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Abstract

Derivative traders are usually required to scan through hundreds, even

thousands of possible trades on a daily basis. Up to now, not a single solution

is available to aid in their job. Hence, this work aims to develop a trading

recommendation system, and apply this system to the so-called Mid-Curve

Calendar Spread (MCCS). To suggest that such approach is feasible, we used

a list of 35 different types of MCCS; a total of 11 predictive models; and 4

benchmark models. Our results suggest that linear regression with lasso reg-

ularisation compared favourably to other approaches from a predictive and

interpretability perspective.

Keywords: Trading Recommendation System; Machine Learning; Deriva-

tives
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1 Introduction

Derivative traders are usually required to scan through hundreds, even thousands of

possible trades on a daily basis. A concrete case is the so-called Mid-Curve Calendar

Spread (MCCS), a derivatives package that involves selling an option on a forward-

starting swap and buying an option on a spot-starting swap with longer expiration

(Corb, 2012; Natenberg, 2014). In such a package, traders look for the historical

carry and the breakeven width levels, metrics that can be easily inferred from the

terminal or aged payoff profile of the MCCS, shown in several heatmaps made by

the research team. After that, they rank the most prominent ones to offer a client

or to proceed in some proprietary trading. In general, the straightforwardness and

swiftness that the decisions are made is the main upside of this framework.

However, one might notice that the main downsides of such approach are: (i)

substantial information on the underlying like sensitivities, implied volatility, etc.

are usually not taken into account; (ii) using the previous example, high historical

values for carry and breakeven widths are more necessary rather than sufficient

conditions for a profitable MCCS trade, being such argument extensible to other

trades as well; (iii) a trader can quickly judge if an individual trade is worthwhile

to invest, but may take some time to find it; and (iv) after a given period, traders

tends to only look at a small subset of possible trades (small area on the heatmap),

rather than the all available selection. Hence, a systematic approach where more

information at hand is crossed and aggregated to find good trading picks can be

highly useful and undoubtedly increase the trader’s productivity.

Therefore, the objective of this work is to develop a trading recommendation

system that can aid derivatives traders in their day-to-day routine. Being more

specific, our solution is based on the following pipeline: (i) on a certain trade date,

we compute metrics and sensitivities related to MCCS; (ii) these metrics are feed in

a model that can predict its expected return for a given holding period; and after

repeating (i) and (ii) for all trades we (iii) rank the trades using some dominance

criteria. Our final solution is a model-based heatmap with the attractiveness scores

for each MCCS trade, which can be offered to the traders and salespeople on a daily

basis.

In order to suggest that such approach is methodologically and computationally

feasible, we started using a list of 35 different types of MCCS regarding expiration

(3-60 months), forward (3-60 months) and swap tenure (1-8 years). For each MCCS

we used 10 years of historical data, ranging weekly from Sep/06 to Sep/16. Usually,

on each Wednesday of a week we computed the (a) carry and breakeven for an

MCCS, (b) the package sensitivities (gamma, vega, theta, etc.), (c) its present value
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for an at the money forward strike, and (d) its present value after holding this

package for a given period – allowing us to compute the holding h-periods-ahead

return. We carried out an exploratory analysis, showing the overall performance of

such trades, highlighting the major factors that droves their performance over time.

After this exploratory step, we started the modelling stage by: (i) fitting a

predictive model using as the input those previous metrics, and the subsequent

annualized returns as the output (in this case, holding 1-year-ahead the trade);

(ii) making predictions and comparing different modelling methodologies by a set

of performance metrics and benchmarks. Being more precise, we used a total of 11

predictive models, ranging from simple linear regression to support vector regression

and multi-layer perceptron. We also implemented 4 benchmark models, being two

intimately linked with breakeven width and carry level commonly used by the traders

to decide which MCCS looks more attractive to a selling pitch. After establishing

a backtesting engine and setting performance metrics, our results suggest that in

general Linear Regression with Lasso Regularization (Lasso Regression) compared

favourably to other approaches from a predictive and interpretability perspective.

In this sense, we organised this work as follows: next section presents a litera-

ture review on existing approaches to return/price prediction/estimation in different

areas and instruments, as well as a brief description on MCCS trades. The third

section displays the dataset that comports the MCCS trades, showing how the in-

formation is computed and gathered, which variables are the input and outputs,

and the main assumptions that are embedded in it. Then, we move to modelling

strategy, highlighting the main models that are going to be used as candidates for

the recommendation system, how they are tested and have their performance as-

sessed. Finally, we exhibit the results and discussions, starting with an exploratory

analysis of the dataset, and then moving towards the performance analysis of each

model through different metrics and perspectives. We close this work with some

concluding remarks and future directions for research.

2 Background

2.1 Related Works

2.1.1 Cash Instruments Strategies

Literature provides a growing body of evidence that price changes can be predicted,

that is, in particular circumstances and periods securities violate the Efficient Market

Hypothesis (Campbell, Lo, & MacKinlay, 1997; Malkiel, 2003). This hypothesis
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states that price changes must be unforecastable if they are properly anticipated,

that is if they fully incorporate the expectations and information of all participants.

Therefore, if returns can be predicted based on an information set (e.g., historical

prices, economic indicators, news, etc.), one can use this information to trade and

generate profits that are unexpected given the risk level that the market participant

is assuming.

In this sense, researchers have employed different modelling approaches and in-

formation sets to predict price changes across a range of assets. When we scan

the literature for cash instruments (equities, bonds, foreign exchange, etc.) focused

only in using past returns as the main source for prediction, we can find works that

tap into Bayesian forecasting (X. Zhou, Nakajima, & West, 2014), Nonparametric

Predictive Inference (Baker, Coolen-Maturi, & Coolen, 2017), Forecasting Combina-

tion (Elliott, Gargano, & Timmermann, 2013), Generalized Exponential Weighted

Moving Average (Nakano, Takahashi, & Takahashi, 2017), Support Vector Machines

(SVM) (Karathanasopoulos et al., 2016), Shallow and Deep Neural Networks (NN)

architectures (Chong, Han, & Park, 2017; Deng, Bao, Kong, Ren, & Dai, 2017;

Gerlein, McGinnity, Belatreche, & Coleman, 2016; T. Zhou et al., 2016), Random

Forest and Gradient Boosting Trees (Krauss, Do, & Huck, 2017), and so forth. The

list of proposed methodologies keeps growing, in which equities or indices appears

as the dominant asset class to apply these algorithms. Collectively, they provide

evidence that some forecastability over returns can be achieved by putting in place

complex models with a suitable training scheme.

Nonetheless, the main criticism of such approaches lies on the limited information

set that they are tapping into: past returns. Even though past returns is a valuable

source of data for forecasting, backed by many references in the previous paragraph,

for some authors they are treated as an another source of information, which in

some cases plays a minor role for prediction. Approaches that uses mainstream

and novel news sources (Reuters, The Wall Street Journal, Twitter, etc.) have

provided evidence that adding such features can improve return prediction and aid

in the design of a trading strategy across several asset classes (Andersen, Bollerslev,

Diebold, & Vega, 2007; H. Chen, De, Hu, & Hwang, 2014; Y.-L. Chen & Gau, 2010;

El Ouadghiri, Mignon, & Boitout, 2016; Feuerriegel & Prendinger, 2016). Taking an

even larger information set, (Weng, Ahmed, & Megahed, 2017) searches for disparate

data sources (Google, Wikipedia, and so on) to increase the knowledge base that

an algorithm can tap into for making predictions. Their inference engine used three

modelling techniques (decision trees, NN and SVM) and compared favourably to

other reported results in the literature.
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2.1.2 Derivatives Instruments Strategies

Contrasting with the emphasis that researchers in cash instruments put on return

predictability, when we devote our attention to research in derivatives instruments

(options, swaps, swaptions, etc.) it is clear that most of the effort is concentrated

on pricing these contracts. Similarly, researchers have adopted different approaches

and information sets to describe the price movements of these contracts properly.

