# **Accepted Manuscript**

Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: Synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives

Rafael Cano, Miguel Yus, Diego J. Ramón

PII: S0040-4020(13)00971-X

DOI: 10.1016/j.tet.2013.06.041

Reference: TET 24517

To appear in: Tetrahedron

Received Date: 21 January 2013

Revised Date: 3 June 2013
Accepted Date: 12 June 2013

Please cite this article as: Cano R, Yus M, Ramón DJ, Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: Synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives, *Tetrahedron* (2013), doi: 10.1016/j.tet.2013.06.041.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



# **Graphical Abstract**

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives Leave this area blank for abstract info.

Rafael Cano, Miguel Yus and Diego J. Ramón\*

$$Ar = O + \begin{bmatrix} R^1 & Fe_3O_4 & O & Fe_3O_4 \\ R^2 & CI & R^2 \end{bmatrix}$$

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

### Tetrahedron

journal homepage: www.elsevier.com



Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: Synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives

Rafael Cano, Miguel Yus and Diego J. Ramón\*

Instituto de Síntesis Orgánica (ISO), and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, E-03080-Alicante, Spain

#### ARTICLE INFO

#### **ABSTRACT**

Article history:

Received

Received in revised form

Accepted

Available online

In memory of Prof. Robert E. Gawley

Keywords: Acid derivatives

Alkynes

Heterogeneous catalysis

Ketones

Magnetite Iridium

Inexpensive and commercially available nano-powder magnetite is an excellent catalyst for the addition of acid chlorides to internal and terminal alkynes, yielding the corresponding chlorovinyl ketones in good yields. The process has been applied to the synthesis of 5-chloro-4arylcyclopent-2-enones, 3-aryl-1H-cyclopenta[a]naphthalen-1-ones, and (E)-3-alkylidene-2,3dihydro-1*H*-cyclopenta[*a*]naphthalen-1-ones, just by changing the nature of the starting acid chloride or the alkyne. All tested processes elapse with an acceptable or excellent regio- and steroselectivity. Moreover, the use of the iridium impregnated on magnetite catalyst permits the integration of the chloroacylation process with a second dehydrochlorination-annulation process to yield, in one-pot, 1-aryl-2,4-dialkylfurans in good yields, independently of the nature of the starting reagents, and including the heteroaromatic ones.

2009 Elsevier Ltd. All rights reserved.

#### 1. Introduction

The design of catalysts able to perform the heteroatomacylation of alkynes, forming in a regio-, stereoselective and simultaneous manner a carbon-carbon and a carbon-heteroatom bonds, is extremely challenging. The interest of this reaction is not only a matter of the intrinsic process but also of the final products. Thus, the addition of acid chlorides to alkynes gives βchlorovinyl ketones,<sup>2</sup> which are a class of compounds very useful for the synthesis of a variety of other compounds.

The initial use of stoichiometric amounts of aluminum derivatives, as Lewis acids, for the Friedel-Crafts addition of acyl chlorides to alkynes showed a very low selectivity, with the Eisomer being the major product.<sup>3</sup> The replacement of the aluminum catalyst to silver perchlorate, <sup>4</sup> gallium trichloride, <sup>5</sup> or zinc oxide<sup>6</sup> did not change so much the initial picture of this process. This fact favored the introduction of typical transition metal complexes, such as those derived from rhodium<sup>7</sup> or iridium.<sup>8</sup> These new complexes permitted the reduction of the catalyst amount from stoichiometric to 5-1 mol%, obtaining only the Z-chlorovinyl ketone isomer. However, these catalysts have new drawbacks, such as their inherent toxicity, their handling difficulty, their instability, high price, the CO extrusion from reagents depending on the catalyst, and their no-reactivity with internal alkynes.

Very recently, different iron salts (FeBr<sub>2</sub><sup>9</sup> and FeCl<sub>3</sub><sup>10</sup>) have been introduced as a convenient, inexpensive, environmentally friendly and practical catalyst alternative. In our ongoing project on the use of magnetite as an efficient catalyst for different organic reactions, 11 we anticipated that it could be a new and sustainable alternative for this process. Herein, we wish to describe its use as valuable catalyst for the addition of acid chlorides to poor reactive internal alkynes leading to the formation of chlorovinyl ketones, cyclopenta[a]naphthalen-1ones, 5-chloro-4-arylcyclopent-2-enones, and 2,3,5-trisubstituted furans, depending on the nature of the substrates.

#### 2. Results and discussion

#### 2.1. Chloroacylation Process

Since the reaction with internal alkynes is either unknown using rhodium, iridium, gallium trichloride and iron dibromide derivatives or yields a very low isomeric ratio for the iron trichloride-catalyzed reaction  $^{10}$  (with the E/Z ratio being 2.2/1), the addition of benzoyl chloride (1a) to dec-5-yne (2a) was chosen as model (Table 1). The first trial was carried out in absence of any catalyst to prove the real activity of iron oxide (entry 1), and after several hours the reaction failed recovering the unchanged alkyne 2a. However, a similar reaction but conducted in the presence of a substoichiometric amount of micro-particles of magnetite (65% of the stoichiometric gram

<sup>\*</sup> Corresponding author. Tel.: +34-965903986; fax: +34-965903549; e-mail: djramon@ua.es

57

58

59

60

61

atomic mass of iron) gave a mixture of isomers (Z)-3a and (E)-4a after only 15 min at 70 °C (entry 2). Both isomers could be isolated by column chromatography and fully characterized. Once the activity of unmodified commercial magnetite was proved, the size of the particles was tested, finding that the related nano-particle gave even better yield and Z/E ratio (3.8/1, entry 3). Then, the influence of the amount of catalyst was studied (entries 3-6), as well as the temperature (entries 6-8), the reagent's ratios (entries 9 and 10), and the solvent (entries 11-16), with the best condition being described in the entry 4.

Table 1 Optimization of the reaction conditions<sup>a</sup>

| Entry          | Cat. (mol%)                         | T (° C) | Solvent           | t (h) | 3a (%) <sup>b</sup> | 4a (%) <sup>b</sup> |
|----------------|-------------------------------------|---------|-------------------|-------|---------------------|---------------------|
| 1              |                                     | 70      | PhMe              | 7     | 0                   | 0                   |
| 2              | $Fe_3O_4^{\ c}$ (65)                | 70      | PhMe              | 0.25  | 62                  | 20                  |
| 3              | $Fe_{3}O_{4}^{d}\left(65\right)$    | 70      | PhMe              | 0.25  | 72                  | 19                  |
| 4              | $Fe_3O_4^{d}(33)$                   | 70      | PhMe              | 0.25  | 83                  | 11                  |
| 5              | $Fe_3O_4^{\ d}$ (13)                | 70      | PhMe              | 0.25  | 64                  | 18                  |
| 6              | $Fe_3O_4^{\ d}$ (130)               | 70      | PhMe              | 0.25  | 66                  | 16                  |
| 7              | $Fe_3O_4^{\ d}(33)$                 | 110     | PhMe              | 0.25  | 55                  | 22                  |
| 8              | $Fe_3O_4^{\ d}(33)$                 | 25      | PhMe              | 7     | 44                  | 23                  |
| 9 <sup>e</sup> | $Fe_{3}O_{4}^{d}$ (33)              | 70      | PhMe              | 0.25  | 73                  | 21                  |
| $10^{\rm f}$   | $Fe_3O_4^{\ d}(33)$                 | 70      | PhMe              | 0.25  | 59                  | 13                  |
| 11             | $Fe_{3}O_{4}{}^{d}\left( 33\right)$ | 70      | -                 | 0.25  | 61                  | 21                  |
| 12             | $Fe_{3}O_{4}^{d}$ (33)              | 70      | Dioxane           | 0.25  | 0                   | 0                   |
| 13             | $Fe_3O_4^{\ d}(33)$                 | 70      | MeCN              | 0.25  | 0                   | 0                   |
| 14             | $Fe_{3}O_{4}{}^{d}\left( 33\right)$ | 70      | DMF               | 0.25  | 0                   | 0                   |
| 15             | $Fe_{3}O_{4}^{d}$ (33)              | 70      | CHCl <sub>3</sub> | 0.25  | 61                  | 28                  |
| 16             | $Fe_3O_4^{\ d}(33)$                 | 70      | $(ClCH_2)_2$      | 0.25  | 60                  | 30                  |
| 17             | FeO (33)                            | 70      | PhMe              | 1     | 24                  | 8                   |
| 18             | $Fe_2O_3$ (33)                      | 70      | PhMe              | 0.25  | 74                  | 21                  |
| 19             | FeCl <sub>2</sub> (33)              | 70      | PhMe              | 1     | 20                  | 8                   |
| 20             | FeCl <sub>3</sub> (33)              | 70      | PhMe              | 0.25  | 69                  | 24                  |

Reaction carried out using 1a (1.5 mmol) and 2a (1.0 mmol) in the corresponding solvent (2.5 mL) under an argon atmosphere. <sup>b</sup> Isolated yield after column chromatography. c Powder < 5 µm. Powder < 50 nm. e Reaction performed using 1a (2 mmol) and 2a (1.0 mmol). f Reaction performed using 1a (1.0 mmol) and 2a (2.0 mmol).

After finding the activity of nano-particles of magnetite, we studied the activity of other iron sources, such as iron(II) and (III) as catalyst (entries 17 and 18), with nano-particles of Fe<sub>2</sub>O<sub>3</sub> having a similar activity to magnetite. The necessity of a slight excess of acyl chloride to complete the reaction made us suspect that the magnetite function was to form a soluble iron chloride species, and to prove this fact we performed the reaction using FeCl<sub>2</sub> and FeCl<sub>3</sub>, and, as in the case of oxides, the iron(III) salt gave a better result than iron(II). However, the results were significantly inferior to that obtained using magnetite (compare entries 4, 19 and 20), and with the price of iron chloride being

also another small disadvantage. It should be pointed out that the recycled magnetite had a lower activity rendering, in a second trial, a mixture of compounds in lower yield (72 %), and dropping to 47 % in the third run. To understand this fact, we studied by ICP-MS analysis the resulting reaction solution mixture after the first cycle, finding that 1.1% of initial amount of iron of the catalyst was leached to the solution. This leaching phenomenon could explain the decrease of the obtained yield.

Recently, we have developed a new, simple, and robust method to immobilize different transition metal oxides onto micro-particles of magnetite, <sup>12</sup> and we studied these catalysts, as well as new ones such as rhodium, silver, tungsten, and gold derivatives (see supporting information) as possible promoters of the process. However, in all cases the results (Table 2) were similar to those obtained using only the magnetite support (entry

Table 2 Optimization of the catalyst

| Entry | Catalyst (mol%)                                            | 3a (%) <sup>b</sup> | 4a (%) <sup>b</sup> |
|-------|------------------------------------------------------------|---------------------|---------------------|
| 1     | Fe <sub>3</sub> O <sub>4</sub> <sup>[c]</sup> (65)         | 62                  | 20                  |
| 2     | CoO-Fe <sub>3</sub> O <sub>4</sub> (1.4)                   | 56                  | 18                  |
| 3     | $NiO-Fe_3O_4$ (1.4)                                        | 58                  | 29                  |
| 4     | $CuO-Fe_3O_4$ (1.3)                                        | 64                  | 24                  |
| 5     | $Ru_{2}O_{3}$ - $Fe_{3}O_{4}$ (1.4)                        | 64                  | 23                  |
| 6     | $Rh_{2}O_{3}$ - $Fe_{3}O_{4}$ (0.8)                        | 58                  | 26                  |
| 7     | PdO-Fe <sub>3</sub> O <sub>4</sub> (1.4)                   | 8                   | 4                   |
| 8     | $Ag_{2}O/Ag-Fe_{3}O_{4}$ (1.3)                             | 66                  | 20                  |
| 9     | $WO_3$ - $Fe_3O_4$ (0.6)                                   | 66                  | 16                  |
| 10    | IrO <sub>2</sub> -Fe <sub>3</sub> O <sub>4</sub> (0.14)    | 67                  | 19                  |
| 11    | PtO/PtO <sub>2</sub> -Fe <sub>3</sub> O <sub>4</sub> (0.6) | 59                  | 17                  |
| 12    | $Au_{2}O_{3}/Au$ - $Fe_{3}O_{4}$ (0.1)                     | 65                  | 21                  |
| 13    | NiO/CuO-Fe <sub>3</sub> O <sub>4</sub> (0.9/1.1)           | 60                  | 25                  |
| 14    | PdO/CuO-Fe <sub>3</sub> O <sub>4</sub> (1.5/0.8)           | 9                   | 6                   |

<sup>a</sup>Reaction carried out using **1a** (1.5 mmol) and **2a** (1.0 mmol) in toluene (2.5 mL) under an argon atmosphere. <sup>b</sup> Isolated yield after column chromatography. c Powder < 5 µm.

