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ABSTRACT

Radiative transfer is a key component in almost all astrophysical and cosmological
simulations. We present MAGRITTE: a modern open-source software library for 3D
radiative transfer. It uses a deterministic ray-tracer and formal solver, i.e. it computes
the radiation field by tracing rays through the model and solving the radiative trans-
fer equation in its second-order form along a fixed set of rays originating from each
point. MAGRITTE can handle structured and unstructured input meshes, as well as
smoothed-particle hydrodynamics (SPH) particle data. In this first paper, we describe
the numerical implementation, semi-analytic tests and cross-code benchmarks for the
non-LTE line radiative transfer module of MAGRITTE. This module uses the radiative
transfer solver to self-consistently determine the populations of the quantised energy
levels of atoms and molecules using an accelerated Lambda iteration (ALI) scheme.
We compare MAGRITTE with the established radiative transfer solvers RATRAN (1D)
and LIME (3D) on the van Zadelhoff benchmark and present a first application to
a simple Keplerian disc model. Comparing with LIME, we conclude that MAGRITTE
produces more accurate and more precise results, especially at high optical depth, and
that it is faster.
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1 INTRODUCTION

Radiative processes play an essential role in the dynamics,
chemistry and energy balance of various astrophysical ob-
jects, from planetary and stellar atmospheres to galaxies
and the Universe as a whole. Radiation can provide a ra-
diative pressure that can drive dynamics (see e.g. Hofner
et al. 2003), it can affect chemistry through various photo-
ionisation and photo-dissociation reactions (see e.g. Huggins
& Glassgold 1982), and it can efficiently heat or cool very
localised regions (see e.g. Woitke et al. 1996). Furthermore,
the radiative properties determine what can and cannot be
seen in observations, i.e. which regions are visible in what
part of the electromagnetic spectrum.

* Contact e-mail: frederik.deceuster@kuleuven.be
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Ever since the first detection and identification of atoms
and molecules in space (Douglas & Herzberg 1941; Weinreb
et al. 1963), their line emission and absorption features have
been an indispensable diagnostic tool to infer the physical
and chemical conditions throughout the Universe. In order
to interpret the observational data, we require high pre-
cision atomic and molecular data (Schéier et al. 2005) as
well as sound theoretical models. Historically, these models
quickly evolved from highly idealised equilibrium systems
to more self-consistent non-equilibrium models (Mihalas &
Athay 1973). Moreover, with the advent of high (spatial)
resolution imaging, for instance using the Atacama Large
Millimetre Array (ALMA), full 3D models are imperative to
properly model the intricate structures observed in the data
(see e.g. Alves et al. 2019; Smith et al. 2018; Decin et al.
2015; Maercker et al. 2012).
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Given the tight coupling between radiation field and
medium, it is crucial both in astrophysical and cosmological
modelling to properly account for all radiative processes and
their interdependence. This, however, can be highly compli-
cated due to: i) an intricate 3D geometrical structure shield-
ing or exposing specific regions to radiation, ii) the scatter-
ing of radiation by dust or free electrons yielding additional
non-trivial coupling between the geometry and the radiation
field, and iii) the mixing in frequency space due to Doppler
shifts caused by velocity gradients in the medium. Further-
more, the coupling between the radiative processes and the
often very specialised and diverse dynamical and chemical
models requires a modular radiative transfer solver that can
easily be integrated with the various existing hydrodynam-
ics and chemistry models. Finally, the ever growing size and
complexity of these models requires fast and scalable algo-
rithms that can efficiently leverage the wealth of modern
computational resources.

There are two main computational strategies to solve
radiative transfer problems. On the one hand there are
probabilistic (Monte Carlo) solvers such as e.g. RADMC-
3D (Dullemond et al. 2012), SKIRT (Verstocken et al. 2017),
CMaclonize (Vandenbroucke & Wood 2018), and some
components of TORUS (Harries et al. 2019). On the other
hand there are deterministic or formal solvers such as e.g.
SPHRAY (Altay et al. 2008), 3D-PDR (Bisbas et al. 2012),
and LAMPRAY (Frostholm et al. 2018). Furthermore, there
are also codes that combine ideas from both techniques such
as RATRAN (Hogerheijde & van der Tak 2000) and its 3D
successor LIME (Brinch & Hogerheijde 2010). The latter has
been widely used to model atomic and molecular lines in 3D
models of various astrophysical objects (see e.g. Booth et al.
2019; Montarges et al. 2019; Homan et al. 2018; Evans et al.
2018; Walsh et al. 2016; Bergin et al. 2013; Maercker et al.
2012; Andrews et al. 2012).

Currently, most radiative transfer solvers use proba-
bilistic methods. These methods mimic the physical pho-
ton transport by propagating a number of photon packets
through the medium (see e.g. Noebauer & Sim 2019, for
an extensive review). The main issue with this approach is
that the trajectories of these photon packets are randomly
determined by the properties of the medium. This implies
that they can get trapped in opaque regions, impeding them
from contributing much to the overall radiation field. Hence,
a large number of packets need to be propagated which can
significantly increase the computation time. Although many
techniques have been devised to avoid the trapping of pho-
ton packets (see e.g. Yusef-Zadeh et al. 1984), it remains
challenging for probabilistic radiative transfer solvers to effi-
ciently obtain accurate results, especially at medium to high
optical depths (Camps & Baes 2018).

Deterministic or formal solvers compute the radiation
field by solving the radiative transfer equation along rays
through the medium. Since the optical properties of the
medium often depend on the radiation field this has to be
done in an iterative way. Although there are no photon pack-
ets in this approach, a problem physically very similar to
photon trapping can manifest itself in the form of slow con-
vergence of the iteration process. In this context, the prob-
lem was first identified in the 1970s by various authors (see
e.g. Scharmer & Carlsson 1985, and references therein) and
is more commonly known as the Lamba-iteration problem.

This problem arose when attempts were made to model the
radiative hydrodynamics of hot stars without assuming local
thermodynamic equilibrium (i.e. non-LTE). The extremely
slow or false convergence produced by this effect resulted in
erroneous fits to the observed data. Subsequent work, for
instance by Olson et al. (1986) and Rybicki & Hummer
(1991), elegantly addressed these issues using a technique
called accelerated Lambda iteration (ALI). For a complete
overview of these methods see, for example, Hubeny & Mi-
halas (2014).

Although deterministic solvers could better cope with
the optical depth related issues, probabilistic solvers became
more popular due to their relative ease of implementation,
especially in two and three spatial dimensions. However,
with the development of fast solution methods it is now pos-
sible to implement a deterministic solver with comparative
ease. When combined with the ability to sample rays finer,
multi-dimensional ray-tracing codes can now become pow-
erful probes of objects with complex geometries, velocity
fields, and optical depth ranges. Moreover, their determin-
istic computational scheme leads to various opportunities
for optimisation and facilitates utilising the various layers of
parallelism in the calculation, further reducing the compu-
tational cost.

MAGRITTE is a modern open-source software library for
3D radiative transfer. It is written in C++11, but almost all
classes and functions are wrapped using PYBIND11 (Wen-
zel et al. 2017) such that they can also be used in PYTHON.
Our motivation to develop MAGRITTE is twofold. On the
one hand, the ever increasing amount of high quality ob-
servational data puts increasingly higher demands on the
modelling software, while, on the other hand, advances in
computer technology provide us with the means to meet
these demands. Common examples are the extended use of
different layers of parallelism (e.g. vector instructions, multi-
threading and message passing) and the growing availability
of hardware accelerators such as graphics processing units
(GPUs) or field programmable gate arrays (FPGAs). Us-
ing these technologies in an existing code base, however,
often requires a complete rewrite of the internal data struc-
tures. Therefore, we opted to build a new code base that is
flexible enough to cope with the requirements for multiple
astrophysical and cosmological applications and has a mod-
ular data structure that can readily be adapted to leverage
the different forms of parallelism and hardware accelerators
available in modern (super)computer architectures.

Since advances in modelling are increasingly made by
improved software implementations rather than new math-
ematical techniques, it is imperative that both the software
and its source code are publicly available for the commu-
nity to review and adapt. Therefore, we commit ourselves
to make future releases of MAGRITTE and its source code
publicly available! at github.com/Magritte-code.

