
Variable Configuration Planner for Legged-Rolling Obstacle Negotiation
Locomotion: Application on the CENTAURO Robot

Vignesh Sushrutha Raghavan1,2, Dimitrios Kanoulas1, Arturo Laurenzi1,
Darwin G. Caldwell1, and Nikos G. Tsagarakis1

Abstract— Hybrid legged-wheeled robots are able to adapt
their leg configuration and height to vary their footprint
polygons and go over obstacles or traverse narrow spaces. In
this paper, we present a variable configuration wheeled motion
planner based on the A* algorithm. It takes advantage of
the agility of hybrid wheeled-legged robots and plans paths
over low-lying obstacles and in narrow spaces. By imposing
a symmetry on the robot polygon, the computed plans lie in
a low-dimensional search space that provides the robot with
configurations to safely negotiate obstacles by expanding or
shrinking its footprint polygon. The introduced autonomous
planner is demonstrated using simulations and real-world
experiments with the CENTAURO robot.

I. INTRODUCTION

In environments cluttered by various obstacles, fast sens-
ing and accurate planning algorithms are needed for safe
mobile robot navigation. Wheeled path planning through
cluttered spaces may be challenging, infeasible, or compu-
tationally expensive due to limited or insufficient clear free
spaces. This is particularly true when the vehicle has a fixed
wheelbase configuration. A key advantage of legged robots
is their capability to negotiate obstacles by stepping on or
over them. However, these actions usually require additional
expensive planning and caution to ensure footstep safety and
maintenance of the robot stability. An advantage of hybrid
legged-wheeled robots, such as CENTAURO [1] (Fig. 1),
is their ability to vary their leg configuration to modify
their footprint polygon, while in rolling motion, to negotiate
certain obstacles by going over them as well as navigate in
tight narrow spaces.

Wheeled robot navigation planning is a well explored
research domain [2]. Two-dimensional navigation planners
based on either costmaps or occupancy grids have been
extensively developed [3] and implemented on various mo-
bile robotic platforms, such as Turtlebot [4]. The advent
of computationally fast and efficient computing hardware
enabled autonomous navigation planning, using maps from
various Simultaneous Localization and Mapping (SLAM) al-
gorithms. While most of these methods work on robots with
fixed footprint polygons, there is a scarcity of algorithms for
wheeled robots that have a continuously changing footprint
polygon during the planned navigation. Furthermore, for

1Humanoids and Human-Centered Mechatronics & Ad-
vanced Robotics, Istituto Italiano di Tecnologia (IIT), Via
Morego 30, 16163, Genova, Italy {Vignesh.Raghavan,
Dimitrios.Kanoulas, Arturo.Laurenzi,
Darwin.Caldwell, Nikos.Tsagarakis}@iit.it

2 Department of Information Engineering, University of Pisa

Fig. 1: The hybrid legged-wheeled robot CENTAURO, with
variable configurable legs and body.

most heuristic algorithms, e.g. A*-based [5], all obstacle
points are usually uniformly considered as non-traversable
obstacle points.

In this paper, we aim to navigate through and over a series
of obstacles that are: lower than the robot pelvis height,
objects wider than the ”standard robot polygon”, and narrow
spaces (by expanding the wheelbase over wide objects and
narrowing the footprint into tight spaces). This will reduce or
eliminate the need to take large deviations from the shortest
possible path. If an obstacle is within the limits of the robot
capabilities, our introduced method negotiates the obstacle
rather than going around it. To achieve this, we propose
a wheeled motion planning algorithm based on A*, imple-
mented on our wheeled-legged robot CENTAURO, that takes
into consideration the robot’s dynamic polygon changing
ability. The proposed planner also considers the trade-off
between changing robot polygon configurations and travel-
ling longer distances to avoid obstacles. We demonstrate the
planner’s performance in simulation and in the real-world
using the CENTAURO robot to perform the aforementioned
agile motions in different obstacle scenarios.

The remainder of the paper is organized as follows. After
introducing the CENTAURO robot, we briefly present the
related work on configuration changing robots and path
planning in Sec. II. In Sec. III, we present our obstacle ne-
gotiating A*-based path planner algorithm. This is followed
by simulation and experimental results in Sec. IV and finally
in Sec. V we conclude with future directions.

