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Abstract— Contemporary humanoids are equipped with vi-
sual and LiDAR sensors that are effectively utilized for Visual
Odometry (VO) and LiDAR Odometry (LO). Unfortunately,
such measurements commonly suffer from outliers in a dynamic
environment, since frequently it is assumed that only the robot
is in motion and the world is static. To this end, robust state
estimation schemes are mandatory in order for humanoids
to symbiotically co-exist with humans in their daily dynamic
environments. In this article, the robust Gaussian Error-State
Kalman Filter for humanoid robot locomotion is presented. The
introduced method automatically detects and rejects outliers
without relying on any prior knowledge on measurement distri-
butions or finely tuned thresholds. Subsequently, the proposed
method is quantitatively and qualitatively assessed in realistic
conditions with the full-size humanoid robot WALK-MAN v2.0
and the mini-size humanoid robot NAO to demonstrate its
accuracy and robustness when outlier VO/LO measurements
are present. Finally, in order to reinforce further research
endeavours, our implementation is released as an open-source
ROS/C++ package.

I. INTRODUCTION

Humanoid robot walking constitutes a challenging task
and remains up-to-date an open-research problem. Contem-
porary approaches in motion planning [1], [2], [3] and gait
control [4], [5], [6], implicitly or explicitly assume that the
humanoid’s base information is available in advance. To this
end, accurate and robust base state estimation realizes a
vital role in dynamic humanoid robot locomotion [7]. To-
wards that direction, Kuindersma et al. [8], presented a base
estimator relying on Newton-Euler dynamics of a floating
mass, that effectively combined Inertial Measurement Unit
(IMU), kinematics, and LiDAR measurements to estimate the
base position, orientation, and velocity. The latter utilized the
Error-State Kalman Filter (ESKF), a variant of the Extended
Kalman Filter (EKF), carefully crafted to handle the over-
parametrization of the base orientation. Subsequently, this
framework was augmented in [9], [10] to directly account for
the visually obtained landscape. In such a way, an ATLAS
robot was able to continuously climb up and down staircases.
Furthermore, in [11], the same scheme was evaluated with
the WALK-MAN robot in a disaster response environment.

Newton-Euler floating mass estimators proved to be ef-
fective also in the case of quadruped robots [12]. Bloesch
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Fig. 1. Illustration of frames used in base estimation on the 29DoF WALK-
MAN v2.0 humanoid robot: w corresponds to the inertial world frame, b is
the base frame, and blue ellipses indicate the orientation uncertainty.

et al. [13], [14], presented a similar approach where the
IMU and the kinematically computed feet point contacts
were utilized for accurate base estimation with the starlETH
quadruped. Rotella et al. [15] appropriately modified the
previous scheme for humanoid walking while also consid-
ering the feet orientation in the process. Interestingly, it was
demonstrated that the base estimation accuracy increases.

Additionally, state-of-the-art 3D-Center of Mass (CoM)
estimators [16], [17], [18], derived from consistent dynamics,
readily assume that measurements are transformed to an
inertial frame of reference before fused. The latter is also
common practice in 2D-CoM estimation based on simplified
dynamical models [19], [20]. Nevertheless, this dictates that
accurate estimates of the base position and orientation are
available, otherwise base drift will inevitably propagate to
the CoM estimation [21].

A. Problem Statement

Modern humanoids are commonly employed with cameras
and LiDAR sensors to reinforce their perception in unstruc-
tured environments. Based on consecutive camera frames
one can derive the camera’s egomotion with respect to the
environment and directly relate it to the robot’s motion. In
literature this is known as Visual Odometry (VO). Prominent
approaches rely on sparse [22] or semi-dense [23] schemes to
facilitate real-time execution. Similarly, based on sequential
LiDAR scans it is straightforward to match the beams
and compute the LiDAR Odometry (LO) [24], [25]. Both
approaches are advantageous in the sense that they are unaf-
fected by slippage in uneven/rough terrain when contrasted



to the kinematically computed leg odometry. However, in
all aforementioned schemes, the world is assumed to be
mostly static and only the robot is in motion, e.g. the static
world assumption. Presumably, this is not the case in human
daily environments, due to humans moving along with the
robots and/or changing the scene. Hence, the static world
assumption is frequently violated. To this end, in order
for humanoids to co-exist with humans in a dynamically
changing environment it is mandatory to robustify their
odometry estimates. Interestingly, in [14] a base estimator
with outlier detection for quadruped locomotion was pre-
sented. The authors of [14] utilized a probabilistic threshold
to quantify weather a measurement is an outlier or not before
fusion. Nevertheless, this raises two important questions: a)
how can this threshold be determined in advance and b)
does this threshold depend on the conditions at hand? Other
works [26], not in the scope of base estimation, assumed that
the measurements follow a Student-t distribution. Again the
obvious question arises whether this is a valid assumption in
the case of VO/LO measurements.