The traditional framework is via stochastic calculus, in which pricing is made under

some market assumptions (frictionless market, no arbitrage, risk-neutral investor,

etc.) as well as an assumed asset price dynamics over time (e.g., Geometric Brow-

nian Motion) (Glasserman, 2013; Shreve, 2004). By discovering the fair price of a

contract, trading strategies can be established to tap into any potential mispricing

(Ehrman, 2006; Natenberg, 2014).

In parallel to the traditional framework, alternative ways of pricing and trading

started to emanate relying on fewer assumptions and more data-driven. We can

pinpoint approaches that use NN for option pricing and hedging with daily S&P

500 index daily call options (Gencay & Qi, 2001) as well as for real-time pricing and

hedging options on currency futures of EUR/USD at tick level (von Spreckelsen,

von Mettenheim, & Breitner, 2014). It is worth to mention other approaches in

the derivatives realm, such that the prediction of pricing and hedging errors for

equity-linked warrants with Gaussian Process models (Han & Lee, 2008), building

machine learning models for predicting option prices over KOSPI 200 Index options

(Park, Kim, & Lee, 2014) and a general study on forecasting non-negative option

price distributions using Bayesian kernel methods (Park & Lee, 2012).

When we devote our attention to the asset type that this work is dedicated,

interest rate swaptions, a similar pattern persists: most of the research is related

to pricing and not to return prediction. Regarding pricing, the same tradition

of relying on stochastic calculus techniques is followed (Brigo & Mercurio, 2007;

Rebonato, McKay, & White, 2011). Regarding potential alternatives using more

data-driven approaches as we saw with currency, indices and equities options, we

can only mention the work of Souza et al. (Sousa, Esqúıvel, & Gaspar, 2012) which

calibrates the Vasicek interest rate model under the risk neutral measure by learning

the model parameters using Gaussian processes for regression. Considering trading

strategies and return prediction, we can find even less academic research, being

perhaps most of the research residing inside the counterparts that exchange such

products (banks, hedge funds, etc.). This shortage of published research might be

linked with the absence of ready to use and publicly available datasets, similar to

the ones found in cash products since these instruments are traded off-exchange.
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Nonetheless, we can still find research that has some connection with our work,

such by (Duyvesteyn & de Zwart, 2015) where the authors build trading strategies

by long-short combinations of two at-the-money straddles for the four top swaption

markets (USD, JPY, EUR and GBP), in search to harvest the volatility risk premium

in such markets. Their research taps into a large dataset of at-the-money implied

volatility quotes on the 10-year swap rate and 1 to 12-month swaption maturities

between April 1996 and December 2011 to calculate the returns of the long-short

straddle strategies. They find statistically significant returns for all markets and

both delta–gamma and delta–vega neutral strategies. The main similarities of their

approach with our work reside mainly in the asset type that they are trading as

well as with the idea of using a set of indicators (mostly based on the shape of

the volatility surface) to devise different trading strategies. However, regarding

modelling strategy, there are clear differences between their approach (more theory-

driven) and the methodology envisioned by this work (tilted to data-driven). See

(Choi, Mueller, & Vedolin, 2017) for a recent review on similar approaches in the

harvesting volatility risk premium.

2.1.3 Summary

Based on this review of existing approaches to return/price prediction/estimation in

different areas and instruments, to the best of our knowledge, our work is the first

attempt to apply computational statistics and machine learning techniques to build

trading strategies in the context of interest rate swaptions. Our approach is not the

only novel from a modelling perspective, but instead of trading the vanilla product

(receiver/payer interest rate swaption), we prefer to focus on options strategies (cal-

endar spreads, straddles, etc.) which in many cases is the package that is in practice

traded. By thinking in terms of the package, in this case, a Mid-Curve Calendar

Spread, rather than the individual constituents we unlock some features that can

only be computed in this situation, like the carry at expiry, breakeven width and so

on.

Therefore, we can train our models not only using past returns but also using

sensitivities as well as information derived from the package payoff function. By por-

traying in this manner our investment strategy, we have a large information set that

can substantially add information to aid forecasting returns. But as a counter-effect,

this poses a new challenge on separating relevant features in a dynamic context. In

this respect, the combination of temporal cross-validation, a diverse set of mod-

els and regularisation/feature selection can provide a robust framework for trading

strategies backtesting and assessment. But before presenting such framework, next
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section gives a brief view on Mid-Curve Calendar Spreads trades.

2.2 Mid-Curve Calendar Spreads

Mid-Curve Calendar Spread (MCCS) is a package involving short selling an option

on a forward-starting swap and going long a longer-expiry swaption on the same

underlying swap (Corb, 2012; Firoozye & Zheng, 2016). There is a counterpart with

many similarities for equities – check in (Natenberg, 2014) for more information.

Investors typically use MCCS to take a view on forwarding volatility. This comes

from the fact that, conceptually, spot volatility can be decomposed into forward

volatility and mid-curve volatility. Taking 10y10y1 for example, Figures 1, 2 and 3

below illustrates examples of the reference time periods covered by different interest

rate volatilities and their instruments. The red lines indicate the time over which

interest rate volatility exposure is taken, and the grey line indicates the underlying

forward swap rate.

• (Spot) Swaption: 10y10y Swaption – a plain vanilla swaption has its strike set

at inception and the underlying swap starts on a sport basis from the option

expiry date.

Figure 1: Spot Swaption example. Source: (Firoozye & Zhang, 2014a).

• Mid-curve Swaption: 5y mid-curve on 5y10y swap rate – the volatility of a

forward-starting swaption, called mid-curve, whose strike is set at inception

and but the underlying swap starts several years following the option expiry

date.

Figure 2: Mid-curve Swaption example. Source: (Firoozye & Zhang, 2014a).

1This notation is extensively used during this work. In this case, the first 10y means a spot
swaption with 10 year of expiration, while the second 10y refers to the swap tenure.
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• Forward-starting Swaption: 5y forward 5y10y option – 5y forward 5y10y

volatility is the implied volatility of a forward strike swaption whose strike

is only set after several years at the then At the Money Forward (ATMF)

level, and the underlying swap starts on a spot basis from the option expiry

date.

Figure 3: Forward-starting Swaption example. Source: (Firoozye & Zhang, 2014a).

In mathematical terms, the below relation holds for those volatility exposures of

different time periods for the underlying 10y10y rate (Taleb, 1997):

10y × σ2
10y10y = 5y × σ2

5y5y10ymid−curve + 5y × σ2
5yfwd5y10y (1)

With the above (assuming flat skews where volatility is the standard deviation),

5y fwd 5y10y volatility can be backed out if we know 10y10y swaption volatility and

5y5y10y mid-curve volatility. Therefore, a forward strike swaption, in nature a pure

exposure to forward volatility, can be approximated by short selling a mid-curve

and buying a plain vanilla swaption, which is an MCCS. Due to put-call parity, at

the expiry date, an MCCS becomes either an out of the money payer or an out of

the money receiver no matter it is payer or receiver at the inception.