A. The CENTAURO Robot

The CENTAURO robot is 42 DoF hybrid legged-wheeled
robot, with four 7DoF legs and wheel actuators as end-
effectors. We set the maximum stable width of the robot
footprint polygon to be 1.1m, the minimum stable width

to be 0.44m, and the maximum safe height of the robot
pelvis from the ground to be 1m. The robot has a VLP-
16 Velodyne sensor placed on a rotating actuator as its main
perception unit on the head, providing dense laser scans of
the environment as pointclouds at 40Hz.

II. RELATED WORK

Both 2D and 3D path planners for wheeled and legged
robots have been extensively studied in the literature [2],
[6], [7]. Several of these methods are based on the A*
algorithm [5] to achieve time efficient optimal planning
results given a grid-point representation of the environment.
The efficiency of A* is due to its heuristic function that
estimates costs and directs the planner to look for the
cheapest path from a given node to the goal. Other planners
such as PRM [8] or RRT [9], and variations or improvements
of A* such as ARA* [10], D* [11], have been developed
depending on various required planning applications.

The aforementioned planning algorithms have been used
for locomotion of re-configurable robots. For instance, stud-
ies such as [12] and [13], have made use of re-configurable
robots with tracks to navigate safely in an environment,
mainly by avoiding obstacles and climbing onto higher areas
in the map. In [14], an arm was used to modify the position
of the tracked robot’s Center-of-Mass (CoM) in combination
with the A* path planner. While uneven terrain, stairs, and
slopes were considered, the solution presented did not change
the robot footprint polygon. Recently in [15], a modified A*
algorithm was presented to modify the shape of a cleaning
robot and maximize the cleaning area. While the polygon
shape is changed to get through narrow spaces, the planner
only avoided obstacles obstructing the floor space by going
around them. In [16], a snake-like robot was used to climb
stairs or reshape to move around objects, taking advantage of
its modular multi-part nature. A “follow the leader module”
approach and a computationally rather heavy 6DoF manip-
ulator RRT* planner was used. Due to the leader-follower
approach the polygon change was not very evident, even
though the robot was capable of climbing stairs and going
through narrow spaces. In [17], a multi-modal PRM was
used as the simulated planner for the ATHLETE and the
HRP2 robots, to determine robot polygon and configurations
on flat terrains, undulating terrain, and stairs. The ATHLETE
robot which also used a legged wheeled motion similar to
the CENTAURO robot, was tested on simulated surfaces.
The introduced planner was computationally heavy, while
obstacle avoidance and negotiation were not addressed in
the simulations presented.

Recently, an ARA* [10]-based planner that combines driv-
ing and stepping motions of the MOMARO and CENTAURO
robots was presented in [18], [19]. A set of motions, such as
one-foot stepping, longitudinal base-frame forward shift, and
front/back wheels drive forward/backward, was generated
and a hybrid stepping driving motion was executed. With
this method the MOMARO and CENTAURO robots were
able to climb on to raised surfaces using sequences of
driving and stepping motions. While these works execute

a longitudinal robot polygon change while climbing and
going over short/thin obstacles, they don’t modify the robot
polygon to negotiate wide obstacles and narrow passages
using the legged-wheeled driving motion capability of the
CENTAURO robot. In legged-only locomotion for a hexa-
pod, the work presented in [20] introduced a planner that
used a deformable bounding box as the model of the robot,
to modify the height and width of the robot to avoid overhead
and floor obstacles, and narrow spaces. This solution focused
on collision avoidance for legged locomotion, whereas our
work also considers the cost of changing configurations on
a legged-wheeled robot and presents a flexible planner that
navigates based on these costs.

In particular in this paper, we focus on wheeled motion
planning, applied on the CENTAURO robot. We present
a low dimensional search-space planner based on the A*
algorithm for legged-wheeled motion, that is capable of
determining the extent of 1) robot polygon expansion to go
over wide objects and 2) polygon shrinking to fit through
narrow paths. This is done by combining costmaps and
ground plane filtering extracted from the Octomap [21]
environment representation, with 2D image-based obstacle
segmentation and safe robot polygon search. Notice that A*
(vs. other planners for e.g. PRM/RRT) was selected due to
good computational complexity and its flexibility for testing
different cost functions.