B. Contribution

In this work, we propose a novel formulation of the
Error-State Kalman Filter (ESKF) which is robust to outlier
VO/LO measurements that can commonly occur in humanoid
walking in dynamic human environments. The contribution
to the state-of-the-art is as follows:
• The Robust Gaussian ESKF (RGESKF) is mathemat-

ically established based on [8], [27]. More specifi-
cally, we present an analytical solution for the general
nonlinear Gaussian formulation for outlier detection
of [27]. The latter results in a computationally efficient
implementation that accomplishes real-time execution.

• The above method does not rely on prior assump-
tions regarding the measurements probability distribu-
tions [26] neither thresholding [14] for the imminent
outlier detection.

• We quantitatively and qualitatively assess the proposed
method and demonstrate its accuracy and robustness
in real-world conditions with two robots, the full-size
humanoid WALK-MAN v2.0 [28], and a mini-size NAO
humanoid.

• Since this framework relies on sensing that is commonly
available on contemporary humanoids and furthermore,
is based on generic nonlinear dynamics, we release an
open-source ROS/C++ implementation [29] to reinforce
further research endeavours.

This article is structured as follows: in Sec. II the proposed
Robust Gaussian ESKF is introduced and mathematically
established. Subsequently, the proposed scheme is quanti-
tatively and qualitatively assessed in Sec. III and Sec. IV.
Finally, Sec. V concludes the article and discusses possible
future directions.

II. BASE ESTIMATION

Kuindersma et al. [8], presented a base estimator with
Newton-Euler dynamics of a floating mass that is effectively

used in humanoid walking. At time t, the state to be
estimated is:

xt =
[
bvb

wRb
wpb bω ba

]>
where wpb, wRb denote the base position and rotation with
respect to the world frame w, bvb is the linear velocity,
and bω , bα are the gyro and accelerometer biases, in the
base frame b. However, wRb is an overparametrization of
the base’s orientation. To this end, to track the orientation
uncertainty we consider perturbation rotations in the base
frame. Thus, if the true base rotation matrix is wRb then
wRb = wR̂be

χ where wR̂b, is the estimated rotation matrix
and χ denotes the perturbation exponential coordinates. For
clarity all aforementioned quantities are depicted in Figure 1.

A. Process Model

In order to properly define the nonlinear dynamics
f(xt, ut, wt), let bω̄b = bωimu

b −bω and bᾱb = bαimu
b −bα,

be the IMU bias-compensated gyro rate and linear accelera-
tion, respectively, then:

ẋt =

f(xt,ut,wt)︷ ︸︸ ︷
−(bω̄b −wω)× bvb + wR>b g + bᾱb −wa

wRb(
bω̄b −wω)[×]
wRb

bvb
wbω
wbα

 (1)

where ut =
[
bωimu

b
bαimu

b

]
is the input vector, g is the

gravity vector, wt =
[
wω wa wbω wbα

]
∼ N (0,Qt)

is the input−process noise that follows a normal zero mean
distribution with covariance Qt, and [×] is the wedge oper-
ation.

Subsequently, denoting the error state vector as:

δxt =
[
bδvb χ wδpb δbω δba

]>
(2)

the error-state dynamics assume the following linear form:

δẋt = F tδxt +Ltwt (3)

with

F t =


−bω̄b[×]

(
wR>b g

)
[×]

0 −bvb[x] −I

0 −bω̄b[×] 0 −I 0
wRb −wRb

bvb[x] 0 0 0
0 0 0 0 0
0 0 0 0 0

 (4)

Lt =


−bvb[x] −I
−I 0
0 0
I 0
0 I

 (5)

To this end, the ESKF predict step is readily realized as:

x̂−k = fd
k(x̂+

k−1,uk,0) (6)

P−k = F d
kP

+
k−1F

d>
k +Ld

kQ
d
kL

d>
k (7)



where the superscript d indicates the discretized variables
at the discrete-time k, which are obtained by means of the
Euler method for simplicity. Moreover, x̂−k , P−k denote the
ESKF mean estimate and error covariance respectively, prior
to update, while x̂+

k−1, P+
k−1 are the same quantities after

the update at discrete-time k − 1.

