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Abstract

This review provides a dynamical systems perspediv mental illness. After a brief introduction to
the theory of dynamical systems, we focus on thenrson assumption in theoretical and
computational neuroscience that phenomena at sulacelcellular, network, cognitive and even
societal levels could be described and explaingdrms of dynamical systems theory (DST). As such,
DST may also provide a framework for understandingntal illnesses. The review examines a
number of core dynamical systems phenomena angsetach of these to aspects of mental illnesses.
This provides an outline of how a broad set of gimeena in serious and common mental illnesses and
neurological conditions can be understood in dycahsystems terms. It suggests that the dynamical
systems level may provide a central, hub-like lexfetonvergence which unifies and links multiple
biophysical and behavioral phenomena, in the sthatediverse biophysical changes can give rise to
the same dynamical phenomena and, vice versa,asiclianges in dynamics may yield different
behavioral symptoms depending on the brain areaenhese changes manifest. We will also briefly
outline current methodological approaches for nirfigr dynamical systems from data such as EEG,
fMRI or self-reports, and discuss the implicatiafsa dynamical view for the diagnosis, prognosis,
and treatment of psychiatric conditions. We argua ta consideration of dynamics could play a
potentially transformative role in the choice aadyet of interventions.
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1. I ntroduction

Mental illnesses are highly complex, temporally aymc phenomena (1). Variables across a vast
range of timescales — from milliseconds to genensti- and levels — from subcellular to societal —
interact in complex manners to result in the dymamch and extraordinarily heterogeneous temporal
trajectories that are characteristic of the persand psychiatric histories evident in mental Healt
services across the world. The dynamic and complature of these phenomena represents a
substantial challenge to our ability to understamhtal illnesses, and to treat them. The negletiteof
temporal aspects of these phenomena may in patubego the fact that longitudinal studies have
traditionally been more challenging, and hence nmesearch has focused on cross-sectional samples.
However, variation observed between individuald willy rarely be informative about individual
variation over time (2), and it is arguably thedatthat matters more in treatment settings. Tiwves,

suggest, matters, and these dynamical aspectsidamead to be addressed directly.

When multiple variables interact with each otheaicomplex manner over time, then this gives dse t
dynamical systems that obey certain rules regasdiethe particular nature of the variables invdlve
The behavior of such systems is studied in the emasttical framework of Dynamical Systems Theory
(DST). DST formalizes the complex interaction ofiables by a set of differential (if formulated in
continuous time) or recursive (if in discrete timejuations. It provides a powerful and general
mathematical language and toolbox for examininghphena in such systems which are generic, that
is, independent from their specific physical restian, and that exist across timescales. These
phenomena include, for instance, oscillations, Byomization among units of a system, attractor
states, phase transitions, or deterministic chadthough generic and formulated in an abstract
language, these phenomena are not merely concemtueven metaphorical, but 'real. They are
experimentally and clinically accessible and quaaltie processes that can tmeasured andinferred
from data, and thatetermine andpredict future developments and prescribe how to besténfte the

system. As such, they should hence have a promphaee in guiding interventions.

As we will argue in this article, DST may serveaakind of hub, a central layer of convergence or
level of nervous system description at which phesman relevant to mental illness could be
understood, explained, classified and predictedl’ B&presents a layer of convergence in the sense
that a number of very different, seemingly unradgtysiological and anatomical processes may give
rise to similar alterations in network dynamics d@whavior (Fig. 1). This may explain why quite
different causal factors and pathogenic routes giag rise to similar phenomena [c.f. (3)]. At the
same time, the same changes in network dynamicsbmagsociated with a variety of quite different
symptoms (Fig. 1), depending on the brain areawhith these dynamical alterations are mostly

expressed. This emphasis on thymamical systems level also bears important implications for the
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treatment of mental illness, as discussed in 8ect.

The idea of this article is to introduce import&@®$T concepts and phenomena directly within the
context of neuroscientific and psychiatric obsdpreg they may account for [see also (4-6)], and to
illustrate them based on the same formal exampla dfnamical system (DS), a recurrent neural
network (RNN) model (Fig. 3A), with more formal b@cound included in the Supplement. We will

also briefly address how DS can be inferred froseotations.