As the nano-particle of magnetite was the best catalyst, the scope of the reaction was studied (Table 3). The reaction gave the expected Z-isomers 3 as the main product after only a 1 h reaction. The reaction gave similar results independently of the side chain of internal alkyne (entries 1-3). In the case of using ethynylbenzene (entry 4) practically only one regio- and stereoisomer was obtained, as it was previously found for other ruthenium, iridium or iron complexes. The presence of electronwithdrawing or electron-donating groups at the para-position of aromatic ring did not have a significant effect on the results (entries 5-7). However, the presence of a group located at orthoposition (entry 8) of the acid chloride gave worse results, in terms of chemical yield and isomeric ratio. This fact could be a proof of a possible steric hindrance in the transition state. Other acyl

derivatives, such as 4-naphthyl or thienyl, were used without finding any difference with the model reagents (compare entries 1, 9 and 10). The reaction of 4-methoxybenzoyl chloride with 1,2-diphenylethyne gave the expected product  $3\mathbf{k}$  (entry 11). It should be pointed out that the reaction using aliphatic 3-phenylpropanoyl chloride gave the expected mixture of products ( $\mathbb{Z}$ )- $3\mathbf{l}$  and ( $\mathbb{E}$ )- $4\mathbf{l}$ , with the main isomer  $3\mathbf{l}$  not being possible to be separated from the isomer  $4\mathbf{l}$ ; contrary to other aromatic examples, in which isomer  $3\mathbf{l}$  could be isolated but not the related  $4\mathbf{l}$ .

Table 3 Preparation of  $\beta$ -chlorovinyl ketones<sup>a</sup>

| R <sup>1</sup> | $\mathbb{R}^2$ | Fe <sub>3</sub> O <sub>4</sub><br>(33 mol%) | $ \begin{array}{c} 0\\ R^2 \end{array} $ |
|----------------|----------------|---------------------------------------------|------------------------------------------|
| CI -           | r ∥<br>R³      | PhMe, 70 °C,<br>1 h                         | CI R <sup>3</sup>                        |
| 1              | 2              |                                             | 3                                        |

| Entry | $\mathbb{R}^1$                     | $\mathbb{R}^2$ | $\mathbb{R}^3$ | Z/E ratio <sup>b</sup> | No.          | Yield (%) <sup>c</sup> |
|-------|------------------------------------|----------------|----------------|------------------------|--------------|------------------------|
| 1     | Ph                                 | <i>n</i> Bu    | nBu            | 7.5/1                  | 3a           | 83                     |
| 2     | Ph                                 | Et             | Et             | 7.5/1                  | 3b           | 89                     |
| 3     | Ph                                 | $nC_5H_{11}$   | $nC_5H_{11}$   | 5.7/1                  | 3c           | 82                     |
| 4     | Ph                                 | Н              | Ph             | >20/1                  | 3d           | 63                     |
| 5     | 4-ClC <sub>6</sub> H <sub>4</sub>  | nBu            | <i>n</i> Bu    | 3.5/1                  | 3e           | 70                     |
| 6     | $4-tBuC_6H_4$                      | nBu            | <i>n</i> Bu    | 3.5/1                  | 3f           | 75                     |
| 7     | 4-MeOC <sub>6</sub> H <sub>4</sub> | nBu            | <i>n</i> Bu    | 15/1                   | 3g           | 91 <sup>d</sup>        |
| 8     | $2\text{-MeOC}_6H_4$               | nBu            | <i>n</i> Bu    | 2.2/1                  | 3h           | 58                     |
| 9     | $4\text{-FC}_{10}\text{H}_6^{\ e}$ | nBu            | <i>n</i> Bu    | 15/1                   | 3i           | 89                     |
| 10    | 2-Thienyl                          | nBu            | <i>n</i> Bu    | 4.1/1                  | <b>3</b> j   | 74                     |
| 11    | 4-MeOC <sub>6</sub> H <sub>4</sub> | Ph             | Ph             | 4/1                    | 3k           | 72                     |
| 12    | $Ph(CH_2)_2$                       | <i>n</i> Bu    | <i>n</i> Bu    | 3/1                    | $3l^{\rm f}$ | 77                     |

<sup>a</sup>Reaction carried out using **1** (1.5 mmol) and **2** (1.0 mmol) in toluene (2.5 mL) under an argon atmosphere. <sup>b</sup> Determined by <sup>1</sup>H NMR from the crude mixture. <sup>c</sup> Isolated yield after column chromatography. <sup>d</sup> The relate indenone derivative was detected from the crude reaction medium by GC-MS (< 3%). <sup>e</sup> 4-FC<sub>10</sub>H<sub>6</sub> denotes for 4-fluoronaphth-1-yl. <sup>f</sup> The compound **3l** could not be separated from the mixture of both isomers (Z)-**3l**/(E)-**3l**.

The above protocol could be used not only for acyl chlorides (1) but also for the related bromides. Thus, the addition of benzoyl bromide (5) to dec-5-yne (2a) using nano-particles of magnetite (Scheme 1) gave the expected bromovinyl ketone 6, with similar yield and isomeric ratio to the case of using the related chlorine reagent.

**Scheme 1** Preparation of a  $\beta$ -bromovinyl ketone.

# 2.2. Nazarov-type Cyclization Processes

The mechanistic considerations of this reaction have proposed the formation of a vinyl cation  $^{3c,4,5,10}$  intermediate which is captured by the chloride ion through an intra- or intermolecular process. With this proposed catalytic mechanism in mind, we thought that the cationic intermediate could be trapped to form a cyclic compound by using the adequate olefinic reagent in a Nazarov-type process. So, the reaction of the alkyne **2a** with cinnamoyl chloride (**7a**, X = H) yielded, after only one hour at 70 °C, the expected 5-chlorocyclopent-2-enone **8a** in good yield and as a single isomer (Table 4, entry 1).

**Table 4**Preparation of 5-chloro-4-arylcyclopent-2-enones<sup>a</sup>

| Entry | Catalyst                                    | X   | $\mathbb{R}^1$ | $\mathbb{R}^2$ | No.        | Yield (%) <sup>b</sup> |
|-------|---------------------------------------------|-----|----------------|----------------|------------|------------------------|
| 1     | Fe <sub>3</sub> O <sub>4</sub> c,d          | Н   | nBu            | <i>n</i> Bu    | 8a         | 78                     |
| 2     | Fe <sub>3</sub> O <sub>4</sub> <sup>c</sup> | Н   | nBu            | nBu            | 8a         | 77                     |
| 3     | $Fe_3O_4^{\ c,e}$                           | Н   | nBu            | nBu            | 8a         | 58                     |
| 4     | FeO                                         | Н   | nBu            | nBu            | 8a         | 29                     |
| 5     | $Fe_2O_3$                                   | Н   | nBu            | nBu            | 8a         | 67                     |
| 6     | FeCl <sub>2</sub>                           | Н   | nBu            | nBu            | 8a         | 34                     |
| 7     | FeCl <sub>3</sub>                           | Н   | nBu            | nBu            | 8a         | 69                     |
| 8     | $Fe_3O_4{}^c$                               | Н   | Et             | Et             | <b>8</b> b | 89                     |
| 9     | $Fe_3O_4{}^c$                               | Н   | $nC_5H_{11}$   | $nC_5H_{11}$   | 8c         | 91                     |
| 10    | $Fe_3O_4{}^c$                               | Н   | Me             | <i>t</i> Bu    | 8d         | $91^{\rm f}$           |
| 11    | $Fe_3O_4{}^c$                               | F   | nBu            | nBu            | 8e         | 67                     |
| 12    | $\text{Fe}_3\text{O}_4^{\ c}$               | MeO | <i>n</i> Bu    | nBu            | 8f         | 83                     |
|       |                                             |     |                |                |            |                        |

<sup>a</sup>Reaction carried out using **7** (1.5 mmol) and **2** (1.0 mmol) in toluene (2.5 mL) under an argon atmosphere. <sup>b</sup> Isolated yield after column chromatography. <sup>c</sup> Power < 50 nm. <sup>d</sup> Reaction performed using 33 mol%. [e] Reaction performed using 7 mol%. <sup>f</sup> Mixture of isolated isomers (*cis*-**8d**/*trans*-**8d**': 3/88 %).

Then, we studied the influence of the amount of nanomagnetite (entries 1-3), the source of iron oxides (entries 4 and 5), and different iron chlorides (entries 6 and 7). As in the case of the chlorovinylation process, nano-magnetite gave even better results than iron(III) oxide or chloride. The reaction was performed with similar results with other symmetrically substituted alkynes (entries 8 and 9). In the case of using 4,4dimethylpent-2-yne (2f), the reaction was regioselective, 2-methyl-3-tertrendering corresponding only the butylcyclopentenone 8d with good yield (entry 10). However, only in this case both diastereomeric cis/trans isomer were detected and isolated. The assignation of relative configuration was performed in basis of the constant coupling between both hydrogen of cyclopentenone ring. The minor isomer showed a J = 2.8 Hz, and it was assumed that it was the cis-8d. Meanwhile the major isomer showed a J = 1.0 Hz, and it was assumed that it was the trans-8d'. These constant coupling for all compounds 8 were always higher than 2.5 Hz and they were assigned as cisones. The reaction using a para-substituted cinnamoyl chloride

64 65

gave the expected product 8 with similar results to previous trials, independently of the electron-nature of the group (entries 11 and 12).

After the success in the cyclization process, we rationalized that the stabilization of the vinyl-cation intermediate could give us a chance to carry out an intramolecular aromatic electrophilic substitution, yielding fused bicyclic ketones. 3c,7a For this purpose, we carried out the model reaction of 2-naphthalenecarbonyl chloride (1j) with the unsymmetrical 1-phenylpentyne (9a) and, after only one hour, the corresponding 3-phenyl-2-methyl-1Hcyclopenta[a]naphthalen-1-one (10a) was obtained in excellent yield and regioselectivity (entry 1 in Table 5), with the other regioisomer not being detected. The structure of compounds 10 was unambiguously assigned according to NOESY, HSQC- and HMBC-NMR experiments, as well as X-ray data for compound 10a (see Figure 1). The reaction with other 1-arylalkynes gave, in all cases, the corresponding products 10 (entries 2 and 3) with the reaction pathway starting with the regioselective addition of acyl cation to form the most stable 1-arylvinyl cation.

Table 5 Preparation of 3-aryl-1*H*-cyclopenta[*a*]naphthalen-1-ones<sup>a</sup>

| CI + | R<br>   <br> Ar | Fe <sub>3</sub> O <sub>4</sub><br>(33 mol%)<br>PhMe, 70 °C,<br>1 h | O R |
|------|-----------------|--------------------------------------------------------------------|-----|
| 1j   | 9               |                                                                    | 10  |

| Entry | Ar                  | R           | No. | <b>4a</b> (%) <sup>b</sup> |
|-------|---------------------|-------------|-----|----------------------------|
| 1     | Ph                  | Me          | 10a | 91                         |
| 2     | Ph                  | <i>n</i> Bu | 10b | 87                         |
| 3     | $4\text{-MeC}_6H_4$ | Me          | 10c | 79                         |

<sup>a</sup> Reaction carried out using 1j (1.5 mmol) and 9 (1.0 mmol) in toluene (2.5 mL) under an argon atmosphere. b Isolated yield after column chromatography.

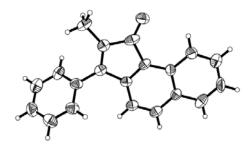



Figure 1 ORTEP drawing of compound 10a.

Then, we tried to extend the scope of the reaction to simple alkynes of type 2, in which the postulated cationic intermediate is less stable. The reaction between the acid chloride 1j and hex-3yne (2b) did not produce the expected cyclopenta[a]naphthlen-1ones of type 10, but yielded the product 11a (Table 6, entry 1)

with a good chemical yield. To the best of our knowledge, this type of compound has been synthesized for the first time, and its formation could be explained by a simple isomerization, in the reaction media, from the  $\alpha,\beta$ -unsaturated ketone of type 10 to the corresponding conjugated stryryl unit 11. We do not have any clear explanation of the driving force for this process. The structure of compound 11 was unambiguously assigned according to NOESY, HSQC- and HMBC-NMR experiments, as well as X-ray data for compound 11a (see Figure 2). The reaction seems to be general, obtaining similar results for all tested aliphatic-substituted internal alkynes (entries 2 and 3).

#### Table 6

Preparation of (E)-3-alkylidene-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-

| Entry | R   | No. | Yield (%) <sup>b</sup> |
|-------|-----|-----|------------------------|
| 1     | Me  | 11a | 85                     |
| 2     | nPr | 11b | 87 <sup>c,d</sup>      |
| 3     | nBu | 11c | 84                     |

<sup>a</sup> Reaction carried out using 1j (1.5 mmol) and 2 (1.0 mmol) in toluene (2.5 mL) under an argon atmosphere. b Isolated yield after column chromatography. c Reaction performed during 4 h. A 5 % of chlorovinyl ketone of type 3m was isolated.

Figure 2 ORTEP drawing of compound 11a.

To avoid the formation of an exo-cyclic double bond in compounds 11, we repeated the reaction with alkyne 2f (Scheme 2). However, in this case, a 1,2-shift methyl migration took place, after the vinyl-cation formation to give the more stable allylic intermediate, which, then cyclized to yield compound 12. This behavior was previously described for other Lewis acid catalysts.3c,14

Scheme 2 Preparation of compound 12.

