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Industrialised fishing of the high seas (areas beyond national jurisdiction) is a major 205 

source of mortality to marine megafauna1-3. Effective management and conservation of 206 

highly migratory species in the high seas depends on resolving overlap between animal 207 

movements and distributions and fishing effort across far-reaching population ranges4,5. 208 

Yet, this information at a global scale is lacking1,5,6. Here we show, based on a unique 209 

big-data approach combining satellite-tracked movements of 1,681 pelagic sharks (23 210 

species) and global fishing fleets, that 45% of space used by sharks in an average year 211 

falls under the footprint of pelagic longline fisheries, the gear type catching most pelagic 212 

sharks5,6. Strikingly, monthly shark-longline overlap remained high at 40%, indicating 213 

significant overlap in both space and time. Space use hotspots of commercially valuable 214 

species had the highest overlap with longlines (80–94%) and were also associated with 215 

significant increases in fishing effort and capture-induced shark mortality compared to 216 

other species7,8, either because fisheries directly target sharks or sharks occupy habitats 217 

of targeted fish stocks. Protected species within some national jurisdictions and on the 218 

high seas overlapped longline fisheries by >80%, emphasising the continued need for 219 

management measures that minimise bycatch of the most threatened species. Only a few 220 

large-scale hotspots of shark distribution occurred in areas generally free from 221 

industrial fishing, with some typically associated with effective local management. We 222 

conclude that pelagic sharks have limited spatial refuges from current levels of fishing 223 

effort on the high seas. These results demonstrate an urgent need for conservation 224 

measures at high-seas shark hotspots and highlight the potential of simultaneous 225 

satellite surveillance of megafauna and fishers as a tool for near–real time, dynamic 226 

management of marine megafauna. 227 

Humans have hunted large marine animals (marine megafauna) in open oceans for at least 228 

42,000 years9, however only since the 1950s have the international fishing fleets that target 229 



12 
 

large, epipelagic fishes spread into the high seas10. Prior to this, highly mobile fishes 230 

occupying this environment inhabited a spatial refuge largely free from exploitation, since 231 

fishing mostly concentrated on continental shelves3,10. Of the fishes occupying the high seas, 232 

pelagic sharks’ movements will likely have a strong impact on their vulnerability to fishing 233 

pressure: they are among the widestranging of vertebrates, with some species exhibiting 234 

annual ocean-basin-scale migrations11, long term trans-ocean movements12, and/or fine-scale 235 

site fidelity to preferred shelf and open ocean areas5,11,13. These species account for 50% of 236 

all identified shark catch worldwide in target fisheries or as bycatch14. Regional declines in 237 

abundance of pelagic sharks have been reported15,16, but it is unclear whether exposure to 238 

high fishing effort extends across ocean-wide population ranges and overlaps areas in the 239 

high seas where sharks are most abundant5,15. Conservation of pelagic sharks – which 240 

currently have limited high seas management14,17,18 – would benefit greatly from a clearer 241 

understanding of the spatial relationships between sharks’ preferred habitats and active 242 

fishing zones. However, obtaining unbiased estimates of shark and fisher distributions is 243 

complicated by the fact that most data on pelagic sharks comes from catch records and other 244 

fisheries-dependent sources17,18. 245 

Here, we provide the first global estimate of the extent of space use overlap of marine 246 

vertebrates with industrial fisheries. This is based on the analysis of the movements of 247 

pelagic sharks tagged with satellite transmitters in the Atlantic, Indian and Pacific oceans, 248 

together with fishing vessels monitored globally by the automatic identification system (AIS), 249 

developed as a vessel safety and anti-collision system (see Methods). Our study focused on 250 

23 species of large pelagic sharks (median maximum total body length = 3.7 m) that occupy 251 

oceanic and/or neritic habitats spanning broad distributions from temperate to tropical waters 252 

(Supplementary Table 1). All these species face some level of fishing pressure in coastal, 253 

shelf and/or high-seas fisheries, with the International Union for the Conservation of Nature 254 
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(IUCN) Red List assessing 26% of the 23 species globally as having ‘near threatened’ status, 255 

48% as ‘vulnerable’ and 17% ‘endangered’ (Supplementary Table 2). Regional fisheries 256 

management organizations (RFMOs) are tasked with management of sharks in high seas 257 

areas, yet little or no management is in place for the majority of species3,5,14-20 258 

(Supplementary Table 2). 259 

From 2002–2017 we tagged 1,804 pelagic sharks with satellite transmitters, with 60% of 260 

deployments occurring between 2010 and 2017 (Methods; Extended Data Fig. 1, 261 

Supplementary Tables 3, 4). Eleven of the largest species/taxa groups accounted for 96% of 262 

all tags deployed (blue Prionace glauca; shortfin mako Isurus oxyrinchus; tiger Galeocerdo 263 

cuvier; salmon Lamna ditropis; whale Rhincodon typus; white Carcharodon carcharias; 264 

oceanic whitetip Carcharhinus longimanus; porbeagle Lamna nasus; silky Carcharhinus 265 

falciformis; bull Carcharhinus leucas; and hammerhead Sphyrna spp. sharks) 266 

(Supplementary Table 3). Tracks with daily locations were reconstructed for 1,681 267 

individuals totalling 281,724 tracking days (Methods). 268 

Movement patterns indicated that multiple species aggregated within the same large-scale 269 

areas within an ocean (Fig. 1). Species co-occurred in major oceanographic features, such as 270 

the Gulf Stream (blue, shortfin mako, tiger, white and porbeagle sharks), the California 271 

Current (blue, shortfin mako, white and salmon sharks), and in the East Australian Current 272 

(blue, shortfin mako, tiger, white and porbeagle sharks) (Fig. 1, Extended Data Fig. 2; 273 

Supplementary Results and Discussion 2.1). The global density map reveals distribution 274 

patterns of pelagic sharks and locations of space use hotspots (defined here as those areas 275 

with ≥75th percentile of weighted daily location density). Implementation of a weighted 276 

spatial density meant individual location estimates closer to a tagging location received a 277 

lower weight than later locations because more sharks had locations earlier in their tracks13, 278 

thus reducing bias (Fig. 2a) (see Methods). Major hotspots of tracked pelagic sharks in the 279 
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Atlantic Ocean were in the Gulf Stream and its western approaches, Caribbean Sea, Gulf of 280 

Mexico and around oceanic islands such as the Azores (Fig. 2a). In the Indian Ocean, 281 

hotspots were evident in the Agulhas Current, Mozambique Channel, the South Australian 282 

Basin and northwest Australia, while Pacific hotspots were in the California Current, 283 

Galapagos Islands, eastern Equatorial Counter Current, and around New Zealand 284 

(Supplementary Table 5). Although tagging sites occurred as expected in some shark space 285 

use hotspots – as tagging rates are inherently higher in hotspots – we also identified 286 

numerous hotspots where no tagging sites occurred: in the North Atlantic (outer Gulf Stream, 287 

Charlie Gibbs Fracture Zone, western European shelf edge and Bay of Biscay); Indian Ocean 288 

(Somali Basin, Chagos Archipelago, South Australian Basin); and the Pacific (Alaska 289 

Current, outer California Current, white shark ‘Café’ area13, North Equatorial Current, 290 

northern East Pacific Rise, Isakov/Makarov Seamounts, Chatham Rise) (Extended Data Fig. 291 

1). 292 

To determine the extent to which shark space use hotspots fall under the footprint of global 293 

industrialised fisheries we mapped the movements of fishing vessels carrying AIS 294 

transmitters, estimated to be fitted on 50–75% of active vessels >24 m length21. In the context 295 

of monitoring fishing activity, there are known disadvantages of using AIS data22 compared 296 

to vessel monitoring system (VMS) data; for example, longer gaps in data coverage in space 297 

and time23 and the potential for misidentification of fishing activity by different gears21. 298 

However, given that VMS data is not widely available, the principal advantage of AIS is as a 299 

freely available global dataset of fishing activity that provides a useful and valid starting 300 

point for investigating the overlap of shark space use by global fisheries. As a first step we 301 

mapped the mean annual fishing effort (days) of 83,628 AIS-equipped fishing vessels using 302 

various gear types21 during 2012–2016 (Extended Data Fig. 3; Methods). In addition to using 303 

all fishing vessels within the dataset, the estimated global fishing effort of drifting pelagic 304 
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longline (n = 5,565) and purse seine vessels (n = 6,941) were mapped separately as these two 305 

gears catch the majority of pelagic sharks14,17 (Fig. 2b; Extended Data Fig. 4).  306 

