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Abstract 27 

A heterofunctional support for enzyme immobilization may be defined as that which 28 

possesses several distinct functionalities on its surface able to interact with a protein. We will 29 

focus on those supports in which a final covalent attachment between the enzyme and the 30 

support is achieved. Heterofunctionality sometimes has been featured in very old 31 

immobilization techniques, even though in many instances it has been overlooked, giving rise to 32 

some misunderstandings. In this respect, glutaraldehyde activated supports are the oldest 33 

multifunctional supports. Their matrix has primary amino groups, the hydrophobic 34 

glutaraldehyde chain, and can covalently react with the primary amino groups of the enzyme. 35 

Thus, immobilization may start (first event of the immobilization) via different causes and may 36 

involve different positions of the enzyme surface depending on the activation degree and 37 

immobilization conditions. Other “classical” heterofunctional supports are epoxy commercial 38 

supports consisting of reactive covalent epoxy groups on a hydrophobic matrix. Immobilization 39 

is performed at high ionic strength to permit protein adsorption, so that covalent attachment may 40 

take place at a later stage. Starting from these old immobilization techniques, tailor-made 41 

heterofunctional supports have been designed to permit a stricter control of the enzyme 42 

immobilization process. The requirement is to find conditions where the main covalent reactive 43 

moieties may have very low reactivity towards the enzyme. In this review we will discuss the 44 

suitable properties of the groups able to give the covalent attachment (intending a multipoint 45 

covalent attachment), and the groups able to produce the first enzyme adsorption on the support. 46 

Prospects, limitations and likely pathways for the evolution (e.g., coupling of site-directed 47 

mutagenesis and thiol heterofunctional supports of enzyme immobilization on heterofunctional 48 

supports) will be discussed in this review. 49 

 50 

Keywords: heterofunctional supports; enzyme immobilization; enzyme stabilization; multipoint 51 

covalent attachment;  52 
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1. INTRODUCTION 53 

 Immobilization is in most instances a requisite for using enzymes in industry.1-3 54 

Immobilized enzymes may be utilized in different reactor configurations, permitting an easy 55 

control of the reaction, avoiding contamination of the product by the enzyme (this is highly 56 

relevant in food technology) and permitting their reuse over many reaction cycles.1-3 Thus, a 57 

proper immobilization system should give a strong enough immobilization in order to avoid 58 

enzyme release that may contaminate the product and result in loss of enzyme (and catalytic 59 

activity).1-3 Moreover, immobilization and stability are closely related terms, as only stable 60 

enough biocatalysts could be reused.4, 5 However, the term “immobilization” does not 61 

necessarily imply stabilization of an enzyme. In fact, if the immobilization protocol is not well 62 

designed, for example permitting uncontrolled enzyme-support interactions, immobilized 63 

enzymes may be even less stable than free enzymes.6-13  64 

Considering this requirement as an opportunity, many researchers have tried to 65 

understand and control the immobilization of enzymes to use this process as a powerful tool to 66 

improve enzyme properties, such as stability, activity, selectivity, reduce inhibitions, etc.7, 14-16 67 

The tuning of enzyme features by immobilization16 should not be considered as an 68 

alternative to other tools to improve enzyme features, but as a tool that is compatible with any 69 

other enzyme tuning strategy (remember that in most cases, the enzyme will be finally used in 70 

an immobilized form). In fact, it has been recently reviewed how the joint use of 71 

microbiological tools (use of thermopilic mircoorganisms),17 genetic tools18 or chemical 72 

modification of enzymes19 to achieve an improved immobilization has opened the door to new 73 

strategies for enzyme properties enhancement. 74 

 It is true that any immobilization protocol (at least, if the enzyme is placed inside 75 

porous particles) avoids some inactivation causes: aggregation, proteolysis (due to autolysis if 76 

the enzyme is a protease or due to the action of some contaminant protease) or interaction with 77 

external interfaces will no longer be possible (just a small percentage of enzymes placed on the 78 
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outer surface of the particle may suffer these detrimental phenomena).6 Operational stabilization 79 

may be also achieved by decreasing the inactivation cause, as it occurs if an enzyme 80 

microenvironment is generated where the inactivating agent is partitioned away from the 81 

enzyme environment (e.g., a hydrophobic environment in the presence of hydrogen peroxide20 82 

or a hydrophilic environment in the presence of organic solvents or oxygen14, 21-23).  83 

 However, a true improvement on the enzyme rigidity may be achieved if an intense 84 

multipoint covalent attachment between the enzyme and a rigid support by short spacer arms is 85 

obtained.3, 6, 7, 14, 15, 17, 18 All the enzyme moieties involved in the immobilization process must 86 

maintain their relative positions under any condition that may produce a conformational change. 87 

The support could be considered as a multifunctional crosslinker reagent, where the crosslinking 88 

will involve many groups in the enzyme structure. This rigidification of the enzyme structure 89 

should produce a stabilization of the enzyme in all cases where the inactivation cause was due to 90 

conformational changes. Stabilization may not be observed if the main cause for enzyme 91 

inactivation is a chemical modification of an exposed group6 or if it involves the dissociation of 92 

enzyme subunits24 or of some ion or cofactor.6, 25 93 

In the case of multimeric enzymes, in many instances, enzyme inactivation starts via 94 

subunit dissociation.24 If this is the case, prevention of this dissociation may be achieved also by 95 

multi-subunit immobilization among other strategies.24 96 

Immobilization produces some alterations on the enzyme structure and its overall 97 

mobility in most cases, and that may lead to an alteration of enzyme properties, such as activity, 98 

selectivity or specificity.7, 16, 26. These effects may be unpredictable and related to the area of the 99 

enzyme involved in the immobilization, the intensity of the covalent attachment, etc.18 100 

Moreover, it has been clearly established that the effect of a multipoint covalent 101 

attachment depends on the involved protein areas (e.g., enzyme stability). There are enzyme 102 

areas that are more relevant than others,18, 27, 28 even though multipoint covalent attachment 103 
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produces a global rigidification of the enzyme structure, and the effects are more relevant when 104 

they directly involve the area of the enzyme structure where the inactivation starts.18, 27, 28 105 

 Using just one kind of support, changing the orientation of the enzyme on the support 106 

surface is a complex (although not impossible) problem.18 It should be considered that most 107 

immobilization supports are able to immobilize enzymes and proteins with a quite well defined 108 

orientation, although in some instances it may be difficult to guess the exact area of the protein 109 

involved, even when using the enzyme structure and molecular dynamic programs.18 Those 110 

immobilization methods, which directly provide a covalent attachment and are used at neutral 111 

pH values, immobilize enzymes mainly by the most reactive amine in the protein surface 112 

(usually the terminal amino group).18, 29, 30 Ionic exchange, adsorption of enzymes on 113 

immobilized metal chelates or hydrophobic supports are multipoint processes, therefore they 114 

mainly involve the areas of the enzyme surface where there is a higher concentration of the 115 

target groups.18, 31-40 Other supports, due to the reversibility of each individual bond, only 116 

immobilize the enzyme on their surface after several covalent linkages, therefore directing the 117 

immobilization by the area of the enzyme surface richest in support-reactive groups (that is the 118 

case of glyoxyl supports).29, 30 Thus, to have proteins immobilized in different orientations  (e.g., 119 

interesting for proteomics), the most effective solution is to use different immobilization 120 

protocols.18, 41 121 

Immobilization of enzymes on a support may be more versatile if we use multifunctional 122 

supports. We will apply the term “heterofunctional support” to that which has several 123 

functionalities on its surface (introduced either by accident or by design) that are able to interact 124 

with groups of an enzyme under different circumstances. In this review, we will focus on those 125 

supports that yield covalent bonds as a final result. We will present the advantages and problems 126 

raised by the use of heterofunctional supports, as well as the most likely evolution of these 127 

systems. 128 

 129 
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2. STANDARD MULTIFUNCTIONAL SUPPORTS 130 

 Some of the oldest covalent immobilization strategies are based on the use of the 131 

multifunctional features of the support. These features are sometimes ignored during the use of 132 

the supports, making the understanding of the final results complex. 133 

 134 

2.1. Glutaraldehyde activated supports: an old heterofunctional support 135 

 Supports activated with glutaraldehyde are expected to react mainly with non-ionized 136 

primary amino groups.29, 42-44 Due to the relatively low stability of the glutaraldehyde groups at 137 

alkaline pH value, immobilization employing these supports is usually performed at neutral pH 138 

values. At these pH values, the most reactive amino group in the protein tends to be the terminal 139 

amino group (pK ranging from 7 to 8, much lower than the pK of the exposed Lys residues that 140 

is 10.7). However, after the first immobilization, if some nucleophiles of the protein are in the 141 

area exposed to the support, the high apparent concentration of the different groups may permit 142 

the establishment of some new covalent enzyme-support bonds.45 Thus, it may be possible to 143 

reach some multipoint covalent attachment by using highly activated glutaraldehyde supports.46-144 

49 145 

 However, the current scenario using glutaraldehyde-activated supports is far more 146 

complex, as these supports are really multifunctional ones. The multifunctionality of some 147 

supports is a direct consequence of the way they are prepared and this is the case for 148 

glutaraldehyde activated supports (figure 1). Their preparation begins with the modification of 149 

supports bearing primary amino groups (they are, in short, anion exchangers) with 150 

glutaraldehyde.42-44 Following the procedures described in the literature, it is hard to give the 151 

exact structure of the groups formed by the glutaraldehyde, but the existence of some stable 152 

cycles instead of standard imino bonds seems to be certain (no linear aldehyde molecules should 153 

be expected).44, 50, 51 154 
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 Moreover, for a long time, it has been established that the modification of each 155 

primary amino group on the support with one or two glutaraldehyde molecules may be achieved 156 

in a relatively simple way by controlling the time, the pH and the concentration of 157 

glutaraldehyde during support activation.42 The most reactive species with amino groups are 158 

those obtained when two glutaraldehyde molecules per amino group are present.49 Furthermore, 159 

the amino-glutaraldehyde-glutaraldehyde groups have low reactivity with other similar groups,52 160 

decreasing the risks of crosslinking that should lead to the loss of reactive moieties on the 161 

support. Whatever the exact structure of the glutaraldehyde on the support, the final result is a 162 

support having spacer arms bearing one or two amino groups (cationic groups that may function 163 

as anion exchangers), a fairly hydrophobic moiety formed by the glutaraldehyde chain and the 164 

covalent reactive group. That is, the support may give three different kinds of interactions with 165 

an enzyme: hydrophobic, anionic exchange and covalent (Figure 1).53 Using highly activated 166 

supports, all of them will be able to immobilize the enzyme, each one being dominant under 167 

certain experimental conditions.34  168 

This fact raises some problems when using this old fashioned multifunctional support, 169 

especially if the researcher ignores its multifunctional nature in the design of the experimental 170 

protocol. The first one is that although the support has moieties able to covalently react with the 171 

enzyme, the fact that all enzyme molecules are immobilized in a very rapid fashion is not a 172 

guarantee that covalent immobilization of the enzyme on the support will take place. Thus, the 173 

researcher should try to release the adsorbed enzyme molecules from the support (e.g., using 174 

cationic detergents) to verify the establishment of covalent attachments between enzyme and 175 

support.53 A second problem is that it is not possible to obtain a fully inert surface after enzyme 176 

immobilization. In general, these finally inert surfaces will be always preferred in an 177 

immobilization protocol, with view towards permitting a fine control of the support-enzyme 178 

interactions.18 Reduction of the support with sodium borohydride may eliminate the chemical 179 

reactivity of the glutaraldehyde group, but we still have a layer of hydrophobic groups over a 180 
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layer of cationic groups, that can produce uncontrolled enzyme-support interactions during 181 

storage or use. These interactions may in some cases have positive effects on enzyme 182 

performance, while in other cases the effects will be negative, but these will be solely uncovered 183 

after studying the biocatalyst properties.  184 

These interactions will only have a real impact on enzyme performance when using 185 

supports bearing several amino-(glutaraldehyde)n moieties under each enzyme molecule.34, 36, 38-186 