B. Measurement Model

The output model of [8], was formulated with the base
velocity using the robot’s kinematics and the base position,
orientation obtained with a Gaussian particle filter on LiDAR
measurements, all expressed in the world frame. In this
work, besides the kinematically computed base velocity, we
consider external measurements of the base position and
orientation from either LiDAR Odometry (LO) or Visual
Odometry (VO). Nevertheless, such measurements can po-
tentially suffer from outliers in human daily environments
due to the static-world assumption, as presented in Sec. I-
A. Thus, we distinguish the latter with the superscript o for
possible outliers as:

y
o
k =

ho(xk)�nk︷ ︸︸ ︷[
wpb + npb
wRbe

nb[×]

]
(8)

where nk =
[
npb

nb

]
denote the external position and ori-

entation measurement noise that follows normal zero mean
distribution with covariance Ro

k. The operator � denotes
the proper summation which applies to rotation matrices as
composition of rotations.

On the contrary, we normally consider the kinematically
computed base velocity as:

y
n
k =

hn(xk)+nvb︷ ︸︸ ︷
wRb

bvb + nvb
(9)

with nvb
∼ N (0,Rn

k ) be the normal zero mean kinematic
velocity noise with covariance Rn

k . The above measurements
do not accumulate leg odometry drift during the gait and
are commonly not contaminated with outliers when accurate
contact states are estimated [30], [31]. Thus, we distinguish
them with the superscript n for nominal measurements that
will be not examined for outliers.

To derive the linearization of Eq. (8) we consider the
error exponential coordinates related with the external ro-
tation [21], then:

δyo
k = Ho

kδxk + nk (10)

with

Ho
k =

[
0 0 I 0 0
0 I 0 0 0

]
(11)

On the other hand, the linearization of (9) is straightforward
to compute:

δyn
k = Hn

kδxk + nvb (12)

where

Hn
k =

[
wRb −wRbvb[x] 0 0 0

]
(13)

Subsequently, the ESKF update step is formulated as:

δxk = K∗k
(
y∗k � h∗(x̂−k )

)
(14)

x̂+
k = x̂−k � δxk (15)

P+
k = P−k −K

∗
k(H∗kP

−
kH

∗>
k +R∗k)K∗>k (16)

K∗k = P−kH
∗>
k (H∗kP

−
kH

∗>
k +R∗k)−1 (17)

where the superscript * can be either o or n depending on
the set of measurements considered.

C. Outlier Detection

In this section, the main result of this work is presented.
The outlier detection framework presented in [27] is inte-
grated with the ESKF to introduce a base estimator robust
to outliers.

In order to detect outlier measurements, Wang et al. [27],
utilized a beta-Bernouli distribution to probabilistically quan-
tify whether a measurement is outlier or not. Beta-Bernouli
distributions have been proved effective in various outlier
resilient algorithms in the past [32], [33]. To this end, in [27]
a binary indicator variable zk was introduced. Accordingly,
when zk is one, yok is a nomimal measurement while when
zk is zero, yok is an outlier. The latter can be formulated as:

p(yo
k|xk, zk) = N (ho(xk),Rk)zk (18)

Evidently, when zk = 0, Eq. (18) becomes a constant
and cannot contribute to the state estimation, since the
distribution is measurement independent.

Subsequently, in order to properly infer the indicator
variable, a beta-Bernoulli hierarchical prior [34] is enforced.
In such a way, zk is a Bernoulli variable influenced by πk:

p(zk|πk) = πzk
k (1− πk)(1−zk) (19)

where πk follows a beta distribution:

p(πk) =
πe0−1
k (1− πk)f0−1

B(e0, f0)
(20)

with B denoting the beta function, parametrized by e0 and
f0.