The hypothetic mechanism pathway is depicted in Scheme 3. The adsorption of acyl chloride on the surface of the magnetite with a debilitation of the corresponding chlorine carbon bond in  $\bf A$  is the first step of the process. The addition to the alkyne reagent would generate the key vinyl cation  $\bf C$ . This intermediate  $\bf C$  renders different intermediates depending on the nature of the substituent  $\bf R^1$  of the starting acyl chloride. So, the usual pathway was the reaction with chloride in a *syn*-manner ( $\bf D$ ). However, if the  $\bf R^1$  group has a carbon-carbon double bond ( $\bf R^1$  = ArCH=CH) the vinyl cation  $\bf C$  suffers a cyclization process to give intermediate  $\bf E$ , or if the  $\bf R^1$  group has the possibility of suffering electrophilic aromatic substitution ( $\bf R^1$  = 1-naphthyl) the intermediate yielded cation  $\bf F$ .

**Scheme 3** Proposed mechanism for the addition of acid chloride to alkynes and further evolution.

# 2.3. Furan Cyclization

Very recently, the Tsuji research group has found a new entry to the direct synthesis of 2,5-disubstituted furans starting from acid chlorides and terminal alkynes, in moderate yields for phenyl derivatives and low yields for thienyl ones. 8a The possible catalytic pathway involved the dehydrochlorination of the corresponding chlorovinyl ketone followed by cyclization of formed allenic ketone. Since zinc chloride, in combination with an amine, has been introduced as a catalyst for this elimination process, 15 we studied the activity of other Lewis acid catalysts for this tandem dehydrochlorination-cyclization process (Table 7),

with the idea in mind to integrate all processes starting from internal alkynes to yield 1,2,5-trisubstituted furans.

The reaction of chlorovinyl ketone **3a** with nano-power magnetite did not yield the expected furan **13a** after 7 days at 130 °C. However, the same process but using rhodium trichloride gave the product **13a** in a moderate yield. Then other transition salts were tested, with palladium and iridium giving excellent results (entries 3 and 4). Finally, the same process was conducted with the related transition metal oxides impregnated on magnetite (entries 5-7). From the comparison of the results from both types of catalysts could be concluded that the heterogeneous catalysts gave better results than homogenous ones, since with amounts around 1 mol% of heterogeneous catalysts it was possible to obtain similar results to the reached using homogeneous ones at 10 mol% loading.

Table 7

Cyclization of  $\beta$ -chlorovinyl ketone  $3a^a$ 

| Entry | Catalyst (mol%)                                         | Yield 13a (%)[b] |
|-------|---------------------------------------------------------|------------------|
| 1     | Fe <sub>3</sub> O <sub>4</sub> <sup>[c]</sup> (65)      | 0                |
| 2     | RhCl <sub>3</sub> (10)                                  | 54               |
| 3     | PdCl <sub>2</sub> (10)                                  | 89               |
| 4     | IrCl <sub>3</sub> (10)                                  | 87               |
| 5     | $Rh_{2}O_{3}$ - $Fe_{3}O_{4}$ (0.8)                     | 75               |
| 6     | $PdO-Fe_3O_4$ (1.4)                                     | 82               |
| 7     | IrO <sub>2</sub> -Fe <sub>3</sub> O <sub>4</sub> (0.07) | 95               |

 $^{\rm a}$  Reaction carried out using 3a (1 mmol) in toluene (2.5 mL) under an argon atmosphere.  $^{\rm b}$  Isolated yield after column chromatography.  $^{\rm c}$  Powder  $<5~\mu m$ .

Once we found that the dehydrochlorination-cyclization process was catalyzed by different metallic oxides impregnated on magnetite (Table 7) and that the magnetite could catalyze the addition of acid chlorides to internal alkynes, we tried to perform the whole integrated process. The reaction of chloride **1a** with the alkyne **2a** gave the expected product **13a** after seven days at 130 °C. However, the chemical yield was moderate, independently of the catalyst used (Scheme 4). Then, we carried out the reaction with IrO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> at 70 °C during 1 h (chloroacylation process) and, after that, the temperature was increased up to 130 °C, with the yield of compound **13a** and **3a** being 59 and 30 %, respectively.

Scheme 4 Direct Synthesis of Furan 13a.

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59

60

61

the excess of acid chloride decomposed the catalyst, and formed the corresponding less active and soluble transition metal chloride. To prove this hypothesis we perform a two step one-pot process (Table 8). After carrying out the standard reaction of chloride 1a with alkyne 2a catalyzed by nano-powder magnetite, this catalyst was removed by a magnet and RhCl<sub>3</sub> (1 mol%, entry 1), PdCl<sub>2</sub> (1 mol%, entry 2), or IrCl<sub>3</sub> (1 mol%, entry 3) was added to this mixture giving in all cases better results than the strategy showed in Scheme 3. Instead of homogenous salt, we, then, studied the same process but using the impregnated catalyst. After removing the magnetite by the magnet, the corresponding palladium impregnated on magnetite catalyst was added (1.2 mol%, entry 4) obtaining a similar result to the obtained one using the homogenous catalyst. The protocol using iridium impregnated catalyst (0.07 mol%) gave an excellent result (entry 5, 88%), since the same reaction but using IrCl<sub>3</sub> (0.07 mol%) yielded 43% of compound 13a. Then, the scope of the reaction using IrO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> was tested finding that the length of the alkyne side chain did not influence the result (entry 6). Even, quite similar results were obtained independently of the presence of electron-withdrawing or -donating groups in the ring of acyl chloride (entries 7 and 8). Finally, it should be pointed out that the protocol rendered similar result in the special case of the thienyl derivative (entry 9), which was a challenging example for the construction of more simple 2,5-disubstituted furans. 8a

We believed that the main reason for this behavior was that

**Table 8**One-pot Synthesis of 1-Aryl-2,4-dialkylfurans<sup>a</sup>

| Entry | Ar                                 | R   | No. | Yield (%) <sup>b</sup> |
|-------|------------------------------------|-----|-----|------------------------|
| 1     | Ph                                 | nPr | 13a | 62 <sup>c,d</sup>      |
| 2     | Ph                                 | nPr | 13a | 87 <sup>c,e</sup>      |
| 3     | Ph                                 | nPr | 13a | 90 <sup>c,f</sup>      |
| 4     | Ph                                 | nPr | 13a | $70^{\rm g}$           |
| 5     | Ph                                 | nPr | 13a | 88 (51)                |
| 6     | Ph                                 | Me  | 13b | 91 (68)                |
| 7     | $4-ClC_6H_4$                       | nPr | 13c | 76 (55)                |
| 8     | 4-MeOC <sub>6</sub> H <sub>4</sub> | nPr | 13d | 94 (69)                |
| 9     | 2-Thienyl                          | nPr | 13e | 74 (41)                |

 $^{\rm a}$  Reaction carried out using 1 (1.5 mmol) and 2 (1.0 mmol) in toluene (2.5 mL) under an argon atmosphere.  $^{\rm b}$  Isolated yield after column chromatography; In the parenthesis appear the results using  $Rh_2O_3\text{-}Fe_3O_4$  (0.8 mol%) as catalyst for the step ii.  $^{\rm c}$  Reaction performed during 7 d.  $^{\rm d}$  In the step ii, only RhCl $_3$  (1 mol%) was used as catalyst.  $^{\rm e}$  In the step ii, only IrCl $_3$  (1 mol%) was used as catalyst.  $^{\rm g}$  In the step ii, only PdO-Fe $_3O_4$  (1.2 mol%) was used as catalyst.

#### 3. Conclusion

In conclusion, we have demonstrated that simple and commercially available magnetite is a good catalyst for the

chloroacylation of internal alkynes, as well as terminal ones, yielding the corresponding chlorovinyl ketones with good yields. The process could be applied to the synthesis of 5-chloro-4arylcyclopent-2-enones, 3-aryl-1*H*-cyclopenta[*a*]naphthalen-1and (E)-3-alkylidene-2,3-dihydro-1Hcyclopenta[a]naphthalen-1-ones, just by changing either the starting acyl chloride or alkyne. The acceptable to excellent regio- and steroselectivity of the process, together with the low price of catalyst and the simplicity of the process could anticipate a good future for the process shown in this study not only in the laboratory but also in industry. Moreover, the use of iridium impregnated on magnetite into an integrated process allowed us the one-pot synthesis of 1-aryl-2,4-dialkylfurans with good yields, independently of the nature of the starting regents, including heteroaromatic ones, with the low catalyst loading being an important issue.

#### 4. Experimental section

#### 4.1. General information

XPS analyses were carried out on a VG-Microtech Mutilab. TEM images were obtained on a JEOL, model JEM-2010 equipped with an X-ray detector OXFORD INCA Energy TEM 100 for microanalysis (EDS). XRF analyses were obtained on a PHILIPS MAGIX PRO (PW2400) X-ray spectrometer equipped with a rhodium X-ray tube and a beryllium window. BET isotherms were carried out on a AUTOSORB-6 (Quantachrome), using N2. Melting points were obtained with a Reichert Thermovar apparatus. NMR spectra were recorded on a Bruker AC-300 (300 MHz for <sup>1</sup>H and 75 MHz for <sup>13</sup>C) using CDCl<sub>3</sub> as a solvent and TMS as internal standard for <sup>1</sup>H and <sup>13</sup>C; chemical shifts are given in  $\delta$  (parts per million) and coupling constants (*J*) in Hertz. FT-IR spectra were obtained on a JASCO 4100LE (Pike Miracle ATR) spectrophotometer. Mass spectra (EI) were obtained at 70 eV on a Himazdu QP-5000 spectrometer, giving fragment ions in m/z with relative intensities (%) in parentheses. HRMS spectra were obtained with a Finnigan High-resolution Mass Spectrometer (MAT95S model). Single-Crystal XRD analyses were obtained on a Bruker CCD-Apex equipped with a X-ray tube with Mo anode. Crystallographic data for compounds 10a (CCDC 910476) and 11a (CCDC 910475) can be obtained free of charge from Cambridge Crystallographic Data Centre. Thin layer chromatography (TLC) was carried out on Schleicher & Schuell F1400/LS 254 plates coated with a 0.2 mm layer of gel; detection by UV<sub>254</sub> light, staining with phosphomolybdic acid [25 g phosphomolybdic acid, 10 g Ce(SO<sub>4</sub>)<sub>2</sub> 4 H<sub>2</sub>O, 60 mL of concentrated H<sub>2</sub>SO<sub>4</sub> and 940 mL H<sub>2</sub>O]. Column chromatography was performed using silica gel 60 of 35-70 mesh. All reagents were commercially available (Acros, Aldrich, Fluorochem) and were used as received.

#### 4.2. General procedure for the preparation of catalysts

To a stirred solution of the corresponding metal salt  $MCl_x$  (1 mmol) in deionized water (150 mL) was added commercial available  $Fe_3O_4$  (4 g, 17 mmol, powder < 5 µm, BET area: 9.86 m²/g). After 10 minutes at room temperature, the mixture was slowly basified with NaOH (1M) until pH around 13. The mixture was stirred during one day at room temperature in air. After that, the catalyst was filtered and washed several times with deionized water (3 × 10 mL). The solid was dried at 100 °C during 24 h in a standard glassware oven obtaining the expected catalyst. The rhodium catalyst gave an incorporation of rhodium

14

15

16

17

27

28

29

30

31

43

44

45

46

47

48

49

55

56

57

58

59

60

of 1.7 % according to XRF; by XPS the rhodium on the surface was determined as 17.5 %; the BET area surface was 8.4 m<sup>2</sup>/g. The silver catalyst gave an incorporation of silver of 2.7 % according to XRF; by XPS the silver on the surface was determined as 6.2 %; the BET area surface was 7.4 m<sup>2</sup>/g. The tungsten catalyst gave an incorporation of tungsten of 2.1 % according to XRF; by XPS the tungsten on the surface was determined as 13.6%; the BET area surface was 7.7 m<sup>2</sup>/g. The gold catalyst gave an incorporation of gold of 1.5 % according to XRF; by XPS the gold on the surface was determined as 14.8 %; the BET area surface was 7.9 m<sup>2</sup>/g.

#### 4.3. General procedure for the addition reactions

To a stirred solution of alkyne (2 or 9, 1 mmol) in dry toluene (2.5 mL) under argon atmosphere were added Fe<sub>3</sub>O<sub>4</sub> (25 mg or 10 mg) and the corresponding acid derivative (1, 5 or 7, 1.5 mmol). The resulting mixture was stirred at 70 °C during one hour. The catalyst was removed by a magnet and the resulting mixture was quenched with water (5 mL) and extracted with EtOAc (3  $\times$  5 mL). The organic phases were dried over MgSO<sub>4</sub>, followed by evaporation under reduced pressure to remove the solvent. The product was usually purified by chromatography on silica gel (hexane/ethyl acetate) to give the corresponding products 3, 4, 6, 8, 10, 11 and 12. Physical and spectroscopic data, as well as literature for known compounds, follow:

4.3.1. (**Z**)-2-Butyl-3-chloro-1-phenylhept-2-en-1-one brown oil;  $R_f = 0.77$  (hexane/ethyl acetate 4:1);  $t_r$  14.3; IR (cm<sup>-1</sup>): 1668, 1637, 1596, 1579, 1465, 1448, 1313, 1268, 1212, 935, 719, 689; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.77 (t, J = 7.3 Hz, 3H,  $CICCH_2CH_2CH_2CH_3$ , 0.86 (t, J = 7.1Hz, CICCCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.1-1.2, 1.25-1.45, 1.45-1.55, (3m, 2, 4) and 2H, respectively,  $CH_2 \times 4$ ), 2.18 (t, J = 7.3 Hz, 2H,  $CICCH_2$ ), 2.5 (t, J = 7.1 Hz, 2H, ClCCCH<sub>2</sub>), 7.4-7.5 (m, 2H, OCCCHCH × 2), 7.55-7.65 (m, 1H, OCCCHCHCH), 7.85-7.95 (m, 2H, OCCCH  $\times$  2); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.7, 13.7, 21.7, 22.5, 29.6, 29.7, 32.3, 36.9, 128.7 (2C), 129.4 (2C), 133.6, 136.4, 137, 137.1, 197.5; EI-MS m/z: 278 (M<sup>+</sup>, 10 %), 243 (25), 237 (10), 235 (28), 187 (10), 179 (23), 145 (11), 105 (100), 77 (46). HRMS calcd. for C<sub>17</sub>H<sub>23</sub>ClO: 278.1437; found: 278.1434.