41 Biomacromolecules are only immobilized on supports via ionic exchange or hydrophobic 187 

interactions when several enzyme-support interactions may be established. If there is a very 188 

small amount of groups on the support, (e.g. just one spacer arm per projected area of the 189 

enzyme), this multi-interaction will no longer be possible.29, 34, 36, 38-41 Thus, using very lowly 190 

activated amino supports, immobilization using glutaraldehyde will be directly performed by a 191 

covalent reaction by the most reactive amino group on the enzyme (Figure 2). However, 192 

immobilization will be very slow due to the low activation of the support, and will offer no 193 

chance of reaching an intense multipoint covalent attachment.7 194 

Using highly activated supports, it has been shown that in most cases an ionic exchange 195 

with the amino groups in the support is the first step in the immobilization of most enzymes on 196 

highly activated glutaraldehyde supports.18, 46, 49, 53 Using lipases, interfacial activation on the 197 

hydrophobic surfaces formed by glutaraldehyde may give similar adsorption rates to those found 198 

for ionic exchange, making the final picture even more complex.53 Both immobilization 199 

mechanisms are far more rapid that the direct covalent attachment via glutaraldehyde-enzyme 200 

covalent reaction. 201 

One effect of this first ionic adsorption is that, even though glutaraldehyde is able to 202 

immobilize enzymes via just one attachment due to the stability of the bond formed, the 203 

activation degree of the support has an exponential effect on the immobilization reaction rate 204 

(figure 3). This is because the researcher is measuring the rate of ionic exchange of the enzyme 205 

on the support, which requires the establishment of several enzyme-support interactions, and 206 
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thus it is exponentially dependent on the surface density of amino groups on the support 207 

although the covalent reaction should be of order 1.34, 36, 38-41, 49  208 

This multifunctionality may be (and actually is) an advantage in certain cases. The rapid 209 

ionic exchange of the enzyme on the support prevents the enzyme from fulfilling the 210 

requirement of staying in a soluble state for a long time before being immobilized.7, 14 That way, 211 

inactivation of soluble enzymes via precipitation or proteolysis is reduced, and if enzyme 212 

adsorption has a positive effect on enzyme stability, enzyme inactivation by distortion will also 213 

be prevented. 214 

However, the main advantage of the multifunctionality of glutaraldehyde is that we can 215 

alter the enzyme orientation on the support by changing the immobilization conditions, favoring 216 

one mechanism or another as the first immobilization cause. Thus, it has been shown that using 217 

lipases, it is at least possible to immobilize the enzyme via 4 different mechanisms.53 In fact, 218 

there will be five different forms of having a biocatalyst from a given lipase using 219 

glutaraldehyde chemistry, if the ionic exchange of the enzyme on aminated supports and further 220 

modification with glutaraldehyde of the adsorbed enzyme and supports is included.53  221 

If the researcher wishes to have a first hydrophobic adsorption, this can be achieved 222 

using a high enough ionic strength (figure 4). Using very high ionic strength, the areas of the 223 

protein with high concentration of external hydrophobic groups (Figure 5) may be involved in 224 

the first enzyme adsorption and delimit the area where the reactive groups of the enzyme which 225 

will react with the support should be located. After enzyme hydrophobic adsorption, the reactive 226 

groups of the enzyme near the support surface may produce some covalent reactions. However, 227 

this will be produced after enzyme immobilization, and there is no guarantee that the enzyme 228 

will finally have any covalent attachment with the support.  229 

The second possibility is to permit ionic exchange of the enzyme prior to covalent 230 

immobilization. Using most water soluble enzymes, the use of low ionic strength is enough to 231 

reach this situation (an ionic strength that permits ionic exchange of the proteins on the non-232 
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activated glutaraldehyde amino support).53 (Figure 4). In this case, the enzyme will be first 233 

immobilized on the support by ionic exchange and this area will be the one where nucleophiles 234 

capable of reacting with the glutaraldehyde moieties should be located. 235 

Using lipases, the situation is more complex. Due to the tendency of the open form of the lipases 236 

to become adsorbed versus hydrophobic interfaces,54-57 if immobilization is just performed at 237 

low ionic strength, the enzyme will be immobilized by both immobilization mechanisms: 238 

interfacial activation and ionic exchange (Figure 5). Thus, depending on the enzyme, the support 239 

and the immobilization conditions, one or the other immobilization cause may be predominant.53  240 

This is the usual situation that we may find in the literature, and this may lead to a mixture of 241 

different immobilized forms of the lipases, making it difficult to understand the results. This 242 

situation may be avoided by using non-ionic detergents, which prevents the interfacial activation 243 

of the lipase versus a hydrophobic support.55 Performing the immobilization in the presence of 244 

Triton X-100, lipases are mainly immobilized on the support via ionic exchange as first reason 245 

of immobilization.53 (Figure 5)  246 

Ionic exchange may also involve different enzyme regions depending on the experimental 247 

conditions and activation degree of the support. Ionic exchange at different pH values may in 248 

certain enzymes change the area where the highest concentration of available anionic charged 249 

groups may be found. Furthermore, the ionic strength may determine the area involved because 250 

the higher the ionic strength, the more restrictive the immobilization becomes (requiring more 251 

enzyme support-interactions).31, 32  252 

Finally, it is possible to immobilize the enzyme via a direct first covalent attachment, 253 

involving the most reactive exposed group of the enzyme (usually the terminal amino group).7 254 

Using most water soluble enzymes, the moderate ionic strength used to prevent ionic exchange 255 

(100-250 mM of NaCl) is not enough to force the hydrophobic adsorption of the protein on the 256 

support and a direct covalent immobilization may be the first cause for the enzyme 257 

immobilization.53 In most enzymes, the use of an ionic strength which is sufficient to prevent 258 
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ionic adsorption is enough (figure 4).49 Using lipases, the situation is once again different. As 259 

ionic exchange is avoided, lipases become immobilized on the support first via a rapid 260 

interfacial activation on the support, which is still much faster than the direct covalent 261 

attachment.53 (figure 5). Thus, in the case of lipases, the use of ionic strength and detergents, or 262 

ionic detergents, may be the only way to ensure a first covalent immobilization.53 (Figure 5) 263 

 If we have a situation where the first phenomenon is covalent immobilization, the 264 

surface density of groups in the support will have a first order effect on the rate of enzyme 265 

immobilization.29 (figure 3) Thus, we can ensure that the first step of the enzyme immobilization 266 

process is the chemical reaction between enzyme and support. 267 

These are different ways of immobilizing any enzyme on glutaraldehyde activated 268 

supports, which may lead to different orientations of the enzyme on the support. The different 269 

immobilized enzyme preparations obtained have been shown to present different stabilities,49 270 

and in the case of lipases, they also exhibited different catalytic behavior (e.g., selectivity was 271 

altered).53 This way, it is possible to have, using the same immobilization support, enzymes 272 

immobilized by different areas, with different numbers of enzyme molecule-support covalent 273 

bonds and different enzyme-support unspecific interactions. We should bear in mind that, due to 274 

the proximity between the groups of the support and of the enzyme, interactions between 275 

immobilized enzyme and support will be produced even though they may not be enough to be 276 

the only cause for immobilization.45  277 

Thus, multifunctionality of glutaraldehyde supports may be in some instances a problem, 278 

mainly to understand the results as the cause for enzyme immobilization may be unclear. 279 

However, it may be an advantage if properly used, by giving a higher versatility to these 280 

supports. 281 

 282 

2.2 Standard epoxy supports 283 
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 Epoxy supports are another example of old and very popular protein immobilization 284 

matrices.58-60 Epoxy groups may react with different protein moieties, including thiols (from Cys 285 

residues), primary amino groups (terminal amino aminoacid and the amino group of the lateral 286 

chain of Lys), hydroxyl (mainly from the phenol chain of Tyr), imidazol (from His), and also 287 

with carboxylic acids (lateral chain of Asp and Glu, carboxyl terminal groups of the enzyme) 288 

among other groups.59 Most of the final bonds are very stable, such as thioethers, ethers or 289 

secondary amino bonds. In this respect the weakest bond is that formed after reaction with 290 

carboxylic acid (i.e. formation of an ester).59 These supports are directly supplied as activated 291 

supports; therefore they do not require any further treatment to immobilize the enzyme. In dry 292 

form and at low temperatures, they can be stored for months without altering their reactivity, 293 

and the epoxy groups are also stable for weeks at neutral pH in wet conditions and at room 294 

temperature. At alkaline pH values, the epoxy groups are less stable but still the half-life may be 295 

measured in weeks at pH 10, enabling the incubation of the enzyme and support for long periods 296 

of time, a requisite for increasing the prospects of an intense enzyme-support reaction.61, 62  297 

Thus, at first glance, these supports are very adequate not only to immobilize enzymes, 298 

but also to improve their stability via multipoint covalent attachment, at both laboratory and 299 

industrial scale. 300 

 However, current epoxy activated supports exhibit a moderate to very low reactivity 301 

versus the different reactive groups of a protein. Only thiol groups of Cys seem to be able to 302 

provide a significant immobilization rate on epoxy supports and this only takes place using a 303 

very high concentration of support, but even this is quite slow.58, 61-64 Moreover, in most cases, 304 

exposed Cys residues in proteins will have an oxidized thiol group. Thus, this group will usually 305 

require to be submitted to a reduction treatment before being able to react with the epoxy 306 

groups.65, 66 307 

Nevertheless, the fact is that epoxy supports have been available for immobilizing 308 

industrial enzymes for a long time, and they have proven their efficiency in certain cases.58, 61-64 309 
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This is possible because the protocol recommended by the suppliers involves the use of 310 

high concentrations of buffers (1 M sodium phosphate), and the commercially available supports 311 

have a hydrophobic nature (e.g., Eupergit supports, commercialized by Rhon Hass or 312 