Since, zk is modeled as a beta-Bernoulli variable, when
the mean 〈zk〉 is close to zero, e.g. 10−5, we treat the
measurement as an outlier and ignore it, thus:

x̂+
k = x̂−k (21)

P+
k = P−k (22)

otherwise, we weight the measurement noise Ro
k as:

Ro
k = Ro

k/〈zk〉 (23)

and perform the regular update as in (14)-(17).
The expectation of zk is computed in each iteration as

follows:

〈zk〉 =
p(zk = 1)

p(zk = 1) + p(zk = 0)
(24)



with

p(zk = 1) = ceΨ(ek)−Ψ(ek+fk)− 1
2 tr(BkR

o−1
k ) (25)

p(zk = 0) = ceΨ(fk)−Ψ(ek+fk) (26)

where c is the normalization constant to guarantee that
(25), (26) are proper probabilities, Ψ denotes the digamma
function [34], and Bk is given by:

Bk =

∫
(yo

k − h
o(x̂+

k ))(yo
k − h

o(x̂+
k ))>p(x̂+

k )dxk (27)

The integral in (27) is not straightforward to compute in
the general nonlinear Gaussian case. In [27] the cubature
rules [35] to obtain an approximate solution are used. In the
context of the EKF, (27) can be derived analytically as:

Bk = yo
ky

o>
k − 2yo

kh
o(x̂+

k )>

+ ho(x̂+
k )ho(x̂+

k )> +Ho
kP

+
kH

o>
k (28)

The proof is given for completeness in the Appendix.
Finally, ek, fk are updated in each iteration as:

et = e0 + 〈zk〉 (29)
ft = f0 + 1− 〈zk〉 (30)

The proposed robust Gaussian ESKF (RGESKF) is sum-
marized in Algorithm 1. We note, that no further knowledge
of the measurement distribution [26] other than the covari-
ance Ro

k is needed or empirically obtained thresholds as
in [13] are required to perform outlier detection. The only
tunable parameters are the beta-Bernoulli prior parameters
e0 and f0. Experimentally, e0 and f0 have been set to
0.9 and 0.1 respectively. The latter values have been used
in all conducted experiments, including real tests with the
two robots (cf. Sec. III below) and in our open-source
implementation [29]. As also stated in [27], we observed
that the outlier detection process is insensitive to the latter
parameters as long as e0/(e0 +f0) is close to 1. Presumably,
this is the case, since it is more probable to observe a
nomimal measurement rather than an outlier.

III. RESULTS

In this section, we outline representative results that
demonstrate the accuracy and efficiency of the proposed
scheme under real world conditions. Two actual humanoids
were employed in our experiments, the full-size 29DoF
WALK-MAN v2.0 humanoid [28] and a mini-size NAO
robot. The WALK-MAN v2.0 robot uses the walking module
introduced in [6], [36], with step time of 0.8s, using the
XBotCore [37] and OpenSoT [38] control infrastructure in a
500Hz control-loop. The walking module utilized with the
NAO robot is based on [39] with a step time of 0.4s and
achieves a control-loop of 100Hz. The IMUs noise standard
deviations used in our experiments are shown in Table I.
For the WALK-MAN v2.0 VectorNav VN-100 IMU, we
employed the noise densities given by the manufacturer at
200Hz, while for the IMU utilized in the NAO experiments
an Allan variance analysis [40] was performed with 13 hour
stationary data at 100Hz to properly derive the values.

Algorithm 1: Robust Gaussian ESKF
Data: yo

1:T ,y
n
1:T , x̂0,P 0,Q1:T ,R

o
1:T , Rn

1:T

Result: x̂+
k , P

+
k for t = 1 : T

1 for t = 1, . . . , T do
2 Compute x̂−k and P−k via (6), (7);
3 Initialize i = 0, e0 = 0.9, f0 = 0.1, and (i)zt=1;
4 repeat
5 Update Ro

k with (23);
6 i = i+ 1;
7 if (i−1)zt < 10−5 then
8 Update (i)x̂k and (i)P+

k via (14)-(17) with
position and orientation;

9 Update (i)zt via (24);
10 Update (i)et and (i)ft via (29), (30);
11 else
12 Update (i)x̂k and (i)P+

k via (21), (22);
13 break;
14 end
15 until ‖(i)x̂k � (i−1)x̂k‖ < 10−3;
16 x̂+

k = (i)x̂+
k and P+

k = (i)P+
k ;