The global distribution map of all vessels’ fishing effort identifies several largescale, high 307 

use areas such as the western European Shelf in the northeast Atlantic, Mediterranean Sea, 308 

Patagonian Shelf off Argentina, Peru Current, the Equatorial Pacific region and off China 309 

(Extended Data Fig. 3, Supplementary Table 6). There were also areas where industrial 310 

fishing activity appeared sparse, for example the central and southwest North Atlantic, 311 

northeast Pacific, and northern Indian oceans. To explore the spatial heterogeneities of sharks 312 

and vessels we used generalised additive models to determine how shark relative density and 313 

fishing effort were affected by environmental covariates (see Methods; Supplementary Table 314 

7). Distributions of pelagic shark density and fishing effort of all vessels, and for pelagic 315 

longline vessels separately, were best explained by the same drivers, with all demonstrating 316 

strong relationships with habitat types characterised by surface and subsurface temperature 317 

gradients (fronts24; thermoclines) and/or high primary productivity (Extended Data Table 1, 318 

Extended Data Fig. 5). Relative densities of sharks were higher around ocean areas with 319 

specific surface (fronts, ~1.0C/100 km; and mesoscale eddy edges) and subsurface 320 

(thermocline, ~40 m) boundary conditions and moderate chlorophyll-a concentrations (~0.3 321 

mmol m-3), a proxy for primary productivity. The same set of environmental covariates best 322 

explained distributions of shark densities and fishing effort of all vessels and of longlines 323 

only (Supplementary Results and Discussion 2.2). This predicts high spatial overlap because 324 

sharks are known to aggregate in biologically productive features like fronts to enhance 325 

foraging opportunities5,6,24, a behaviour that fishers exploit to increase their chances of 326 

making higher catches of commercially valuable sharks and other epipelagic fishes5,6. For 327 

pelagic longliners, national fleets that target sharks for fins and meat (or as targeted bycatch) 328 

include China, Taiwan, Spain and Portugal5,14, which comprise 67% of all AIS-tracked 329 
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longlining vessels analysed in this study (Extended Data Table 2). Other large national fleets 330 

such as the U.S.A., Canada and Japan potentially take shark as unintentional bycatch17. 331 

Hence, two potential explanations for spatial overlap of sharks and fishing vessels include: (i) 332 

fishers track sharks (shark habitats) as target species for valuable fins and, for some species, 333 

meat, or (ii) sharks occur in similar habitats as fishers because, for example, they have the 334 

same target prey (e.g. tunas, billfishes) or prey on the same species that targeted fish also feed 335 

upon (e.g. small-bodied schooling fish). 336 

To quantify the actual shark space use occupied by fishing vessels, as indicated by the 337 

modelling, we calculated the mean spatial overlap of tracked sharks with fisheries for a mean 338 

year within the datasets (Methods). Overlap was defined as shark and vessel spatial co-339 

occurrence within a 1 × 1 grid cell in an average year, where 1 latitude at the equator (110.6 340 

km) matches the approximate length of high seas longlines, i.e. 100 km long with an average 341 

of 1,200 baited hooks5. Globally, the distribution of industrial fishing activity of all vessels in 342 

the dataset overlapped 81% of the space use of tracked sharks at the 1  1 scale (mean 343 

overlap = 80.8%  29.9 S.D.; median = 96.2%, n = 1,681 tracks). Decreasing grid cell size 344 

can reduce percentage spatial overlap estimates21, however although we found the mean 345 

overlap at 0.5  0.5 and 0.25  0.25 grid cell sizes decreased as expected, it remained 346 

relatively high at 67 and 56%, respectively (Extended Data Table 3). However, there were 347 

large regions of oceans where no or very few sharks were satellite tracked despite high 348 

fishing activity, for example the Patagonian Shelf and in the northwest and southeast Pacific 349 

Ocean (Extended Data Fig. 3). The northwest Pacific Ocean supports major global fishing-350 

effort hotspots off China and Japan, yet there were very limited shark tracking data in this 351 

region. This suggests that either sharks are already in low abundance such that tagging 352 

studies are less viable, or, more likely, that transmitters are not available or data cannot be 353 
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accessed. This study highlights an urgent need for fishery-independent shark occurrence data, 354 

such as from tracking, to underpin spatial risk assessments in global fishing hotspots. 355 

We focused our detailed analysis of shark overlap with that of longline fishing effort, as this 356 

gear catches most pelagic sharks globally17 and since most AIS fishing vessel gear types 357 

represented in the dataset do not target or bycatch sharks21. Where we were able to determine 358 

shark space use directly using tags, coverage by fisheries was dominated by pelagic longline 359 

gear (Fig. 2a, b). The mean spatial overlap between sharks and longline fishing effort was 360 

45% (mean = 44.8%  41.4 S.D.; median = 33.7%) at the 1  1 grid size (Extended Data 361 

Table 2), with the spatial pattern being very similar to that for sharks and all mapped AIS 362 

fishing vessels (compare Fig. 2b with Extended Data Fig. 3a). Across four regions where the 363 

majority of sharks were tracked, mean spatial overlap of all 11 most frequently tracked 364 

species/taxa groups with longline fishing effort ranged from 24% (east Pacific; n = 585 365 

tracks) to 55% (north Atlantic; n = 656 tracks) and 66% (Oceania: Australia, New Zealand, 366 

southeast Asia; n = 151 tracks), up to 82% for the southwest Indian ocean (n = 114 tracks) 367 

(Extended Data Table 4). 368 

Hotspots of spatial overlap intensity (see Methods) of sharks and longlines were evident in 369 

the Gulf Stream and stretching eastward to the Azores, western European shelf edge, west 370 

African upwelling, California Current, east of the Galapagos, Agulhas Current, Seychelles 371 

archipelago, the southern Great Barrier Reef, and New Zealand shelf waters (Fig. 2c, 372 

Supplementary Table 8). Overlap intensity varied across species and among oceans, 373 

reflecting the heterogeneous distributions of space use by sharks and longline fishing activity 374 

(Extended Data Fig. 6). For example, spatial overlap of sharks and longline fishing effort, 375 

averaged across all oceans, ranged from 92% for the porbeagle, down to 11% for the oceanic 376 

whitetip shark. Among oceans, the overlap of space use by blue sharks – the pelagic shark 377 
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most commonly caught by open-ocean longline fleets17 – was 94% in the North Atlantic, 378 

decreasing to 34% in the east Pacific.  379 

An important question is whether significant areas of the high seas used by pelagic sharks 380 

exist that are largely free from AIS-monitored fishing activity of longline and purse seine 381 

vessels as these could be targeted for shark conservation measures. Identifying such areas can 382 

only be addressed with the fishery-independent distributions presented here. We found some 383 

largescale areas with low overlap between shark space use and fishing effort, e.g. the central 384 

and south-western North Atlantic (Fig. 2a, b; Extended Data Fig. 4). Similarly, the high seas 385 

in the northeast Pacific, the South Australian Basin, and some waters between Australia and 386 

New Zealand supported space use by sharks but sparse AIS fishing vessel activity. Although 387 

it is possible longliners and purse seiners were present but not using AIS, low fishing activity 388 

also occurred in many of the territorial waters around oceanic islands in the Atlantic, Indian 389 

Ocean and Pacific (Fig. 2b), indicating these zones, some of which are marine protected areas 390 

(MPAs), may offer some refuge to sharks from AIS-monitored fishing vessels. For example, 391 

the Chagos Archipelago (Indian Ocean) was identified as a shark hotspot even though no 392 

sharks were tagged there, with this archipelago lying within one of the world’s largest MPAs 393 

that has maintained a ban on commercial fishing since 2010. Furthermore, the shark hotspot 394 

in the south-western North Atlantic centred in the Caribbean showed very low overlap with 395 

AIS vessels, possibly due to the presence of a large MPA (Bahamas) that prohibits pelagic 396 

longline fishing25 or due to few vessels there using AIS. However, a general characteristic of 397 

large areas with low longline fishing activity was also one of lower shark densities (<75th 398 

percentile of relative density; Fig. 2a), indicating sharks were not remaining in these areas but 399 

moving through them, potentially as part of foraging excursions or migrations for 400 

reproduction11,13. The lower relative density of sharks suggests lower productivity – 401 

confirmed by our modelling results (model 1; Extended Data Fig. 5) – and consequently 402 
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poorer fishing opportunities, which may explain the low fishing effort. The results also show 403 

that very few large hotspots of space use by pelagic sharks occurred in areas free from AIS 404 

fishing vessels, particularly longline and purse seine gears (Fig. 2c; Extended Data Fig. 4).  405 