2. Dynamical phenomena and their potential relation to psychiatric

conditions

A DS is described by a set of system variable® (filembrane potentials or symptom strengths) and
equations governing their temporal evolution (s€&TDprimer in Supplement). A comprehensive
geometrical representation of a DS is its stateespanhich is the space spanned by all its dynamical
variables, as illustrated in Fig. 2A. A nice andvedful property of the state space representason i
that it provides a complete description of the eyss$ state, behavior, and (in the deterministie)cas
future fate: A point in this space exhaustively gsfpes the system's current state (i.e., the cairren
values of all variables describing the system), tliedso-called flow (vector) field (the arrows iigF
2B) completely specifies how the system will evolwdime when released at any point in this space
(namely, along the direction indicated by the vesijtoThe temporal evolution of the system's state
within this space when started from a specifidahitondition is represented by its trajectory (F2y

In essence, the system'’s trajectory in state sglace/s how all variables jointly evolve in time; the

is a 1:1 correspondence between such a trajectmythee more familiar time graphs of all variables
(Fig. 2A).

Consider as a very simple psychological examplérttezaction between psychological stress, mood,
and social retreat, as depicted in Fig. 2A. Assstievels increase, with some delay mood will degli
which in turn may lead to an increased tendenggti@at from the world and social interactions.aAs
conseguence stress levels may drop again, moodewdlto increase, and the person may increasingly
engage again in social and job-related resportssilipotentially starting the whole cycle all over
again. Such cyclic interactions between variables a@mmonly observed in the setting of mental
health and are important tools for instance in ¢dasaulations in psychotherapy. Indeed, interaction
between symptoms have been argued to charactéezéomg-term course of illnesses better than

standard latent-factor models (3, 7).
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2.1. Attractor dynamicsand multi-stability

Fig. 3B illustrates the flow field for a simple 2Zatensional formal example of a DS, a 2-unit RNN
(Fig. 3A). The flow field indicates a specific geetry of the state space that determines the fate of
trajectories when released at specific initial gbods: In this case, the state space containg fixed
points, points at which the flow becomes exactly zeralirdirections (i.e., the vectors vanish). Two
of them arestable (solid dots) in the sense that activity convergethem from all directions, hence
small displacementpérturbations) decay back to them. Such stable fixed pointsatse calledooint
attractors, and they are surrounded byasin of attraction which is the set of all points from which
activity converges to the respective point attractbe fixed point in the center (open dot), in trast,

is unstable with activity diverging along at least one directi(fixed points with both converging and
diverging directions are calleshddle points). If noiseis added to the dynamical system, it may cause
trajectories to eventually cross the ‘energy ridopetween attractors (Fig. 3E). The likelihood oftsu
transitions or, conversely, the dwell times witlipecific states, will depend on the noise amplitude
and the steepness of the attractor basins, i.emtgnitude of the opposing flow (Fig. 3C,D). This
gives rise to a phenomenon called ‘meta-stabili®); where noise-induced perturbations can cause

the system to hop around different attractor stgtap 3C).

Dynamical systems may harbor many different stéiaked points, or other attractor objects. Such
multi-stability, that is the co-existence of manitractor states, has been proposed to underlie
functions like working memory (9, 10), with eackdd point corresponding to the active maintenance
of a different memory item. The idea is that diéfetr briefly-presented stimuli would push the networ
into one of the different stimulus-specific atti@cstates (Fig. 3B), which — by virtue of theiragétor
property — would maintain an active representatanthe stimulus even after its removal.
Physiologically, the attractor states may corredpém elevated firing rates (termed ‘persistent
activity’) in the respective subset of stimulusestive neurons [e.g., (11, 12)], and may be estiabt
through strong recurrent excitation within this gopulation (or ‘cell assembly’; (9, 13)). Attractor
dynamics are thought to play a role also in a waré other cognitive processes, including decision
making (14-18), probabilistic (Bayesian) infererit8), the formation and maintenance of beliefs, (20
21), or processes like memory recollection andepattcompletion (19, 22-24). Formally, models of
reinforcement learning are DS as well (25, 26) thay settle into stable fixed points in a statignar

environment.