In Figure 4 is presented the payoff profile for an EUR 1m1y2y2.

We plot the payoff profiles for current volatility and up and down volatility sce-

narios, noting that the long vega position means that the payoff profile shifts up in

a rising volatility environment and correspondingly shifts down in a falling vol envi-

ronment. We calculate the (volatility adjusted) breakevens as being 0.41%− 0.46%,

giving little protection against selloffs. We note that forwards in a ±1 volatility band

leave them at 0.40%−0.48%, a range just marginally larger than our breakeven range

(i.e., the trade should pay off just slightly less than 66% of the time).

In Figure 5, we show the performance of the EUR 1y2y forwards overlaid with

breakevens during 2012-14. Our breakeven band has largely covered most of the

extremes since the June ECB meeting, in which ECB President Draghi said that he

does not plan on synchronising the ECB meetings with the Fed or any other central

2Short selling a 1m1y2y mid-curve swaption and going long a longer-expiry 13m2y spot swap-
tion.
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Figure 4: Payoff profile for an EUR 1m1y2y. Source: (Firoozye & Zhang, 2014b).

bank. This suggests a disconnection of EUR rates from their US counterparts, and

the EUR curve is likely to be less affected by developments in US rates in coming

months. However, in that occasion, our breakeven width should provide a decent

buffer against either a sell-off or rally.

Figure 5: EUR 1y2y forward rate (%)a. Source: (Firoozye & Zhang, 2014b).

MCCS can result in what we think of as turbocharged carry, primarily because

of the risks that they have (which fortunately can be balanced with the returns in

a way which results in relatively attractive trades). The results are in vast contrast

to more standard carry trades. For instance, cash or swaps typically have less risk

and correspondingly less carry. Going long outright typically benefits from far less

positive carry because although it performs poorly in a selloff, it also performs well

in a rally. Based on these characteristics of MCCS, next section presents how we

elaborated the methodology to build this trading recommendation system.
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3 Methodology

In summary, our solution develops the following roadmap (also schematically de-

scribe in Figure 6):

Figure 6: Flowchart describing the input-output schemes from the proposed trading
recommendation system for MCCS trades.

1. Data: On a certain trade date, we calculate metrics and sensitivities

related to an MCCS package;

2. Modelling: These metrics are feed in a predictive model that outputs its

expected return for a given holding period (e.g., one year);
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3. Recommendation: After repeating (i) and (ii) for all MCCS we (iii) rank

them based on the expected returns using some criteria.

Following this outlined structure, the next three subsections describes in more

details when and which MCCS trades were recorded (Sampling Scheme), which

predictive models were trained and how they were assessed (Modelling Strategy) and

how the long/short trading signal is computed for each MCCS (Recommendation

System). Finally, last subsection presents which metrics were used to evaluate the

recommendation system performance when a certain predictive model candidate is

underpinning it.

3.1 Sampling Scheme

During our experiments, we opted to use the trades displayed in Table 1.

Although many other configurations are available in practice, these are the ones

with longest historical data available, which is important when it is necessary to fit

a predictive model. As it can be seen, all trades are in Euro, ranging from different

expiries (1y-5y), forwards (1y-5y) and swap tenures (1y-5y and 8y).

For each configuration, at time t we agree with a counterpart to trade this

package using the At the Money Forward (ATMF) rate as the strike, paying or

receiving the present value PVt. The PVt is computed via SABR model (Rebonato

et al., 2011), using information and parameters (e.g., spot, forward rates and rate-

rate correlation) calibrated using market data on a daily basis. From the same model

that computed the PVt, we can also obtain other metrics and sensitivities as those

displayed in Table 2.

Carry and BE Width are those obtained looking at the payoff profile at expiry.

The Aged 1y Carry is produced by ageing the trade by one year (moving closer to

the expiration) and estimate the payoff profile computing the carry. Theta, Vega

and Gamma are the sensitivities of the instruments by a change in time, volatility

and a wider range of underlying rate movements, respectively. These and the ATMF

Implied Vol are backed by the SABR model too. Curve, Time and Volatility Carry

are the amount of Aged 1y Carry that can be attributed to the changes in certain

sensitivities from spot to forward, such as the Delta (Curve), Theta (Time) and

Vega (Volatility). These can also be used as tools to understand which factors most

influence the instrument value over time.

After computing all these metrics at time t, we hold the trade until t+ h where

h can be two weeks, one month, one year, and so on, as long as t + h is before or

at expiration. In time t + h we compute the PVt+h of the same trade again, using
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the new economic scenario available (e.g. rates, change in model parameters). By

agreeing on buying back or selling the current trade for PVt+h we can compute the

Holding k-period Return of the trade started at time t by:

R
(h)
t =

PVt+h − PVt
PVt

(2)

In summary, Table 3 presents an example of information in a wide format that

is available when we combine the data from time t and t+ h.

Note that in the most contemporaneous period (close to T ) we do not have

the PVT+h and so, we cannot compute R
(h)
T . Conversely, if we want to use lagged

returns R
(k)
t−h−1 as explanatory forces for R

(h)
t , then in the beginning this information

is also not available. Therefore, our dataset is trimmed at the beginning and the

end mainly by the value of h. If h is small, such as two weeks or one month,

the trimming is imperceptible and, therefore, may not affect the model fitting and

validation. However, if h is large such as two or three years, this might reduce the

samples available substantially, decreasing the range of models and cross-validation

schemes that might be employed for this task. We depicted most of these details in

Figure 7, highlighting the fact that we need to wait for almost two holding horizons

to get at least one lagged return.

Figure 7: Visual description of the information presented in Table 3.

Based on these procedures, metrics and observations, Table 4 express other de-

tails that we used during our experiments to generate the dataset.

Therefore, we gathered data from trades entered on a weekly basis from Septem-

ber 2006 to September 2016. These trades are struck ATMF, using the PVt com-

puted from the Middle Rate (in practice, some bid-ask spread would be imbued pro-
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portional to the Vega). After holding for one year (h = 1y) the trade, we compute

the arithmetical returns that are, therefore by definition, automatically annualised.

These returns are gross, and so we need to take into account the transaction costs

(hedging costs and fixed fees charged by the derivatives desk) as well as some fu-

ture funding rate. These values are also outlined in Table 4, where the transaction

costs of 0.75 as a fraction of Vega were chosen not only to taken into account the

transaction cost, but also some potential bid-ask spread on the start/unwind of the

trade. The 3-month London Interbank Overnight Rate (LIBOR) was chosen as the

funding cost/benchmark rate to compute excess returns.

Using these assumptions, next subsection presents the modelling strategy that

taps into this dataset to create the recommendation system for the MCCS trades.

3.2 Modelling Strategy

In relation to modelling, our general model is a system of uncoupled equations:

R
(1y)
t,1 = f1(featurest,1) + εt,1 = R̂

(1y)
t,1 + εt,1 (3)

R
(1y)
t,2 = f2(featurest,2) + εt,2 = R̂

(1y)
t,2 + εt,2 (4)

...