To estimate the potential risk of exposure of sharks in different ocean regions to longline 406 

fishing effort, we calculated the fishing effort individual sharks were subjected to on each 407 

track day, standardised to account for variations in individual track durations (hereafter 408 

termed fishing effort per shark space use) (see Methods). As expected across all oceans and 409 

species, longline fishing effort per shark space use was highly variable (mean = 34.7 d  410 

125.4 S.D.; median = 8.7 d) (Extended Data Table 3). Given this, we tested whether the mean 411 

annual longline fishing effort (20122016) overlap with mean annual shark space use 412 

(20022017) was indicative of actual sharks captured and landed by fisheries. We compared 413 

the mean annual longline fishing effort for North Atlantic shark species (the ocean for which 414 

we had the most species and tracks) with Food and Agriculture Organization of the United 415 

Nations (FAO) officially recorded mean annual North Atlantic landings of those species 416 

(20122016) (Methods). We found a significant positive relationship between landings and 417 

AIS longline effort (linear regression, r2 = 0.51, n = 9 species or taxa group, F = 7.14, 418 

F0.05(1),1,7 = 5.59, p = 0.032) (Extended Data Fig. 7), confirming longline fishing effort in 419 

shark space use areas reflects major trends in fishing-induced shark mortality.   420 

The extent of spatial overlap between shark distribution and longline fishing effort indicates 421 

which species are more exposed to fishing and how this exposure is distributed (Fig. 3). Since 422 

actual shark mortality (landings) is related to longline fishing effort in shark space use areas, 423 

it follows that sharks exposed to high fishing overlap and effort (greater susceptibility) will 424 

be at greater risk of capture than those exposed to low overlap and effort (Fig. 3; Extended 425 

Data Table 4). We found the main commercially valuable pelagic sharks were grouped within 426 
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the highest potential risk zone in the North Atlantic and east Pacific (blue and shortfin mako 427 

sharks), and in the Oceania region (blue shark) (Fig. 3a,b) (see Supplementary Results and 428 

Discussion 2.3, 2.4 for significance tests and results for other species). In the North Atlantic, 429 

between 79 and 94% of tracked space used by shortfin mako and blue sharks, respectively, 430 

overlapped with longline fisheries, but fishing effort within this overlap was also significantly 431 

greater (means: mako = 12.2 d  9.0 S.D.; blue = 14.0 d  9.7 S.D.) compared to other 432 

tracked sharks (range, 0.12 – 6.7 d) (Fig. 3a; Extended Data Table 4b; Extended Data Fig. 6). 433 

However, exposure risk varied between oceans because although spatial overlap of shortfin 434 

mako and blue sharks remained relatively high in the east Pacific (40%), and at 55.7% for 435 

blue shark in Oceania, longline fishing effort was lower there (means: 1 d in Pacific; 6.6 d 436 

in Oceania) (Fig. 3a,b,d; Extended Data Fig. 6).  437 

Among sharks generally considered less commercially valuable, including tiger and bull 438 

sharks, we found exposure risk to longlines was high in some but not all regions. Bull sharks 439 

used spatially limited areas within southwest Indian Ocean shelf and oceanic island habitats, 440 

and in those areas they were at increased risk due to high average overlap (100%) and fishing 441 

effort (45.6 d) (Extended Data Table 4d; Extended Data Figure 6j). This greater susceptibility 442 

could lead to high localised catches, which, if replicated elsewhere, could explain why bull 443 

sharks are one of the ten most commonly traded species in the Hong Kong fin market26. In 444 

contrast, tiger sharks were exposed to higher than average overlap in the Indian Ocean 445 

(87.3%) and Oceania (63%), but fishing effort overlapping this species was lower than 446 

average in all oceans (Fig. 3a-d; Extended Data Tables 4d, e).   447 

High risk was evident for internationally protected sharks under CITES (Convention on 448 

International Trade in Endangered Species) Appendix II and RFMO regulations. The 449 

porbeagle shark (IUCN Red List ‘endangered’ globally) and the white shark (‘vulnerable’ 450 
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globally) have low population sizes compared to historic levels (Supplementary Table 2). In 451 

the North Atlantic we found an average 97% overlap of porbeagle space use and higher than 452 

average fishing effort (6.7 d) (Fig. 3a), indicating high potential for incidental bycatch 453 

mortality. We found white sharks in the highest risk zone in all oceans where it was tracked, 454 

with mean spatial overlap with longline fisheries ranging from 55% (east Pacific) to 96% 455 

(southwest Indian Ocean) and fishing effort in those areas being between 2.7 d (east Pacific) 456 

and 17.0 d (southwest Indian Ocean) (Fig. 3a-d; Extended Data Table 4). Our results showing 457 

high fishing overlap and effort for porbeagle and white sharks highlight the need for 458 

continued protection  including sufficient scientific observer coverage on vessels to 459 

underpin accurate data reporting  in the regions we identify where risk is greatest so that 460 

stock rebuilding can continue27, which for porbeagle is estimated to take a further 30 years20. 461 

The highest levels of exposure risk of sharks to longline fisheries were not constant but 462 

varied seasonally as shark and fishing vessel space use shifted in relation to each other (Fig. 463 

4; Extended Data Fig. 8). Overall for species with sufficient data (plotted in Fig. 4), the mean 464 

monthly overlap of shark space use with longline fishing effort was 40.5% (± 26.9 S.D.; 465 

median = 24.2%), similar to the mean annual overlap of 45%. This indicates shark-longline 466 

overlap remained relatively high in both space and time. Generally, sharks spent 5–6 months 467 

per year in the lowest risk zone and 2–6 months in the highest, with differing patterns of 468 

changing exposure to fishing evident across species (Fig. 4). For example, overlap and 469 

longline fishing effort for North Atlantic blue and southwest Indian Ocean white sharks both 470 

remained relatively high (60% overlap, 40 d effort), but with highest risk occurring at 471 

discrete times in the year (Extended Data Fig. 9). For Indian Ocean white sharks, this pattern 472 

arises from long-range seasonal movements (Feb, Jun/Jul, Oct) into annually persistent areas 473 

of high longline fishing effort (>60% overlap, >40 d effort) (Extended Data Fig. 9d). For blue 474 

sharks, the discrete pattern appears driven by sharks and longline vessels co-occurring 475 
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maximally in boreal winter and summer, with lower exposure risk occurring in boreal spring 476 

and autumn as sharks migrate north before returning south5. Longline fisheries also made this 477 

seasonal south-north-south movement, but lagging behind movements of blue sharks, thus 478 

lower overlap and effort during those times (Extended Data Fig. 9a). Similarly, annual risk 479 

patterns of east Pacific white and Australian tiger sharks were driven by migratory behaviour, 480 

with highest risk (20% overlap, 10 d effort) occurring for three consecutive months in 481 

boreal (white) and austral (tiger) spring as sharks arrive in areas with higher longline fishing 482 

effort (Extended Data Fig. 9c,e). In contrast, shortfin mako sharks in the North Atlantic were 483 

exposed to high overlap (>55%) and effort (>32 d) continually through the boreal summer 484 

and autumn (Jun–Nov), principally due to occupation of a space use hotspot located where 485 

the Gulf Stream and Labrador Current converge that results in persistent high overlap with 486 

high longline fishing effort (Fig. 4b; Extended Data Fig. 9b). Shortfin mako and vessel 487 

tracking indicates that fishery-induced mortality within this hotspot is therefore likely to be 488 

high. This was confirmed by the high return rate of satellite tags (19.3%) attached to Atlantic 489 

shortfin makos (n = 119 tags; tracking duration: mean  SD = 161.5 d  156.9; median = 109 490 

d) that were returned to us after sharks were captured by Atlantic longline fishing vessels. To 491 

our knowledge, this is the highest species-specific return rate yet recorded in an ocean scale, 492 

as opposed to regional scale, study7,8 (Fig. 2c; Extended Data Table 5; Supplementary Results 493 

and Discussion 2.4).  494 

High fishing effort focused on extensive shark hotspots of commercially valuable species 495 

raises particular concern. There is limited high seas management for commercial species, 496 

including blue and shortfin mako sharks5,20. The results from AIS indicate a high probability 497 

of overexploitation of commercial species as high seas space use hotspots are exposed to high 498 

fisheries overlap across their ranges for significant periods of a year (Extended Data Figs. 6, 499 
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9). Overall, this pattern suggests a future with limited spatial refuge from industrial longline 500 

fishing effort that is currently centred on ecologically important shark hotspots. 501 