This is the first paper in a series in which we will anal-
yse the physical, mathematical and computational aspects
of the various components of the software library. In this
first paper, we present MAGRITTE’s module for atomic and
molecular line radiative transfer. The radiation field is com-
puted self-consistently with the populations of the quantised

' Under GNU General Public License v2.0.
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energy levels. In contrast to many early treatments of line
radiative transfer, this approach does not make the assump-
tion of local thermodynamic equilibrium (LTE), which hence
classifies it as a non-LTE solver. We present MAGRITTE’s
ray-tracing scheme which only uses cell locations and near-
est neighbour information. Therefore, it can easily cope with
smoothed particle hydrodynamics (SPH) particles as well as
structured and unstructured model meshes. We introduce
our solution method to solve the radiative transfer equa-
tion along a ray pair and present our implementation of the
accelerated Lambda iteration (ALI) scheme based on Ry-
bicki & Hummer (1991). To validate our methods, we run a
set of test models for which we can obtain semi-analytical
results. This way, we can get an absolute measure of the
errors resulting from our methods. We further demonstrate
MAGRITTE’s validity, by performing a cross-code compari-
son with RATRAN (Hogerheijde & van der Tak 2000) and
LiME (Brinch & Hogerheijde 2010) using the van Zadelhoff
et al. (2002) benchmark, and some additional variations on
that. Finally, we present a first application of MAGRITTE
modelling the CO emission of a simple Keplerian disc.

The structure of this paper is as follows. In Section
2, we introduce the radiative transfer problem and elabo-
rate on the tight coupling between the radiation field and
the medium. Section 3 presents our solution methods to the
problem and the numerical implementations. In Section 4,
we describe a set of semi-analytic tests and cross-code bench-
marks to validate our methods and Section 5 describes a first
application of MAGRITTE to a simple Keplerian disc model.
Finally, our results are discussed in Section 6 and we con-
clude with Section 7.

2 PHYSICAL PROBLEM
2.1 Radiative transfer

The objective of radiative transfer is to determine the radi-
ation field in a region, given the properties of the medium
in that region and some boundary conditions. The radia-
tion field is described in terms of its specific monochromatic
intensity I,(x, 1), i.e. the energy transported in a certain
direction in a certain frequency bin. This is a function of
frequency (v), position (x) and direction (f). Any inter-
action between the radiation field and the medium can be
described in terms of the change to the specific monochro-
matic intensity. The radiative transfer equation relates this
change in specific monochromatic intensity I,(x, ) along a
ray in direction fi to the local emissivity n,(x) and opacity
Xv(x) of the medium. Scattering introduces an extra contri-
bution to both the emissivity and opacity (Chandrasekhar
1960; Steinacker et al. 2013). The time-independent radia-
tive transfer equation including scattering reads

n-Vh@h) = n - XV + X;Ca(n)) 1,(n)

j{dﬂ/ dv’ @, .(d, ) I, (), W

where y5°(f1) is the extra opacity due to scattering and
®,,,,(fi,Nn’) is the scattering redistribution function which
gives the probability for radiation of frequency v’ incoming
along direction fi” to be scattered in direction fi and to be
shifted to frequency v.
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For local radiative processes, we assume both the emis-
sivity and opacity to be isotropic, i.e. independent of the
direction n. However, in contrast to the classical general for-
mulation of the transfer equation by Cannon (1971, 1972),
we allowed for a directional dependence in the scattering
opacity. This more general approach allows us to also treat,
for instance, scattering from dust grains that are aligned
by a magnetic field (see e.g. Andersson et al. 2015, and the
references there). The anisotropy of the scattering opacity
slightly complicates the solution methods. However, we have
included it to keep our solution methods as general as pos-
sible.

The radiative transfer equation (1) is a first-order
integro-differential equation. Generally, it can only be solved
in an iterative way, since both the emissivity and opacity
depend on the radiation field. We discuss our solution strat-
egy for solving the transfer equation in section 3.3. First,
we break down the coupling between the medium and the
radiation field.

2.2 Coupling radiation field & medium

In general we can distinguish four types of interactions be-
tween a radiation field and a medium based on the frequency
range on which they act: line, ionisation, continuum and
scattering interactions. In this first paper, we will limit our-
selves to atomic and molecular line interactions.

2.2.1 Atomic and molecular lines

Electronic, rotational and vibrational transitions between
the quantized energy levels in atomic and molecular species
can lead to significant emission and absorption in narrow fre-
quency ranges. These transitions are referred to as line tran-
sitions, due to the characteristically narrow features they
induce in spectra.

The resulting emissivity and opacity due to a line tran-
sition from a level i to a level j (with level energies E; > E;)
are given in terms of the Einstein A;;, Bj; and B;; coeflicients
and the populations n;(x) of the quantized energy levels

ij h ij
W) = 1 mix) Ay ¢ () o
2
e = (0 By — mix) Byy) o (0.

4r

where A;; and B;; account, respectively, for spontaneous and
stimulated emission and Bj; accounts for absorption. Note
that stimulated emission is treated as negative absorption.
Both line emissivity and opacity are proportional to the
line profile function ¢f,j (x). In this paper, we assume Gaus-
sian line profile functions? resulting from the Doppler shifts
caused by the thermal and turbulent motions of the atoms
and molecules in the medium,

2
ii B (v Vi
i) = 5] ] 3)

1
———— exp
6vij(x)Vm

2 However, all our methods can also readily be applied to all other
types of line profile functions.
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where the characteristic line width

Vij
6Vij(x) = = \/Uthelrmal(x)2 + Uturbulent(x)zv (4)

is determined by the mean thermal and turbulent velocities
of the medium in the co-moving frame.

Many early line radiative transfer models assumed the
populations of the quantized energy levels to be in local
thermodynamic equilibrium (LTE), i.e. particle velocities,
level populations, and radiation field are completely deter-
mined by the local gas temperature. In contrast, we will only
assume kinetic equilibrium, i.e. we only assume a Maxwell-
Boltzmann distribution for the particle velocities. This situ-
ation is often referred to as non-LTE. As a result, the mean
local velocity of the gas particles in the co-moving frame can
be characterised by

2kBT(X)
Uthermal(x) = m—’ (5)
V spec

where mgpec is the mass of the species of gas under con-
sideration. If we make no further assumptions on the level
populations, they can only be determined by directly solving
the kinetic rate equations, which, in the co-moving frame,
are given by,

N N

9ni(x) = an(X)Pj[(X) - ni(x)zpij(x)~ (6)
; =1

ot
Jj=1 J

The components of the matrix P;;(x) denote the transition
rates from level i to level j. Hence, for each level i, P;;(x) = 0.
The transition rates are composed of a radiative part R;;(x)
and a collisional part C;;(x), such that

Pij(x) = R;j(x) + Cjj(x). (7)

The radiative part can be expanded further in terms of
the Einstein coefficients and the average radiation intensity
in the line

Aji + Bjj Jij(x)
Rii(x) = 144 ij Jij\x),
i) { Bji Jij(x),

fori>j
fori<j

(8)

where J;j(x) is the local mean intensity in the spectral range
of the transition ij. It is computed by averaging the specific
monochromatic intensity 7,(x, fi) over all directions (fi) and

integrating it over the line profile ¢/ (x), such that

Jij(x) = f%/g dv ¢ (x) L, (x, h). (9)

The collisional part of the transition rates is composed
of the collisional rates (KZ) for each collision partner (p),
weighted by their respective abundances

Cij(x) = ) KL (x) nP (), (10)

peC

where C is the set of collision partners. The position depen-
dence in the collisional rates stems from their dependence
on the local temperature of the gas species.

For the models in this paper, we used the energy lev-
els, Einstein coefficients and collisional de-excitation rates
from the Leiden Atomic and Molecular Database’ (LAMDA,

3 Database can be found at home.strw.leidenuniv.nl/“moldata.

Schoier et al. 2005). The collisional excitation rates are com-
puted from the de-excitation rates, assuming the detailed
balance relation

¢
Kji(x) = Kij(x) g—J exp(
1

hvij
kBT(X)) (D
where g; denotes the statistical weight of the respective level.

