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Abstract

This paper proposes a new approach to estimate the time-varying av-
erage treatment effect using panel data to control for unobserved fixed ef-
fects. The approach allows identifying the average treatment effect on the
entire population, even if the fixed effects affect potential outcomes under
treatment and no treatment differently, which can cause heterogeneity in
treatment effects among unobserved characteristics. Note that a popularly
used standard difference-in-differences approach can only identify the av-
erage treatment effect on the treated. Moreover, the proposed approach
allows time-varying treatment effects. The approach exploits panel data
with a specific structure in which the treatment exposure expands to the
entire population over time. I apply the proposed approach to estimate the
effect of the introduction of electronic voting technology for the reduction
of residual votes in Brazilian elections.
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1 Introduction

This paper proposes a new approach to estimate the time-varying average treat-

ment effect (ATE) using panel data to control for unobserved time-invariant con-

founders (i.e., fixed effects). It allows identification of the average treatment effect

on the entire population, even if the fixed effects have different influences on poten-

tial outcomes under treatment and no treatment, which can cause heterogeneity

in treatment effects among unobserved characteristics. Moreover, it allows for

time-varying treatment effects.

A fixed-effects (FE) estimation and a difference-in-differences (DID) estima-

tion are popularly used to control unobserved fixed effects; however, they cannot

consistently estimate the time-varying ATE for the entire population when un-

observed fixed effects affect the two potential outcomes differently (Wooldridge,

2010, Ch. 21; Lechner, 2011). The FE estimation requires the same influence from

unobserved fixed effects, a very restrictive assumption because there are many

cases where unobserved fixed effects have varying influences on the two potential

outcomes. For example, in job training program evaluations, an individual’s un-

observed potential ability should have a different influence on wages whether or

not the one participates in the training. On the other hand, the standard DID

estimation consistently estimates the ATE on the treated but not on the entire

population, regardless of whether unobserved fixed effects have different influences

on the two potential outcomes (Lechner, 2011). The proposed approach can esti-

mate the time-varying ATE on the entire population in this situation.

To identify the ATE, the proposed approach exploits uniquely structured panel

data wherein the treatment exposure expands from no units to all units across

time. Many policy interventions examined in empirical studies of program evalua-

tion have this property. Such policies, for instance, include reforms to the no-fault

unilateral divorce laws in the U.S. (Wolfers, 2006), reforms to the federally man-

dated sick leave insurance scheme in Germany (Puhani and Sonderhof, 2010), and

the introduction of electronic voting (EV) technology in Brazil (Fujiwara, 2015).

By exploiting this panel data structure, this paper proposes an approach to con-

sistently estimate the time-varying ATE, even when unobserved fixed effects affect

the two potential outcomes differently.
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The outline of the paper is as follows. Section 2 describes the setting and the

model specification. Section 3 proposes an estimation approach and derives its

asymptotic properties. Section 4 describes its empirical application. Section 5

concludes.

2 Setting and Model Specification

In this paper, we suppose that a sample {Yit, Dit, Xit} is observed for N units

i = (1, 2, . . . , N) across T time periods t = (1, 2, . . . , T ), where T ≥ 3. We assume

N is large while T is small. Yit denotes an observed outcome. Xit denotes a

K × 1 vector of observed covariates that may include a time dummy, observed

time-varying confounders, and interactions of the time dummy and observed time-

invariant confounders. Each unit is grouped by Dit ∈ {0, 1} such that Dit = 1

indicates treatment in period t.

Our interest is in the ATE on the entire population for each intermediate period

t = 2, . . . , T − 1:

τatet = E[Yit(1)− Yit(0)],

where Yit(1) and Yit(0) denotes two potential outcomes under treatment and no

treatment for unit i in period t, respectively. The observed outcome Yit is expressed

as Yit = DitYit(1) + (1−Dit)Yit(0).

Given Xit and unobserved fixed effects Ci, we assume the potential outcomes

are:

Yit(0) = X ′
itβ

0
t + g0(Ci) + u0

it, (1)

Yit(1) = X ′
itβ

1
t + g1(Ci) + u1

it, (2)

where uj
it is a mean-zero error term defined as uj

it = Yit(j)− E[Yit(j) | Xit, Ci] for

j = 0, 1. The coefficients of observed covariates, β0
t and β1

t , may be time varying.

g0(Ci) and g1(Ci) are possibly different functions of Ci, which implies that unob-

served fixed effects may have different influences on the two potential outcomes.