Sepabeads, commercialized by Resindion). Thus, these supports are actually multifunctional, 313 

even though they only present one short spacer arm having chemical reactive moieties, because 314 

below the epoxy groups they have a fairly hydrophobic surface formed by the support matrix 315 

(Figure 6).7, 62 The use of high ionic strength produces the hydrophobic adsorption of the 316 

enzyme on the support as the first step in the immobilization of enzymes on these standard 317 

epoxy supports.58, 67 Then, the very high effective concentration of epoxy groups and 318 

nucleophile achieved by the proximity of enzyme and support allows the acceleration of the 319 

covalent reaction between enzyme and support in a second step.61, 62 (Figure7) In fact, although 320 

agarose-epoxy beads are available, they are not recommended to immobilize enzymes. This is 321 

due to the high hydrophilicity of agarose. 322 

It has been shown that after enzyme immobilization, which may be performed at neutral 323 

pH values and low temperatures (just after the hydrophobic adsorption or after a first covalent 324 

attachment), the increase in the pH value (e.g., to pH 9 or 10) may permit to increase the 325 

enzyme-support reactivity, yielding a relatively intense multipoint covalent attachment and 326 

permitting to get a high stabilization of the enzymes via this immobilization technique.61, 62 327 

(figure 7) However, this is only possible if there is a high number of groups that can react with 328 

the epoxy support in the most hydrophobic area of the protein (that involved in the 329 

immobilization).67  330 

The versatility of these supports is not as high as in the case of the glutaraldehyde 331 

activated supports. Now, the direct covalent attachment is not possible at industrial scale due to 332 

its slow rate of proteins on epoxy-supports, and thus only hydrophobic adsorption is possible.  333 

An exception may be once again found in lipases. Due to the tendency of these enzymes 334 

to become adsorbed via interfacial activation on hydrophobic surfaces, they can also become 335 
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adsorbed on this fairly hydrophobic supports.53, 55, 68 Thus, using low ionic strength during 336 

immobilization, the lipases will become immobilized via interfacial activation on the 337 

hydrophobic support in a quite rapid fashion (figure 8).55 Using high ionic strength, the lipase 338 

molecules tend to be in the closed form, due to the highly unstable large hydrophobic pocket 339 

that becomes exposed to the medium in the open form. In fact, it has been reported that lipases 340 

can be immobilized in a slower way on octyl-agarose when the ionic strength in increased.68 341 

Thus, under these conditions, adsorption via hydrophobic external residues of lipases may be 342 

favored versus interfacial activation. This has been exemplified using the lipase B from Candida 343 

antarctica, that was immobilized at low and high ionic strength on standard Eupergit. The 344 

resulting enzyme preparations showed different features (stability, activity and selectivity).69 345 

The blocking step is recommended to prevent unwanted covalent reactions between 346 

enzyme and support, and it has also been used to solve the hydrophobicity problem of these 347 

supports (negative for enzyme stability) (Figure 7).62 The problem is more relevant when the 348 

geometrical congruence between enzyme and support is high, but on the other hand only when 349 

this good geometrical congruence occurs should we expect a very high stabilization of the 350 

enzyme.6, 7 In most cases, the hydrophobicity of the supports will be detrimental for enzyme 351 

stability as it may stabilize some inadequate conformations of the enzyme, as if it was a gas 352 

bubble.6 This negative effect may even mask the enzyme rigidification obtained via multipoint 353 

covalent attachment.62 This has been partially overcome using hydrophilic molecules to block 354 

the remaining epoxy supports after enzyme immobilization, such as amino acids.62 This way, a 355 

very high enzyme stabilization has been achieved using these supports in some instances.62 356 

 357 

2.3. Other multifunctional supports 358 

 From the aforementioned examples, it is evident that many immobilization supports 359 

may be in fact multifunctional ones. In some instances the multifunctionality may derive from 360 

the intrinsic properties of the matrix itself: in some cases it may be ionic (chitosan),70 in others 361 
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hydrophobic.58-60 In some specific cases, the spacer arm that we introduce having the covalent 362 

functionality may be enough to provide this multifunctionality, since many of these groups are 363 

not physically inert.49, 53 For example, long spacer arms composed of just CH2 chains will have 364 

a hydrophobic character. Similarly tosyl chloride may be considered hydrophobic.71, 72 365 

In other cases, the new functionality may be directly derived from the inactivation of the 366 

active group of the enzyme during enzyme immobilization. For example, oxidation of aldehydes 367 

may produce acids able to immobilize proteins via cationic exchange. Thus, the researcher must 368 

identify the capability of the support to interact with the enzyme through different mechanisms, 369 

and design the experiments to take advantages of this multifunctionality, or discard the support 370 

if the unspecific functionalities produce a negative effect on enzyme features. 371 

 372 

3. New tailor-made heterofunctional supports 373 

 The aforementioned examples have shown supports whose heterofunctionality was a 374 

property inherent to the support preparation or nature of the matrix, not produced by design. 375 

However, the case of commercial hydrophobic epoxy supports was the source of the starting 376 

hypothesis that finally originated tailor-made heterofunctional supports.63, 73-75 They were 377 

designed so as to fulfill the requirements for the specific use that they were produced for.67 The 378 

idea was to have a support surface as full as possible of groups able to produce a covalent 379 

reaction with the enzyme (the objective will be to have an intense multipoint enzyme-support 380 

covalent attachment), and other moieties able to produce a first immobilization of the enzyme 381 

(Figure 9).67 The key point was to find conditions where the rate of enzyme immobilization 382 

produced by the main chemical group of the support was negligible compared to the 383 

immobilization rate produced by the groups responsible for the first protein immobilization.58  384 

Now, we will discuss the ideal properties of the main group in the support and how some 385 

of the different existing supports may be near these requirements. Next, the ideal and actual 386 
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groups that result in adsorption will be revised. Finally, some specific uses of these new tailor-387 

made requirements will be presented. 388 

 389 

3.1. Designing an ideal heterofunctional support to obtain an intense multipoint covalent 390 

attachment 391 

 In order to have an intense multipoint covalent attachment, whatever the support 392 

groups used, it is necessary to use supports offering large internal surfaces (Figure 10) .6 Only if 393 

these supports offer a high enough geometrical congruence with the enzyme, the enzyme–394 

support interaction may involve many groups of the support and the enzyme, and thus produce 395 

an intense multipoint covalent attachment.7 Thus, supports formed by thin chains, of a diameter 396 

similar or smaller to that of the protein, can hardly yield many enzyme-support bonds, while 397 

supports having large internal surfaces, like very thick cylindrical chains (agarose),30 or pores in 398 

solid materials (porous glass, Sepabeads) may permit intense enzyme support interactions.14, 62 399 

Another requisite is that many reactive groups of the support should be under the surface 400 

of each protein molecule.7 Only if there are many reactive groups of the support under the 401 

enzyme surface, the involvement of most of the available enzyme groups on the enzyme-support 402 

multipoint covalent attachment can be expected (Figure 10). Thus, only supports having very 403 

high surface densities of reactive groups will be useful to produce an intense multipoint covalent 404 

attachment.6, 7  405 

However, even using an adequate support, the heterofunctional support may only give an 406 

intense multipoint covalent attachment if the reactive groups fulfill some features, as discussed 407 

below. 408 

 409 

3.1. The main chemical group 410 

3.1.1. The ideal group 411 
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 As stated above, the first requirement of a suitable group to be used to obtain an 412 

intense multipoint covalent attachment on a tailor-made heterofunctional support is that it must 413 

be unable to immobilize by itself the protein under the conditions used in the immobilization, or 414 

do this at a negligible rate.58  415 

However, after enzyme immobilization controlled by the secondary group, the support 416 

should be able to give an intense multipoint attachment.7 Thus, it appears convenient that, once 417 

the enzyme is immobilized, the main groups in the support should be able to react with lateral 418 

groups of amino acids that are abundant on the protein surface, without any kind of previous 419 

protein activation step that could produce some deleterious effect in the enzyme activity or 420 

increse the complexity of the process.7 Primary amino groups (of the Lys chain and terminal 421 

amino groups) may be the most interesting ones. They will be mainly placed on the enzyme 422 

surface, exposed to the medium, and its non-ionized form will be reactive without any activation 423 

step.7, 30 Carboxylic groups may be the most abundant in most enzyme surfaces, but they will 424 

usually require some activation step to react with the supports.76-78 Other protein groups such as 425 

hydroxyl groups (Ser), phenol (Tyr), imidazol (His) or thiol (Cys) may be also reactive with 426 

certain groups but will not be so abundant on the enzyme surface. The other enzyme groups 427 

(aliphatic chains, amides) will be neither very reactive nor abundant on the enzyme surface. 428 

The main properties of a support group to give an intense multipoint covalent attachment 429 

have been summarized in different papers.7, 29, 30, 63, 79, 80 Here we point out the most relevant 430 

ones: 431 

- The steric hindrances for the reaction between the enzyme and the support groups 432 

should be as low as possible, as the reaction between an already immobilized enzyme and a 433 

support, both rigid and non-complementary structures, may be complex enough to give good 434 

results even when adding additional problems. (Figure 11) 435 

- The stability of the groups should be high under conditions where the enzyme reactivity 436 

with the support may be adequate. The maximization of the enzyme-support reaction takes a 437 
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longer time than the first immobilization, as it requires the correct alignment of groups placed 438 

on rigid and non-complementary structures. (Figure 12) 439 

- The spacer arm should be long enough to avoid the support surface from generating 440 

steric hindrances for the reaction with the enzyme, and short enough to transmit the rigidity of 441 

the support to the enzyme. Longer spacer arms may in principle permit the production of more 442 

enzyme-support bonds (they have more mobility and may even involve protein regions far from 443 

the support surface), but the mobility of the spacer arm will generate a lower enzyme 444 

rigidification (Figure 13). 445 

- A reaction end point that can generate a chemically and physically inert support. As 446 

stated before, any uncontrolled enzyme-support interaction may generate problems during 447 

storage or use of the immobilized enzymes. 448 

Obviously, it is not simple to find activated supports that simultaneously show all these 449 

requirements. Next, we will show the two supports that are nearest to the whole set of 450 

requirements. 451 

 452 

3.1.2. Epoxy supports 453 

As previously discussed in this review, epoxy activated supports may react with many 454 

different groups present on a protein.58, 59, 62, 63, 67 In fact, they are an exception concerning their 455 

reactivity with the groups of a protein; they can react with amino and carboxylic groups without 456 

the enzyme undergoing any treatment.59 They can also react with phenol, hydroxyl or thiol 457 

groups.59 Epoxy groups are also stable, have low steric hindrances for the reaction with the 458 

protein, have short spacer arms, and are usually highly activated (there are available supports 459 

bearing between 15 and 20 epoxy groups / 1000Ǻ2).58, 62, 63, 67 Moreover, they can be blocked 460 