Profound alterations in attractor dynamics may iohpaental functions. As a biophysical-level
example, dopamine via its synaptic and ionic asticen regulate the width and steepness of basins of
attraction (Fig. 3E), with the direction of chardgpending on the receptor subtype (D1- vs. D2-klass
primarily stimulated (27-33). This could alter tliadeoff between cognitive flexibility, supported b

flat attractor basins that ease moving among reptatons, vs. working memory and goal



v

Mental llinesses as Disorders of Network Dynamics
orientation, facilitated by deep and wide basinst throtect the current focus (27, 34). Via these
dynamical mechanisms, the changes in the dopanineggtem known in schizophrenia may
therefore account for the observed deficits in batinking memory and cognitive flexibility (27, 35,
36).

Consider as another example impaired emotion régualan depression. Ramirez-Mahaluf and
Compte (37)viewed this as emerging from the muguatibitory interaction between an ‘emotional’
and a ‘cognitive’ hub, namely the ventral anterggmgulate cortex (VACC) and the dorsolateral
prefrontal cortex (dIPFC), respectively. Accorditay their model, high glutamatergic tone in the
VACC results in overly stable attractor states Whithibit ‘cognitive’ activation in the dIPFC. Wiiin

a certain parameter regime, this could be counslaby serotonine-induced hyperpolarization of
VACC neurons through SSRIs. This idea is illusttate Fig. 3B-D with two units (which one may
think of as representing two network hubs in thimtext) with strong self-excitation but mutual
inhibition (i.e., negative weightsv;, and w,; and positive weightsv;; and wy, in Fig. 3A). As
illustrated, by either increasing the amount of-egtitation in one of the two hubs or through an
imbalance in the feedback between the two (Fig., 8Dg of the two attractor basins may strongly
expand at the expense of the other. At the psygiaablevel, this type of account would also explai
why strong rumination and negative mood (reflecingtrong emotion attractor) concur with a lack of
attention and impaired decision-making (38, 39)why increased fear may inhibit performance under

high cognitive load and vice versa (40).

As in the example of working memory, strong attacttates often arise through positive feedback
loops. For instance, stressful life events predagpression, but are also caused by depression (41),
raising the possibility that after a first life entefurther life events may be caused by the depecks
state, leading to a mutually reinforcing feedbaudpl between stress and depression. Conflict states
couples (42) and groups (43) may manifest througiias attractor dynamics, with positive feedback
loops leading to escalation, emphasizing the rbldeeescalation techniques. While space constraints
prevent a more detailed discussion, we point talainstudies highlighting the role of attractor
dynamics in the domains of ketamine (32, 44), ddpamand schizophrenia (27-32, 45), depression
(46), attention-deficit hyperactivity disorder (81), obsessive-compulsive disorder (52, 53), and

post-traumatic stress disorder (54-56) (see al&teThH).

2.2. Sequential phenomena: limit cycles and heteroclinic channels

Fig. 4A illustrates another setup of the RNN. Aglatichange in some of the system parameters (cf.
Supplement) gives rise to a different set of phesiean Rather than converging to a stable fixed point
the RNN now continues to periodically oscillate.idt not a simple harmonic (sinusoidal-type)

oscillation, however, but a more complex wavefohattis repetitively produced. This complex but
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still periodic waveform represents another typetfactor state, termed a stableit cycle (just as
with fixed points, there are also unstable limitleg). Limit cycles can become quite complicated in
appearance, with multiple different minima and maiand very long periods in which the system’s
trajectory does not precisely retrace itself, altjio they always close up eventually. Limit cycles
often result from interactingositive and negative feedback loops, as ubiquitous in the nervous system.
They may represent sequences that are to be reggtiproduced, like potentially complex, but still

relatively stereotypical motor programs or movenpaiterns (57-60).

Stereotypical, repeating movement patterns arerefgdén many neurological and some psychiatric
conditions (61, 62). In general, nonlinear osdiflas — the equivalent of limit cycles in the time
domain — are a hallmark of nervous system acti88), and specific alterations for instance in the
gamma or delta frequency band have indeed beenilokx$dn schizophrenia (64) or ADHD (65). At a
higher cognitive level, perseveratively reoccurritttpins of the same thoughts may potentially be
generated this way. Stable limit cycles may alsdeule many types of symptom clusters which

emerge in periodic intervals (66-68).