4.3.2. (Z)-3-Chloro-2-ethyl-1-phenylpent-2-en-1-one (3b):<sup>10</sup> yellow oil,  $R_f = 0.7$  (hexane/ethyl acetate 4:1);  $t_r$  12.4; IR (cm<sup>-1</sup>): 1666, 1638, 1596, 1449, 1285, 1242, 822, 711, 689; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.03 (t, J = 7.6 Hz, 3H, ClCCCH<sub>2</sub>CH<sub>3</sub>), 1.04 (t, J = 7.3 Hz, 3H, ClCCH<sub>2</sub>CH<sub>3</sub>), 2.2 (q, J = 7.3 Hz, 2H,  $CICCH_2$ ), 2.53 (q, J = 7.6 Hz, 2H,  $CICCCH_2$ ), 7.45-7.5 (m, 2H, OCCCHCH × 2), 7.55-7.65 (m, 1H, OCCCHCHCH), 7.85-7.95 (m, 2H, OCCCH  $\times$  2); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  11.8, 12.3, 25.7, 30.6, 128.7 (2C), 129.3 (2C), 133.6, 136.4, 137.3, 137.4, 197.3; EI-MS m/z: 222 (M<sup>+</sup>, 10 %), 187 (59), 159 (32), 158 (13), 105 (100), 77 (67).

4.3.3. (*Z*)-3-Chloro-2-pentyl-1-phenyloct-2-en-1-one yellow oil;  $R_f = 0.73$  (hexane/ethyl acetate 4:1);  $t_r$  15.5; IR (cm<sup>-1</sup>): 1669, 1596, 1465, 1448, 1314, 1259, 719, 689; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.79, 0.84 (2t, J = 7.1 and 7 Hz, respectively, 3H each one, CH<sub>3</sub> × 2), 1.05-1.2, 1.2-1.35, 1.35-1.6, (3m, 4H each one,  $CH_2 \times 6$ ), 2.18 (t, J = 7.3 Hz, 2H,  $CICCH_2$ ), 2.49 (t, J = 7.6Hz, 2H, ClCCCH<sub>2</sub>), 7.4-7.5 (m, 2H, OCCCHCH × 2), 7.55-7.65

(m, 1H, OCCCHCHCH), 7.85-7.95 (m, 2H, OCCCH  $\times$  2); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): δ 13.8, 13.9, 22.2, 22.3, 27.1, 27.3, 30.8, 31.5, 32.6, 37.1, 128.7 (2C), 129.4 (2C), 133.6, 136.4, 137, 137.1, 197.4; EI-MS m/z: 270 (7 %), 227 (14), 105 (100), 77 (34). HRMS calcd. for  $C_{19}H_{27}CIO$ -HCl: 270.1984; found: 270.1995.

(3d):<sup>10</sup> 4.3.4. *(Z)-3-Chloro-1,3-diphenylprop-2-en-1-one* pale yellow oil;  $R_f = 0.37$  (hexane/ethyl acetate 4:1);  $t_r$  16.3; IR (cm<sup>-1</sup>): 1662, 1597, 1574, 1446, 1234, 1206, 1016, 756, 687; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): δ 7.35 (s, 1H, ClCCH), 7.4-7.5, 7.55-7.6, 7.7-7.8, 7.95-8.05 (4m, 5, 1, 2 and 2H, respectively,  $Ph \times 2$ ); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): δ 121.4, 127.1 (2C), 128.6 (2C), 128.6 (2C), 128.7 (2C), 130.5, 133.3, 137.3, 137.7, 143.3, 189.8; EI-MS m/z: 244 (M<sup>+</sup>+2, 15 %), 243 (M<sup>+</sup>+1, 39), 242 (M<sup>+</sup>, 46), 241 (100), 179 (18), 178 (19), 167 (10), 165 (31), 105 (61), 102 (58), 101 (17), 89 (16), 77 (96).

4.3.5. (Z)-2-Butyl-3-chloro-1-(4-chlorophenyl)hept-2-en-1one (3e): yellow oil;  $R_f = 0.73$  (hexane/ethyl acetate 4:1);  $t_r$  15.6; IR (cm<sup>-1</sup>): 1670, 1586, 1465, 1399, 1266, 1211, 1091, 1013, 932, 846, 771, 757; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.8, 0.88 (2t, J =7.3 and 7.1 Hz, respectively, 3H each one,  $CH_3 \times 2$ ), 1.1-1.25, 1.3-1.45, 1.45-1.55 (3m, 2, 4 and 2H, respectively,  $CH_2 \times 4$ ), 2.19 (t, J = 7.4 Hz, 2H, ClCCH<sub>2</sub>), 2.5 (t, J = 7.2 Hz, 2H,  $CICCCH_2$ ), 7.48 (d, J = 8.5 Hz, 2H,  $CICCH \times 2$ ), 7.86 (d, J = 8.5Hz, 2H, ClCCHC $H \times 2$ ); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.7, 13.7, 21.7, 22.5, 29.6, 29.7, 32.3, 37, 129.2 (2C), 130.8 (2C), 134.7, 136.7, 137.3, 140.2, 196.2; EI-MS *m/z*: 277 (11 %), 141 (34), 140 (9), 139 (100), 111 (27). HRMS calcd. for C<sub>17</sub>H<sub>22</sub>Cl<sub>2</sub>O-Cl: 277.1359; found: 277.1340.

4.3.6. (Z)-2-Butyl-1-(4-[tert-butyl]phenyl)-3-chlorohept-2en-1-one (3f): yellow oil;  $R_f = 0.77$  (hexane/ethyl acetate 4:1);  $t_r$ 16.4; IR (cm<sup>-1</sup>): 1667, 1603, 1463, 1268, 1188, 1107, 933, 852, 780, 719; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.77, 0.87 (2t, J = 7.3and 7.1 Hz, respectively, 3H each one,  $CH_3 \times 2$ ), 1.1-1.2, 1.25-1.45, 1.45-1.6 (3m with s at 1.36, 9, 2, 4 and 2H, respectively,  $CH_2 \times 4$  and  $C(CH_3)_3$ , 2.19 (t, J = 7.3 Hz, 2H,  $CICCH_2$ ), 2.51 (t, J = 7.1 Hz, 2H, CICCCH<sub>2</sub>), 7.5 (d, J = 8.5 Hz, 2H, OCCCHC $H \times 2$ ), 7.84 (d, J = 8.5 Hz, 2H, OCCCH  $\times 2$ ); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.6, 13.7, 21.7, 22.5, 29.6, 29.7, 31 (3C), 32.3, 35.2, 36.9, 125.7 (2C), 129.4 (2C), 133.8, 136.4, 137.2, 157.5, 197.1; EI-MS *m/z*: 298 (12 %), 283 (11), 269 (12), 162 (12), 161 (100). HRMS calcd. for C<sub>21</sub>H<sub>31</sub>ClO-HCl: 298.2297; found: 298.2312.

(Z)-2-Butyl-3-chloro-1-(4-methoxyphenyl)hept-2-en-*1-one* (3g): yellow oil;  $R_f = 0.43$  (hexane/ethyl acetate 4:1);  $t_r$ 16.2; IR (cm<sup>-1</sup>): 1659, 1597, 1255, 1215, 1159, 1030, 845; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.73, 0.82 (2t, J = 7.3 and 7.1 Hz, respectively, 3H each one,  $CH_3 \times 2$ ), 1.05-1.2, 1.2-1.35, 1.35-1.5  $(3m, 2, 4 \text{ and } 2H, \text{ respectively, } CH_2 \times 4), 2.15 \text{ (t, } J = 7.4 \text{ Hz, } 2H,$  $CICCH_2$ ), 2.45 (t, J = 7.1 Hz, 2H,  $CICCCH_2$ ), 3.84 (s, 3H, OCH<sub>3</sub>), 6.92 (d, J = 8.8 Hz, 2H, OCCCHC $H \times 2$ ), 7.84 (d, J = 8.8Hz, 2H, OCCCH  $\times$  2); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.6, 13.6, 21.6, 22.4, 29.5, 29.6, 32.3, 36.8, 55.3, 113.9 (2C), 129.2, 131.7 (2C), 135.7, 137, 163.9, 195.8; EI-MS m/z: 272 (9 %), 243 (10), 135 (100), 77 (10). HRMS calcd. for C<sub>18</sub>H<sub>25</sub>ClO<sub>2</sub>-HCl: 272.1776; found: 272.1780.

4.3.8. (*Z*)-2-Butyl-3-chloro-1-(2-methoxyphenyl)hept-2-en-1-one (3h): pale yellow oil;  $R_f = 0.47$  (hexane/ethyl acetate 4:1);  $t_r$  15.1; IR (cm<sup>-1</sup>): 1656, 1597, 1484, 1463, 1435, 1288, 1246, 1162, 1024, 931, 754; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.81, 0.86 (2t, J = 7.3 and 7.2 Hz, respectively, 3H each one, CH<sub>3</sub> × 2), 1.15-1.25, 1.25-1.35, 1.35-1.45, 1.45-1.55 (4m, 2H each one, CH<sub>2</sub> × 4), 2.35 (t, J = 7.5 Hz, 2H, ClCCH<sub>2</sub>), 2.46 (t, J = 7.5 Hz, 2H, ClCCCH<sub>2</sub>), 3.86 (s, 3H, OCH<sub>3</sub>), 6.96 (d, J = 8.3 Hz, 1H, CH<sub>3</sub>OCCH, 7.02 (td, J = 7.6 Hz,  $^4J = 0.7$  Hz, 1H, CH<sub>3</sub>OCCHCH), 7.49 (td, J = 8.2, Hz,  $^4J = 1.7$  Hz, 1H, CH<sub>3</sub>OCCHCH), 7.62 (dd, J = 7.6 Hz,  $^4J = 1.7$  Hz, 1H, CH<sub>3</sub>OCCCHCH);  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.7, 13.8, 21.9, 22.5, 29.7, 29.9, 31.8, 36.6, 55.6, 111.7, 120.5, 127.9, 131.1, 133.8, 139.5, 139.8, 158.6, 196.5; EI-MS m/z: 308 (M<sup>+</sup>, 0.1 %), 135 (100), 77 (12). HRMS calcd. for  $C_{18}$ H<sub>25</sub>ClO<sub>2</sub>: 308.1543; found: 308.1515.

2.1

4.3.9. (*Z*)-2-Butyl-3-chloro-1-(4-fluoronaphthalen-1-yl)hept-2-en-1-one (3i): orange oil;  $R_f = 0.77$  (hexane/ethyl acetate 4:1);  $t_r$  18.3; IR (cm<sup>-1</sup>): 1661, 1627, 1599, 1463, 1424, 1243, 1214, 1050, 769; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.76, 0.89 (2t, J = 7.3 and 7.2 Hz, respectively, 3H each one,  $CH_3 \times 2$ ), 1.1-1.25, 1.3-1.4, 1.45-1.6 (3m, 2, 2 and 4H, respectively,  $CH_2 \times 4$ ), 2.30 (t, J = 7.4 Hz, 2H,  $CICCH_2$ ), 2.58 (t, J = 7.6 Hz, 2H,  $CICCCH_2$ ), 7.19 (dd,  $^3J_{(H,F)} = 9.6$  Hz, J = 8.3 Hz, 1H,  $FCCH_3$ ), 7.6-7.7 (m, 1H,  $FCCCHCH_3$ ), 7.9 (dd, J = 8.6 and 6.8 Hz,  $^4J_3 = 1.1$  Hz, 1H,  $FCCCHCH_3$ ), 7.9 (dd, J = 8.3 Hz,  $^4J_{(H,F)} = 5.6$  Hz,  $^4J_3 = 1.1$  Hz, 1H,  $^4J_3 = 1.1$  Hz, 1H,

4.3.10. (*Z*)-2-Butyl-3-chloro-1-(thiophen-2-yl)hept-2-en-1-one (3*j*): pale yellow oil;  $R_f = 0.67$  (hexane/ethyl acetate 4:1);  $t_r$  14.9; IR (cm<sup>-1</sup>): 1644, 1514, 1409, 1274, 1049, 722; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.79, 0.88 (2t, J=7.3 and 7.2 Hz respectively, 3H each one, CH<sub>3</sub> × 2), 1.15-1.25, 1.3-1.4, 1.4-1.45, 1.45-1.55 (4m, 2H each one, CH<sub>2</sub> × 4), 2.26 (t, J=7.2 Hz, 2H, ClCCH<sub>2</sub>), 2.52 (t, J=7.4 Hz, 2H, ClCCCH<sub>2</sub>), 7.15 (dd, J=4.9 and 3.8 Hz, 1H, SCHCH), 7.63 (dd, J=3.8 Hz, <sup>4</sup>J=1.1 Hz, 1H, SCCH), 7.72 (dd, J=4.9 Hz, <sup>4</sup>J=1.1 Hz, 1H, SCH); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.7, 13.8, 21.7, 22.5, 29.7, 29.8, 32.4, 37.1, 128.3, 134.3, 135.2, 137, 137.1, 144, 189.7; EI-MS m/z: 284 (M<sup>+</sup>, 9 %), 253 (19), 251 (57), 241 (12), 111 (100). HRMS calcd. for C<sub>15</sub>H<sub>21</sub>ClOS: 284.1002; found: 284.1028.