after enzyme-support reaction, using different compounds to have a final inert support.62, 67 Most 461 

importantly, they immobilize proteins at any pH value in a very slow fashion, making it easy to 462 

find first immobilization causes far more rapid than the epoxy covalent reaction.58 463 
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Apparently, they seem to be ideal groups to give intense multipoint attachments, and in 464 

fact they have permitted to reach very good stabilization factors in some cases.33, 62, 67, 81 Thus, 465 

epoxy heterofunctional supports were the first approximation to build tailor-made 466 

heterofunctional supports, and as we will show later, most reported examples are based on these 467 

supports.  468 

Carboxylic groups react very slowly with epoxy groups, and even this low reactivity 469 

requires that the enzyme-support is incubated at acidic pH,59 while amino groups react better at 470 

alkaline pH61, 62 (a first incubation at acidic or basic pH followed by incubation at basic or acidic 471 

pH value may be a good strategy to involve both groups). Nevertheless, the fact is that the 472 

reactivity of the epoxy supports with the groups of a protein is so low that even after the first 473 

enzyme immobilization, when the concentration of reactive groups of both protein and support 474 

is very high, the covalent reaction takes a long time even using appropriate pH values, and 475 

enzyme stability continues to increase even after 10 days of immobilized enzyme-support 476 

reaction.67 Thus, even though the epoxy groups have offered in some cases good results, and 477 

fulfill many of the aforementioned requirements, the use of a more reactive group seems to be 478 

necessary to reach very high enzyme-support reaction. 479 

 480 

3.1.3. Glyoxyl supports 481 

 Glyoxyl supports have been described as very suitable supports to give an intense 482 

enzyme-support multipoint covalent attachment.7, 29, 30, 80  483 

From the requirements described above, they fulfill most of them: very high stability, 484 

low steric hindrances for the reaction with a protein, short spacer arm, etc. One limitation is that 485 

they can only react with non-ionized primary amine groups of a protein, reducing the 486 

“theoretical maximum” number of enzyme-support bonds when compared to epoxy supports.30, 487 

59 Another problem is that the end point of the reaction must be a reduction step, and this is 488 

necessary to have an inert support as well as to transform the labile imine bonds in strong 489 
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secondary bonds.30 For some companies, this reduction step using sodium borohydride may 490 

become a problem.30 491 

The reversibility and weakness of the Schiff´s base formed by glyoxyl and amino groups 492 

is the point that has made these supports almost ideal to get an intense multipoint covalent 493 

attachment when used as monofunctional supports.29 The reason is that this reversibility means 494 

that the enzyme only becomes immobilized on the support when there are several enzyme-495 

support bonds (Figure 14).29 Thus, using monofunctional glyoxyl supports, the enzyme is 496 

immobilized by the area where it is easiest to directly yield several enzyme support attachments 497 

simultaneously. Furthermore, that area is the one where the density of amino groups is higher 498 

and where the most intense multipoint covalent attachment may be expected.7, 29, 30, 79 499 

As a second consequence, a glyoxyl-support can only immobilize a protein under 500 

conditions where the enzyme presents several non-ionized amino groups.30 That means that the 501 

support can only immobilize most proteins at alkaline pH values.29 A glyoxyl support at pH 7 502 

should be unable to immobilize most proteins. Thus, we can control the immobilization of the 503 

protein by the secondary groups of the support, as it is our objective (Figure 9). 504 

 As an exception, proteins formed by several peptide chains (multimeric or proteolyzed 505 

proteins), that may have several terminal amino bonds, could become immobilized at neutral pH 506 

values on glyoxyl supports (Figure 14).79 In fact, this has been used to immobilize, purify and 507 

stabilize multimeric enzymes,24, 82 but now it may be considered a problem in the design of 508 

heterofunctional supports. The use of pH 5 during the first immobilization could solve this 509 

problem, because at this pH value even the terminal amino groups of the enzyme will be 510 

scarcely reactive.29 If that decrease in the immobilization pH value is not convenient for any 511 

reason (e.g., enzyme stability, lack of adsorption of the protein via the secondary group), there 512 

are other solutions to prevent the first covalent immobilization of the protein on glyoxyl 513 

supports. Borate buffer reduces the reactivity of the glyoxyl groups, while small aminated 514 

compounds such as Tris buffer, ethanol amine, etc., may act as competitors for enzyme 515 
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immobilization.29, 30 In some cases, by just using 10 mM Tris buffer, enzyme immobilization 516 

was fully avoided on highly activated glyoxyl agarose even at pH 10.83 Any compound able to 517 

stabilize the created Schiff´s base should be avoided during the immobilization process to 518 

prevent a direct covalent enzyme-support reaction, like thiolated compounds84 or 519 

cyanoborohydride.85 520 

Thus, it is possible to find conditions where any enzyme cannot become covalently 521 

immobilized on glyoxyl supports. However, after enzyme immobilization via the secondary 522 

groups, the increase in pH and the elimination of any inhibitor to the aldehyde-amine reaction 523 

will permit the reaction between the glyoxyl groups and the non-ionized amine groups of the 524 

protein.29, 30, 80 And glyoxyl supports have showed to be able to give impressive stabilization 525 

factors.30 526 

Although glyoxyl groups can only react with primary amino groups, it is possible to 527 

develop relatively simple strategies to increase the reactivity of the protein with the support.  528 

For example, the chemical amination of the enzyme, for instance using ethylenediamine 529 

and activating the carboxylic groups with carbodiimide, has been employed with good results in 530 

many examples to increase the number of enzyme-support bonds (Figure 15).19, 76-78 Using 531 

heterofunctional supports, this strategy requires great care, as the new amino groups will have a 532 

lower pK and may have some reactivity with glyoxyl supports even at pH 7.76-78  533 

Moreover, enrichment of Lys residues on the target area via genetic manipulation has 534 

been utilized in some other examples (Figure 15).18, 86-90 In this case, we can focus on the area 535 

where we intend to immobilize the enzyme, leaving the other areas of the protein unaltered. 536 

In any case, it has been recently shown that the higher reactivity at alkaline pH values of 537 

glyoxyl groups, when compared to epoxy supports, causes these supports to give a higher 538 

number of enzyme-support linkages and, therefore, higher enzyme stabilization.91 539 

 540 

3.2. The secondary group 541 
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This group is the one that should cause the first immobilization of the enzyme on the 542 

heterofunctional support. That is, it should be the one that produces the orientation of the 543 

enzyme on the support. The nature and concentration of this group will depend on the final 544 

objective pursued for the heterofunctional support (see section 4). A support having the same 545 

main group may still present different secondary groups. Thus, it may be possible to attach the 546 

same enzyme with different orientations regarding the support surface via the same chemistry.  547 

 548 

3.2.1. The ideal secondary groups 549 

In this case it is hard to give general rules, as the secondary group should become 550 

adapted to the final objective of the heterofunctional support (see below). Apart from the 551 

capacity of generating a moderately rapid enzyme immobilization on the support, a general 552 

characteristic should be that the secondary group should produce the lowest steric hindrances 553 

possible to the subsequent multipoint covalent attachment with the primary group. Thus, bulky 554 

groups over the layer of chemically reactive groups of the support may not be very convenient.6, 555 

18 556 

 557 

3.2.2. Groups able to immobilize proteins via general interactions between enzyme and 558 

support 559 

Almost any group able to adsorb proteins may be used. The larger the battery of 560 

secondary groups, the higher the possibility of altering the area of the protein that is going to be 561 

rigidified via multipoint covalent attachment and, the larger the final library of biocatalysts that 562 

will be obtained. We will give a rapid summary of the main groups used to this goal. 563 

Physical adsorption of proteins is a quite rapid phenomenon. As stated above, the 564 

original epoxy supports already use the concept of heterofunctional supports by using 565 

hydrophobic adsorption of the protein on their hydrophobic matrix.62, 63, 67, 73-75  566 
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 Cationic or anionic groups may produce enzyme adsorption via ionic exchange.32, 58, 92-567 

95 As explained for the glutaraldehyde supports, ionic exchange requires the involvement of 568 

several groups of the enzyme and the support to fix the enzyme to the support.34, 49  569 

 Metallic chelates are other groups able to absorb proteins by interactions with different 570 

groups of the proteins, the imidazol groups of His give the stronger interactions, but also Cys or 571 

Tyr may be involved in the adsorption process.35-40, 58, 96-99 Among the transition metals used in 572 

this adsorption, the one that produces a stronger adsorption of the enzyme on the support is 573 

Cu2+, while others like Zn2+ or Co2+ produce weaker adsorption.40 This should be considered 574 

depending on the objectives. The immobilization of proteins requires the interaction of two His 575 

groups with the supports. Usually, this involves two different immobilized metal chelate groups, 576 

but if the enzyme has several His groups in its vicinity, this phenomenon may be produced in 577 

just one metal chelate group (this is the case of the poly-His tagged proteins).81, 100, 101  578 

 Immobilized phenyl boronic acid has also been used as secondary group.58, 102-106 579 

Although they form bonds with sugars and cis-alcohols,107-112 it has been shown that they can 580 

immobilize most of the protein of a crude extract of E. coli.113 As these proteins are not 581 

glycosylated, other mechanisms seem to be involved in the adsorption of the protein on boronic 582 

activated supports.114  583 

 Dyes may be also used to adsorb proteins, with a higher or lower affinity for a certain 584 

kind of proteins,115-117 and later yield a covalent reaction. However, they are bulky and may 585 

promote severe difficulties to give an intense multipoint covalent attachment; thus, these are not 586 

recommended for this application. Nevertheless, if a further rigidification of the enzyme is not 587 

pursued and only some covalent linkages are intended, these dyes may be a complement to the 588 

other more general secondary groups. 589 

Initially, the groups were introduced by modification of the support main group (e.g. 590 

epoxy groups).58 A preliminary optimization of the support modification degree was necessary: 591 

the higher the modification, the faster the protein adsorption.58, 69 However, the covalent 592 
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immobilization rate started to decrease when less available groups able to give covalent reaction 593 

with the enzyme were left in the support (Figure 16). Thus, a compromise solution in this 594 

support modification is necessary to achieve both high adsorption and high covalent reaction 595 

rates.67 Furthermore, this dependence on the first covalent reaction between enzyme and support 596 

on the modification of the epoxides on the support advanced the likely effect of this 597 

modification on the more complex multipoint covalent attachment. 598 

However, as stated above, in most cases several adsorbing groups should be under the 599 

protein surface to produce the first immobilization. This is necessary to permit the essential first 600 

multipoint adsorption, and also to have this phenomenon at a reasonable rate. This layer of 601 

adsorbing groups has a double negative effect on multipoint covalent attachment: they decrease 602 

the amount of reactive groups and, even more importantly, they can generate some steric 603 

hindrances to the reaction between enzyme and support (Figure 17).18 As stated above, steric 604 

hindrances for the enzyme-support reaction may become a serious problem when an intense 605 

multipoint covalent attachment is pursued, even if very small groups are used. 606 

