
Journal Pre-proof

Psychiatric Illnesses as Disorders of Network Dynamics

Daniel Durstewitz, Quentin J.M. Huys, Georgia Koppe

PII: S2451-9022(20)30019-7

DOI: https://doi.org/10.1016/j.bpsc.2020.01.001

Reference: BPSC 543

To appear in: Biological Psychiatry: Cognitive Neuroscience and
Neuroimaging

Received Date: 17 December 2019

Accepted Date: 6 January 2020

Please cite this article as: Durstewitz D., Huys Q.J.M. & Koppe G., Psychiatric Illnesses as Disorders of
Network Dynamics, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging (2020), doi: https://
doi.org/10.1016/j.bpsc.2020.01.001.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc on behalf of Society of Biological Psychiatry.

https://doi.org/10.1016/j.bpsc.2020.01.001
https://doi.org/10.1016/j.bpsc.2020.01.001
https://doi.org/10.1016/j.bpsc.2020.01.001


 

 

Psychiatric Illnesses as Disorders of Network Dynamics 

 

 

Running head: Mental Illnesses as Disorders of Network Dynamics 

 

 

Daniel Durstewitz1,2*, Quentin J.M. Huys3,4, Georgia Koppe1,5* 

 

1Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty 

Mannheim, Heidelberg University, Germany 

2Faculty of Physics and Astronomy, Heidelberg University, Germany  

3Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing 

Research, University College London, London, UK 

4Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and 

ETH Zurich 

5Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty 

Mannheim, Heidelberg University, Germany 

*corresponding authors:  

Daniel Durstewitz 

Department of Theoretical Neuroscience 

Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University,  

J5, 68158 Mannheim, Tel. +49-621-1703-2361, daniel.durstewitz@zi-mannheim.de,  

Georgia Koppe  

Department of Theoretical Neuroscience & Department of Psychiatry and Psychotherapy 

Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University,  

J5, 68158 Mannheim, Tel. +49-621-1703-2361, georgia.koppe@zi-mannheim.de 

 



2 

Mental Illnesses as Disorders of Network Dynamics 

 

Keywords: 

dynamical systems, attractor, chaos, recurrent neural networks, machine learning, schizophrenia  



3 

Mental Illnesses as Disorders of Network Dynamics 

Abstract 

This review provides a dynamical systems perspective on mental illness. After a brief introduction to 
the theory of dynamical systems, we focus on the common assumption in theoretical and 
computational neuroscience that phenomena at subcellular, cellular, network, cognitive and even 
societal levels could be described and explained in terms of dynamical systems theory (DST). As such, 
DST may also provide a framework for understanding mental illnesses. The review examines a 
number of core dynamical systems phenomena and relates each of these to aspects of mental illnesses. 
This provides an outline of how a broad set of phenomena in serious and common mental illnesses and 
neurological conditions can be understood in dynamical systems terms. It suggests that the dynamical 
systems level may provide a central, hub-like level of convergence which unifies and links multiple 
biophysical and behavioral phenomena, in the sense that diverse biophysical changes can give rise to 
the same dynamical phenomena and, vice versa, similar changes in dynamics may yield different 
behavioral symptoms depending on the brain area where these changes manifest. We will also briefly 
outline current methodological approaches for inferring dynamical systems from data such as EEG, 
fMRI or self-reports, and discuss the implications of a dynamical view for the diagnosis, prognosis, 
and treatment of psychiatric conditions. We argue that a consideration of dynamics could play a 
potentially transformative role in the choice and target of interventions.  
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1. Introduction 

Mental illnesses are highly complex, temporally dynamic phenomena (1). Variables across a vast 

range of timescales – from milliseconds to generations – and levels – from subcellular to societal – 

interact in complex manners to result in the dynamic, rich and extraordinarily heterogeneous temporal 

trajectories that are characteristic of the personal and psychiatric histories evident in mental health 

services across the world. The dynamic and complex nature of these phenomena represents a 

substantial challenge to our ability to understand mental illnesses, and to treat them. The neglect of the 

temporal aspects of these phenomena may in part be due to the fact that longitudinal studies have 

traditionally been more challenging, and hence much research has focused on cross-sectional samples. 

However, variation observed between individuals will only rarely be informative about individual 

variation over time (2), and it is arguably the latter that matters more in treatment settings. Time, we 

suggest, matters, and these dynamical aspects can and need to be addressed directly.  

When multiple variables interact with each other in a complex manner over time, then this gives rise to 

dynamical systems that obey certain rules regardless of the particular nature of the variables involved. 

The behavior of such systems is studied in the mathematical framework of Dynamical Systems Theory 

(DST). DST formalizes the complex interaction of variables by a set of differential (if formulated in 

continuous time) or recursive (if in discrete time) equations. It provides a powerful and general 

mathematical language and toolbox for examining phenomena in such systems which are generic, that 

is, independent from their specific physical realization, and that exist across timescales. These 

phenomena include, for instance, oscillations, synchronization among units of a system, attractor 

states, phase transitions, or deterministic chaos. Although generic and formulated in an abstract 

language, these phenomena are not merely conceptual or even metaphorical, but 'real'. They are 

experimentally and clinically accessible and quantifiable processes that can be measured and inferred 

from data, and that determine and predict future developments and prescribe how to best influence the 

system. As such, they should hence have a prominent place in guiding interventions.  

