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Abstract

Abstract

It is widely believed that quantum computation has the potential to offer an ex-

ponential speedup over classical devices. However, there is currently no definitive

proof of this separation in computational power.

Such a separation would in turn imply that quantum circuits cannot be efficiently

simulated classically. However, it is well known that certain classes of quantum

computations nonetheless admit an efficient classical description. Recent work has

also argued that efficient classical simulation of quantum circuits would imply the

collapse of the Polynomial Hierarchy, something which is commonly invoked in clas-

sical complexity theory as a no-go theorem. This suggests a route for studying this

‘quantum advantage’ through classical simulations.

This project looks at the problem of classically simulating quantum circuits through

decompositions into stabilizer circuits. These are a restricted class of quantum

computation which can be efficiently simulated classically. In this picture, the rank of

the decomposition determines the temporal and spatial complexity of the simulation.

We approach the problem by considering classical simulations of stabilizer circuits,

introducing two new representations with novel features compared to previous meth-

ods. We then examine techniques for building these so-called ‘stabilizer rank’ decom-

positions, both exact and approximate. Finally, we combine these two ingredients

to introduce an improved method for classically simulating broad classes of circuits

using the stabilizer rank method.
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Impact Statement

Impact Statement

This thesis is focused on classical simulation of quantum computing, an important

tool both for understanding the theoretical separation between quantum and clas-

sical computations, and for developing quantum software in an era where access to

actual hardware is still significantly limited.

The impact of this thesis is to significantly extend the notion of stabilizer rank, a

classical description of quantum systems that has received considerable interest in

the community. As part of this, we introduce a novel method for simulating quantum

circuits. This method enables simulations of near-term quantum computations on

much larger system sizes than previous publicly available tools. For example, we

demonstrate simulations of the Quantum Approximate Optimization Algorithm on

50 qubits, using a personal computer.

We have developed open-source software implementations of our work, enabling

researchers in academia and industry to apply our methods to simulate quantum

computations. We have also integrated the work with IBM’s Qiskit framework [1],

making the benefits of our method immediately available to the large international

community of quantum software developers already experimenting with the plat-

form, including enthusiasts and educators.

As well as simulations of universal quantum circuits, we developed two novel methods

for simulating a common class of quantum circuit called stabilizer circuits. Our

software implementations show generally better performance than current popular

methods, and are available to the community through open-source.1

Our results on the stabilizer rank also impact attempts in the community to un-

derstand non-stabilizer states as a ‘resource’ for quantum advantage over classical

computations. The exact origins of quantum speedup are still not entirely under-

stood, and our results on both exact and approximate stabilizer rank decompositions

have consequences for the design of quantum algorithms and quantum computing

1https://github.com/padraic-padraic/StabilizerSim
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architectures. For example, the quantity of stabilizer extent introduced in Chapter 3

has since been applied to the problem of synthesising quantum gates from a limited

gate-set [2].

8



Acknowledgements

Acknowledgements

There a many people I wish to thank over the course of my four years at UCL.

First and foremost, I would like to thank my supervisor, Professor Dan Browne, for

all his support and guidance, and whose help and encouragement was a big part of

growing a Master’s project into an international collaboration. I also want to thank

my second supervisor Alessio Serafini, for his support in my PhD upgrade and for

giving me the opportunity to participate in teaching and marking.

I am very grateful to our collaborators in this project; Earl Campbell, for his knowl-

edge and helpful discussions; Mark Howard and David Gosset, for their help in

developing simulations for the paper; and Sergey Bravyi, for his insight and for

hosting me during my visit to IBM Yorktown.

I would also like to thank my colleagues and friends at UCL, especially the Browne

group, and Cohort 2 of the Delivering Quantum Technologies CDT, who have been

there at conferences, and after-lunch coffee breaks and much needed after-work

drinks.

I have benefited greatly from the support and opportunities given to me by the DQT

CDT, and would especially like to thank Lopa Murgai, without whom the experience

wouldn’t have been the same.

I would also like to acknowledge the UCL Research Information Technology Services

department, for their training and advice that have been key to my PhD, and to

acknowledge the use of the UCL Myriad (Myriad@UCL) and Legion (Legion@UCL)

High Throughput Computing Facilities, and associated support services, in the com-

pletion of this work.

Finally, I would like to thank my friends, especially Yasmin and Kier, for many

long and helpful chats; my family, Fintan, Stella and Dermott, who have always

been there for me, encouraged and supported me, especially over big dinners and

late nights; and Polona — you have been with me throughout everything these four

9



Acknowledgements

years, and without your patient ear (even when I’m poorly explaining things), sage

advice and kind words I wouldn’t have been able to do this.

I would like to dedicate this thesis to my grandmother Mary, and to the memory of

my grandparents Bob, Jack and Lil.

10



Contents

Contents

1 Introduction 15

1.1 Foundations of Quantum Computing . . . . . . . . . . . . . . . . . . 16

1.1.1 Complexity Theory and Quantum Advantage . . . . . . . . . 19

1.2 Classical Simulations of Quantum Computation . . . . . . . . . . . . 23

1.2.1 Definitions of Classical Simulations . . . . . . . . . . . . . . . 24

1.2.2 Classical Descriptions of Quantum Systems . . . . . . . . . . 26

1.2.3 Efficiently Simulable Quantum Systems . . . . . . . . . . . . 29

1.2.4 Simulation and Quantum Advantage . . . . . . . . . . . . . . 32

2 Methods for Simulating Stabilizer Circuits 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Tableau Encodings of Stabilizer States . . . . . . . . . . . . . 41

2.1.2 Connecting Stabilizer States and Circuits . . . . . . . . . . . 46

2.1.3 Computing Inner Products . . . . . . . . . . . . . . . . . . . 47

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Novel Representations of Stabilizer States . . . . . . . . . . . 49

2.2.2 Simulating circuits with the DCH and CH Representations . 54

2.2.3 Implementations in Software . . . . . . . . . . . . . . . . . . 74

2.2.4 Performance Benchmarks . . . . . . . . . . . . . . . . . . . . 82

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3 Stabilizer Decompositions of Quantum States 95

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1.1 Pauli Based Computations . . . . . . . . . . . . . . . . . . . 95

3.1.2 Stabilizer State Decompositions . . . . . . . . . . . . . . . . . 98

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2.1 Exact Stabilizer Rank . . . . . . . . . . . . . . . . . . . . . . 102

3.2.2 Approximate Stabilizer Rank . . . . . . . . . . . . . . . . . . 116

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11



Contents

4 Simulating Quantum Circuits with Stabilizer Rank 135

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.1 Methods for Manipulating Stabilizer Decompositions . . . . . 139

4.2.2 Implementation of the Simulator . . . . . . . . . . . . . . . . 149

4.2.3 Simulations of Quantum Circuits . . . . . . . . . . . . . . . . 155

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.3.1 Simulating NISQ Circuits . . . . . . . . . . . . . . . . . . . . 173

4.3.2 Simulating Random Circuits . . . . . . . . . . . . . . . . . . 176

4.3.3 Optimizing Decompositions and Sampling . . . . . . . . . . . 181

5 General Conclusions 183

Bibliography 188

12
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List of Symbols

The following is a list of some common symbols and notations used in this thesis.

We also make us of common abbreviations for computational complexity classes,

which we denote in bold-faced type e.g. P

n Number of qubits in a given quantum circuit or computation.

ω The 8th root of unity, ω = 1+i√
2 .

Zn The space of all positive integers modulo n.

~x A vector quantity, typically a binary vector.

~ei A binary vector that is all-zero except for the ith entry.

|~x〉 A computational basis state defined by the binary vector ~x.

|ψ〉 An arbitrary quantum state.

|φ〉 , |ϕ〉 A stabilizer state.

U An arbitrary unitary operator.

V An arbitrary operator belonging to the Clifford group.

Pn The n-qubit Pauli group

Cj The set of unitaries belonging to level j of the Clifford hierarchy. Also a

group for j ≤ 3.

pU (~x) The probability associated with the basis state ~x in the state U
∣∣∣~0〉.

χ The stabilizer rank, the rank of a stabilizer state decomposition. Typically,

this refers to an exact decomposition.

χε The rank of an aproxiamate stabilizer state decomposition with maximum

imprecision ε.
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ξ (ψ) The stabilizer extent of a state |ψ〉.

O(g (n)) An asymptotic scaling bounded above by kg (n) for some constant k > 0

Θ(g (n)) An asymptotic scaling bounded above by k1g (n) and below by k2g (n) for

some constants k1,2 > 0

Ω(g (n)) An asymptotic scaling that grows larger than kg (n) for some constant k > 0

and some value of n.
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Introduction

Chapter 1

Introduction

Over the past 10 years, quantum computation has rapidly transitioned from a field of

research into a burgeoning industry, drawing attention from national governments [3,

4], and private enterprise [5, 6, 7] alike. This intense interest is partly driven by the

expectation that quantum computers can perform exponentially faster than current,

classical devices on certain computational tasks.

The kinds of problems that are expected to have such a ‘quantum advantage’ are

not only limited to simulating quantum mechanical systems [8], with applications

to chemistry and materials science [9], but also include tasks as diverse as optimiza-

tion [10], search [11], prime factorization [12], random walk algorithms [13], linear

algebra [14], and machine learning [15].

A natural consequence of this exponential separation in computational power is that

any classical simulation of a quantum computer should in general require exponen-

tially more time to complete. This might seem to preclude classical simulations as

a means of studying the development of quantum computing.

In practice, however, classical simulations have proven to be valuable in aiding the

development of quantum computing. Firstly, as a practical tool; despite their ex-

pense, classical simulations of small systems can be used to study the performance

of possible quantum hardware [16]. They also provide theorists and developers with

explicit ways to verify quantum algorithms on limited numbers of qubits, and have

the potential to support the newly emerging group of quantum software develop-

ers [1, 17, 18].

But classical simulations can also play an interesting role in the foundations of quan-

tum information science. For example, by studying classical descriptions of quantum

computing states and operations, we can identify cases with efficient classical rep-
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Chapter 1 Introduction

resentations. As an immediate consequence, these models of quantum computing

cannot outperform a classical device, and thus probing the boundaries of these ‘re-

stricted’ models gives us a way to study the transition between classical and quantum

computing.

This thesis presents a powerful method for classical simulations of quantum circuits,

based on decompositions into circuits and states belonging to an efficiently simulable

restricted model of quantum computation. The remaining chapters will outline the

core components of this method. Here, we discuss the principles of quantum com-

puting and some of the current understanding of the separation between quantum

and classical paradigms.

1.1 Foundations of Quantum Computing

Quantum computing is has its origins in discussions on the connection between com-

putation and physics. In particular, how can a computation be understood in terms

of a physical system? Formally, we are interested in constructing a representation

relation, such that inputs to the computational task can be encoded as physical

parameters, and that a measurable property of the system can be decoded as a com-

putational output [19]. An interesting example of this kind of physical computation

is the MONIAC, a macroeconomic simulator realised using fluid dynamics [20].

Given this kind of correspondence, we can then ask what insights physics can give

into computation, and vice-versa. For example, it can be shown that analogue

computation has the potential to efficiently solve NP-hard problems [21], for which

it is widely believed no efficient discrete algorithm exists (P 6= NP, c.f. Section 1.1.1).

The caveat, however, is that such a device would require arbitrarily high precision,

and subsequently according to the Bekenstein bound would need infinite energy to

operate [22].

Alternatively, we can consider spin-glasses, a class of many-body Hamiltonian. It

can be shown that computing the ground-state of a spin glass is NP-hard [23],

and it is possible to construct spin-glass Hamiltonians such that their ground-state

corresponds to the solution to classical optimization problems [24, 25]. However,

spin-glasses are also metastable, with the property that they ‘freeze’ into higher
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Chapter 1 Introduction

energy configurations, which means it is difficult to bring the system to its ground

state [26]. Adiabatic methods, where the spin-glass Hamiltonian is slowly turned

on such that the system should stay in its ground-state configuration, can also be

shown to require exponentially long anneal times. From these two examples, there

thus seems to be an equivalence between the difficulty of the computational task,

and the physical realisation.

The first proposals for a quantum computer are widely attributed to the first con-

ference on Physics of Computation, held at MIT in 1982. At that conference, Paul

Benioff presented a method for constructing a Turing machine using a quantum

mechanical system of spins [27].

A Turing machine is an abstract model of computation, introduced to aid the study

for classical computation [28]. In this model, the computer is made up of a ‘tape’,

discrete cells capable of storing a single value each, and a ‘head’, capable of reading

or writing a value to the tape, or moving between cells. At each time-step, the

head performs either a movement, read, or write operation, or else terminates the

computation, according to its internal programme. Importantly, the Church-Turing

thesis states that any computable function can be computed in finite time by a

Turing machine. Equivalently stated, a Turing machine is a ‘universal’ model of

computation, and any system capable of realising a Turing machine is said to be

‘Turing Complete’ [28].

In Benioff’s model, each spin encodes a single cell of the tape, and the programme

would be realised by spin-spin interactions. However, while Benioff’s proposal used

quantum dynamics, and he argued that its direct realization on a physical system

should make it highly efficient [27], the computational model was strictly classical.

In his keynote remarks at the same conference, Richard Feynman discussed the

possibility of simulating quantum mechanical systems with classical computers. He

argued that any classical simulation of a quantum mechanical system should require

resources that scale exponentially in the size of the system, and also discussed a vari-

ant of the sign problem, arguing that this made classical simulation intractable [29].

Instead, he considered the possibility of building computers distinct from the Turing

17



Chapter 1 Introduction

machine, out of purely quantum mechanical pieces, such that they could be used

to realise Hamiltonians homomporphic to the process we want to simulate. These

quantum computers, he proposed, could also be built out of lattices of spin-1
2 sys-

tems, and as quantum mechanical objects they should in some sense be able to

efficiently encode quantum physical systems [29].

The idea of a quantum computation device built using two-level quantum systems

was formalised by Deutsch, who introduced a more general model of quantum com-

puting called a Quantum Turing Machine (QTM) [30]. In a QTM, the cells of

the tape and the processor head are now built up of two-level quantum mechani-

cal systems, which were later dubbed qubits in subsequent work by Schumacher on

quantum information theory [31]. At each time-step, the head and tape interact

under one of a finite set of unitary operations, which are capable of generating a

group dense in the group of all unitary operations [30].

Deutsch also proves several powerful features of the QTM model. Firstly, noting the

correspondence between reversible classical dynamics, reversible computation [32],

and unitary evolution, he points out that the QTM is itself Turing complete, and

thus universal for classical computing [30]. He also proves that the QTM is capable

of simulating any finite dimensional quantum system, and thus incorporates the

notion of a quantum simulator discussed by Feynman [30].

Having defined this notion of a universal quantum computer, Deutsch also introduces

an extension of the Church-Turing thesis that relates computation more closely to

physical systems. Today known as the Church-Turing-Deutsch thesis, it states

Every finitely realizable physical system can be perfectly simulated by a

universal model computing machine operating by finite means.

The QTM, as defined, satisfies this thesis, as it is capable of simulating finite quan-

tum mechanical systems. However, the Turing machine fails this criteria for both

classical and quantum physics, as continuously valued systems cannot be efficiently

encoded in binary arithmetic [30].

18



Chapter 1 Introduction

1.1.1 Complexity Theory and Quantum Advantage

The Church-Turing-Deutsch thesis, inspired by Feynman’s intuition, thus gives the

first example of a gap in the computational power of quantum and classical devices.

In this section, we will discuss this potential separation using computational com-

plexity theory, and define more precisely the notion of a task being computationally

‘hard’.

Computational complexity theory is the study of computation by quantifying how

the required number of operations, called ‘temporal complexity’, and the amount

of memory, called ‘spatial complexity’, for computing a given task scales asymp-

totically as a function of the input parameters, typically the ‘size’ of the problem

input [28]. As an abstract model of computing, we can relate the temporal and

spatial complexity to the Turing machine; in this case, the number of steps taken

by the head, and the number of cells on the tape.

1.1.1.1 Common Complexity Classes

Complexity theory is generally interested in grouping problems into ‘classes’, based

on their asymptotic complexity, and studying the relationships between different

classes. Provable membership of a class sets upper and lower-bounds on the achiev-

able performance of any algorithm [28].

Typically, in complexity theory, a task is considered ‘efficient’ if its runtime is poly-

nomial in the input size n. Given a deterministic algorithm to solve a problem

efficiently, that problem belongs to the corresponding complexity class P. Oth-

erwise, algorithms with super-polynomial scaling are considered ‘inefficient’. While

this separation seems coarse, as an algorithm with scaling O
(
a0.1n) would scale more

efficiently than a method that scales as O(n1000), in practice problems in P perform

better than those with exponential scaling [28].

An additional important concept in complexity theory are ‘efficient’ mappings, also

called reductions in some contexts. A mapping if efficient if it can be computed in

at most a polynomial amount of time This concept allows us to perform computing

without needing to use Turing machines. For example, a programming language can

be shown to be Turing complete by using it to efficiently emulate a Turing machine.
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We can also allow for algorithms that employ probabilistic strategies. In the Turing

machine model, this corresponds to allowing the program to pick a move at random

based on some probability distribution. PP, for ‘Probabilistic Polynomial’, is the

class of problems for which an efficient probabilistic algorithm exists that fails with

probability pf <
1
2 . By running this algorithm repeatedly, the failure probability

scales as pm, and becomes arbitrarily small. However, this can in practice require

a large number of repetitions if for example p= 1
2 −

1
2n [33]. Thus, the related class

BPP, Bounded Probabilistic Polynomial, is defined as problems where the failure

probability p < 1
3 , such that the failure probability is exponentially decreasing in the

number of repetitions [28]. It is immediately apparent that P ⊆ BPP, by setting

pf = 0, and that BPP⊆PP.

A particularly important class is NP, the class of problems for which a candidate

solution can be checked in polynomial time, using a piece of additional information

called a ‘witness’ or ‘proof’. A common example is finding the factors of a number,

which can be checked by multiplying the factors together. Importantly, however,

there is not necessarily an efficient polynomial algorithm to find the solutions.

The class takes its name from the set of problems that can be efficiently solved by

a ‘non-deterministic’ Turing machine. These can be conceptualised as similar to a

probabilistic Turing machine, but where the machine chooses the ‘best’ path at each

branching point such that it always arrives at a solution.

It follows that P⊆NP, as any solution for a P problem can be efficiently checked

by running the algorithm and comparing the solutions. Interestingly, if we allow

for post-selection in a probabilistic computation, then the resulting complexity class

PostBPP⊇NP.This can be see from our heuristic description of the nondetermin-

istic Turing machine, where we post-select on our probabilistic machine making the

‘best’ choice. It can in fact also be shown that NP⊆PP [34].

The class NP contains many ‘interesting’ problems for which an efficient classical

algorithm is not known to exist [28]. In fact, many of these problems, including

optimization tasks like the Traveling Salesman Problem, are called NP-complete.

A problem P is said to be ‘complete’ for a given complexity class if it is a member
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of that class, and if it satisfies an additional criterion called ‘hardness’. P is said

to be C-hard if there exists an efficient reduction from all problems in C to P .

Given an efficient algorithm to solve P , this hardness property implies we can use

the algorithm as a subroutine to efficiently solve all problems in C [28].

We can also define spatial equivalents of complexity classes. PSPACE is the class of

all problems that can be solved requiring at most a polynomial amount of memory.

Intuitively, this can also be thought of as the class of all problems that can be

efficiently specified. We can also define exponential versions of the temporal and

spatial complexity classes, EXP and EXPSPACE, which leads to the following

inclusion relation:

P⊆BPP⊆NP⊆PSPACE⊆EXP⊆EXPSPACE.

Finally, here we briefly introduce two open questions in computational complexity

that are nonetheless widely assumed to be false [28].

P 6= NP. (1.1)

The Polynomial Hierarchy PH does not collapse. (1.2)

Both of these results are typically invoked in ‘no-go’ arguments when reasoning

about computational complexity. P 6= NP can also be stated as asserting that no

polynomial time algorithm exists for NP-complete problems. Scott Aaronson has

discussed a number of arguments, from the physical to the philosophical, as to why

we expect this to be the case [22, 35]. Intuitively, he describes P = NP as implying

‘there is no fundamental gap between finding a solution, and recognising a solution

once it is found’ [35].

The Polynomial hierarchy is a recursively defined, infinite hierarchy of complexity

classes that generalise P and NP. A collapse of the Polynomial hierarchy would

imply that the hierarchy is finite. This statement is closely related to class #P, which

captures the complexity of problems where we are asked to count the number of valid

solutions. Requiring the Polynomial Hierarchy to be infinite can be understood as

expecting #P problems to still be hard even if we are able to approximately count
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solutions [36].

1.1.1.2 Quantum Computational Complexity

From the existence of the QTM, we can also define analogues of these complexity

classes for quantum computation. However, in practice quantum algorithms are

instead defined as families of quantum circuits. Typically in quantum computing

research we focus on the circuit model, which is more immediately applicable to

quantum hardware. It can in fact be shown that any computation that can be

solved efficiently by a QTM can also be solved by a quantum circuit with depth

at most polynomial in the number of qubits [37], meaning the study of quantum

circuits is immediately applicable to quantum complexity theory.