We can also suppose a nonlinear form of the observed covariates. Note that the as-
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sumed potential outcome models do not allow for interactions of g0(Ci) and g1(Ci)

with Xit, and rule out influences of past treatments on future outcomes unlike

the dynamic potential outcome framework suggested by, for example, Lechner and

Miquel (2009).

In the potential outcome models (1) and (2), τatet is expressed as

τatet = E[Xit]
′(β1

t − β0
t ) + E[g1(Ci)− g0(Ci)]. (3)

As seen in Equation (3), the difference between g0(Ci) and g1(Ci) is a cause of het-

erogeneous treatment effects among unobserved fixed effects. The time variation

of observed covariates and their coefficients cause the ATE time variation.

Although it is natural to consider that unobserved fixed effects have different

influences on the potential outcomes in many cases, the popular FE estimation

does not provide consistent estimations of τatet when g0(Ci) and g1(Ci) are dif-

ferent, but rather require that they are the same. The standard DID estimation

provides consistent estimation of the ATE on the treated rather than τatet . The

next section proposes a new approach to estimate τatet in the supposed potential

outcome models.

For the defined variables, we impose the following assumptions.

Assumption 1. {{Yit, Dit, Xit}Tt=1, Ci} are i.i.d. across i.

Assumption 2. E[Yit(j) | Dit, Xi1, . . . , XiT , Ci] = E[Yit(j) | Xit, Ci] for all

j = 0, 1 and t.

Assumption 3. Di1 = 0 and DiT = 1 for all i.

Assumption 4. E[(1−Dit)·(X ′
it,−X ′

i1)
′(X ′

it,−X ′
i1)] and E[Dit·(X ′

it,−X ′
iT )

′(X ′
it,−X ′

iT )]

are nonsingular.

Assumption 2 corresponds to the required assumption for the FE estimation and

has two meanings. The one is that the treatment assignment and the potential

outcomes are mean independent conditioning on the observed covariates and unob-

served fixed effects. This assumption is weaker than the normal conditional mean

independence assumption that requires only observed covariates as sufficient for

independence. The other is that the potential outcomes in period t do not depend
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on past and future observed covariates, which means strict exogeneity known in

the panel data literature. Assumption 3 is crucial for the proposed approach, and

means that no units are treated in the initial period 1, while all units are treated

in the final period T . Under Assumption 3, the panel data is structured such that

treatment exposure ranges from no units to all units across time. Assumption 4

rules out time-invariant covariates in Xit

Note that, under the potential outcome models (1) and (2), Assumption 2 im-

plies common trend assumptions for the mean potential outcome under no treat-

ment and, moreover, for the mean potential outcome under treatment. The pro-

posed method is based on both of these common trend assumptions. Considering

this point, Assumption 2 is stronger than the conventional common trend assump-

tion for the standard DID estimation since it imposes a common trend assumption

only for the mean potential outcome under no treatment. I discuss these points

in more detail in the supplementary appendix.

3 Estimation

Given the above setting and model specification, this section proposes a new

approach to estimate τatet consistently for each period t = 2, . . . , T − 1. Recall

that the panel data we consider have a structure in which the treatment exposure

expands from no units to all units across time. By exploiting this structure,

the proposed approach allows for consistent estimates of E[Yit(0)] using data for

periods t and 1, and E[Yit(1)] using data for periods t and T , controlling unobserved

fixed effects. Then, τatet can be consistently estimated. By using data for different

periods to estimate E[Yit(0)] and E[Yit(1)], we can control unobserved fixed effects,

even when they have different influences on the two potential outcomes.

The approach consists of the following three steps.

First step:

For the potential outcome under no treatment, we consider the difference model
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for periods t and 1;

Yit(0)− Yi1(0) = X ′
itβ

0
t −X ′

i1β
0
1 + u0

it − u0
i1, (4)

where the component of unobserved fixed effects g0(Ci) is differenced out. Using

a subsample of units with Di1 = Dit = 0, we obtain the OLS estimators of β0
t and

β0
1 denoted by β̂0

t and β̂0
1 , respectively.

Then, using the full sample, we estimate E[Yit(0)] as follows:

̂E[Yit(0)] =
1

N

N∑
i=1

[X ′
itβ̂

0
t −X ′

i1β̂
0
1 + Yi1]. (5)

Second step:

The second step is a symmetry of the first step. For the potential outcome under

treatment, we consider the following difference model for periods t and T :

Yit(1)− YiT (1) = X ′
itβ

1
t −X ′

iTβ
1
T + u1

it − u1
iT . (6)

Using the subsample of units with Dit = DiT = 1, we obtain the OLS estimator

of β1 denoted by β̂1.