As we will argue in this article, DST may serve as a kind of hub, a central layer of convergence or 

level of nervous system description at which phenomena relevant to mental illness could be 

understood, explained, classified and predicted. DST represents a layer of convergence in the sense 

that a number of very different, seemingly unrelated physiological and anatomical processes may give 

rise to similar alterations in network dynamics and behavior (Fig. 1). This may explain why quite 

different causal factors and pathogenic routes may give rise to similar phenomena [c.f. (3)]. At the 

same time, the same changes in network dynamics may be associated with a variety of quite different 

symptoms (Fig. 1), depending on the brain areas in which these dynamical alterations are mostly 

expressed. This emphasis on the dynamical systems level also bears important implications for the 
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treatment of mental illness, as discussed in sect. 3.  

The idea of this article is to introduce important DST concepts and phenomena directly within the 

context of neuroscientific and psychiatric observations they may account for [see also (4-6)], and to 

illustrate them based on the same formal example of a dynamical system (DS), a recurrent neural 

network (RNN) model (Fig. 3A), with more formal background included in the Supplement. We will 

also briefly address how DS can be inferred from observations.  

 

2. Dynamical phenomena and their potential relation to psychiatric 

conditions 

A DS is described by a set of system variables (like membrane potentials or symptom strengths) and 

equations governing their temporal evolution (see DST primer in Supplement). A comprehensive 

geometrical representation of a DS is its state space, which is the space spanned by all its dynamical 

variables, as illustrated in Fig. 2A. A nice and powerful property of the state space representation is 

that it provides a complete description of the system's state, behavior, and (in the deterministic case) 

future fate: A point in this space exhaustively specifies the system's current state (i.e., the current 

values of all variables describing the system), and the so-called flow (vector) field (the arrows in Fig. 

2B) completely specifies how the system will evolve in time when released at any point in this space 

(namely, along the direction indicated by the vectors). The temporal evolution of the system's state 

within this space when started from a specific initial condition is represented by its trajectory (Fig. 2). 

In essence, the system’s trajectory in state space shows how all variables jointly evolve in time; there 

is a 1:1 correspondence between such a trajectory and the more familiar time graphs of all variables 

(Fig. 2A).  

Consider as a very simple psychological example the interaction between psychological stress, mood, 

and social retreat, as depicted in Fig. 2A. As stress levels increase, with some delay mood will decline, 

which in turn may lead to an increased tendency to retreat from the world and social interactions. As a 

consequence stress levels may drop again, mood will tend to increase, and the person may increasingly 

engage again in social and job-related responsibilities, potentially starting the whole cycle all over 

again. Such cyclic interactions between variables are commonly observed in the setting of mental 

health and are important tools for instance in case formulations in psychotherapy. Indeed, interactions 

between symptoms have been argued to characterize the long-term course of illnesses better than 

standard latent-factor models (3, 7).  
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2.1. Attractor dynamics and multi-stability 

Fig. 3B illustrates the flow field for a simple 2-dimensional formal example of a DS, a 2-unit RNN 

(Fig. 3A). The flow field indicates a specific geometry of the state space that determines the fate of 

trajectories when released at specific initial conditions: In this case, the state space contains three fixed 

points, points at which the flow becomes exactly zero in all directions (i.e., the vectors vanish). Two 

of them are stable (solid dots) in the sense that activity converges to them from all directions, hence 

small displacements (perturbations) decay back to them. Such stable fixed points are also called point 

attractors, and they are surrounded by a basin of attraction which is the set of all points from which 

activity converges to the respective point attractor. The fixed point in the center (open dot), in contrast, 

is unstable with activity diverging along at least one direction (fixed points with both converging and 

diverging directions are called saddle points). If noise is added to the dynamical system, it may cause 

trajectories to eventually cross the ‘energy ridge’ between attractors (Fig. 3E). The likelihood of such 

transitions or, conversely, the dwell times within specific states, will depend on the noise amplitude 

and the steepness of the attractor basins, i.e. the magnitude of the opposing flow (Fig. 3C,D). This 

gives rise to a phenomenon called ‘meta-stability’ (8), where noise-induced perturbations can cause 

the system to hop around different attractor states (Fig. 3C).  

Dynamical systems may harbor many different stable fixed points, or other attractor objects. Such 

multi-stability, that is the co-existence of many attractor states, has been proposed to underlie 

functions like working memory (9, 10), with each fixed point corresponding to the active maintenance 

of a different memory item. The idea is that different briefly-presented stimuli would push the network 

into one of the different stimulus-specific attractor states (Fig. 3B), which – by virtue of their attractor 

property – would maintain an active representation of the stimulus even after its removal. 