R
(1y)
t,n = fn(featurest,n) + εt,n = R̂

(1y)
t,n + εt,n (5)

where for each MCCS trade (i = 1, ..., n) there is an i-th predictive model fi that

is feed with a set of pre-calculated features (BE Width, Carry, etc.) and returns an

estimate of the holding 1y-period return R̂
(1y)
t,i . As the model is an approximation,

some noise/error is expected, and in the modelling aspect, this is expressed as the εt,i

component. After defining which variable is intended to be predicted, the remaining

points are: which models are available to embody fi and how the fitting, validation

and selection of these models are going to be made.

About the first point, in the first rows of Table 5 we display the models that we

used during our experiments. We should mention that these models are standard

techniques commonly found in the computational statistics and machine learning

literature, with their mathematical descriptions and usage can be consulted in the

following references (Bishop, 2007; Duda, Hart, & Stork, 2000; Friedman, Hastie, &

Tibshirani, 2001; Haykin, 2009).

The Abbreviation column of Table 5 presents shortened version for the usual

name of models in the Model column. We mainly use these abbreviations for plots

and tables during the results and discuss section. Table 5 Model column presents a

plethora of models that this work has fitted for this prediction purpose: we started
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from simple predictive models such as Classical Linear Regression, k-Nearest Neigh-

bours and Classification and Regression Tree, towards those that can seamlessly

exhibit nonlinear behaviours, like Random Forest, Kernel Ridge Regression, Multi-

Layer Perceptron and Support Vector Regression. Some of these methods had their

hyperparameters held constant across all experiments (Fixed Hyperparameters col-

umn), or because we wanted to apply a particular form of a method (RBF kernel,

single hidden layer, etc.) or because during a warm-up phase we noticed that they

did not affect substantially the results (hyperbolic tangent, increasing number of

trees, etc.).

For certain models, the Cross-Validated Parameters column shows which hyper-

parameters were optimised before the prediction step. For instance, suppose the

case of Ridge Regression and the need to define the regularisation value (λ) ap-

propriately. Consider that we have a set of training pairs (featurest, R
(1y)
t )Lt=1

3 of

size L, and for this sample we subset it in k-rolling-cross-validation (k-rolling-cv)

folders (better explained later in this subsection). Then, we train and test using this

scheme the Ridge Regression model with one of the predefined λ, say λ = 100. We

compute some performance function on the test set (Mean Squared Error – MSE)

and repeat this process for all λ values available. We use in the final model the λ

that on average had the lowest MSE.

The process explained previously is repeated for all cross-validated parameters

in each model. When a model needs to cross-validate a pair or more of hyperpa-

rameters, the procedure is to perform all the feasible combinations of them (e.g.,

KRR-RBF with (λ, γ) = {(1, 0.01), (0.1, 0.01), ..., (0.001, 100)}). Another relevant

point is that this process is in fact made inside a bigger loop called nested resam-

pling (Bischl, Mersmann, Trautmann, & Weihs, 2012), and that is the reason we

have k and L inner and outer. Figure 8 present an example of nested resampling

validation for the k-rolling-cv (kouter = kinner = 1, Louter = 3 and Linner = 1).

As it can be seen, before applying the model to the test set it needs first to be

calibrated. This calibration is performed doing cross-validation within the training

set, splitting in the same fashion the available dataset. After the model is well

tuned, it is fully applied in the test set, and furthermore, the test set is incorporated

into the training set, and the process is repeated. Converting this paradigm to our

problem, consider the case of Ridge Regression again. Therefore, the validation

process of this model is made by:

1. Divide all available (featurest, R
(1y)
t )Tt=1 data using the k-rolling-cv, with kouter =

1 and Louter = 2 years (Table 5);

3For the sake of brevity we dropped the subscript that refers to a particular trade (i).
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Figure 8: Nested resampling for k-rolling-cv case.

2. For each training subsequence (featurest, R
(1y)
t )Louter

t=1 , (featurest, R
(1y)
t )Louter+1

t=1 ,

..., (featurest, R
(1y)
t )Tt=1, train a model and if it is necessary to calibrate hy-

perparameters, do:

(a) Split the data using the k-rolling-cv, with kinner ≈ (Ttrain−Linner)/5 and

Linner = 1 year, where Ttrain is the number of elements in the training

set;

(b) Run the method for all folders using the pre-defined hyperparameters;

(c) Return the hyperparameters that yielded the best results.

3. Apply each model to its assigned test subsequence (featurest, R
(1y)
t )t=kouter ,

(featurest, R
(1y)
t )t=kouter+1, ..., (featurest, R

(1y)
t )t=T and compute the perfor-

mance metrics in the test set.

In repeating this process for all models, we want to assure that all are adequately

calibrated as well as hedged against any overfitting. We used performance metrics
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not only related to predictive power, but also to profits and losses that a certain

model generated overtime. These are going to be introduced in the last subsection.

We fitted usual benchmarks found in the literature for regression and forecast-

ing modelling: the Average and Naive models (Friedman et al., 2001; Hyndman,

Koehler, Ord, & Snyder, 2008). We also implemented the benchmarks that traders

use to assess whether a particular MCCS is worth to be pitched or traded: BE

Width and Carry at Expiry. We replicated the way traders look to these features,

by computing z-scores4 based on average and standard deviation on rolling window

of size equal to 1 year. The signal for going long/short (St) is given by a thumb

rule with a simple rationale: if a certain metric has a z-score above or equal to ±3,

the trader goes fully long (+)/short(-) in the trade, since it is a very extreme event.

Otherwise, it reduces the leverage on it, until it below one standard deviation of

distance from the rolling average.

We removed any missing data, and clipped extremes values, mainly in returns

above the 95% percentiles (in our case it can be due to some numerical problems, or

some extreme scenarios related to 2008-2009 financial crisis period). Next subsection

presents the final component of our roadmap: recommendation system.

3.3 Recommendation System

The recommendation of a certain trade can be made solely on some normalised

version of the expected return for holding 1y-period the i-th trade (R̂
(1y)
t,i ). Given

that each model will be providing individual forecasts for each MCCS and after that

their performance will be assessed locally and globally, a more suitable manner to

proceed would be to assign a credit based on the tracking record of a model to predict

a particular MCCS trade. Hence, we will be weighted up or down a signal not only

based on the magnitude of a model prediction but also by its quality. Then, consider

as R̂
(1y)
t,i the expected return for holding 1y-period the i-th trade. Now, define the

new signal function St,i by:

St,i =
R̂

(1y)
t,i ×max(Rho

R̂
(1y)
t,i ,R

(1y)
t,i

, 0)

max(|R̂(1y)
t,i ×max(Rho

R̂
(1y)
t,i ,R

(1y)
t,i

, 0)|, ..., |R̂(1y)
t−h,i ×max(Rho

R̂
(1y)
t−h,i,R

(1y)
t−h,i

|, 0)
∈ [−1, 1] (6)

where the strength of the i-th long/short signal is given by its expected return,

scaled by the maximum weighted return that a long/short position on the same

4a z-score is defined by: Z − score = X−µ
σ where X represent the actual value of a certain

variable, µ and σ the average and standard deviation of X in a period.
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trade (that is why the returns are in absolute terms) was expected to yield in the

previous h-period (in this case 1 year). Therefore, the trade with the maximum

weighted return in absolute terms will have |St,i| = 1 as well as those close to zero

will yield St,i ≈ 0. The weight/credit of a certain prediction is based on the historical

adherence between the actual and predicted values – Pearson correlation coefficient,

outlined in the next subsection.