4.3.11. (*Z*)-3-Chloro-1-(4-methoxyphenyl)-2,3-diphenylpropen-1-one (3*k*): orange oil;  $R_f = 0.33$  (hexane/ethyl acetate 4:1);  $t_r = 22.5$ ; IR (cm<sup>-1</sup>): 1604, 1509, 1346, 1249, 1175, 1028, 753, 696; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  3.83 (s, 3H, OCH<sub>3</sub>), 6.92 (d, J = 8.9 Hz, 2H, OCCH × 2), 7.15-7.4 (m, 12H, Ph × 2 and OCCHCH × 2); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  55.2, 114.1 (2C), 121.2, 122.7, 127.5 (2C), 128 (2C), 129.8 (2C), 130.2 (2C), 131, 131.1, 131.6, 133.2 (2C), 145.1, 155.1, 160.4, 196.4; EI-MS m/z: 313 (25 %), 312 (100), 311 (24), 281 (22), 268 (11), 240 (10), 239 (29). HRMS calcd. for  $C_{22}H_{17}ClO_2$ -HCl: 312.1150; found: 312.1113.

 $\begin{array}{llll} 4.3.12. & (Z)\text{-}4\text{-}Butyl\text{-}5\text{-}chloro\text{-}1\text{-}phenylnon\text{-}4\text{-}en\text{-}3\text{-}one } & and \\ & (E)\text{-}4\text{-}Butyl\text{-}5\text{-}chloro\text{-}1\text{-}phenylnon\text{-}4\text{-}en\text{-}3\text{-}one } & [(Z)\text{-}3l/(E)\text{-}4l\text{:} \\ & 3/l]\text{:} \text{ brown oil; } R_f = 0.73 \text{ (hexane/ethyl acetate }4\text{:}1\text{); } t_r 15.6; \text{ IR } (\text{cm}^{-1})\text{: }1697, 1603, 1496, 1454, 747, 698; $^{1}\text{H-NMR}$ (300 MHz, CDCl_3)\text{: }\delta 0.85\text{-}1 \text{ (m, 8H, CH}_3 \times 4\text{), }1.2\text{-}1.6 \text{ (m, }11\text{H, CH}_2 \times 8\text{), }2.15\text{-}2.45 \text{ (m, 5H, CH}_2 \times 4\text{), }2.85\text{-}3 \text{ (m, 5H, CH}_2 \times 4\text{), }7.2\text{-}7.35} \\ & (\text{m, 7H, Ph} \times 2\text{); $^{13}\text{C-NMR}$ (75 MHz, CDCl_3)\text{: }\delta 13.7, 13.8, 13.9, \\ & 13.9, 21.9, 22, 22.4, 22.5, 29.5, 29.7, 29.8, 29.8, 29.9, 30.2, 30.6, \\ & 30.9, 34.6, 36.6, 43.9, 44.6, 126, 126.2, 128.3 \text{ (2C), }128.4 \text{ (2C), }128.4 \text{ (2C), }128.4 \text{ (2C), }128.5 \text{ (2C), }132, 138.8, 139.2, 140.1, 140.8, 141.1, \\ & 204.2 \text{ (C=O, }Z\text{), }206.2 \text{ (C=O, }E\text{); EI-MS }m/z\text{: }270 \text{ (19 \%), }241 \\ & (42), 180 \text{ (13), }179 \text{ (100), }166 \text{ (12), }137 \text{ (39), }105 \text{ (66), }91 \text{ (63).} \\ & \text{HRMS calcd. for }C_{19}H_{27}\text{CIO-HCl: }270.1984\text{; found: }270.1973. \\ \end{array}$ 

4.3.13. (*Z*)-2-Butyl-3-chloro-1-(naphthalen-1-yl) hept-2-en-1-one (3m): orange oil;  $R_f = 0.73$  (hexane/ethyl acetate 4:1);  $t_r$  18.8; IR (cm<sup>-1</sup>): 1699, 1582, 1519, 1458, 1259, 1069, 1019, 822, 797; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.96, 1.01 (2t, J = 7.2 and 7.3 Hz, respectively, 3H each one,  $CH_3 \times 2$ ), 1.35-1.45, 1.45-1.55, 1.6-1.7 (3m, 2, 4 and 2H, respectively,  $CH_2 \times 4$ ), 2.28, 2.59 (2t, J = 7.2 and 7.5 Hz, respectively, 2H each one,  $CCH_2 \times 2$ ), 7.25-7.35, 7.45-7.5, 7.7-7.75, 7.85-7.9, 8.65-8.7 (5m, 3, 1, 1, 1 and 1H, respectively,  $CT_2 \times 2$ ),  $CT_2 \times 2$ 0,  $CT_2 \times 2$ 1,  $CT_2 \times 2$ 2,  $CT_2 \times 2$ 3, 128.2, 128.8 (2C), 133.4, 133.9, 134, 147, 155.6, 200.8;  $CT_2 \times 2$ 3, 25.9, 30, 31.7, 117.7, 122.8, 123.5, 125.3, 128.2, 128.8 (2C), 133.4, 133.9, 134, 147, 155.6, 200.8;  $CT_2 \times 2$ 4, 250 (39), 249 (100), 236 (20), 235 (19), 221 (11), 208 (23), 207 (79), 202 (11), 195 (18), 194 (52), 193 (85), 191 (19), 190 (10), 189 (19), 179 (49), 178 (62), 177 (11), 176 (15), 165 (41), 152 (16). HRMS calcd. for  $CT_2 \times 2$ 1, 182.7; found: 292.1834.

4.3.14. (*E*)-2-Butyl-3-chloro-1-phenylhept-2-en-1-one (4a): pale yellow oil;  $R_f = 0.73$  (hexane/ethyl acetate 4:1);  $t_r$  14.6; IR (cm<sup>-1</sup>): 1668, 1636, 1596, 1579, 1465, 1448, 1268, 1213, 935, 720, 690;  $^1$ H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.89, 0.99 (2t, J = 7.6 and 7.3 Hz, respectively, 3H each one, CH<sub>3</sub> × 2), 1.3-1.55, 1.6-1.7 (2m, 6 and 2H, respectively, CH<sub>2</sub> × 4), 2.35-2.4, 2.45-2.5 (2m, 2H each one, CCH<sub>2</sub> × 2), 7.45-7.5 (m, 2H, OCCCHCH × 2), 7.55-7.65 (m, 1H, OCCCHCHCH), 7.85-7.95 (m, 2H, OCCCHC × 2);  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.7, 13.9, 22.2, 22.6, 29.6, 30.5, 31.4, 34.5, 128.7 (2C), 129.4 (2C), 133.4, 135.7, 136.6, 137, 197.3; EI-MS m/z: 280 (M $^+$ +2, 11 %), 279 (M $^+$ +1, 10), 278 (M $^+$ , 33), 277 (11), 243 (32), 235 (17), 201 (11), 199 (12), 187 (11), 179 (18), 145 (14), 105 (100), 77 (50). HRMS calcd. for  $C_{17}H_{23}$ ClO: 278.1437; found: 278.1428.

4.3.15. (*Z*)-3-Bromo-2-butyl-1-phenylhept-2-en-1-one (6): brown oil;  $R_f = 0.77$  (hexane/ethyl acetate 4:1);  $t_r$  14.3; IR (cm<sup>-1</sup>): 1668, 1631, 1596, 1580, 1463, 1449, 1313, 1264, 1211, 934, 716, 688; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.68, 0.78 (2t, J = 7.3 and 7.1 Hz, respectively, 3H each one, CH<sub>3</sub> × 2), 1.1-1.15, 1.15-1.35, 1.35-1.5 (3m, 2, 4 and 2H, respectively, CH<sub>2</sub> × 4), 2.20 (t, J = 7.3 Hz, 2H, ClCCH<sub>2</sub>), 2.41 (t, J = 7.2 Hz, 2H, ClCCCH<sub>2</sub>), 7.35-7.45 (m, 2H, OCCCHCH × 2), 7.45-7.55 (m, 1H, OCCCHCHCH), 7.8-7.85 (m, 2H, OCCCH × 2); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.6, 13.7, 21.6, 22.4, 29.4, 30.6, 35.3, 38.9, 128.7 (2C), 129.4 (2C), 130.4, 133.7, 136, 139.8, 197.1; EI-MS m/z: 243 (1 %), 242 (5), 213 (12), 105 (100), 77 (29). HRMS calcd. for  $C_{17}H_{23}BrO$ : 322.0932; found: 322.0910.

4.3.16. cis-2,3-Dibutyl-5-chloro-4-phenylcyclopent-2-enone (8a): yellow oil;  $R_f = 0.63$  (hexane/ethyl acetate 4:1);  $t_r$  16.5; IR (cm<sup>-1</sup>): 1714, 1632, 1603, 1496, 1455, 1346, 751, 700;  $^1H$ -NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.76 (t, J = 7.1 Hz, 3H,  $OCCCH_2CH_2CH_2CH_3$ ), 0.86 (t, J = 7.2 Hz, OCCCCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.1-1.45 (m, 8H, CH<sub>2</sub> × 4), 1.9 (ddd,  ${}^{2}J$ = 14 Hz, J = 8.7 and 5.3 Hz, 1H, OCCCCH<sub>2</sub>), 2.15-2.3 (m, 2H, OCCCH<sub>2</sub>), 2.41 (ddd,  $^2J = 14$  Hz, J = 9.4 and 6.2 Hz, 1H, OCCCCH<sub>2</sub>), 3.90 (d, J = 2.7 Hz, 1H, OCCHCH), 3.98 (d, J = 2.7Hz, 1H, OCCH), 7-7.05 (m, 2H, CICHCHCCH × 2), 7.15-7.3 (m, 3H, CICHCHCCHC $H \times 2$  and CICHCHCCHCHCH); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): δ 13.6, 13.8, 22.5, 22.6, 23.3, 28.5, 29.1, 30.6, 57.7, 62.1, 127.5 (2C), 127.8, 129.1 (2C), 138.9, 139.9, 172.6, 201.1; EI-MS m/z: 306 (M<sup>+</sup>+2, 18 %), 305 (M<sup>+</sup>+1, 12), 304 (M<sup>+</sup>, 54), 277 (24), 276 (14), 275 (71), 270 (21), 269 (100), 247 (13), 227 (13), 185 (11), 183 (11), 155 (14), 153 (10), 141 (21), 129 (17), 128 (14), 115 (17), 103 (12), 91 (32), 77 (13). HRMS calcd. for C<sub>19</sub>H<sub>25</sub>ClO: 304.1594; found: 304.1645.

3

7

9

13

15

16

17

18

19

20

2.1

22

23 24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

4.3.17. *cis-5-Chloro-2,3-diethyl-4-phenylcyclopent-2-enone* (*8b*): yellow oil;  $R_f = 0.37$  (hexane/ethyl acetate 4:1);  $t_r$  14.5; IR (cm<sup>-1</sup>): 1713, 1633, 1603, 1495, 1455, 1354, 760, 728, 700; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.99 (t, J=7.6 Hz, 3H, OCCCCH<sub>2</sub>CH<sub>3</sub>), 1.1 (t, J=7.6 Hz, 3H, OCCCCH<sub>2</sub>CH<sub>3</sub>), 2.02 (dq,  $^2J=14.5$  Hz, J=7.6 Hz, 1H, OCCCCH<sub>2</sub>), 2.35 (q, J=7.6 Hz, 1H, OCCCCH<sub>2</sub>), 4.01 (d, J=2.7 Hz, 1H, OCCHCH), 4.08 (d, J=2.7 Hz, 1H, OCCCH), 7.1-7.15 (m, 2H, CICHCHCCH $\times$  2), 7.3-7.4 (m, 3H, CICHCHCCHCH  $\times$  2 and CICHCHCCHCHCH); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  11.7, 13.1, 16.8, 21.9, 57.4, 62.2, 127.5 (2C), 127.8, 129.1 (2C), 138.7, 140.7, 173.4, 201; EI-MS m/z: 250 (M<sup>+</sup>+2, 14 %), 248 (M<sup>+</sup>, 42), 219 (11), 214 (16), 213 (100), 185 (16), 143 (14), 141 (12), 129 (28), 128 (15), 115 (17), 91 (16), 77 (14). HRMS calcd. for  $C_{15}H_{17}$ CIO: 248.0968; found: 248.0930.

