs is provided for comparison; it
contains eigenvalues of the Hamiltonian for the N and N+1 electron systems
as well as cross sections and eigenphase sums for each irreducible represen-
tation. The expected accuracy for the different data is also explained in the
release.

8. Results

Here we present some illustrative results of both scattering and photoion-
ization calculations. For RMT results, we refer the reader to Brown et al. [13].

8.1. Electronic excitation and core-excited resonances: thiophene

Cross sections for electronic excitation have been calculated with the
UKRmol/UKRmol+ for a variety of small and medium-sized molecules: hardly
any other software is available for this purpose in the low-energy (a few eV
up to ionization threshold) range. Figure 9 shows an example for thiophene,
C4H4S (details of the calculation can be found in [72]): the cross section for
excitation into the second excited state of the target (13A1) for a projectile
scattering angle of 90◦ (these angle-resolved cross sections are normally called
excitation functions). The agreement with results from electron energy loss
(EELS) measurements is excellent [72]. We note that the experimental cross
sections were not normalized to calculated values. The figure also shows that
two core-excited resonances (of symmetry 2B1 and 2A2) are visible in both
cross sections: the shift to higher energies of the calculated resonances is a
well known effect due to an incomplete description of the polarization effects
[72].

This calculations was performed using MPI-SCATCI on 40 nodes (960
cores) as the Hamiltonians for each symmetry were built from around 250 000
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Figure 9: Cross sections for excitation into the second triplet state of thiophene for an
electron scattering angle of 90◦. The EEL spectrum was measured for an energy loss of
4.61 eV [72] and. Two core-excited resonances are clearly visible as peaks below 10 eV in
both results.

configurations each. The option to store only the continuum coefficients was
used (vecstore = 1).

8.2. Inclusion of BTOs in the continuum: electron scattering from BeH

To illustrate the capability of the codes to represent very diffuse target
electronic states we show in Fig. 10 cross sections for electron scattering from
BeH. The calculations and the results are described in detail in [38].

The calculations used R-matrix radius of 35 a0 (the largest used so far
in any published molecular R-matrix calculation) and partial waves for the
continuum up to l = 6. The continuum was represented using the mixed
GTO/BTO scheme as shown in Fig. 1 with the B-spline basis starting at
radius 3.5 a0. The total number of atomic functions in the basis was 1277.
The calculation included 50 electronic states of the target reaching up to
approx. 12 eV above the ground state: this led to construction of up to 669
channels per symmetry in the outer region. The dimension of the inner region
Hamilonians was approx. 45000 per symmetry. In order to speed-up the outer
region calculation for a fine grid of 1000 energies we used MPI RSOLVE, the
parallel version of the RSOLVE outer region propagator: employing 60 cores
the propagation took approximately 1 hour per symmetry.
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Figure 10: Cross sections for electron scattering from BeH (doublet ground state). Left
panel: elastic cross sections. Right panel: cross sections for electron impact electronic
excitation of the ground electronic state. No Born correction for dipolar scattering was
added.

8.3. Positron scattering from H2: use of pseudostates

A number of positron-molecule collision calculations have been performed
using the UKRmol codes, e.g. [91, 92], without inclusion of a pseudocontin-
uum basis set and pseudostates. However, polarisation effects are even more
important in positron-molecule collisions than they are in electron-molecule
collisions. To address this issue, studies on positron-H2 [5] and positron-
acetylene [34] used pseudostate expansions to improve the treatment of po-
larisation effects which are often referred to as virtual positronium formation.
These studies particularly focused on the calculation of the positron anni-
hilation cross section as characterised by the parameter Zeff , the effective
number of electrons available for positron annihilation. Use of pseudostates
was found to greatly increase the computed values for Zeff , but it was found
that convergence could only be achieved using pseudostate expansions which
go to high l; in practice extrapolation formulae were used to achieve conver-
gence.

As an illustration, Figure 11 shows the total cross section for positron-H2

calculated with the UKRmol+ suite. The models used is that of Zhang et
al. [5]. The results obtained with the new suite are, as expected, similar to
those of the older suite. It is also clear from the figure that increasing the
number of angular momenta used for the pseudocontinuum orbitals from 3 to
6 (and also increasing the number of pseudostates from 15 to 31) improves the
description of polarization effects, making the cross section larger and closer
to the experimental values. The efficiency improvements implemented in the

60



0 1 2 3 4 5 6 7 8 9 10
Scattering Energy ( eV )

0

1

2

3

4

5

C
ro

ss
-S

ec
tio

n 
( 

Å2  )
UKRMol+ (spdfgh)
UKRMol+ (spd)
Zecca et al (2009)
Hoffman et al (1982)

Figure 11: Total cross sections for positron-H2 collisions. Calculations including pseu-
docontinuum orbitals with angular momenta up to 2 (’spd’) and up to 5 (’spdfgh’) are
compared with experimental results [93, 94].

suite (in particular MPI-SCATCI) will enable both electron and positron
calculations using pseudostates for larger targets: this will be particularly
useful for biological molecules that tend to have big polarizabilities.