The caveat of this approach in practice is that a trade can have a small annualised

return (say 3%), but if it is historically the largest in absolute terms as well as given

by an accurate model, then it will yield St,i = 1. To avoid that in practice, and

also by to link this methodology to Figure 6, the column attractiveness score is

represented by St,i whereas expected return by R̂
(1y)
t,i . By providing both information,

the trader can check how much he should go long/short as well as knows how much

is expected for that particular trade. If the St,i is high, but R̂
(1y)
t,i is below his target,

the trader can opt to not pitch/enter in this trade.

3.4 Evaluation Metrics

Below we outline two types of metrics: one that focuses on the predictive perfor-

mance that the model provided, and other four that are based on the profit/loss

that its application harvested during the backtest. Set by R
(S)
t = R

(1y)
t × St(R̂(1y)

t )

the strategy return (combination of the realized/observed excess returns and the

signal – function of a model prediction), we can compute the following metrics:

• Pearson Correlation Coefficient (Rho): it is a dimensionless measure of the

linear dependence between the actual and predicted values:

Rho =
Cov[R

(1y)
t , R̂

(1y)
t ]√

V ar[R
(1y)
t ]V ar[R̂

(1y)
t ]

(7)

where Cov and V ar are the covariance and variance operators. It ranges from

[−1,+1], with −1 representing a perfect inverse linear association, and +1

the opposite. In our case, we benefit more when Rho is close to +1. In the

context of linear models, a higher predictive power is a necessary condition

for profitable trades (see (Acar & Satchell, 2002)), hence by minimising the

predictive error we are somewhat trailing a path for profits maximisation,

albeit such causation is not very clear since this is not a sufficient condition.

• Average Return (Avg Return): is the arithmetic average of the strategy re-
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turns:

R̄(S) =

∑T
t=1 R

(S)
t

T
(8)

• Standard Deviation: is the estimator of the dispersion around the strategy

average returns (a risk measure in certain sense):

σR(S) =

√∑T
t=1(R

(S)
t − R̄(S))2

T
(9)

• Information Ratio: is the average annualized return of a strategy earned in ex-

cess of a particular benchmark per unit of risk (measured in terms of standard

deviation):

IR =
R̄(S) − B̄
σR(S)

(10)

where B̄ is the average return of the benchmark (e.g., treasury bond, equity

index). In our case, it was already set to the 3-month LIBOR rate (Table 4). It

should be mentioned that Information Ratio makes each strategy performance

comparable: since we are adjusting average returns by the risk assumed for

each strategy, it removes the leverage component that is magnifying/shrinking

the returns provided by a certain strategy. In analogy, it can be viewed as

standardising a random variable by stripping it from its location and scaling

factor.

• VIX Quintiles: consider an asset V that has a sequence of returnsR
(V )
1 , ..., R

(V )
T .

Let I
τ1<R

(V )
t <τ2

represents an indicator function that outputs 1 if τ1 < R
(V )
t <

τ2, otherwise 0 – with τ1 and τ2 denoting thresholds set by the user. In our

case τ1 and τ2 represents quantiles from the Volatility Index (VIX) returns

(Whaley, 2009). This index is an approximation of the market volatility and

it is widely used to find tail events and measure robustness of certain models

during its rising (when returns are high) and falling (when returns are low)

periods.

Hence, we can compute the performance of an asset or strategy conditional

to market circumstances of high/low volatility. In this sense, consider the

conditional average return during a certain regime of an asset V by:

R̄
(S)
τi<R(V )<τi+1

=

∑T
t=1R

(S)
t

T
(11)

In our case we adopt V as VIX, and τ1 = Q(R(V ), 0.0), τ2 = Q(R(V ), 0.2),
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τ3 = Q(R(V ), 0.4), τ4 = Q(R(V ), 0.6), τ5 = Q(R(V ), 0.8) and τ6 = Q(R(V ), 1.0),

where Q(R(V ), x) is the x quantile of R(V ), that is, Q(R(V ), x) is the number

that is exactly above x% of R(V ) values. We will refer to this five buckets –

(τ1, τ2), (τ2, τ3), (τ3, τ4), (τ4, τ5), (τ5, τ6) – as the quintiles. In this occasion,

τ1 and τ2 represents falling periods of VIX, in opposition to τ5 and τ6 that

represents rising periods of VIX levels.

Based on the methodology developed in this section, next one presents the results

and discussions of this work.

4 Results and Discussions

This section presents the results and discussions on MCCS trades. We start with an

exploratory analysis of the MCCS trades dataset, mainly focusing on each MCCS

returns, its relationship with some features (Carry, BE Widths, etc.) and responses

to rises and falling periods of VIX. Then, using the methodology as mentioned ear-

lier, we check the results of each model performance per MCCS. These suggest that

Lasso Regression performed significantly well from different metrics and perspec-

tives. Based on that, we close this section delving into Lasso Regression results,

highlighting its overall and per MCCS returns, the relevance of each feature on pre-

dicting a certain MCCS trade, and a particular analysis on the EUR 4y5y5y MCCS

trade.

4.1 Exploratory Analysis

Figure 9 exhibits boxplots with the annualised returns after holding for 1 year the

trade5, aggregated by trade type (Expiry, Forward and Swap Tenor) from September

2006 to September 2015.

Some patterns can be spotted in these boxplots: (i) the short expiries (mainly

the 1y) tends to have negative median returns, whilst the long expiries (in major

the 5y) reflects an opposite pattern with some yielding median returns close to

10%; (ii) when we increase the tenure (forward and swap) the returns tend to be

more concentrated around the median, while for those with short tenure the spread

tends to be greater; and (iii) although the others follow approximately a similar

shape, a particular range of a package, the Xy5y5y, presents a clear upward sloping

when the expiration (X) increases as well as an increase in the spreads around

5With the aim to improve our exposition, along the text we refer to this phrase as Holding 1y
returns or just as returns.
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Figure 9: Boxplot from Sep/2006-Sep/2015 of annualised returns from holding dur-
ing 1 year the instrument. All y-axes were fixed between 60% and -60% annualized
return to facilitate their visualisations and comparisons.

the median. Drilling-down in this particular range, Figure 10 shows the Holding

1y returns obtained during the trading period, as well as the evolution of the BE

Width and Carry at Expiry.

Concerning returns, before 2009 these trades did not see quite promising from a

long positioning perspective, and it should be pointed out that during the bulk of the

Financial Crisis (2008) these trades performed badly (from a long-only standpoint).

In 2009, when the turmoil started to reduce, a long position in any of the expiries

for the Xy5y5y MCCS yielded high positive returns. Potentially, this was due to the

surge in forward volatility for long tenures, which caused the wide breakeven and

great carry that we can observe during that year. After 2009, the returns tended to

decrease, with a drawdown in 2014 probably caused by the lowest carry levels since

2008. In 2015 the returns were stabilised around the origin, with historically small
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Figure 10: Boxplots of holding 1y annualised returns, BE Width and Carry at
Expiry for different expirations (X) of Euro 5 year forward and swap tenure (EUR
Xy5y5y).

breakeven levels, but a higher carry compared to 2014.