17 Update x̂k and P+
k via (14)-(17) with velocity;

18 end

TABLE I
IMU NOISE STDS

wω(
rad
s

) wα(
m
s2

) wbω(
rad
s2

) wbα(
m
s3

)

WALK-MAN 9.77e-4 2.21e-2 1.53e-5 2.43e-4
NAO 5.63e-3 1.58e-2 9.66e-4 4.33e-3

Additionally, joint angle measurements are available at
200Hz for the WALK-MAN v2.0 robot and at 100Hz for
NAO.

To facilitate a quantitative assessment, we compare the
proposed RGESKF, to the ESKF without outlier detection,
and to an ESKF where the outlier detection method in [14]
is employed. The latter is termed as ESKF-TH since in each
experiment we had to fine tune in advance a probabilistic
threshold TH to achieve accurate detection according to the
Mahalanobis distance dM :

dM =
(
yo
k − h

o(x̂−k )
)>
S−1

k

(
yo
k − h

o(x̂−k )
)

(31)

with

Sk = Ho
kP

+
kH

o>
k +Ro

k (32)

In all our experiments, the aforementioned estimation
schemes achieved real-time execution at the corresponding
IMU rates.

A. VO Outliers

In the case of VO, we conducted two independent exper-
iments, one with the WALK-MAN v2.0 while the ground-
truth was recorded with an OptiTrack motion capture system
and another one with a NAO robot navigating to a desired
position in space. In the former case the PointGrey BlackFly



Fig. 2. Illustration of conducted experiments – Left: WALK-MAN v2.0 and VO outliers, Middle: NAO and VO outliers, Right: NAO and LO outliers.
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Fig. 3. Top: 3D - position error, Bottom: 3D - orientation error for the
WALKMAN 2.0 - VO experiment, blue lines indicate the VO, red lines the
proposed Robust Gaussian ESKF, green lines the ESKF, and black lines the
finely tuned ESKF-TH. The first vertical dotted line corresponds to when a
human enters the FoV of the camera, while the second one when he removes
a strong feature source for VO which diverges.

BFLY-U3-23S6C camera at 40fps and 1080p resolution was
used while in the latter, the Matrix-Vision mvBlueFOX-
MLC-200w running at 30fps and VGA was utilized. Both
cameras are monocular and global-shutter. To obtain the VO

in both cases we used SVO [23]. The measurement noise
standard deviations used in our VO experiments, are listed
in Table II.

TABLE II
VO/LO AND KINEMATIC MEASUREMENT NOISE STDS

npb (m) nb(rad) nvb (
m
s
)

WALK-MAN - VO 0.035 0.05 0.015
NAO - VO 0.04 0.05 0.013
NAO - LO 0.04 0.05 0.013

In the WALK-MAN v2.0 experiment, shown in Fig. 2
(left), a human unexpectedly crosses the Field of View (FoV)
of the robot, causing sudden changes in the image intensity
levels, and furthermore removes an object that is a strong
feature source for VO. As a result, the scene changes rather
drastically and henceforth, VO diverges while generating
consecutive outlier measurements.

In Figure 3, the estimated 3D position and orientation
errors w.r.t ground-truth for all three employed schemes is
illustrated. Notice, at t = 17.6s where the human appears
in the FoV, VO starts to misbehave and at t = 19.9 when
static scene changes, VO eventually diverges. Consequently,
the ESKF without outlier detection diverges as well and
thus large positional errors are recorded. Nevertheless, this
is not the case for the RGESKF and the ESKF-TH, where
low errors were observed for both the position and the
orientation. To finely tune the ESKF-TH, we had to run
the filter and log the Mahalanobis distances (31), in order
to determine a proper threshold TH. A value of TH = 23
achieved the lowest estimation error. On the contrary our
approach, RGESKF, which does not rely on finely tuned
threshold or prior knowledge on the measurements, achieved
very accurate and similar results to the tuned in advanced
ESKF-TH. The Root-Mean Square Error (RMSE) for this
experiment is shown in Table III. All employed schemes
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Fig. 4. Top: 3D - position error, Bottom: 3D - orientation error for the
NAO - VO experiment, blue lines indicate the VO, red lines the proposed
Robust Gaussian ESKF, and green lines the ESKF. The vertical dotted line
specifies when a human removes a strong feature source for VO which
diverges.

realized errors in the case of yaw estimation since it is
unobservable [13], [15].