The class considered ‘efficient’ for quantum algorithms is BQP, Bounded Quantum

Polynomial; problems for which a polynomial time quantum algorithm exists with

a bounded failure probability pf < 1
3 [28].

Following Deutsch’s observation that a QTM is capable of reversible classical com-

putation, it can be shown that P ⊆BQP [38]. Interestingly, in the same paper it

was also proven that a quantum computation on T steps requires just O (logT ) pre-

cision. Thus, if P 6= BQP, this super-classical advantage doesn’t require arbitrary

precision to realise, as in the analogue computing case [38].

The quantum class considered analogous to NP is QMA, where there exists a

polynomial time quantum algorithm that can verify a solution that is encoded as a

quantum state, with failure probability pf < 1
3 [39]. Examples of problems complete

for QMA include deciding if a Hamiltonian built of just local interactions has a

spectral gap [40].

When compared to classical classes, it can be shown that BQP ⊆ QMA ⊆ PP.

However, it is believed that QMA 6= PP, as otherwise PH⊆PP [41]. The addition

of post-selection, as in the classical case, also significantly boosts the capabilities

of a quantum computer, and it in fact can be shown that the corresponding class

PostBQP = PP [33].

QMA is also closely related to the classical class MA, a probabilistic version of

NP where we instead have a classical algorithm that can verify a solution with
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high probability given a classical proof. We can also consider a ‘semi-classical’ case,

QCMA, where we allow for a quantum verifier with just classical inputs, and it can

be shown that these form a small hierarchy of inclusion relations [42]

MA⊆QCMA⊆QMA.

In 1994, Shor famously demonstrated an efficient quantum algorithm for prime fac-

torization [12]. Prime factoring is demonstrably in NP, as we can efficiently check

a solution by multiplying factors. Importantly, there is currently no known efficient

classical method for prime factorization. However, it has also not been definitively

proven that factorization /∈ P [28]. Shor’s algorithm thus strongly suggests that

P 6= BQP, but this separation has not been definitively proven.

There is, however, strong evidence that NP * BQP. In particular, if we consider a

quantum algorithm with access to an oracle for verifying NP problems, then it can

be shown the runtime of must scale as O
(
2
n
2
)
. This means the quantum speedup

is at most quadratic, compared to many classical methods for NP problems which

scale as O (2n) [43]. Such an ‘oracle’ can be efficiently implemented using a quantum

circuit, based on the corresponding reversible classical circuit for the verifier. It

was shown by Grover that this bound on the complexity is tight, using a quantum

algorithm now commonly referred to as Grover search [11].

Overall, these results give some insight into the boundaries of BQP, and the kinds of

problems that quantum computers can solve efficiently. Some of these relationships

are represented schematically in Figure 1.1.

1.2 Classical Simulations of Quantum Computation

The previous section discussed formal notions of quantum computation, and exam-

ined its relation to classical computation through the lens of complexity theory. In

this section we will introduce classical simulations of quantum computation. We

will begin by introducing more precise notions of classical simulation, before focus-

ing on different classical descriptions of quantum systems. This is by no means an

exhaustive survey, but introduces some common paradigms for classical simulation.

Finally, we will discuss results on the hardness of classical simulation, and briefly
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Figure 1.1: A Venn-diagram, illustrating the relationship of BQP to other classical com-
plexity classes. Figure taken from [28].

introduce the notion of a ‘quantum supremacy’ test.

1.2.1 Definitions of Classical Simulations

The general structure of quantum computations involves preparing an initial quan-

tum state
∣∣∣~0〉, applying a unitary evolution U , and then applying a measurement

or otherwise estimating an observable. Given this, an obvious definition of classical

simulation is to compute the probabilities of different observables on the final state

|ψ〉= U
∣∣∣~0〉. This task is typically called ‘strong’ classical simulation [44].

Definition 1.1 (Strong Classical Simulation). A strong classical simulator is any

classical algorithm A that takes as input a description of a circuit U , and a de-

scription of the output observable s, and returns the probability of that output

pU (s) [44].

Here, pU (s) could be the probability we observe some n-qubit computational state,

or a marginal probability obtained by measuring some subset of the qubits. We

denote as S the set of observables we are interested in simulating, and PS is the

distribution of those events.
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However, this task is distinct from what we are typically asking a quantum computer

to do. When running a quantum algorithm, we are instead preparing the final state

|ψ〉, and then sampling from its output distribution. These samples are then post-

processed to estimate other observables. Thus, we introduce the notion of a weak

classical simulation.

Definition 1.2 (Weak Classical Simulation). A weak classical simulator is a classical

algorithm A capable of taking a classical description of a circuit U , and returning

samples from its output distribution PS [44].

Access to a weak classical simulator should in effect be equivalent to having access

to a quantum computer itself [45].

In practice quantum computations are not perfectly accurate, due to the influence

of physical noise and control errors. We can correspondingly relax our definitions of

classical simulation, to allow for a degree of approximation. An approximate strong

simulation computes a given probability to within some specified precision ε, and

an approximate weak simulation allows us to sample from a distribution P̂S that

approximates PS.

There are several different definitions of precision used in approximate classical sim-

ulation. For strong simulation, there are three common definitions:

Definition 1.3 (Approximate Strong Simulation). An approximate strong simula-

tor computes estimates of output probabilities p̂(s) to within a given error ε, that

is either

1. Additive: |p(s)− p̂(s)| ≤ ε ∀s ∈ S [45]

2. Multiplicative: 1
εp(s)≤ p̂(s)≤ εp(s) ∀s ∈ S [46]

3. Relative: (1− ε)p(s)≤ p̂(s)≤ (1 + ε)p(s) ∀s ∈ S [46, 47].

Multiplicative and relative precision are slightly stronger requirements than additive

error, as can be seen by considering the case where p(s)→ 0. In the literature,

‘relative’ simulation is also sometimes referred to as ‘multiplicative’ simulation, as

25



Chapter 1 Introduction

the condition can be rewritten as [45]

|p(s)− p̂(s)| ≤ εp(s) .

For weak simulation, the commonly used notion of precision is variously referred to

as `1-precision [48], additive precision [49] or simply ε-precision [45].

Definition 1.4 (Approximate Weak Simulation). An approximate weak simulator

samples from an output distribution P̂ such that

∥∥∥PS− P̂S

∥∥∥
1

=
∑
s∈S
|p(s)− p̂(s)| ≤ ε.

The one-norm is used as it is directly proportional to the total variational distance

between the two distributions.

Sometimes, a classical algorithm is capable of generating an approximate simulation

q̂ with some precision f (ε), with a non-zero probability of failure such that

Pr [|q− q̂|> f (ε)]≤ δ.

This is referred to as an (ε, δ)-precision approximation [45]. If the failure probability

δ is bounded, then by m repeat rounds the probability of failure can be reduced to

δm, as in the case for the complexity class BPP.

Given these notions then, we can define an efficient (ε, δ)-approximate classi-

cal simulation of an n qubit system as one with a complexity that scales as

poly
(
n,ε−1, logδ−1) [45].

1.2.2 Classical Descriptions of Quantum Systems

What could be called the ‘textbook’ description of a quantum computation is the

state-vector representation, a vector |ψ〉 ∈C2n that encodes the wave-function of the

n-qubit system [28]. In this picture, the state is updated by applying 2n×2n unitary

matrices. Thus, simulating a quantum computation in this picture might seem to

require exponential spatial and temporal resources.

However, as quantum circuits are typically built out of local interactions, usually 1
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and 2 qubit gates, it is possible build block decompositions of both the state-vector

and unitary matrices. While a general state-vector requires 2n complex numbers to

completely specify, a tensor-product of smaller states requires just O (n) [50].

A quantum computation can be described as p-blocked if at all time-points it can

be decomposed into a tensor product of subsystems each acting on at most p qubits,

where 1 ≤ p ≤ n [51]. It can be shown that the complexity of both strong and

weak classical simulation on a p-blocked state-vector has a running time that scales

as O(2p+1poly(m)), where m is the number of blocks [51]. If p grows at most

logarithmically in the system size, then this simulation is efficient. For a fixed p,

then the runtime also scales efficiently as the system size grows. Otherwise, if p

grows unboundedly in the duration of the computation, then simulation requires

exponential resources. Interestingly, it can be shown that for example in Shor’s

algorithm, p= n [50].

The Quantum Multiple Decision Diagram (QMDD) is an alternative encoding of

the state-vector that similarly exploits redundancies arising from terms with equal

amplitudes [52]. They combine this with a tree-based data-structure, where each

leaf of the tree corresponds to a distinct amplitude, labeled by the outcomes to

which it corresponds. In general, an arbitrary QMDD will have 2n leaves, but the

authors show that in practice QMDDs can be significantly smaller than this during

common routines including the Quantum Fourier Transform. This can be exploited

to develop a classical simulation method where updates scale as O (n |v|), where |v|

is the number of leaves in the tree [53]. If this number grows at most polynomially

in the system size, the simulation is efficient.

The cases where |v| grows at most polynomially in the system size corresponds to the

definition of computationally tractable states, classes of states that admit efficient

strong and weak simulation in the computational basis [54]. Certain sparse circuits

acting on these “computationally tractable states” in turn produce a computation-

ally tractable output state, and thus can be efficiently simulated. This definition

can also be expanded to approximate simulation, where we approximate its output

distribution P to within additive error ε, with some other distribution P̂ that is

computationally tractable [55].
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An alternative representation of a quantum circuit, that is more distinct from the

state-vector picture, is the use of tensor networks to simulate quantum circuits.

These methods were first introduced in the context of simulating dynamics of many-

body quantum systems [56].

Tensor networks are undirected graphs, where tensors represent input and output

states, and quantum gates, and edges represent qubit wires [57]. Tensors are com-

bined or contracted by summing over shared indices, with a runtime that scales as

the product of the dimensions of the indices to be contracted. For fixed input and

output states ~x and ~y, contracting the entire network results in a rank-0 tensor,

a scalar value which corresponds to the amplitude 〈~x|U |~y〉 [57]. It can be shown

that the complexity of simulating a tensor network scales exponentially with the

‘tree-width’, a property of the underlying graph of the network [57]. In general,

tensor networks are known to be efficient when the entanglement of the system is

bounded [56]. It can also be shown that for circuits built out of one and two-qubit

gates, the tree-width scales linearly with both the number of qubits and the circuit

depth [57].

Yet another alternative classical description of quantum circuits commonly discussed

in the literature are quasiprobability or ‘Wigner function’ representations [58]. In

this picture, the state is encoded in a quasiprobability distribution on a phase-space,

where each point is described by a set of mutually anti-commuting operators [58].

The phase-space can be continuous, as is used in the study of quantum optics [28],

or discrete, as is usually considered in the context of quantum computing [59].

It can be shown that, if the Wigner function representation is strictly positive, then

the system is efficiently simulable classically [60, 61]. This is analogous to the same

sign-problem discussed by Feynman in his 1982 address [29]. Positive Wigner func-

tion simulations use a random walk across the phase-space, with transition proba-

bilities given by Wigner function expansions of each gate U . If the Wigner function

is negative, then it is possible to define an alternative sampling strategy that can be

used to simulate the computation, but at the expense of an increase in the number

of samples, which scales exponentially with the ‘negativity’ of the system, the one-

norm of its quasiprobability expansion [62]. The negativity is by definition 1 if the
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system is non-negative, and > 1 otherwise.

1.2.3 Efficiently Simulable Quantum Systems

In the previous section, we briefly introduced several different representations of

quantum computations used in classical simulations. In each case, there are also

certain circumstances under which the simulation is efficient. Indeed, in their paper

on simulation of p-blocked computations, it was noted by Jozsa & Linden that in

general for any classical description D, then there exists a corresponding property

prop(D) that is required for the simulation to be intractable classically [51]. For

example, in both the p-blocked picture and the tensor network picture, the required

feature prop(D) is that the entanglement in the system grow unboundedly during

the computation [51, 56].

Perhaps the most famous example of this requirement is related to the Gottesman-

Knill theorem [51, 63].

Gottesman-Knill Theorem: A quantum circuit built out of only

• Preparation of states in the computational basis

• Clifford and Pauli gates

• Measurement in the computational basis

can be efficiently simulated on a classical computer.

We will discuss the Gottesman-Knill theorem and how these circuits, typically called

stabilizer circuits, can be simulated in Chapter 2.

This theorem has gained particular attention in the field for several reasons. Firstly,

it sets up a clear correspondence between classical simulability and universal quan-

tum computing. The gate-set of stabilizer circuits is not universal for quantum

computation. This means these circuits cannot be used to build up arbitrary uni-

tary operations [28]. In fact, stabilizer circuits are also not universal for classical

computation [64]. However, introducing a single gate outside of this set is suffi-

cient to generate a group dense in the special unitary group, and thus ‘promote’

the gate-set to universality. These universal circuits are in turn no longer efficiently
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simulable.

Stabilizer circuits are also closely related to the study of quantum error-correcting

codes, where logical gates ‘native’ to the code are typically Pauli and Clifford gates

corresponding to stabilizer circuits [28]. Non-Clifford gates are then introduced

through a protocol called state-injection, involving ‘magic’ states that cannot be

generated by stabilizer circuits [65, 66].

Interestingly, it has also been shown that there is a correspondence between stabi-

lizer circuits, and ‘contextuality’, a generalised notion of locality [67]. Contextuality

was first discussed in the 1960s, where it was argued that non-contextuality is a

unique feature of quantum systems [68, 69]. For example, in Spekkens’s Toy Model

[69], a classical model of quantum systems based on a restriction of available infor-

mation, features like non-locality and entanglement can be efficiently described, but

contextuality cannot. Similarly, it was shown by Howard et al. that in odd-prime

dimensional quantum systems, stabilizer circuits are entirely non-contextual, and

the onset of contextuality is connected to the ability to distill high-fidelity mag-

ics states [67]. The case is slightly more complicated for quantum computing with

qubits, as qubits show state-independent contextuality, but recent work has explored

this correspondence between contextuality and qubit magic states [70].

1.2.3.1 Resources for Quantum Computation

The Gottesman-Knill theorem makes it clear that non-stabilizer resources are re-

quired for universal quantum computation, and as stated there is a correspondence

between this required property and classical simulability. In fact, in general, the

property prop(D) can be interpreted as ‘required’ for quantum advantage, from the

corresponding breakdown of efficient classical simulation. Jozsa & Linden argue that

rather than any one ‘true’ prop(D), it is likely that any quantum computation with

quantum advantage requires all of these properties to be true.

For example, as discussed in the p-blocked case, this suggests that entanglement is

required for quantum advantage. However, given that entangled stabilizer circuits

exist, entanglement alone is clearly not sufficient. Similarly however, it is easy to

construct non-stabilizer circuits that are either p-blocked, or sparse such that the

output is computationally tractable.
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The study of these potential resources, not only for computation but also for non-

classical phenomena more generally, are called quantum resource theories. In gen-

eral, a quantum resource theory is composed of a set of states that are considered

‘free’, a set of states that have an associated ‘cost’, and a set of allowed or ‘free’

operations [71]. We are then interested in asking what is the associated resource

cost of certain protocols, and how does the resource behave under free operations?

Resource theories have been applied to a broad range of phenomena, including; non-

stabilizer states [72]; magic states [73], more specifically; and asymmetry [74], which

relates to both computational tractability [54] and to generalizations of Gottesman-

Knill called normalizer circuits [75]. Of particular interest are resource theories

where the set of free states is convex, as these also admit convex cost functions that

can be more easily analysed [76]. All of the examples given in this paragraph fall

into the category of convex resource theories [77].

There is also typically a correspondence between free states and operations in re-

source theories and their classical simulability. Indeed, many of the resource theories

discussed above explicitly admit classical simulation through a discrete Wigner func-

tion representation. For example, it can be proven that any mixed state on n qubits

with a positive Wigner function representation can be described as a convex mixture

of stabilizer states [59]. In these pictures, the resource cost of a given state is directly

related to the computational cost of classical simulation [73, 78, 79, 80].

As an example of the power of resource theories, we can consider the Robustness

of Magic (RoM), introduced in [73]. This measure is equal to the negativity of a

stabilizer state decomposition of a state. The RoM is largest for pure, non-stabilizer

states, which lie outside the convex hull of the stabilizer states. However, as the

state we are considering becomes more and more mixed, for example as a result

of environmental noise, it is pushed closer to the set of free states. Below some

threshold, the state has RoM R(ρ) = 1, and can be efficiently simulated. This

corresponds neatly with the notion of magic state distillation, where we are trying

to ‘distill’ pure magic states using Clifford circuits. We are consuming multiple

copies to produce a magic state with increased robustness, which are subsequently

harder to classically simulate and more useful for quantum computing. It is also
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congruous with the existence of a noise threshold below which we cannot distill any

magic state [66]; below this threshold, the ‘noisy’ magic states are ‘free’ states, and

thus we cannot increase their RoM using just free operations.

1.2.4 Simulation and Quantum Advantage

Given some of the results quoted in the previous sections, we might imagine that

with continued development a sufficiently optimized classical method could exist

to simulate quantum circuits. Here, we will review results from complexity theory

which suggest that even an approximate efficient classical simulation of arbitrary

quantum computation should not be possible.

1.2.4.1 Hardness of Strong Simulation

It can be shown that exact strong simulation would imply the existence of effi-

cient classical algorithms to solve problems in #P, using a correspondence based on

quantum circuits. From a famous computational result in complexity theory called

Toda’s theorem, it can be shown that the complexity class of problems solvable by a

P algorithm with access to an oracle for #P, typically denoted P#P, in fact contains

the entire PH [81]. Thus, the existence of an efficient classical algorithm for #P

problems would imply even stronger consequences than P = NP.

The proof relies on the ability to construct quantum circuits C out of H and Toffoli

gates [82], or alternatively out ofH, Z, CZ and CCZ gates [83], such that computing

the probability amplitude 〈
~0
∣∣∣C∣∣∣~0〉∝ gap(f) ,

where f : {0,1}n→{0,1} is an n-variable binary polynomial, and

gap(f) = [#~x : f (~x) = 1]− [#~x : f (~x) = 0].

Computing the gap of a cubic polynomial is known to be #P hard in general, if

f has degree ≥ 3 [83], and thus could be efficiently solved by an efficient strong

simulation.

Interestingly, this example also illustrates a case where studying quantum algorithms

casts light on classical complexity theory. It was believed but not conclusively shown

that gap(f) could be efficiently computed for polynomials with degree ≤ 2. A
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quantum circuit to compute the gap of such a polynomial could be built using just

H, Z, and CZ gates, and is thus a stabilizer circuit. This means the amplitude〈
~0
∣∣∣C∣∣∣~0〉 can in turn be computed efficiently, resolving the open problem [83]. This

example also further illuminates the relationship between universal quantum circuits

and classical computation; circuits built using H, Z, CZ and CCZ gates are known

to be universal for quantum computing, and in turn are likely not to be strongly

simulable.

There is in fact evidence that even approximate strong simulation of quantum com-

putations would also imply the collapse of the PH. For example, there exists a

BQP algorithm for approximately evaluating the Jones polynomial [84], an impor-

tant problem in the study of topological quantum field theories, to within additive

error. This algorithm is based on repeatedly running a quantum circuit a polyno-

mial number of times to obtain an estimate of a particular amplitude, and thus a

strong classical simulation could be used to compute the Jones polynomial exactly.

However, it can be shown that even approximating the Jones polynomial to within

multiplicative error ε is a problem in #P [85], and thus no approximate strong clas-

sical simulation can exist unless the PH collapses. Interestingly, it is believed that

approximately evaluating the Jones polynomial is a BQP-complete problem, and

thus this result would suggest that BQP problems cannot be efficiently strongly

simulated classically.

A core lemma in the proof of [85] is that given some family of quantum cir-

cuits C such that the class of problems solvable by C circuits under postselection

postC = PostBQP, then an efficient strong simulation of the output distribution of

C would collapse the polynomial hierarchy. For the algorithm for the Jones polyno-

mial, this follows naturally as the problem is BQP-complete. Interestingly however,

this result can also be used to imply that approximate strong simulation is hard even

for certain types of quantum computation that are ‘weaker’ i.e. they are strictly not

universal [86]. For example, Instantaneous Quantum Polynomial (IQP) circuits, cir-

cuits with depth poly(n), built out commuting gates like Z, CZ and CCZ, have the

property that they are universal under post-selection [48]. Thus, strong simulation

of IQP circuits implies the collapse of the PH [87].
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An alternative strategy involves finding some correspondence between the quantum

computation and another problem known to be #P hard. For example, the output

distribution of IQP circuits can be shown to be equivalent to partition functions of

Ising model Hamiltonians [88], and thus from a characterisation of these partition

functions IQP circuits are #P hard to simulate in general [87]. This is also the

strategy employed by Aaronson & Arkhipov, when showing that a quantum optics

task called Boson Sampling is equivalent to computing the permanent of a matrix

to within additive error [86], a known #P-hard problem [89].

1.2.4.2 Extending Results to the Weak Simulation Case

While the results above apply to strong classical simulation, as discussed weak sim-

ulation can be considered as a more appropriate definition of classical simulation.

It was also shown by Van den Nest that it is possible to construct quantum circuits

whose strong simulation can be proven to be in #P, but which nonetheless admit an

efficient weak simulation [44]. Thus, a bound on strong simulation is not sufficient

to rule out classical simulation of quantum circuits.