III. OBSTACLE NEGOTIATING A*

In this section, we describe the steps involved in the
execution of the variable configuration A* path planner algo-
rithm demonstrated on the CENTAURO robot, to negotiate
obstacles and narrow spaces. First, we generate a map which
differentiates between obstacles that can be negotiated by the
robot and obstacles to be avoided (Sec. III-A). Following
this, we introduce the modified A* planner that considers
the robot footprint polygon changes (Sec. III-B) needed for
collision-free navigation in the environment (Sec. III-C). This
planner uses as its input, the 2D map images created by a
segmentation module from the acquired VLP-16 Velodyne’s
pointclouds.

A. Rough Height-Based Obstacle Segmentation

Laser pointclouds, from the rotating VLP-16 Velodyne, are
the main perception input for the algorithm. The pointclouds
are accumulated into an Octomap [21], which processes the
points by segmenting and filtering out the ground plane. The
non-ground points are sent to two costmaps generators1. The
first costmap considers all points in the filtered pointcloud as
obstacles. The second costmap considers only points above
a threshold height hobs as obstacles; in our CENTAURO ex-
periments we set this value to hobs = 0.4m as a conservative
estimate of the height of obstacles easily cleared by the base
of CENTAURO. The obstacles are also inflated to a radius
that equals half the wheel width for collision safety; in our
experiments we considered 5cm of obstacle inflation. The

1http://wiki.ros.org/navigation

(a) Image Ia (b) Image Ib (c) Image Ic (d) Image I

Fig. 2: The segmentation process: (a) Ia: all obstacle points,
(b) Ib: only tall obstacles i.e the side walls (in this case
Ib = Id), (c) Ic: short clearable obstacles, with height less
than hobs, (d) I: segmented image map.

two 3D costmaps are then converted to grayscale images—
Ia and Ib, respectively—by 2D projection with a resolution
of half the robot wheel-size, i.e. in our case 5cm per pixel.

In the resulting greyscale image, the white pixels represent
obstacles and the black pixels represent the free space. Given
the Ia and Ib greyscale images, a bitwise XOR operation is
performed on them. The output is an image Ic = Ia XOR
Ib, that roughly consists of obstacle points of height lower
than hobs, which can be easily cleared by the robot pelvis.
Using the greyscale images Ia and Ic, we generate a fourth
image Id = Ia−Ic to represent only the non-clearable obstacle
points. Finally, we create a combined image I = 0.5× Ic+ Id
(the segmented image map), which classifies every point on
the map as a free space (black), clearable obstacle (grey)
or non-clearable obstacle (white) using 3 colour codes. This
image is used as the main 2D map for the introduced variable
configuration path planning development and its pixels form
the planner’s query points. An example of this segmentation
on simulated data can be seen in Fig. 2.

B. Robot Polygon Symmetry

At each path planner point of the generated segmented
image map, it is necessary to find the shape of the robot
polygon that ensures a collision-free motion from a start to
a goal point. Hybrid robots like CENTAURO, can expand
their polygon, turn in place, and reduce the pelvis height with
respect to the ground. So in essence, we require at least a
4DoF footprint polygon calculation assuming that the robot’s
pelvis roll and pitch are maintained to be zero with respect
to the ground. To reduce the complexity of the calculations
and to also ensure robust safety of the robot while navigating
in close proximity to obstacles, we assume a rectangular
symmetry for the robot footprint polygon. Furthermore, the
height of the pelvis above the ground is determined by the
expanded width of the robot.

We set the sum Sp of the robot footprint polygon width
(wr) and length (lr), i.e. Sp = wr + lr, to a constant value
based on the limits of the leg joints of the robot. Thus,
the length of the robot footprint polygon lr can be simply
determined as: lr = Sp−wr. Let the maximum and minimum
possible robot heights and widths be (hmax,hmin) and (wmax,
wmin) respectively. The height hr of the robot for any given
footprint polygon is determined by using simple proportions
based on the robot footprint polygon width wr by the
following formula:

Fig. 3: CENTAURO robot configurations, depicting the most
narrow (left) and widest (right) possible footprint polygon.

hr = hmax−
(wr−wmin)

(wmax−wmin)
× (hmax−hmin) (1)

Using the above imposed symmetry, the calculation of
the robot footprint polygon at every instance of planning
is now reduced to determining the robot polygon width wr.
Fig. 3 shows the narrowest and the widest possible extreme
configurations for the CENTAURO robot, defining the search
space used by the introduced planning algorithm.