The patterns of high overlap and fishing effort observed for sharks suggest different 502 

mechanisms driving shark fishing hotspots. The high overlap and fishing effort observed in 503 

commercially important shark hotspots, together with high catches (landings), support the 504 

explanation that fishers track sharks. For example, North Atlantic blue and shortfin mako 505 

sharks are known target species of Chinese, Spanish and Portuguese longlining fleets5,14,17 506 

(Extended Data Table 2). However, this is not necessarily the case for all global hotspots. 507 

Internationally protected species such as the white shark was subject to high overlap and 508 

effort in the North Atlantic, southwest Indian, and northeast and southwest Pacific oceans 509 

despite no target fisheries. This indicates that high overlap is due to white sharks co-510 

occurring in habitats of target fish species (e.g. tunas) that fishers track. 511 

Our results show that globally important habitat areas for threatened pelagic sharks overlap 512 

significantly with industrial fishing activity in both space and time. Given the high fishing 513 

effort in hotspots of many species for significant portions of the year, and the very few 514 

tracked hotspots free from exploitation, our study reveals exposure risk of sharks to fisheries 515 

in the high seas is spatially extensive – stretching across entire ocean-scale population ranges 516 

for some species. The distribution maps reported here are, therefore, a first but essential 517 

underpinning for a conservation blueprint for pelagic sharks in this high seas habitat. Our 518 

study highlights the scale of fishing overlap with shark hotspots and argues for more effective 519 

and timely monitoring, reporting and management of pelagic sharks as a result. To enhance 520 

the recovery of vulnerable species, one solution is designation of largescale MPAs28 around 521 

ecologically important space use hotspots of pelagic sharks24, notwithstanding the need for 522 

more complete reporting of catch data to support stricter conventional management by catch 523 
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prohibitions or quotas5,18. This study outlines shark hotspot locations where fishing effort is 524 

currently relatively low, which is where shark conservation could be maximized, while 525 

minimizing impact on fishing activity not directed at sharks. Although the legal framework 526 

remains challenging to develop a legally binding treaty for managing high seas fauna22, 527 

burgeoning technology for global surveillance and enforcement now offers valuable 528 

additional options for a step change in ocean management6.  529 

Satellite monitoring of ocean-scale movements by marine megafauna1,5,13,29, oceanographic 530 

features (eddies, fronts)6,24 and global fishing vessel distributions21 could provide signals of 531 

shifting space use by megafauna due to environmental changes that, in turn, could inform 532 

designation of new temporary time-area closures to industrial fishing6 and tracking of fishers’ 533 

displacement activities22. The potential of AIS as a global fisheries and conservation 534 

management tool suggests that, given the remoteness and vast extent of the high seas, if we 535 

are to reverse the observed declines and so rebuild populations of iconic ocean predators3 536 

such as pelagic sharks14, technology-led conservation measures – conservation technology – 537 

will be crucial in addition to conventional management methods5,18-20. Conservation 538 

technology could evolve in the future toward incorporation of adaptive management 539 

strategies that are actionable in real time. The rapid development of autonomous vehicles has 540 

created a need to develop machine-learning real-time assessments of risks30, developments 541 

that can be readily transposed to assess risks in the overlap between fishing vessels and 542 

sharks across the global ocean. 543 
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 643 

 644 

Fig. 1. Movements of oceanic and neritic pelagic sharks. (a) Daily state-space model 645 

locations estimates from raw locations relayed by satellites from transmitters deployed on 646 

1,681 sharks from 23 species between 2002–2017. Extent of individual shark species space-647 

use areas are illustrated for blue Prionace glauca (b), shortfin mako Isurus oxyrinchus (c), 648 

tiger Galeocerdo cuvier (d), white Carcharodon carcharias (e) and whale Rhincodon typus 649 

sharks (f). Shark images created by M. Dando. 650 

  651 
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 652 

Fig. 2. Spatial distributions and overlap intensity of sharks and longline fishing vessels. 653 

(a) Distribution of the weighted, normalized location density of ≥75th percentile (relative 654 

density) of tracked sharks in 1 × 1 grid cells. (b) Mean annual distribution of fishing effort 655 

(mean days per grid cell) of AIS tracked longlining vessels in 2012–2016 (see Methods). (c) 656 

Distribution of the overlap intensity between shark density and longline fishing effort (spatial 657 

co-occurrence within 1 × 1 grid cells). Spatial overlap intensity hotspots were defined as 1 × 658 
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1 grid cells with ≥75% overlap. Blue circles denote locations where tagged sharks were 659 

caught by commercial fishers. 660 

  661 
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 662 

Fig. 3. Estimated exposure risk of sharks to capture by longline fishing activity. Plots 663 

(left) showing shark-longline vessel spatial overlap against longline fishing effort per shark 664 

space use indicate species subject to high overlap and fishing effort (higher than average 665 

overlap and effort; higher risk red zone on plot) and those with lower overlap and effort 666 

(lower than average overlap and effort; lower risk green zone) for (a) North Atlantic, (b) 667 
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eastern Pacific and (c) southern Indian oceans, and (d) for the Oceania region. Lines 668 

separating the coloured zones are fixed at the average values of spatial overlap (y axis) and 669 

fishing effort per shark space use (x axis) for all species combined. For each ocean, relative 670 

density distributions of selected shark species (middle map panels) are shown in comparison 671 

to where overlap intensity hotspots of shark-longline vessels occur (map panels on right; see 672 

Methods for details). Shark species identification codes (e.g. PGL) used on panels are given 673 

in Fig. 1. Error bars denote  one standard deviation of the mean. Shark images created by M. 674 

Dando. 675 

  676 
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 677 

 678 

Fig. 4. Temporal changes in shark exposure risk to longline fishing. Mean annual shark-679 

longline vessel spatial overlap versus longline fishing effort for the four most data-rich 680 

species: (a) blue, (b) shortfin mako, (c, d) white, and (e) tiger sharks. Lines separating the 681 

coloured zones are fixed at the respective species average values of spatial overlap (y axis) 682 

and fishing effort per shark space use (x axis). Horizontal bars denote months in different 683 
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fishing exposure risk zones (red, highest risk; green, lowest). Error bars denote  one 684 

standard deviation of the mean. Shark images created by M. Dando. 685 

  686 
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Methods 687 

Study animals and tagging. Satellite transmitter tags were attached to 1,804 large pelagic 688 

sharks at multiple tagging sites in the Atlantic, Indian and Pacific oceans (Extended Data Fig. 689 

1). The number of tagged individuals varied among species and ranged from one to 280. Two 690 

satellite-transmitter tag types (ARGOS, advanced research and global observation satellite 691 

transmitter; and PSAT, pop-off satellite-linked archival transmitter) were used. Sharks were 692 

either captured with baited hooks (longlines, rod-and-line angling, or with handlines), in 693 

purse seine during commercial fishing operations, or tagged free-swimming in the water. 694 

Tags were attached to the first dorsal fin or in the dorsal musculature. All animal handling 695 

procedures were approved by institutional ethical review committees and completed by 696 

trained personnel. Data were provided by the 37 data owners to the senior author and quality 697 

checked prior to archiving in a database. Poor quality data were reported for 123 tags (72 698 

ARGOS and 51 PSAT) due to, for example, early tag failure, premature tag pop-off, and/or a 699 

high percentage of locations estimated with high spatial error, e.g. raw computed 700 

geolocations over land, all of which resulted in poor state-space model fits leading to short or 701 

unreliable track reconstructions. Hence, analyses were restricted to the remaining 1,681 702 

tracks from 1,066 ARGOS and 615 PSAT tags on sharks from 23 species ranging in duration 703 

per species from 20 to 57,037 days with a median of 4.1 years total track time per species 704 

(Supplementary Table 3). The number of sharks tracked within each region is given in 705 

Supplementary Table 9. 706 

Track processing. Movements of PSAT-tagged sharks were estimated using either satellite 707 

relayed data from each tag or from archival data after the tags were physically recovered. 708 

Data were provided as: (i) raw shark positions that were previously reconstructed using 709 

software provided by the tag manufacturers (e.g. Wildlife Computers, Redmond, USA; 710 

Microwave Telemetry, USA), where daily maximal rate-of-change in light intensity was used 711 
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to estimate local time of midnight or midday for longitude calculations, and day-length 712 

estimation for determining latitude31,32; or (ii) filtered positions where a state-space model 713 