Initial evidence for the hardness of weak sampling was given in [48], where the au-

thors showed a weak simulation of IQP circuits with multiplicative error would imply

the collapse of PH. Here, multiplicative error means that we have some approximate

distribution P̂, such that every term is itself a multiplicative approximate of the true

probability. This is a strong requirement for approximate classical simulation.

Subsequent work has shown that in fact, it is possible to lift a complexity theoretic

bound on strong simulation with multiplicative error, to obtain an equivalent bound

on weak simulation with additive error, given a proof that the circuit families satisfies

a pair of conjectures called ‘anti-concentration’ and ‘average-case hardness’ [46].

Recall that we are considering a family of quantum circuits C, which are hard to

approximately strongly simulate, either as they are universal under postselection, or

through correspondence to some other problem which is known to be #P-hard in

the worst case.

The output distribution of these circuits is said to anticoncentrate if there exist two
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positive real numbers α and β, such that

PrU∼PC
(∣∣∣〈~x∣∣∣U ∣∣∣~0〉∣∣∣2 ≥ α

N

)
> β, (1.3)

whereN is the dimension of the system, typically 2n for n qubits [46]. This inequality

states that for some random circuit U drawn from the family C, the probability of

an arbitrarily chosen entry being greater than uniform is greater than β. Intuitively,

anticoncentration requires that there is high probability the output distribution

of U is reasonably close to uniform [90]. This ensures we are unlikely to find a

circuit U with an exactly or approximately sparse output distribution, that would

be subsequently amenable to classical simulation [44, 55].

Average-case hardness requires that, given a problem that is known to be #P hard

to approximately compute in the worst-case, then it is also #P hard to simulate on

some constant fraction c> 0 of the problem instance [91]. This takes us from a family

of problems that can in principle be hard to simulate, to one where there are many

instances known to be hard to simulate [90]. For example, some Ising Hamiltonians,

and thus some instances of IQP circuits, are known to be classically simulable [88].

Nonetheless, IQP circuits can be shown to satisfy average-case hardness [91].

These two properties can be combined with a result from classical complexity the-

ory called the Stockmeyer Counting Algorithm [92]. Taken together, average-case

hardness and anticoncentration imply that a classical simulator capable of sampling

from the output distribution with a worst-case additive error, is in fact capable of

sampling with an average-case multiplicative error [91]. Subsequently, using the

Stockmeyer algorithm, this weak simulator can then be used to obtain an estimate

of an output probability with multiplicative error. This completes the reduction

from weak simulation with additive error, to strong simulation with multiplicative

error, and thus shows that weak simulation is also #P-hard [91].

Subsequent work has strengthened the case for the hardness of weak simulation.

Consider having access to a classical algorithm capable of computing certain output

probabilities with additive (ε,δ)-precision, efficiently — namely, with a runtime that

scales as poly
(
n,ε−1, logδ−1). Such a device is called a poly-box [45]. It can be
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shown that even with such a capability, the output distribution cannot be efficiently

weakly simulated with additive error as long as the output distribution P is not

approximately sparse. Namely, there does not exist some distribution P̂ such that∥∥∥P− P̂
∥∥∥≤ ε, and which has t= poly

(
ε−1) non-zero amplitudes. In other words, even

with such a strong classical simulation device, the distribution cannot be weakly

simulated if it is sufficiently dense.

1.2.4.3 Quantum ‘Supremacy’

While not necessarily practically applicable, these kind of random problems that

are believed to be hard to simulate clasically under the assumption the PH does

not collapse form the basis of an effort in the quantum computing community to

demonstrate so-called ‘quantum supremacy’ — the ability for a quantum computer

to successfully run an algorithm super-polynomially faster than a classical com-

puter [93].1

Random circuit problems are especially interesting compared to more direct tasks

such as Shor’s algorithm, because they require significantly fewer qubits to imple-

ment, and in some cases do not even require a universal architecture [83]. They also

have much stronger guarantees on their computational hardness compared with ‘ana-

logue’ quantum simulators, quantum systems that realise model Hamiltonians [83].

That said, there has also been recent effort in the community towards constructing

quantum simulators with provable hardness [46, 94, 95, 96].

A quantum supremacy experiment based on these kind of random sampling problems

with be made up of two key parts: sampling, and verification. The first task, also

referred to as ‘Heavy Output Generation’, is to generate a large number of samples

from the output distribution of a given quantum circuit, drawn at random from a

family of circuits [97]. This is done simultaneously using both a quantum computer,

and an appropriate classical simulation method, presumably using High Performance

Computing (HPC) resources.

The next step is to use an additional classical method to verify the output of both the

1I want to acknowledge here the very real concerns that have been raised about the use of
the word supremacy, given the historical and contemporary political significance of the word. I
use the term in this thesis as, despite much discussion, it has become the de facto name for this
phenomenon.
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quantum and classical samples. This step is in general even more computationally

intensive than the sampling step, and is a significant caveat in current quantum

supremacy proposals compared to running an NP problem such as factorization,

which can be efficiently checked [90]. After verification, the runtime and resources

required for both the quantum and classical methods are compared.

An important caveat in realising quantum supremacy experiments, however, is their

susceptibility to noise. As previously discussed, sufficiently noisy quantum com-

putations can in fact be efficiently simulated classically. It is thus important that

quantum supremacy protocols are reasonably robust, as quantum error correction

is out of reach for contemporary quantum computers [98].

This caveat also acts in tandem with continued development of classical simulation

methods. For example, recent effort in simulation of noisy boson sampling problems

has pushed the threshold for quantum supremacy to around 30− 40 photons [99],

compared to current experimental records of about 6.

Because noisy quantum circuits can typically be more easily simulated, an alternative

proposal for quantum supremacy experiments changes the order of the classical

sampling and verification steps. The idea is to use a classical verifier capable of

estimating noise in the system [100], such that this noise parameter can be used as

input to the classical simulation to enable a fairer comparison.
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Chapter 2

Methods for Simulating Stabilizer

Circuits

2.1 Introduction

In Section 1.2.3, we briefly introduced the notion of stabilizer circuits as a class of

efficiently simulable quantum computations. In this chapter, we revisit stabilizer

circuits in detail, with a focus on different classical data structures for encoding

stabilizer states and the corresponding algorithms for simulations.

Several informal definitions of stabilizer circuits have been used in the quantum

computing literature [44, 63, 64, 79]. However, what each definition has in common

is that they consider Abelian subgroups S ⊆ Pn. These groups S are also called

stabilizer groups. Operations in the circuits have the property that they either leave

these groups unchanged, or map them to new groups S ′ ⊆ Pn.

We focus exclusively on stabilizer circuits acting on pure states |φ〉 called stabilizer

states, which are entirely characterized by their associated stabilizer group

s |φ〉= |φ〉 ∀s ∈ S (2.1)

For an n-qubit state, the group S has 2n elements [63]. As S is also Abelian, this

means it can itself be efficiently described by a set of n independent generators

S = 〈g1,g2, . . . ,gn〉 : gi ∈ S, (2.2)

which are commonly referred to as the ‘stabilizers’ of the state |φ〉. We also note
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that this definition allows us to write

|φ〉〈φ|= 1
2n
∑
s∈S

s= 1
2n

n∏
i=1

(I+gi) (2.3)

As stabilizer circuits map stabilizer states to other stabilizer states, this means they

must be built up of unitary operations which map Pauli operators to other Pauli

operators under conjugation. This set is commonly denoted as C, and alternatively

referred to as C2, the ‘second level of the Clifford hierarchy’:

C2 ≡ {V : V PV † ∈ Pn ∀P ∈ Pn} (2.4)

Cj ≡ {U : UPU † ∈ Cj−1 ∀P ∈ Pn} (2.5)

where in Eq. 2.5 we have also introduced the (recursive) definition for level j of the

Clifford hierarchy. For concreteness, we define level 1 of the hierarchy as C1 = Pn.

From this definition, applying a Clifford unitary V updates the stabilizer group as

V SV † = 〈V giV †〉= 〈g′i〉= S ′ (2.6)

We also allow stabilizer circuits to contain non-unitary operations, in the form of

measurements in the Pauli basis [63].

2.1.0.1 Simulating stabilizer circuits

From the above definitions, we can see that simulating a stabilizer circuit on n

qubits corresponds to updating the n stabilizer generators for each unitary and

measurement we apply. As the number of generators grows linearly in the number

of qubits, if these updates can be computed in time O (poly(n)) it follows the circuits

can be efficiently simulated clasically.

The first proof of this was given by Gottesman in [63], by showing through examples

that stabilizer updates can be quickly computed for the CNOT, H and S gates, and

for single qubit Pauli measurements. The n qubit Clifford group, C2, is entirely

generated from these gates, and thus any Clifford operation can also be efficiently

simulated. This result is typically referred to as the ‘Gottesman-Knill’ theorem.

A more formal proof follows from the work of Dehaene & de-Moore, who showed that
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the action of Clifford unitaries on Pauli operators corresponds to multiplication of

(2n+1)× (2n+1) symplectic binary matrices with (2n+1)-bit binary vectors [101].

The dimension of these elements also grows just linearly in the number of qubits,

and as matrix multiplication requires time O(n2.37) it follows that we can update

the stabilizers in O(mn2.73) for m Clifford gates.

This work was extended by Aaronson & Gottesman, who introduced an efficient data

structure for stabilizer groups, and algorithms for their updates under Clifford gates

and Pauli measurement [64]. This method avoids the need for matrix multiplications,

instead providing direct update rules allowing stabilizer circuits to be simulated in

O(n2).

Since 2004, there have been several papers looking at different data structures and

algorithms for simulating stabilizer circuits of the type we consider here. For ex-

ample, a method based on encoding stabilizer states as graphs [102], refinements of

the Aaronson & Gottesman encoding [103], and an encoding using affine spaces and

phase polynomials [44, 47].

In the rest of this section, we will discuss different aspects of simulating stabilizer

circuits, focusing on updating stabilizer states under gates and measurements, com-

puting stabilizer inner products, and the connections between stabilizer circuits and

states.

2.1.1 Tableau Encodings of Stabilizer States

The method in [64] is based on a classical data structure the authors call the ‘stabi-

lizer tableau’, a collection of Pauli matrices that define the stabilizer group, encoded

using the binary symplectic representation of [101]

P = (−1)ε iδ
n⊗
i=1

xizi (2.7)
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where the Pauli matrix at qubit i is defined by two binary bits such that

xizi =



I xi = zi = 0

X xi = 1,zi = 0

Z xi = 0,zi = 1

Y xi = zi = 1

(2.8)

Together with the δ and ε phases, a generic Pauli operator can be encoded in 2n+

2 bits; two bits to encode the phase, and two n-bit binary strings ~x,~z ∈ Zn2 to

encode the Pauli acting on each qubit, commonly referred to as ‘x-bits’ and ‘z-

bits’ respectively. In this picture, multiplication of Pauli operators corresponds to

addition of ~x and ~z bits modulo 2, with some additional, efficiently computable

function for correcting the phase [101].

PQ= iδpq −1εpq
n⊗
i=1

x′iz
′
i (2.9)

x′i = xpi⊕xqi (2.10)

z′i = zpi⊕zqi (2.11)

where δpq = δp⊕ δq, εqr = f(~xp,~zp,~xq,~zq).

In stabilizer groups, we can restrict ourselves to considering Pauli operators with

only a real phase. This is because if iP ∈ S, then (iP )2 =−I ∈ S. But, this implies

that −I |φ〉= |φ〉, which can only be satisfied by the null vector.

While only n generators Si are needed to characterize the stabilizer group S, the

tableau also includes an additional 2n operators called ‘destabilizers’ Di ∈ Pn. To-

gether, these 2n operators generate all 4n elements of Pn. Including this additional

information speeds up the task of simulating stabilizer circuits with this representa-

tion, at the expense of a doubling of the memory requirements.

There are many possible choices of destabilizer, but the tableau chooses operators
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such that [64]

[Di,Dj ] = 0 ∀ i, j ∈ {1, . . . ,n}

[Di,Sj ] = 0 ⇐⇒ i 6= j

{Di,Si}= 0

Altogether, the full tableau has spatial complexity 4n2 + 2n. These are sometimes

referred to as ‘Aaronson-Gottesman’ tableaux or ‘CHP’ tableaux, after the software

implementation by Aaronson [104].



D1 x1,1 · · · x1,n z1,n · · · z1,n r1
...

... . . . ...
... . . . ...

...
Dn xn,1 · · · xn,n zn,1 · · · zn,n rn
S1 xn+1,n · · · xn+1,n zn+1,1 · · · zn+1,n rn+1
...

... . . . ...
... . . . ...

...
Sn x2n,1 · · · x2n,n z2n,1 · · · z2n,n r2n


(2.12)

Figure 2.1: Example of a ‘CHP’ tableau, where the first n rows are the Destabilizers and
the next n rows are the stabilizers. The 2n+1th column gives the phase −1ri
for each operator.

2.1.1.1 Simulating Gates

Gate updates for each individual operator in the tableau can be computed constant

time. For example, the Hadamard transforms single qubit Pauli matrices under

conjugation as

HPH† =



I P = I

Z P =X

X P = Z

−Y P = Y

(2.13)

In the symplectic form, we then have to update the ith Pauli operator as

p= xi⊕zi⇒
x′i = (xi⊕p)

z′i = (zi⊕p)
(2.14)
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and the phase as

δ′ = δ⊕ (xi∧zi) (2.15)

Similar update rules exist for the CNOT and S gates, which together generate the n

qubit Clifford group. As there are O(n) operators in the tableau, and each update

is constant time, gate updates overall take O (2n) [64]. This is in contrast to the

O(n2.37) complexity of [101].

2.1.1.2 Simulating Measurements

The addition of the destabilizer information is used to speed up the simulation of

Pauli measurements on Stabilizer states. Measuring some operator P on a stabilizer

state will always produce either a deterministic outcome, or an equiprobable random

outcome [63].

If the outcome is deterministic, then ±P is in the stabilizer group, and the outcome

is +1 or −1 respectively. Using the stabilizer generators, this allows us to write

[P,Si] = 0 ∀Si ∈ S =⇒
∏
i

ciSi =±P. (2.16)

for binary coefficients ci.

Checking if the outcome is deterministic takes O(n2) time in general, using the sym-

plectic inner product to check the commutation relations [101]. However, checking

which measurement outcome occurs involves computing the coefficients ci. In the

symplectic form, this can be rewritten as

A~c = P

where ~c is a binary vector, A is a matrix with each stabilizer as a column vector, P

is the operator to measure, and we have dropped the phase [64]. Solving this would

require inverting the matrix A, and take time O(n3).

Aaronson & Gottesman show that for single qubit measurements, including destabi-

lizer information instead allows us to compute the ci and the resulting measurement

outcome in O(n2). As this is a single qubit measurement, they also show that

the commutativity relation requires checking only individual bits of the stabilizer
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vectors, also reducing that step to O(n) time.

For random measurements, from Eq. 2.16, ∃Si : {Si,P}= 0, and it suffices to replace

this stabilizer with P , and update the other elements of the group as S′j = PSj iff

{Sj ,P}= 0 [63, 64].

2.1.1.3 ‘Canonical’ Tableaux

There are multiple possible choices of generators for each stabilizer group/state. For

example, the stabilizer group for the Bell state
∣∣φ+〉= 1

2 (|00〉+ |11〉) can be written

as

S = {II,XX,−Y Y,ZZ}= 〈XX,−Y Y 〉= 〈XX,ZZ〉= 〈−Y Y,ZZ〉. (2.17)

In simulation, tableau are fixed by choice of a convention. For example, it is pos-

sible to arrive at a ‘canonical’ set of stabilizer generators using an algorithm which

strongly resembles Gaussian elimination [103]. This method rearranges the stabi-

lizer rows of the tableau by multiplying and swapping generators, such that the

overall stabilizer group is left unchanged. Computing this canonical form requires

time O(n3) [103].

Figure 2.2: Representation of the canonical or ‘row-reduced’ set of stabilizer generators.
Figure taken from [103].

These tableau can then be updated using the same methods as in [64], though this

will in general not preserve the canonical form. Each Clifford gate will change one

or two columns of the tableau, and thus an additional O(n) row multiplications

are required to restore it to canonical form, taking total time O(n2) per gate [105].
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Importantly, this canonical tableau can also be used to compute deterministic mea-

surement outcomes in time O(n), and so this method can simulate measurement

outcomes more efficiently at the cost of more expensive gate updates [105].

In contrast, Aaronson & Gottesman fix the stabilizer tableau through an initial

state,
∣∣∣~0〉. The full tableau for this state looks like the identity matrix, with an

additional zero-column for the phases. The tableau of a given state |φ〉 is then built

up gate by gate using a stabilizer circuit V : |φ〉= V
∣∣∣~0〉 .

2.1.2 Connecting Stabilizer States and Circuits

The convention for the ‘CHP’ stabilizer tableaux mentioned above, and the definition

of stabilizer circuits given in Section 2.1, show that stabilizer states can also be

defined by a stabilizer circuit and an initial state.

In [64], the authors derive examples of these ‘canonical circuits’, and show that its

possible for any stabilizer state to be synthesised by a unique circuit acting on the∣∣∣~0〉 state

|φ〉= V
∣∣∣~0〉=H C S C S C H S C S

∣∣∣~0〉 (2.18)

where each letter denotes a layer made up of only Hadamard (H), CNOT (C) or S

gates. The proof is based on a sequence of operations reducing an arbitrary tableau

to the identity matrix, each step of which corresponds to applying layers of a given

Clifford gate [64]. As a corollary, the total number of gates in the canonical circuit

for an n-qubit stabilizer state scales as O(n log(n)) [64], based on previous work on

synthesising CNOT circuits with the O(n log(n)) gates [106], and that each H and

P layer can act on at most n-qubits.

A simpler canonical form was derived in 2008, which allows a stabilizer circuit to be

written as

|φ〉= S CZ X C H
∣∣∣~0〉 (2.19)

where the CZ and X layers are made up of Controlled-Z gates and Pauli X gates,

respectively [44]. This circuit follows from the work of [101], who showed that any
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stabilizer state can be written as

|φ〉= 1√
2k
∑
x∈K

if(~x) |~x〉 . (2.20)

In this equation, K ⊆ Zn2 is an affine subspace of dimension k, and f(~x) is a binary

function evaluated mod 4. Thus, a stabilizer state is always a uniform superposition

of computational basis strings, with individual phases ±i,±1. The affine space K

has the form

K = {G~u +~h}

for k-bit binary vectors ~u, an n× k binary matrix G, and an n-bit binary ‘shift-

vector’ ~h.

Van den Nest [44] notes that this representation can be directly translated into a

stabilizer circuit; we begin by applying H to the first k qubits to initialize the state∑
~u |~u〉⊗

∣∣∣0⊗n−k〉. We then apply CNOTs to prepare
∑
~u |G~u〉, and finally Pauli Xs

to prepare
∑
~u

∣∣∣G~u⊕~h〉.
The phases can be further decomposed into two linear and quadratic binary functions

l, q : Zn2 → Z2, such that iq(~x) = il(~x)(−1)q(~x). The linear terms correspond to single

qubit phase gates, which can be generated by the S gate, and the quadratic terms

to two-qubit phase gates, generated by the CZ [44]. Thus,

|φ〉=
∑
~x∈K

il(~x)(−1)q(~x) |~x〉= S CZ X C H
∣∣∣~0〉 (2.21)

While [44] showed that these simpler canonical circuits exist, an algorithm to com-

pute them first introduced in 2012 [103]. This method allowed such a circuit to be

read off from the ‘canonical’ set of stabilizer generators introduced in Section 2.1.1.

2.1.3 Computing Inner Products

The final task we might consider in simulating stabilizer circuits is the problem

of computing probability amplitudes P (~x) = |〈~x|φ〉|2. As computational states are

also stabilizer states, this corresponds more broadly to computing inner products

between stabilizer states.
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From the affine space form in Eq. 2.20, we can see that

〈ϕ|φ〉= 1√
2k+k′

∑
~x∈K∩K′

if(~x)−f ′(~x) (2.22)

and the problem of computing the inner product corresponds to computing the

magnitude of an ‘exponential sum’ of phase differences (±i, ±1) for each string ~x in

the intersection of the two affine spaces [47]. As each term in the sum has amplitude
1√
2 and as terms ±i,±1 can cancel, we can see that

∣∣∣∣∣∑
~x
if(~x)−f ′(~x)

∣∣∣∣∣=


0

2s/2 : s ∈ {0,1, . . . ,n}

This sum can be solved in O(n3) time, using an algorithm developed by Sergey

Bravyi [47, 107, 108]. An algorithm for computing this intersection was also de-

scribed in [47], which we discuss further in Section 2.2.3.

Alternatively, the inner product can also be computed using the stabilizer generators

directly. Consider two states |φ〉 , |ϕ〉 with respective generators Gi,Hi. If ∃i, j :Gi =

−Hj , the states are orthogonal and the inner product is 0. Otherwise, the inner

product is given by 2−s, where ~s the number of generators Gi /∈ {Hi}.

While there are multiple choices of stabilizer generators, we note that inner products

are invariant under unitary operations U as

〈ϕ|φ〉= 〈ϕ|U †U |φ〉 .

Thus, given the canonical circuit V : |ϕ〉= V
∣∣∣~0〉

〈ϕ|φ〉= 〈ϕ|V †V |φ〉=
〈
~0
∣∣∣V ∣∣∣φ〉 .