4.3.18. cis-5-Chloro-2,3-dipentyl-4-phenylcyclopent-2-enone (8c): yellow oil;  $R_f = 0.63$  (hexane/ethyl acetate 4:1);  $t_r$  17.5; IR ): 1715, 1632, 1603, 1496, 1455, 1358, 748, 728, 700; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.83, 0.91 (2t, J = 6.9 Hz each one, 3H each one, CH<sub>3</sub> × 2), 1.15-1.25, 1.25-1.4, 1.4-1.55 (3m, 4H each one, CH<sub>2</sub> × 6), 1.98 (ddd,  ${}^2J$  = 13.8 Hz, J = 9.2 and 5.3 Hz, 1H, OCCCCH<sub>2</sub>), 2.2-2.4 (m, 2H, OCCCH<sub>2</sub>), 2.47 (ddd,  $^2J = 13.8$ , Hz, J = 9.4 and 6.6 Hz, 1H, OCCCCH<sub>2</sub>), 3.98 (d, J = 2.7 Hz, 1H, OCCHCH), 4.06 (d, J = 2.7 Hz, 1H, OCCH), 7.1-7.15 (m, 2H, CICHCHCCH  $\times$  2), 7.3-7.4 (m, 3H, CICHCHCCHCH  $\times$  2 and CICHCHCCHCHCH); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.7, 13.9, 22.2, 22.4, 23.5, 26.6, 28.1, 28.8, 31.5, 31.7, 57.8, 62.1, 127.5 (2C), 127.8, 129.1 (2C), 138.9, 139.9, 172.6, 201.1; EI-MS m/z: 334 (M<sup>+</sup>+2, 18 %), 333 (M<sup>+</sup>+1, 13), 332 (M<sup>+</sup>, 52), 298 (24), 297 (100), 291 (27), 290 (16), 289 (79), 263(14), 261 (39), 241 (18), 185 (14), 183 (15), 165 (10), 155 (17), 153 (13), 141 (26), 129 (18), 128 (17), 115 (19), 103 (14), 91 (44), 77 (14). HRMS calcd. for C<sub>21</sub>H<sub>29</sub>ClO: 332.1907; found: 332.1912.

4.3.19. cis-3-(tert-Butyl)-5-chloro-2-methyl-4-phenylcyclopent-2-enone (8d): pale yellow oil;  $R_f = 0.73$  (hexane/ethyl acetate 4:1);  $t_r$  14.7; IR ( $cm^-$ ): 1713, 1636, 1603, 1495, 1484, 1455, 1313, 1143, 1022, 966, 759, 700;  ${}^1H$ -NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.37 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 2 (d,  ${}^5J = 0.7$  Hz, 3H, CH<sub>3</sub>), 3.79 (dd, J = 2.8 Hz,  ${}^5J = 0.7$  Hz, 1H, OCCHCH), 3.99 (d, J = 2.8 Hz, 1H, OCCH), 7.1-7.15, 7.3-7.4 (2m, 2 and 3H, respectively, Ph);  ${}^{13}C$ -NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  18.3, 29.5 (3C), 34, 60.6, 62.2, 127.6 (2C), 127.9, 129.2 (2C), 139.3, 145.3, 166,

200.8; EI-MS m/z: 264 (M<sup>+</sup>+2, 16 %), 262 (M<sup>+</sup>, 47), 247 (16), 228 (18), 227 (100), 200 (15), 199 (91), 185 (17), 183 (12), 169 (13), 165 (13), 157 (16), 155 (12), 153 (11), 143 (15), 142 (12), 141 (19), 129 (15), 128 (21), 115 (15), 105 (18), 103 (14), 91 (26), 77 (18). HRMS calcd. for  $C_{16}H_{19}CIO$ : 262.1124; found: 262.1080.

4.3.20. trans-3-(tert-Butyl)-5-chloro-2-methyl-4-phenylcyclopent-2-enone (8d'): pale yellow oil;  $R_f = 0.67$  (hexane/ethyl acetate 4:1);  $t_r$  14.8; IR (cm<sup>-1</sup>): 1712, 1649, 1602, 1494, 1479, 1465, 1241, 703; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.13 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 2.08 (d,  ${}^5J$  = 1.6 Hz, 3H, CH<sub>3</sub>), 3.83 (d, J = 1 Hz, 1H, OCCH), 4.15-4.2 (m, 1H, OCCHCH), 7.05-7.15, 7.25-7.35 (2m, 2 and 3H, respectively, Ph); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  11.1, 29 (3C), 36.1, 58.4, 59.5, 127.2 (2C), 127.7, 129.1 (2C), 135, 140.6, 178.4, 203.4; EI-MS m/z: 262 (M<sup>+</sup>, 21%), 247 (11), 228 (11), 227 (61), 205 (11), 169 (11), 141 (17), 128 (10), 125 (10), 124 (100), 123 (14), 115 (12), 109 (50), 103 (11), 91 (15), 81 (24), 77 (14). HRMS calcd. for  $C_{16}H_{19}$ CIO: 262.1124; found: 262.1116.

4.3.21. cis-2,3-Dibutyl-5-chloro-4-(4-fluorophenyl)cyclopent-2-enone (8e): yellow oil;  $R_f=0.67$  (hexane/ethyl acetate 4:1);  $t_r$  16.3; IR (cm<sup>-1</sup>): 1715, 1633, 1605, 1508, 1464, 1458, 1348, 1227, 1159, 1097, 823, 789, 733; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.85 (t, J=7.1 Hz, 3H, OCCCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 0.94 (t, J=7.1 Hz, 3H, OCCCCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 2.2-2.35 (m, 2H, OCCCH<sub>2</sub>), 2.49 (ddd, <sup>2</sup>J=13.7 Hz, J=9.2 and 5.7 Hz, 1H, OCCCCH<sub>2</sub>), 3.97 (d, J=2.8 Hz, 1H, OCCHCH), 4.01 (d, J=2.8 Hz, 1H, OCCH), 7-7.15 (m, 4H, ArH × 4); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  2.8, 3, 13.2, 13.3, 14.1, 20.1, 20.9, 22.6, 53.6, 59.6, 122.9 (d, J=2.8 Hz, 1H, OCCH), 3.8 Hz, 151.1, 177 (d, J=2.8 Hz, 16, (d, J=2.8 Hz, 17), 151.1, 177 (d, J=2.8 Hz, 188.5, 222.1; EI-MS m/z: 324 (d, J=2.8 Hz, 16 %), 323 (d, J=2.8 Hz), 188.5, 225.1; EI-MS d, J=2.8 Hz, 110, 159 (20), 147 (12), 146 (13), 133 (14), 109 (34), 91 (14). HRMS calcd. for  $C_{19}H_{24}$ CIFO: 322.1500; found: 322.1489.

#### 4.3.22. cis-2,3-Dibutyl-5-chloro-4-(4-

methoxyphenyl)cyclopent-2-enone (8f): pale yellow oil;  $R_f = 0.53$  (hexane/ethyl acetate 4:1);  $t_r$  18.1; IR (cm<sup>-1</sup>): 1713, 1631, 1611, 1511, 1463, 1249, 1176, 1033, 820;  ${}^{1}H$ -NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.85, 0.94 (2t, J = 7.1 Hz each one, 3H each one,  $CH_2CH_3 \times 2$ ), 1.15-1.5 (m, 8H,  $CH_2 \times 4$ ), 1.99 (ddd,  ${}^{2}J = 13.8$  Hz, J = 8.8 and 5 Hz, 1H, OCCCCH<sub>2</sub>), 2.2-2.4 (m, 2H, OCCCH<sub>2</sub>), 2.48 (ddd,  ${}^{2}J = 13.8$  Hz, J = 9.3 and 6.1 Hz, 1H, OCCCCH<sub>2</sub>), 3.81 (s, 3H, OCH<sub>3</sub>), 3.93 (d, J = 2.7 Hz, 1H, OCCHCH), 4.02 (d, J = 2.7 Hz, 1H, OCCH,  $\delta$ .89 (d, J = 8.6 Hz, 2H,  $\delta$ .70 (d, J = 8.6 Hz, 2H,  $\delta$ .71 (d)  $\delta$ .89 (d, J = 8.6 Hz, 2H,  $\delta$ .71 (Hz,  $\delta$ .71 (Hz,  $\delta$ .72 (Hz,  $\delta$ .73 (Hz,  $\delta$ .74 (Hz,  $\delta$ .75 (Hz,  $\delta$ .75 (Hz,  $\delta$ .75 (Hz,  $\delta$ .77 (Hz), 305 (Hz), 306 (33), 299 (100), 279 (16), 277 (47), 271 (19), 269 (14), 255 (17), 243 (11), 207 (30), 171 (11), 121 (29). HRMS calcd. for  $C_{20}H_{27}CIO_2$ : 334.1700; found: 334.1666.

4.3.23. 2-Methyl-3-phenyl-1H-cyclopenta[a]naphthalen-1-one (10a): orange solid; m.p. 117-120 °C (hexane);  $R_f = 0.63$  (hexane/ethyl acetate 4:1);  $t_r$  19.7; IR (cm<sup>-1</sup>): 1698, 1628, 1581, 1565, 1519, 1440, 1329, 1217, 1066, 834, 753, 701; <sup>1</sup>H-NMR

(300 MHz, CDCl<sub>3</sub>):  $\delta$  1.95 (s, 3H, CH<sub>3</sub>), 7.25 (d, J = 8.1 Hz, 1H, OCCCCHCHC), 7.34 (t, J = 8.5 Hz, 1H, OCCCCHCHCH), 7.45-7.6 (m, 6H, Ph and OCCCCHCHCH), 7.69 (d, J = 8.3 Hz, 1H, OCCCCCHCHCH), 7.78 (d, J = 8.1 Hz, 1H, OCCCCHCHC), 8.77 (d, J = 8.5 Hz, 1H, OCCCCHCHCH);  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>): δ 8.4, 118.8, 122.7, 123.5, 125.5, 127.9 (2C), 128.2, 3 128.6 (2C), 128.9 (2C), 129.1, 129.7, 132.6, 133.7, 133.9, 147, 152.7, 200.1; EI-MS m/z: 271 (M<sup>+</sup>+1, 20 %), 270 (M<sup>+</sup>, 100), 269 (41), 253 (11), 242 (22), 241 (46), 240 (17), 239 (46), 226 (13), 215 (15), 120 (17). HRMS calcd. for C<sub>20</sub>H<sub>14</sub>O: 270.1045; found: 7 270.1037. Crystal data:  $C_{20}H_{14}O$ , M = 270.31; Crystal size max = 0.25, mid = 0.24, min = 0.03; Monoclinic, space group P21/c, a =12.714 (17), b = 13.994 (18), c = 8.433 (11) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 108.49^{\circ}$  (3),  $\gamma = 90^{\circ}$ ; V = 1423 (3) Å<sup>3</sup>;  $\rho_{\text{calcd}} = 1.262$  g/cm<sup>3</sup>;  $2\theta_{\text{max}} = 50.42$ ; radiation type: Mo,  $\lambda = 0.71073$  Å; data collection based 10 on three  $\omega$ -scan runs (starting  $\omega = -34^{\circ}$ ) at values  $\Phi = 0^{\circ}$ , 120°, 240° with the detector at  $2\theta = -32$ °. An additional run of 100 13 frames, at  $2\theta = -32^{\circ}$ ,  $\omega = -34^{\circ}$  and  $\Phi = 0^{\circ}$ , was acquired to 14 improve redundancy. For each of these runs, 606 frames were 15 collected at 0.3° intervals and 30 s per frame.  $T = 25\pm1$ °C, 16 measured and independent reflections = 2522, reflections 17 included in refinement = 10535, I >  $2/\sigma$ . The diffraction frames were integrated using the program SAINT and the integrated 18 intensities were corrected for Lorentz-polarization effects with 19 SADABS,  $\mu = 0.076$ , transmission min = 0.7266, transmission 2.0 max = 0.9977. The structure was solved by direct methods and 2.1 refined to unique F<sup>2</sup> by full matrix least squares. No. of 22 parameters = 192 All of the hydrogen atoms were placed at 23 idealized positions and retained as rigid atoms. R = 0.0718, wR = 24 0.1323, residual electron density = 0.519. All results were 25 deposited at Cambridge Crystallographic Data Centre.