 607 

3.2.2.1. Second generation of supports 608 

 Due to the problems to yield a very intense multipoint covalent attachment of enzymes 609 

on the first generation of heterofunctional supports, these supports were mainly used to alter the 610 

enzyme orientation, but could hardly highly rigidify the target areas of the proteins.18, 58, 67 These 611 

problems are not present when using the standard epoxy hydrophobic supports, where the 612 

support matrix is the adsorbent and the epoxy groups are over it.61, 62  613 

The coupling of both ideas permitted to design a new generation of heterofunctional 614 

supports118 that overcame the limitations of the first generation of heterofunctional supports.58 In 615 

this second generation of heterofunctional supports, the adsorbent groups were in the same 616 

spacer arm as the epoxy groups, and nearer to the support surface (Figure 18).118 This idea 617 

reduced the problems of the first generation of heterofunctional supports.58 First, as there is no 618 
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competition between secondary and primary groups in the support, the adsorption rate and 619 

covalent reaction may be maximized. Second, the support-enzyme reaction does not have any 620 

steric hindrances generated by the adsorbing groups.67 621 

However, this is not a fully ideal solution. The first problem is that it is not so easy to 622 

design spacer arms having protein adsorbents and chemically reactive groups. Now, the 623 

company Resindion (Milan, Italy) has commercialized amino-epoxy supports (Figure 19).118 624 

The idea is based on the modification of a reactive support with a bifunctional reagent. One 625 

group reacts with the support; the other is used to react with epiclorhydrin or other similar 626 

compound to obtain a group reactive with proteins. To get amino-epoxy supports, epoxy 627 

supports have been used, and ethylenediamine has been utilized as the first modifying 628 

compound.118 Using other heterofunctional molecules to modify other activated supports may be 629 

feasible to produce other kind of heterofunctional supports, although we have not found any 630 

examples in the literature. Even when using just amino-epoxy supports, as stated above, the 631 

anionic exchange may involve different regions of the enzyme depending on the pH or ionic 632 

strength; therefore it may be possible to get different enzyme orientations on the support. 633 

This strategy of building the heterofunctionality generates a second problem; the spacer 634 

arm is longer than using the original epoxy support, and as commented before, this may produce 635 

more enzyme-support bonds but with a lower stabilization effect (Figure 13). Moreover, if using 636 

epoxy groups, the secondary amino bonds may be also attacked by the epoxy groups, finally 637 

reducing the reactivity stability of the activated support.118 638 

The last problem is that the support will not be fully inert after enzyme multipoint 639 

covalent immobilization. This may be partially solved using the adequate blocking reagents if 640 

epoxy groups are used as main groups, but in the best situation a mixed ionic exchanger will be 641 

generated, and even if the net charge of the support surface is null, they are still able to produce 642 

ionic exchangers with immobilized proteins.119 This is even more relevant considering that the 643 

protein is very near to the support surface.  644 
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 In any case, the results reported using the first generation of supports bearing epoxy 645 

and amino groups are worse than the results obtained using amino-epoxy supports, suggesting 646 

that the advantages of these new supports are more important than their drawbacks.58, 67, 118, 120  647 

A solution closer to the optimal one may be if the final system is near to the current 648 

standard epoxy supports, that is, if the support matrix has an ionic nature and may be activated 649 

with epoxy groups (e.g., chitosan) (Figure 20).48 The main risk here is the crosslinking of the 650 

support during activation, which will reduce the number of active groups.  651 

Thus, even though the results are promising, more efforts are necessary to get 652 

heterofunctional supports that are nearer to fulfilling the whole set of requirements.18 653 

 654 

3.2.3. Site-directed immobilization/rigidification of enzymes 655 

 The adsorbent groups of previous heterofunctional supports are based on the general 656 

mechanisms of adsorption of proteins, which present as main usefulness the ability to 657 

immobilize the same enzyme without any treatment via different adsorption events (and for this 658 

reason, very likely by different protein areas) and finally rigidify the area of the enzyme 659 

involved in the adsorption process. Although that area is quite well defined when immobilizing 660 

an enzyme in a particular support (given the multipoint nature of most adsorption processes), the 661 

exact area of the protein that participates in the immobilization may not be easily guessed even 662 

in those cases where the protein structure is available.18, 41 The distance between enzyme groups 663 

(that should match that of the support adsorbent groups), disposition to interact with the support, 664 

and/or susceptibility towards the interaction, in many cases, may seem to point to several 665 

regions of the protein, even though actually only one will be the predominant.  666 

The next step would seem obvious, and may fulfill the dream of an enzyme technologist. 667 

Through the available tools, it may be easy to locate exposed residues on target areas of the 668 

protein and then to introduce mutations on these amino acids placed on the enzyme surface.18 If 669 

this site-directed mutagenesis is coupled to the design of tailor made heterofunctional supports, 670 
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this may permit to immobilize different mutants of the same enzyme, using the same support, 671 

involving very different areas of the protein (Figure 21).18 This is a difference with the use of 672 

the previously discussed heterofunctional supports.58, 67 While using the aforementioned 673 

supports the versatility of the immobilization arose from changing the adsorbent group in the 674 

support, without modifying the enzyme, now the versatility of the immobilization came from a 675 

change on the enzyme surface, while maintaining the support unaltered. Nevertheless, it is 676 

compulsory to know the structure of the enzyme (or that of an analogous protein) and a plasmid 677 

with the gene that codifies the protein in a suitable host to produce a battery of mutant enzymes 678 

that will be immobilized on the same support. We can choose any area of the protein to interact 679 

with the support and be completely sure of the first group involved in the immobilization 680 

process (Figure 21). In contrast, using the initial heterofunctional supports,58 a battery of 681 

different supports was required, but the gen and structure of the enzyme was not necessary. 682 

However, this previous strategy did not permit a full site-directed control of the enzyme 683 

immobilization.18 684 

The coupling of site-directed mutagenesis and immobilization has been recently 685 

revised;18 here we will call the attention upon the main features that the heterofunctional support 686 

should present. In general, a single mutation on a protein surface may be expected to produce 687 

small alterations on the overall enzyme properties. In any case, the objective here is not to 688 

improve enzyme properties, only to direct the enzyme on the immobilization.18 689 

 The group in the protein used to orientate the enzyme on the support should be one 690 

with very scarce presence on the enzyme surface. Two have been the most widely used groups 691 

to orientate proteins. The first one is the imidazol groups of His, using a support containing 692 

immobilized metal chelates,33, 35, 37-40, 81, 97, 100, 101 and epoxy67 or glyoxyl residues (Figure 22).30 693 

Histidine residues are not very frequent on the enzyme surface, but as it has been discussed 694 

above, proteins only become adsorbed on an IMAC support if several enzyme-support 695 

interactions are established.33, 35, 97, 98, 121 Usually, this is produced between several His residues 696 



 28 

in the enzyme surface and several immobilized metal chelates in the support.33, 35, 37-40, 81, 97, 100, 697 

101 But if a couple of His residues are sufficiently close, they can directly adsorb the protein via 698 

interaction with just one chelate.81, 100, 101 A poly-His tag may be used, but this leaves only two 699 

likely orientations for the protein, the amino and the carboxyl terminal positions (Figure 22).18, 700 

33, 81, 100 It is a better solution to introduce new His residues near other present His groups 701 

(Figure 22).122, 123  702 

If in an area there are no His residues, it is possible to introduce a couple of His placed in 703 

an adjacent position on the enzyme surface.122 Some examples of oriented immobilization of 704 

proteins directly on IMAC supports may be found in the literature,124, 125 but not using 705 

heterofunctional supports (although some poly-His tagged proteins have been immobilized on 706 

IMAC-epoxy supports, the objective was other, as discussed below). 707 

 The other group used to attain an oriented immobilization of enzymes is the thiol 708 

group of Cys, immobilizing the enzyme via thiol/disulfide exchange, a very specific reaction 709 

that cannot be produced by any other group on the enzyme (Figure 23).65, 126-133 Cysteine groups 710 

are quite scarce on the protein surface, and when needed, if the native enzyme has some external 711 

Cys, it may be transformed into Ser via site-directed mutagenesis, as the physical properties of 712 

both lateral chains are somehow similar. To achieve an immobilization fully directed by the Cys 713 

location, there are two possibilities: to use thiol reactive disulfide groups on the support134, 135 or 714 

to generate it on the enzyme (e.g., by modification of the exposed Cys of the enzyme with 2,2-715 

dipyridyl disulfide) (Figure 24).136, 137 716 

 The strategy is to introduce site-directed mutations on the enzyme surface that permit 717 

to have enzymes with just one Cys on the target position.136, 137 We can produce as many mutant 718 

enzymes as desired, involving many different enzyme regions. The use of supports bearing some 719 

thiol reactive groups and a dense layer of glyoxyl138 or epoxy136, 137 groups may permit to 720 

rigidify the selected regions (Figure 23). Epoxy groups are able to immobilize enzymes directly 721 

via a thiol group, but at a much lower rate than the disulfide exchange; in fact immobilization 722 
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may take hours even when using a high concentration of support.64 Thus, immobilization using 723 

epoxy –thiol reactive supports is necessary to have adequate immobilization rates. 724 

The tendency of medium exposed Cys to become oxidized creates the necessity for the 725 

enzymes to be reduced just before the immobilization process, and even if the immobilization is 726 

slow, some Cys may become oxidized again before immobilization, reducing the overall yield.65, 727 

66 728 

 Current epoxy/thiol supports have been prepared using SH that reacts with a 729 

percentage of the epoxide groups in the support. This is a quite small group; therefore it should 730 

generate very low steric hindrances for the enzyme-support multipoint reaction that should be 731 

the final objective after the directed immobilization.18, 136, 137 However, in the few reported trials, 732 

the support is activated as disulfide, not the enzyme, and in that case the steric hindrances for the 733 

enzyme-support reaction are higher. In fact, reported stabilization factors are quite poor and that 734 

has been attributed to these steric hindrances.18, 134-137  735 

One further question remains. At first glance, just one Cys group may not fully 736 

determine the area of the protein involved in the immobilization; a point does not determine a 737 

planar surface. The use of a couple of near Cys residues, that should produce a fully controlled 738 

orientation, is also risky. The support should present many thiol (or thiol reactive) groups to 739 

involve both Cys residues in the immobilization, or this second Cys group will only increase the 740 

indetermination of the enzyme orientation as the enzyme could be immobilized by one or the 741 

other Cys. Moreover, a high number of thiol groups under the enzyme molecules should 742 

produce a poor multipoint covalent attachment between the other nucleophile groups of the 743 

enzyme and the epoxy or glyoxyl groups placed on the support surface.  744 

After these appreciations, we would like to clarify that the actual situation is much 745 

simpler. Considering the importance of the group reactivity and distance of the groups of the 746 

protein to give the first enzyme-main group in the support reaction, we can be quite sure that in 747 
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most cases the final area of the protein involved in the immobilization will be almost fully 748 

determined by the Cys position. 749 

As in the previous heterofunctional supports, a strategy that can permit to have the epoxy 750 

or glyoxyl groups over the thiol reactive groups may be a solution to really take full advantage 751 

of this strategy to get an intense and full site-directed rigidification of the enzyme.18 Thus, even 752 

though these strategies are near to achieving full control over enzyme immobilization, more 753 

efforts seem to be necessary to optimize and take full advantage of them. 754 

 755 

4.- Uses of heterofunctional supports 756 

The multifunctionality of a support has at first glance an interesting effect; it gives some 757 

versatility to the immobilization of the protein. This means that different areas of the enzyme 758 

may become involved in the enzyme-support interaction, and that may be related to the activity 759 

and stability of the final immobilized enzymes.18, 58, 137 However, tailor-made heterofunctional 760 

supports may permit to take advantage of their multifunctionality to solve some of the problems 761 

on the use of enzymes as industrial biocatalyst, like the purification of the proteins, the 762 

prevention of subunit dissociation (this may have a negative effect on enzyme stability and in 763 

any case will produce the contamination of the reaction medium and product),24 etc. Next, we 764 

will show some examples and prospects of the uses of tailor-made heterofunctional supports. 765 