Each stabilizer G′i of
∣∣∣~0〉 has a single Pauli Z operator acting on qubit i. By

48



Chapter 2 Methods for Simulating Stabilizer Circuits

simplifying the stabilizer H ′i of V |φ〉 using Gaussian elimination, then we have

∣∣∣〈~0∣∣∣V ∣∣∣φ〉∣∣∣=


0 ∃H ′i =
⊗

iZi

2−s ∃H ′i : {H ′i,G′i}= 0
(2.23)

where s is the number of stabilizers that anticommute with the corresponding stabi-

lizer G′i [64]. The second case arises as if {H ′i,G′i}= 0, then H ′i acts as either Pauli

X or Y on qubit i. Thus, the qubit is in state |±1〉 or |±i〉, and 〈0|±i,1〉 = 1√
2 .

Because this method involves computing the canonical circuit and then applying

Gaussian elimination, it runs in time O(n3).

The first implementation of this algorithm was given in [103], where the authors first

use their canonical form to construct a ‘basis circuit’ B : |ϕ〉=B
∣∣∣~b〉 for some com-

putational state
∣∣∣~b〉, and then compute

〈
~b
∣∣∣B∣∣∣φ〉 using the same method outlined

above [103].

2.2 Results

The main result of this chapter is to introduce two new classical representations

of stabilizer states developed in collaboration with Sergey Bravyi [107]. We will

discuss their algorithmic complexity, and implementation in software. We will also

briefly discuss the implementation of a classical data-structure based on affine spaces,

introduced in [47].

Finally, we present data evaluating the performance of all three methods. For the

affine space representation, we benchmark against existing implementations in MAT-

LAB [47]. For the two novel representations, we present data comparing their per-

formance to two pieces of existing stabilizer circuit simulation software [64, 102].

2.2.1 Novel Representations of Stabilizer States

Existing classical simulators have two important limitations. One is that they focus

only on implementations of single qubit Pauli measurements made in the Z basis.

Multi-qubit measurements, or measurements in different bases, need to be built

up in sequence, or involve applying additional basis changes gates like H and S,

respectively.
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These simulators also do not track global phase information. For the case of simu-

lating individual stabilizer circuits, this is sufficient as global phase does not affect

measurement outcomes. However, if we wish to extend our methods to simulat-

ing superpositions of stabilizer states, then phase differences between terms in the

decomposition must also be recorded [105].

Here, we present two data structures, which we call the ‘DCH’ and ‘CH’ forms.

Definition 2.1. DCH Representation:

Any stabilizer state |φ〉 can be written as

|φ〉= ωeUDUCNOTUH |~s〉 (2.24)

where UD is a diagonal Clifford unitary such that

UD |~x〉= if(~x) |~x〉 ,

UCNOT is a layer of CNOT gates, UH is a layer of Hadamard gates, acting on a

computational state |~s〉, and with a global phase factor we where ω =
√

i and e∈Z8.

Any diagonal Clifford matrix of the form UD is described by its ‘weighted polynomial’

f(~x), evaluated mod 4, which can be expanded into linear and quadratic terms

as [44, 109]

f(~x) =
∑
i

aixi+ 2
∑
c,t

xjxk mod 4 = L(~x) + 2Q(~x)

where the coefficients ai ∈ X4. This was also the expansion used in the definition of

the affine space representation in Eq. 2.21.

We observe that the linear terms can be entirely generated by the S, Z and S† gates

acting on single qubits, and the quadratic terms by CZ gates acting on pairs of

qubits [109]. Thus, any unitary UD can be built up of these gates. As a corollary,

we note that these ‘DCH’ circuits can be obtained from the 7-stage circuits given

in Eq. 2.19, by commuting the X layer through to the beginning of the circuit and

acting it on the
∣∣∣~0〉 initial state. [44].

The computational string ~s can be encoded as an n-bit binary row-vector. This is
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also true of the Hadamard layer, which can be expanded in terms of a binary vector

~v as

UH =
n⊗
i=1

Hvi . (2.25)

A CNOT gate controlled on qubit c and targeting qubit t transforms the computa-

tional basis states as

CNOTc,t |~x〉= CNOTc,t
n⊗
i=1
|xi〉=

n⊗
i=1
|xi⊕ δi,txc〉

i.e. it adds the value of bit c to bit t, modulo 2. We can therefore encode the action

of UCNOT as an additional n×n binary matrix E which is equal to the identity

matrix, with an additional one at Ec,t, such that

CNOTc,t |~x〉= |~xE〉 : Ei,j =


1 i= j

1 i= c,j = t

0 otherwise

(2.26)

We can then build up UCNOT from successive CNOT gates as

UCNOT |~x〉= |xE1E2E3 . . .Em〉 ≡ |~xW 〉 (2.27)

where W = E1E2 · · ·En is the matrix representing the full circuit, obtained by suc-

cessive right multiplication of the matrices encoding a single CNOT.

Finally, we need to encode the action of UD. The phase resulting from a single qubit

diagonal Clifford is conditional on the qubits being in the |1〉 state. We write the

linear part of the weighted polynomial as L~xT for some row-vector L of integers

mod 4, which we call the linear phase vector. Each value Li can be stored using just

2 bits.

Each gate CZi,j between qubits i and j also contributes a factor of 2 to the overall

phase, conditioned on the ith and jth qubits being in the |1〉 state. For a given

computational string ~x, the overall phase from the CZ gates is thus 2
∑
i,j:CZi,j xixj .

We can encode the action of the CZ gates using an n×n symmetric binary matrix

51



Chapter 2 Methods for Simulating Stabilizer Circuits

Q where Qi,j = Qj,i = 1 if we apply CZi,j , and zero otherwise. We call this the

quadratic phase matrix. We can then compute the phase from the CZ gates as

~xM~xt =
∑
p

xp
(
QxT

)

=
∑
p

xp

(∑
q

Qp,qxq

)

=
∑
p,q

xpxqQp,q

= 2
∑
p

∑
q>p

xpxqQp,q

= 2
∑

i,j:CZi,j∈UD
xixj

where the last line follows from the definition of the matrix Q. Altogether, this

allows us to write [47]

UD |~x〉= if(~x) |~x〉= iL~x
T+~xQ~xT |~x〉= i~xB~x

T |~x〉 (2.28)

where B is a matrix such that Bii = Li, Bi,j = Qi,j , as by definition Q has zero

diagonal. We refer to B as simply the phase matrix, with diagonal elements stored

mod 4 and off-diagonal elements stored mod 2.

Finally, we include the global phase factor, an integer modulo 8 and stored us-

ing just three bits. Overall the DCH representation is then specified by the tuple

(e,~s,~v,B,W ). The spatial complexity is thus O(n2). In order to optimize certain

subroutines, which we discuss later in this section, we also store a copy of W−1, the

inverse of the CNOT matrix, and W T , the transpose of the CNOT matrix.

We further introduce two variables p∈ {0,1, . . . ,n}, ε= 0,1, which are used to ensure

normalisation of the DCH state under certain operations. Together with the phase e,

they define a coefficient we denote c= 2−p/2εωe. We store p as an unsigned integer,

and ε as a single binary bit. We choose the 8th root of unity, w, for the phase as

this ensures a correct global phase during Hadamard updates. Overall, then, the

DCH form requires roughly 4n2 + 4n+ 36 bits of memory.
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Definition 2.2. CH Representation:

Any stabilizer state |φ〉 can be written as

|φ〉= ωeUCUH |~s〉 (2.29)

where UC is a Clifford operator such that

UC
∣∣∣~0〉=

∣∣∣~0〉 , (2.30)

UH is a layer of H gates, |~s〉 is a computational basis state, and with global phase

factor ωe where ω =
√
i and e ∈ Z8.

The CH representation is based on a notion of a ‘control-type’ Clifford operator,

introduced in [107]. Their name derives from the fact they leave the all-zero compu-

tational basis state unchanged, similar to classically controlled unitaries. Examples

of control-type Clifford gates include the S, CZ and CNOT gates. A control-type

operator UC can be obtained from the DCH form, for example, by concatenating

UD and UCNOT layers. From this, it again follows that any stabilizer state can be

generated by a CH-type circuit.

Similarly to above, we encode the initial computational basis state ~s and the

Hadamard layer UH as n-bit binary row-vectors. The control-type layer we then

encode using a stabilizer tableau, made up of 2n Pauli operators U †CXiUC and

U †CZiUC . This tableau resembles a CHP tableau for the state UC
∣∣∣~0〉, where the

Pauli X entries are the destabilizers and the Pauli Z entries are the stabilizers. Al-

ternatively, we can see this as characterising the operator UC by its action on the

generators of the Pauli group.

Using a CHP tableau, as discussed in Section 2.1, each Pauli requires 2n+ 1 bits

to encode. However, from the definition of the control-type operators, U †CZiUC will

never result in a Pauli X or Y operator, as otherwise UC
∣∣∣~0〉 6= ∣∣∣~0〉. This means we

can ignore the n ‘x-bits’ and phase-bits of each of the Pauli Z rows. Specifically, we
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write

U †CZjUC =
n⊗
k=1

ZGj,k (2.31)

U †CXjUC = iγj
n⊗
k=1

XFj,kZMj,k (2.32)

for binary matrices G,F,M , and a phase vector ~γ : γi ∈ Z4, as Y = −iXZ. Note

that this differs from the CHP method, where the string 11 encodes Pauli Y directly,

without tracking a separate complex phase.

Finally, we again require three further bits to encode the global phase, meaning the

CH representation is given by the tuple (e,~s,~v,G,M,F ). Overall, the CH form also

has spatial complexity O(n2). In order to optimize some subroutines, we additionally

store copies ofMT and F T , and again include the variables p and ε, requiring a total

of 5n2 + 4n+ 36 bits of memory.

2.2.2 Simulating circuits with the DCH and CH Representations

In this section, we will outline how to update the DCH and CH representations

under different stabilizer circuit operations, and how to compute the inner product.

Some of the techniques employed will be common to both representations, differing

only in their implementation on the underlying data-structure.

2.2.2.1 Gate updates: The DCH Representation

In the DCH picture, the complexity of a gate depends on whether it is a CNOT,

or a diagonal Clifford operator S, Z, S† or CZ. Diagonal gates can be simulated in

constant time O(1) by simply updating the linear or quadratic part of the diagonal

layer. Single qubit gates applied to qubit i contribute only to the linear part of the

weighted polynomial, and CZ gates to the quadratic part.

Recalling Eq. 2.28, the linear terms are encoded in the diagonal of the phase-matrix

B, and the action of a single-qubit is encoded as

Si |φ〉 : Bi,i←Bi,i+ 1 mod 4 (2.33)

Zi |φ〉= S2 |φ〉 : Bi,i←Bi,i+ 2 mod 4 (2.34)

S†i = s3 |φ〉 : Bi,i←Bi,i+ 3 mod 4. (2.35)
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Similarly, a CZ gate between qubits i and j will update the two off-diagonal entries

Bi,j and Bj,i as
B′i,j ← Bi,j⊕1

B′j,i ← Bj,i⊕1,
(2.36)

where we use ⊕ as the off-diagonal elements are stored as integers modulo 2.

For CNOT gates, we first need to commute them past the diagonal layer before

updating UCNOT. The overall effect on the DCH form is then

CNOTc,t |φ〉= ieCNOTc,tUDUCNOTUH |~s〉

= ieCNOTc,tUDCNOT†c,tU ′CNOTUH |~s〉

= ieU ′DU
′
CNOTUH |~s〉 (2.37)

updating UCNOT using matrix multiplication as in Eq. 2.27, and where the last line

relies on the following Lemma:

Lemma 1 Recall that a CNOT circuit UCNOT can be encoded as a binary matrix

W , and diagonal Clifford circuit as a phase-matrix with diagonal elements Bii ∈ Z4,

and symmetric off-diagonal entries Bij =Bj,i ∈ Z2.

For any CNOT circuit UCNOT, and any diagonal Clifford circuit UD, the circuit

U †CNOTUDUCNOT is also a diagonal Clifford circuit U ′D with a corresponding encoding

as a phase matrix B′ =WBW T .

Proof of Lemma 1. Consider the case of a single CNOT gate acting on qubits c and

t. Using the encodings of the CNOT gate and the phase-matrix from Eqs. 2.26

and 2.28, we can express the action of the circuit in terms of vector and matrix

multiplications. We have

CNOT†c,tUDCNOTc,t |~x〉= CNOTc,tUDCNOTc,t

= CNOTc,tUD |~x +xc~et mod 2〉

= if(~x+xcet)CNOTc,t |~x +xc~et mod 2〉

= if(~x+xcet) |~x + 2xc~et mod 2〉

= if(~x+xc~et) |~x〉 (2.38)
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where ~et is a binary vector that is all-zero except at entry t. Because ~x is a binary

vector, the factor of two does not contribute and so the term |~x〉 is left unchanged.

Alternatively, this could follow form the fact that the CNOT gate self-inverse,

meaning its matrix encoding E is also self inverse and thus |EE~x〉= |~x〉.

Overall, the action of the circuit only introduces a phase term and thus,

CNOT†c,tUDCNOTc,t acts as a diagonal Clifford gate. As any CNOT circuit can be

broken down a sequence of individual CNOT gates, it naturally follows by induction

that U †CUDUC is also a diagonal Clifford circuit.

Using the matrix representation of the action of UC , it is easy to show that

U †CUDUC = UC†UD |~xW 〉

= i(~xW )B(~xW )TU †C |~xW 〉

= i(~xW )B(~xW )T
∣∣∣~xWW−1

〉
= i~xWBWT ~xt |~x〉 , (2.39)

completing the proof.

In general, computing the updated form of U †CNOTUDUCNOT would require time

O(n2). However, for the case of a single gate CNOTc,t, recall that the matrix E

differs from the identity matrix at a single element, Ec,t = 1. This allows us to

simplify the updates as

[
Ec,tBE

T
c,t

]
i,j

=
∑
k,l

Ei,kEj,lBk,l =



Bi,j i, j 6= c

Bc,j +Bt,j i= c, j 6= c

Bi,c+Bi,t i 6= c, j = c

Bc,c+Bt,t+Bc,t+Bt,c i= j = c

(2.40)

Additionally, to complete the application of the CNOT, we need to update the

matrices W and W−1 which encode the UCNOT layer.

As discussed in its definition, to update W we right-multiply with the matrix rep-

resenting the new CNOT gate Em+1. To update the inverse, however, we need a

56



Chapter 2 Methods for Simulating Stabilizer Circuits

method of computing W−1 that does not require a costly matrixinversion, which as

runtime O(n3).

The inverse of UC is the same sequence of CNOT gates, applied in reverse order.

Thus, we can see that W−1 = EmEm−1 · · ·E1, and we update W−1 to incorporate

Em+1 by left multiplication with the CNOT matrix.

Using the definition of the CNOT matrix E, we can expand out these multiplications

to show that

[WE]ij =
∑
kWi,kFEk,j =


Wi,j j 6= t

Wi,c+Wi,t j = t

[
EW−1]

i,j =
∑
kFi,kW

−1
k,j =


W−1
i,k i 6= c

W−1
c,j +W−1

t,j i= c

meaning to compute W and W 1 is suffices to update only the ‘target’ column t and

the control row c, respectively.

Putting together these two pieces, we thus have

CNOTc,t |φ〉 :

rowc(B) ← rowc(B) + rowt(B)

colc(B) ← colc(B) + colt(B)

colt(W ) ← colt(W ) + colc(W )

rowc(W−1) ← rowc(W−1) + rowt(W−1)

(2.41)

Overall, these updates take O(n) time to compute, as we update a constant number

of rows and columns.

2.2.2.2 Gate Updates: The CH Representation

For the CH representation, whenever a new control-type operator C is applied we

need to update the stabilizer tableau by conjugating each element U †CXi, ZiUC with

the matrix C. This can be implemented using the usual rules for updating Pauli

operators under Clifford operations, with the additional note that we have to adjust

the updates to correctly track the phases of the Pauli X terms, and that we are

conjugating as U−1
C PUC , rather than UCPU−1

C .
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The control-type circuit is built out of individual operations UC = CmCm−1 . . .C1.

Thus, when updating UC with some new operator Cm+1, the tableau changes as

(Cm+1UC)†PCm+1UC = U †C

(
C†m+1PCm+1

)
UC . (2.42)

Because Cm+1 is a Clifford operator, the term C†m+1PCm+1 is also a Pauli operator

P ′ = iα
∏n
i=1X

xi
i Z

zi
i for some phase α and bit strings ~x and ~z. This allows us to

write

U †CC
†
m+1PCm+1UC = iαU †C

(
n∏
i=1

Xxi
i Z

zi
i

)
UC

= iα
n∏
i=1

U †CX
xi
i Z

zi
i UC

= iα
n∏
i=1

U †CX
xi
i UC U

†
CZ

zi
i UC

= iα
n∏
i=1

iγi n∏
j=1

X
Fi,j
i Z

Mi,j

i

xi( n∏
i=1

Z
Gi,j
i

)zi
(2.43)

where in the last line we have expanded out the multiplication into a product of

terms from the tableau of UC , which we have previously computed.

As an example, consider the action of the S gate. For each term, we have

S†PS =


I → I

X → −iXZ

Z → Z

The Z stabilizers are unchanged, and the X/Y stabilizers flip from iαXaZb to

iα+3XaZb⊕1. On the tableau, acting an S gate on qubit q will only act non-trivially

on the term U †CXqUC , and thus

U †CS
†XqSqUC = i3U †CXqUCU

†
CZqUC =⇒

 rowq(M) ← rowq(M) + rowq(G)

γq ← γq + 3 mod 4

This can be expanded to the Z and S† gates by applying this rule two or three

times, respectively. We can also compute the updates for CZ and CX in the same
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way, giving overall gate update rules

S

 rowq(M) ← rowq(M) + rowq(G)

γq ← γq + 3 mod 4

CZq,p

 rowq(M) ← rowq(M) + rowp(G)

rowp(M) ← rowp(M) + rowq(G)

CNOTq,p



rowp(G) ← rowp(G) + rowq(G)

rowq(F ) ← rowq(F ) + rowp(G)

rowq(M) ← rowq(M) + rowp(M)

γq ← γq +γp+ 2
∑
iMq,iFp,i mod 4

(2.44)

On the final line in the CNOT case, we note that we also apply an extra phase

correction that results from reordering the Pauli operators in the CNOT updates to

preserve the definition of the tableau. Expanding out the action on the X stabilizers,

we can see that

U †CCNOTq,pXqCNOTq,pUC = U †CXqXpUC

= U †CXqUCU
†
CXpUC

= iγq+γp
n∏
i=1

X
Fq,i
i Z

Mq,i

i X
Fp,i
i Z

Mp,i

i

and we pick up an extra phase of −1 each time Mq,i = Fp,i = 1 as ZX =−XZ. All

of these updates take time O(n) to compute, as we are updating the n-element rows

of n×n matrices.

2.2.2.3 Hadamard gates and Pauli Measurements

Simulating Hadamard gates and arbitrary Pauli measurements is done using an

algorithm with the same general structure in the DCH and CH representation. These

routines employ an algorithm developed by Sergey Bravyi for application to the CH

method, which we extend to the DCH case.

Hadamard gates and Pauli projectors can both be written as 1√
2 (P1 +P2) for some

Pauli operators P1,P2. In the Hadamard case, we have P1 = Xi,P2 = Zi, and in

the projector case P1 = I,P2 = P . Given this structure, we then commute these
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operators through to the computational basis state

ε2−p/2ie 1√
2

(P1 +P2)UCUH |~s〉= ε2−(p+1)/2ieUCUH
(
P ′1 +P ′2

)
|~s〉

= ε2−(p+1)/2ie
′
UCUH

(∣∣∣~t〉+ iβ |~u〉
)

where P ′1,2 can be efficiently computed as the circuit UCUH is Clifford, β ∈ Z4, and
~t and ~u are two new computational basis states obtained from the action of P1,2 on

~s. Note that we are writing UC here as a shorthand, as the circuit UDUCNOT in the

DCH representation is also a control-type unitary.

Once in this form, we employ the following proposition, called Proposition 4 in [107]:

Proposition 1 Given a stabilizer state UH
(∣∣∣~t〉+ iβ |~u〉

)
, we can construct a circuit

WC built out of CNOT, CZ and S gates, and a new Hadamard circuit U ′H , such that

we can write

UH
(∣∣∣~t〉+ iβ |~u〉

)
= iβ

′
WCU

′
H

∣∣∣~s′〉 .
As a means of proving this proposition, we will go through and construct WC and

U ′H .

Proof of Proposition 1. Firstly, consider the case ~t = ~u. Then we have ~s′ =~t, and

the result depends on the phase β. If β = 0, then the state is unchanged. If β = 1,3,

then we have
1√
2
UH

(
1 + iβ

)∣∣∣~s′〉= (1± i)√
2
UH

∣∣∣~s′〉
and it suffices to update the global phase term

β = 1 : e← e+ 1 mod 8

β = 3 : e← e+ 7 mod 8

Finally, if β = 2, we have
∣∣∣~s′〉− ∣∣∣~s′〉 and the state is canceled out. We denote this

by setting ε← 0. This only arises in the case of applying a Pauli projector that is

orthogonal to the state.