There are also other, more flexible ways to geeesatuences in DS, as illustrated in Fig. 4B (69, 7
Here, orbits connect a chain of saddle points, ithdhalf-stable’ fixed points towards which adty
converges from some directions but leaves alongrstfiThe curves that connect the different saddle
points are called ‘heteroclinic orbits’ (Fig. 4B3nd the whole arrangement of heteroclinic orbits
connecting a chain of saddle points has been teariadteroclinic channel’ [HC; (69, 70)]. The HC
acts like an attractor, pulling in trajectoriesrfraghe vicinity which then, with a bit of noise, e
along the curves connecting the saddle points wmai implement a sequence of thoughts or actions.
Unlike a limit cycle, the HC is not necessarily @ugtically repeating — it may start and terminate. i
stable fixed point (as in the example in Fig. 4Bpre importantly, this arrangement is much more
flexible: While limit cycles determine a ratheridgsequence of events, in a HC saddle points could
more easily be removed from or added to the alreadsting sequence through proper parameter
changes, making this a more plausible account fghen cognitive functions (e.g., syntactical
sequences) than limit cycles (69). Indeed, it leenbsuggested that belief sets evolve as hetemclin

channels in the course of psychotherapy (71).

Whether psychiatric phenomena with ‘periodic’ bedbav e.g. alternation between relapse and
remission episodes, can be better described instefnimit cycles, HC, or hopping among meta-
stable states, is a difficult but, in principle, @ncally tractable question. Differentiating amotingse

scenarios could have important implications foriropt treatment, both in terms of the type and the

timing of an intervention (72).
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2.3. Attractor ghosts and theregulation of flow

Another important phenomenon in dynamical systesnbat of ‘attractor ruins’ (73, 74), also termed
‘attractor ghosts’ (75), quasi- or semi-attractstgtes (76). These are ‘attractors’ which amost
stable, i.e. to which trajectories still converdeng most directions but may slowly escape along
others (Fig. 5B,C). In these scenarios, the sysigratameters anery close to a configuration which

would yield a true attractor, just not quite théfe. 6).

This comes with important and interesting implioas that differentiate these objects from eithee tr
attractors or clearly unstable objects. Imaginecenario where attractor valleys (Fig. 3E) become
perfectly flat along one or more directions. Thigeg rise to a so-calldche-attractor where the fixed
points form a line, ring or plane (77-80), a coatim of neutrally stable fixed points along which
there is neither con- nor divergence (Fig. 5A). eLiattractors have been proposed to underlie
phenomena such as parametric working memory (7&ravh continuously valued quantity [like a
‘flutter frequency’ (81) or spatial position (82)ps to be retained in working memory. An attractor
ruin results, for instance, if we now slightly ‘dee’ the line attractor (Fig. 5B). This leads tawne
effective time constants which are largely indegendrom the system’s intrinsic (e.g., biophysical)
time constants, a phenomenon that has been exploiténterval timing in neural systems (77, 83).
Too wide detuning may in turn account for timinglglems, specifically a speedup of the internal
clock, evident in Parkinson’s disease (84) or ADK#B), given that the dopaminergic system has
been linked to alterations in (interval) time pgxoen and production (86, 87). Too narrow tuning, o

the other hand, could produce a slowing down o€ tarception as in bipolar patients (88).

Hence, trajectories considerably slow down and tengrevail in attractor ruins. Just as with HGsth
phenomenon could also be exploited for flexible usege generation with trajectories traveling
among attractor ruins (89). In consequence, altersitin attractor ruins may cause characteristic

symptoms, e.g. slowed-down mental processing as ofbserved in MDD patients (90, 91).
2.4. Chaos