8.4. Photoionization of benzene

The recently implemented capability of the UKRmol+ suite to generate
photoionization observables, Dyson orbitals and partial wave dipoles has en-
abled several applications, see e.g. [84, 89]. Most of these applications used
high quality R-matrix data for smaller polyatomic molecules and photon en-
ergies up to 100 eV. Nevertheless, the suite is capable of generating data for
larger molecules too [86] as we demonstrate below in Fig. 12 for the case of
photoionization of benzene.

These calculations were carried out using the simple HF (i.e. Static-
Exchange) approximation, the cc-pVDZ atomic GTO basis set and used
20 virtual orbitals in the L2 expansion, see Section 2.3. The purpose of the
calculations is not to present accurate observables but to illustrate the flexi-
bility of the suite in representing the continuum and to provide an elementary
guidance to the user on the current capability of the suite in representing the

61



continuum. The size of the molecule and the wide range of photon energies
typically used in experiments presents a challenge for accurate description of
the continuum. Here we compare the results of calculations that used three
different choices of the continuum basis:

• GTO-only continuum and integrals calculated in double precision (dele-
tion thresholds 10−7, see Table 3).

• GTO-only continuum and integrals calculated in quad precision (dele-
tion thresholds 10−14, i.e. no continuum orbitals removed from the
basis).

• Mixed GTO/BTO continuum (double precision) with B-spline basis
starting at r = 3.5 a0 and two choices of the parameters
max l legendre 1el and max l legendre 2el, see Table 5.

In all cases listed above the calculations used R-matrix radius 13 a0 and max-
imum continuum angular momentum lmax = 6. We have intentionally chosen
a demanding example from the point of view of the size of the molecule and
the corresponding mixed integral evaluation. Nevertheless, all the integral
calculations presented were carried out using a single MPI task on a 20-core
node equipped with 256 GB memory.

Figure 12 shows the photoionization cross sections and asymmetry pa-
rameters for the first two ionic (final) states of benzene (2E1g and 2E2g). As
expected the double precision GTO-only continuum performs the worst. It
starts to develop unphysical oscillations in the results at approximately 25 eV
and breaks down completely at around 50 eV. In the quad precision GTO-
only continuum the basis is reliable up to approximately 50 eV, i.e. twice
that energy. However, the continuum GTO basis set used was optimized
for use in scattering from a neutral target rather than in photoionization
calculations and therefore the performance of this calculation could be im-
proved employing a GTO continuum basis optimized using NUMCBAS and
GTOBAS for photoionization calculations.

The quality of the mixed GTO/BTO continuum basis set is much higher,
as is apparent from the asymmetry parameter for the 2E1g state which is
smooth throughout the whole energy range, showing that the continuum basis
accurately represents the highly oscillatory character of the scattering wave-
function. However, all the calculations at energies above approximately 50 eV
are not fully converged with respect to the continuum angular momentum.
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Figure 12: Cross sections (on log-scale) and β asymmetry parameters (angular distribu-
tions) for photoionization of benzene into the two lowest-lying states (2E1g and 2E2g) as
calculated using GTO-only continua (lmax = 6, double and quad precision) and mixed
GTO/BTO continua (lmax = 6 and two values of the maximum angular momentum used
in the evaluation of the mixed Coulomb integrals: LLeg = 12, LLeg = 24). The ionization
potentials of the final states have been shifted to their accurate values.
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The figure also compares the effect of the parameters max l legendre 1el

and max l legendre 2el (here denoted collectively as LLeg) on the integral
calculations in the mixed GTO/BTO basis. We can see that, as expected,
with increasing electron energy the results are more sensitive to the con-
vergence of the integrals involving continuum orbitals representing higher
angular momentum electrons which in turn require higher LLeg to converge.
In this case the minimum sensible value of these parameters (LLeg = 12) is
insufficient for energies above approx. 25 eV and a higher value (LLeg = 24)
must be used to achieve more accurate results. Using higher values of LLeg

requires more memory for evaluation of the mixed atomic integrals. There-
fore convergence of the calculation with respect to this parameter should be
carefully checked especially if results for high photon/electron energies are
required.

Finally, the radial B-spline basis typically generates larger number of
orbitals than the GTO basis with the same angular momentum. This includes
continuum orbitals with near-zero amplitudes on the boundary. Therefore
we can expect that the mixed continuum basis is also effectively contributing
somewhat to the L2 expansion.

9. Conclusions

The UKRmol+ suite is a completely reengineered and extended version of
the UK polyatomic molecular R-matrix codes. The suite enables the calcula-
tion of low energy electron and positron (excluding positronium formation)
scattering from molecules and molecular clusters, photoionization and also
the production of input for the RMT suite of codes [13]. Use of the GBTOlib
library (included in the releases but developed as a stand-alone entity) means
that both GTOs and BTOs can be used to describe the unbound particle.
The suite is maintained and developed on GitLab (developers-only access)
ensuring sustainability.