If ~t 6= ~u, then we instead note that we can always define some sequence of CNOT
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gates VC such that ∣∣∣~t〉= VC |~y〉 |~u〉= VC |~z〉

where ~y,~z are two n-bit binary strings such that yi = zi everywhere except bit q

where zq = yq + 1. We can assume without loss of generality that ∃q : tq = 0,uq = 1,

else we swap the two strings and update the phase accordingly. Then

VC =
∏

i:i 6=q, ti 6=ui
CNOTq,i

and we can commute this circuit past UH to obtain a new circuit V ′C . We can always

freely pick q : vq = 0, unless vi = 1∀i, and thus V ′C is given by:

V ′C =


∏
i 6=q,vi=0CNOTq,i

∏
i 6=q,vi=1CZq,i vq = 0∏

i 6=qCNOTi,q vi = 1∀i

We complete the proof by considering the action of UH on the new strings |~y〉+iβ |~z〉.

Again, fixing yq = 0,zq = 1, we can write

UH
(
|~y〉+ iβ |~z〉

)
=HvqSβ |+〉= ωaSbqH

c
q |d〉

for some bits a,b,c,d∈ {0,1} that can be computed exactly from the values of β and

vq.

This completes the proof of Proposition 1, where WC = V ′CS
b
q , U ′H = UHH

vq+c
q , and

~s′ = ~y⊕d~eq.

Computing the circuits WC and U ′H given the two strings ~t,~u takes time O(n),

as it involves inspecting the n-bit strings ~t, ~u and ~v. Given this proposition, we

now need to show how to commute a Pauli operator through the stabilizer circuit

in both representations, and then how to update the layers UDUCNOT and UC by

right multiplication with the circuit WC . This can be rewritten in terms of binary

vector-matrix multiplication, and we introduce the following notation:

∏n
i=1X

xi
i ≡X(~x)

∏
iZ

zi
i ≡ Z(~z)
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for binary strings ~x and ~z.

2.2.2.4 Applying Proposition 1 to DCH States

When commuting a Pauli operator P through a Clifford circuit, it is important to

fix the ordering of the X and Z terms, as Pauli operators can be expanded out as

P = iaX(~x)Z(~z) = ia(−1)x·zZ(~z)X(~x), as XZ = −ZX, and where we use ~x ·~z to

denote the binary inner product

~x ·~z =
∑
i

xizi mod 2.

In the DCH case, we fix P = iaZ(~z)X(~x), as this simplifies the phase terms when

commuting past the UD layer.

Pauli Z terms are unchanged by the DCH layer as they commute with diagonal

Clifford operators. To commute the X terms past the UD layer, we use X(~x)UD =

UD
(
U †DX(~x)UD

)
, and compute the new Pauli U †DP ′UD = ia

′
Z(~z′)X(~x).

The diagonal entries of the phase matrix B contribute as

(SBii)†Xxi
i S

Bii =


S†XxiS → i(ZX)xi

ZXxiZ → −Xxi

SXxiS† → −i(ZX)xi

= iBiiXxiZxiBii ( mod 2)

We also have that
CZ(X⊗ I)CZ = XZ

CZ(I⊗X)CZ = ZX
,

i.e. a CZ conjugated with a Pauli X on the control (target) qubit adds a Pauli Z on

the target (control) qubit. Qubit i picks up a Z operator each time there is a CZ

between qubits i and j, and an X acting on qubit j. Using the off-diagonal entries

of the phase matrix, we pick up an extra set of Pauli Z operators

Z
(
~z′
)

: ~z′ =
∑
j 6=i

xjBj,i mod 2

Combining this with the fact we also pick up a Pauli Z from the diagonal if Bii = 1,3,

we can write ~z′ = ~zB mod 2. Finally, we need to consider the extra −1 phase con-

tributions for each i : xiz′i = 1, as a result of preserving the ordering of P ′. Together
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with the diagonal phases, this can be simplified to

∑
i

xiBii+ 2
∑
i

xi
∑
j 6=i

xjBj,i = ~xB~xT mod 4

Overall then, we have

U †DX(~x)UD = i~xB~x
T
Z(~xB)X(~x) (2.45)

A similar result applies to commuting a Pauli operator through the UCNOT layer.

CNOT has the property that it maps IcZt → ZcZt and XcIt → XcXt under con-

jugation. Thus, we can compute the new strings ~x′,~z′ by applying an appropriate

CNOT matrix.

For the X bits, we can simply apply ~x′ = ~xW−1, where we use the inverse matrix

as we are computing U †CNOTXUCNOT and thus the binary string is subject to the

inverse sequence of CNOT gates.

For the string ~z, we need to apply a CNOT matrix with the controls and targets

swapped. From the definition given in Eq. 2.26, we can see that if the binary matrix

E encodes CNOTc,t, then CNOTt,c is encoded by ET . We then update the string ~z

under the sequence EtmEtm−1 . . .E
t
1 =W T . This gives

U †CNOTi
aZ(~z)X(~x)UCNOT = iaZ(~zW T )X(~xW−1). (2.46)

As mentioned, we store copies of W−1 and W T with the DCH representation. This

helps to avoid the O(n3) computational cost associated with inverting W , and the

O(n2) cost of transposing W . We can thus compute this update in time O(n2).

Finally, to commute a Pauli operator past the UH layer, we note that the Hadamard

acts as
HXH → Z

HZH → X

HZXH → −ZX
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The ~x and ~z bits are only changed for those bits where vi = 1, and so we can write

z′i = zi(1−vi) +xivi

and vice-versa for the ~x bits. In terms of boolean operations, this can also be written

as z′i = zi∧¬vi⊕xi∧vi. Finally, we have the phase correction whenever xi = zi = 1.

Thus, overall, we can write

U †Hi
aZ(~z)X(~x)UH = ia+~v·(~x∧~z)Z((~z∧¬~v)⊕ (~x∧~v)X((~x∧¬~v)⊕ (~z∧~v)) (2.47)

and this update takes time O(n) to compute.

To complete the application of Proposition 1, we also need to be able to update

UDUCNOT by right multiplication with WC . We can split WC =WCNOTWD, where

WD is made up of CZ gates and the single S gate.

The UCNOT layer updates as U ′CNOT = UCNOTWCNOT . Because of the ordering of

the circuits, we here update the matrixW by left multiplication, and updateW−1 by

right multiplication. Thus, for each CNOT gate in WCNOT , we update the columns

of W−1 and the rows of W using the rules given in Eq. 2.46.

We then need to commute the diagonal layer WD past U ′CNOT. We can do this

by adapting Eq. 2.39 to instead compute UCNOTWDU
†
CNOT, giving a new phase

matrix C ′=W−1CW−1 where C encodes the action ofWD. This computation again

benefits from storing W−1 in the DCH information, and can be further optimized

by noting that many entries of C are zero. Finally, we can combine the two phase

matrices by simply adding all the elements, keeping the diagonal entries mod 4 and

the off-diagonal entries mod2. All together, including the Pauli updates, applying

Proposition 1 takes time O(n2).

2.2.2.5 Applying Proposition 1 to CH States

Commuting a Pauli operator through the layers of the CH circuit can be done using

methods already introduced in previous sections. Distinctly from the DCH case,

here we fix P = iaX(~x)Z(~z).

To commute a Pauli past the UC layer, we need to compute U †CPUC , and this can
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be expanded out in a similar manner to Eq. 2.43. This gives

U †CX(~x)UC =
∏
i:xi=1U

†
CXiUC

U †CZ(~z)UC
∏
i:zi=1U

†
CZiUC

We can thus build up P ′ term by term as

U †CPUC =
n∏
j=1

xj (iγjX(rowj(F ))Z(rowj(M)))
n∏
j=1

zi (Z(rowj(G)))

= i
∑n

j=1 xjγj+2
∑n

j=1

∑
k>j

xjxk(rowj(F )·rowj(M))
X(~xF )Z(~xM +~zG)

= i~xJ~xTX(~xF )Z(~xM +~zG). (2.48)

The extra factor of 2 in the phase arises from having to commute the Pauli Z terms

in U †CXjUC past the following Pauli X terms. We can encode these commutation

relations as a binary matrix

MF T :
[
MF T

]
i,j

= rowi(M) · rowj(F ),

which is additionally symmetric as

[
U †CXjUC ,U

†
CXkUC

]
= [Xj ,Xk] = 0.

Similar to the way we encode the phase polynomial in the DCH form, we can then

simplify the overall phase calculation as

~aJ~aT : [J ]i,j =


γi i= j

MF Ti,j i 6= j

where we pick up the correct factor of 2 from the symmetric nature of MF T . Com-

puting each of the matrix-vector multiplications to commute past UC takes O(n2)

time. We can then use the same update rule as for the DCH form to commute the

Pauli operator past the UH layer.

Finally, to finish applying Proposition 1, we need to update the tableau of UC to

65



Chapter 2 Methods for Simulating Stabilizer Circuits

UCWC . We have

(UCWC)†Xi,Zi (UCWC) =W †C

(
U †CXi,ZiUC

)
WC

an thus we need to update the Paulis in the tableau by conjugation with CNOT,

CZ and S gates. These rules for updating UC by right-multiplication with a control

type unitary are the same as for the CHP tableau, with some additional corrections

for phase.

S

 colq(M) ← colq(M) + colq(G)

γ ← γ− colq(F ) mod 4

CZq,p


colq(M) ← colq(M) + colp(F )

colp(M) ← colp(M) + colq(F )

γ ← γ+ colp(F ) · colq(F )

CNOTq,p


colq(G) ← colq(G) + colp(G)

colp(F ) ← colp(F ) + colq(F )

colq(M) ← colq(M) + colp(M)

(2.49)

There are O(n) row and column updates to perform, and thus this final step runs in

time O(n2). Overall, then, the complexity of applying Proposition 1 to the CH form

is O(n2), arising from computing U †CPUC and then updating the tableau underWC .

2.2.2.6 Sampling Pauli Measurements with Proposition 1

Proposition 1 can also be extended to apply to sampling measurements of arbitrary

Pauli operators. Measuring a Pauli operator P is closely related to applying a

projector Π±P = 1√
2 (I ±P ). As mentioned previously, there are three possible

outcomes for a Pauli measurement

Π+P |φ〉= |φ〉 P |φ〉= |φ〉 Deterministic Outcome + 1

Π+P |φ〉= 0 P |φ〉=−|φ〉 Deterministic Outcome −1

Π+P |φ〉= |φ〉+ |ϕ〉 P |φ〉= |ϕ〉 Random Outcome

In terms of measuring an operator P , then we can begin by commuting the projector

I +P through the Clifford circuit as described in the previous sections. Dropping
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the normalisation, we have

(I+P )V |~s〉= V
(
I+V †PV

)
|~s〉

= V
(
|~s〉+P ′ |~s〉

)
= V

(
|~s〉+ iβ

∣∣∣~s′〉)

which is the equivalent to the statement of Proposition 1, with ~t =~s and ~u = ~s′.

If ~s = ~s′, then the measurement outcome is deterministic. As we have used the

projector Π+P , the measurement outcome is +1 unless β = 2, in which case the

outcome is −1. Otherwise, if ~s 6= ~s′, the measurement outcome is random and

equiprobable. We can sample the ±1 outcome using random number generation

techniques, and then apply the corresponding projector (I±P ). As computing

P ′ takes in general O(n2) time, deciding on the measurement outcome also takes

O(n2) time. However, compared to other stabilizer simulators, we note that this

algorithm works for arbitrary Pauli operators P as opposed to just single-qubit

Pauli Z measurements.

2.2.2.7 Computational Amplitudes and Sampling Output Strings

Commuting Pauli operators through the layers of control-type operators can also be

used to compute the probability of a given computational basis state. Recall that a

control-type Clifford circuit UC is defined such that UC
∣∣∣~0〉 =

∣∣∣~0〉. Recall also that

for the DCH representation, UD and UCNOT are also a control-type operators. Thus,

〈
~0
∣∣∣φ〉= we

〈
~0
∣∣∣UCUH ∣∣∣~s〉

= we
(〈
~0
∣∣∣UC)UH |~s〉

= we
〈
~0
∣∣∣UH ∣∣∣s〉 .

This trick, using the definition of a control-type operator to simplify the inner prod-

uct, can be extended to any computational basis state. Writing
∣∣∣~t〉 = X(t)

∣∣∣~0〉, we
can then commute the X operators past the control-type layer(s) to obtain

〈t|UCUH |s〉=
〈
~0
∣∣∣P ′UH ∣∣∣~s〉

=
〈
~0
∣∣∣iµZ(~z′)X(~x′)UH

∣∣∣~s〉=
〈
~x′
∣∣∣UH ∣∣∣~s〉 (2.50)
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where we have used the ‘ZX’ convention in the definition of the Pauli operator. If

instead we use the ‘XZ’ convention, then we pick up an additional phase factor of

−1~x′·~z′ .

The action of the Hadamard layer on a computational basis state can be expanded

out as

UH |~s〉= 2−|~v|/2 (−1)~s·~v
∑
~x≤~v

(−1)~s·~x |~s⊕~x〉 (2.51)

where ~x≤ ~v denotes the binary strings ~x : xi = vi ⇐⇒ vi = 0 and |~v| is the Hamming

weight of the string ~v. Thus, we have overall that

〈
~t
∣∣∣φ〉= 2−|v|/2iµ

∏
j:vj=1

(−1)x
′
jsj

∏
j:vj=0

〈
x′j

∣∣∣sj〉 , (2.52)

which equals 0 if any uj 6= sj for vj = 0, and is proportional to 2−|v|/2 otherwise.

As this requires commuting a Pauli operator through the C/DC layer(s), computing

these amplitudes takes time O(n2).

This result can also be extended to sample strings from the probability distribution

P (x) =
∣∣∣〈~t∣∣∣V ∣∣∣~s〉∣∣∣2, where V is a Clifford circuit V = UCUH ≡ UDUCNOTUH . From

the above, we know that any string with a non-zero amplitude occurs with equal

probability. This, it is sufficient to start with a binary string

~w : wj =


sj vj = 0

0 otherwise

and then pick each of the remaining |~v| bits at random with equal probability.

2.2.2.8 Computing Inner Products

Computational basis state amplitudes are a special case of stabilizer state inner prod-

ucts. Here, we present a general method for computing inner products 〈ϕ|φ〉 using

the DCH and CH forms. Both methods proceed by combining the two control-type

layers, and then breaking down the computation into a sum of different computa-

68



Chapter 2 Methods for Simulating Stabilizer Circuits

tional basis state amplitudes

〈ϕ|φ〉= 〈t|VHV †CUCUH |~s〉

=
〈
~t
∣∣∣VH ∣∣∣Φ〉 : |Φ〉= V †C |φ〉 .

Proposition 2 Given a stabilizer inner product of the form

〈
~t
∣∣∣VH ∣∣∣Φ〉

where |Φ〉 is encoded in DCH or CH form, we can compute the inner product by

computing the computational state ampliude
〈
~t
∣∣∣Φ′〉 where |Φ′〉 = VH |Φ〉, in time

O(n3).

Proof of Proposition 2. In both the DCH and CH form, we can simulate the action

of a single Hadamard gate in time O(n2). The Hadamard circuit VH contains at most

n Hadamard gates, and so we can compute VH |Φ〉 in time O(n3). The amplitude

then reduces to computing the amplitude
〈
~t
∣∣∣Φ′〉, which takes time O(n2). The

overall worst-case complexity is thus O(n3).

This method bares a strong resemblance to the ‘basis circuit’ method described

in [103], with the advantage that the ‘basis circuit’ is explicitly stored in the DCH

and CH data-structures, rather than needing to be computed from a tableau. In the

following sections, we will show how to compute |Φ〉 from the DCH/CH data of |ϕ〉

and |φ〉.

The DCH Case

In this representation, we need to compute U ′DU ′CNOT = V †CNOTV
†
DUDUCNOT.

We begin by combining the two phase layers, noting that

U †D |~x〉= i−~xB~x
T

|~x〉

and thus given the two phase matrices A,B, the phase matrix encoding the

combined circuit is

V †DUD |~x〉= i~x(A−B)~xT |~x〉
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where, as per the definition, the subtraction is mod 2 on the off-diagonal entries

and mod 4 on the diagonal entries.

We then need to commute V †CNOT past the new U ′D layer, and combine it with

UCNOT. As this circuit is an inverse, it is characterised by the binary matrix

Q−1, and its inverse is Q. Thus

B′ ← Q−1B′Q

W ← WQ−1

W−1 ← QW−1

(2.53)

Altogether then, the updated DCH information of |Φ〉 can be computed in

time O(n2).

The CH Case

Given two tableau describing control-type unitaries VC and UC , we can com-

bine them using Eq. 2.48, as

(VCUC)†XjVCUC = U †C
(
V †CXjVC

)
UC

= iγ
′
jU †CPUC

= iγ
′
j+rowj(F ′)Jrowj(F ′)TX(rowj(F ′)F )Z(rowj(M ′)M),

and similarly for the Zj entries. Combining two tableau in this way will re-

quire time O(n3), as there are 2n entries and each update takes time O(n2).

However, to compute the tableau of |Φ〉, we will require the following Lemma:

Lemma 2 Given the tableau of a control type operator UC , specified by the

binary matrices F , M and G, then the inverse tableau has matrices G′, F ′ and

M ′ such that
G′ ≡ G−1

F ′ ≡ GT

M ′ ≡ MT .

(2.54)
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Proof of Lemma 2. The entries of the tableau for U †C have the property

UC
(
U †CXj ,ZjUC

)
U †C = U †C

(
UCXj ,ZjU

†
C

)
UC =Xj ,Zj

Consider first the Pauli Z terms. Using Eq. 2.48, can see that

UC
(
U †CZjUC

)
U †C = Z(rowj(G)G′) = Zj

for all j ∈ {1,2, . . . ,n}. Expanding out this requirement, we can see that

rowj(G) · colk(G′) = δjk∀ j,k. If we change the order of the multiplications,

we obtain the additional constraint rowj(G′) · colk(G) = δjk. We thus require

that

GG′ =G′G= I (2.55)

and thus, G′ =G−1.

A feature of CHP tableaux is that the jth stabilizer and destabilizer anti-

commute. Here, similarly

U †CXjUC U
†
CZkUC = (−1)δjk U †CZkUC U

†
CXjUC

where the extra phase arises from the commutation relations of Pauli operators.

In terms of the entries of the tableau, this tells us that

rowj(F ) · rowk(G) = δjk∀j,k =⇒ FGT = I.

This also holds for the tableau of U †C . From this, we can conclude that F =(
G−1

)T
, and similarly F ′ =GT .

Finally, consider the Xj entries. Again applying Eq. 2.48, we have

UC
(
U †CXjUC

)
U †C =X(rowj(F )F ′)Z(rowj(F )M ′+ rowj(M)G′) =Xj .
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As the Pauli Z terms cancel, we have

rowj(F ) · colk(M ′) + rowj(M) · colk(G′) = 0 ∀j,k

=⇒ rowj(F ) · colk(M ′) = rowj(M) · colk(G′) ∀j,k.

Using F T = (G−1), and Eq. 2.55, we thus have

rowj(F ) · colk(M ′) = rowj(M) · rowk(F ) ∀j,k =⇒ Mj,k =M ′k,j (2.56)

completing the proof.

Special case for ‘Equatorial’ Stabilizer States

As part of the simulation routines we will introduce in the following chapters,

we are especially interested in computing the inner product when the state |ϕ〉

is of the form

|ϕ〉=
∑
~x∈Zn2

i~xA~x
T

|~x〉 ,

a superposition of all 2n computational basis states with relative phases. We

call these ‘equatorial’ stabilizer states, as they are like n-qubit generalisations

of single qubit states |0〉+eiθ |1〉 which lie on the equator of the Bloch sphere.

As such, we introduce an optimized routine for these kind of inner products.

Claim 1 If |ϕ〉 is an equatorial state, we can instead write the inner product

as

〈φ|ϕ〉= 2−
(n+|~v|)

2 i(~sK~s
T+2~s·~v) ∑

~x∈Z|~v|2

i~xK(1,1)~xT+2~x[~s+~sK](1)T (2.57)

where ~s(1) denotes the elements of a vector sj : vj = 1, and K(1,1) is the

sub-matrix with rows i and columns j such that vi = vj = 1.

Proof of Claim 1. Let us assume that, given a control-type unitary UC ≡

UDUCNOT, we can write U †C |ϕ〉 = ∑
~x∈Zn2 i

~xK~xT |~x〉 for an appropriate phase

matrix K. We will show in the following section how to construct this matrix

K given the CH and DCH representation of a state |φ〉. Given this form then,
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we have

〈ϕ|φ〉= (〈φ|ϕ〉)∗

= 2−n/2
 ∑
~x∈Zn2

i~xK~x
T

〈~s|UH |~x〉


∗

Using Eq. 2.51 to expand out the left hand side of this expression, we obtain

a sum over terms

∑
~x∈Zn2

i~xK~x
T

〈~s|UH |~x〉= 2−|~v|/2(−1)~s·~v
∑
~y<~v

(−1)~s·~y
∑
~x∈Zn2

i~xK~x
T

〈~s⊕~y|~x〉

From the orthogonality of computational basis states, we can set ~x =~s⊕~y and

drop all other terms in the sum. Doing so changes the phase calculation to

(~s⊕~v)K(~s⊕~y)T =~sK~sT +~yK~yT +~yK~sT +~sK~yT =~sK~sT +~yK~yT + 2~yK~sT

where the final equality follows from the symmetric nature of K. From the the

definition of ~y≤ ~v, yj = 0 ⇐⇒ vj = 0. Thus, we can take the global phase of
~sK~sT out and reduce the sum to the sum over strings ~y ∈ Z|~v|2 , as in Claim 1.