Physiologically, the attractor states may correspond to elevated firing rates (termed ‘persistent 

activity’) in the respective subset of stimulus-selective neurons [e.g., (11, 12)], and may be established 

through strong recurrent excitation within this subpopulation (or ‘cell assembly’; (9, 13)). Attractor 

dynamics are thought to play a role also in a variety of other cognitive processes, including decision 

making (14-18), probabilistic (Bayesian) inference (19), the formation and maintenance of beliefs  (20, 

21), or processes like memory recollection and pattern completion (19, 22-24). Formally, models of 

reinforcement learning are DS as well (25, 26) that may settle into stable fixed points in a stationary 

environment.  

Profound alterations in attractor dynamics may impact mental functions. As a biophysical-level 

example, dopamine via its synaptic and ionic actions can regulate the width and steepness of basins of 

attraction (Fig. 3E), with the direction of change depending on the receptor subtype (D1- vs. D2-class) 

primarily stimulated (27-33). This could alter the tradeoff between cognitive flexibility, supported by 

flat attractor basins that ease moving among representations, vs. working memory and goal 
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orientation, facilitated by deep and wide basins that protect the current focus (27, 34). Via these 

dynamical mechanisms, the changes in the dopaminergic system known in schizophrenia may 

therefore account for the observed deficits in both working memory and cognitive flexibility (27, 35, 

36).  

Consider as another example impaired emotion regulation in depression. Ramirez-Mahaluf and 

Compte (37)viewed this as emerging from the mutually inhibitory interaction between an ‘emotional’ 

and a ‘cognitive’ hub, namely the ventral anterior cingulate cortex (vACC) and the dorsolateral 

prefrontal cortex (dlPFC), respectively. According to their model, high glutamatergic tone in the 

vACC results in overly stable attractor states which inhibit ‘cognitive’ activation in the dlPFC. Within 

a certain parameter regime, this could be counteracted by serotonine-induced hyperpolarization of 

vACC neurons through SSRIs. This idea is illustrated in Fig. 3B-D with two units (which one may 

think of as representing two network hubs in this context) with strong self-excitation but mutual 

inhibition (i.e., negative weights w12 and w21 and positive weights w11 and w22 in Fig. 3A). As 

illustrated, by either increasing the amount of self-excitation in one of the two hubs or through an 

imbalance in the feedback between the two (Fig. 3D), one of the two attractor basins may strongly 

expand at the expense of the other. At the psychological level, this type of account would also explain 

why strong rumination and negative mood (reflecting a strong emotion attractor) concur with a lack of 

attention and impaired decision-making (38, 39), or why increased fear may inhibit performance under 

high cognitive load and vice versa (40). 

As in the example of working memory, strong attractor states often arise through positive feedback 

loops. For instance, stressful life events predict depression, but are also caused by depression (41), 

raising the possibility that after a first life event, further life events may be caused by the depressed 

state, leading to a mutually reinforcing feedback loop between stress and depression. Conflict states in 

couples (42) and groups (43) may manifest through similar attractor dynamics, with positive feedback 

loops leading to escalation, emphasizing the role of de-escalation techniques. While space constraints 

prevent a more detailed discussion, we point to similar studies highlighting the role of attractor 

dynamics in the domains of ketamine (32, 44), dopamine and schizophrenia (27-32, 45), depression 

(46), attention-deficit hyperactivity disorder (47-51), obsessive-compulsive disorder (52, 53), and 

post-traumatic stress disorder (54-56) (see also Table 1).  

 

2.2. Sequential phenomena: limit cycles and heteroclinic channels  

Fig. 4A illustrates another setup of the RNN. A slight change in some of the system parameters (cf. 

Supplement) gives rise to a different set of phenomena: Rather than converging to a stable fixed point, 

the RNN now continues to periodically oscillate. It is not a simple harmonic (sinusoidal-type) 

oscillation, however, but a more complex waveform that is repetitively produced. This complex but 
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still periodic waveform represents another type of attractor state, termed a stable limit cycle (just as 

with fixed points, there are also unstable limit cycles). Limit cycles can become quite complicated in 

appearance, with multiple different minima and maxima and very long periods in which the system’s 

trajectory does not precisely retrace itself, although they always close up eventually. Limit cycles 

often result from interacting positive and negative feedback loops, as ubiquitous in the nervous system. 

They may represent sequences that are to be repetitively produced, like potentially complex, but still 

relatively stereotypical motor programs or movement patterns (57-60). 

Stereotypical, repeating movement patterns are observed in many neurological and some psychiatric 

conditions (61, 62). In general, nonlinear oscillations – the equivalent of limit cycles in the time 

domain – are a hallmark of nervous system activity (63), and specific alterations for instance in the 

gamma or delta frequency band have indeed been described in schizophrenia (64) or ADHD (65). At a 

higher cognitive level, perseveratively reoccurring chains of the same thoughts may potentially be 

generated this way. Stable limit cycles may also underlie many types of symptom clusters which 

emerge in periodic intervals (66-68). 