(SSM) (unscented Kalman filter with sea surface temperature, UKFSST)33 had been applied 714 

to correct the raw geolocation estimates and obtain the most probable track. In the first case, 715 

raw positions were corrected using the UKFSST SSM (UKFSST R package) in addition to a 716 

bathymetric correction applied to the initial Kalman position estimates (analyzepsat R add-717 

on). A daily time-series of locations was estimated using a continuous-time correlated 718 

random walk (CTCRW) Kalman filter34 (crawl R package). UKFSST geolocations were 719 

parameterised with standard deviation (SD) constants (K) which produces the smallest mean 720 

deviation from concurrent Argos positions35. In the latter case, the CTCRW filter was applied 721 

to produce regular time-series.  722 

For ARGOS transmitter tags, data were provided as raw ARGOS (Doppler frequency shift) 723 

position estimates. Location class (LC) Z data – assigned for a failed attempt at obtaining a 724 

position – were discarded from the dataset. The remaining raw position estimates (LC 3, 2, 1, 725 

0, A and B) were analysed point-to-point with a 3 m s-1 speed filter to remove outlier 726 

locations. Subsequently, the CTCRW SSM was applied to each individual track, producing a 727 

single position estimate per day. ARGOS positions were parameterised with the K error 728 

model parameters for longitude and latitude implemented in the crawl R package34. 729 

Shark tracking data from the Tagging of Pacific Predators (TOPP) program were downloaded 730 

from the Animal Tracking Network (ATN) hosted by the Integrated Ocean Observing System 731 

(<https://ioos.noaa.gov/project/atn/>; downloaded September 2017). Both ARGOS and light-732 

based geolocation data in ATN had already been filtered with a Bayesian based SSM36. 733 

Briefly, the SSM was fitted to each track individually, using the WinBUGS software that 734 

conducts Bayesian statistical analyses using Markov chain Monte Carlo (MCMC) sampling37. 735 

For each track, two MCMC chains each of length 10,000 were run and a sample of 2,000 736 
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from the joint posterior probability distribution was obtained by discarding the first 5,000 737 

iterations and retaining every 5th of the remaining iterations. SSM fits were posteriorly 738 

inspected for obvious problems (e.g. unrealistic movements13). Because two different SSMs 739 

were applied to data used in this study, we tested for possible biases in the spatial density 740 

analysis (see below) by comparing 1 × 1º density grid maps obtained with both UKFSST and 741 

Bayesian-based filtered tracks using a subset of 83 ARGOS-linked tracks in the North 742 

Atlantic (blue shark, n = 27; mako, n = 42; white, n = 3; oceanic whitetip, n = 11). 743 

Differences in spatial grid density between the two methods were negligible (Supplementary 744 

Fig. 1).  745 

Spatial density analysis. To obtain unbiased estimates of shark spatial density, gaps between 746 

consecutive dates in the raw tracking data were interpolated to one position per day. The 747 

frequency of long temporal gaps in a reconstructed track can result in extensive interpolated 748 

movements driven by the underlying random walk model rather than a shark’s movement 749 

pattern13. Although the frequency of long temporal gaps (>20 days) in our dataset was low 750 

(Supplementary Table 10), nonetheless, any tracks with gaps exceeding 20 d were split into 751 

segments prior to interpolation, thus avoiding the inclusion of unrepresentative interpolated 752 

location estimates5. Similarly, location estimates derived for periods exceeding 20 d were 753 

also discarded from TOPP data13.  754 

To account for biases in spatial density associated with (i) variable track lengths and (ii) 755 

shorter tracks near the tagging location, a weighting procedure was applied13 and data were 756 

normalised to account for unequal sample sizes across species. Briefly, each daily location 757 

estimate was weighted by the inverse number of individuals of a given species with location 758 

estimates for the same relative day. Periods with gaps >20 d were not included when 759 

weighting the locations. After the 85th percentile of the track length, daily weights were fixed. 760 

Under this weighting scheme, individual location estimates closer to the tagging location 761 
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received a lower weight than later locations because more sharks had locations earlier in their 762 

tracks. Also, longer tracks received a higher total weight than shorter tracks because of the 763 

higher number of locations received. Therefore, calculated spatial densities were more 764 

representative of the actual distributions and less affected by tag loss, failure or a spatial bias 765 

towards deployment location. Total weights for each species were normalised to one so that 766 

within the study area each species contributed equally to the density patterns. Species with 767 

comparatively very low numbers of tracks were grouped and treated as one (these were: C. 768 

galapagensis, C. limbatus, A. vulpinus, A. pelagicus, O. ferox, C. brachyurus, C. obscurus, N. 769 

cepedianus and C. plumbeus). Hammerhead (3 species) and mako (2 species) shark species 770 

were also clustered and analysed as taxa groups, Sphyrna spp. and Isurus spp., respectively. 771 

Spatial densities (overall averages) were calculated for all species together (Fig. 2a) and per 772 

species at a 1 × 1º grid cell resolution (Extended Data Fig. 6). 773 

Fishing vessel geolocation data. The automatic identification system (AIS) was developed 774 

as a vessel safety and anti-collision system with global coverage, rather than to track fishing 775 

vessels for fishery management purposes21-23. However, its global coverage of locations of 776 

many thousands of ships through time enables fishing effort distribution to be analysed21,22. 777 

Here, fishing effort (hours of fishing) data gridded at 0.01 by flag state and gear type were 778 

obtained from Global Fishing Watch (GFW) (available at 779 

<http://globalfishingwatch.org/datasets-and-code/fishing-effort/>). GFW used raw AIS vessel 780 

tracking data obtained from ORBCOMM via their AIS-enabled satellite constellation 781 

(<https://www.orbcomm.com/eu/networks/satellite-ais>) to calculate fishing effort and derive 782 

the gridded data, described in detail in Kroodsma et al.21. Briefly, GFW uses two neural 783 

network algorithms to categorize different types of fishing gear, e.g. drifting longlines, purse 784 

seines, in addition to estimating the spatio-temporally resolved locations where fishing gears 785 

were most likely deployed by individual vessels21,38. We used the GFW gridded fishing effort 786 
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data in the years 2012 to 2016 for all gear types, and for drifting pelagic longlines and purse 787 

seines.  For each type, we summed the number of days fishing in a year within each 1  1 788 

grid cell and averaged across years. For the seasonal analysis, we summed the number of 789 

days fishing in each month within each 1  1 grid cell and averaged across years. Global 790 

distributions of fishing effort for all gear types, longlines and purse seines were mapped 791 

separately and overlaid by shark relative spatial density to determine spatial overlap intensity 792 

at the global and ocean scale, and for each species per ocean. AIS data coverage increased 793 

from 2012 to 2016 as more satellite AIS receivers were launched and commenced 794 

operation21. However, the global spatial distribution of longline vessel fishing effort was 795 

broadly similar across years (Extended Data Fig. 10) and variation in annual maximum 796 

fishing effort displayed no increasing trend over time, indicating our calculated mean annual 797 

fishing effort for 2012–2016 did not overestimate spatial overlap or fishing effort but can be 798 

considered conservative (Extended Data Fig. 10). 799 

Shark and fishing effort environment modelling. To model shark and fishing vessel 800 

distributions in relation to environmental variables, data were extracted from online databases 801 

(Supplementary Fig. 2). The environmental variables were selected based upon their 802 

demonstrated importance in affecting shark occurrence and included: (i) sea water 803 

temperature (ºC) (abbreviation used in models: sea surface temperature, SST; temperature at 804 

100 m, TEM_100) known to influence the presence of many pelagic shark species5,13; (ii) 805 

maximum thermal gradient (ºC/100 km) (TGR) influences shark spatial density5, and was 806 

calculated here based on the SST data and using maximum gradient maps by calculating 807 

where for each pixel a geodetic–distance-corrected maximum thermal gradient was 808 

calculated; (iii) sea water salinity (psu) (SAL), an important determinant of habitat use in 809 

some sharks1,38; (iv) sea surface height above geoid (m) (SSH) that influences shark 810 

presence5 and catches by fisheries6; (v) ocean mixed layer depth thickness or thermocline 811 
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depth (m) (MLD) that affects pelagic shark foraging behaviour39; (vi) mass concentration 812 

chlorophyll a in sea water (mmol m-3) (CHL) as a proxy for productivity that often 813 

characterises preferred habitats of sharks5,39; (vii) mole concentration of phytoplankton 814 

expressed as carbon in sea water concentration (mmol m-3) (PHY) as a direct measure of 815 

productivity; (viii) net primary production of biomass expressed as carbon per unit volume in 816 

sea water (g m-3/day) (NPP) quantifying productivity; and (ix) mole concentration of 817 

dissolved molecular oxygen in sea water (mmol m-3) (DO) that can strongly influence shark 818 

space use1. Environmental datasets i to v were downloaded from Copernicus Marine 819 

