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An old question is challenging novel methods: do diagnoses such as schizophrenia (1) and 

depression (2) contain subgroups of patients? And might such subgroups be identifiable by 

neurobiological means, and have differential responses to therapies? If so, then long-awaited 

biomarkers for psychiatric diagnosis and therapeutics might be found.    

These powerful multivariate methods can detect patterns of common variation in symptom 

and brain variables. One example is canonical correlation analysis (CCA). CCA finds linear 

combinations of variables within two types of datasets (e.g. biological and clinical measures) 

that maximally correlate with each other, termed ‘canonical variates’. Such linear 

combinations of variables can be thought of as ‘factors’ in each of the datasets which relate to 

each other. However, brain data can be very high-dimensional, making CCA prone to 

overfitting (i.e. finding spurious associations that exist by chance in a given sample and thus 

don’t generalize). Rigorous methodological steps such as regularization and validation on 

held-out data are therefore necessary to avoid this. 

Much can be learned about these issues from a landmark study applying CCA to clinical and 

resting state functional magnetic resonance imaging (rs-fMRI) data from participants with 

depression (2) and subsequent discussions between those authors and another group (3–6). 

Here we summarise these exchanges: 

Drysdale et al (2) applied CCA to a large rs-fMRI dataset of treatment-resistant major 

depression (Figure 1A). As subjects’ full connectivity profiles were too high-dimensional, 

they preselected a small number of connections that correlated (p<0.005) with one or more 

items of the Hamilton Depression Rating Scale (HAMD). These connections and the HAMD 

items were analysed using CCA, yielding two canonical variates relating two sets of 

connections broadly to anxiety and anhedonia, respectively. A clustering algorithm then 

grouped the subjects into four ‘biotypes’: groups with high/low anxiety and high/low 

anhedonia canonical variate scores. The biotypes generalized in clinically meaningful ways 
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(‘clinical validation’): one was associated with successful response to repetitive transcranial 

magnetic stimulation (rTMS) therapy. Second, patients with generalized anxiety disorder 

tended to fall into three of the biotypes, and when they did they also had depressive 

symptoms. Third, however, patients with schizophrenia did not fall into any of the biotypes.  

Dinga et al (3) attempted to replicate these findings in a separate sample of 187 subjects with 

a history of depression or anxiety disorder, but using more rigorous versions of the same 

methods (Figure 1B). In particular, they used permutation testing of the entire feature 

selection and CCA procedure to assess the significance of the canonical variates, and cross-

validation to assess their generalizability. They also tested the null hypothesis that ‘no 

clusters’ were present in the data, and assessed the stability of both the canonical loadings 

(i.e. univariate correlations between variables and canonical variates) and clusters by 

repeating the whole process with single subjects omitted. They found that the canonical 

correlations – though very high (≥0.97) – were not higher than expected by chance and were 

very low in out-of-sample data (<|0.1|). The null hypothesis of ‘no clusters’ could not be 

rejected, and the clusters were very unstable. They did not assess whether Drysdale et al’s 

canonical variates could predict symptom scores from rs-fMRI data in their sample. 

In response, Grosenick et al (4) repeated their feature selection and CCA analysis on their 

previous 220 participants, adding L2 regularisation (see below) to reduce overfitting and 

cross-validation to assess stability. Regularisation made an enormous difference to the 

stability of the canonical variates, increasing out-of-sample canonical correlations from 

medians of around 0 to 0.85 (for ~176 rs-fMRI features). However, as Dinga et al also point 

out (5), the response by Grosenick et al. does not clarify  whether the original CCA’s 

canonical variates or clustering results can be reproduced (‘statistical validation’). 

Commendably, this is work in progress (6).   



 4

Statistical validation is extremely important. A strength of the original paper was the multiple 

clinical validations. However, these were either not fully independent (in the case of rTMS 

response), or mainly relating to diagnoses rather than the biotypes. Indeed, if there are 

underlying relationships between prefrontal cortical connectivity in depression and rTMS 

response, and between symptoms in GAD and in depression, then even unstable clusters may 

have distinct relationships to rTMS response or symptoms. Hence validation of any specific 

set of biotypes must be statistical in the first instance. Clinical validation, however, will make 

biotypes practically useful. 

Grosenick et al. also suggest that an important factor in Dinga et al’s failure to find a 

significant canonical variate in their own analysis may have been the heterogeneity and lower 

severity of psychopathology in their sample. They did not test this suggestion using CCA in 

their own mildly-unwell sample, however (4).  

We believe there are some key lessons to learn from this illuminating exchange:  

A conceptual point of importance is that when using clustering methods, the null hypothesis 

of ‘no clusters’ is often (wrongly) disregarded. Nevertheless, clusters per se aren’t 

necessarily important. Defining key axes of variation (i.e. using a dimensional rather than 

categorical approach) could be just as (or more) useful for assigning treatments or predicting 

outcomes. Indeed, one could even test whether categorical or dimensional approaches have 

better predictive power.  