There are also other, more flexible ways to generate sequences in DS, as illustrated in Fig. 4B (69, 70). 

Here, orbits connect a chain of saddle points, that is, ‘half-stable’ fixed points towards which activity 

converges from some directions but leaves along others. The curves that connect the different saddle 

points are called ‘heteroclinic orbits’ (Fig. 4B), and the whole arrangement of heteroclinic orbits 

connecting a chain of saddle points has been termed a ‘heteroclinic channel’ [HC; (69, 70)]. The HC 

acts like an attractor, pulling in trajectories from the vicinity which then, with a bit of noise, travel 

along the curves connecting the saddle points which may implement a sequence of thoughts or actions. 

Unlike a limit cycle, the HC is not necessarily automatically repeating – it may start and terminate in a 

stable fixed point (as in the example in Fig. 4B). More importantly, this arrangement is much more 

flexible: While limit cycles determine a rather rigid sequence of events, in a HC saddle points could 

more easily be removed from or added to the already existing sequence through proper parameter 

changes, making this a more plausible account for higher cognitive functions (e.g., syntactical 

sequences) than limit cycles (69). Indeed, it has been suggested that belief sets evolve as heteroclinic 

channels in the course of psychotherapy (71). 

Whether psychiatric phenomena with ‘periodic’ behavior, e.g. alternation between relapse and 

remission episodes, can be better described in terms of limit cycles, HC, or hopping among meta-

stable states, is a difficult but, in principle, empirically tractable question. Differentiating among these 

scenarios could have important implications for optimal treatment, both in terms of the type and the 

timing of an intervention (72).  
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2.3. Attractor ghosts and the regulation of flow 

Another important phenomenon in dynamical systems is that of ‘attractor ruins’ (73, 74), also termed 

‘attractor ghosts’ (75), quasi- or semi-attracting states (76). These are ‘attractors’ which are almost 

stable, i.e. to which trajectories still converge along most directions but may slowly escape along 

others (Fig. 5B,C). In these scenarios, the system’s parameters are very close to a configuration which 

would yield a true attractor, just not quite there (Fig. 6).  

This comes with important and interesting implications that differentiate these objects from either true 

attractors or clearly unstable objects. Imagine a scenario where attractor valleys (Fig. 3E) become 

perfectly flat along one or more directions. This gives rise to a so-called line-attractor where the fixed 

points form a line, ring or plane (77-80), a continuum of neutrally stable fixed points along which 

there is neither con- nor divergence (Fig. 5A). Line attractors have been proposed to underlie 

phenomena such as parametric working memory (78) where a continuously valued quantity [like a 

‘flutter frequency’ (81) or spatial position (82)] has to be retained in working memory. An attractor 

ruin results, for instance, if we now slightly ‘detune’ the line attractor (Fig. 5B). This leads to new 

effective time constants which are largely independent from the system’s intrinsic (e.g., biophysical) 

time constants, a phenomenon that has been exploited for interval timing in neural systems (77, 83). 

Too wide detuning may in turn account for timing problems, specifically a speedup of the internal 

clock, evident in Parkinson’s disease (84) or ADHD (85), given that the dopaminergic system has 

been linked to alterations in (interval) time perception and production (86, 87). Too narrow tuning, on 

the other hand, could produce a slowing down of time perception as in bipolar patients (88).  

Hence, trajectories considerably slow down and tend to prevail in attractor ruins. Just as with HC, this 

phenomenon could also be exploited for flexible sequence generation with trajectories traveling 

among attractor ruins (89). In consequence, alterations in attractor ruins may cause characteristic 

symptoms, e.g. slowed-down mental processing as often observed in MDD patients (90, 91).  

2.4. Chaos 

Chaos is a strange phenomenon where a deterministic DS exhibits aperiodic and irregular behavior 

even in the absence of noise, with the system’s states never quite repeating themselves [Fig. 4C; (75, 

92)]. The state of chaos can still be an attractor, pulling in trajectories from a larger basin of attraction 

into a bounded region of state space within which trajectories would continue to travel forever, yet 

would not form a closed orbit [i.e., limit cycle; (75)]. Unlike fixed point and limit cycle attractors, 

chaotic attractors have at least one direction along which trajectories diverge, yet get ‘re-injected’ into 

the same volume of state space (75). Because of this divergence, activity on the chaotic attractor is 

highly (exponentially) sensitive to perturbations and minimal differences in initial conditions (Fig. 4C 

bottom), the famous ‘butterfly effect’ (93). 
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The fact that activity in chaotic attractors is irregular yet not random, retaining a certain sequential 

structure, may also be beneficial for certain cognitive and coding purposes (94). In a sense, it creates 

deterministic variation around a central theme which may be relevant to cognitive search and 

creativity (95, 96). Especially interesting from a computational perspective is the phenomenon of 

chaotic itinerancy (73, 74) where trajectories chaotically traverse between different attractor ruins (see 

2.3), a setup that has been exploited for dynamic and flexible sequence production and recognition 

(89). 