Environment Monitoring Service (CMEMS) Global Ocean Physics Reanalysis product 820 

(goo.gl/E4eXDM; downloaded November 2017) and datasets vi to ix from CMEMS Global 821 

Ocean Biochemistry Hindcast product (goo.gl/5hpBs2; downloaded November 2017). 822 

CMEMS data were available for 2002 to 2014 from the surface to 5,500 m as monthly 823 

datasets. Using custom-written software overall averages (2002-2014) were calculated at a 1 824 

× 1 grid cell resolution for surface and 100 m depth layers (with the exception of SSH and 825 

MLD; Supplementary Fig. 2). Most of these variables and interactions are also considered 826 

important for explaining fishing patterns5,6. 827 

We developed and compared a set of generalised additive models (GAMs) with a gaussian 828 

family and an identity link using the log-transformed relative density of sharks (Dit)
13 as 829 

response variable. Because we were interested in understanding the general environmental 830 

preferences of sharks, we considered the relative density for all 23 shark species combined 831 

without considering random effects per species. All environmental variables were 832 

standardised and colinearity checked prior to inclusion in the models. Highly skewed 833 

environmental variables were logged before standardisation, this included most predictors at 834 

the surface (except for SAL and SSH) and also NPP (for sharks only) and TGR at 100 m 835 

(TGR_100). The selection of variables to include in each model was made to avoid inclusion 836 
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of colinear variables in the same model and to specifically address key hypotheses. All 837 

possible combinations of 16 variables were not undertaken because many of them are 838 

colinear and could not be included in the same model. Rather, we focused on testing 839 

ecologically relevant hypotheses. A description of the general hypothesis tested with each 840 

model included in the model set is given in Supplementary Table 7. Including models with a 841 

reduced number of variables was also necessary, as some variables were colinear with 842 

variables included in other models. Because sharks respond to surface and subsurface thermal 843 

gradients which often support higher biological productivity5,6,13,39, we tested for interactions 844 

between MLD and SST, CHL and MLD at 100 m (MLD_100), CHL at 100 m (CHL_100) 845 

and TEM at 100 m (TEM_100), MLD and TGR at the surface, MLD and CHL_100, 846 

CHL_100 and TEM_100, and between SAL and TEM_100.  847 

GAM with a Tweedie distribution and log link function provided the best modelling approach 848 

for the fishing effort, as this distribution includes a family of probability distributions 849 

including normal, gamma, Poisson and compound Poisson-gamma. We considered two 850 

response variables separately: fishing effort of all vessels, and fishing effort of longline 851 

vessels only. In our model set we included different combinations of a total of the same 16 852 

explanatory environmental variables used for shark density modelling (see previous section; 853 

Supplementary Table 7), and also a null (all terms equal to zero), intercept-only model. The 854 

dimension basis for all terms was limited to 5 (i.e., k = 5) to assist controlling for 855 

overfitting40. We then used the Akaike’s information criterion (AIC)41 to compare the models 856 

in the model set for all sharks and fishing vessels. We assessed the relative strength of 857 

evidence for each model using the weights of AIC, and the goodness of fit of each model by 858 

calculating the percentage of deviance explained (%DE). All models were implemented in R 859 

using the mgcv package42. 860 
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Shark/vessel spatial overlap and effort. The spatial overlap (%) between an individual 861 

tracked shark and fishing effort was calculated as the number of days that sharks and fishing 862 

effort (days) occurred in the same 1 × 1 grid cells in an average year, as a function of all 863 

shark grid cells occupied and standardised for shark track length, and summarised as: 864 

Spatial overlap (%) = (number of days with overlap) / (total number of track days)  100 865 

A fixed 1 × 1 geographic grid cell (where 1 latitude at the equator = 110.6 km) was chosen 866 

because it encompassed the maximum length of fishing gear deployed by a single vessel, i.e. 867 

the length of drifting longlines are typically 100 km in total length5. We examined the effect 868 

of grid cell size43 on spatial overlap estimates by calculating the overlap of all sharks tracked 869 

with ARGOS transmitters (0.5 – 11 km spatial accuracy44) with all fishing vessels, then with 870 

longliners separately, at 0.5  0.5 and 0.25  0.25 grid cell sizes. An estimate of fishing 871 

effort that an individual shark was exposed to within the space each occupied was termed 872 

fishing effort per shark space use and calculated as: 873 

Individual shark exposure to fishing effort (d) = (total number of fishing days) / (total number 874 

of track days) 875 

Spatial overlap and fishing effort were also calculated for each of the most data-rich species 876 

per month to assess changes within an average year. To determine the spatial variation in 877 

overlap and fishing effort within the space used by sharks for mapping purposes, we 878 

calculated the overlap intensity in each 1 × 1 grid cell as the product of shark density 879 

(number of daily locations) and the number of fishing days. 880 

To test for differences in exposure risk of sharks to fishing activity between different species 881 

within the general fishing areas designated by the Food and Agriculture Organization of the 882 

United Nations (FAO) (Supplementary Fig. 3), we undertook statistical analysis of exposure 883 

risk calculated for each shark as the product of the mean spatial overlap and mean fishing 884 
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effort. Since data were not normal (Shapiro-Wilk normality test, p < 0.05), a Kruskal–Wallis 885 

(KW) test was performed (with pairwise Wilcoxon rank sum tests as a post-hoc test). 886 

Because of differences in the number of tagged individuals per species, groups of >25 sharks 887 

per species were randomly selected and the KW test performed. This procedure was repeated 888 

1,000 times and the percentage of times that significant differences were observed were 889 

recorded. Species with fewer than 25 individuals tracked were removed from the analysis. 890 

Given the relatively low number of sharks tracked in the southwest Indian Ocean and 891 

Oceania regions (Supplementary Table 10), statistical tests were restricted to the North 892 

Atlantic and eastern Pacific regions. In the Atlantic selected species were: P. glauca (n = 893 

152), Isurus spp. (n = 120), G. cuvier (n = 131), C. carcharias (n = 26), C. longimanus (n = 894 

99), L. nasus (n = 46), C. leucas (n = 38) and Sphyrna spp. (n = 40); Pacific, species were: P. 895 

glauca (n = 112), I. oxyrinchus (n = 113), L. ditropis (n = 172), R. typus (n = 77) and C. 896 

carcharias (n = 59). 897 

Shark landings. Annual pelagic shark landings by species/taxa groups were obtained from 898 

the FAO database (<FAO.org/fishery/statistics/global-capture-production/query/en>; 899 

downloaded September 2018) and related to fishing effort per shark space use of each 900 

species/taxa group. Landings reported for the North Atlantic (northwest, northeast, western 901 

central and eastern central Atlantic) between 2012 and 2016 were used in the analysis since it 902 

spanned the period that longline fishing effort was monitored (2012–2016). Data were 903 

extracted for nine species or taxa groups that are regularly caught by shelf and/or high-seas 904 

fisheries in the North Atlantic, the region in which most tags were deployed. The species/taxa 905 

groups were: P. glauca, I. oxyrinchus, C. longimanus, C. leucas, C. falciformis, L. nasus, G. 906 

cuvier, C. carcharias, and hammerheads (Sphyrna spp.) comprising S. lewini, S. mokarran 907 

and S. zygaena. Mean annual landings (t) per species/taxa group were calculated and related 908 

to AIS longline fishing effort per shark space use. 909 
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Extended Data Table 1. Summary of fitted generalised additive models (GAM) relating the 947 

log-transformed weighted relative density of all sharks (Dit) and the fishing effort of all 948 

vessels and of longlines only to environmental variables. Environmental variables included in 949 

each model are detailed in Supplementary Table 7. wAIC indicates the weight of the Akaike’s 950 

information criteria for each model in the model set with bold highlighting the highest ranked 951 

model. The percentage of deviance explained (%DE) by each model is given and the highest 952 

and second highest values for each response variable are highlighted in bold. 953 

  954 

Model 
Dit Fishing effort (all vessels) Longline fishing effort 

wAIC %DE wAIC %DE wAIC %DE 

1 1.000 26.25 1.000 29.88 1.000 16.12 

2 0.000 20.23 0.000 16.12 0.000 12.90 

3 0.000 9.42 0.000 14.52 0.000 14.62 

4 0.000 8.21 0.000 9.49 0.000 5.73 

5 0.000 5.83 0.000 7.20 0.000 11.14 

6 0.000 21.13 0.000 24.89 0.000 14.99 

7 0.000 12.01 0.000 17.72 0.000 6.21 

8 0.000 0.00 0.000 0.00 0.000 0.00 

 955 

 956 

 957 

  958 
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Extended Data Table 2. The number (a) and total hours fished (b) by flag state of the 5,565 959 