C. Robot Polygon Calculations for Obstacle Negotiation

From the segmentation module introduced in Sec. III-A,
we obtain the image coordinates of obstacles which either
can be negotiated by the robot by going over them or they
cannot be negotiated (e.g. walls and tall objects) and need
to be avoided.

The planner evaluations are based on the segmented image
map. In other words, we examine pixels (i.e. image points)
for all planner evaluations. The image pixels will henceforth
be referred to as points. We have three types of points: 1)
free space points, 2) points of the negotiable obstacles, and
3) points on obstacles to be avoided. On the other side, the
robot can either expand its footprint polygon while lowering
its height, narrow its footprint polygon while increasing its
height, or maintain its previous configuration.

At a negotiable obstacle point, the robot needs to expand
so that the wheels go on either side of the obstacle to
successfully go over it. If the point is a free space point,
then the robot has three options: 1) it can expand or narrow,
if it is near negotiable obstacle points, 2) it can narrow the
polygon, if it is near non-negotiable obstacle points, and 3)
it can maintain the previous configuration, if the free space
point is not near any of the obstacles. The calculations for
changing the configuration for each of the above mentioned
options will be explained below.

To be capable of safely going over the negotiable obstacle
point, we need to determine the robot’s footprint polygon
width that would allow it to pass over the object. When a
point is examined, a small rectangular region of the size
of the maximum width (wmax) and maximum length (lmax)
of the robot footprint polygon, centered at the query point
is considered. Since the operation uses image points, the
number of orientations for motions of the robot pelvis, while
moving from a given point to its neighboring points, is 8
(i.e. the total number of immediate image point neighbours).
All 8 orientations are searched for valid configurations, and

Fig. 4: A search strategy instance. The pink block is the
evaluated pixel/point, while the yellow squares and the
corresponding arrows represent its 8 neighbors and directions
to which the robot will attempt to move to. The red arrow
represents possible collision with non-negotiable obstacle,
the green represents a collision with negotiable obstacles,
and the blue represents the direction with no-collisions.

this is intuitively illustrated in Fig. 4. In particular, consider
the examined negotiable obstacle point with coordinates pi =
(xi,yi) and angle θ with respect to the horizontal axis. All the
points in the rectangular Region-of-Interest (RoI) centered at
pi, are rotated by θ and normalized such that a relative origin
lies at pi. In other words, the coordinates of the points in the
RoI are obtained with respect to pi and thus, are represented
exactly as the robot sees them when oriented by θ at pi.
If the RoI consists of only negotiable obstacle points, we
find the maximum absolute horizontal pixel coordinate (i.e.
the relative y-component) from the normalized coordinates
of the obstacle points. This determines how much the robot
has to expand to go safely over the obstacles. This process
is repeated for all the negotiable obstacle points and all θ ’s,
at the start of the algorithm.

If the point is a free space point, with the RoI having
only negotiable obstacle points, we consider the options of
both expanding or narrowing the polygon. Expanding is done
as described in the previous case. For narrowing, instead
of finding the maximum horizontal coordinate, we find the
minimum horizontal coordinate. This determines how much
the footprint polygon needs to be compressed to can avoid
all the obstacle points. This is repeated when the RoI around
the free space point has non-negotiable obstacles. Fig. 5
depicts the selection of the width wr of the robot for the
expanding and narrowing cases. If the minimum or maximum
horizontal coordinate values fit within thresholds set by the
narrowest and the widest robot footprint polygons, then
the free space point is traversable. Similarly, the points on
negotiable objects are considered traversable for a given θ , if
the maximum horizontal coordinate is within the thresholds.
Otherwise, for that given θ the point is considered non-
traversable.