Then, using the full sample, we estimate E[Yit(1)] as follows:

̂E[Yit(1)] =
1

N

N∑
i=1

[Xitβ̂
1
t −X ′

iT β̂
1
T + YiT ]. (7)

Third step:

Finally, τatet is estimated as follows:

τ̂atet = ̂E[Yit(1)]− ̂E[Yit(0)]. (8)

The estimator from the above sequential steps is included in the class of GMM

estimators, and its asymptotic property can be derived from GMM theory (Newey,

1984). The estimator τ̂atet is consistent and asymptotically normal under Assump-

tions 1-4 and some regularity conditions.
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Proposition 1. Under Assumptions 1-4 and Assumption A.1 in the appendix,

τ̂atet

p→ τatet and
√
N(τ̂atet − τatet )

d→ N(0, Vt) where:

Vt =E[{(X ′
itβ

1
t −X ′

iTβ
1
T + YiT )− (X ′

itβ
0
t −X ′

i1β
0
1 + Yi1)− τatet

− E[X ′
it,−X ′

i1]
′E [(1−Dit) · (X ′

it,−X ′
i1)

′(X ′
it,−X ′

i1)]
−1

[(1−Dit) · (X ′
it,−X ′

i1)
′(u0

it − u0
i1)]

+ E[X ′
it,−X ′

iT ]
′E [Dit · (X ′

it,−X ′
iT )

′(X ′
it,−X ′

iT )]
−1

[Dit · (X ′
it,−X ′

iT )
′(u1

it − u1
iT )]}2].

(9)

The appendix provides the proof and the regularity conditions. Given β̂0
1 , β̂

0
t ,

β̂1
t , β̂

1
T , and τ̂atet , the asymptotic variance Vt is consistently estimated as a sample

analogue of (9).

4 Empirical Application

I apply the proposed approach to estimate the introduction of EV technology

for the reduction of residual votes in Brazilian elections. Brazil holds elections for

state officials every four years, and all states have the same election date. The

1994 elections used only paper ballots in all municipalities; in the 1998 elections,

municipalities with more than 40,500 registered voters used EV technology, while

municipalities below this threshold used paper ballots. In 2002, all municipalities

used EV.

I analyze the data used in Fujiwara (2015). He estimates the effect of EV

technology by exploiting a regression discontinuity design (RDD) embedded in the

introduction of EV. While he estimates the ATE for a municipality with 40,500

voters, I estimate the ATE for the entire population by applying the proposed

approach.

Table 1 presents the estimates using the proposed approach, DID, and Fujiwara’s

(2015) RDD. The parameter of interest is the ATE on valid votes as a share of

turnout in the 1998 elections. In applying the proposed approach, models (1) and

(2) include year dummies, interaction terms of year dummies with the state’s fixed

effects, and the municipality’s fixed effects. In the DID estimation, the restriction
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g1(Ci) = g0(Ci) is imposed for the municipality’s fixed effects and the ATE on

the treated is estimated. Fujiwara’s (2015) RDD estimation controls the state’s

fixed effects. The result shows that the proposed approach yields a slightly higher

estimate than the DID and RDD estimates but it is not so quantitatively different

from the others. In this sense, the result indicates that Fujiwara’s (2015) RDD

result is robust for the entire population.

Table 1: Estimates of ATE for the introduction of EV technology in Brazila

Proposed approach DID RDD

Valid Votes/Turnout (1998 Election) 0.152 0.146 0.139

(0.001) (0.003) (0.013)

[N1, N0] [307, 4502] [307, 4502] [91, 174]
a Robust standard errors are in parentheses. N1 and N0 indicate the number of municipalities
in the treated and untreated groups, respectively. For RDD estimation details, see Fujiwara
(2015).

5 Conclusion

This paper proposes a new approach to estimate the time-varying ATE on the

entire population using panel data with a specific structure in which the treatment

exposure expands to the entire population over time. This data structure enables

consistent estimations using the proposed approach, even when unobserved fixed

effects affect the two potential outcomes differently. While the main text of the

paper focuses only on the panel data setting, the proposed method can be similarly

constructed for repeated cross-section data, which is discussed thoroughly in the

supplementary appendix.
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