AIS longline fishing vessels analysed in this study arranged by the largest twenty values 960 

(totals for 2012 – 2016). In (a) the number of vessels per flag state is the total number of 961 

unique Maritime Mobile Safety Identity (MMSI) codes present in the dataset in 2012 – 2016. 962 

In (b), the total longline hours fished is the total during 2012 – 2016. 963 

(a) 964 

Flag state 

No. AIS 

longline vessels % total 

China 2,646 47.55 

Taiwan 791 14.21 

Japan 460 8.27 

Korea 248 4.46 

Spain 227 4.08 

USA 187 3.36 

Portugal 67 1.20 

Canada 65 1.17 

Vanuatu 63 1.13 

Fiji 46 0.83 

Australia 43 0.77 

India 39 0.70 

Russia 35 0.63 

South Africa 33 0.59 

Seychelles 28 0.50 

Argentina 27 0.49 

Greece 22 0.40 

Italy 22 0.40 

New Caledonia 21 0.38 

France 20 0.36 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 
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(b) 973 

Flag state 

Total longline 

hours fished % total 

China 5,227,295 20.81 

Taiwan 4,476,896 17.82 

Korea 4,292,482 17.09 

Japan 3,996,883 15.91 

Spain 2,972,677 11.83 

Portugal 630,843 2.51 

Vanuatu 425,445 1.69 

Fiji 284,558 1.13 

USA 278,485 1.11 

Australia 191,313 0.76 

New Caledonia 187,137 0.74 

Russia 168,067 0.67 

Reunion Islands 164,682 0.66 

Chile 164,423 0.65 

Argentina 159,235 0.63 

South Africa 157,890 0.63 

Seychelles 135,016 0.54 

France 129,678 0.52 

Malaysia 104,742 0.42 

Canada 86,943 0.35 

 974 

  975 
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Extended Data Table 3. Effect of different grid cell size on the global mean spatial overlap 976 

of sharks and fishing vessels calculated for all ARGOS transmitter tracked sharks (n = 1066) 977 

and all fishing vessels (including longline), and sharks and all longline vessels separately. 978 

ARGOS tracked sharks were used in the analysis because the spatial accuracy of locations 979 

was <11 km (see Methods for explanation). 980 

 Grid cell size 

Mean spatial 

overlap (%) 

One standard 

deviation 

Sharks and all fishing vessels 

(incl. longline) 

1  1 81.77 28.48 

0.5  0.5 67.17 35.39 

0.25  0.25 56.47 36.31 

Sharks and all longline vessels 

1  1 39.21 40.91 

0.5  0.5 30.26 37.63 

0.25  0.25 24.00 33.62 

 981 

  982 
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Extended Data Table 4. Calculated mean spatial overlap and fishing effort for ocean regions and species. S.D.,  one standard deviation of the 

mean; S.E.,  one standard error of the mean. Ocean regions were selected based upon FAO fishing regions (see Supplementary Figure 3). There 

were 70 individual sharks that did not fall into FAO regions and these were not included in this analysis. 

(a) All ocean regions. Calculated spatial overlap and longline fishing effort for the 11 most data-rich species/taxa groups. 

Species N tags Mean spatial 

overlap (%) 

Median S.D. S.E. Mean 

fishing 

effort (days) 

Median S.D. S.E. 

Prionace glauca 280 68.5 90.5 37.3 2.2 8.4 5.4 9.7 0.6 

Carcharhinus leucas 41 21.2 0.0 36.5 5.7 3.4 0.0 13.1 2.0 

Isurus oxyrinchus 262 57.9 61.3 36.9 2.3 6.4 1.9 8.2 0.5 

Carcharhinus longimanus 105 10.9 1.3 20.8 2.0 0.2 0.0 0.4 0.0 

Lamna nasus 56 92.1 100.0 17.2 2.3 6.4 5.7 4.1 0.5 

Lamna ditropis 172 8.8 2.8 13.1 1.0 0.2 0.0 0.3 0.0 

Carcharhinus falciformis 51 52.2 69.5 45.2 6.3 8.0 1.0 11.6 1.6 

Sphyrna spp. 66 29.3 10.5 37.7 4.6 0.7 0.0 1.9 0.2 

Galeocerdo cuvier 254 40.8 27.3 41.0 2.6 2.0 0.4 3.7 0.2 

Rhincodon typus 164 27.7 0.0 39.6 3.1 2.8 0.0 8.0 0.6 

Carcharodon carcharias 160 72.2 78.2 26.0 2.1 7.1 3.8 11.2 0.9 

Total tags or Mean 1611 43.8    4.2    
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(b) North Atlantic. Calculated spatial overlap and longline fishing effort for the 11 most data-rich species/taxa groups.  

Species N tags Mean spatial 

overlap (%) 

Median S.D. S.E. Mean 

fishing 

effort (days) 

Median S.D. S.E. 

Prionace glauca 152 93.7 100.0 14.2 1.2 14.0 11.5 9.7 0.8 

Carcharhinus leucas 38 15.0 0.0 29.9 4.9 0.1 0.0 0.2 0.0 

Isurus oxyrinchus 120 79.4 99.6 33.8 3.1 12.2 11.3 9.0 0.8 

Carcharhinus longimanus 99 8.0 0.5 17.4 1.7 0.1 0.0 0.4 0.0 

Lamna nasus 46 96.8 100.0 9.3 1.4 6.7 6.0 4.2 0.6 

Lamna ditropis 
     

    

Carcharhinus falciformis 1* 100.0 100.0 
  

1.0 1.0   

Sphyrna spp. 40 35.8 15.0 40.1 6.3 0.7 0.1 1.7 0.3 

Galeocerdo cuvier 131 23.9 12.7 29.6 2.6 1.3 0.1 2.9 0.3 

Rhincodon typus 3 60.2 56.3 25.6 14.8 6.2 0.9 9.7 5.6 

Carcharodon carcharias 26 83.3 90.9 21.3 4.2 5.7 4.5 4.8 0.9 

Total tags or Mean 656 55.1    4.8    

*The single tag was not included in the mean overlap or effort values shown. 
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(c) East Pacific. Calculated spatial overlap and longline fishing effort for the 11 most data-rich species/taxa groups.  

Species N tags Mean spatial 

overlap (%) 

Median S.D. S.E. Mean 

fishing 

effort (days) 

Median S.D. S.E. 

Prionace glauca 112 34.5 24.7 31.3 3.0 1.0 0.3 1.8 0.2 

Carcharhinus leucas 
     

    

Isurus oxyrinchus 113 36.1 34.3 26.4 2.5 1.1 0.8 1.8 0.2 

Carcharhinus longimanus 2 62.1 62.1 3.0 2.1 0.4 0.4 0.2 0.1 

Lamna nasus 
     

    

Lamna ditropis 172 8.8 2.8 13.1 1.0 0.2 0.0 0.3 0.0 

Carcharhinus falciformis 17 4.2 0.0 11.9 2.9 0.1 0.0 0.2 0.1 

Sphyrna spp. 21 6.0 0.0 10.7 2.3 0.0 0.0 0.1 0.0 

Galeocerdo cuvier 12 0.6 0.0 1.6 0.5 0.0 0.0 0.0 0.0 

Rhincodon typus 77 12.2 0.0 20.9 2.4 0.4 0.0 1.1 0.1 

Carcharodon carcharias 59 55.0 58.2 24.4 3.2 2.7 2.8 2.0 0.3 

Total tags or Mean 585 24.4    0.7    
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(d) Indian Ocean. Calculated spatial overlap and longline fishing effort for the 11 most data-rich species/taxa groups.  

Species N tags Mean spatial 

overlap (%) 

Median S.D. S.E. Mean 

fishing 

effort (days) 

Median S.D. S.E. 

Prionace glauca 5 91.9 100.0 11.4 5.1 5.4 4.4 4.9 2.2 

Carcharhinus leucas 3 100.0 100.0 0.0 0.0 45.6 47.2 23.6 13.6 

Isurus oxyrinchus 
     

    

Carcharhinus longimanus 
     

    

Lamna nasus 
     

    

Lamna ditropis 
     

    

Carcharhinus falciformis 33 75.5 93.6 35.7 6.2 12.4 8.4 12.5 2.2 

Sphyrna spp. 
     