Somewhat surprisingly, placing neural systems at the edge of chaos, or slightly within a chaotic 

regime (97-100), has important computational benefits: Here, the system naturally expresses complex 

temporal structure while at the same time hanging on to external stimulus information for a while. In 

contrast, if the system is too regular (too convergent) it exhibits no interesting internal behavior, while 

if it is too chaotic (too divergent) it quickly forgets about external stimuli. Consequently, if the brain 

leaves this computationally optimal regime and migrates either too much into the regular or too much 

into the chaotic range, problems may ensue.  Indeed, PTSD patients show a highly reduced heart rate 

variability (i.e., larger regularity), assumed to be indicative of a reduced ability to flexibly respond to 

incoming information (101, 102). Diminished variability in mental states has also been described in 

higher age (103). On the other hand, a highly chaotic regime with its sensitivity to perturbations may 

account for attentional problems and a high distractibility by external stimuli, as, e.g., observed in 

ADHD (49, 104).  

As another example, some authors have argued that the seemingly random patterns of thought 

observed in schizophrenia, reflected in associative hopping and disorganized cognition, may be rooted 

in too chaotic system dynamics (see e.g., (105)). In line with this idea, a number of studies observed 

signatures of increased chaoticity in schizophrenia patients in electrophysiological and electrodermal 

recordings (106-109). Mood variations in bipolar disorder have also been characterized as increasingly 

chaotic patterns (110, 111), potentially driven by stronger interactions among negative affective states 

[(112); in general, increased coupling among network elements can lead into a chaotic regime (113)].   

2.5. Phase transitions and bifurcations 

In the discussions above we have repeatedly highlighted that many dynamical phenomena may be 

obtained within the very same system (Figs. 3-5), just by changing some of its parameters. This gives 

rise to another highly important observation: As system parameters are smoothly changed, we may 

encounter dramatic and abrupt, qualitative changes in the system’s behavior at some critical point 

(Fig. 6)! These are points in parameter space, called bifurcation points, where the set of dynamical 

objects and/or their properties change, i.e. where certain fixed points, limit cycles or chaotic objects 

may come into existence, vanish, or change stability.  
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This observation in DS is likely to have profound implications for our understanding of crucial 

transitions, sudden onsets or offsets, or different distinct phases in psychiatric illnesses. That neural 

systems may undergo critical bifurcations with dramatic consequences is comparatively well 

established in epilepsy (114, 115), where one has relatively clear electrophysiological signatures that 

allow to identify and distinguish different types of bifurcations [see also (94, 114, 116-120)]. 

At a more cognitive level, bifurcations may account for sudden transitions observed in behavioral 

choices and the accompanying neural activity during the learning of a new rule (121). Also, both brief 

amnestic periods (122), during which stored memories cannot be recalled, as well as so-called lucid 

moments in dementia (123), where suddenly mnemonic details can be recovered again, suggest that 

neural systems may sometimes hover at the edge of a bifurcation. Bifurcations may also help to 

explain why psychopharmacological treatment sometimes helps and in other instances completely 

fails: Ramirez-Mahaluf, Roxin (124), for instance, mimicked the effects of increased glutamate 

reuptake and selective serotonin reuptake inhibitors (SSRI) on network activity, and found that while 

within a certain range 'healthy' attractor dynamics could be pharmacologically restored, especially 

after passing critical bifurcation points network changes appeared irreversible by pharmacological 

means. In such cases, to kick a neural system out of particularly deep attractor states, more profound 

perturbations (potentially provided by interventions such as electro-convulsive therapy (ECT) or deep-

brain stimulation (DBT)) may be required (125, 126). Profound changes reminiscent of crossing 

bifurcation points have also been proposed as explanation for therapy resistance in schizophrenia (72). 

The change between states of depression and health also shows signatures that are typical of a phase 

transition, namely so-called critical slowing down (similar as in Fig. 5B) where the autocorrelation 

length of different emotions increases (127). 

Hence, from a DS perspective, one may see therapeutic efforts in psychiatry as attempts to prevent 

certain bifurcations from happening or to induce others.  

 

2.6. Inferring DST phenomena from empirical observations 

DST will of course only be useful to the clinic if the discussed phenomena can be measured and 

characterized. Correlation- or choherence-based analyses (128-130), power spectra (131-133), or tools 

like Dynamic Causal Modeling (DCM; (134-137)), have been used for some time to characterize 

changes in functional connectivity among brain nodes and other temporal properties of 

neurophysiological time series. However, almost all of these tools are linear, or, like Hidden Markov 

Models (HMM; (138, 139)), come with strong assumptions and restrictions. Linear models cannot 

produce most of the dynamical systems phenomena discussed here, except for simple phenomena like 

isolated fixed points, line attractors, or simple (unstable/ neutrally stable) harmonic oscillations. They 
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are therefore not suitable for addressing DST phenomena more generally (see, e.g., (140)). Some 

nonlinear aspects of the dynamics can be inferred from scaling laws [(141), but see (142)], 

perturbation approaches (143, 144), change points (121, 145), delay embeddings (146), or other 

properties of the observed time series (23, 147). While such methods provide important signatures of 

specific phenomena (e.g., a bifurcation), they do not return a full picture of the system dynamics. 