Chaos is a strange phenomenon where a determiBiStiexhibitsaperiodic andirregular behavior
even in the absence of noise, with the systemtestaever quite repeating themselves [Fig. 4C; (75,
92)]. The state of chaos can still be an attragtoliing in trajectories from a larger basin ofrattion

into a bounded region of state space within whrefettories would continue to travel forever, yet
would not form a closed orbit [i.e., limit cycle7g)]. Unlike fixed point and limit cycle attractors
chaotic attractors have at least one directiongalehich trajectoriesliverge, yet get ‘re-injected’ into
the same volume of state space (75). Because otlifergence, activity on the chaotic attractor is
highly (exponentially) sensitive to perturbatiomglaninimal differences in initial conditions (Fi¢gC

bottom), the famous ‘butterfly effect’ (93).
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The fact that activity in chaotic attractors isegular yet not random, retaining a certain segakenti
structure, may also be beneficial for certain cogmiand coding purposes (94). In a sense, it eseat
deterministic variation around a central theme Whinay be relevant to cognitive search and
creativity (95, 96). Especially interesting fromcamputational perspective is the phenomenon of
chaotic itinerancy (73, 74) where trajectories chaotically traverssMeen different attractor ruins (see
2.3), a setup that has been exploited for dynamit feexible sequence production and recognition
(89).

Somewhat surprisingly, placing neural systems atdbge of chaos, or slightly within a chaotic
regime (97-100), has important computational bésieifiere, the system naturally expresses complex
temporal structure while at the same time hangimgooexternal stimulus information for a while. In
contrast, if the system is too regular (too congatjjit exhibits no interesting internal behaviehile

if it is too chaotic (too divergent) it quickly foets about external stimuli. Consequently, if thairb
leaves this computationally optimal regime and atigg either too much into the regular or too much
into the chaotic range, problems may ensue. Ind@€8D patients show a highly reduced heart rate
variability (i.e., larger regularity), assumed ® indicative of a reduced ability to flexibly resubto
incoming information (101, 102). Diminished varildlyi in mental states has also been described in
higher age (103). On the other hand, a highly ebaegime with its sensitivity to perturbations may
account for attentional problems and a high distrdity by external stimuli, as, e.g., observed in
ADHD (49, 104).

As another example, some authors have argued lieaséemingly random patterns of thought
observed in schizophrenia, reflected in associdtofgping and disorganized cognition, may be rooted
in too chaotic system dynamics (see e.g., (10B))ine with this idea, a number of studies observed
signatures of increased chaoticity in schizophrguitients in electrophysiological and electrodermal
recordings (106-109). Mood variations in bipolasadder have also been characterized as increasingly
chaotic patterns (110, 111), potentially drivensinpnger interactions among negative affectiveestat

[(112); in general, increased coupling among netvebements can lead into a chaotic regime (113)].

2.5. Phasetransitions and bifurcations

In the discussions above we have repeatedly higfieliythat many dynamical phenomena may be
obtained within the very same system (Figs. 3«8t by changing some of its parameters. This gives
rise to another highly important observation: Asteyn parameters are smoothly changed, we may
encounter dramatic and abruptalitative changes in the system’s behavior at some cripjcaht
(Fig. 6)! These are points in parameter spaceeddlfurcation points, where the set of dynamical
objects and/or their properties change, i.e. witertain fixed points, limit cycles or chaotic oljec

may come into existence, vanish, or change stabilit
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This observation in DS is likely to have profourdpiications for our understanding of crucial
transitions, sudden onsets or offsets, or diffedistinct phases in psychiatric illnesses. Thatraleu
systems may undergo critical bifurcations with daéim consequences is comparatively well
established in epilepsy (114, 115), where one &lkadively clear electrophysiological signaturesttha
allow to identify and distinguish different typestifurcations [see also (94, 114, 116-120)].

At a more cognitive level, bifurcations may accofmt sudden transitions observed in behavioral
choices and the accompanying neural activity duttireglearning of a new rule (121). Also, both brief
amnestic periods (122), during which stored mensoc&nnot be recalled, as well as so-called lucid
moments in dementia (123), where suddenly mnemaaiigils can be recovered again, suggest that
neural systems may sometimes hover at the edgehifuecation. Bifurcations may also help to
explain why psychopharmacological treatment somegithelps and in other instances completely
fails: Ramirez-Mahaluf, Roxin (124), for instanamjmicked the effects of increased glutamate
reuptake and selective serotonin reuptake inh®i(BSRI) on network activity, and found that while
within a certain range ‘healthy' attractor dynangosild be pharmacologically restored, especially
after passing critical bifurcation points networkaages appeared irreversible by pharmacological
means. In such cases, to kick a neural systemfquartcularly deep attractor states, more profound
perturbations (potentially provided by intervenssuch as electro-convulsive therapy (ECT) or deep-
brain stimulation (DBT)) may be required (125, 12Byofound changes reminiscent of crossing
bifurcation points have also been proposed as eapta for therapy resistance in schizophrenia.(72)
The change between states of depression and fasdttshows signatures that are typical of a phase
transition, namely so-called critical slowing dosimilar as in Fig. 5B) where the autocorrelation

length of different emotions increases (127).