We assume the radiative time scales to be much smaller
than any other time scale in the system. Hence, to find the
level populations given the radiation field, we solve equa-
tion (6) in the static limit, i.e. assuming that for all levels
i, On;(x)/dt = 0. Dropping the position dependence on all
variables, the resulting linear equation for each level i can
be written as

3, [k -
Jr J<i

-3 {njAj,- -

b J>i
N

+Z{n,‘C'j - njCji} = 0.
j=1

It is important to remember that the radiation field, and
thus J;;, depends on the level populations through the line
contributions to the emissivity and opacity (see equation 2).
This dependence can be expressed mathematically using a
Lambda operator. We define this operator such that it yields
the mean intensity in the line when acting on the set of all
level populations N = {n;(x), for all x and i}.

Jij = A[N] (13)

In most practical cases it is unfeasible to directly invert the
Lambda operator (i.e. directly solve the radiative transfer
equation (1)) and solve the kinetic rate equations (12) for
the level populations. Instead, we solve equation (12) itera-
tively, by evaluating J;; using the values from the previous
iteration. However, this method, known as Lambda itera-
tion, converges notoriously slowly. Over the years, various
methods have been devised to accelerate its convergence (for
an overview see e.g. Hubeny & Mihalas 2014, and the ref-
erences there). We use the operator splitting method (Can-
non 1973a,b) in a very similar way to Rybicki & Hummer
(1991). The idea is to split the Lambda operator into an
approximated part (A:.‘j) that can easily be evaluated and

(njBji = niBij) Jis

(ni Bij = n;Bji) J,;,-}

inverted given the current level populations, and a residual
part (Aj; — A:.‘j) that can easily be evaluated using the pop-
ulations of the previous iteration. Hence,

Jij = ALINT + (Aij - A;fj) NT], (14)
where the dagger (1) indicates that the quantity is evaluated
using the previous iteration. In this way, the contribution of
the level populations of the previous iteration can be min-
imised. The kinetic rate equations (12) can thus be rewritten
as

Z {niAij - (niji—niBij) (A>'k [N] + Jicjff)}

i
. j<i
* eff

- {l’leji — (niBij - n;Bji) (Aij[N] * iy )} (15)

J, j>i

N
+ ) A nmiCyj - niCu} =0,

=
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where we introduced the effective mean intensity in the line,

ijff = (Aij - A:fj) [N]. (16)
Note that the effective mean intensity is now the only quan-
tity that is evaluated using the level populations of the
previous iteration. Clearly, the choice of the approximated
Lambda operator (ALO) is essential for the success of this
acceleration scheme. In some cases the diagonal part of the
Lambda operator already suffices (Olson et al. 1986), how-
ever in 3D models, a non-local ALO is often preferred. We
discuss our implementation of the ALO, following Rybicki
& Hummer (1991), in Section 3.4.

3 NUMERICAL IMPLEMENTATION
3.1 Discretisation of the model

The first step in simulating an astrophysical object is find-
ing a way to represent the object on a computer. This comes
down to finding an appropriate discretisation scheme for all
physical parameters of the model. For radiative transfer sim-
ulations the spatial, spectral and directional discretisation
schemes are most crucial.

8.1.1 Spatial discretisation

There are many different types of spatial discretisation
schemes, each tailored to their specific use cases. Over the
years, there has been a clear evolution from structured
schemes, like e.g. regular Cartesian grids, to unstructured
schemes, like e.g. Voronoi grids or smoothed particle hydro-
dynamics (SPH) discretisations.

Since we aim to build a general-purpose library that
can easily be integrated with other codes, we do not want
to tie MAGRITTE to a certain discretisation scheme. Instead,
we designed our algorithms such that they only require data
that can easily be deduced from any discretisation scheme,
and yet allow us to efficiently trace rays and solve the trans-
fer equation. MAGRITTE’s ray tracing algorithm, presented
in Section 3.2, only requires the positions of the cell centres*
(or equivalently the positions of the particles in an SPH
scheme) and the nearest neighbours lists for each cell (or
particle). Hence, the input is effectively a point cloud com-
plemented with nearest neighbour information. The bound-
ary of the model can then be defined as the set of points in
the convex hull of the point cloud.

In principle, one could use a separate spatial discretisa-
tion to sample the density, velocity and temperature distri-
butions of the model. In practice, however, one usually sam-
ples all three on the same discretisation. This is the case,
especially for hydrodynamics computations, where all these
parameters should be sampled equally well. However, for ra-
diative transfer computations, especially when considering
lines, it is essential to properly sample any changes in the

4 We do not require a strict definition of the cell centre. If we
define a cell as a unit in the discretisation of the spatial volume,
then the cell centre may be any point in that volume. (We only
use the cell centre to locate the cell.)
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velocity field along a certain line of sight. Since this effect de-
pends on the velocity field in a certain direction it is difficult
to fully take this into account in the spatial discretisation.
In MAGRITTE, when detecting large changes in the velocity
field along a ray, we make an appropriate interpolation on-
the-fly when ray-tracing, without adjusting the mesh (see
also Section 3.2).

8.1.2  Spectral discretisation

The requirements for the spectral discretisation vary for dif-
ferent stages in the computation. For instance, when deter-
mining the level populations, we are only interested in the
radiation in the lines, whereas when computing spectra we
require a proper frequency sampling over the full spectrum.
To accommodate this, MAGRITTE can change its spectral
discretisation throughout a simulation.

At the stage where the level populations are obtained,
the frequency bins are distributed to suit the integration of
the radiation field over the line. In MAGRITTE these integrals
are evaluated using quadrature formulae. Assuming a Gaus-
sian line profile, the corresponding Gauss-Hermite quadra-
ture for any frequency dependent function y(v) is given by

) B Nq
/0 dv ¢/ (x) y» — Z wa ¥ (vij + rndvij(x)), (17)
n=1

where Ny is the number of quadrature points and the
quadrature weights are given by
2Na=I N, !
oy = 2 Nat (18)
(NqHNq—l(xn))

Hy -1 is the physicists’ version of the Hermite polynomial
and the r, are the roots of the physicists’ version of the
Hermite polynomial Hy, (x) (see e.g. Abramowitz & Stegun
1972). To be able to easily evaluate these quadratures in
MAGRITTE, we define a separate set of frequency bins for
each cell, given by

{vij + ra 6vij(x), for each transition ij and root r,},  (19)

possibly appended with additional frequency bins. Note that
this set has to be different for each cell, since it depends on
the local line profile width ¢v;;(x).

At the stage where spectra or images are created, ex-
tra frequency bins can be appended to the list above to
improve the sampling of the spectrum. The current version
of MAGRITTE allows one to append a set of user-defined fre-
quency bins, or to add extra bins with a user-defined spacing
around each line.

8.1.8 Directional discretisation

MAGRITTE is a ray-tracing code, i.e. the radiation field is
determined by solving the radiative transfer equation along
a set of rays (straight lines) originating from each cell centre.
A ray can be defined by a point, in our case the cell centre,
and a direction. The direction of the rays will play a key role
in scattering and will determine the viewing angles for the
images we can take.

In general, there are no preferred directions. Therefore,
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we discretise the directions uniformly. In 1D and 2D models
this is trivial. In 3D, we determine the direction of a ray
using the HEALP1X® discretisation of the sphere (Gorski
et al. 2005). Given a level of refinement, ¢, it discretises a
unit sphere in Nyays = 12x4¢ uniformly distributed pixels of
equal area. For each pixel, there is an associated unit vector
pointing from the origin of the sphere to the pixel centre.
These unit vectors determine the directions of MAGRITTE’S
rays for 3D simulations. Hence, a directional average for a
quantity y(f) can be translated into an average over rays,

1 1 Nrays
— ¢ dQ y(h) —
4n f y( ) Nrays

The uniform directional sampling scheme bears the dan-
ger of missing the contributions of very localised sources of
emissivity or opacity. Furthermore, there might be situations
in which there is one or more preferred directions, and one
might better consider a non-uniform distribution of the ray
directions. Therefore, in future versions, we will investigate
more advanced directional weighting schemes. In any case,
the internal structure of MAGRITTE allows for any distribu-
tion of rays, allowing us to easily explore various directional
distribution schemes in the future.

Vr- (20)
r=1

3.2 Ray tracing

In order to solve the radiative transfer equation along a cer-
tain ray, the emissivity and opacity of the cells that are
encountered along that ray must be known. Furthermore,
the path length that the ray traces through each cell must
be computed. All this must be done assuming only a point
cloud with nearest neighbour information.