More recently, however, progress in machine learning made it possible to extract attractor dynamics 

directly from empirical time series such as EEG or fMRI measurements (140), or ecological 

momentary assessments (EMA; (148)), using generic nonlinear dynamical systems formulations set up 

to approximate whatever set of unknown governing equations may have generated the empirical 

observations (140, 149-151). RNN are particularly well-suited for this purpose: there are mathematical 

theorems that assure us that RNN are dynamically universal in the sense that (almost) any other DS 

can be reformulated as a dynamically equivalent RNN that will produce the same flow field and thus 

dynamics in state space (151-153). Coupled with sophisticated statistical inference and deep learning 

methods (140, 149), RNN can be trained to reproduce and forecast experimental time series, and 

ultimately to recover the underlying dynamical system itself (140, 148). For a more in depth 

discussion of these new developments, other methods (146, 154, 155), and some of the current 

limitations and caveats, we refer the reader to the Supplement and to (140).  

 

3. Implications: dynamics as treatment targets  

Computational system dynamics provides an inherently translational language that could be used to 

describe diverse phenomena at biophysical, cognitive and even societal levels in the very same DS 

terms, in the language of state spaces, trajectories and attractors (69, 77, 116, 156). It thereby enables, 

for instance, findings in animals to be directly related to findings in humans, or to transfer mechanistic 

DS insights from one physiological or behavioral domain to another. Approaches for reconstructing 

DS from data (140, 149, 157-160) are even relatively agnostic to the precise measurement modality 

(except for limitations from a method’s temporal or spatial resolution), that is the same DS may be 

inferred from neuroimaging, surface electrode, multiple single-unit recordings, or behavioral data.  

The most critical contribution of DST is likely an appreciation of dynamical rather than static features 

as potential targets of interventions. Consider an example from schizophrenia. Traditionally, the focus 

has been to use medication to directly reverse known physiological aberrations, e.g. through 

dopaminergic antagonists. However, DS are complex, and many diverse ionic effects may act 

synergistically to establish a certain dynamical regime (161) (28). Restoring only part of the ionic 

functions underlying the original deficits, e.g., only GABAergic transmission, could – 

counterintuitively – make the situation even worse (9). On the other hand, from a DS perspective, 
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pharmacological agents may not have to target exactly those transmitter systems most compromised in 

a disease. Perhaps it is easier, cheaper, or more biocompatible to use compounds which target 

alternative mechanisms, for instance cellular calcium channels, with exactly the same implications for 

dynamics that dopaminergic drugs would have. Because there are usually many different and mutually 

redundant routes to the same dynamical phenomena, very different treatments could have similar 

effects. Moreover, some dynamic feedback loops in the brain may be much more sensitive to 

parameter changes than others, rendering them more effective targets for treatment than others. 

Appreciation of dynamical properties may hence open up new paths for intervention. 

One other implication is that assessing and monitoring the system dynamics in patients or at-risk 

subjects may be more informative than the current approach of examining subjective phenomena by 

asking individuals to average over periods ranging from weeks to months (thus averaging out temporal 

dynamics). The DST perspective may also help us to understand how seemingly unrelated phenomena 

are truly connected at a deeper level (leading, e.g., into comorbidities): Perhaps the brain becomes 

generally vulnerable to a specific type of alteration of its dynamical regimes (e.g., due to a transmitter 

imbalance) – depending on which brain areas are affected most by these dynamical alterations, they 

will find their incarnation in different bundles of symptoms (see Fig. 1). For instance, while hyper-

stable attractor states in auditory areas may cause tinnitus, the same alterations in orbitofrontal cortex 

may be associated with perseveration of suboptimal responses. 

In conclusion, appreciating the dynamical properties of mental illnesses could have profound 

implications for how we diagnose, classify, predict, and treat psychiatric symptoms. Currently, 

however, this field is still very much in its infancy, and much more systematic empirical studies that 

directly address DST mechanisms in psychiatry are certainly needed, potentially building on new 

methodological developments in the fields of machine and deep learning (sect. 2.6).   
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Tables 

Table 1. Psychiatric symptoms and their possible dynamical systems interpretation. 
Symptoms Associated changes in attractor dynamics 

Perseveration, dissociation, obsessions, compulsions Overly steep attractor basins 

Distractor susceptibility/ inattentiveness, associative 

hopping, incoherent and disorganized thought, 

hallucinations 

Overly flat attractor basins or increased noise levels 

Deficits in parametric WM, jumping to conclusions 
(failure to integrate information) 