4.3.24. 2-Butyl-3-phenyl-1H-cyclopenta[a]naphthalen-1-one (10b): orange oil;  $R_f = 0.6$  (hexane/ethyl acetate 4:1);  $t_r$  21.8; IR (cm<sup>-1</sup>): 1697, 1628, 1579, 1518, 1492, 1441, 1367, 1334, 1158, 1088, 1049, 1023, 827, 799, 744, 698; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.85 (t, J = 7.3 Hz, 3H, CH<sub>3</sub>), 1.25-1.4, 1.45-1.55 (2m, 2H each one,  $CH_2 \times 2$ ), 2.33 (t, J = 7.5 Hz, 2H,  $CCH_2$ ), 7.15 (d, J= 8.1 Hz, 1H, OCCCCHCHC), 7.29 (ddd, J = 8.3 and 6.8 Hz,  ${}^{4}J$ = 1.2 Hz, 1H, OCCCCHCHCH), 7.4-7.55 (m, 6H, Ph and OCCCCHCHCH), 7.65 (d, J = 8.4 Hz, 1H, OCCCCCHCHCH), 7.74 (d, J = 8.1 Hz, 1H, OCCCCHCHC), 8.73 (dd, J = 8.3 Hz, = 0.9 Hz, 1H, OCCCCHCHCH);  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$ 13.8, 22.8, 22.9, 31.6, 118.9, 122.5, 123.5, 125.5, 127.7 (2C), 128.3, 128.7 (2C), 128.9, 129, 129.1, 132.9, 133.8, 134.1, 134.3, 147.2, 153.1, 200.3; EI-MS m/z: 313 (M<sup>+</sup>+1, 20 %), 312 (M<sup>+</sup>, 80), 271 (10), 270 (47), 269 (100), 268 (10), 257 (13), 256 (19), 252 (18), 251 (14), 250 (12), 241 (20), 240 (21), 239 (63), 226 (12). HRMS calcd. for C<sub>23</sub>H<sub>20</sub>O: 312.1514; found: 312.1470.

26

27

28

29

30

31

32

33

34

35

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57

58

59

60

61

4.3.25. 2-Methyl-3-(p-tolyl)-1H-cyclopenta[a]naphthalen-1one (10c): brown oil;  $R_f = 0.5$  (hexane/ethyl acetate 4:1);  $t_r = 20.9$ ; IR (cm<sup>-1</sup>): 1697, 1621, 1580, 1509, 1439, 1377, 1329, 1239, 1187, 1158, 1064, 913, 825, 811, 757; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.93 (s, 3H, OCCCH<sub>3</sub>), 2.45 (s, 3H, CHCCH<sub>3</sub>), 7.29 (d, J = 8.1 Hz, 1H, OCCCCHCHC), 7.3-7.35 (m, 3H, CH<sub>3</sub>CCH ×2 and OCCCCHCHCH), 7.42 (d, J = 8.2 Hz, 2H, CH<sub>3</sub>CCHCH × 2), 7.50 (ddd, J = 8.5 and 6.8 Hz,  ${}^4J = 1.3$  Hz, 1H, 2), 7.50 (ddd, J = 8.5 and 6.8 Hz, OCCCCHCHCH), 7.7 (d, J = 8.5 Hz, 1H, OCCCCCHCHCH), 7.81 (d, J = 8.1 Hz, 1H, OCCCCHCHC), 8.75 (dd, J = 8.5 Hz,  ${}^4J = 1.3$  Hz, 1H, OCCCCHCHCH);  ${}^{13}\text{C-NMR}$  (75 MHz, CDCl<sub>3</sub>):  $\delta$ 8.5, 21.5, 118.9, 123, 123.7, 125.6, 128 (2C), 128.3, 129, 129.2, 129.4, 129.5, 129.4 (2C), 129.5, 129.9, 133.7, 134, 139.2, 147.3, 153, 200.4; EI-MS *m/z*: 285 (M<sup>+</sup>+1, 23 %), 284 (M<sup>+</sup>, 100), 283 (29), 269 (38), 255 (12), 252 (10), 241 (18), 240 (15), 239 (37), 207 (17), 119 (11). HRMS calcd. for C<sub>21</sub>H<sub>16</sub>O: 284.1201; found: 284.1237.

4.3.26. *(E)-2-Ethyl-3-ethylidene-2,3-dihydro-1H*cyclopenta[a]naphthalen-1-one (11a): pale yellow solid; m.p. 94-96 °C;  $R_f = 0.5$  (hexane/ethyl acetate 4:1);  $t_r$  16.8; IR (cm<sup>-1</sup> 1687, 1620, 1587, 1513, 1440, 1186, 815, 748; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.81 (t, J = 7.5 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.95-2.05 (m with d at 2, J = 7.2 Hz, 1 and 3H, respectively,  $CH_2CH_3$  and CHC $H_3$ ), 2.15-2.25 (m, 1H, C $H_2$ CH $_3$ ), 3.3-3.35 (m 1H, CHCH $_2$ CH $_3$ ), 6.45 (qd, J = 7.2 Hz,  $^4J = 1.6$  Hz, 1H, CHCH $_3$ ), 7.54 (ddd, J = 8.1 and 7 Hz,  ${}^4J = 1.3$  Hz, 1H, OCCCCHCHCH), 7.68 (ddd, J = 8.4 and 7 Hz,  ${}^4J = 1.4$  Hz, 1H, OCCCCHCHCH), 7.75 (d, J = 8.6 Hz, 1H, CH<sub>3</sub>CHCCCH), 7.87 (d, J = 8.1 Hz, 1H, OCCCCCHCHCH), 8.01 (d, J = 8.6 Hz, 1H, CH<sub>3</sub>CHCCCHCH), 9.19 (d, J = 8.4 Hz, 1H, OCCCCHCHCH); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 8 9.2, 15.1, 23.7, 50.2, 117.9, 120.3, 124.8, 126.6, 128, 129, 129.1, 129.5, 133, 135.7, 137.2, 152.9, 207; EI-MS m/z: 236  $(M^+, 36\%), 209(17), 208(100), 193(16), 179(21), 178(42),$ 165 (22). HRMS calcd. for C<sub>17</sub>H<sub>16</sub>O: 236.1201; found: 236.1179. Crystal data:  $C_{17}H_{16}O$ , M = 236.30; Crystal size max = 0.16, mid = 0.14, min = 0.04; Triclinic, space group P1, a = 5.268 (4), b =7.674 (6), c = 25.24 (2) Å,  $\alpha = 86.224^{\circ}$  (13),  $\beta = 84.914^{\circ}$  (14),  $\gamma = 71.474^{\circ}$  (14); V = 9630 (13) Å<sup>3</sup>;  $\rho_{\text{calcd}} = 1.222$  g/cm<sup>3</sup>;  $2\theta_{\text{max}} = 50.1$ ; radiation type: Mo,  $\lambda = 0.71073$  Å; data collection based on three  $\omega$ -scan runs (starting  $\omega = -34^{\circ}$ ) at values  $\Phi = 0^{\circ}$ , 120°, 240° with the detector at  $2\theta = -32^{\circ}$ . An additional run of 100 frames, at  $2\theta =$ -32°,  $\omega = -34^{\circ}$  and  $\Phi = 0^{\circ}$ , was acquired to improve redundancy. For each of these runs, 606 frames were collected at 0.3° intervals and 30 s per frame.  $T = 24\pm1^{\circ}\text{C}$ , measured and independent reflections = 6371, reflections included in refinement = 8052, I >  $2/\sigma$ . The diffraction frames were integrated using the program SAINT and the integrated intensities were corrected for Lorentzpolarization effects with SADABS,  $\mu = 0.074$ , transmission min = 0.828, transmission max = 0.997. The structure was solved by direct methods and refined to unique F<sup>2</sup> by full matrix least squares. No. of parameters = 493 All of the hydrogen atoms were placed at idealized positions and retained as rigid atoms. R = 0.0718, wR = 0.1323, residual electron density = 0.161. All results were deposited at Cambridge Crystallographic Data Centre.

4.3.27. (E)-2-Butyl-3-butylidene-2,3-dihydro-1Hcyclopenta[a]naphthalen-1-one (11b): orange oil;  $R_f = 0.57$ (hexane/ethyl acetate 4:1); t<sub>r</sub> 19.1; IR (cm<sup>-1</sup>): 1693, 1621, 1587, 1514, 1456, 1439, 1184, 821, 750; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.83, 1.05 (2t, J = 7 and 7.4 Hz, respectively, 3H each one, CH<sub>3</sub>  $\times$  2), 1.2-1.35, 1.55-1.65 (2m, 4 and 2H, respectively, CH<sub>2</sub>  $\times$  3), 1.85-1.95, 2.05-2.15 (2m, 1H each one, OCCHCH<sub>2</sub>), 2.25-2.45 (m, 2H, OCCHCCHC $H_2$ ), 3.3-3.4 (m 1H, OCCH), 6.36 (td, J =7.6 Hz,  ${}^{4}J = 1.5$  Hz, 1H, OCCHCCH, 7.55 (t, J = 7.5 Hz, 1H, OCCCCHCHCH), 7.68 (t, J = 7.5 Hz, 1H, OCCCCHCHCH), 7.78 (d, J = 8.6 Hz, 1H, OCCCCHCHC), 7.88 (d, J = 8.2 Hz, 1H, OCCCCCHCHCH), 8.03 (d, J = 8.6 Hz, 1H, OCCCCHCHC), 9.19 (d, J = 8.4 Hz, 1H, OCCCCHCHCH); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 8 13.8, 14, 22.8, 23, 26.9, 30.9, 31.6, 49.6, 118.1, 124.9, 125.8, 126.6, 128.1, 129.1, 129.2, 129.5, 133.1, 135.7, 136.7, 152.8, 207.1; EI-MS m/z: 292 (M<sup>+</sup>, 23 %), 250 (23), 249 (17), 237 (19), 236 (100), 221 (19), 209 (11), 208 (63), 207 (28), 194 (32), 191 (12), 189 (11), 179 (31), 178 (39), 165 (26), 152 (11). HRMS calcd. for  $C_{21}H_{24}O$ : 292.1827; found: 292.1807.

4.3.28. (*E*)-2-Pentyl-3-pentylidene-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one (*IIc*): pale yellow oil;  $R_f = 0.67$  (hexane/ethyl acetate 4:1);  $t_r$  21; IR (cm<sup>-1</sup>): 1693, 1620, 1587, 1515, 1457, 1439, 1183, 822, 751; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.8, 0.96 (2t, J = 6.9 and 7.2 Hz, respectively, 3H each one, CH<sub>3</sub> × 2), 1.1-1.35, 1.4-1.45, 1.5-1.55 (3m, 6, 2 and 2H,

respectively, CH<sub>2</sub> × 5), 1.8-1.9, 2.05-2.15 (2m, 1H each one, OCCHC $H_2$ ), 2.3-2.4 (m, 2H, OCCHCCHC $H_2$ ), 3.25-3.35 (m 1H, OCCH), 6.33 (dt, J = 7.6 Hz,  ${}^4J = 1.5$  Hz, 1H, OCCHCCH), 7.53 (ddd, J = 8.1 and 7.1 Hz,  ${}^4J = 1.2$  Hz, 1H, OCCCCHCHCH), 7.65 (ddd, J = 8.3 and 7.1 Hz,  ${}^4J = 1.2$  Hz, 1H, OCCCCHCHC), 7.85 (d, J = 8.1 Hz, 1H, OCCCCHCHCH), 8.01 (d, J = 8.7 Hz, 1H, OCCCCHCHCH), 9.15 (d, J = 8.3 Hz, 1H, OCCCCHCHCH);  ${}^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  14 (2C), 22.4, 22.6, 24.4, 29.3, 31.2, 31.7, 32.1, 49.6, 118.1, 124.9, 126.1, 126.6, 128.1, 129.1, 129.2, 129.5, 133.1, 135.7, 136.6, 152.8, 207.1; EI-MS m/z: 320 ( $M^+$ , 17%), 264 (19), 263 (18), 251 (12), 250 (60), 249 (10), 221 (14), 209 (18), 208 (100), 207 (24), 195 (12), 194 (31), 191 (14), 189 (13), 182 (23), 179 (35), 178 (46), 165 (29), 152 (11). HRMS calcd. for C<sub>23</sub>H<sub>28</sub>O: 320.2140; found: 320.2159.

4.3.29. I,I,2,3-Tetramethylphenanthren-4-(1H)-one (12): pale yellow oil;  $R_f = 0.53$  (hexane/ethyl acetate 4:1);  $t_r$  17.1; IR (cm<sup>-1</sup>): 1701, 1633, 1616, 1595, 1508, 1457, 1378, 1284, 1071, 827, 757;  ${}^{1}$ H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.54 (s, 6H, C(CH<sub>3</sub>)<sub>2</sub>), 2.09 (q,  ${}^{5}J = 0.8$  Hz, 3H, OCCCH<sub>3</sub>), 2.11 (q,  ${}^{5}J = 0.8$  Hz, 3H, OCCCH<sub>3</sub>), 7.53 (ddd, J = 8.1 and 6.8 Hz,  ${}^{4}J = 1.2$  Hz, 1H, OCCCCHCHCH), 7.64 (ddd, J = 8.3 and 6.8 Hz,  ${}^{4}J = 1.6$  Hz, 1H, OCCCCHCHCH), 7.67 (d, J = 8.8 Hz, 1H, OCCCCHCHC), 7.83 (d, J = 8 Hz, 1H, OCCCCHCHCH), 7.99 (d, J = 8.8 Hz, 1H, OCCCCHCHCH);  ${}^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  12.3, 16.7, 28 (2C), 40.8, 124, 124.7, 126.1, 127.7, 127.9, 128.4, 131.1, 132, 132.3, 133, 152.4, 155.1, 186.8; EI-MS m/z: 251 (M $^{+}$ +1, 20 %), 250 (M $^{+}$ , 100), 236 (16), 235 (85), 222 (19), 221 (11), 220 (19), 209 (36), 208 (21), 207 (90), 193 (10), 192 (54), 191 (36), 190 (13), 189 (21), 179 (14), 178 (15), 166 (12), 165 (27), 152 (14). HRMS calcd. for  $C_{18}H_{18}O$ : 250.1358; found: 250.1345.