The idea of MAGRITTE’s ray tracing algorithm is to walk
along the ray from one cell to the next and determine the
path length through each cell by projecting the cell centres
onto the ray. To determine which cell is next, the set of all
nearest neighbours of the current cell is considered. From
this set the neighbour is chosen which is closest to the ray
and whose projection on the ray lies farther than that of
the current cell. This procedure is then repeated until the
boundary of the mesh is reached. Figure 1 shows a visual
example of how this algorithm works. Once the rays have
been traced, the transfer equation can be solved.

In each step from one cell to the next, the change in ve-
locity along the ray is computed and checked for large vari-
ations. If the velocity field, and thus the resulting Doppler
shift, changes too much the emissivity and opacity are in-
terpolated between the cells such that the velocity steps are
only a certain (user defined) fraction of the local line width.
In this way, we avoid losing or improperly accounting for line
contributions due to an inadequate sampling of the velocity
field.

3.3 Solving the transfer equation along a ray pair

In MAGRITTE, the radiation field is obtained by solving the
radiative transfer equation along each pair of a ray and its

5 Source code for HEALPIX can be found at

healpix.sourceforge.net.

Figure 1. A visual representation MAGRITTE’s ray tracing algo-
rithm for the ray R originating from cell O. The goal is to find
which cells are encountered along the ray and hence which cell
centres should be projected on the ray. Clearly, the cell O itself
lies on the ray. The next cell encountered is the neighbour of O
that lies closest to the ray. We call this cell P;. Now the next
cell to be projected is the neighbour of P; that lies closest to the
ray and that is further away from O than P;. The last condi-
tion is there to ensure that one proceeds along the ray towards
the boundary. This process is repeated until the boundary of the
mesh is reached.

antipode through the model. Although in this paper we are
only concerned with line radiative transfer, we present our
general solution method for the full radiative transfer equa-
tion (1) including scattering. In this way, the treatment in
this paper more closely resembles the actual implementation
in the code and paves the way for our future work.

For numerical stability, we solve the transfer equation
in its second-order form as suggested by Feautrier (1964).
We define the mean intensity-like (1) and flux-like quantity
(v) along a ray as

wd) = 3 (b + b))

(21)

W) = 3 (R) - KR,

to describe the radiation field. To simplify notation further
on, we also define new quantities to represent the scattering
redistribution function and scattering opacity up and down
the ray

A A/ 1 A A/ A AL
q)fv’(n’n ) = _((va’(n’n ) £ @yy(-N,0 ))s
f (22)
XE®) = S(60@ = e -n).
Finally, to avoid lengthy integral equations we define
Y (h) = j{ do’ / dv’ @7, (A, n') I,,(A'). (23)
0

From here onward, we drop all v and n dependencies for
notational simplicity. We proceed by adding and subtracting
the transfer equation (1), once for i and once for —i. This
yields a coupled set of first-order differential equations in u
and v,

o + - +
h-Vv = —(y+x u )(_v+‘I’_+r], (24)
A-Vu = —(y+x")v — x u + ¥
Solving the equations, once for u and once for v, yields a set
of second-order differential equations, which are our gener-
alised versions of the Feautrier equations (Feautrier 1964)

MNRAS 000, 1-17 (2019)


http://healpix.sourceforge.net

Magritte: NLTE atomic and molecular line modelling 7

(1-2%) u = ne ¥ 1)( ¥ )

Tt Tt
R »
(1-2%) v = —D(" )
X+x* x+x*
where we defined a new differential operator D as
1
D= —(k + n-V). 26
P 0% n-V) (26)

Note that the order of the factors in the definition of D
is important, since they do not commute. Both equations
in (25) are still coupled through their ¥* terms. However,
the contributions between the scattering opacity, y;®(f),
and the scattering redistribution function, @, ,-(f,#’), can
be arranged such that @, (f,n) = 0. Hence, the coupling
between the equations in (25) can be weakened.

The generalised Feautrier equations (25) can thus be
solved in an iterative way by evaluating their right hand
sides using the solution of the previous iteration. In each iter-
ation, two separate ordinary second-order differential equa-
tions then have to be solved. The boundary conditions can
be determined from the incoming radiation on both sides of
the ray pair. By making a Taylor expansion of the intensity,
the incoming radiation can be related to u and v, in the same
way as in the standard Feautrier procedure with improved
boundary conditions for plane parallel geometries by Auer
(1967).

In MAGRITTE, the radiation field is computed by solv-
ing the equations (25) for each ray pair. Since the right hand
sides are treated in an iterative way, these act effectively
as sources. The second-order differential operators on the
left hand sides will result in tridiagonal matrices on the dis-
cretised ray pairs. The form of the equations in (25) still
resembles the original Feautrier equations enough that the
standard solution method (Feautrier 1964) with the numeri-
cal improvements by Rybicki & Hummer (1991) can readily
be adapted to this generalised case.

3.4 Accelerated Lambda Iteration

From the first equation in (25) we can identify the Lambda
operator for our solution scheme, as defined in equation (13)

n+¥Pt -
Aij[N] = L;; pre=ie Z)(X+X+ , (27)
where we used the auxiliary linear operator £L;;, defined as
_ 1 dQ < ij 7)1
Liyl1 = 3 fﬂfo dv ¢" (1—1)V) [.]. (28)

Following Rybicki & Hummer (1991), we can construct an
approximation to the Lambda operator by considering only
the diagonal band of the matrix representation of the aux-
iliary operator .L;;. We call this operator .Cl’.‘j. The operator
.[Z;.kj is easy enough to invert, due to its band diagonal struc-
ture. However, using it as the ALO would render (15) into
a system of non-linear equations for the level populations,
which would still be hard to solve. In order to retain the
linearity of (15), we instead define our ALO as

n;Bji - nl' Bij nij(N)
YIX(NT) + x+(NT)

AIN] = (29)

njBji —n;iBjj
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where we only evaluate the line emissivity in the argument of
.Cl’fj with the new level populations and add an extra factor
which goes to unity when the level populations converge.
Since the line emissivity is linear in the level populations (see
equation 2) the statistical equilibrium equation will remain
linear in the new level populations and can be written as

Z {niA,'j - /N\:Fj[n,] - (niji—niB,-j) Jiiff}
J. Jj<i
- Z {njAji

b J>i

N
+Z{n,~CU~ - nJCJ,} =0,
Jj=1

= Rulnjl = (niByj - njByi) JET | (30)

where the effective mean intensity, defined in (14), is given
by

JoE =g - | —— 31
Yo T N + x (N ey

ni j (NT) }
and we introduced another auxiliary approximated operator

- B h " i " Aij V¢:,j n;
Aijlnad = 2 (B =nlBy) £ X (NT) " (NT)

. (32)

Note that this operator is linear in the new level populations
and not symmetric in the level indices i and j. However,
since our ALO (29) is symmetric in these indices, it can be
implemented on the level of the transition matrix.

Apart from the ALO, we also use Ng-acceleration (Ng
1974) in MAGRITTE to speed-up convergence even more.
This acceleration method introduces a special iteration step
every M number of (regular) iterations. In this special it-
eration step, the level populations of the next iteration are
predicted by a linear combination of the populations of the
previous M iterations. This is done by minimising the change
in the level populations for the prediction based on the last
M — 1 and the one to last M — 1 iterations. Since the Ng-
iteration step does not require the computation of the radi-
ation field, it is much faster than a regular iteration and thus
accelerates the iteration process. The Ng-method allows us
to specify a weight for the contribution of the different levels
to the prediction (see e.g. Olson et al. 1986). For this paper,
a uniform weighting scheme was applied, but MAGRITTE can
readily be adapted to handle any other scheme.

3.5 Imaging the model

When modelling astrophysical objects in 3D, one often re-
quires images of the model from several viewpoints in several
frequency ranges, in order to compare the model with ob-
servations.

In MAGRITTE, these images can be obtained using the
solution of the outward directed radiation field on the end-
points of each ray pair. One can construct the image by
considering the outward directed radiation along a certain
ray and projecting the locations of the originating points on
the plane orthogonal to the ray. The result is a set of points
on a plane with a corresponding intensity, which can be eas-
ily rendered into an image. Note that since every point in
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the model contributes to one point in the image, the spa-
tial resolution of the resulting image is exactly equal to the
highest achievable resolution for that model.