Hence, from a DS perspective, one may see theiapefforts in psychiatry as attempts to prevent

certain bifurcations from happening or to indudeeos.

2.6. Inferring DST phenomena from empirical observations

DST will of course only be useful to the clinictlie discussed phenomena can be measured and
characterized. Correlation- or choherence-baselyses(128-130), power spectra (131-133), or tools
like Dynamic Causal Modeling (DCM; (134-137)), haleen used for some time to characterize
changes in functional connectivity among brain modand other temporal properties of
neurophysiological time series. However, almosbéalihese tools arknear, or, like Hidden Markov
Models (HMM; (138, 139)), come with strong assumps and restrictions. Linear mode&annot
produce most of the dynamical systems phenomegastied here, except for simple phenomena like

isolated fixed points, line attractors, or simpl@gtable/ neutrally stable) harmonic oscillatiohisey
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are therefore not suitable for addressing DST pimema more generally (see, e.g., (140)). Some
nonlinear aspects of the dynamics can be infermedn fscaling laws [(141), but see (142)],
perturbation approaches (143, 144), change poi4,(145), delay embeddings (146), or other
properties of the observed time series (23, 14 HiléAsuch methods provide important signatures of

specific phenomena (e.g., a bifurcation), they doraturn a full picture of the system dynamics.

More recently, however, progress in machine legrmmade it possible to extract attractor dynamics
directly from empirical time series such as EEG fbIRI measurements (140), or ecological

momentary assessments (EMA,; (148)), using generitimear dynamical systems formulations set up
to approximate whatever set of unknown governingaéqns may have generated the empirical
observations (140, 149-151). RNN are particularlsuited for this purpose: there are mathematical
theorems that assure us that RNN dmeamically universal in the sense that (almost) any other DS
can be reformulated as a dynamically equivalent Rh& will produce the same flow field and thus

dynamics in state space (151-153). Coupled witthistipated statistical inference and deep learning
methods (140, 149), RNN can be trained to reproduue forecast experimental time series, and
ultimately to recover the underlying dynamical systitself (140, 148). For a more in depth

discussion of these new developments, other metlb#s, 154, 155), and some of the current

limitations and caveats, we refer the reader tdSilygplement and to (140).

3. I mplications. dynamics astreatment tar gets

Computational system dynamics provides an inhereérghdational language that could be used to
describe diverse phenomena at biophysical, cognamwd even societal levels in the very same DS
terms, in the language of state spaces, trajestand attractors (69, 77, 116, 156). It therebylesa

for instance, findings in animals to be directliated to findings in humans, or to transfer mec$izi
DS insights from one physiological or behavioraindin to another. Approaches for reconstructing
DS from data (140, 149, 157-160) are even relatiaginostic to the precise measurement modality
(except for limitations from a method’'s temporalspatial resolution), that is treame DS may be

inferred from neuroimaging, surface electrode, ipldtsingle-unit recordings, or behavioral data.

The most critical contribution of DST is likely appreciation of dynamical rather than static fezgur
as potential targets of interventions. Consideexample from schizophrenia. Traditionally, the fecu
has been to use medication to directly reverse kng@hysiological aberrations, e.g. through
dopaminergic antagonists. However, DS are comp#d many diverse ionic effects may act
synergistically to establish a certain dynamical regime (161) .(B8storing onlypart of the ionic

functions underlying the original deficits, e.ggnly GABAergic transmission, could -

counterintuitively — make the situation evenrse (9). On the other hand, from a DS perspective,
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pharmacological agents may not have to target lxticise transmitter systems most compromised in
a disease. Perhaps it is easier, cheaper, or mooentpatible to use compounds which target
alternative mechanisms, for instance cellular catcchannels, with exactly the same implications for
dynamics that dopaminergic drugs would have. Bexthere are usually many different and mutually
redundant routes to the same dynamical phenomeang, different treatments could have similar
effects. Moreover, some dynamic feedback loopshia brain may be much more sensitive to
parameter changes than others, rendering them effeetive targets for treatment than others.