Overall there is a necessary, yet no sufficient relationship between returns and

breakeven and carry values: high returns are linked to a surge in breakeven and

carry levels, but the opposite is not necessarily true (2011 is a good example for this

particular package). Therefore, there might be other variables that are explaining

this variation but are not taken into account in this analysis. Figure 11 present the

all period correlation matrix between the Holding 1y returns of each MCCS with

different metrics and sensitivities extracted from it.

As expected, breakeven and carry levels have a positive correlation, meaning

that high returns are associated with increases in carry and largely in BE Width

levels; implied vol, conversely, is negatively related with MCCS returns, meaning

that bigger eventual swings in the rates will tend to damage any yield that can be

harvested by assuming long positions. Interesting is that usually, the traders receive

reports based on carry and breakeven levels, as well as some view in the implied vol.
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Figure 11: Heatmap with the pairwise correlation coefficient between features and
returns.

However, as we can see, other metrics might be worthwhile to look and as well tap

into when building a prediction model, like Gamma and Time Carry, although it is

not clear from a linear sense whether they will add something new (e.g., Gamma

exhibits the same pattern as BE width).

Figure 12 displays for each MCCS its average returns during different VIX

regimes.

We can trace some patterns from Figure 12. Regardless of forward and swap

tenure, as expiration increases a more solid relationship between expected returns

and VIX levels appear, being turbulent periods met with losses and vice-versa.

Also, the EUR ZyXyXy with Z ≥ 2 years tended to behave approximately similar

as S&P 500 behave with VIX (Whaley, 2009), but with the shorter expiries being

more insensitive. About this last point, we still do not have a clear explanation

of why such pattern appeared, being our guess the current predominant period of

a negative correlation between stock markets and bond markets. Hence, as strong

swings happen in S&P 500 it tends to affect some parts of the yield curve, largely

the 2y and 10y maturity because investors see government treasuries as safe heavens
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Figure 12: Heatmap with MCCS average returns during different VIX quintiles.

for stressful moments – and vice-versa. That is our guess of why the EUR 1yXyXy

is less affected rather than the EUR 5yXyXy.

After outlining this exploratory analysis, next subsection head towards the rec-

ommendation system results.

4.2 Recommendation Systems Results

Figure 13 presents the Rho measure in the test set of each different model for all the

MCCS trades. We can spot different patterns: (i) the predictive baselines (Naive

and Mean Prediction) did not perform that well when compared to other predictive

models; (ii) generally any model tested did not fared well for the 1y expires when

compared to their longer counterparts; (iii) from the linear regression family, Lasso

Regression followed by Ridge Regression are the ones that performed better; and

(iv) the tree-based approaches performed more or less aligned, with good results for

Random Forest and Grad Boost Reg; and (v) MLP fared well for a particular range

of trades (e.g., EUR Xy1y1y), mainly when compared to other models in special

Lasso Regression. Overall, all models exhibited reasonable predictive skills for a set

of trades, with some complementarity between them.

However, a high predictive power is more a necessary condition rather than a
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Figure 13: Heatmap with Rho values during the test set.

sufficient for higher return. In Figure 14 we display a heatmap with the results

of all models for each trade regarding Average Return (%). Similarly, different

remarks can be made over the global picture: (i) the Naive and Mean Pred models

underperformed as well, but the traders benchmarks did perform reasonably well,

surpassing the predictive models in many occasions; (ii) the linear regression models

kept approximately their positions when we swapped from Rho to Average Return

metric, with a clear edge for Lasso Regression; (iii) there was a clear inversion for

the nonlinear models, especially the tree-based approaches; and (iv) MLP still fares

well for the trades in the EUR Xy1y1y range, but did not repeat a more stable

across other trades.

We believe a plausible explanation for the stability of linear models and degra-

dation from the nonlinear is perhaps due to the objective function we are targeting

when these models are trained and selected. Minimizing squared error is a neces-

sary condition for profitable directional trades with linear models (Acar & Satchell,

2002), but it says nothing about nonlinear models (like the tree-based family, MLP,
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Figure 14: Heatmap with the historical Average Return (%) during test set.

KRR-RBF and SVR-RBF). Our results provide some evidence that such conjec-

ture is eventually untrue, hence demanding changes in the objective function for

nonlinear models.

When we take into account the variability seen in the stream of returns gener-

ated by the recommendation system, we may encounter a different picture. In this

sense, Figure 15 shows a heatmap with the Information Ratio for all the available

combinations of models and trades.

In general, the models approximately kept their advantages, but now all are

standing on a similar scale. Based on these Information Ratio results, Table 6

presents a statistical analysis using the average ranks6, Friedman test and Holm

posthoc procedure (Derrac, Garćıa, Molina, & Herrera, 2011).

6When we rank the models for a single MCCS, it means that we sort all them in such way that
the best performer is in the first place (receive value equal to 1), the second best is positioned in
the second rank (receive value equal to 2), and so on. We can repeat this process for all trades and
compute metrics, such as the average rank (e.g., 1.35 means that a particular model was placed
mostly near to the first place).
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Figure 15: Heatmap with the Information Ratio during the test set.

When we look at the average rank, Lasso Regression was the top positioned (3.23)

while Mean Pred remained most of the time as the worst choice (12.86). The trader’s

benchmarks performed pretty well, being placed in the third and fourth places.

When we compare whether such result fared by Lasso Regression was substantially

different from Ridge Regression (4.86), we arrive with a Z-score equal to 1.63 and a

p-value of 0.0517. If we set our initial significance level as 0.05 and correct using the

Holm procedure (last column) we can assert that Lasso did not perform significantly

different from Ridge Regression, but way better than the other models. Therefore,

Lasso Regression is capturing some information beyond that is being spanned by

the trader’s benchmarks, as well as beating almost all other predictive models for

this particular task.

Figure 16 highlights how each model fared during different VIX regimes. They

mostly exhibited an opposite profile from the ones found out for each MCCS (Figure

12), probably because predominantly the methods are taking short positions in

the MCCS. This observation is evident in Lasso, Ridge and Backward Selection
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Regression where these models performed well during rising periods of VIX levels.

Some exceptions lie on MLP and BE Width: the former faring slightly well regardless

of the VIX regime and the later performing well during jumping periods of VIX,

losing only when its changes are small.

Figure 16: Heatmap with each recommendation system Average Returns (%) during
different VIX regimes.

Our throughout analysis suggests that Lasso Regression seems to provide in

general the best results across a range of metrics and criteria. In this sense, next

subsection ends the results and discussion section by delving into Lasso Regression

results. We start by showing its results across all MCCS, simulating the case where

it was the sole member of the trading recommendation system. Then, we analysed

its results on a particular trade, the EUR 4y5y5y since this trade has yielded half-

half positive and negative returns (see Figure 9). Hence, this means that a predictive

model will need to capture some signal to profit from it, rather than always going

long or short in the case of 5 years and 1 years.
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4.3 Delving into Lasso Regression Results

We start by looking at the aggregated returns harvested by Lasso Regression during

its test phase. These results are consolidated in Figure 17, where: (i) the top plot

shows the average return with standard deviations obtained across all MCCS per

trading week; (ii) the middle reveal histograms, where the left one represents the

returns obtained across all MCCS regardless of the trading date, while the right ones

displayed the same data but conditioned per position; and (iii) finally the bottom

image presents the trading success rate for each long/short position suggested by the

model (left), with the break down by long/short position displayed as well (right).