 766 

4.1. Immobilization/purification of enzymes by using tailor-made heterofunctional 767 

supports. 768 

 One of the problems of the use of enzymes as industrial biocatalysts is the interest of 769 

using them with a reasonable degree of purity. This is important to maximize the volumetric 770 

activity, and even more, to avoid other enzymes present in the preparation producing some 771 

modification on substrates or products, thus decreasing the selectivity or specificity of the final 772 

biocatalyst.139 On the other hand, purification is a time-consuming and expensive process.116, 140, 773 
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141 However, as enzyme immobilization is in most cases another necessary process to build an 774 

industrial biocatalyst, any strategy that may be used to simultaneously purify, immobilize and 775 

stabilize the enzyme, should be considered an important advance in enzyme technology.6  776 

 This has been obtained in certain cases just using monofunctional supports. In general, 777 

any strategy that permits a preferential adsorption of the target protein on a support may give a 778 

significant purification.29, 32, 68, 94, 142, 143 However, if the forces that keep the enzyme on the 779 

support were just strong enough to maintain the enzyme in its immobilized form during use, this 780 

may be considered an immobilized biocatalyst. Furthermore, most of the described selective 781 

adsorptions are based on a low activation of the support to prevent uncontrolled multipoint-782 

enzyme interactions and that produce mild adsorptions, very positive in purification, but not so 783 

much in immobilization.36, 94, 142, 144 784 

 However, there are some cases where monofunctional supports have reached a 785 

reasonable success in the one-step purification and immobilization of some enzymes. The 786 

purification-immobilization-stabilization of lipases on fairly hydrophobic supports via 787 

adsorption of the open form of the lipase (interfacial activation) is one of the most successful 788 

examples.55, 68, 143, 145 This immobilization results in a strong adsorption, although there are some 789 

risks of desorption in the presence of detergents or organic cosolvents, solved by chemical 790 

crosslinking of the immobilized enzyme molecules.146, 147  791 

 In other examples, poly-His tagged enzymes have been purified-immobilized using 792 

IMAC matrices.148-150 This has some more risks of enzyme desorption, as the metal chelate may 793 

become desorbed from the support and release the enzyme (and also contaminate the products). 794 

Another possibility is the use of immobilized antibodies,151, 152 by the use of which purification 795 

during immobilization will be almost guaranteed, but stabilization may be very short and the 796 

matrix may be far more expensive than the enzyme we want to immobilize.153-155  797 

The use of tailor-made heterofunctional supports has been a solution, as we can now 798 

design as weak an enzyme adsorption as desired, because finally the enzyme will covalently 799 
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react with the support. Next, we will show some examples where this idea has been fruitfully 800 

employed. 801 

 802 

4.1.1 One step purification-immobilization-stabilization of multimeric enzymes 803 

As it has been discussed in this review, ionic exchange of proteins on anionic exchangers 804 

or adsorption of proteins on IMAC supports is generally performed via multipoint adsorption.18, 805 

34, 36   806 

 Focusing on ionic exchange, it is necessary that several counter-ions that will be 807 

interacting with the ionic groups on the support may be exchanged by several ionic groups on 808 

the enzyme (that will have also their corresponding counter-ions) to fix the protein on the 809 

support.156, 157 The number of interactions that needs to be established between enzyme and 810 

support will depend on the ionic strength (as they can act as competitors in the exchange) and 811 

the pH value (that will control the ionization of the enzyme and support groups).32, 157 In 812 

opposition with some extended ideas, a protein may become adsorbed on both, anionic and 813 

cationic exchangers even at the same pH value, mainly using immobilized ionic polymeric 814 

beds.92 Besides, it has been shown that a high percentage of the proteins contained in a crude 815 

protein extract becomes adsorbed on supports having the same amount of cations and anions.119 816 

More importantly, some proteins that cannot become adsorbed on equivalent cationic or anionic 817 

exchangers, may become adsorbed on this mixed ionic exchanger supports.119 The critical point 818 

is the possibility of establishing several enzyme-support ionic interactions. 819 

Once this multipoint nature of ionic exchange is established, it seems obvious that a 820 

large protein may establish interactions at a longer distance that small proteins.94 It was shown 821 

that using supports having a very low density of cationic groups on the support surface (around 822 

2 residues / 1000Ǻ2), only large multimeric proteins could become adsorbed on the support, 823 

even though they can become desorbed at very low ionic exchange levels.94 The next step was 824 

the development of heterofunctional amino and epoxy supports first and amino and glyoxyl 825 
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supports later.45, 91, 158 The idea was to progressively decrease the number of amino groups on 826 

the support and use the lower activation on the support which could produce the adsorption of 827 

the target protein. This strategy not only permitted to immobilize large proteins selectively, but 828 

also to cause the enzyme to become immobilized by the largest area of the enzyme, that will be 829 

that where longer distances may be covered in the interaction with the support (Figure 25).91, 158 830 

This area of the multimeric proteins is that where more enzyme subunits area present. This 831 

multi-subunit immobilization produces a full prevention of the possibilities of subunit 832 

desorption or dissociation of the subunits involved in the immobilization, and also the increase 833 

in the rigidity of the maximum number of monomers.91, 158 Thus, this immobilization strategy 834 

produces enzyme stabilization by both factors, stabilization of the tridimensional structure of the 835 

enzyme by multipoint covalent attachment and stabilization of the quaternary structure of the 836 

enzyme via multisubunit immobilization (Figure 25). Enzymes become purified from smaller 837 

proteins and from those unable to become adsorbed on the less activated cationic exchangers 838 

under those conditions. This may permit to reactivate the immobilized multimeric enzymes by 839 

unfolding-refolding strategies.159 This will not be possible unless all enzyme subunits are 840 

immobilized. 841 

A further step was to find situations where only one large multimeric protein is presented 842 

in a protein preparation. Extracts from mesophilic microorganisms hosting a multimeric 843 

thermophilic enzyme was one of these situations: a thermal shock produces the destruction of all 844 

mesophilic multimeric enzymes that precipitate.36, 94 The supernatant contains just small proteins 845 

together with the large multimeric and thermophilic enzyme that may be purified (almost to 846 

homogeneity) and stabilized via immobilization on tailor made amino-epoxy or amino-glyoxyl 847 

supports.45, 91, 158, 159  848 

IMAC supports having a low activation degree have been shown to be able to only 849 

immobilize very large proteins: the lower the activation on the support, the larger the proteins 850 

adsorbed on it.36 This adsorption is quite weak, which becomes positive if just purification is 851 
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intended, but it is not useful if an immobilized biocatalyst is the main goal. However, this 852 

interesting idea has not been further developed in heterofunctional supports, where a 853 

combination of immobilized metal chelate and epoxy or glyoxyl supports may permit similar 854 

results to those obtained using ionic exchangers. Perhaps, the main reason is that IMAC-855 

heterofunctional supports have been used for one specific case, the poly-His tagged proteins, as 856 

we will show below. 857 

 858 

4.1.2. One step purification-immobilization-stabilization of poly-His tagged proteins. 859 

Poly-His tagged proteins may become adsorbed via interactions between several His in 860 

the tag and just one immobilized metal chelate in the support, while native proteins having His 861 

on the surface require the interaction of several His residues with different immobilized metal 862 

chelates in the support (except if a pair of His are near enough to interact with one metal 863 

chelate).35-40, 58, 96-99 Thus, poly-His tagged enzymes have been usually purified by using very 864 

low activated IMAC supports, having metals with low affinity, and using short spacer arms, 865 

conditions where one-point interactions have preference to multipoint interactions.100 This 866 

permits very high purification factors for the enzymes, but the immobilization is relatively 867 

weak.100 868 

The use of a heterofunctional support for enzyme immobilization seems to be an answer 869 

to solve this problem and to reach all the objectives. In fact, the immobilization of poly-His 870 

tagged proteins on heterofunctional epoxy-immobilized metal chelates (Figure 26) was the first 871 

instance of one step purification and stabilization via immobilization on heterofunctional 872 

supports, with very positive results enabling almost full purification of a glutarayl acylase81 and 873 

later of a β-galactatosidase from Thermus thermophilus,33 obtaining very high stabilization 874 

factors. Thus, the potential use of this kind of supports has been clearly established. Examples 875 

using IMAC-glyoxyl supports for this goal has not been reported to date, but at first glance, 876 

results should be similar to that described using epoxides, and owing to the greater potential to 877 
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stabilize enzymes of glyoxyl groups,91 results may be expected to be even better than the 878 

reported using epoxy supports. 879 

 880 

4.2. Rigidification of different areas of the enzyme 881 

The use of heterofunctional supports to immobilize enzymes may permit to alter enzyme 882 

orientation on the support surface, involving different regions of the enzyme on the 883 

immobilization process (Figures 9 and 21).18, 58, 67 This means that different areas of the enzyme 884 

may be protected or blocked by the support surface while other areas of the protein will be 885 

oriented towards the reaction medium.18 The protein area in contact with the support is the one 886 

that may increase the rigidity via multipoint covalent attachment (rigidification that will be 887 

transmitted to the whole protein structure), and also the most affected by the reaction with the 888 

support groups. Orientation of the enzyme on the support may produce changes in enzyme 889 

activity, stability, but also on the selectivity or specificity, as different regions of the enzyme 890 

will suffer different distortions.18  891 

 892 

4.2.1. Effect on enzyme activity 893 

 The orientation of the enzyme is a key point when Redox enzymes are involved and 894 

the current of electrons must go via the support. This may work only if the active center is 895 

properly oriented. The review from Hernandez and Fernandez-Lafuente18 shows many examples 896 

of this effect. However, they are mainly related to the use monofunctional supports to modify 897 

enzymes, not to the use of heterofunctional supports. Nevertheless, enzyme orientation may 898 

affect enzyme activity in many other cases.108, 160  899 

The effect of orientation on enzyme activity is quite evident if the substrate is very large: 900 

if the active center is not oriented towards the reaction medium, and depending on the protein 901 

loading of the support, the expressed activity may be quite different (Figure 27).18 If the 902 

substrate is small, it is very likely that even if the active center is facing the support surface, the 903 
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substrate may reach the active center (Figure 27).16 A clear example of this is the 904 

immobilization of lipases by interfacial activation on hydrophobic supports, whose activity, far 905 

from decreasing, even increases in this situation.55, 68, 143, 145  906 

Involvement of key groups of the catalysis of the enzyme in the immobilization is not 907 

simple, as these groups will be mainly located in internal pockets, and therefore their access to 908 

the support surface will be minimal.  909 

However, the situation is different considering the distortion generated by the enzyme-910 

support reaction that may produce enzyme inactivation if the distortion is large enough.18 If the 911 

distortion involves different areas of the protein, the effects of the immobilization may be quite 912 

diverse. Thus, using heterofunctional supports under identical immobilization conditions and, 913 

via the same chemistry, it may produce very different effects on enzyme activity by involving 914 

different regions with different relevance for the enzyme activity (Figures 9 and 21).58, 67, 118, 161 915 