Alterations in line attractor configurations 

Rumination and reoccurring chains of thought, 

stereotypical movement patterns, persistence of 

invalid belief sets 

Overly steep limit cycle attractors or heteroclinic channels  

Altered time perception, slowed down mental 

processes 

Alterations in flow around attractor ghosts  

Lucid moments in amnesia, epileptic seizures, sudden 

transitions between disease stages, resistance to 

therapy 

Bifurcations 

Increased variability in affective states, disorganized 

thought, high distractibility 

Too high chaoticity 

Reduced cognitive flexibility Too low chaoticity 

 

 

  



22 

Mental Illnesses as Disorders of Network Dynamics 

Figure legends 

 

Fig. 1. Network dynamics as a layer of convergence. A number of different physiological and structural 
processes (left) may give rise to similar alterations in network dynamics (center) which, depending on where in 
the brain they manifest, may give rise to a variety of different cognitive and emotional processes and psychiatric 
symptoms. 

 

Fig. 2. Time graphs and state spaces. A) A central concept in DST is that of a state space (right). A state space 
is the space spanned by all dynamical variables of a system, which in this psychological example were taken to 
be ‘mood’, ‘stress’, and ‘social retreat’. A trajectory in the state space corresponds to the temporal co-evolution 
of the dynamical variables over time, i.e. there is a 1:1 correspondence between points on the trajectory and the 
state of all dynamical variables when depicted as a function of time (left). Color-coding of the trajectory 
illustrates time progression. B) Another central concept is that of a flow field (right), where the vectors indicate 
the direction and magnitude of flow (change) at each point in state space, illustrated here with a 2-dimensional 
example. Examples were constructed based on the Lotka-Volterra equations. 

 

Fig. 3. Example of multi-stability in a RNN. A) Structure of a two-unit ‘toy’ RNN (see eq. 6 and parameter 
values used in Supplement). B) Flow field for the RNN in A, with gray arrows marking direction and magnitude 
of the flow. Gray-shaded lines are the so-called nullclines of unit 1 and unit 2, where the flow of either one of the 
two system variables vanishes, and solid/open circles show stable/unstable fixed points. The black dashed line 
separates the basins of attraction of the two stable fixed points. The dashed red line shows an example of a 
deterministic trajectory starting from the initial condition indicated by the red star (located on one of the 
system’s two point attractors), after a brief stimulus (yellow) to unit 1. C) Same as in B) with network 
parameters slightly changed, causing the system’s attractors to move closer together and their basins to become 
shallower. D) Same as in B) and C), with parameters slightly changed such that the symmetry between attractor 
states is broken. The system now has one attractor with steeper basin than the other. The bottom parts of figures 
B)-D) show the activation in time of unit 1, with the period of stimulation indicated in yellow. In C) and D), 
noise was added to the system. While in B) the network maintains unit 1’s high activation by remaining in the 
high-rate attractor, C) shows how activity spontaneously switches between the two attractors due to the presence 
of noise and shallower attractor basins. In D) the system only remains briefly in the high-rate attractor due to its 
small basin of attraction, from which it is kicked out by the noise after relatively short dwelling times. E) 
Schematic potential landscape depicting the extent and depth of the basins of attraction of the systems in B) 
(dark grey), C) (light grey), and D) (black). Potential minima correspond to the attractor states. MATLAB code 
for these simulations is available at https://github.com/DurstewitzLab. 

 

Fig. 4. Examples of different sequential phenomena in dynamical systems, illustrated with an RNN. Panels 
depict flow fields (top row) and time graphs of unit 1 (bottom row) for different parameter settings of an RNN 
(eq. 6 in Supplement). Gray-shaded lines in flow fields mark nullclines of units 1 and 2, red dotted lines show 
one trajectory starting from an initial condition (red star), light yellow lines mark the brief presentations of 
positive external stimuli. A) Bistability among a stable limit cycle surrounding the right unstable fixed point, and 
a stable fixed point in a 2-unit RNN (Fig. 3A). A brief stimulus to unit 1 takes the system from its stable fixed 
point to the stable limit cycle. Vectors are all normalized to same length for better visualization of flow direction. 
B) Heteroclinic orbit (shown in black) connecting the system’s two saddle nodes. In this case, the heteroclinic 
channel (HC) created by this orbit is itself not attracting (in contrast to examples in (69)), such that nearby 
trajectories tend to diverge from it (but note that, in the deterministic case,  the system would continue to move 
on the heteroclinic orbit if placed exactly on it). Yet, this unstable HC still influences the behavior of the system 
in the sense that brief perturbations through an external stimulus (shown in light yellow) tend to cause 
trajectories to move slowly in its vicinity (just below it) until they return to the stable fixed point at the bottom. 
C) The famous chaotic Lorenz attractor (93), reproduced by an RNN (eq. 6) statistically inferred from 
trajectories drawn from the Lorenz system (140). As characteristic of chaotic systems, two very close-by initial 
conditions may lead into very different activation patterns in the longer run, as displayed in the bottom graph for 
one of the RNN variables.   
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Fig. 5. Example of line attractors, slow flow, and bifurcations in an RNN. A), B), and C) depict flow fields 
for slightly different parameter settings of a 2-unit RNN (eq. 6 and parameters used in Supplement). A) shows a 
line attractor. Gray-shaded lines mark the nullclines of units 1 and 2. Red dotted lines show one trajectory 
starting from its initial condition (red star) and briefly pushed away from the line attractor by stimulus pulses 
(indicated in light yellow), indicating that the line attractor integrates stimuli. B) When the parameters of this 
line attractor configuration are changed, the system’s bottom-right fixed point disappears and leaves behind an 
‘attractor ghost’. In the vicinity of this attractor ghost the flow is very slow or C) relatively slow, depending how 
far the system’s parameters were moved away from the truly attracting configuration. The bottom figures show 
the activation of unit 1 for systems in A-C, respectively, starting from the initial condition (red star), and 
stimulated repeatedly as indicated by the yellow lines. Note that for clarity we omitted trajectories and stimuli 
from B) and C). The stimuli in B) and C) take the state of the system to the spots in state space indicated by the 
green crosses.  