To clarify, trading success in this context means being long/short when the returns

of trade were positive/negative regardless of its magnitude.

Figure 17: Aggregated returns over the period and histogram of aggregated returns
and success rate from trades suggested using Lasso Regression.

In respect to the top image, we can see that Lasso Regression started well during
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the first year but suffered a drawdown in the second to third year. This period was

marked by higher volatility, mainly due to the final developments of the Euro Crisis

period (2010-2012). However, from the third year onwards the average returns

always scored positive values, usually ranging from 10% to 20% in average. Such

performance can be seen stamped on the middle left histogram, where the bulk of

returns lies above zero, and not only that but concentrated close to 15%. This

performance was largely generated by Lasso Regression suggesting short positions

(middle right), while the long positions were not so successful. Such pattern can be

better seen in the histogram located at the bottom, where a bimodal distribution

for trading recommendation success rate is depicted.

Probably the verified outperformance coming from taking short positions in the

MCCS is linked with betting against the volatility/variance risk-premium trade

(Choi et al., 2017). Roughly this strategy harvest the premium paid by a counterpart

for the insurance on large swings in the market (almost the same as selling a put for

equities options). Since in general, the market tends to remain range-bounded, the

investor shorting the trade can repurchase it later for a smaller premium, profiting

from this differential. Lasso Regression did dynamically the opposite and profited

from it, largely because in this last 5-6 years was populated of higher volatility

periods and tail events.

Figure 18 uses boxplots as a visualisation tool to decompose the aggregated

results shown before, by informing per trade the returns obtained from using the

Lasso Regression trading recommendation system.

Overall, some patterns can be spotted from the boxplots: (i) in general the me-

dians are located above zero, meaning that more than half of the trades tended to

yield positive returns; (ii) the upward sloping profile visualized in Figure 9 is not

presented here, meaning that Lasso Regression is exploring long/short position re-

gardless of the most frequent outcome for each MCCS tenure; (iii) Lasso Regression

tended to perform well for EUR 3yXyXy trades and since these tended to be histor-

ically a challenging pick (medians are centred to zero in these trades), it means that

the model is actually capturing some signal from the data and not naively guessing

long/short positions; and (iv) the returns distribution, mostly with higher forward

and swap tenure (second and third row), tended to be right-skewed – because the

third quartile is far from the median, whereas the first is squeezed towards the me-

dian. This last fact denounces that Lasso Regression frequently generates small

negative outcomes, and dangerous scenarios are not as likely, which tends to be a

desired property for quantitative strategies in general.

Figure 19 help us to analyse which features are being most significant by Lasso
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Figure 18: Boxplot with the returns obtained from Lasso Regression for each instru-
ment. All y-axes were fixed between 0.3 and -0.3 (30% and -30% annualised return)
to facilitate their visualisations and comparisons.

Regression for each particular trade.

Each cell corresponds to a normalised t-stats7 from the model coefficients built

in the last step from k-rolling-cv. Implied Vol was the most significant feature

pointed out by Lasso Regression, is negatively related with the MCCS returns.

Other important features were the BE Width – slightly positively correlated with

returns – and the Carry at Expiry – strangely negatively related, but probably due

to the depressed levels of carry that has been seen in the last batch of data (check

Figure 10 for the EUR Xy5y5y case). Lasso Regression promoted in general very

sparse models, being the other features playing specific roles for some trades like

Time Carry for short-dated trades. Finally, the lagged returns were just relevant

7By normalised t-stats we mean dividing each coefficient t-stat by the sum of the absolute values
of all t-stats in the model. The result is a number between -1 and +1, indicating the significant
magnitude in comparison to other variables, as well as the direction in which it affects the model
predictions. We multiplied it by a one hundred just to work on a more convenient scale of -100%
and 100%.

29



Figure 19: Heatmap with the Feature Significance (%) obtained from normalised
t-stats of Lasso Regression coefficients.

for few trades, and perhaps could be omitted for certain trades in the future to

guarantee a broader dataset.

We close this section showing results of Lasso Regression for a specific trade:

EUR 4y5y5y – Figure 20.

Starting from the top, it can be seen that Lasso Regression was able to predict

reasonably well the observed returns after 1 year holding this trade. It is not per-

ceived any over/underestimation of values, with the mirror-shape format indicating

a good fit. This observation is reflected in the middle image, where the long/short

positions track well the observed returns of the EUR 4y5y5y. The main mistakes

are due to events that were not incorporated into the model and perhaps were also

unforecastable: (i) March to April 2012, possibly due to the Greek Debt Restructur-

ing Agreement; (ii) May to November 2013, linked with the Taper Tantrum event

in the US and its effect on Europe rates.

Although such events have influenced in the strategies return, last plot shows

that the trading success of Lasso Regression has attained a historical Area Under
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Figure 20: Lasso Regression results for EUR 4y5y5y: predicted versus observed
values, returns and long/short signals over the period and receiving operating char-
acteristic curve based on the success rate.

the Curve (AUC) of 0.85, with the capacity to control the false alarms to 5% and

still recommend trades accurately 40% of the time. This is a good indicator since

in the onset of the recommendation system it is better to reduce the chances of

suggesting a bad trade than missing a good pick.

Next section draws some conclusions from our work as well as outline new direc-

tions for further research.

31



5 Conclusions

This work proposed a trading recommendation system for Mid-Curve Calendar

Spread Trades (MCCS). We started with the main motivations, highlighting the

bottlenecks that the derivatives traders face in their day-to-day routines. To tackle

these issues, we propose a recommendation system that could analyse and rank a set

of fixed income derivatives trades. Our first experiment is designing and applying

this method for Mid-Curve Calendar Spread trades. However, before delving into

the experimental setting, we first looked for current solutions available in the scien-

tific literature. In this sense, to the best our knowledge we could not find anything

suitable for interest rate swaptions strategies, though we can tap into works from

the returns prediction literature for the modelling strategy.

Therefore, we started the methodology by showing the dataset: it comprised of

35 MCCS trades, ranging from September 2006 to September 2016, with different

expirations, forward and swap tenures. For each particular trade, we described how

the sampling of inputs (metrics, sensitivities and lagged returns) and outputs (re-

turns from unwinding the trade after one year of its start) were computed on a weekly

basis. Then, we displayed the modelling strategy by highlighting the models that

were trained as well as which hyperparameters were investigated during the nested

resampling step. Before entering the results section, we presented the backtesting

setting with the performance measures used to compare different methodologies.

Our results section started from an exploratory analysis on the available trades.

We look into their all period returns, relating them with Carry and BE width ele-

ments over time, computing their correlation with metrics and sensitivities as well

as their performance during certain VIX regimes. We spotted many patterns, such

as a clear upward sloping in the median returns when the expiration grows, with a

proportional increase in the inter-quartile range. Also, the observation that these

trades returns are driven by not only Carry, BE width and ATMF Implied Volatility

(metrics that are often checked by the traders), but by other elements like Gamma

and Time-Carry can give us an edge on separating good and bad deals. Finally, that

regardless of forward and swap tenure, as expiration increases a more solid relation-

ship between expected returns and VIX levels appear, being turbulent periods met

with losses and vice-versa – with the exception coming from the shorter expiries.