    

Galeocerdo cuvier 26 87.3 100.0 31.0 6.1 4.7 4.0 4.8 0.9 

Rhincodon typus 48 38.7 0.0 48.2 7.0 8.0 0.0 13.1 1.9 

Carcharodon carcharias 34 96.3 98.6 5.2 0.9 17.0 8.3 19.8 3.4 

Total tags or Mean 149 81.6    15.5    
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(e) Oceania. Calculated spatial overlap and longline fishing effort for the 11 most data-rich species/taxa groups. 

Species N tags Mean spatial 

overlap (%) 

Median S.D. S.E. Mean 

fishing 

effort (days) 

Median S.D. S.E. 

Prionace glauca 11 55.7 71.4 42.3 12.8 6.6 1.6 9.3 2.8 

Carcharhinus leucas 
     

    

Isurus oxyrinchus 15 49.5 40.3 34.8 9.0 3.2 1.0 3.6 0.9 

Carcharhinus longimanus 
     

    

Lamna nasus 10 70.5 78.0 27.2 8.6 4.7 4.0 3.4 1.1 

Lamna ditropis 
     

    

Carcharhinus falciformis 
     

    

Sphyrna spp. 
     

    

Galeocerdo cuvier 58 62.8 89.4 44.2 5.8 3.5 1.3 4.8 0.6 

Rhincodon typus 16 89.8 100.0 16.6 4.1 1.7 0.6 2.0 0.5 

Carcharodon carcharias 41 70.0 76.1 22.3 3.5 6.3 3.9 6.5 1.0 

Total tags or Mean 151 66.4    4.3    
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Extended Data Table 5. Tag recapture data for the most data-rich species studied. 

 Global North Atlantic Eastern Pacific Indian Ocean Oceania 

Shark 

species 

Total 

tagged 

No. 

recaught 

% Total 

tagged 

No. 

recaught 

% Total 

tagged 

No. 

recaught 

% Total 

tagged 

No. 

recaught 

% Total 

tagged 

No. 

recaught 

% 

Silky 51 4 7.84 1 0 0 17 2 11.76 28 2 7.14    

Tiger 254 7 2.76 131 5 3.82 12 0 0 26 0 0 58 0 0 

Blue 280 17 6.07 152 12 7.89 112 5 4.46 5 0 0 11 0 0 

White 160 2 1.25 26 0 0 59 0 0 34 2 5.88 41 0 0 

Mako 261 30 11.49 119 23 19.3 113 5 4.42    15 1 6.67 

Salmon 172 1 0.58    172 1 0.58       

Porbeagle 56 3 5.36 46 3 6.52       10 0 0 

Whale 134 1 0.61 3 0 0 77 0 0 18 0 0 16 1 6.25 

 1398 65 4.65 478 43 9.00 562 13 2.31 111 4 3.60 151 2 1.32 
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Extended Data Fig. 1. The location of shark tag deployment sites in relation to shark 

space use hotspots. Red circles denote the locations where satellite transmitters were 

attached and sharks released, and blue squares in the eastern Pacific denote annual median 

deployment locations of tags by the Tagging of Pacific Predators (TOPP) program (ref. 13). 

Shark space use hotspots are shown as the 75th (blue dotted lines) and 90th percentiles (red 

dotted lines) of the relative density of estimated shark positions within 1 × 1 grid cells given 

in Fig. 2a. 
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Extended Data Fig. 2. Schematic maps of oceanographic and physical features. Major 

ocean currents (a) and physical features (b) referred to in this paper. Coloured arrows in a 

denote thermal regime of currents, with warmer colours indicating greater water temperature. 

Abbreviations in b denote: CGFZ, Charlie Gibbs Fracture Zone; GBR, Great Barrier Reef; 

PNG, Papua New Guinea; IMS, Isakov and Makarov Seamounts. 
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Extended Data Fig. 3. Spatial distribution of fishing vessels and overlap intensity with 

sharks. (a) Distribution of 83,628 AIS tracked fishing vessels’ effort (mean annual days 

spent per grid cell) between 2012 and 2016 (see Methods). (b) Distribution of the overlap 

intensity between shark density and fishing effort (spatial co-occurrence within 1 × 1 grid 

cells). Spatial overlap intensity hotspots were defined as 1 × 1 grid cells with ≥75% overlap. 

Note the similar overlap intensity pattern of sharks and all mapped AIS fishing vessels as that 

determined for sharks and longline vessels in Fig. 2c. 
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Extended Data Fig. 4. Spatial distribution of purse seine fishing vessels and overlap 

intensity with sharks. (a) Distribution of 6,941 AIS purse seine vessels’ fishing effort (mean 

annual days spent per grid cell) between 2012 and 2016 (see Methods). (b) Distribution of the 

overlap intensity between shark density and fishing effort (spatial co-occurrence within 1 × 

1 grid cells). Spatial overlap intensity hotspots were defined as 1 × 1 grid cells with ≥75% 

overlap. 
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Extended Data Fig. 5. Estimated relationships between relative density of all sharks (top panel) and AIS fishing effort of all vessels (middle 

panels) and longlines only (bottom panels) with all environmental variables in the highest ranked (Model 1) of the generalised additive models 

(GAM) tested. Third column shows the interaction results between the two variables described in the first and second columns. Asterisks 

indicate significance level for each smooth term included in the GAM, representing p < 0.001 (***), < 0.01 (**). 
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Extended Data Fig. 6. Relative density and spatial overlap intensity distributions for 

individual shark species. Relative density of sharks (left panels) tracked in 2002–2017 in 

comparison with shark-vessel spatial overlap intensity with AIS longline fishing vessels 
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(20122016) (right panels) for the 11 most data-rich species/taxa groups: (a) blue, Prionace 

glauca; (b) shortfin mako, Isurus oxyrinchus; (c) tiger, Galeocerdo cuvier; (d) salmon shark, 

Lamna ditropis; (e) whale shark, Rhincodon typus; (f) white, Carcharodon carcharias; (g) 

oceanic whitetip, Carcharhinus longimanus; (h) porbeagle, Lamna nasus; (i) silky, 

Carcharhinus falciformis; (j) bull, Carcharhinus leucas; and (k) hammerhead sharks, 

Sphyrna spp. (comprising: scalloped, S. lewini; great, S. mokarran; and smooth, S. zygaena). 

Shark images created by M. Dando. 
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Extended Data Fig. 7. Relationship between North Atlantic fisheries’ shark landings 

and AIS longline fishing effort in shark-vessel overlap areas. Plot showing shark landings 

from the North Atlantic (mean, 20122016) extracted from the Food and Agriculture 

Organization of the United Nations (FAO) total capture production database (see Methods) is 

dependent upon fishing effort of AIS longline vessels (2012–2016) in shark species space use 

areas in the North Atlantic (2002-2017).  For linear regression analysis, we tested the null 

hypothesis (H0) that  = 0 after normalising landings by log transformation and fishing effort 

by square-root transformation. We computed r2 = 0.51, F = 7.14 and F0.05(1),1,7  = 5.59, 

therefore rejecting H0 at the 5% level of significance with p = 0.032. Species identification 

codes are given in Fig. 1. 
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Extended Data Fig. 8. Example of temporal changes in spatial overlap and fishing 

effort. (a) Annual variation in shark-longline vessel spatial overlap and (b) longline fishing 

effort per shark space use. Shark species identification codes are given in Fig. 1. Error bars 

are ± 1 S.D. Shark images created by M. Dando. 
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Extended Data Fig. 9. Seasonal shifts in sharks, longline vessels and shark-vessel 

overlap intensity. Relative spatial density of sharks (left panels), longline fishing effort 

(middle), and percentage spatial overlap intensity (right panels) in each seasonal quarter for 

(a) North Atlantic blue and (b) shortfin mako sharks, (c) east Pacific and (d) southwest 

Indian Ocean white sharks, and for (e) tiger sharks in the Oceania region. Shark species 

identification codes at bottom right of each panel are given in Fig. 1. 
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Extended Data Fig. 10. Annual spatial distribution of AIS longline fishing effort, 2012–

2016. The global distribution of AIS monitored fishing effort varied across years as new AIS 

satellite receivers became operational which increases global coverage (for details see ref. 

21). However, we calculated the mean annual fishing effort distribution across the 5 year 

period since the global spatial extent was broadly similar between years but also overlapped 

temporally with more years for which we had shark track data (2002–2017). The maximum 

fishing effort value observed per grid cell showed no increasing trend through time (max. 

value: 2012 = 291 fishing effort days; 2013 = 2337 d; 2014 = 1860 d; 2015 = 1749 d; 2016 = 

3908 d) indicating a mean value taken across the 5 years was conservative and unlikely to 

lead to overestimates of fishing effort per shark space use (see Methods). 

 