To complete the proof, we need to show how to obtain K in both cases. In

the DCH form, we have

〈φ|ϕ〉= 〈~s|UHU−1
CNOTU

−1
D |ϕ〉 .

Using the definition of an equatorial stabilizer state, we can write |ϕ〉 =

VD
∣∣∣+⊗n〉, and simply compute |ϕ′〉 = U−1

D VD
∣∣∣+⊗n〉 by combining the two

phase layers to obtain a new phase matrix (A−B).

Another feature of the state
∣∣∣+⊗n〉 is that it is invariant under CNOT circuits,

as it is a superposition of all computational basis states and subsequently

invariant under their permutation. Applying Lemma 1, we can commute the
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circuit U−1
CNOT past U ′D = U−1

D VD and eliminate it. This gives a new phase

matrix K =G(A−B)GT .

In the CH case, using Eq. 2.48, we can write

U−1
C |~x〉= U−1

C X(~x)UC
∣∣∣~0〉= i~xJ~x

T

|~xF 〉

Applying this to |ϕ〉 thus gives

U−1
C

∑
~x∈Zn2

i~xA~x
T

|~x〉=
∑
~x∈Zn2

i~x(A+J)~xT |~xF 〉 .

Using FGT = I, as introduced in the previous section, and setting ~x = ~yGT ,

we have ∑
~y∈Zn2

i~yG
T (A+J)G~yT |~y〉=

∑
~y∈Zn2

i~yK~y
T

|~y〉

as required where K =GT (A+J)G.

Once the calculation is in this form, we can compute the inner product in

time O(|~v|3) using the algorithm for exponential sums developed by Sergey

Bravyi [107]. Computing the phase matrix K takes time O(n2) in both cases,

and thus as |~v| ≤ n we have a general performance O(n3).

2.2.3 Implementations in Software

The DCH and CH data structures and most routines were implemented in C++,

to produce a stabilizer circuit simulator. The one exception was the arbitrary

stabilizer state inner product, which was derived but left unimplemented due

to time constraints and as it was not required for simulations performed in

the subsequent chapters. In this section, we will review some of the optimiza-

tions employed, and present data comparing their performance with existing

software implementations.

The resulting simulators were also validated through the use of testing ran-

dom circuits. The CH representation was validated by comparison to a MATLAB

version of the simulator developed independently by David Gosset. The DCH
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Property CH DCH CHP Canonical Graph States [102]
Memory O(n2) O(n2) O(n2) O(n2) O(nd)
Z O(n) O(1) O(n) O(n2) O(1)
X O(n) O(n) O(n) O(n2) O(1)
S O(n) O(1) O(n) O(n2) O(1)
H O(n2) O(n2) O(n) O(n2) O(1)
CZ O(n) O(1) O(n) O(n2) O(d2)
CX O(n) O(n) O(n) O(n2) O(d2)
Measurement O(n2) O(n2) O(n2) O(n2) O(d2)
Inner Product O(n3) O(n3) O(n3) O(n3) N/A

Table 2.1: Comparison of the asymptotic complexity of different stabilizer circuit simula-
tors, including common operations and their memory footprint. We include the
graph based representation of Anders & Briegel, discussed later in this section,
and omit the ‘Affine Space’ simulator as it has no current implementation for
gate updates.
Here, d is the degree of the graph used as an internal representation, which
varies from logn to n [102]. We further note that, while all algorithms for mea-
surement are in principle extensible beyond single qubit measurements, only the
DCH and CH simulators currently implement arbitrary Pauli measurements.

representation was then validated against this successfully tested CH represen-

tation, using random circuits and conversion to state-vectors through 2n calls

of the computational amplitude routine.

2.2.3.1 Efficient Binary Operations

The data-structures and subroutines underpinning the CH and DCH represen-

tations are built out of arithmetic performed modulo 2 and 4, depending on

the context. This allows us to efficiently store the representations using binary

bits as opposed to integers, and then use boolean operations as part of the

simulation routines.

Addition and subtraction modulo 2, such as is required in the UC updates

of the CH representation and the UD updates in the DCH representation, is

equivalent to the boolean ‘XOR’ operation, defined as

a b a⊕ b a+ b( mod 2) a− b( mod 2)

0 0 0 0 0

0 1 1 1 1

1 0 1 1 1

1 1 0 0 0
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For addition modulo 4, we encode each number using two binary bits a and b

as 2a+ b. In this context, a is typically referred to as the ‘twos’ bit and b as

the ‘ones’ bit. Addition can be done for the ones and twos terms separately,

with an additional carry correction

x+y (mod 4) = 2(ax⊕ay⊕ (bx∧ by)) + (bx⊕ by) .

In the case of subtraction modulo 4, we note that adding and subtracting 2

can be achieved using just the XOR operation, as only the twos bit is changed.

Otherwise, we note that

a a−3 (mod 4) a−1 (mod 4)

0 1 3

1 2 0

2 3 1

3 0 2

i.e. a−3 = a+1, and a−1 = a+3, where the addition is again modulo 4. This

trick allows us to simplify a−b (mod 4) by setting b2← b2⊕b1, and then using

addition.

Vector and matrix multiplications modulo 2 can also be reduced to a set of

binary operations. Each element [aM ]i, [LM ]i,j can be written as a binary

inner product, respectively a · coli(M) and rowi(L) · colj(M). Computing the

binary inner product can then be expanded out in terms of boolean operations

as

x ·y = (x1∧y1)⊕ (x2∧y2) · · ·⊕ (xn∧yn) .

Typically, we are applying the same operation to entire vectors, rows or

columns of a binary matrix. Thus, we can employ a technique called ‘bit-

packing’ to efficiently store and update these binary values. In C++, integers

can by stored using 8, 16, 32 or 64 binary bits (1, 2, 3 and 4 bytes, respec-

tively). The built-in in bool data-type is also typically stored using 1 byte, as

this is the smallest unit of memory addressable by a processor [110].
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Bitpacking instead stores up to 64 binary bits in a single variable, manipulating

them through the use of ‘bitwise’ operators [111]. Bitpacking typically achieves

an 8-fold reduction in the memory footprint. Additionally, a bitwise operation

between two variables acts on all bits simultaneously in a single time-step. For

example, considering the XOR between two binary vectors, we can write

~x⊕~y = [x1⊕y1, · · ·xn⊕yn] ⇐⇒ uint64_t z = x ˆ y //bitwise XOR

We can also make use of so called ‘intrinsic’ functions to optimise computing

the binary inner product, and sums of terms modulo 4. Intrinsic functions

allow certain special processor instructions to be called directly. Specifically,

we use two intrinsics for calculating the hamming weight and the parity of a

binary string, each of which are computed in a single time step. Using these

operations, we can write the binary inner product as

∑
i

xiyi = |x∧y|mod2 ⇐⇒ parity(x & y)

and a sum of integers modulo 4 as

2∗
∑
i

ai+
∑
i

bi ⇐⇒ (2*parity(2bits)+hamming_weight(1bits))%4

where % is the C++ modulo operator.

Using these operations allows us to reduce the effective complexity of many

common subroutines by a factor of n, as long as the number of variables

n is less than 64, the largest available integer on most modern computers.

For example, instead of O(n) time, computing the binary inner product now

requires just two operations: a bitwise logical AND, and the parity intrinsic.

However, above 64 bits, we need to pack the bits across multiple variables, and

so the number of calls to intrinsic functions will again asymptotically as O(n).

Specifically, the number of operations required will go as n/64.

Case study: Stabilizer simulations with Affine Spaces
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As an example of the use of bitpacking to optimize stabilizer simulators, we

developed a C++ implementation of the stabilizer state simulator introduced in

Appendices B, C and E of [47]. While not a full simulator, they provide explicit

algorithms for performing Pauli measurements and computing stabilizer inner

products. These methods were implemented by the authors in MATLAB, using

matrices of integers and repeated application of the mod function.

In particular, in their encoding a stabilizer state is based on Eq. 2.20, described

by a tuple

|φ〉=
(
n,k,~h,G,G−1,Q,D,J

)
where n is the number of qubits, k is dimension of the the affine space K,

generated by the first k columns of the n×n binary matrix G and an n-bit

binary vector ~h. The inverse matrix G−1 is also stored. The phase terms are

encoded in a quadratic form using a constant offset Q ∈ Z4, a vector D of

elements mod 4, and a symmetric n×n binary matrix J , such that

if(~x) = iQ+D~xT+~xJ~xT .

The C++ simulator makes use of bitpacking to efficiently store ~h, G, G−1 and J .

Additionally, we store the elements of D using two binary variables, separating

the 1s and 2s bits. The routines were verified and benchmarked against the

existing MATLAB implementation using the MATLAB EXternal languages (MEX)

interface, which allows compiled code to be called from within MATLAB appli-

cations [112].

All MEX interfaces were compiled with the default MEX compiler flags, with

the addition of -std=c++11, using MATLAB R2019a on MacOS 10.14. The

simulations had access to a 2.40Hz Intel i5-4258U, and 8GB of RAM.

The results of the benchmark are shown in Figure 2.3. We include two core

subroutines specific to the affine space simulator, called Shrink and Extend,

defined in Appendices B and E of [47]. Shrink computes the intersection be-

tween an affine space and a binary vector, and is called as part of computing
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Figure 2.3: Figures showing the performance of the MATLAB and C++ implementations of a
stabilize simulator based on Affine Spaces.
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stabilizer inner products. Extend instead computes the new affine space ob-

tained by adding a new basis vector, and is called as part of simulating Pauli

measurements. We also present results for arbitrary n qubit Pauli measure-

ments and computing the inner product between stabilizer states.

The observed differences in runtime are relatively consistent across each rou-

tine. In general, the C++ implementation has a significant advantage in the

5–15 qubit range, with a speedup of anywhere from 1.6 to 10 times. This

advantage then drops off as the number of qubits increases, tending to a con-

stant speedup of between 1.5 to 3 times. The notable exception to this is in the

Extend routine, which actually performs worse than the MATLAB version above

35 qubits. All benchmarks have a cutoff below 64 qubits, which is enforced by

the use of 64 bit integers for bitpacking in the C++ simulator.

Specific Optimizations for the CH and DCH Forms

As many subroutines require computing vector-matrix multiplications of the

form ~aM , we store the matrices in ‘column format’ where each bitpacked

variable stores one column of the binary matrix. This allows us to make use

of intrinsic functions to speedup these multiplications.

Transposed matrices are computed using ‘lazy evaluation’. When the trans-

posed matrix is required, we compute it and store it. We then additionally

store a flag to indicate if the transposed matrix is up to date. If later function

calls change the values of the transposed matrix, the flag is set to false and

the transpose will be recomputed only when required.

Whenever the result of a calculation is expected to be symmetric, we can halve

the number of operations by copying values across. This gives a constant factor

speedup in, for example, computing the phase matrices K as part of inner

product calculations. We can also make use of this symmetric structure to

avoid transposing a matrix when accessing a row.

Typically, phase matrices are stored as binary matrices with 0 diagonal, and
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then a separate pair of bitpacked variables storing the diagonal entries which

are modulo 4. When required, we update the diagonals separately using an

explicit expansion of the matrix multiplications.

Some updates for the DCH form are further optimised by using explicit ex-

pansions of the matrix multiplications. For example, when commuting a Pauli

Z through the CNOT layer as in Eq. 2.46, we avoid a call to the transpose

W T by noting that

[~zW T ]i =
∑
j

zjW
T
j,i =

∑
j

zjWi,j

i.e. each entry [~zW T ]i is a sum of some entries in row i. We can thus build

up the new vector ~z′ = ~zW T by repeatedly doing ~z′← ~z′⊕ colj(W ) for each

j : zj = 1.

2.2.4 Performance Benchmarks

To establish the performance of the DCH and CH implementations, we bench-

mark them against two existing stabilizer circuit simulators, which are avail-

able publicly online. The first is the C implementation of the CHP method,

developed by Scott Aaronson [104]. This uses a variant of bitpacking based on

32-bit integers. The second method is a radically different representation of

stabilizer states, based on the fact that any stabilizer state can be generated

by a local Clifford circuit (single qubit Clifford gates), acting on a special class

of stabilize state called a graph state [113, 114].

Graph states are named as their structure is described by a mathematical

graph of vertices V and edges E, where each qubit is a vertex. From this

graph, a graph-state is then built-up as

|(V,E)〉=
 ∏
i,j∈E

CZi,j

∣∣∣+⊗n〉 ,
by performing a CZ gate between every pair of qubits connected by an edge

of the graph [114].
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The so called ‘Anders & Briegel’ simulator describes a stabilizer state by

its corresponding graph, and by sequences of local Clifford operators acting

at each vertex. A C++ implementation of this simulator also exists, called

GraphSim [115]. This stores a graph as a list of vertices, each with local infor-

mation about the vertices connected to it.

The expected runtime of different routines using the Anders & Briegel method

are also given in Table 2.1. Importantly, in their analysis, routines are quoted

with a runtime that scales as d, the maximum ‘degree’ or number of edges

involving a given vertex. By definition, d ≤ n, the number of vertices in the

graph, and thus the simulator has a worst case performance comparable to

the DCH, CH and tableau methods. However, this analysis makes explicit a

feature of stabilizer circuit simulators; their runtime in practice depends on

the state/circuit being considered.

This phenomenon was first described in [64], where it was observed that the

runtime for Pauli measurements seemingly varied between linear and quadratic

scaling in the number of qubits, despite the expected asymptotic quadratic

scaling. In particular, the algorithm for computing a given measurement in

the CHP representation requires between 1 and n calls to a subroutine which

takes O(n) to evaluate, and the exact number is determined by the sparsity

of the X-bits of the stabilizers, which is in turn related to the number of

entangling gates in the circuit.

Similar results hold in detailed analysis of the CH and DCH representations,

where the exact number of calculations required will depend on the sparisty

of the matrices/vectors encoding different features of the stabilizer circuits.

Consider for example the inner product algorithm of Proposition 2, where we

need to apply |~v| H gates at a cost of O(n2) each.

To account for these effects on the runtime of a simulation, Aaronson & Gottes-

man introduced a heuristic for evaluating stabilizer circuit simulators. We be-

gin by applying a random stabilizer circuit to the state, choosing H, S and
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CNOT gates at random, before applying the operation we are benchmarking

and recording the runtime. Using an argument based on message passing, the

authors claim that in general we need O(n logn) gates in the circuit to ob-

serve this transition between easier and harder instances of stabilizer circuit

simulation, and so we apply βn logn gates where β is a parameter that varies

between 0.5 and 1.2. This heuristic is also employed by Garcia et al. in their

paper presenting an algorithm for computing stabilizer inner products, where

they observe a transition between quadratic and cubic scaling with varying

β [103].

Here we present results comparing the performance of different operations be-

tween the DCH, CH, CHP and GraphSim methods, for different values of the

parameter β. All run-times are averages taken over 100000 repetitions, where

we first apply a random stabilizer circuit of βn logn gates, and then record the

time taken by the particular operation.

To enable a fair comparison, the CHP software was extended to directly com-

pute Pauli X and Y updates, rather than using conjugation with Hadamard

and S gates. The GraphSim package was also updated to use the C++ 11 stan-

dard library unordered_set class, instead of its precursor hash_set.

All implementations were included as ‘header-only’ files, and the benchmark-

ing tool was then compiled using gcc version 7.3.0, with the -O3 flag. The

simulations were run on the UCL Myriad cluster with access to 1GB of RAM,

and a single core of a 2.30GHz Intel Xeon processor. We also present data for

routines specific to the DCH and CH routines. In particular, we present data

demonstrating the runtime of arbitrary n-qubit Pauli measurements, and for

the specialized ‘equatorial’ inner product defined in Claim 1. We also consider

the effect of weight on the complexity of Pauli measurements.

2.3 Discussion

In this chapter, we have introduced two new representations for simulating

stabilizer circuits, including their implementation in software, and presented

data evaluating their performance against previous methods.
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(a) S, β = 1.6
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(b) H, β = 1.6
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Figure 2.4: Average runtime of the single qubit H and S gates as a function of the number
of qubits across different stabilizer simulators. Single qubit gates show no
dependence on length of the preceding circuit, encoded as the β parameter.

Figure 2.5: Average runtime of entangling CNOT and CZ gates as a function of the number
of qubits for different stabilizer simulators, for extremal values of β. The
Anders & Briegel method shows a significant dependence on circuit length.

(a) CNOT, β = 0.5
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(b) CZ, β = 0.5
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(c) CNOT, β = 1.6
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(d) CZ, β = 1.6
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Figure 2.6: Average runtime of single qubit measurements in the X and Z basis, as a
function of the number of qubits and the length of the preceding stabilizer
circuit, for 4 stabilizer simulators.

(a) Z measurement, β = 0.5
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(b) X measurement, β = 0.5
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(c) Z measurement, β = 0.8
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(d) X measurement, β = 0.8
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(e) Z measurement, β = 1.2
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(f) X measurement, β = 1.2
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(g) Z measurement, β = 1.6
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(h) X measurement, β = 1.6
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(a) Computing Computational Amplitudes
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(b) Equatorial Stabilizer Inner Products
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Figure 2.7: Average runtime of two routines specific to the DHC and CH routines, as a
function of the number of qubits. Solid lines are for β = 0.5, and dasedh lines
for β = 1.6. A slight dependence on circuit length is observed.

Figure 2.8: Average runtime of Pauli measurements for the CH and DCH simulators. A
solid line represents a single Pauli Z measurement. The dashed lines represent
n-qubit Pauli Z measurements, and the dotted line random n-qubit Paulis.
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In particular, we make use of bitpacking techniques to try and further improve

their runtime. Figure 2.3 introduced results comparing a bitpacked simulator

with a prior MATLAB implementation. In general, we see a broad speedup

over the MATLAB version across the full parameter range, though the exact

degree of this speedup decreases with increasing n. The main exception is

the Extend routine, where we observe the C++ implementation scaling roughly

quadratically with the input size, whereas the MATLAB version exhibits a closer

to linear scaling.

One possible explanation for this effect is an unfortunate side-effect of the

use of MEX files, namely that the C++ version additionally needs to convert

the MATLAB data into a C++ data-structure. This adds an additional O(n2)

overhead to the runtime of the C++ simulator. Otherwise as coded, the Extend

algorithm has only O(n) steps. In more complex functions like measurement,

Shrink and inner products, which have run-times 10−100 times longer than

Extend, this effect is less significant, but nonetheless likely contributes to the

steeper gradient of the C++ scalings.

The difference in performance is most significant for the inner product routine,

which has an overall complexity that scales as O(n3) resulting from up to n

calls to the Shrink routine, and a call to Sergey Bravyi’s Exponential Sum

routine which also has runtime O(n3). In this case, the effect of the additional

data-copying is suppressed by the overall runtime of the algorithm.

It is important to note that the MATLAB implementations also benefit from a de-

gree of parallelization, through a combination of multi-threading, and so called

‘Single Instruction streamMultiple Data stream’ (SIMD) operations [116]. Ma-

trix and vector multiplications are intrinsically parallelisable, as each element

in the result is computed from a unique set of multiplication and addition op-

erations. One option for optimising parallel code is to make multiple ‘threads’

available to the program, which each tackle a different part of the computation.

However, as we are frequently performing lots of identical operations over dif-

ferent inputs, they can also benefit from SIMD CPU instructions. These are
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optimizations which speedup computations by loading multiple values into

a special shared binary register, applying a common operation to the entire

register, and then reading the result back out [117]. MATLAB is built atop the

long established LAPACK and BLAS libraries for linear algebra, which implement

these types of optimization [118, 119, 120].

The effect of these optimizations becomes apparent when we try to extend a

bitpacked simulation beyond 64 qubits. In this case, we need to use an array

of integer values to encode each binary vector, and each operation now incurs

the overhead of looping over these arrays. As an example, Figure 2.9 shows the

runtime of the Exponential Sum algorithm of [107], extended up to 150 qubits.

We choose Exponential Sum for this benchmark as it has a complexity that

scales as O(n3), reducing the impact of the MEX interface on performance. As

before, the speedup shown by the C++ implementation continually decreases

with increasing n. Given that some measure of performance improvement is

expected by virtue of using a compiled language, compared with the dynamic

language MATLAB, we can see that the bitpacking method is no longer providing

significant speedup.

It would also be possible to further optimize the implementation developed

here with the addition of SIMD operations. Instead of looping over each

integer variable used to encode large bitpacked vectors, the variables could

instead be loaded into SIMD registers. This would significantly optimize the

computations up to 512 qubits, as 512 bits is the largest register currently sup-

ported [117]. An SIMD implementation is outside the scope of this thesis, but

would be a significant performance upgrade to the CH and DCH simulators.

CH and DCH Performance

Comparisons between the DCH and CH forms and previous stabilizer simu-

lators are shown in Figures 2.4, 2.5 and 2.6. Broadly, we see that the DCH

and CH representations are competitive with previous techniques, in spite of

tracking additional phase information and offering additional ‘functionality’.