4 TESTS & BENCHMARKS

To demonstrate the validity of our methods and to bet-
ter understand their limitations, we have conducted a se-
ries of comparisons with analytical models and benchmarked
against established radiative transfer codes. The analysis for
these tests and benchmarks was performed in a collection of
JUPYTER notebooks (Kluyver et al. 2016), which are pub-
licly available on GitHub®.

4.1 Semi-analytical tests

To assess the accuracy of MAGRITTE’s ray tracer and
radiative transfer solver, we first reproduce some semi-
analytically solvable line radiative transfer models. This will
help us later to better assess the uncertainties associated to
the results of our simulations. We cannot overemphasise the
importance of these analytical tests as they are the only way
to obtain absolute measures of the accuracy.

4.1.1  Homogeneous Hubble-Lemaitre models

As a first test, we consider the radiative transfer of a single
line on a uniformly spaced grid with a constant molecular
abundance and temperature distribution, and a constant ve-
locity gradient. The velocity distribution is thus given by the
Hubble-Lemaitre law

v(r) = cABr, (33)

where we parametrised the velocity gradient AB as a fraction
of the speed of light ¢. The boundary condition is given by
incoming cosmic microwave background (CMB) radiation,
i.e a black-body spectrum B, of temperature Tovp = 2.725
K. If we assume LTE level populations, the line source func-
tion S,; is spatially constant. In that case, one can find the
mean intensity by directly integrating the transfer equation,
yielding

AQ - s
IX) = Sy, + (B,,—S,,ij) 755 T (x1) (34)

where the optical depth, assuming Gaussian line profiles cen-
tred around v;; and with a line profile width ¢v;;, is given
by

Xij
2vAB

vV = Vij
5(0) = ~

{Erf

[V(l - ABL) - Vij]}
rf | ———— |,
6Vij 6\/,']'

(35)

where Erf is the error function, and €(x, i) is the distance
from point x to the boundary, as measured along the ray in
direction f. Since the Hubble-Lemitre velocity law is both
translation and rotation invariant, only the total distance
to the boundary appears in the expression for the optical
depth.

6 Benchmarks can be found at github.com/Magritte-

code/Benchmarks.

Table 1. Line data of the fictitious 2-level species. This is the
same fictitious 2-level species as used in Problem 1 in van Zadel-
hoff et al. (2002).

_ _ H _
Ey-Ei [em™]  gfgr  An [s7] K2 [em®sT!]

6.0 3.0 1.0x 1074 2.0x 10710

Considering only a single ray in the interval [-R, R], the
mean intensity in r € [0, R], as expressed in equation (34),
reads

() = Sy + % (B =8y) [ +e™®D] (30)
where the average over all directions reduces to the average
intensity flowing up and down the ray.

In three dimensions, assuming a spherical boundary
with radius R, the mean intensity expressed in equation (34)
reduces to

Ve
B(r) = Sy, + l(Bv—sy..) / dg sing e ™0 (37)
i 2 ij 0

where the distance to the boundary £(r, 8) is given by

{(r,0) = rcos + VRZ —r2sin2g. (38)

The #-integral in the expression for the mean intensity can
easily be computed numerically. Note that introducing the
spherical boundary breaks the translation invariance of the
problem.

Although these are simple models, they can demon-
strate some key issues in numerical radiative transfer mod-
elling. In particular, both models can be used to directly
assess the accuracy of the radiative transfer solver and to
test the sampling in velocity space. Especially in line radia-
tive transfer it is crucial to properly sample the velocity field,
since too large a step in velocity from one cell to the next
can Doppler-shift a line directly from one wing to the other
without capturing the effect of the core of the line. This can
be tested by adjusting the velocity gradient. By considering
both the single ray and full 3D model we can also assess the
quality of the spatial interpolations onto the rays.

For this test we used a fictitious 2-level species in a
(radially) uniformly spaced grid [-R, R] with R = 495 km,
and with a velocity gradient ¢AB = 0.01 s~!. The line data
for the fictitious 2-level species are summarised in Table 1.
We assume a constant Hy number density of nt2 = 1.0x10!2
m~> and a constant fractional abundance of the fictitious
2-level species X = nfict/pt2 = 1074, To obtain the level
populations, we assume LTE with a constant temperature
distribution 7' = 45 K. Furthermore, we assume the gas has
no turbulent velocity component. The 3D model is obtained
from the 1D model by mapping each 1D grid point to a shell
of 3D grid points uniformly distributed over a sphere. The
model parameters for MAGRITTE can be found in Table 2.

Figure 2 shows a comparison between the solution of
MAGRITTE and the semi-analytical solutions (36, 37) of
the Hubble-Lemaitre models. MAGRITTE’s numerical result
clearly agrees with the analytic solution with a relative error
well below 107 almost everywhere, where the relative error
of two values is measured as twice the absolute difference
over their sum.

MNRAS 000, 1-17 (2019)
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Single ray (1D) Full model (3D)

3.784

3782 °
3.780 9 °
3.778 1

3.776

mean intensity [107'® W/m?]

3.774

relative error

—10 0 10 —-10 0 10

frequency w.r.t vo; [dv1] frequency w.r.t vo; [dva)

Figure 2. Comparison between MAGRITTE and the semi-
analytical solution of the mean intensity as a function of frequency
in the Hubble-Lemaitre model, evaluated at different radii. The
dots indicate MAGRITTE’s results and the line represent the an-
alytic results. Frequencies are expressed with respect to the line
centre vo; ~ 179.88 GHz as a fraction of the line profile width
6vo1 ~ 519.03 kHz. The relative error of two values is measured as
twice the absolute difference over their sum.

4.1.2  Simple power-law density distribution

As a second semi-analytic test, we consider the radiative
transfer of a single line on a logarithmically spaced grid, with
a constant temperature distribution, with no velocity field,
and a (spherically) symmetric density distribution given by
a power-law

0 for r < Ry,

Hy _
n2(r) = S \2
nth (Rin) (%) for r > Ry,

(39)

where rj, is the inner radius of the model. The boundary
condition is again given by incoming cosmic microwave back-
ground (CMB) radiation, i.e a black-body spectrum B, of
temperature Ton = 2.725 K. If we again assume LTE level
populations, the line source function S, is spatially con-
stant. As a result the mean intensity is again given by equa-
tion (34). To compute the optical depth, one needs to inte-
grate the density distribution along every ray. Assuming a
spherical boundary with radius R, the optical depth is given
by

Y i
7(r,0) = X”T’S‘ér(g_e + arccos(rsme) - f(r,Q))
(40)

where the function f(r,0) accounts for the rays that go
through the empty core (r < Rj,) of the model and is given

MNRAS 000, 1-17 (2019)

Table 2. MAGRITTE parameters for the semi-analytic test models.

model (Nshells) ~ Neells  Nrays  Ng
Hubble-Lemaitre ;’B 28 o ;gg 19; 188
density distribution ;’B 28 o égg 19; 188
by
F(ro) = { 2 arccos (%) for 6 < Ocore (@)
0 for 6 > Ocore

and whether or not a ray passes through the empty core
is determined by the direction of the ray at each radius,
Ocore = arcsin (R, /7).

Considering only a single ray in the interval [-R, R], the
mean intensity is given by

1
W) = Sy 4 5 (B =8y) |04 e 0D] L (a2)

where the average over all directions reduces to the average
intensity flowing up and down the ray. Note that one should
be careful in taking the limits 6 — 0 and 6 — x, but that
both are well-defined.

In three dimensions, one can simply integrate over the
entire solid angle to obtain the mean intensity

1 d o (r0
W) = Sy + 5(Bv—syij) /0 ¢ sing e ™0 (43)

However, one should be careful of distinguishing between
rays that do and do not pass through the empty core of the
model.

For this test we used the same fictitious 2-level species
as before (Table 1) in a radially logarithmically spaced grid
[=R,R] with Ry, = 1.0x 10" m and R = 7.8 x 10!® m, and
without a velocity field. The Hy number density just outside
the empty core is a2 (Ry,) = 2.0 x 1012 m™3 and a con-
stant fractional abundance of the fictitious 2-level species
X = nfict/pH2 = 1070 is used. To obtain the level popula-
tions, we assume LTE with a constant temperature distribu-
tion 7' = 20 K. Furthermore, the gas has a turbulent velocity
component of vip = 150 m s~!. The 3D model is obtained
from the 1D model by mapping each 1D grid point to a shell
of 3D grid points uniformly distributed over a sphere. The
model parameters for MAGRITTE can be found in Table 2.
This model setup is identical to Problem 1b in van Zadel-
hoff et al. (2002). However, here we are only interested in
the resulting radiation field when the levels are in LTE (see
also Section 4.2).