TABLE III
RMSE FOR THE WALK-MAN V2.0 VO EXPERIMENT

wpx
b

wpy
b

wpz
b roll pitch yaw

VO 0.217 0.162 0.043 0.075 0.022 0.160
ESKF 0.071 0.045 0.009 0.066 0.011 0.105

RGESKF 0.018 0.033 0.003 0.062 0.011 0.098
ESKF-TH 0.017 0.025 0.003 0.059 0.010 0.102

Similarly in the NAO’s case, a human, present in the
scene removes a strong feature source for VO, while the
robot is walking. For clarity, this is illustrated in Fig. 2
(middle). Since, we do not have ground-truth data available
for the NAO experiments and given that a fine tuned ESKF-
TH can yield pretty accurate estimation, as evident by our
previous experiment, we assume it as baseline to compare
to. Subsequently, to properly derive the threshold needed,
we computed (31) at t = 39.6s, the exact time when
the human changes the scenery. The previous, was found
to be TH = 16. Figure 4 demonstrates the 3D position
and orientation error w.r.t the ESKF-TH. As illustrated, the
ESKF realizes large errors for both positional and rotational
quantities, when VO diverges at t = 39.6s. However, once
again the RGESKF yielded practically identical results to the
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Fig. 5. 2D - pose error, for the NAO - LO experiment, blue lines indicate
the LO, red lines the proposed Robust Gaussian ESKF, and green lines the
ESKF. The vertical dotted lines corresponds to when a human suddenly
covers the robot’s LiDAR with a box, causing LO to diverge.

ESKF-TH as also evident in Table IV, where the RMSE is
presented.

TABLE IV
RMSE W.R.T ESKF-TH FOR THE NAO VO EXPERIMENT

wpx
b

wpy
b

wpz
b roll pitch yaw

VO 0.246 0.653 0.227 0.066 0.246 0.152
ESKF 0.238 0.643 0.223 0.037 0.061 0.146

RGESKF 2.8e-6 2.6e-7 2.3e-6 6.8e-7 1.6e-6 9.2e-6

B. LO Outliers

Next, we examine how LO outlier measurements can
degrade the estimation performance. To do so, we utilize
an RP-LiDAR360 mounted on NAO’s head to obtain planar
scans every 5Hz. Subsequently, we employed RF2O [24]
to compute the 2D pose e.g. position x,y and yaw, with
scan matching. The measurement noise assumed in this
experiment is shown at Table II.

In order to generate LO outliers, a human covers the
spinning laser while NAO walks, as depicted in Fig. 2 (right).
This corresponds to the scenario where a robot in motion is
suddenly surrounded by people. To this end, the static world
used to derive the LO is drastically changed which in turn
gives rise to outliers.

In the conducted experiment, NAO is commanded to walk
straight, stop, and then walk straight again. While walking a
human covers the LiDAR twice to generate LO outliers. As
previously, we compare the estimation results to the ESKF-
TH, which we have accurately tuned in advance as before.
A threshold of TH = 9 was experimentally found to be
sufficient for this specific experiment. The 2D pose error is
shown in Figure 5. Time t = 21.5s marks the instant where
the human covers the LiDAR for the first time. At that time,
a large jump in the LO position in x axis is recorded which
in turn causes large error to the ESKF estimation in the same
axis. Subsequently, after 23.5s the human covers the LiDAR
one more time. This time larger errors are evident in the
base’s y position and the base’s yaw angle causing again the
ESKF to misbehave. Interestingly, the proposed scheme was



proven to be robust and automatically ignore the inaccurate
LO measurements. The RMSE for this particular experiment
is indicated in Table V. As demonstrated, the RGESKF yields
a similar estimation result for all quantities of interest when
compared to a finely tuned ESKF-TH.