D. Incorporation into the A* Algorithm

Having determined the robot footprint polygon calcula-
tions for obstacle negotiation given a segmented image map,
we incorporate these into the A* path planner. To determine
the path with the lowest cost from a start to a goal point in
A*, two functions are used: 1) the function to calculate the

Fig. 5: The process of polygon width selection for two cases:
expanding over a negotiable obstacle (left) and narrowing be-
tween two obstacles (right). In the left image, the green line
is the maximum y-coordinate of the robot polygon expansion
to safely negotiate the object. In the right image, the orange
dotted line is the minimum y-coordinate of the robot polygon
shrinking to safely go in between two obstacles.

cost of reaching the node g(x,y) and 2) the heuristic measure
h(x,y), which is usually the distance of the query point to
the goal point.

Consider [xc,yc] to be the child neighbour node being
queried, [xp,yp] the corresponding parent node, and [xg,yg]
the goal node. If the point related to the [xc,yc] node is close
to obstacles or it is on a negotiable obstacle, then the θ

angle corresponding to the motion from the parent to the
child node is checked for a valid available configuration. In
such a case, the costs will be evaluated, otherwise the path
will be ignored. For our algorithm, the function g(x,y) will
be calculated as follows:

g(xc,yc) = g(xp,yp)+Wt ×
|θent −θext |

2π
+Wc× (|δw|)

θent = acos

(
xp− xc√

(xp− xc)2 +(yp− yc)2

) (2)

where || is the absolute value, Wt is the weight on the
turning cost, Wc is the weight on the cost of configuration
change, θext is the angle at which the robot exits the node
prior to the parent node [xp,yp] or the angle at which it
enters the parent node, θent is the angle at which the robot
enters the child node [xc,yc], and (|δw|) is the change in
robot footprint polygon width that is required for obstacle
collision-free negotiation at node [xc,yc] and it is divided
by the maximum permissible horizontal robot axis (width)
change.

The heuristic function h(xc,yc) is the standard Euclidean
distance as follows:

h(xc,yc) =
√
(xg− xc)2 +(yg− yc)2 +Wg×

∣∣θgoal−θent
∣∣

2π

θgoal = acos

(
xg− xc√

(xg− xc)2 +(yg− yc)2

)
(3)

where Wg is the weight on the cost of turning away from
the direction of the goal. Intuitively, by having higher weights
on θ ’s or turning motions in both functions, we force the
planner to prefer paths with few turns to reach the goal.

Fig. 6: Obstacle Negotiating A* block decision diagram.
The blocks in orange are parts of the standard A* algorithm
whereas the rest are the modifications presented in this paper.

This has an additional advantage that in front of negotiable
obstacles, the algorithm would prefer to expand and move
forward rather than turning away from the goal without a
configuration change due to the lower cost. Furthermore by
increasing Wc, we can force the robot to look for paths with
fewer configuration changes.

The total cost of the node is the sum of the two functions
h(x,y)+g(x,y). Following this, the standard A* planner steps
are followed (using a sorted open and closed list of nodes to
explore the map), such that a path with a lower cost and a
shorter travel distance is followed. The overall block diagram
representing the sequence of steps can be seen in Fig. 6.

On the implementation level, each node in the planner is
represented as a structure, which consists of the following
variables:
• The x and y coordinates of the point.
• A boolean array of 8 elements, indicating whether at the

θ angle that corresponds to the element, a valid robot
footprint polygon configuration exists.

• A double array of 8 elements, indicating a valid robot
width wr to the corresponding θ of the element.

• A boolean to indicate whether the point is an obstacle.
• A boolean to indicate if the point is traversable.
• The associated costs of the node.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental and compu-
tational results with our planner, on the simulated and real
CENTAURO robot.

A. Simulation Results

We first evaluate our obstacle negotiating A* planner
on multiple image-based simulations (Figs. 7-9). The runs
were performed in a generated scenario with multiple low-
height objects of different sizes within a 8.5m wide corridor.

Fig. 7: Two evaluated scenarios of path planning with
footprint polygon expansion and narrowing. On the left, the
robot is expanding before a wide object to continue towards
the goal. On the right, the robot initially in an expanded
configuration, is narrowing to go between two objects to
reach the goal.