Figure 3 shows a comparison between the solution of
MAGRITTE and the semi-analytical solutions (42, 43) of the
simple power-law density distribution models. MAGRITTE’s
numerical result clearly agrees with the analytic solution.
Only at the steep edges of the line is there a larger relative
error (~ 0.4), which can be attributed to the steepness of the
solution and the discrete mesh.

4.2 Cross-code benchmarks

There are no analytic solutions for the full non-LTE line
radiative transfer problem, so the only way to fully test
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Single ray (1D)

Full model (3D)
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Problem 1b: X =107
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Figure 3. Comparison between MAGRITTE and the semi-
analytical solution of the mean intensity as a function of frequency
in a model with a simple power-law density distribution, evalu-
ated at different radii. The dots indicate MAGRITTE’s results and
the line represent the analytic results. Frequencies are expressed
with respect to the line centre v;; ~ 179.88 GHz as a fraction of
the line profile width 6v; ~ 357.53 kHz. The relative error of two
values is measured as twice the absolute difference over their sum.

MAGRITTE’s line radiative transfer module is by benchmark-
ing it against established codes. Although this does not prove
the validity of the code, it is reassuring to find the same re-
sults in different ways.

For the benchmarks we used the (1D) problems pre-
sented in van Zadelhoff et al. (2002) (from here on referred to
as the benchmark paper) and compared our results with the
publicly available version of the 1D Monte Carlo radiative
transfer code RATRAN’ (Hogerheijde & van der Tak 2000).
Since MAGRITTE is intrinsically multidimensional, the 1D
benchmarking models were mapped to their 3D equivalents
by mapping each 1D grid point to a shell of 3D grid points
uniformly distributed over a sphere.

4.2.1  Van Zadelhoff Problem 1 a/b

The first test, referred to as problem 1 a/b in the benchmark
paper, considers a fictitious two-level species in a spherically
symmetric cloud, without velocity field, with a constant tem-
perature distribution, and a density distribution given by a
power law. The entire model can thus be defined analyti-
cally. The model setup is essentially the same as in the sim-
ple power-law density distribution test in Section 4.1.2. The
only difference is that in Problem la the relative molecular
abundance X = 1078 results in a low optical depth, whereas

7 Source code can be found at

personal.sron.nl/~vdtak /ratran/frames.html.

relative level population

0.2 B
. MAGRITTE . MAGRITTE
001 RATRAN 1—— Rarran
3 0.10 A b
=]
&
&
< 0.05 A b
£
E ‘ b L 1%
2 0001 coee®™ Vol | | N
10‘13 1(;15 10‘17 10‘13 10‘15 10‘17
radius [m] radius [m]

Figure 4. Comparison of the results for Problem 1 a/b of the
van Zadelhoff et al. (2002) benchmark obtained with MAGRITTE
(dots) and RATRAN (lines). The relative difference of two values
is measured as twice the absolute difference over their sum.

in Problem 1b the relative molecular abundance is X = 10_67
yielding a relatively high optical depth.

Figure 4 shows a comparison between the resulting level
populations for Problem la/b obtained with MAGRITTE and
RATRAN. Both are clearly in good agreement.

4.2.2  Van Zadelhoff Problem 1 c/d

Since line radiative transfer models critically depend on a
proper sampling of the velocity field along the line of sight
of each ray, it is worthwile to test if this is properly accounted
for. Therefore, we consider again benchmark problem 1 a/b
from the previous paragraph, but this time with a non-zero
velocity field. Although this test was not part of the van
Zadelhoff et al. (2002) benchmark, we can still compare our
results with RATRAN. We consider a velocity field that is
pointing radially outward, given by

r—Riy )7f_

44
R R (44)

v(r) = Vs (
In the benchmarks below we used y = 0.5 and since it is
the same model setup as in Section 4.1.2 and 4.2.1 the inner
radius is Ry, = 1.0 x 1013 m. Furthermore, we consider two
different terminal velocities veo = 10 km s~ and 50 km s~ .

Figure 5 shows a comparison between the resulting level
populations for Problem 1 ¢/d obtained with MAGRITTE and
RATRAN. Both are clearly in good agreement. However, in
order to obtain this result, we needed to increase the number
of grid points in the input for RATRAN by a factor of 10 (re-
sulting in 500 logarithmically spaced grid points). For any
lower number of grid points, RATRAN had difficulty prop-
erly sampling the velocity field and produced significantly
different results from MAGRITTE.

MNRAS 000, 1-17 (2019)
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Figure 5. Comparison of the results for Problem 1 c¢/d obtained
with MAGRITTE (dots) and RATRAN (lines). The indicated veloci-
ties are the v for each model. The relative difference of two values
is measured as twice the absolute difference over their sum.

Table 3. MAGRITTE parameters for the benchmark models.

model (Nshells) Ncells Nrays Nq
Problem 1 a/b/c/d 50 23 280 192 24
Problem 2 a/b 50 23 280 192 24

4.2.3  Van Zadelhoff Problem 2 a/b

The third test has a more realistic setup and considers the
lines of HCO™ in a snapshot of an inside-out collapse model
by Shu (1977). This is referred to as problem 2 a/b in
the benchmark paper. The parameters describing the input
model were taken from the website of the benchmark®. The
model consists of 50 logarithmically spaced grid points. In
each grid point the radial velocity, gas temperature, micro-
turbulence, and HCO" and H, abundances are given. Again
there are two cases, one with a relatively low optical depth
where the fractional HCO* abundance is X = 10~ and one
with a relatively high optical depth where the relative molec-
ular abundance is X = 1078.

Figure 6 shows a comparison between the results for
Problem 2 a/b obtained with MAGRITTE and RATRAN.
Overall, both codes agree well with relative differences be-
low 0.3 for the first five levels. This is comparable to what
Brinch & Hogerheijde (2010) find in their Figure 10 for LIME
and what Rundle et al. (2010) find in their Figures 2 and
3 for Torus. Furthermore, Rundle et al. (2010) report that
for I = 0 their relative deviation from the benchmark paper
is less than 5%, which is also comparable to what we find.

8 Benchmark website: www.strw.leidenuniv.nl/astrochem /radtrans,.
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Problem 2a: X =10"°  Problem 2b: X =108
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Figure 6. Comparison of the results of the first 5 levels (of 41)
for Problem 2 a/b of the van Zadelhoff et al. (2002) benchmark
obtained with MAGRITTE (dots) and RATRAN (lines). The rela-
tive difference of two values is measured as twice the absolute
difference over their sum.

5 APPLICATION

To demonstrate the applicability of MAGRITTE in a more
realistic setup, we consider the CO line radiative transfer in
a simple Keplerian disc model. This is a typical use case of
3D radiative transfer modelling (see e.g. Booth et al. 2019;
Homan et al. 2018) The density distribution in cylindrical
(r, ¢, 2) co-ordinates is described by

0 for r <rin
p(r,¢,z) = p 2 , (45)
Pin (é) exp [—% (_Hz(r)) for r > rip,
with p = —=2.125, and a vertical Gaussian scale height given
by
H(r) = n KpTin rin (1 " (46)
= Tlin mH2 GM* Fin 5

where h = 1.125 and m™2 is the mass of Hy. The fractional
CO abundance is a constant nco = 5.0 x 1074, Furthermore,
we assume a gas temperature distribution given by a power-
law

Y
T = 7o (2 (47)
I'x
in which we take ¢ = —0.5, and a Keplerian velocity field
GM, .
Ving.) = \— 6. (48)

The remaining physical parameters of the star and the disc
are summarised in Tables 4 and 5 respectively.

Since we do not yet have a fully implemented algo-
rithm to generate model meshes (see Section 6.4.1), we cur-
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Table 4. Parameters of the star in the Keplerian disc model.

My [Mo]  Tw [K]  ry [AU]

2.0 2500 2.0

Table 5. Parameters of the Keplerian disc.

pin kg m™]  Tin K] rin [AU]

5.0x 10712 1500 10.0

rently use the sampling algorithm and Voronoi mesher im-
plemented in LiME? (Brinch & Hogerheijde 2010).