Most models provided results better than the modelling benchmarks (Mean and

Naive), yet very few were able to outperform the trader’s benchmarks. Our results

suggested that linear models with shrinkage procedures (e.g., Ridge and Lasso)

tended to perform better than their nonlinear counterparts (like Kernel Ridge Re-

gression, SVR and MLP). Also, regarding interpretability, they tend to be easier to

32



convey to the traders, since most are versed in linear models. Reasons linked with

the nature of the dataset, sampling size and the limited choice for the hyperparam-

eters to reduce the computational burden might have biased our results towards

this direction, is not so clear which of these played a major/minor role. Further

investigations and enhancements will provide a more clear picture on this topic.

When we delved into Lasso Regression results, we found out that this model

wielded some interesting features like: (i) it learned a type of volatility buying/selling

strategy without being programmed to do so; (ii) its returns distribution across

all MCCS tended to be right-skewed, meaning that we are more hedged towards

dangerous scenarios with greater chances of upsides; (iii) it matched traders view on

selecting good trades, but adding some dynamic view on it since Carry at Expiry is

now negatively linked with returns, rather than the original view from the traders;

and (iv) it can control reasonably well the false positive rate without sacrificing much

the discovery and suggestion of good trades. Since the system will be received with

caution by traders and salespeople, we can in the short-term increase the threshold

to recommend a trade without risking so much to lose profitable opportunities (like

our argument for EUR 4y5y5y case).

We believe that Lasso Regression will be our choice for a first version of the

trading recommendation system, with future developments giving space to different

models and mixed approaches. Also, we foresee a multitude of directions for future

works, with some highlighted below:

• Increasing the sampling frequency: we used for this experiment data from

weekly trades. Although this turned the modelling process faster, we had

an undersampling close to a fifth. This, of course, reduced the power of our

backtest as well as limited the range of models that can be applied. We expect

to start using daily trades data, but we do believe that it will only add more

data between the gaps because of swaps rates, in general, tends to move quite

slowly when compared to equities prices.

• Models and Ensemble methods: since linear models with shrinkage performed

well, we believe that using some other methods of the same family like Elastic

Net or LARS (Friedman et al., 2001) can provide results that outperforms

Lasso Regression. Also, we perceive a negative association between traders

benchmarks (BE width especially) and model-based strategies (Lasso Regres-

sion and MLP, for instance). This evidence can be seen on Figures 15 and

16.

• Signal generating function: a better analysis on the signal generating function
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should be performed, attempting to find out potential alternatives for equation

6. Although it worked properly, we believe that some extra effort can overall

improve models results and the nested resampling framework can help us find

that out.

• Use a more application affine objective function to train/select the models:

even though minimising prediction error is a necessary condition for prof-

itable trades it is not a sufficient. Investing in a classification approach with

a weighted objective function might be a potential further direction, with the

upside of not requiring a signal function and with the downside of not being

precise on the expected return of a trade.

• Regarding future applications, we expect to expand this work for US dollar

trades as well as incorporating new models and ensemble approaches. Another

viable alternative is to replicate such methodology to similar derivative trades

but in the equities space (calendar-spreads, butterflies, etc.).
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Tables

Table 1: Configuration of the MCCS trades used. Remember that the package
involves selling an option on a forward-starting swap (using the Expiration and
Forward tenures) and buying a long expiration option (swap tenure) on a spot-
starting swap.

Currency Expiry Forward Swap Currency Expiry Forward Swap
EUR 1y 1y 1y EUR 3y 3y 2y
EUR 1y 1y 4y EUR 3y 4y 1y
EUR 1y 2y 3y EUR 3y 5y 5y
EUR 1y 2y 8y EUR 4y 1y 1y
EUR 1y 3y 2y EUR 4y 1y 4y
EUR 1y 4y 1y EUR 4y 2y 3y
EUR 1y 5y 5y EUR 4y 2y 8y
EUR 2y 1y 1y EUR 4y 3y 2y
EUR 2y 1y 4y EUR 4y 4y 1y
EUR 2y 2y 3y EUR 4y 5y 5y
EUR 2y 2y 8y EUR 5y 1y 1y
EUR 2y 3y 2y EUR 5y 1y 4y
EUR 2y 4y 1y EUR 5y 2y 3y
EUR 2y 5y 5y EUR 5y 2y 8y
EUR 3y 1y 1y EUR 5y 3y 2y
EUR 3y 1y 4y EUR 5y 4y 1y
EUR 3y 2y 3y EUR 5y 5y 5y
EUR 3y 2y 8y

Table 2: Metrics and sensitivities computed for each available package at time t.
Features

PV Strike
Carry at Expiry (Carry) Breakeven Width (BE Width)

Aged 1y Carry Theta
ATMF Implied Volatility (Implied Vol) Gamma

Vega Curve Carry (Aged 1y)
Time Carry (Aged 1y) Volatility Carry (Aged 1y) (Vol Carry)
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Table 3: Example of information available at time t and t + h for the MCCS. A
more schematic representation can be found in Figure 7.

Instant (t) PVt R
(h)
t R

(h)
t−h−1 Strike Features

1 300 0.3 - 3.4 ...
2 320 0.2 - 3.2 ...
... ... ... ... ... ...

t+ h− 1 250 -0.1 - 1.8 ...
t+ h 260 -0.05 - 1.9 ...

t+ h+ 1 270 -0.2 0.2 2.0 ...
... ... ... ... ... ...
T 250 - 0.1 2.2 ...

Table 4: Details used to generate the MCCS trade dataset.
Detail Value
Period September 2006 to September 2016

Holding Period (h) 1 year
Trade Frequency Weekly (usually on Wednesday)

Strike At the Money Forward (ATMF)
Lagged data (h− p) p = 1, 2 and 3 lagged returns

Assumption Characteristic
Bid-Ask Middle Rate

Transaction Costs Entry and Unwind = 0.75× V egat
Funding Rate Libor 3 month rate
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Table 6: Average ranks, Friedman and Holm post-hoc statistical tests and analysis
for Information Ratio.

Model Average Rank Z-score p-value Holm Correction
Mean Pred 12.86 9.63 <0.0001 0.0036

Naive 11.89 8.66 <0.0001 0.0038
SVR-RBF 10.60 7.37 <0.0001 0.0042

CART 10.11 6.89 <0.0001 0.0045
Random Forest 9.31 6.09 <0.0001 0.0050

kNN 8.23 5.00 <0.0001 0.0056
Classic Regression 8.17 4.94 <0.0001 0.0063
Grad Boost Reg 7.69 4.46 <0.0001 0.0071

KRR-RBF 7.49 4.26 <0.0001 0.0083
MLP 7.20 3.97 <0.0001 0.0100

BackSel Regression 6.37 3.14 0.0008 0.0125
Z-Score: CarryAtExpiry 6.09 2.86 0.0021 0.0167

Z-Score: BE-Width 5.91 2.69 0.0036 0.0250
Ridge Regression 4.86 1.63 0.0517 0.0500
Lasso Regression 3.23 - - -

Friedman Chi-Square 117.2203175 <0.0001
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