In addition, some might conclude from the strengths of the univariate brain-symptom 

associations in severely versus mildly unwell participants in (4) that future analyses ought to 

be conducted in more homogeneous samples with more severe illness. However, we would 

not necessarily recommend this approach. First, such samples are harder to obtain and 

therefore (usually) smaller. Second, only mixed samples can demonstrate what variance is 

unique to a disorder (or its subgroups), and what is transdiagnostic. Third, we speculate that 
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the failure to find any significant canonical variates in (3) is more due to the methods used 

than the sample’s milder, more heterogeneous illnesses. The lack of regularisation causes 

huge overfitting (the median of the null distribution of canonical correlations is around 0.99), 

making it very hard for any genuine associations to achieve statistical significance. With 

regularisation, a depression-related canonical variate can be found in a mildly unwell sample 

(7). 

To conclude, we discuss three aspects of the CCA methodology in detail, and make some 

recommendations (Figure 1C).  

First, out-of-sample evaluation is crucial, given multivariate methods’ strong tendency to 

overfit high-dimensional data. To perform statistical inference on how the fitted CCA model 

generalizes to unseen data, independent test data are needed. Critically, when a validation set 

is used to select the optimal regularization parameter (see below), then three divisions of the 

data are required: training, validation and test data (7). We also recommend performing 

statistical evaluation on out-of-sample correlations (i.e., test canonical correlations) as it 

assesses the generalization of the CCA model explicitly.  

Second, we prefer regularization to feature selection. Standard CCA is limited to cases when 

the number of examples (e.g. number of subjects) exceeds the number of variables (e.g. 

connectivity features). One can therefore employ feature selection – using univariate tests or 

principal component analysis (PCA) – to reduce the number of variables (as in (2)). 

However, if the number of selected features is not sufficiently reduced, CCA is still prone to 

overfitting, as shown in (4). Moreover, if the top-ranked variables in one dataset are highly 

intercorrelated, these feature selection techniques will favour their inclusion in the CCA at 

the expense of lower-ranked variables that can potentially account for more shared variance 

across the datasets. 
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Regularization avoids the need for feature selection, reduces overfitting, and can bring 

additional benefits to the CCA model. For instance, L1 regularization results in automatic 

feature selection (i.e. sparse solutions) which facilitates the interpretation of the results; L2 

regularization makes CCA more stable (8). Elastic net regularization, combining L1 and L2, 

has the advantages of both, which explains its overwhelming popularity in CCA applications, 

e.g. (7,9). Interestingly, Partial Least Squares (PLS) can be viewed as a special case of CCA 

with maximal L2 regularisation, which maximises the covariance (rather than correlation) 

between the datasets (8). Regularized CCA/PLS models can be further improved by using 

stability selection (9) or a stability criterion (7), which promotes the inclusion of variables in 

the model that appear consistently across different subsamples of the data. 

Third, standard (or regularized) CCA is limited to extracting linear combinations of variables. 

Non-linear extensions, such as kernel CCA with non-linear kernels, could explore more 

complex relationships between the datasets. A promising future direction involves the 

combination of more than two types of datasets, e.g. functional and structural brain data and 

behavior. This was recently demonstrated in (9) and may enable a more complete description 

of latent neurobiological (and other) factors. Probabilistic approaches, such as Group Factor 

Analysis (10), can decompose two datasets into both shared and unique variances, and are 

also better equipped to deal with missing data (further references to these novel methods are 

in (7)). 

These are highly complex methods, and novel ones are constantly being developed. Best 

practices are changing year on year. Critical exchanges such as these are invaluable in 

advancing the field and building expertise, and as such should be welcomed.  
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Figure legends 

Figure 1. Schematic illustration and comparison of the canonical correlation analysis (CCA) 

pipelines used in Drysdale et al (2), Dinga et al (3) and our suggestion for future studies. NB, 

we have omitted the clustering procedures and their statistical evaluation for clarity. (A) 

Drysdale et al trained a CCA model on a selected set of rs-fMRI features (178 out of >33000 

features that correlated (p<0.005) with one or more HAMD items) and 17 HAMD items. 

They used a parametric test (orange box) to assess the statistical significance of the results, 

which did not take into account the previous feature selection step. They did not perform out-

of-sample evaluation of the CCA model, i.e., calculating canonical correlations on test data 

using the trained CCA model from the previous step. (B) Dinga et al copied Drysdale et al’s 

feature selection method but used a permutation test (orange box) on the (in-sample) 

canonical correlation of the trained CCA model to assess the statistical significance of the 

results, taking into account the previous feature selection step. In addition, they calculated 

test (out-of-sample) canonical correlations using the trained CCA model, moreover, they used 

cross-validation including all previous steps (green box) to assess the robustness of the 

results. (C) We suggest using regularization rather than feature selection: the regularization 

parameter can be selected in an inner cross-validation loop (dashed green box). A CCA 

model can then be trained on the brain and behavioral features using the best regularization 

parameter. To assess the statistical significance of the results, we recommend a permutation 

test (orange box) on the test canonical correlation, including re-training the CCA model. 
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Optionally, the permutation test can extended to include the feature selection step as well, 

however, it greatly increases the computational costs, and is unnecessary if the test canonical 

correlation is included in the permutation test. Finally, the whole procedure can be embedded 

in a cross-validation (green box) to assess the robustness of the results. 
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