Appreciation of dynamical properties may hence agenew paths for intervention.

One other implication is that assessing and mdniothe system dynamics in patients or at-risk
subjects may be more informative than the currept@ach of examining subjective phenomena by
asking individuals to average over periods ranffioon weeks to months (thus averaging out temporal
dynamics). The DST perspective may also help umtterstand how seemingly unrelated phenomena
are truly connected at a deeper level (leading, @tp comorbidities): Perhaps the brain becomes
generally vulnerable to a specific type of altematof its dynamical regimes (e.g., due to a trattemi
imbalance) — depending on which brain areas aext@fi most by these dynamical alterations, they
will find their incarnation in different bundles symptoms (see Fig. 1). For instance, while hyper-
stable attractor states in auditory areas may ciusiéus, the same alterations in orbitofrontatter

may be associated with perseveration of suboptiesgonses.

In conclusion, appreciating the dynamical propsrt@ mental illnesses could have profound
implications for how we diagnose, classify, prediand treat psychiatric symptoms. Currently,
however, this field is still very much in its infeyy and much more systematic empirical studies that
directly address DST mechanisms in psychiatry amtaimly needed, potentially building on new

methodological developments in the fields of maetdnd deep learning (sect. 2.6).
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Table 1. Psychiatric symptoms and their possible dynamigstiesns interpretation.

Symptoms

Associated changesin attractor dynamics

Perseveration, dissociation, obsessions, compusisi

pOverly steep attractor basins

Distractor susceptibility/ inattentiveness, assiaia
hopping, incoherent and disorganized thoug
hallucinations

Overly flat attractor basins or increased noiselev
yht,

Deficits in parametric WM, jumping to conclusio
(failure to integrate information)

nAlterations in line attractor configurations

Rumination and reoccurring chains of thoug
stereotypical movement patterns, persistence

invalid belief sets

hOQverly steep limit cycle attractors or heteroclinol@nnels

of

Altered time perception, slowed down men
processes

tahlterations in flow around attractor ghosts

Lucid moments in amnesia, epileptic seizures, sud
transitions between disease stages, resistanc
therapy

dBifurcations

e to

Increased variability in affective states, disotigad
thought, high distractibility

Too high chaoticity

Reduced cognitive flexibility

Too low chaoticity
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Figurelegends

Fig. 1. Network dynamics as a layer of convergence. A number of different physiological and structural
processes (left) may give rise to similar alteraién network dynamics (center) which, dependingvbere in
the brain they manifest, may give rise to a varddtgifferent cognitive and emotional processes psythiatric
symptoms.

Fig. 2. Time graphs and state spaces. A) A central concept in DST is that ofstate space (right). A state space
is the space spanned by all dynamical variables syfstem, which in this psychological example waken to
be ‘mood’, ‘stress’, and ‘social retreat’. thajectory in the state space corresponds to the temporaVchtion
of the dynamical variables over time, i.e. thera i5:1 correspondence between points on the teajeand the
state of all dynamical variables when depicted asirection of time (left). Color-coding of the trajery
illustrates time progression. B) Another centrahaept is that of #low field (right), where the vectors indicate
the direction and magnitude of flow (change) athejpaint in state space, illustrated here with dr@eshsional
example. Examples were constructed based on tha\atlterra equations.

Fig. 3. Example of multi-stability in a RNN. A) Structure of a two-unit ‘toy’ RNN (see eq. 6 apdrameter
values used in Supplement). B) Flow field for théNRin A, with gray arrows marking direction and mégde

of the flow. Gray-shaded lines are the so-calldttines of unit 1 and unit 2, where the flow oftedr one of the
two system variables vanishes, and solid/openesrshow stable/unstable fixed points. The blacketddine

separates the basins of attraction of the two etéikéd points. The dashed red line shows an exampla

deterministic trajectory starting from the initiabndition indicated by the red star (located on omhehe

system’s two point attractors), after a brief stinsu(yellow) to unit 1. C) Same as in B) with netwo
parameters slightly changed, causing the systetiractors to move closer together and their bainsecome
shallower. D) Same as in B) and C), with paramesbghtly changed such that the symmetry betwetadior

states is broken. The system now has one attradtioisteeper basin than the other. The bottom pdrfigures