TABLE V
RMSE W.R.T ESKF-TH FOR THE NAO LO EXPERIMENT

wpx
b

wpy
b yaw

LO 0.197 0.066 0.174
ESKF 0.180 0.054 0.173

RGESKF 0.004 0.002 0.006

All our experiments are illustrated in high quality at
https://youtu.be/ojogeY3xSsw

IV. DISCUSSION

As evident, the proposed RGESKF is characterized by
high accuracy and strong outlier rejection capabilities. The
latter hold true, even when consecutive VO/LO outlier mea-
surements were observed. Additionally, no prior knowledge
of the measurement distributions [26] or finely tuned thresh-
olds [14] are required for the success of the proposed scheme.
On the contrary, notice that the ESKF-TH needed three
different thresholds, one for each experiment, to achieve
accurate performance. This is evident by (31), where an
optimal threshold depends on the measurement noise Ro

k

and the error-state uncertainty P+
k . In addition, in all our

VO/LO experiments, the outlier detection part in Algorithm 1
took at most three iterations to complete. Thus, in the open-
source released implementation [29], we loop three times
instead of computing in every iteration the condition in line
15. Moreover, it is noteworthy that in the VO experiments the
initial derived SVO orientation can be erroneous. We suspect
this is probably due to a) inaccurate scale initialization, b)
imperfect extrinsic and intrinsic calibrations. Nevertheless,
as also seen in the results, this does not degrade the es-
timation accuracy since the fused IMU and kinematically
computed base velocity measurements also carry information
that contribute to the orientation estimation. Furthermore,
it is important to clarify that the RGESKF does not only
detect and reject outliers as the ESKF-TH does, but auto-
matically weights the measurement noise according to (23)
in order to avoid information loss when non-ideal/non-outlier
measurements arrive. Finally, the proposed method can be
appropriately employed to other robotic platforms, such as
Unmanned Aerial Vehicles (UAVs), which also utilize the
ESKF [41] for state estimation.

V. CONCLUSION

Prominent examples of VO/LO approaches readily assume
that the world in which the robot acts, is static. Nevertheless,
to enable humanoids co-exist with humans in dynamically
changing environments, their state-estimation schemes must
be robustified. In this work, we tackled the presence of
VO/LO outlier measurements in base estimation by propos-
ing the RGESKF. After mathematically establishing the

proposed scheme, we provided a quantitative and qualitative
assessment with two robots, namely a full-size WALK-MAN
v2.0 humanoid and a mini-size NAO robot, demonstrating
the accuracy and efficiency of the proposed scheme in
real-world conditions. Finally, in order to reinforce further
research endeavours, we release our implementation as an
open-source ROS/C++ package [29].

Planned future work regards, utilizing the proposed
scheme in humanoid navigation in human/gradually chang-
ing environments, where outliers are harder to detect [42]. In
addition, we will investigate the estimation performance in
locomotion-manipulation tasks, where the humanoid has to
walk to a desired location and grasp an object. Commonly
while grasping, multiple self-parts appear in the FoV and
possibly give rise to outliers. Moreover, it would be interest-
ing to compare the proposed method to other state estimation
schemes that directly include leg contacts [15]. Finally, we
will address how to recover from VO/LO divergence in order
to continue integrating VO/LO measurements.

APPENDIX

Bk =

∫
(yo

k − h
o(xk))(yo

k − h
o(xk))>p(x̂k)dxk

= yo
ky

o>
k − 2yo

k

∫
ho(xk)>p(x̂k)dxk

+

∫
ho(xk)ho(xk)>p(x̂k)dxk (33)

using the first order approximation of (8) post to the
update:

ho(x) = h(x̂+
k ) +Ho

k(xt − x̂+
k )

the first integral of (33) can be computed as:∫
ho(xk)>p(x̂k)dxk =

∫
ho(x̂+

k )>p(x̂k)dxk

+

∫
(xt − x̂+

k )>Ho>
k p(x̂k)dxk = ho(x̂+

k )>

while the second integral of (33) is equivalent to:∫
ho(xk)ho(xk)>p(x̂k)dxk =

∫
(x̂+

k +Ho
k(xk − x̂+

k ))

(x̂+
k +H(xt − x̂+

k ))>p(x̂k)dxk = x̂+
k x̂

+>
k +Ho

kP
+
kH

o>
k

Thus (33) becomes:

Bk = yo
ky

o>
k − 2yo

kh
o(x̂+

k )>

+ ho(x̂+
k )ho(x̂+

k )> +Ho
kP

+
kH
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k (34)
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