Specifically, for single qubit Clifford gates, we see that the Graph Sim method
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Figure 2.9: Figure comparing the runtime of the C++ and MATLAB implementations of
Sergey Bravyi’s Exponential Sum routine, up to 150 qubits.

has the best overall performance. Because applying a single qubit operator in

this picture only requires updating ‘local’ information, it can be implemented

using a lookup table and thus has constant complexity. This is a significant

advantage over the other methods.

However, as mentioned in Table 2.1, the graph based data-structure employed

by Anders & Breigel has a runtime that scales as the maximum degree d

of the graph for entangling gates, as they alter this underlying graph. This

effect becomes clear with increasing β, where the complexity of graph and

subsequently the runtime of entangling gates significantly increases. At the

largest tested value, 61 qubits, the runtime of an entangling gate grew from

≈ 3x10−7 at β = 0.5, to ≈ 1x10−5 at β = 1.6. In contrast, we note that the

CHP, CH and DCH methods also show no apparent dependence on β. This

would be expected from the update algorithms, which rely on binary operations

that are independent of the sparsity of the data structures.

The DCH also benefits from a constant time complexity for all phase gates,

leading to its improved performance for the ‘CZ’ gate. The CH representation
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has no constant time operations, but is broadly competitive in terms of single

qubit gate performance. This is especially true in the case of the Hadamard

gate, in spite of the theoretical O(n2) complexity of this operation. However,

the DCH representation shows a significantly increased overhead in simulating

Hadamard gates. This suggests the simulator is a poor choice for circuits

involving many basis changes.

The origin of this increased overhead can potentially be explained by com-

paring the performance of Pauli measurements, where the CH simulator also

out-performs the DCH method. This suggests that the additional overhead

is incurred when commuting Pauli operators through the circuit layers. We

might also expect that applying the circuit correction of Proposition 1 is slower

for the DCH form, as it involves explicit matrix operations. In contrast, the

CH form here requires only column updates, which take a single time-step as

we store binary matrices as bitpacked column matrices.

The effect of commuting Paulis can be clarified by also considering Figure 2.8.

We see that the CH method has a significant advantage for both single and n

qubit Z-rotations, but that the DCHmethod shows slightly better performance

for arbitrary Pauli operators. This likely follows from the need to compute a

transpose of the F and M matrices, whereas the DCH method is optimized to

avoid then need for transposition.

Transposition is also likely the cause of the increased overhead incurred by the

CH representation in computing the equatorial inner products, and in com-

puting computational state amplitudes, shown in Figure 2.7. Importantly, as

discussed before, transposed matrices are stored ‘lazily’, computed only when

required and then cached until outdated. Thus, in computing multiple ampli-

tudes or inner products as is likely in a practical simulation, this performance

gap between the two representations would likely decrease.

An interesting feature of computing computational basis state amplitudes and

equatorial inner products is that they show only a small dependence on the
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length of the preceding stabilizer circuit. This is in contrast to the results

of [103], which observed a transition from quadratic to cubic scaling in the

number of qubits when computing stabilizer inner products, even for compu-

tational state amplitudes. This would be expected from the implementation

of both routines, making use of intrinsic functions. These allow us to avoid

inspecting matrices and vectors element-wise, instead operating on rows and

columns at a time, and thus makes us less sensitive to the sparsity of the

DCH/CH encoding.

Finally, if we consider simulating Pauli measurements, we again observe that

as implemented the DCH and CH forms have little apparent dependence on

the sparsity of the underlying data-structures. At low values of β, each method

shows a similar performance for Pauli X and Z measurements, with a slight

advantage for the CH and GraphSim methods when simulating X measure-

ments. However, as previously mentioned, Pauli measurements in the CHP

method have a scaling that increases with the number of non-zero entries in

the tableau. The measurement routine of the GraphSim method, like the en-

tangling gates, also depends on the maximal degree of the underlying graph.

Thus, both routines see a significant increase in runtime as β increases. The

GraphSim method in particular sees an almost 100 times increase in runtime

between the smallest and largest values of β at n= 60.

Again, likely as a result of the bitpacked implementation, the DCH and CH

methods are mostly unaffected by increasing β, with their runtime growing

by a factor of 1.33− 2 between the extremal values. This small shift can

be attributed to an increase in the number of non-zero entries, and thus the

number of operations required in commuting a Pauli through the circuit and

applying Proposition 1.

If we were to extend the CH and DCH methods above 64 qubits, we might

expect this effect to become slightly more pronounced, as we would also incur

the overhead of checking multiple binary variables. This effect can in fact be

observed in the CHP data, which employs a version of bitpacking based on
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32-bit integers. Above 32 qubits, we see a sharp jump in the runtime, which

arises from the need to employ two integers for each bitpacked variable.

In conclusion then, we have developed two novel stabilizer simulators which

are performant, and offer improved ‘functionality’ over previous methods. To

further develop these tools, it would be important to extend them beyond the

current 64 qubit limit, and to finish the implementation of arbitrary stabilizer

inner products. With the addition of these routines, this software would form

a very versatile tool-set for simulating different aspects of stabilizer circuits.
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Chapter 3

Stabilizer Decompositions of Quantum

States

3.1 Introduction

In the previous chapter, we discussed in detail efficient simulations of stabilizer

circuits. Recalling the discussion in Section 1.2.3, this classical simulability in

turn implies that non-stabilizer states are a resource for quantum computation.

In this section, we will introduce a particular model of quantum computation

that makes explicit the computational role of ‘magic’ states, Pauli Based Com-

putation [49, 121].

This model forms the basis for the definition of ‘Stabilizer Rank’, a quantity

which tries to relate the computational power of non-stabilizer states to the

task of classical simulation. This chapter will be focused on extending stabilizer

rank decompositions, whereas the following chapter will focus on implementing

classical simulations based on these decompositions.

3.1.1 Pauli Based Computations

A Pauli Based Computation (PBC) is a measurement-based model of quantum

computing, whereby a computation is realised by applying a sequence of Pauli

measurements to a set of non-stabilizer magic states, and post-processing of

the measurement outcomes [121]. In general, this sequence will be ‘adaptive’:

the choice of measurement operator will depend on the outcome of previous

measurements.

It is well known that quantum circuits built out of Clifford gates and the T gate

are universal for quantum computation [66]. Thus, any arbitrary computation
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|0〉 H • T Z

|0〉 T S Z

|0〉 H • •

|0〉 •

|H〉 • C Z

|H〉 • C S Z

Figure 3.1: Figure illustrating two equivalent forms of a small circuit built from the Clifford
+ T gate set. The lower circuit is obtained from the former by replacing each T
gate with a teleportation or ‘state-injection’ gadget that consumes one magic
state|H〉= cos π8 |0〉+ sin π

8 |1〉. This performs a T gate (up to a measurement
controlled correction operation C which is a Clifford gate) [65].

U acting on a computational input state can be expressed as a circuit with m

Clifford operations and t T gates.

By replacing each T gate in a Clifford+T circuit with a state-injection gad-

get [66], we instead end up with a circuit built exclusively from Clifford gates

and Pauli measurements, acting on n qubits in a computational basis state, and

t qubits in a non-stabilizer state. An example of a gadgetized circuit is given

in Figure 3.1. Once in this form, we can convert the circuit to a PBC [49, 121].

In the following discussion, we assume that the only intermediate measure-

ments in the circuit arise from the state-injection gadgets. Circuits with cla-

sically controlled gates conditioned on intermediate measurements are also

called ‘adaptive’. We note that the PBC construction works for both adaptive

and non-adaptive circuits, so this assumption can be made without loss of

generality, but helps to simplify the discusion [49, 121].

Once in this form, we can commute every Clifford operator through the cir-

cuit and past the final Pauli measurement layer. As we do, we update each

measurement operator P → P ′ under conjugation, and the Clifford gate can

then be discarded as it occurs after the measurement layer and thus has no

effect on the outcome. These updates can be efficiently computed using the

methods discussed in Chapter 2. The result is some new sequence of Pauli

measurements P ′1, . . . ,P ′r, acting on n+ t qubits.

It is then possible to show that these measurements can be rearranged such that
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all measurements commute, and act non-trivially on only the t magic states.

The key technique is a lemma showing that if any pair Pj ,Pk anticommute,

they can be updated by sampling a measurement outcome λk =±1 uniformly

at random, and replacing the Pj with a Clifford operator Vj,k = λjPj+λkPk√
2 ,

where λj was the outcome of measuring Pj . This Clifford can then be com-

muted through the rest of the measurement layer [49].

Now consider prepending the circuit with Pauli Z measurements on the n com-

putational qubits. By definition, these measurements are deterministic and do

not change alter the computation. Application of the above Lemma ensures

that these computational measurements all commute with the final measure-

ment operators Pi, and thus that the Pi act trivially on the n computational

qubits [121].

Overall then, the PBC model allows us to realise quantum computation us-

ing only a supply of non-stabilizer resource states, Pauli measurements, and

probabilistic classical computation, used to compute and update the Pauli

measurement sequence [49]. The classical component of the computation is ef-

ficient, as the updated measurement sequence can be computed with a runtime

that scales polynomially in the number of qubits.

A PBC obtained from some Clifford + T circuit U , can be said to efficiently

simulate the original circuit, in both the weak [49] and strong sense [121].

Weak simulation follows immediately as, given a method to sample from the

measurement operators of the PBC, this also corresponds to a sample of the

output distribution of the original circuit [49]. Strong simulation then follows

from the result that an adaptive circuit with postselection has a corresponding

PBC with postselected Pauli measurements [49]. In particular, we can fix both

the measurement outcomes of the circuit, and the measurement-controlled cor-

rection operations introduced by state-injection. The result is a non-adaptive

circuit, which is translated to a non-adaptive PBC with a fixed Pauli projector

Π~x,~s [49], where ~x and ~s are the postselected binary bits corresponding to the

measurement outcome and the state-injection gadgets, respectively [47, 121].
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The corresponding probability amplitude is thus given by

〈
~x
∣∣∣U ∣∣∣0⊗n〉≡ 2t

〈
T⊗t

∣∣∣Π~x,~s
∣∣∣T⊗t〉 (3.1)

where we reweight the probability to account for the fact that each of the 2t

different outcomes on the state-injection gadgets is equiprobable.

3.1.2 Stabilizer State Decompositions

In the PBC model of quantum computation, the role of non-stabilizer states as

a resource for quantum computation is made explicit. It is also clear that the

PBC would require exponential time to simulate clasically, as Pauli expectation

values on non-stabilizer states cannot in general be efficiently computed [63].

In the context of resource theories for quantum computation, we can consider

studying quantum computations by decomposing computations in terms of the

‘free’ set of operations. This is what Bravyi, Smith & Smolin did when con-

sidering stabilizer state decompositions of magic states. We define a stabilizer

state decomposition of a general state |ψ〉 as

|ψ〉=
χ∑
i=1

ci |φi〉 , (3.2)

where each |φi〉 is a stabilizer state and the total number of terms in the

decomposition, χ, is called the Stabilizer Rank of the state |ψ〉.

Given a PBC, and a stabilizer state decomposition of the magic states |T 〉⊗t,

then strong simulation of a PBC reduces to computing a Pauli expectation

value for each term in the decomposition. As these are stabilizer states, this

expectation value can be computed efficiently. Using that fact that Pauli

projectors map stabilizer states to stabilizer states, we can write

Π
∣∣∣H⊗t〉=

χ∑
i=1

ciΠ |φi〉=
χ∑
i=1

ci
∣∣∣φ′i〉=

∣∣∣ψ′〉
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and thus, the overall expectation value is given by

〈
H⊗t

∣∣∣Π∣∣∣H⊗t〉=
〈
H⊗t

∣∣∣ψ′〉=
∑
i,j

c∗i cj
〈
φi
∣∣∣φ′j〉 , (3.3)

a sum of χ2 stabilizer inner products. Thus, the overall runtime of the simu-

lation scales as O
(
χ2poly(n)

)
[121].

An explicit method for weak sampling using stabilizer state decompositions

was also outlined in [121], based on computing individual measurement prob-

abilities and using them to sample marginals. In particular, consider sampling

the jth bit of an output string x, given outcomes for bits x1,x2, . . .xj−1. We

can sample xj by computing two probability terms, as [47]

P (xj |x1,x2, · · ·xj−1) = P (x1, . . .xj)
P (x1, . . .xj−1) ≡

〈
H⊗t

∣∣∣Πx1,...xj

∣∣∣H⊗t〉
〈H⊗t|Πx1,···xj−1|H⊗t〉

. (3.4)

Fixing xj = 0, and computing the conditional probability, we can thus sample

the jth bit by generating uniform random numbers. If r≤ P (0|x1,x2, · · ·xj−1),

we return 0, else we return 1.

Importantly, the authors were able to show that stabilizer rank decompositions

of magic states can be smaller than expected. As a simple example, consider

two copies of the |T 〉 magic state:

|H〉= cos π8 |0〉+ sin π
8 |1〉 χ(|H〉) = 2∣∣∣H⊗2

〉
= 1

2 (|00〉+ i |11〉) + 1
2
√

2 (|01〉+ |10〉) χ
(∣∣∣H⊗2

〉)
= 2

(3.5)

This is a quadratic reduction in the number of terms in the decomposition,

compared to an expansion in the computational basis. The authors in fact

improved this asymptotic bound by using random walk methods to search for

other stabilizer state decompositions. They were able to set an upper bound∣∣∣H⊗6
〉
≤ 7, and thus

χ
(∣∣∣H⊗t〉)≤ 7t/6 = 2

log2(7)
6 t ≈ 20.47t (3.6)
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giving strong simulation with stabilizer state decompositions a smaller expo-

nential overhead than state-vector methods, even with the dependence on χ2

in the runtime.

Previous works have also explored stabilizer decompositions of universal quan-

tum computations, containing non-Clifford gates. In their original paper,

Aaronson & Gottesman explored expanding gates in the Pauli operator ba-

sis. Each branch in the expansion will produce a different stabilizer state [64].

U |φ〉=
∑
i

aiPi |φ〉=
∑
i

ai
∣∣∣φ′i〉

In general, this will require up to 4m stabilizer states for each m-qubit non-

Clifford gate. For the T gate in particular, we can write

T ≡

1 0

0 1√
2(1 + i)

=
√

2 + i√
2
I− i√

2
Z

and thus this extension of the CHP method requires 2t stabilizer states for t

T gates.

A different method was also proposed by Garcia et al., which they call stabilizer

frames [105]. These are stabilizer state decompositions built out of so-called

‘co-factors’, made from post-selecting the results of single qubit computational

basis measurements. For example, the action of a controlled-S gate can be

expanded into two stabilizer state terms, by post-selecting on the control bit

being |0〉 or |1〉. For the T gate, stabilizer frames similarly require a number

of terms that that scales as 2t.

3.1.2.1 Norm Estimation and Approximate Decompositions

The stabilizer rank method as introduced in [121] already compares favourably

to similar methods of simulating quantum circuits through stabilizer state

decompositions. However, the method was further refined in a subsequent

paper, which extended its results to the case of approximate simulation [47].

The first development of [47] was an algorithm for estimating the norm of
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states, that can be used to optimize the computation of Pauli expectation val-

ues on stabilizer state decompositions. A detailed discussion of this norm esti-

mation routine will be given in Chapter 4. Importantly however, this method

allows Pauli expectation values to be approximated to within ε relative error,

with a runtime that scales as O(χt3ε−2), a quadratic reduction in terms of the

stabilizer rank [47].

The second component was a method for constructing approximate stabilizer

state decompositions

∣∣∣ψ̃〉=
χε∑
i=1

ci |φi〉 : F
(∣∣∣ψ̃〉 , |ψ〉)≥ 1− ε (3.7)

where F is the fidelity and χε is called the approximate stabilizer rank. Using

a method which we will discuss in detail in Section 3.2.2, the authors showed

that

χε
(
|H〉⊗t

)
≈ 20.23tε−2. (3.8)

Thus giving a further quadratic reduction in the number of terms in the sta-

bilizer state decomposition.

3.2 Results

As established, the stabilizer rank method offers reasonably efficient decompo-

sitions of universal quantum circuits. Importantly however, these results only

apply to the T magic state. While Clifford+T is known to be a universal gate

set for quantum computation, in practice the number of T gates required to

synthesize a circuit grows rapidly. For example, synthesising arbitrary-angle

Pauli Z rotations from Clifford+T gates can quickly result in a T count on

the order of 100 per gate [122, 123]. In the rest of this chapter, we seek to

extend our understanding of stabilizer state decompositions beyond the |H〉

magic state, and discuss the interpretation of the stabilizer rank as it relates

to quantum computation.
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3.2.1 Exact Stabilizer Rank

As well as having an interpretation in terms of classical simulations, the stabi-

lizer rank of a state has three properties that make it interesting as a potential

measure of ‘magic’ as a resource in quantum computation [73, 79].

Claim 2 Properties of the exact stabilizer rank:

1. Faithfulness: χ(|ψ〉) = 1 iff |ψ〉 is a stabilizer state.

2. Submultiplicativity: χ(|ψ〉⊗ |Ψ〉)≤ χ(|ψ〉)χ(|Ψ〉).

3. Monotonicity: χ is invariant under Clifford gates and monotonically

decreasing under Pauli measurements.

Proof of Claim 2. The faithfulness property of χ follows from its definition

(see Eq. 3.2).

Given a tensor product of two states, we can expand out their stabilizer state

decompositions as

|ψ〉⊗ |Ψ〉=
χ(|ψ〉)∑
i=1

χ(|Ψ〉)∑
j=1

cicj |φi〉⊗ |φj〉 .

A tensor product of two stabilizer states is also a stabilizer state, and thus we

obtain a potential stabilizer state decomposition with χ(|ψ〉) ·χ(|Ψ〉) terms.

However smaller decompositions, including entangled stabilizer states rather

than these separable states, may exist. Thus, the stabilizer rank is submulti-

plicative under tensor product.

Invariance under Clifford unitaries follows from the linearity of quantum me-

chanics, and the definition of the Clifford group. Expanding out the decom-

position, we have

V |ψ〉=
∑
i

ciV |φi〉=
∑
i

ci
∣∣∣φ′i〉

where the new states in the decomposition can be efficiently computed [63].
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After performing a Pauli measurement, the decomposition will be updated by

applying a projector 1
2 (I+λP ), where λ=±1 is the outcome of the measure-

ment.
1
2 (I+λP ) |ψ〉=

∣∣∣ψ′〉=
∑
i

ci (|φ〉+λP |φ〉)

As discussed in the previous chapter, applying a Pauli projector to a stabilizer

state either produces a new stabilizer state, or the null-vector if λP |φ〉=−|φ〉.

If no states are orthogonal to the Pauli projector applied, then the stabilizer

rank is unchanged and the decomposition is updated. Otherwise, χ(|ψ′〉) <

χ(|ψ〉).

No general method is known for finding low rank stabilizer state decomposi-

tions of general quantum states. The number of stabilizer states grows ex-

ponentially with the number of qubits [64], even before considering the com-

binatoric growth in the number of candidate decompositions. Additionally,

checking the validity of a candidate stabilizer state decomposition has a com-

putational complexity that also scales exponentially in the number of qubits.

In [121], the authors made use of computational searches to find the upper

bounds on the stabilizer rank of the |H〉 magic state shown in Table 3.1. They

also make the following conjecture, called Conjecture 1 in the paper.

Conjecture 1 Let χn = χ
(∣∣∣H⊗n〉). Then for a single qubit state |φ〉

χ
(∣∣∣φ⊗n〉)= 1 If |φ〉 is a stabilizer state

χ
(∣∣∣φ⊗n〉)= χn If |φ〉 is a magic state

χ
(∣∣∣φ⊗n〉)> χn Otherwise.

n copies 1 2 3 4 5 6
χn 2 2 3 4 6 7

Table 3.1: Optimal rank of stabilizer state decompositions for the |H〉 magic state,
from [121].

The |H〉 state is one of a family of 12 single qubit magic states, which can be
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transformed into each other by applying Clifford gates. Thus, they also have

equivalent stabilizer rank. We refer to these magic states as ‘edge states’, from

their location on the Bloch sphere [66]. However, there also exist a second set

of 8 single qubit magic states that cannot be generated from the edge states

by Clifford unitaries. In this text, we call these ‘face states’.

|F 〉= cosβ |0〉+ eiπ/4 sinβ |1〉 : 2β = cos−1 1√
3

(3.9)

Denoted |R〉 in [121], the authors comment that numeric results appear to

show it has the same stabilizer rank as the edge type-states, and thus put

forward Conjecture 1.

We further examined the stabilizer rank for different quantum states by ex-

tending the computational searches of [121].

Figure 3.2: Diagram showing the location of single-qubit stabilizer states and magic states
on the Bloch sphere. Single qubit Clifford gates act as the symmetry group of
an octahedron in the Bloch sphere, who’s vertices are the individual stabilizer
states. ‘Edge’ and ‘face’ magic states are named for their positions relative to
this octahedron. Based on diagrams from [66].

3.2.1.1 Computational Searches for Decompositions

We employ a combination of brute force and random walk searches for stabilizer

state decompositions to establish the stabilizer rank of different families of

quantum states, using a custom program developed in Python.
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To test a candidate decomposition of χ stabilizer states Φ = {|φi〉}, we compute

the projector on to the subspace generated by the states ΠΦ, and then compute

the projection of the target state into this subspace ‖ΠΦ |ψ〉‖. If the norm is

equal to 1, then the state lies within this subspace and we terminate the search.