B)-D) show the activation in time of unit 1, with the jer of stimulation indicated in yellow. In C) and),D
noise was added to the system. While in B) the odtwnaintains unit 1's high activation by remainiimgthe

high-rate attractor, C) shows how activity spontarsly switches between the two attractors dued@tlesence
of noise and shallower attractor basins. In D)gy&tem only remains briefly in the high-rate atimacue to its
small basin of attraction, from which it is kickeadit by the noise after relatively short dwellinghéis. E)

Schematic potential landscape depicting the exdedt depth of the basins of attraction of the syst@mB)

(dark grey), C) (light grey), and D) (black). Pdiahminima correspond to the attractor states. MAB code

for these simulations is availablehdtps://github.con/Durstewitzl_ab.

Fig. 4. Examples of different sequential phenomena in dynamical systems, illustrated with an RNN. Panels
depict flow fields (top row) and time graphs of tuhi(bottom row) for different parameter settingsao RNN
(eqg. 6 in Supplement). Gray-shaded lines in flos¥d mark nuliclines of units 1 and 2, red dotiegd show
one trajectory starting from an initial conditioreq star), light yellow lines mark the brief pretsgions of
positive external stimuli. A) Bistability among &able limit cycle surrounding the right unstabbeefil point, and
a stable fixed point in a 2-unit RNN (Fig. 3A). Aidf stimulus to unit 1 takes the system from tebte fixed
point to the stable limit cycle. Vectors are altmalized to same length for better visualizatioril@fv direction.
B) Heteroclinic orbit (shown in black) connectirftgetsystem’s two saddle nodes. In this case, therdadinic
channel (HC) created by this orbit is itself naraatting (in contrast to examples in (69)), sucat thearby
trajectories tend to diverge from it (but note thatthe deterministic case, the system would inoetto move
on the heteroclinic orbit if placed exactly on itet, this unstable HC still influences the behawbthe system
in the sense that brief perturbations through atereal stimulus (shown in light yellow) tend to sau
trajectories to move slowly in its vicinity (juselow it) until they return to the stable fixed pbat the bottom.
C) The famous chaotic Lorenz attractor (93), repoed by an RNN (eq. 6) statistically inferred from
trajectories drawn from the Lorenz system (140).cRaracteristic of chaotic systems, two very clogenitial
conditions may lead into very different activatjositterns in the longer run, as displayed in théoboigraph for
one of the RNN variables.
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Fig. 5. Example of line attractors, sow flow, and bifurcationsin an RNN. A), B), and C) depict flow fields
for slightly different parameter settings of a 2tlRNN (eq. 6 and parameters used in Supplementshaws a
line attractor. Gray-shaded lines mark the nulkdirof units 1 and 2. Red dotted lines show onedtajy

starting from its initial condition (red star) abdiefly pushed away from the line attractor by stins pulses
(indicated in light yellow), indicating that thené attractor integrates stimuli. B) When the partenseof this
line attractor configuration are changed, the sy&ebottom-right fixed point disappears and lealehkind an
‘attractor ghost'. In the vicinity of this attractghost the flow is very slow or C) relatively slpgdepending how
far the system’s parameters were moved away frartiy attracting configuration. The bottom figsirghow
the activation of unit 1 for systems in A-C, redpady, starting from the initial condition (redas), and

stimulated repeatedly as indicated by the yellovedi Note that for clarity we omitted trajectoras stimuli

from B) and C). The stimuli in B) and C) take thate of the system to the spots in state spacedteti by the
green crosses.

Fig. 6. Bifurcations. Example of a bifurcation for the system in Fig. @#h fixed points plotted as a function
of network parametex. Here,A is a factor which regulates the size of the urdtdf-excitation. Withh<1, the
network exhibits only a single stable fixed poifhien switches to a line attractor forl (as in 5A), and finally
harbors two stable and one unstable fixed pointa& (as in the systems in Fig. 3).
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