#### 4.4. General Procedure for the Synthesis of Furans

To a stirred solution of alkyne (2, 1 mmol) in dry toluene (2.5 mL) under argon atmosphere were added Fe $_3$ O $_4$  (25 mg) and the corresponding acid chloride (1, 1.5 mmol). The resulting mixture was stirred at 70 °C during an hour. The catalyst was removed by a magnet and IrO $_2$ -Fe $_3$ O $_4$  (25 mg) was added. The mixture was stirred at 130 °C during three days. The catalyst was removed by a magnet and the resulting mixture was quenched with water (5 mL) and extracted with EtOAc (3 × 5 mL). The organic phases were dried over MgSO $_4$ , followed by evaporation under reduced pressure to remove the solvent. The product was usually purified by chromatography on silica gel (hexane/ethyl acetate) to give the corresponding furans 13. Physical and spectroscopic data, as well as literature for known compound, follow:

4.4.1. *3-Butyl-2-phenyl-5-propylfuran* (*13a*): pale yellow oil;  $R_f = 0.77$  (hexane/ethyl acetate 4:1);  $t_r$  14.3; IR (cm<sup>-1</sup>): 1600, 1554, 1492, 1463, 1457, 1446, 801, 762, 692; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.01 (t, J = 7.3 Hz, 3H, CCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.06 (t, J = 7.4 Hz, 3H, CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.48 (h, J = 7.3 Hz, 2H, CCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.6-1.7 (m, 2H, CCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.77 (h, J = 7.4 Hz, 2H, CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 2.68, 2.69 (2t, J = 7.4 Hz each one, 2H each one, CCH<sub>2</sub> × 2), 6.04 (s, 1H, OCCHC), 7.27 (t, J = 7.4 Hz, 1H, OCCCHCHCH), 7.44 (t, J = 7.4 Hz, 2H, OCCCHCH × 2), 7.64 (d, 2H, J = 7.4 Hz, 2H, OCCCH × 2); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.8, 14, 21.4, 22.7, 25.7, 30.1, 32.2, 109, 122.4, 125.2 (2C), 126.2, 128.4 (2C), 132.3, 146.4, 154.9; EI-MS m/z: 243 (M<sup>+</sup>+1, 10 %), 242 (M<sup>+</sup>, 55), 214 (17), 213 (100), 200 (11),

199 (20), 105 (25), 77 (20). HRMS calcd. for  $C_{17}H_{22}O$ : 242.1671; found: 242.1691.

4.4.2. *3-Ethyl-5-methyl-2-phenylfuran* (*13b*): <sup>16</sup> colourless oil;  $R_f = 0.63$  (hexane/ethyl acetate 4:1);  $t_r$  11.8; IR (cm<sup>-1</sup>): 1600, 1557, 1492, 1444, 1071, 996, 761, 692; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.26 (t, J = 7.5 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 2.36 (s, 3H, CCH<sub>3</sub>), 2.68 (q, J = 7.5 Hz, 2H, CH<sub>2</sub>CH<sub>3</sub>), 6.03 (s, 1H, OCCHC), 7.2-7.3, 7.35-7.45, 7.55-7.65 (3m, 2, 2 and 1H, Ph); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.6, 14.5, 19.2, 109.2, 124, 125.2 (2C), 126.2, 128.4 (2C), 132.1, 146.3, 150.7; EI-MS m/z: 187 (M\*+1, 14 %), 186 (M\*, 100), 172 (11), 171 (87), 143 (18), 128 (31), 115 (11), 105 (13), 77 (21).

4.4.3. *3-Butyl-2-(4-chlorophenyl)-5-propylfuran* (*13c*): pale yellow oil;  $R_f = 0.83$  (hexane/ethyl acetate 4:1);  $t_r$  15.3; IR (cm<sup>-1</sup>): 1568, 1549, 1487, 1464, 1094, 828;  $^1$ H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.97, 1.03 (2t, J=7.2 and 7.3 Hz, respectively, 3H each one, CH<sub>3</sub> × 2), 1.35-1.5, 1.55-1.65, 1.7-1.8 (3m, 2H each one, CH<sub>2</sub> × 3), 2.62, 2.64 (2t, J=7.4 and 7.3 Hz, respectively, 2H each one, CCH<sub>2</sub> × 2), 6.01 (s, 1H, OCCHC), 7.37 (d, J=8.7 Hz, 2H, CICCH × 2), 7.53 (d, J=8.7 Hz, 2H, CICCHCH × 2);  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.8, 13.9, 21.4, 22.6, 25.7, 30.1, 32.1, 109.1, 123, 126.3 (2C), 128.6 (2C), 130.7, 131.7, 145.4, 155.2; EI-MS m/z: 277 (M $^+$ +1, 22 %), 276 (M $^+$ , 100), 255 (11), 253 (35), 137 (12). HRMS calcd. for  $C_{17}H_{21}$ ClO: 276.1281; found: 276.1214.

4.4.4. 3-Butyl-2-(4-methoxyphenyl)-5-propylfuran (13d): yellow oil;  $R_f = 0.63$  (hexane/ethyl acetate 4:1);  $t_r$  16; IR (cm<sup>-1</sup>): 1606, 1577, 1559, 1505, 1462, 1293, 1247, 1176, 1037, 830, 801; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.01, 1.07 (2t, J=7.3 and 7.4 Hz, respectively, 3H each one,  $CH_2CH_3 \times 2$ ), 1.4-1.55, 1.6-1.7, 1.7-1.85 (3m, 2H each one,  $CH_2 \times 3$ ), 2.65, 2.68 (2t, J=7.2 and 7.3 Hz, respectively, 2H each one,  $CCH_2 \times 2$ ), 3.87 (s, 3H, OCH<sub>3</sub>), 6.03 (s, 1H, OCCHC), 7 (d, J=9 Hz, 2H, OCCHCH  $\times$  2), 7.58 (d, J=9 Hz, 2H, OCCHCH  $\times$  2);  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.8, 13.9, 21.4, 22.6, 25.6, 30.1, 32.3, 55.1, 108.6, 113.9 (2C), 120.7, 125.2, 126.7 (2C), 146.4, 154.2, 158.1; EI-MS m/z: 273 (M<sup>+</sup>+1, 13 %), 272 (M<sup>+</sup>, 66), 244 (17), 243 (100), 229 (21), 135 (13). HRMS calcd. for  $C_{18}H_{24}O_2$ : 272.1776; found: 272.1742.

4.4.5. *3-Butyl-5-propyl-2-(thiophen-2-yl)furan* (*13e*): pale yellow oil;  $R_f = 0.8$  (hexane/ethyl acetate 4:1);  $t_r$  14.4; IR (cm<sup>-1</sup>): 1566, 1464, 1378, 1258, 976, 848, 821, 687;  $^1H$ -NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.99, 1.03 (2t, J=6.5 and 6.6 Hz, respectively, 3H each one, CH<sub>3</sub> × 2), 1.35-1.5, 1.55-1.7, 1.7-1.8 (3m, 2H each one, CH<sub>2</sub> × 3), 2.55-2.7 (m, 4H, CCH<sub>2</sub> × 2), 6 (s, 1H, OCCHC), 7.08 (dd, J=5 and 3.7 Hz, 1H, SCHC*H*), 7.2 (dd, J=3.7 Hz,  $^4J=1.1$  Hz, 1H, SCCH), 7.23 (dd, J=5 Hz,  $^4J=1.1$  Hz, 1H, SCH);  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  13.8, 13.9, 21.4, 22.6, 25.5, 30.1, 31.9, 108.7, 121.8, 122.1, 123, 127.2, 134.3, 142.7, 154.8; EI-MS m/z: 249 (M<sup>+</sup>+1, 10 %), 248 (M<sup>+</sup>, 57), 220 (15), 219 (100), 205 (29), 111 (27). HRMS calcd. for  $C_{15}H_{20}OS$ : 248.1235; found: 248.1228.

# Acknowledgments

This work was supported by the current Spanish Ministerio de Economía y Competitividad (Consolider Ingenio 2010 CSD2007-00006 and CTQ2011-24151) and the Generalitat Valenciana (G.V.; PROMETEO 2009/03, FEDER). R.C. thanks to G.V. for a fellowship through the PROMETEO program. We gratefully acknowledge the polishing of our English by Mrs. Oriana C. Townley.

#### 5. References and notes

2.

- (a) Gooβen, L. J.; Rodríguez, N.; Gooβen, K. Angew. Chem. Int. Ed. 2009, 48, 9592-9594; (b) Fujihara, T.; Iwai, T.; Terao, J.; Tsuji, Y. Synlett 2010, 2537-2548.
- 2. Pohland, A. E.; Benson, W. R. Chem. Rev. 1964, 64, 161-197.
- Folhand, A. E., Bellson, W. R. Chem. Rev. 1904, 64, 161-191.
   (a) Price, C. C.; Pappalardo, J. A. J. Am. Chem. Soc. 1950, 72, 2613-2615; (b) Benson, W. R.; Pohland, A. E. J. Org. Chem. 1964, 29, 385-391; (c) Martens, H.; Janssens, F.; Hoornaert, G. Tetrahedron 1975, 31, 177-183; (d) Snelders, D. J. M.; Dyson, P. J. Org. Lett. 2011, 13, 4048-4051.
- 4. Manoiu, D.; Manoiu, M.; Dinulescu, I. G.; Avram, M. Rev. Roum. Chim. 1985, 30, 223-227.
- Zhou, H.; Zeng, C.; Ren, L.; Liao, W.; Huang, X. Synlett 2006, 3504-3506.
  - Hosseini-Savari, M.; Mardaneh, Z. Bull. Chem. Soc. Jpn. 2011, 84, 778-782.
  - (a) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1996, 61, 6941-6946; (b) Hua, R.; Shimada, S.; Tanaka, M. J. Am. Chem. Soc. 1998, 120, 12365-12366; (c) Hua, R.; Onozawa, S.-y.; Tanaka, M.; Chem. Eur. J. 2005, 11, 3621-3630; (d) Kashiwabara, T.; Kataoka, K.; Hua, R.; Shimada, S.; Tanaka, M. Org. Lett. 2005, 7, 2241-2244; (e) Kashiwabara, T.; Fuse, K.; Hua, R.; Tanaka, M. Org. Lett. 2008, 10, 5469-5472; (f) Kashiwabara, T.; Tanaka, M. Adv. Synth. Catal. 2011, 353, 1485-1490.

- (a) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2009, 131, 6668-6669; (b) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134, 1268-1274.
- Wang, B.; Wang, S.; Li, P.; Wang, L. Chem. Commun. 2010, 46, 5891-5893.
- Gandeepan, P.; Parthasarathy, K.; Su, T.-H.; Cheng, C.-H. Adv. Synth. Catal. 2012, 354, 457-468.
- (a) Martínez, R.; Ramón, D. J.; Yus, M. Adv. Synth. Catal. 2008, 350, 1235-1240; (b) Martínez, R.; Ramón, D. J.; Yus, M. Org. Biomol. Chem. 2009, 7, 2176-2181; (c) Cano, R.; Ramón, D. J.; Yus, M. Synlett 2011, 2017-2020.
- (a) Aliaga, M. J.; Ramón, D. J.; Yus, M. Org. Biomol. Chem. 2010, 8, 43-46; (b) Cano, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2010, 75, 3458-3460; (c) Cano, R.; Ramón, D. J.; Yus, M. Tetrahedron 2011, 67, 5432-5436; (d) Cano, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2011, 76, 5547-5557; (e) Cano, R.; Yus, M.; Ramón, D. J. Tetrahedron 2011, 67, 8079-8085; (f) Cano, R.; Yus, M.; Ramón, D. J. Tetrahedron 2012, 68, 1393-1400; (g) Cano, R.; Yus, M.; Ramón, D. J. Chem. Commun. 2012, 48, 7628-7630; (h) Pérez, J. M.; Cano, R.; Yus, M.; Ramón, D. J. Eur. J. Org. Chem. 2012, 458-4554.
- (a) Denmark, S. E. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp. 751-784; (b) Habermas, K. L.; Denmark, S. E.; Jones, T. K. In Organic Reactions, Paquette, L. A., Ed.; John Wiley & Sons: New York, 1994; Vol. 45, pp. 1-158; (c) Vaidya, T.; Eisenberg, R.; Frontier, A. J. ChemCatChem 2011, 3, 1531-1548.
- (a) Martin, G. J.; Rabiller, C.; Mabon, G. Tetrahedron Lett. 1970, 3131-3132; (b) Martin, G. J.; Rabiller, C.; Mabon, G. Tetrahedron 1972, 28, 4027-4037; (d) Rizzo, C. J.; Dunlap, N. K.; Smith, A. B. J. Org. Chem. 1987, 52, 5280-5283; (d) Fiandanese, V.; Marchese, G.; Punzi, A.; Ruggieri, G. Tetrahedron Lett. 1996, 37, 8455-8458.
- 15. Lee, K. Y.; Lee, M. J.; Kim, J. N. Tetrahedron 2005, 61, 8705-8710.
- Danheiser, R. L.; Stoner, E. J.; Koyama, H.; Yamashita, D. S.; Klade, C. A. J. Am. Chem. Soc. 1989, 111, 4407-4413.