The codes can be downloaded from Zenodo: provision of set of CMake files
greatly simplifies the compilation of the codes; provision of a test suite enables
users to test their compilation. A set of perl scripts (UKRMOL SCRIPTS,
not included in the release) is available to greatly simplify the production
of input for the suite, execution of the different programs and gathering of
the relevant output data. These scripts were originally developed by Dr. K.
Houfek and will soon be made available for general use.
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Alternatively, Quantemol-N [95] provides a graphical expert system for
running the UKRmol codes; a new expert system, Quantemol-EC [96], per-
forms the same service for the UKRmol+ codes described in this paper.

Future releases of UKRmol+ will include a new version of the GBTOlib
library currently in development that will make the evaluation of the in-
tegrals more efficient, and the re-implementation of both the program for
the evaluation of Zeff in positron scattering and the partitioned R-matrix
approach.
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Appendix A. Expressions for the boundary amplitudes

Equation (19) defines the boundary amplitudes in terms of projections of
the R-matrix basis functions on the channel wavefunctions:

wpk(a) =
1√
2

〈

Φ
Γ

p

1

r

∣

∣

∣

∣

ψN+1
k

〉
∣

∣

∣

∣

r=a

=
1√
2

〈

ΦN
pi

1

r
Xlp,mp

(rN+1)

∣

∣

∣

∣

ψN+1
k

〉
∣

∣

∣

∣

r=a

.(A.1)

65



In the UKRmol+ implementation the R-matrix basis functions are given by
Eq. (21):

ψN+1
k = Â

∑

i,j

cijkΦ
N
i (x1, . . . ,xN)ηij(xN+1) +

∑

m

bmkχ
N+1
m (x1, . . . ,xN+1).

(A.2)
Using this equation and considering that only the first sum on the right-hand
side contributes to the boundary amplitude we obtain:
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where we used orthonormality of the target electronic states. The matrix
elements on the second line are called the raw boundary amplitudes. They
are evaluated with help of expansion of the continuum orbitals ηij(xN+1)
in the single-particle basis of target, pseudocontinuum and continuum func-
tions. However at r = a only the continuum functions which have the form
f(r)Xl,m(Ω) can contribute to the raw boundary amplitude:

〈
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qij,sγ(a). (A.5)

Here qij,s are the coefficients in expansion of the continuum orbital ηij(xN+1)
in the basis of the single particle functions and the sum over s is assumed to
be only over the continuum part of the basis. The factor of a is the result of
the projection 1

r
on the reduced radial part of the continuum orbital. Finally,

γ(a) are the amplitudes of the radial parts of the continuum functions which
can be GTOs and/or BTOs (cf. Section 3.1) centered on the center of mass:

γGTO,s(a) = NGTO
α,ls

√

4π

2ls + 1
als exp[−αsa

2], (A.6)

γBTO,s(a) = Nis

Bis(a)

a
. (A.7)

In UKRmol+ the raw boundary amplitudes are generated by GBTOlib at
the interfacing stage, see Section 3.6.
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Appendix B. Irreducible representations and multiplication table

The order (and index number) of the irreducible representations in the
UKRmol-in input is listed in Table B.21. This mirrors the order of irreducible
representations used in Molpro [9] and enables use of a single multiplication
table for all groups (see Table B.22). However, this convention is not uni-
versal and use of other compatible software (Psi4 [36], for instance) together
with UKRmol+ requires additional attention to the ordering when writing
input for SCATCI INTEGRALS and other programs.

Table B.21: Association of “M -values” with irreducible representations of the supported
finite groups in UKRmol+.

0 1 2 3 4 5 6 7

C1 A

C2 A B

Ci Ag Au

Cs A′ A′′

C2h Ag Au Bu Bg

C2v A1 B1 B2 A2

D2h Ag B3u B2u B1g B1u B2g B3g Au

Note that in some of the output of the calculations, for example, the
target property file produced by DENPROP, the irreducible representations
are numbered starting from 1.

Appendix C. Dipole and quadrupole operators

The (l, m) labeling of the matrix elements of the multipole operator pro-
duced by (C)DENPROP are subject to a convention. In UKRmol+, the elec-
tronic multipoles are written without the (negative) charge factor. When the
projectile is a positron, the values receive an additional minus sign. Tab. C.23
lists explicit expressions for the multipole operators used in UKRmol+.
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[39] A. Szabó, N. S. Ostlund, Modern quantum chemistry: introduction to
advanced electronic structure theory, Courier Dover Publications, 1996.

72

http://dx.doi.org/10.1023/A:1008193805436
http://dx.doi.org/10.1021/acs.jctc.7b00174
http://dx.doi.org/16/S0166-1280(96)90531-X
http://dx.doi.org/10.1088/1361-6455/aa8161
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