Figure 7 shows 16 channel maps of the CO J =6-35
transition in an edge-on view of the Keplerian disc model
produced by MAGRITTE. From left to right and top to bot-
tom, one can clearly see the left half of the disc moving
away from the observer and being red-shifted, whereas the
right half of the disc is moving towards the observer being
blue-shifted.

Figure 8 shows a composite image stacking 16 channel
maps depicted in Figure 7, as well as the relative integrated
intensity for each of the channel maps as a function of the
velocity along the line of sight with respect to the rest-frame
of the observer. The relative integrated intensities are nor-
malised with respect to the maximum integrated intensity
of the channel-maps.

6 DISCUSSION
6.1 ALI and Ng acceleration schemes

Both accelerated Lambda iterations (ALI) and the Ng ac-
celeration scheme are used in MAGRITTE to ensure correct
results and reduce the computation time. This is done to
avoid false convergence and to reduce the number of required
iterations in computing the non-LTE level populations.

In general, a wider (i.e. more non-local) band diagonal
matrix ALO yields a better approximation to the Lambda
operator and thus will yield better convergence. However,
when a non-local ALO is used, the resulting level popula-
tions from solving equation (30) cannot be guaranteed to be
positive, and thus can become unphysical (Rybicki & Hum-
mer 1991). This becomes apparent, in particular, when the
solution is far from converged or when a larger bandwidth
is used. It is hard to determine in advance whether a cer-
tain bandwidth for the ALO will result in unphysical level
populations. Even the simplest two-cell model with a two-
level species can easily be made to fail. Hence, when using a
non-local ALO, one should always check the validity of the
level populations after solving the statistical rate equations.
If for a certain ALO, the computation yields unphysical level
populations, one can always set up and solve the system of
rate equations again using only a part of the ALO. Setting
up and solving the statistical rate equations only takes a
fraction of the time required to compute the radiation field
and the corresponding ALO. Therefore, the trade-off that
should be considered in deciding the bandwidth of the ALO

9 Source code can be found at github.com/lime-rt/lime.

is the gained reduction in iterations versus the time it costs
to compute the extra off-diagonal elements. Unfortunately,
there is no generally applicable (problem independent) way
to make this trade-off since the number of required itera-
tions strongly depends on the model under consideration.
Hauschildt et al. (1994) recommended optimal bandwidths
for some typical model setups, however, these only apply to
their particular implementation. By default, MAGRITTE will
use a diagonal (i.e. local) ALO. Larger bandwidth ALOs can
be used when specifically requested. However, MAGRITTE
will always check the validity of the resulting level popula-
tions and reduce the bandwidth if required. Moreover, given
a model, MAGRITTE can predict how the computation time
of one iteration would change when changing the bandwidth
of the ALO. This should help users to decide on an appro-
priate bandwidth for their particular model.

The effectiveness of the Ng acceleration scheme depends
on the quality of the solutions in previous iterations. There-
fore, it is advisable to start acceleration only after a certain
level of convergence is already reached. Also, the optimal
balance between regular and Ng accelerated iteration steps
is highly problem dependent. It is, however, less critical than
the choice of ALO bandwidth since the computational cost
of taking into account more iterations in the Ng accelera-
tion scheme is negligible (compared to the cost of computing
the radiation field and the corresponding ALO). By default,
MAGRITTE will perform an Ng acceleration step after every
four regular iterations, and using the level populations of all
four previous iterations.

6.2 Accuracy, precision, and re-sampling
invariance

The results of the semi-analytic tests and cross-code bench-
marks in Section 4 clearly demonstrate the accuracy and pre-
cision of the radiative transfer and level population solver of
MAGRITTE. All models were run for various numbers of cells,
rays and frequency bins. Also the uniform distributions of
the mesh points over the spherical shell was varied, as well as
the relative distributions of the mesh points over the shells.
These variations did not induce any significant differences
in the results of MAGRITTE, demonstrating its re-sampling
invariance. The parameters of the models presented in this
paper are all about five times larger than the coarsest model
that produces reasonable results.

The van Zadelhoff et al. (2002) problem 1 benchmarks
with the additional velocity field, presented in Section 4.2.2,
emphasise the importance of a proper sampling of the ve-
locity field. In MAGRITTE this is automatically taken care
of by the ray-tracer which will interpolate the source and
optical depth if the velocity changes too rapidly, whereas in
RATRAN the user has to provide a 10 times finer model mesh
in order to obtain accurate results (comparing Figures 5 and
A1l). This is acceptable for a 1D solver such as RATRAN, be-
cause the sampling of a 1D velocity field can still be assessed
with comparative ease by the user. In 3D, however, velocity
structures can become extremely complex along the various
lines of sight. Therefore, the on-the-fly assessment and inter-
polation of the velocity field, as implemented in MAGRITTE,
is essential to ensure accurate results.

Figure 9 shows a comparison between the results of

MNRAS 000, 1-17 (2019)


https://github.com/lime-rt/lime

Magritte: NLTE atomic and molecular line modelling 13

—4.68 km /s —3.87 km/s —3.18 km/s —2.55 km/s
B 200 1r 1r ar b
=
=)
g 0
g
©
g -200F 1r 1F ar b
—1.95 km/s —1.38 km/s —0.82 km/s —0.27 km/s
5 200F 1F 1F 3 3
=
=)
3 0 |
g
o
a -200r 1r 1r 1r q
+0.27 km/s +0.82 km/s +1.38 km/s +1.95 km/s
B 200 1r 1 Tr 5
=
=
: | -
g
©
a, -200 1r 1r 1r 7
+2.55 km/s +3.18 km/s +3.87 km/s +4.68 km/s
B 200F 1r 1r 1r b
=
)
g 0
g
o
a -200F Tr 1r ar b
-200 0 200 -200 0 200 -200 0 200 -200 0 200

projected z [AU] projected z [AU]J

projected z [AU] projected z [AU]

Figure 7. Channel maps with contours of the CO J = 6 — 5 transition in an edge-on view of the Keplerian disc model.

MAGRITTE and LiME!? (Brinch & Hogerheijde 2010) for the
van Zadelhoff et al. (2002) benchmark problem 1a for differ-
ent numbers of grid points. The bottom plots show the errors
on the solutions, i.e. the relative difference with respect to
the RATRAN solution, which is assumed to be the most accu-
rate. Both solvers used the exact same model mesh. In order
to do this, the model was first run with LIME which created
the mesh that could then also be used by MAGRITTE. The
results for both solvers are plotted after the same number
of iterations (which was around 30). The exact number was
determined by the number of iterations that MAGRITTE re-
quired to reach a relative change in level populations below

10 Throughout this paper any reference to LIME refers to
(currently latest) release version 1.9.5 (see github.com/lime-
rt/lime/releases).
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1077, In order to make a fair comparison the Ng acceleration
in MAGRITTE was disabled and only a local (diagonal) ALO
was used. Nevertheless, the results of MAGRITTE are clearly
more accurate than the results of LIME. This is apparent
especially for the coarser meshes with fewer mesh points.
Furthermore, the results of MAGRITTE are more precise, i.e.
less spread at a given radius, than the results of LIME. This
can be attributed to the Monte Carlo noise present in the
solution of LIME.

Figure 10 shows a comparison between the results of
MAGRITTE and LIME for the van Zadelhoff et al. (2002)
benchmark problem 1b, which is similar to problem la, but
has a higher optical depth. Both solvers again use the same
model mesh consisting of 30 000 grid points. The plot shows
the results after 147 iterations (when MAGRITTE reached
a relative change in level populations below 10_7). Clearly,
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Figure 8. Composite image of the channel maps of the CO J =
6 — 5 transition in the edge-on view of the Keplerian disc model
(left) and the relative integrated intensity for each of the channel
maps as a function of velocity (right).
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Figure 9. Comparison of the results for Problem 1 a of the van
Zadelhoff et al. (2002) benchmark obtained with MAGRITTE and
LiME for different numbers of grid points. The relative error of two
values is measured as twice the absolute difference with respect
to the solution of RATRAN over their sum.

the result of MAGRITTE is much more accurate than the re-
sult of LiME. This can partly be attributed to the mesh,
since also the results of MAGRITTE are slightly worse than
the results obtained on the mesh of shells in the compari-
son with RATRAN (see Section 4.2.1). Nevertheless, there is
clear discrepancy in the accuracy that can be achieved with
MAGRITTE and LIME in this high optical depth problem. We
tried increasing the number of mesh points with a factor of
10 but did not see any improvement in the performance of
LIME.
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Figure 10. Comparison of the results for Problem 1 b of the
van Zadelhoff et al. (2002) benchmark obtained with MAGRITTE
and LIME. The relative error of two values is measured as twice
the absolute difference with respect to the solution of RATRAN
(dotted line) over their sum.