One of the most extreme cases is the immobilization of the β-galactosidase from Aspergillus 916 

niger on epoxy supports,120 that produces an almost inactive preparation using hydrophobic 917 

adsorption and retains almost 100% of the activity if using cationic exchange as first 918 

immobilization cause. 919 

 920 

4.2.2 Effect on enzyme stability 921 

 As previously commented in this review, one of the most important goals of enzyme 922 

immobilization is the improvement of enzyme stability.4, 5 The low stability of enzymes under 923 

operational conditions is one of the most relevant drawbacks that limit their industrial 924 

implementation.7, 14 Multipoint and multisubunit immobilizations have revealed themselves as 925 

one of the most powerful tools to solve this limitation.7, 29, 30  926 

 Orientation of the enzyme on the support has two main effects on the final enzyme 927 

stabilization that may be achieved by immobilization.18 The first one is due to the fact that not 928 

all enzyme areas will have the same density of groups able to react with the support. This way, 929 
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the first immobilization involving one or other enzyme area will determine the maximum degree 930 

of multipoint covalent attachment that may be achieved under ideal conditions. The second one 931 

is related to the fact that not all enzyme regions have the same relevance for enzyme stability.27, 932 

28, 162, 163  933 

There are regions more labile and relevant for enzyme activity and others more rigid or 934 

less related to enzyme activity.27, 28, 162, 163 Thus, even though an intense multipoint covalent 935 

attachment may have very significant effect on overall enzyme stability,7 the ideal situation will 936 

occur where the multipoint covalent attachment involves the most relevant region for the 937 

enzyme stability and produces the maximum number of enzyme-support attachments. 938 

 Immobilization of enzymes on different heterofunctional epoxy supports under the same 939 

conditions generally produces quite different enzyme stabilities, as expected from the points 940 

raised above (Figures 9 and 21).58, 67, 118, 164 However, using standard heterofunctional supports, 941 

it may be hard to fully identify the area involved in the immobilization in some instances, even 942 

when using advanced molecular dynamics programs and when the enzyme structure is available. 943 

In other instances, it may be simpler to identify the area of the protein involved in the 944 

immobilization, and this can help to identify the most relevant areas for enzyme stability and 945 

permit to further improve the enzyme immobilization, e.g., increasing the number of 946 

nucleophiles in this enzyme area (Figure 15).86 947 

Using thiol-epoxy or thiol-glyoxyl supports, it has been shown how the immobilization 948 

by different regions of the enzyme penicillin G acylase may have different impact on enzyme 949 

stability depending on the enzyme area where the Cys was located and on the inactivating 950 

conditions.137 Even though the stabilization factors reported in this paper were not as high as 951 

those obtained using standard monofunctional supports61, 62 (due to the steric hindrances 952 

generated by the groups over the epoxy layer),18 they have permitted to identify the more 953 

relevant areas of the protein for enzyme stabilization under different inactivating conditions, and 954 

that way the researchers could focus all efforts on improving the reactivity of this area of the 955 
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enzyme with the support (adding some Lys via site-directed mutagenesis).137 In fact, the final 956 

engineered enzyme was directly immobilized on monofunctional glyoxyl supports:137 the 957 

enzyme immobilization proceeds via the area of the protein where the density of Lys residues 958 

had been increased, with stabilization factors increased by several orders of magnitude after 959 

enzyme immobilization.30 A second enzyme, a lipase from Bacillus thermocatenolatus, was also 960 

immobilized on thiol-glyoxyl and thiol-epoxy via different regions, with similarly different 961 

results in terms of stabilization.138 962 

Thus, thiol reactive heterofunctional supports showed a great potential to identify the 963 

regions that may have more or less relevance in the enzyme inactivation under different 964 

conditions, and this information can hardly be obtained from the current level of the tools used 965 

in modeling and molecular dynamics. 966 

To really obtain an optimal stabilization using heterofunctional supports, it is still 967 

necessary to design a support where there are no obstacles for the reactions between enzyme and 968 

support.18 An ideal support should be able to rapidly react with the thiol group of the Cys under 969 

conditions where the other nucleophiles of the protein were not reactive at all, and then, upon 970 

changing the conditions, achieve a good general enzyme-support reactivity (epoxy supports may 971 

be near to this situation, but reactivity is too low to have real industrial applicability). As an 972 

ideal heterofunctional support, the thiol reactive group on the support should be below a dense 973 

layer of reactive groups (Figure 28).18 974 

4.2.3. Effect on enzyme specificity and/or selectivity 975 

 Immobilization has been shown as a very potent tool to modulate enzyme specificity 976 

and selectivity, mainly when the enzymes have a flexible active center (subject to drastic 977 

conformational changes, like lipases or penicillin G acylase from E. coli) or multimeric 978 

enzymes.7, 16, 26, 161, 165, 166 The immobilization will reduce the mobility of some areas of the 979 

protein, distorting others.7, 26 The final result is a protein that cannot adopt the original active 980 

structure. This has been show using completely different immobilization techniques, in some 981 
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cases even inversion on the enantiopreference was obtained and, the same enzyme immobilized 982 

on different supports offered very different catalytic behavior and even different answers to 983 

changes in the medium condition (temperature, pH, etc).7, 26, 89, 166-172  984 

This tuning of enzyme properties via immobilization may benefit from the use of a 985 

battery of heterofunctional supports, where the orientation of the enzyme on the support is 986 

different but the chemistry of the immobilization is the same (Figure 9). In fact, the modulation 987 

of the enantiospecificity of the lipase from Mucor miehei on hydrolytic reactions via 988 

immobilization on different heterofunctional epoxy supports is among the first examples of 989 

lipase properties tuning via immobilization.168 Recently, it has also been demonstrated using the 990 

lipase B from Candida antarctica on transesterification reactions in organic media.69 991 

The next step was to study enzyme modulation using thiol reactive heterofunctional 992 

supports to get a (almost) fully controlled site-directed rigidification of different enzyme areas 993 

(using a battery of Cys mutant enzymes with the Cys placed in different regions of the enzyme 994 

surface) (Figure 21). 995 

In a first example, the enzyme penicillin G acylase from E. coli was submitted to site-996 

directed mutagenesis and each mutant immobilized-stabilized via site-directed 997 

immobilization.137 The enzyme was used in a kinetic resolution of chiral esters by hydrolysis. 998 

Using monofunctional thiol reactive supports, where no rigidification was observed, all the 999 

immobilized mutant enzymes exhibited the same specificity. Using thiol-epoxy or thiol-glyoxyl 1000 

supports, most enzymes remained unaltered in its enantiospecificity, but one mutant doubled the 1001 

value.137 This result pointed out two important facts: 1002 

First, only enzyme immobilization via one point (the thiol exchange) has no effect on 1003 

enzyme mobility or conformation and, therefore, maintains the enzyme features, even when 1004 

altering the position of the enzyme regarding the support surface, in the case where the support 1005 

did not promote any uncontrolled interaction with the enzyme. 1006 
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Second, site-directed rigidification of an enzyme may permit to modulate the enzyme 1007 

properties and identify the most relevant areas for the process.137  1008 

 The same battery of immobilized Cys mutant enzymes was used in a more 1009 

sophisticated reaction, a kinetically controlled synthesis.137 This process involves the use of an 1010 

activated acyl donor (in this case, as an ester), and the yields came from the balance between 1011 

three reactions: the synthesis of the target product, the hydrolysis of the ester substrate and the 1012 

hydrolysis of the product. The yields reach a maximum and then, they decrease as the medium 1013 

may be even fully aqueous and the thermodynamic constant of the process may offer very low 1014 

yield at equilibrium.16, 173  Therefore, the yields are strictly determined by the kinetic 1015 

properties of the enzyme (affinity by the nucleophile, ester and product, activity in the 3 likely 1016 

substrates). Again, while all the one-point attached Cys mutant enzymes remained with almost 1017 

identical behavior, one of the site-directed immobilized-rigidified enzymes preparations 1018 

permitted a significant increase in the yields.137 This mutant is the same that permits to increase 1019 

the enantioselectivity and it holds the same position that produces a higher stabilization; the new 1020 

Cys was introduced in the position 380 of the B chain of penicillin G acylase.137 1021 

 Similar studies were performed using the lipase from Bacillus thermocatenolatus 1022 