 

Fig. 6. Bifurcations. Example of a bifurcation for the system in Fig. 5A with fixed points plotted as a function 
of network parameter λ. Here, λ is a factor which regulates the size of the units’ self-excitation. With λ<1, the 
network exhibits only a single stable fixed point, then switches to a line attractor for λ=1 (as in 5A), and finally 
harbors two stable and one unstable fixed points for λ>1 (as in the systems in Fig. 3). 

 



Diverse changes in cognitive 
and emotional experience

Diverse biophysical 
and structural causes 

Similar changes in 
network dynamics 

in diverse brain areas

Ca2+ channels

serotonin

morphology

synaptic connectivity

perseveration

emotional instability

hallucinations

obsessions

distractibility

dopamine



-1
0

-0.5

0

m
oo

d

stress

0

0.2

soc. retreat

2

0.5

0.4 4

so
c.

 r
et

re
at

st
re

ss

time

m
oo

d
A

B

time graphs state space representation
st

re
ss

time

n
eg

at
iv

e 
af

fe
ct

initial condition 

0 5 10
stress

0

2

4

6

n
eg

at
iv

e 
af

fe
ct



B C D

activation

p
o
te

n
ti

a
l

E
activation unit 1

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

a
ct

iv
a
ti

o
n
 u

n
it

 2

-1 0 1
activation unit 1

-1.5

-1

-0.5

0

0.5

1

1.5

a
ct

iv
a
ti

o
n
 u

n
it

 2

activation unit 1

sti
mulus

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

a
ct

iv
a
ti

o
n
 u

n
it

 2

sti
mulus

time

-1

0

1

time

-1

0

1

2

A

X1 X2

w21

w12

a22 a11 

w11 
w22 

Bistability (deep basins) Bistability (shallow basins) Bistability (unequal basins)

time

-1

0

1
sti

mulus

a
ct

iv
a
ti

o
n
 u

n
it

 1

initial condition
nullcline unit 1
nullcline unit 2
separatrix

trajectory

stable fixed pt.

unstable fixed pt.



0 1 2 3
activation unit 1

-0.5

0

0.5

1

1.5

2

2.5

3
a
ct

iv
a
ti

o
n
 u

n
it

 2

time
0

1

2

a
ct

iv
a
ti

o
n
 u

n
it

 1 stimulus

a
ct

iv
a
ti

o
n
 u

n
it

 2

ChaosHeteroclinic orbit
 

Limit cycle
 

a
ct

iv
a
ti

o
n
 u

n
it

 1

activation unit 1

time

-4 -2 0 2-1

0

1

2

3

4

5

-2

0

2

y
x

z

0 500 1000
-2

0

2

x

A B C

time

stimulus
stimulus



-1 -0.5 0 0.5 1
activation unit 1

-1

-0.5

0

0.5

1

a
ct

iv
a
ti

o
n
 u

n
it

 2

x

-0.5 0 0.5
activation unit 1

-0.5

0

0.5

a
ct

iv
a
ti

o
n
 u

n
it

 2

CBA

-1 -0.5 0 0.5 1
activation unit 1

-1

-0.5

0

0.5

1

a
ct

iv
a
ti

o
n
 u

n
it

 2

time

-0.5

0

0.5

time
-0.5

0

0.5

time

-0.5

0

0.5

a
ct

iv
a
ti

o
n
 u

n
it

 1

sti
mulus

x

Line attractor Attractor ghost (relatively slow flow)Attractor ghost (slow flow)

initial condition
nullcline unit 1
nullcline unit 2

trajectory
stable fixed pt.

stimulus



unstable fixed point
stable fixed point
line attractor

Bifurcation graph

st
ab

le
 &

 u
n
st

ab
le

 l
im

it
 s

et
s