6.3 Computational performance

MAGRITTE was especially designed to achieve good scalabil-
ity of performance on modern distributed computer architec-
tures and to leverage hardware acceleration. However, since
a significant part of radiative transfer research is mainly per-
formed on commercial workstations (laptops and desktops),
MAGRITTE should also perform well on these (shared mem-
ory) systems. Figure 11 shows the preliminary (strong) scal-
ing of MAGRITTE for the Keplerian disc model of Section 5 on
a shared memory system (32-core Intel Skylake, with hyper-
threading disabled). The fact that the run time is almost
perfectly inversely proportional to the number of threads
shows that MAGRITTE can both effectively and efficiently use
the available computational resources. The (strong) scaling
in Figure 11 is only preliminary in the sense that no effort
was made to ensure load balancing over the cores, which
could improve the scaling. Future versions of MAGRITTE will
include an active load balancing algorithm to ensure good
(strong) scaling results independent of the model geometry
(De Ceuster et al. in prep.).

To gauge the computational speed of MAGRITTE, we
performed and timed the van Zadelhoff et al. (2002) bench-
mark problem 1 (see also Section 4.2.1) with the established
3D radiative transfer code LIME and compared the results
with MAGRITTE. We used the Voronoi model mesh produced
by LIME as input for MAGRITTE to ensure that both solvers
got the exact same input. To further ensure a fair compari-
son we disabled the Ng acceleration in MAGRITTE and only
used a local (diagonal) ALO. We performed 35 iterations
(which in MAGRITTE corresponded to a relative change in
level populations below 10_7). We found that MAGRITTE
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Figure 11. Plot of the (strong) scaling of MAGRITTE’s paralleli-
sation for shared-memory systems. The dots indicate the relative
timings and the grey line indicates the ideal scaling behaviour.
Timings are averages over seven runs performed on one 32-core
Intel Skylake node of the CSD3 cluster. (Hyper-threading was dis-
abled for these runs such that the number of threads effectively
corresponds to the number of cores used.)

was about 1.6 times faster than LIME'! on the same mesh
for the same number of iterations. This is mainly due to the
implementation with the explicit vectorisation and despite
the fact the formal solver used in MAGRITTE is more precise
and intrinsically slower than the one in LIME. Note that we
only measured the time spent in the computation of the ra-
diation field and the level population solver and not the time
spent in creating, reading or writing the model mesh. Con-
sidering that MAGRITTE can already obtain accurate and
precise results for much coarser grids (see Section 6.2), we
could conclude that MAGRITTE is more than 1.6 times faster.
However, how much more largely depends on the required
accuracy and is hard to compare between MAGRITTE and
LIME because of the intrinsic difference in precision.

When large velocity fields are included, MAGRITTE will
be slightly slower than LIME because of its careful treat-
ment of the Doppler shifts along each ray. However, this
careful treatment is required to obtain accurate results (see
Section 6.2). The current implementation heavily prioritises
accuracy over speed. In future versions, the new meshing al-
gorithm will allow us much better control over the accuracy
of the radiative transfer solver, which will allow us to better
balance the trade-off between accuracy and speed.

6.4 Future development of MAGRITTE

The current paper only reports on the first step in the devel-
opment of MAGRITTE. The code base is still under active de-
velopment and will be extended and improved over the next
few years. The design strategy will be twofold, on the one
hand focusing on developing a complete radiative transfer
library with a complete modelling pipeline to confront sim-
ulations with observations, and on the other hand achieving
higher performance by leveraging modern computer archi-
tectures.

11" As measured with 8 threads on the 8 cores of a decent but
standard laptop with an Intel Core i7-7700HQ CPU clocked at
2.8 GHz.
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6.4.1 Meshing algorithm

The next step towards a complete radiative transfer mod-
elling library will be to develop a mesher to generate 3D
meshes for a given model (distributions for density, velocity,
temperature, etc.). Since MAGRITTE is a formal solver we
can build the mesh based on the numerical error it will in-
duce in the radiative transfer computations. The algorithms
used by the mesher can then also be used to assess and
improve model meshes coming from hydrodynamical simu-
lations. A strong handle on the model mesh and thus on the
induced numerical errors will greatly improve the accuracy
and reliability of radiative transfer computations.

6.4.2 Including more physics

The next piece of physics to be included in MAGRITTE will
be to account for scattering within the existing radiative
transfer solver. Once we can account for scattering, we can
do dust continuum radiative transfer and include a ther-
mal balance module to iteratively determine the dust tem-
perature. Later, we will focus on coupling MAGRITTE with
(photo)chemistry and hydrodynamics codes to provide fully
self-consistent radiation-hydro-chemical models.

6.4.8 Computational aspects

The initial motivation to develop MAGRITTE was to create
a general-purpose software library for 3D radiative trans-
fer, that could leverage modern computer architectures, such
as highly distributed systems with accelerators (e.g. GPUs
and FPGAs), to improve the performance of astrophysi-
cal and cosmological simulations. Therefore, MAGRITTE was
vectorised and parallelised for both shared and distributed
memory systems, and can off-load certain computations to
accelerators. The full optimisation and parallelisation strat-
egy will be presented in a forthcoming paper. All future
releases of MAGRITTE and its source code, including the
optimised and accelerated versions, will be made publicly
available! at github.com/Magritte-code.

7 CONCLUSIONS

In this first paper in a series on MAGRITTE: a modern open-
source software library for 3D radiative transfer modelling,
we presented and tested its non-LTE line radiative trans-
fer module. MAGRITTE uses a deterministic ray-tracer and
formal solver that computes the radiation field by (itera-
tively) solving the radiative transfer equation along a fixed
set of rays originating from each point. The ray-tracing algo-
rithm only requires the locations of the cell centres and the
nearest neighbour lists. Hence, it can readily be applied to
smoothed particle hydrodynamics (SPH) particles, as well
as structured and unstructured model meshes. We formu-
lated an elegant solution method for the second-order form
of the radiative transfer equation along a ray pair based on
Feautrier (1964) and Cannon (1971, 1972), treating the scat-
tering contributions from other rays in an iterative way. Fur-
thermore, we presented our implementation of the acceler-
ated Lambda iteration scheme by Rybicki & Hummer (1991)
in this context. We demonstrated the validity of MAGRITTE
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by comparing its results against both semi-analytical model
solutions and the established (1D) radiative transfer solver
of RATRAN (Hogerheijde & van der Tak 2000) on the van
Zadelhoff et al. (2002) benchmark for line radiative transfer.
As an example application, we used MAGRITTE to gener-
ate channel maps of CO lines in a simple Keplerian disc
model. Comparing our results with the established 3D ra-
diative transfer solver LIME (Brinch & Hogerheijde 2010),
we conclude that MAGRITTE produces more accurate and
more precise results, especially at high optical depth, and
that it is faster.
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Figure A1l. Comparison of the results for Problem 1 ¢/d, ob-
tained with MAGRITTE (dots) and RATRAN (lines) both on a model
mesh with 50 shells. The indicated velocities are the v for each
model. The relative difference of two values is measured as twice
the absolute difference over their sum.
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APPENDIX A: ADDITIONAL FIGURE

In this appendix we present an additional figure supporting
our claims regarding the accuracy, precision and re-sample-
invariance of MAGRITTE with respect to RATRAN.

Figure A1l shows a comparison between the results ob-
tained with MAGRITTE (in 3D) and RATRAN (in 1D) for
a mesh with 50 shells, in contrast to figure 5 in the main
body of the paper where the results for a 50 shell mesh
for MAGRITTE was compared to a 500 shell mesh for Ra-
TRAN. The relative differences for the coarser RATRAN model
are about 4 times larger than for the finer model. This is
due to the insufficient sampling of the velocity field which
MAGRITTE can and RATRAN cannot account for.

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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