Fig. 8: Two cases of planning decisions based on the robot’s
starting configurations. On the left, the robot starts in the
expanded configuration, and thus a straight path over the ob-
stacle is planned. On the right, the robot starts in the narrow
configuration, and chooses against expanding, instead going
through the narrow gap taking advantage of its configuration.

As described in Sec. III-A, we obtain two images, one
consisting of points below the height hobs, and the other
with tall obstacles. Finally, we obtain a rough segmented
image map (Fig. 2), where grey represents small/negotiable
obstacle points, black represents free space points and white
represents tall obstacles.

Fig. 7 depicts the general capacity of the introduced
planner to expand and narrow the footprint polygons en-route
to the target. In the figure, the yellow rectangle represents
the change in robot configuration. The red rectangle and the
green rectangle represent the start and end robot positions
and configurations respectively. The blue arrows depict the
direction and path of robot motion.

An instance of subtle effectiveness of the planner can be
seen in the Fig. 8. The robot chooses to go over the object
as the robot is already in an expanded configuration. On the
other side, when the robot starts in a narrow configuration,
it chooses to go around the object as the turning costs are
comparatively less than the action of expanding over the
object.

To illustrate further the effectiveness of the planner, it
is executed with different weights Wc, on the robot con-
figuration costs. The starting and goal positions considered
can be seen in Fig. 9, where we show the plans with
two different weights on the robot configuration change.
Table I summarizes the comparative results of: 1) planning
computation times (note that the implementation is not-

Fig. 9: Two planning cases of varying configuration change
weights. On the left, Wc = 3, while on the right the weight
is higher, i.e. Wc = 7.

TABLE I: Image-Based Planner Simulations Results

Configuration
Change Cost
(Wc)

Final
Planner
Cost

Path
Length
(m)

Planning
Time (s)

Plan
Execution
Time (s)

1 160.06 9.072 1.88 69.282
3 162.67 9.072 2.73 69.282
5 164.20 9.072 3.81 69.282
7 161.00 9.960 4.16 91.180

optimized), 2) possible plan execution times (based on path
length and velocity-time-distance calculations), and 3) the
final path cost. For these simulations we let Wg = Wt = 3,
while Wc is varying. As the weight on the configuration
change cost is increased to Wc = 7, the planner chooses to
go around the object instead of expanding and going over
it. This results in a longer path with increased planning and
execution time.

In addition to the image-based simulations, in Fig. 10 we
also show a visualization of the simulated robot executing
planner paths. We demonstrate the capacity of the robot
to expand over a wide obstacle and narrow into a passage
for a single instance of planning. The robot was placed in
front of a wide object in a corridor, which narrows after the
object. The simulation results for robot using the obstacle
negotiating A* can be seen in Fig. 10. While the standard
A* planner fails to provide a solution as the space is too
limited for the robot to go around the obstacle, the obstacle
negotiating A* generates a safe plan even in the tight space,
and directs the robot to the target.

B. Real-World Results

To experimentally validate the capabilities of the planner
developed in this paper we used the CENTAURO robot.
For the robot control, the XBotCore [22] middleware was
used for the joint, sensor, and computer communication. The
interface used to command the position of wheels and the
overall motion of the robot is the CartesianInterface [23].
The planner supplies the CartesianInterface with the wheel
(x,y) positions with respect to the pelvis, along with the
(x,y,z) positions and the yaw value of the pelvis with respect
to the global frame. In real time, the CartesianInterface
determines the trajectories of the joints needed to execute the
required configuration and the pelvis position for the robot.
The planner runs on an Intel Corei7-6700 PC with 24 GB
RAM.

Fig. 10: Sequence of the simulated CENTAURO robot exe-
cuting the plans given by the obstacle negotiating A* planner.
The robot first expands over a wide object and then shrinks
into the narrow corridor.

Four lab experiments were conducted, to demonstrate the
capabilities of the obstacle negotiating A* planner on the
CENTAURO robot. For all the experiments we let Wg =Wt =
2 and Wc = 3, to minimise the number of turns away from the
goal and also force the robot to only change its configuration
when there are no suitable free paths, thereby preferring
small immediate detours over configuration changes. These
weights were tuned on the segmented image map from the
real experiment data.