(BTL2).138, 174 In this case, the immobilization via one-point permitted to improve enzyme 1023 

features in some instances.134 This may be based on the drastic conformational changes of this 1024 

lipase during catalysis, the enzyme has a double lid and any hindrance to the movement of this 1025 

complex structure may alter the enzyme properties.175  1026 

However, if thiol-glyoxyl supports were used, permitting a certain rigidification of the 1027 

areas involved in the immobilization, the changes were more significant.138 For example, the 1028 

simple orientated immobilization by the BTL2-S334C on monofunctional disulfide supports 1029 

gave ee > 99% in the asymmetric hydrolysis of phenylglutaric acid dimethyl diester but not in 1030 

the kinetic resolution of rac-2-O-butyryl-2-phenylacetic acid (ee = 27%). On the contrary, the 1031 
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site-directed rigidification of the BTL2-S334C variant on disulfide-aldehyde supports generated 1032 

a fully enantioselective biocatalyst in both processes (ee > 99%).138 1033 

 1034 

4.2.4. Co-immobilization of enzymes  1035 

 This is the last example of the advantages of heterofunctionality of supports that we 1036 

will include in this review. Co-immobilization of enzymes, working in cascade reactions, has 1037 

advantages and drawbacks.6, 176, 177 From a kinetic point of view, the second enzyme will be 1038 

working using higher concentrations of product from the first enzyme, increasing the global 1039 

reaction course (Figure 29).178-185 However, co-immobilization of two enzymes causes the life of 1040 

the biocatalyst to be determined by the stability of the weaker component.6 Moreover, co-1041 

immobilization results in both enzymes needing to be immobilized on the same support, and in 1042 

some cases optimal immobilization conditions for an enzyme may be quite far from the optimal 1043 

immobilization conditions and support for the other enzyme.6 1044 

The use of a bifunctional or even a multifunctional support may be a very suitable 1045 

alternative to immobilize two enzymes whose immobilization on the same monofunctional 1046 

support may be complex. In this case, we do not intend that one of the groups on the support 1047 

makes a first immobilization and then the other produces a covalent reaction. In this case, we 1048 

intend that the support may be able to immobilize one enzyme using one kind of groups and the 1049 

other enzyme using another kind of groups (Figure 30). The idea may involve two different 1050 

reversible immobilization protocols (IMAC and ionic exchange, for example), or a combination 1051 

of the groups from that support with groups able to covalently immobilize the enzyme. The 1052 

advantages may be many. First, it is possible to immobilize the enzyme that requires the most 1053 

drastic immobilization conditions, and in a following step, the second enzyme may be 1054 

immobilized under milder conditions. This may not be an ideal strategy if both enzymes require 1055 

to be very stabilized by immobilization to be usable, but it may be a good alternative when one 1056 

of the enzymes is much more stable than the second under operation conditions, and this may be 1057 
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immobilized on a support that may permit a high stabilization via multipoint or multisubunit 1058 

immobilization. 1059 

 We have been able to find just one example of this very nice strategy. In that paper, the 1060 

researchers intend to co-immobilize different Redox enzymes, one to produce the target product 1061 

and other to regenerate the consumed cofactor.186 One of the enzymes was a poly-His tagged 1062 

enzyme that becomes deactivated when immobilized on glyoxyl supports, while the other Redox 1063 

enzyme was immobilized-stabilized via immobilization on this support.186 The poly-His tagged 1064 

enzyme could be readily immobilized on IMAC supports, preserving high activity.186 Thus, both 1065 

enzymes could be immobilized on the same particle using an IMAC-glyoxyl support, with good 1066 

activity recovery. The authors went further. They used very low enzyme loadings compared to 1067 

the capacity of the support. Using confocal measurements,187-191 they showed that while the 1068 

enzyme immobilized on glyoxyl supports was slowly attached and gave a homogenous 1069 

distribution along the pores of the support particles, the poly-His tagged protein became 1070 

immobilized very quickly and was placed on the outer part of the particle pores (Figure 31).186 1071 

The immobilization rate of this enzyme could be controlled adding imidazol, a competitor of the 1072 

adsorption of proteins to IMAC supports.35  1073 

This permitted to prepare co-immobilized biocatalysts of both proteins where enzyme 1074 

distribution varied. It was shown that when both enzymes were slowly and, therefore, 1075 

homogenously immobilized along the pores of the support, the global activity of the reaction 1076 

was higher than immobilizing one in a homogenous way and the other forming a crown. In fact, 1077 

the homogenously distributed co-immobilized preparations gave more activity even than the free 1078 

enzymes, thanks to the high cofactor concentration, although the individual determination of the 1079 

activity of both enzymes showed a decrease on enzyme activity.186 1080 

 1081 

5. Future Prospects 1082 
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 Heterofunctional supports constitute a potent tool to improve enzyme performance. 1083 

However, researchers should consider that many of the oldest immobilization techniques are 1084 

really based on heterofunctional supports, as we have discussed in section 2 of this review. This 1085 

may complicate the understanding of the experiments and may require the use of adequate 1086 

reference supports and immobilization conditions to really seclude and identify the different 1087 

effects and causes of the immobilization on the different groups of the support. But if properly 1088 

controlled, heterofunctionality will increase the versatility of any immobilization protocols, as 1089 

we can alter the first cause of immobilization and that way the final performance of the final 1090 

biocatalyst.18 1091 

However, the most important expectations lay on the side of the tailor-made 1092 

heterofunctional supports, where we can fulfill the enzyme technologist dream of a full control 1093 

over enzyme immobilization, orientation of the enzyme on the support surface and intensity of 1094 

the enzyme-support interactions. All these may be controlled using tailor made-heterofunctional 1095 

supports and site directed mutagenesis. There are only a handful of examples on the use of these 1096 

techniques, but they have shown the potential for both, preparation of industrial biocatalyst, and 1097 

some academic studies, as the detection of the most relevant areas for enzyme stability under 1098 

different conditions.137 Coupling tailor-made heterofunctional supports to site-directed 1099 

mutagenesis we can go from one step immobilization-stabilization-purification processes (e.g., 1100 

using poly-His tagged enzymes) to site-directed rigidification of the enzyme.18 However, it is 1101 

still necessary to further improve the features of the supports to take full advantages of the 1102 

possibilities of the heterofunctionality. In general rigidification of the enzyme structures to its 1103 

fullest extent will be positive to improve their stability and also to improve the effects of the 1104 

immobilization on other enzyme features.7  1105 

The design of new concepts involving tailor-made heterofunctionality of the supports 1106 

very likely will go further in the near future. The co-immobilization of two enzymes on a 1107 

heterofunctional support using different groups for each enzyme is one of these new 1108 
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developments. However, this idea may be exploited further if combined with nanotechnology. In 1109 

this case heterofunctionality may come from the integration of different nanostructures bearing 1110 

each of them different functional groups. 1111 

Thus, it may be expected that the use of new ideas based on tailor-made heterofunctional 1112 

supports may be a key to fulfill the requirements of an enzyme as an industrial catalyst, 1113 

permitting good activity recovery, good stability, and even improved selectivity or specificity.  1114 
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Figure legends 1456 

Figure 1. Multifunctionality of glutaraldehyde activated supports. 1457 
 1458 
Figure 2. Enzyme immobilization on lowly activated glutaraldehyde supports. 1459 
 1460 
Figure 3. Theoretical effect of the activation degree on immobilization rates of proteins on 1461 
glutaraldehyde activated supports under conditions where the first event is the ionic 1462 
adsorption (the first immobilization is a multipoint process) or the covalent attachment 1463 
(the first immobilization is a one-point process). 1464 
 1465 
Figure 4. Different mechanisms of immobilization on glutaraldehyde supports of standard 1466 
proteins  1467 
 1468 
Figure 5. Different mechanisms of immobilization on glutaraldehyde supports of lipases. 1469 
 1470 
Figure 6. Heterofunctionality of standard epoxy supports. 1471 
 1472 
Figure 7. Steps in protein immobilization and stabilization via multipoint covalent 1473 
attachment on standard epoxy-activated supports: protein adsorption, first covalent bond, 1474 
multipoint covalent attachment and blocking of the remaining epoxy groups with 1475 
hydrophilic molecules. 1476 
 1477 
Figure 8. Different possibilities of immobilizing lipases on hydrophobic epoxy-supports. 1478 
 1479 
Figure 9. Tailor made heterofunctional supports using secondary groups able to produce a 1480 
first enzyme immobilization. One enzyme, one immobilization chemistry but different 1481 
orientations of the enzyme on the support. 1482 
 1483 
Figure 10. Effect of the internal geometry of the support microsurfaces and activation 1484 
degree on the possibilities of getting an intense multipoint covalent attachment (MCA). 1485 
 1486 
Figure 11. Effect of the steric hindrances of the reactive group on the support on the 1487 
immobilization rate and on the prospects of getting an intense multipoint covalent 1488 
attachment. 1489 
 1490 
Figure 12. Necessity of the correct alignment of the reactive groups in the enzyme and the 1491 
support to get an intense multipoint covalent attachment: need of long term incubations 1492 
even if immobilization is very rapid. 1493 
 1494 
Figure 13. Effect of the spacer arm in the support on the possibilities of achieving an 1495 
intense multipoint covalent attachment and the rigidification effect. 1496 
 1497 
Figure 14. Multipoint immobilization of proteins on glyoxyl-agarose supports.  1498 
 1499 
Figure 15. Possibilities to increase protein reactivity versus glyoxyl supports: 1500 
1.- Chemical amination that produces a global modification of the protein and uses the 1501 
carboxylic groups of the protein. 1502 
2.- Genetic amination: site-directed modification of the enzyme only on the desired area 1503 
and without strict limitations on amount of amino groups introduced. 1504 
 1505 
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Figure 16. Effect of the modification of the epoxy groups (during the preparation of 1506 
heterofunctional epoxy supports) on the immobilization rate and covalent immobilization 1507 
rate.  1508 
 1509 
Figure 17. Steric hindrances for the enzyme/support chemical reaction generated by the 1510 
secondary groups introduced on the heterofunctional supports. 1511 
 1512 
Figure 18. Building the second generation of heterofunctional supports: the primary group 1513 
in the same arm as the secondary group, and the secondary group under the primary one. 1514 
 1515 
Figure 19. Immobilization/stabilization of proteins by immobilization on second generation 1516 
of heterofunctional supports. 1517 
 1518 
Figure 20. An optimal heterofunctional support: the matrix is able to adsorb proteins, and 1519 
a layer of protein reactive groups is placed over this matrix. 1520 
 1521 
Figure 21. Heterofunctional supports and site-directed mutagenesis: one support and a 1522 
collection of mutated enzymes produce different orientations on the immobilization. 1523 
 1524 
Figure 22. IMAC-epoxy or glyoxyl supports for the directed immobilization of proteins. 1525 
Use of poly-His tags or introduction of a couple of His on different areas of the protein 1526 
surface. 1527 
 1528 
Figure 23. Site directed rigidification of Cys- mutant enzymes on thiol heterofunctional 1529 
supports. 1530 
 1531 
Figure 24.  Site directed rigidification of Cys- mutant enzymes on thiol heterofunctional 1532 
supports: use of disulfide enzymes or disulfide supports. 1533 
 1534 
Figure 25. Heterofunctional amino supports: the control of the amination permits the 1535 
selective adsorption of large proteins. 1536 
 1537 
Figure 26. Heterofunctional IMAC supports and poly His-tagged proteins: the control of 1538 
the IMAC density on the support permits the selective adsorption of poly His tagged 1539 
proteins. 1540 
 1541 
Figure 27. Effect of enzyme orientation and loading degree on the activity of the enzyme 1542 
molecules as a function of the substrate size. 1543 
 1544 
Figure 28. Ideal support for the site directed rigidification of proteins integrating tailor 1545 
made-heterofunctional supports and site directed mutagenesis. 1546 
 1547 
Figure 29. Kinetic advantages of enzyme co-immobilization on cascade reactions. 1548 
 1549 
Figure 30. Use of heterofunctional supports to co-immobilize two proteins with very 1550 
different requirements. 1551 
 1552 
Figure 31. Controlling the enzyme distribution in the support particle pores by controlling 1553 
the immobilization rate. 1554 