The first set of two experiments were conducted in two
almost identical environments (Fig. 11). In the first experi-
ment, as seen in the Fig. 11-(a), there is enough free space
on the right (from the robot’s perspective) of the robot to
take a turn and go around the set of bricks on the floor.
Whereas in the second experiment (Fig. 11-(b)), we put two
extra bricks to close the safe free path on the right side of the
set of bricks. As expected, in the first experiment the robot
goes around the bricks, whereas in the second experiment,
the robot turns to align itself properly with the set of low-
lying bricks, expands, and then goes over them to the goal
point. The total width of the low-lying bricks was approx.
70cm. The planner instructed the robot to expand its footprint
polygon to a width of around 90cm and traverse safely over
the obstacle.

The third experiment, as shown in Fig. 12, demonstrates
the execution of a plan where the robot needs to narrow into
a tight path starting from an expanded configuration. The
space in between the two stands of bricks was around 75cm
and the initial width of the robot polygon was 100cm. The
robot moves in an expanded configuration up towards the
narrow gap and then narrows itself to fit between the bricks.

The fourth and final experiment is shown in Fig. 13. In this
experiment, the robot performs two configuration changes to
reach its goal point, which is set at the final brick lying
on the ground. Firstly it narrows its wheelbase to navigate
through the tight passage consisting of two tall bricks and
then expands so that the wheels do not collide with the
wide brick lying on the ground. The width of the narrow
passage was approx. 80cm and the width of the final brick
was 50cm. The robot starts in a wide configuration (polygon

(a)

(b)

Fig. 11: Real world experiments with the CENTAURO robot going around and going over an obstacle.

Fig. 12: Sequence of the CENTAURO robot narrowing into a passage, after starting from an expanded configuration.

Fig. 13: A planned path where narrowing and expanding of the robot footprint polygon are executed.

width 100cm), ending with a narrower but still expanded
polygon width of 76cm as the final obstacle is not as wide
as it was in the first two experiments.

In Fig. 14 we report: 1) computation times, 2) final path
costs, and 3) the path lengths travelled by the robot for
the four experiments conducted on the CENTAURO robot.
One important observation is that in case of the first two
experiments (the going around and the expand experiments),

the cost of expanding is higher, but the planning time and
the path length are significantly lesser for the case where the
robot performs expanding, rather than avoiding the obstacle.
Furthermore, from the last two experiments, it can be seen
that the planning time is doubled for the fourth experiment
when compared to the third experiment. This is due to the
computation of planning for multiple configuration changes
as well as increased path length.

Fig. 14: Plots of the path length, planner computation times,
and path costs for the 4 CENTAURO experiments.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a modified version of the A*
planner, named obstacle negotiating A*, that was capable of
negotiating obstacles by widening the robot to traverse over
them, as well as narrowing the robot footprint polygon in
tight spaces. The effect of modifying the weight on the cost
of the robot footprint polygon configuration change was stud-
ied through simulations. Four experiments were performed
on the CENTAURO robot demonstrating the capability of
the planner to provide paths over low obstacles and through
narrow spaces.

In this work, the mapping, segmentation, and planning
was done all at once at the start of the experiments and
paths of lengths up to 3.8m were planned on the real robot.
In the future, we intend to interface the algorithm with a
SLAM algorithm and plan for longer paths, while including
re-planning functionality in case of dynamic environments or
noisy data. Furthermore, we intend to remove the dependency
on the robot symmetry when planning and to optimize the
code to reduce planning times. While the turning angles
were maintained to 8 discrete orientations, incorporating a
continuous orientation system would give more flexibility.
We would also like to consider the energy costs involved in
staying in a particular robot configuration rather than just
the cost on changing the robot polygon. While the current
mapping solution works for obstacles on flat surfaces, we
aim at incorporating a more detailed height map for sloping
surfaces. Future work would also investigate the possibility
of maintaining the low-dimensional search of the planner,
while planning the motion for each of the wheeled legs
individually. Such a planner would allow the highly agile
CENTAURO robot to navigate in more densely populated
spaces.

ACKNOWLEDGMENT

This work is supported by the CENTAURO & CogIMon
(no: 64483 & 644727) EU projects. The Titan Xp GPUs used
for this research was donated by the NVIDIA Corporation.
The authors would like to thank Paulo Guria for his help
with the experiments.

REFERENCES

[1] N. Kashiri et al., “CENTAURO: A Hybrid Locomotion and High
Power Resilient Manipulation Platform,” IEEE Robotics and Automa-
tion Letters (RA-L), 2019.

[2] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-
bridge University Press, 2006.

[3] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Kono-
lige, “The Office Marathon: Robust Navigation in an Indoor Office
Environment,” in IEEE Int. Conf. on Robotics and Automation, 2010.

[4] “Turtebot - Willow Garrage,” http://www.willowgarage.com/turtlebot.
[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the

Heuristic Determination of Minimum Cost Paths,” IEEE transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[6] A. Hornung, D. Maier, and M. Bennewitz, “Search-based Footstep
Planning,” in IEEE International Conference on Robotics and Automa-
tion (ICRA) Workshop, 2013.

[7] D. Kanoulas, A. Stumpf, V. S. Raghavan, C. Zhou, A. Toumpa, O. Von
Stryk, D. G. Caldwell, and N. G. Tsagarakis, “Footstep Planning in
Rough Terrain for Bipedal Robots Using Curved Contact Patches,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2018, pp. 1–9.

[8] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configura-
tion Spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[9] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” 1998.

[10] E. A. Hansen and R. Zhou, “Anytime Heuristic Search,” Journal of
Artificial Intelligence Research, vol. 28, pp. 267–297, 2007.

[11] A. Stentz, “Optimal and Efficient Path Planning for Partially-Known
Environments,” in IEEEE International Conference on Robotics and
Automation (ICRA), 1994, pp. 3310–3317.

[12] M. Brunner, B. Brüggemann, and D. Schulz, “Motion Planning for
Actively Reconfigurable Mobile Robots in Search and Rescue Scenar-
ios,” in IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2012, pp. 1–6.

[13] M. Menna, M. Gianni, F. Ferri, and F. Pirri, “Real-time Autonomous
3D Navigation for Tracked Vehicles in Rescue Environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2014, pp. 696–702.

[14] M. Norouzi, J. V. Miro, and G. Dissanayake, “Planning High-Visibility
Stable Paths for Reconfigurable Robots on Uneven Terrain,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012, pp. 2844–2849.

[15] A. Le, V. Prabakaran, V. Sivanantham, and R. Mohan, “Modified A-
Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired
Self-Reconfigurable Robot with Integrated Laser Sensor,” Sensors,
vol. 18, no. 8, p. 2585, 2018.

[16] L. Pfotzer, S. Klemm, A. Rönnau, J. M. Zöllner, and R. Dillmann,
“Autonomous Navigation for Reconfigurable Snake-like Robots in
Challenging, Unknown Environments,” Robotics and Autonomous
Systems, vol. 89, pp. 123–135, 2017.

[17] K. Hauser and J.-C. Latombe, “Multi-Modal Motion Planning in Non-
Expansive Spaces,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 897–915, 2010.

[18] T. Klamt and S. Behnke, “Planning Hybrid Driving-Stepping Locomo-
tion on Multiple Levels of Abstraction,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2018, pp. 1695–1702.

[19] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko,
D. Droeschel, and S. Behnke, “Supervised Autonomous Locomotion
and Manipulation for Disaster Response with a Centaur-like Robot,”
arXiv preprint arXiv:1809.06802, 2018.

[20] R. Buchanan, T. Bandyopadhyay, M. Bjelonic, L. Wellhausen, M. Hut-
ter, and N. Kottege, “Walking Posture Adaptation for Legged Robot
Navigation in Confined Spaces,” IEEE Robotics and Automation
Letters (RA-L), 2019.

[21] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[22] L. Muratore, A. Laurenzi, E. M. Hoffman, A. Rocchi, D. G. Caldwell,
and N. G. Tsagarakis, “Xbotcore: A Real-Time Cross-Robot Software
Platform,” in IEEE International Conference on Robotic Computing
(IRC), 2017, pp. 77–80.

[23] A. Laurenzi, E. M. Hoffman, L. Muratore, and N. G. Tsagarakis,
“CartesI/O: A ROS Based Real-Time Capable Cartesian Control
Framework,” in IEEE Int. Conf. on Robotics and Automation, 2019.