Given a collection of χ stabilizer states, we can build their projector by first

constructing a 2n× χ matrix A, where each column is one of the χ stabi-

lizer states. We then apply the QR decomposition, a standard linear algebra

technique, to compute χ orthogonal basis-vectors for the subspace spanned

by these stabilizer states. Given the column matrix Q built from these or-

thogonal basis-vectors, we then have ΠΦ ≡QQ†. This was implemented using

the Numpy library, with additional optimization provided by using the Numba

Just-In-Time compiler [124, 125].

The random walk method follows the description in Appendix B of [121]. The

search algorithm takes as input a state |ψ〉 to decompose, and a candidate

stabilizer rank χ. We begin with a candidate decomposition Φ = {|φi〉}, and

compute the ‘distance’ from the generated subspace F = 1−‖ΠΦ |ψ〉‖. We

then update one state, chosen uniformly at random, by applying a random

Pauli operator P . We then compute the updated distance F ′ = 1−
∥∥∥ΠΦ̃ |ψ〉

∥∥∥
using this updated set of stabilizer states. If F ′ < F , we accept the move

and proceed. Otherwise, we accept the move with a probability given by the

Boltzmann distribution p = e−β(F ′−F), where β is a parameter we set. As

the search continues, we gradually increase β. This method is thus similar

to the simulated annealing approach in optimization, where we are seeking to

minimize the distance between |ψ〉 and the generated subspace.

Our random walks were run using the same parameters of [121], testing 100

values of the inverse-temperature parameter β ∈ [100,4000], and running for

1000 steps for each value of β. For any given candidate and value of χ, we

repeated the random walk 5 times. The smallest decomposition found across

all runs was taken as an upper bound on the stabilizer rank. χ= 2 was taken

as a lower bound, and the largest value tested was either 2n−1, or else a value
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derived using submultiplicativity and results for fewer copies of the target

state.

The brute force method, in contrast, takes as input a target state |ψ〉, and

an upper and lower bound of stabilizer rank to test. The typical lower bound

given is 2. The upper-bound is set by either the computational basis expan-

sion, which is a valid stabilizer state decomposition, or else a bound based on

submultiplicativity and known results for fewer copies of a state.

Pseudocode descriptions of the search methods are given in Algorithms 1 and 2.

We also note an additional optimisation that, in the case where the target state

has only real coefficients, we can restrict ourselves to considering decomposi-

tions built only from stabilizer states with real values. In the random walk

case, we additionally restrict the moves we generate such that they do not

introduce any imaginary coefficients. We do this by requiring that the random

Pauli operators have an even number of Pauli Y operators.

As mentioned above, the number of stabilizer states grows exponentially with

the number of qubits. In particular, we have [64]

Nφ = 2n
n−1∏
k=1

(
2n−k + 1

)
. (3.10)

In practice, brute force searches were tractable up to about 3 qubits. Some

examples of the growth in possible combinations are given in Table 3.2.

n qubits 1 2 3 4
Nφ 6 60 1080 36720( Nφ
2n−1

)
6 33240 3.33×1017 2.27×1056

Table 3.2: Table showing how the number of combinations of stabilizer states grows as a
function for the number of qubits. We consider 2n− 1 as this is the largest
possible stabilizer rank that is below the trivial computational basis bound.
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Algorithm 1 Random Walk Search for Stabilizer State Decomposition
Require: βinit,βmax,M , target integer χ
Require: Projector(Φ) . Returns projector onto subspace spanned by Φ
1: Φ← (φ1, · · ·φχ) where each φa is chosen at random.
2: β← βinit
3: while β < βmax do
4: for i= 0 to 1000 do
5: ΠΦ←Projector(Φ)
6: F ← 1−‖ΠΦ |ψ〉‖
7: if F = 1 then
8: return Φ
9: end if
10: Pick random integer a ∈ [1,n] and random Pauli P ∈ Pn
11: |φa〉′← c(I+P ) |φa〉 . If |φa〉′ = 0, pick new a and P .
12: Φ̃← (|φ1〉 , · · · , |φa〉′ , · · · |φχ〉)
13: ΠΦ̃←Projector(Φ̃)
14: F ′← 1−

∥∥ΠΦ̃ |ψ〉
∥∥

15: if F ′ < F then
16: |φa〉 ← |φa〉′
17: else
18: paccept← exp[−β (F ′−F )]
19: Pick random r ∈ [0,1]
20: if r < paccept then
21: |φa〉 ← |φa〉′
22: end if
23: end if
24: end for
25: β← β+

(
βmax−βinit

M

)
26: end while
27: return No decomposition found.

Algorithm 2 Brute Force Search for stabilizer rank
Require: {φ}n . The set of n qubit stabilizer states
Require: χmax . Upper bound on χ
Require: Projector(Φ) . Returns projector onto subspace spanned by Φ.
1: χ= 2
2: while χ < χmax do
3: for Φ = {|φ1〉}, . . . , |φχ〉 . For all combinations of i states. do
4: ΠΦ← Projector(Φ)
5: if

∥∥ΠΦ̃ |ψ〉
∥∥ = 1 then

6: return χ,Φ
7: end if
8: end for
9: χ← χ+ 1
10: end while
11: return χmax . The previous expansion is still is the best found.
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Generating Stabilizer States

As an input for Algorithms 1 and 2, we need a way to quickly generate random

stabilizer states, as well as a library of all stabilizer states for small n. To

accomplish this, we make use of the canonical form for stabilizer tableaux

introduced by Garcia et al., and discussed in Section 2.1 [103].

Like the CHP method, a canonical stabilizer tableau is a n× (2n+ 1) matrix,

where each row encodes a Pauli operator

P (~s) =−1s0⊗ni=1X
siZsi+n , : ~s ∈ Z2n+1

2 .

There are in general multiple tableau corresponding to a given stabilizer state,

but using Algorithm 1 of [103] any tableau can be converted to a standard

form.

To quickly generate random stabilizer states then, we generate a random n×

(2n+ 1) binary matrix. We then apply the canonical form algorithm. If any

rows of the tableau are the all-zero string, then the tableau does not correspond

to a stabilizer state and so we discard it. Else, we build up a Pauli projector

from the rows of the tableau, and compute the stabilizer state as the unique

+1 eigenstate.

To generate a complete library of stabilizer states, first recall that Pauli op-

erators in a stabilizer group have only phase of ±1. For a stabilizer group

with n generators, there are thus 2n possible combinations of phase for each

generator, each of which correspond to a given stabilizer state. We can thus

focus on generating just the Nφ/2n stabilizer groups with all positive phase.

We begin by generating all 22n− 1 possible binary strings, which correspond

to all possible choices of Pauli operator. We ignore the all-zero string, as this

corresponds to the identity operator which cannot generate a stabilizer group.

Then, for all
(

22n−1
n

)
possible combinations of n strings, we build the stabilizer

tableau and convert it to canonical form. If it is not full rank, or corresponds
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to a tableau already found, we discard it. Otherwise we store the tableau.

We terminate after generating Nφ/2n groups. For each group then, we test

all 2n possible phase combinations, and then compute the stabilizer state as

described above. This process was computationally intensive, but overall we

were able to generate a library of stabilizer states on 1, 2, 3 and 4 qubits.

Both the random stabilizer state generation and the deterministic stabilizer

state generation were implemented in Python. Stabilizer tableau were stored

as bitpacked Numpy arrays. Computing the corresponding Pauli projector and

stabilizer state made use of Numpy linear algebra routines, including the opti-

mised eigensovler for Hermitian matrices, with additional optimization using

Numba [124, 125].

3.2.1.2 Results of Computational Searches

We extend the computational searches for copies of single-qubit magic states

up to n= 10, and give explicit results for the face-type magic states. We used

brute force searches for n≤ 3 qubits. Otherwise, we made use of random walk

searches.

For all values of n tested, the edge and face type magic states had the same

observed stabilizer rank. Despite extending the range of the numeric search,

however, above n = 6 copies, we found no decomposition smaller than the

submultiplicative bound. Thus, the asymptotic scaling shown in [121] remains

the best result known for single-qubit magic states..

As a means of probing Conjecture 1, we also explored the stabilizer rank

of ‘typical’ single qubit states, generated uniformly at random. The target

states were prepared by applying a Haar random single-qubit unitary to the |0〉

states [126]. We began by applying brute force searches to 1000 typical states

up to 3 copies, and observed that all states tested had the same stabilizer rank,

and also that their stabilizer rank grew more slowly than the computational

basis expansion. All results for single qubit states are shown in Table 3.3.

Applying the argument of Eq. 3.6, then for typical single qubit states their
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stabilizer rank is upper bounded by

χ
(∣∣∣φ⊗t〉)≤ 8t/6 = 2log2(8)t/6 = 20.5t. (3.11)

To further explore the claim in Conjecture 1, we also performed computational

searches for specific states with a structure related to the magic states. In par-

ticular, we performed computational searches for the |CS〉 and |CCZ〉 magic

states, which can be used to inject the two-qubit CS gate and the three-qubit

CCZ gate, respectively. Both of these gates, like the T gate, belong to the

third level of the Clifford hierarchy. We also considered the single qubit re-

source states T 1
2 |+〉 and T 1

4 |+〉. These resource states can be used to inject

gates from the 4th and 5th levels of the Clifford hierarchy, though potentially

requiring a non-Clifford correction operation. We limited our searches up to 6

qubits, which meant considering up to 3 copies of the |CS〉 state and just two

copies of the CCZ state. Results are shown in Table 3.4.

Interestingly, we observe that the single qubit resource states corresponding

to gates in higher levels of the Clifford hierarchy show no difference from the

stabilizer rank of typical single qubit states. However, magic states on 2 and 3

qubits also show significantly reduced stabilizer rank. In fact, the asymptotic

scaling of the |CS〉 and |CCZ〉 is significantly smaller when compared to the

naive computational basis expansion, scaling as ≈ 20.79t and 2t versus 22t and

23t, respectively.

t Copies 2 3 4 5 6 7 8 9 10
χ
(∣∣T⊗t〉) 2 3 4 6 7 12 14 21 28

χ
(∣∣F⊗t〉) 2 3 4 6 7 12 14 21 28

χ(Typical) 3 4 5 6 8 14 24 30 36

Table 3.3: Results of computational searches for stabilizer rank decompositions of different
single-qubit quantum states. The results would appear to agree with Conjec-
ture 1, that stabilizer rank is smaller for magic states.
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t Copies 1 2 3 4
T

1
2 |+〉 2 3 4 5

T
1
4 |+〉 2 3 4 5
|CS〉 2 3 6 -
|CCZ〉 2 4 - -

Table 3.4: Results of computational searches for stabilizer rank decompositions of different
types of non-stabilizer resource state. We extended the searches for the T 1

2 and
T

1
4 gate resource states up to 6 copies, but found no decompositions smaller

than the results for typical single qubit states.

Decompositions of the Symmetric Subspace

When taking multiple copies of any given n-qubit state |ψ〉, the result will

always lie within the symmetric subspace Symn,t ⊆C2n . This is a subspace of

the full n-qubit Hilbert space with dimension

dim
(
Symn,t

)
=
(

2n+ t−1
t

)
(3.12)

We can thus consider searching for stabilizer state decompositions of a sub-

space. We define the exact stabilizer rank of a subspace P as

χ(P ) = |Φ| : P ∈ span[Φ]. (3.13)

Computationally, we employ the random walk method, to search for decom-

positions of the subspace Sym1,t. As our objective function, we replace the

projection onto the subspace ΠΦ with the largest principle angle between the

subspaces ΠΦ and ΠSym1,t . If Sym1,t ⊆ Span(Φ), this angle is zero. The for-

mula for the largest principle angle is shown in Eq. 3.14 [127]. The projector

onto the symmetric subspace, ΠSym1,t , was computed using the method based

on superpositions of computational basis states with equal Hamming weight,

outlined in [128].

θ
(
ΠΦ,ΠSym1,t

)
= sin−1

(∥∥∥(I−ΠΦ)ΠSyn1,t

∥∥∥) (3.14)

For all values tested, the best decomposition found for the projector onto the
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single qubit symmetric subspace were equal to the results for typical single

qubit states. Additionally, we note that for t≤ 5

χ
(
Sym1,t

)
= dim

(
Sym1,t

)
≤ t+ 1 =

(
2 + t−1

t

)
, (3.15)

and the smallest stabilizer rank found for the single qubit symmetric subspace

is equal to its dimension.

In fact, in [107], we make the following claim

Claim 3 χ
(
Symn,t

)
= dim

(
Symn,t

)
: ∀n, t≤ 5

For t ≤ 3, this claim follows from the property that stabilizer states form a

projective 3 design [129]. Thus, for a given n qubits and t≤ 3

1
Nφ

∑
i

|φi〉〈φi|=
ΠSymn,t

dim
(
Symn,t

) , (3.16)

a superposition of t copies of all n-qubit stabilizer states is proportional to the

projector onto the symmetric subspace.

From this, we can conclude that Span
({∣∣∣φ⊗ti 〉})⊆ ΠSymn,t . We can thus find

a minimal spanning set of vectors {
∣∣∣φ⊗tj 〉} such that Span

(
{
∣∣∣φ⊗tj 〉})= Symn,t,

and
∣∣∣{∣∣∣φ⊗tj 〉}∣∣∣ = dim

(
Symn,t

)
, completing the claim for t ≤ 3. In [107], we

present a proof by Earl Campbell that also extends this result up to t = 5

using the fact that stabilizer states are ‘almost’ a projective 4-design [129].

3.2.1.3 Clifford Symmetries

The results of computational searches, and the proof for the decomposition

of the symmetric subspace, are consistent with Conjecture 1. In Table 3.5,

we compare the bounds for the symmetric subspace with the stabilizer rank

decompositions found for different magic states, and show that in general the

magic states exhibit a smaller stabilizer rank.
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Table 3.5: Tables comparing the dimension, and thus stabilizer rank, of the symmetric
subspace up to 5 copies with that of magic states, for 1, 2 and 3 qubits.

(a)

n Copies 2 3 4 5
dim

(
Symn,t

)
3 4 5 6

χ(|T,F 〉) 2 3 4 6

n Copies 1 2 3
dim

(
Symn,t

)
4 10 20

χ(|CS〉) 2 3 6
(b)

n Copies 1 2
dim

(
Symn,t

)
8 36

|CCZ〉 2 4
(c)

A property common to all the magic states tested is that they each have an

associated Clifford symmetry. This is in fact always true for a magic state

that can be used to inject a gate from C3. These magic states have the form

|U〉= U |φ〉, where |φ〉 is a stabilizer state [65]. Updating the stabilizer group

under conjugation, we obtain a new set of operators that stabilizer the resource

state |U〉

S |φ〉= |φ〉 → USU † |U〉= USU †U |φ〉= U |φ〉 ∀S ∈ Sφ. (3.17)

From the definition of C3, these operators are then Clifford as USU † ∈ C2, and

also form a group which we callM. We introduce the following nomenclature.

Definition 3.1 (Clifford Magic State). Consider a magic state |R〉, with an

associated group of Clifford operatorsM such that

1. M⊆C2

2. m |R〉= |R〉 ∀m ∈M

3. |R〉〈R|= 1
|M|

∑
m∈Mm

Then |R〉 is a Clifford magic state.1

1Note that this differs from the definition in [107]. We introduce this definition in this thesis as
we consider slightly broader classes of magic state which nonetheless share the property of Clifford
symmetries.
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Any state that can be consumed in a state-injection gadget is also a Clifford

magic state.. For example, the |H〉 magic state is so labeled as it has the

property that H |H〉 = |H〉, and thus has the group {I,H} as its Clifford

symmetry. We note however that the face-type magic states are also Clifford

magic states. The state |F 〉, for example, is fixed by a group generated by the

Clifford gate F . The F gate corresponds to a rotational symmetry of the faces

of the stabilizer octahedron, as can be seen by its action on the single qubit

stabilizer states.

F |0〉= |+〉 F |+i〉= |+〉 F |+〉= 0 (3.18)

It was shown by Earl Campbell that quotient groups of Clifford symmetries

can be used to find the stabilizer rank of Clifford magic states |R〉.

Lemma 3 Consider a stabilizer state |φ0〉 : 〈φ0|ψ〉 6= 0. We will denote byM

the group of Clifford symmetries of |φ〉. Let N ⊆M be the subgroup of M

such that n |φ0〉 = |φ0〉∀n ∈ N , and define Q as the quotient group M/N .

Then

χ(|φ〉)≤ |M|
|N |

(3.19)

with stabilizer state decomposition

|ψ〉 ∝
∑
q∈Q

q |φ0〉 (3.20)

Proof of Lemma 3. We can expand out |φ0〉 as

|φ0〉= 1
|N |

∑
n∈N

n |φ0〉 .

Making this substitution for |φ0〉, we thus have

∑
q∈Q

q |φ0〉=
∑
q∈Q

∑
n∈N

qn |φ0〉

=
∑
m∈M

m |φ0〉
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where on the last line we use the definition of the quotient group. From the

definition ofM, we can write

1
|M|

∑
m∈M

m= |ψ〉〈ψ|

and thus

∑
q
q |φ0〉= |M|

|N |
|ψ〉〈ψ|φ0〉

=⇒ |ψ〉= |N |
|M|〈ψ|φ0〉

∑
q∈Q

q |φ0〉

completing the proof.

As an example, consider the state
∣∣∣H⊗2

〉
. This state has the Clifford symmetry

group {I,H ⊗ I,I ⊗H,H ⊗H}. We can build a 2-element normal subgroup

{I,H ⊗H}, which stabilizes the state |0〉 |+〉+ |1〉 |−〉. This give a stabilizer

rank of |M|/ |N |= 4
2 = 2, as expected.

One interesting extension of this result is that any resource state used to inject

controlled diagonal Clifford gate, such as CCZ or CS, also has a stabilizer rank

of 2, which agrees with the results of the computational searches in Table 3.5.

The stabilizer state decompositions for these states can in fact be found by

considering the resource state itself. Expanding out the action of the control,

we have

U ≡ |0〉〈0|⊗ I+ |1〉〈1|⊗C =⇒ U
∣∣∣+⊗n〉∝ |0〉 |+〉⊗n−1 + |1〉C

∣∣∣+⊗n−1
〉

(3.21)

which is a stabilizer state decomposition with χ= 2 as C is a Clifford operator,

and thus C
∣∣∣+⊗n−1

〉
is a stabilizer state.

However, here we show that this method does not always produce optimal sta-

bilizer state decompositions. For example, consider the |F 〉 state. A single copy

has Clifford symmetry group {I,F,F 2}, which has no non-trivial subgroups.

This would suggest χ(|F 〉) ≤ 3, which is larger than just the computational
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basis bound.

For two copies,
∣∣∣F⊗2

〉
has the 9-element symmetry group

{I,FI,IF,F 2I,IF 2,FF,F 2F,FF 2,F 2F 2}, (3.22)

where we omit the tensor product symbol for brevity. From the Lagrange

theorem, we know that the order of any subgroup N ⊆M must divide the

order of the group [130]. Thus, the smallest possible quotient group has |Q|= 3.

Again, this is larger than the known optimal decomposition χ
(∣∣∣F⊗2

〉)
= 2.

We can further consider extending this method to include permutation sym-

metries. For t copies of single qubit states, the permutation symmetries cor-

respond to the symmetric group S(t), and can be generated using swap per-

mutations [130]. In terms of quantum gates, these permutations correspond

to the SWAP gate, which is a Clifford operator as it can be realised by a

sequence of 3 CNOT gates.

Extending the groups to incorporate these permutation symmetries allows us

to generate subgroups with the correct index. For example, for the
∣∣∣H⊗2

〉
state,

incorporating permutations gives an order 8 symmetry group, with a subgroup

of order 4 and thus index 2. This subgroup N = {I,SWAP,HH,SWAP HH},

fixes the same stabilizer state |0〉 |+〉+ |1〉 |−〉, and thus we again have χ= 2.

Similarly, for the
∣∣∣F⊗2

〉
state, we obtain an order 18 Clifford symmetry group

by incorporating permutations, and can construct a subgroup of order 9 and

thus index 2. However, this subgroup N corresponds to the group given in

Eq. 3.22, which fixes the state
∣∣∣F⊗2

〉
. Thus, there is no stabilizer state |φ0〉 :

n |φ0〉= |φ0〉 ∀n∈N , and we cannot use this result to build a smaller stabilizer

state decomposition.

3.2.2 Approximate Stabilizer Rank

In this section, we show how to construct approximate stabilizer state decom-

positions for Clifford magic states, and more generally. Both methods start

with an exact stabilizer state decomposition, which is not required to be opti-
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mal, and show how to construct an approximate decomposition by discarding

terms.

3.2.2.1 Clifford Magic States

A method for constructing approximate stabilizer state decompositions of the

|H〉magic state was described in [47]. Here, we outline their argument, showing

how it can naturally be extended to any Clifford magic state, such as |F 〉 or

|CCZ〉.

The authors begin by considering an exact stabilizer state decomposition of∣∣∣H⊗t〉 in terms of the states |0〉 and |+〉.

∣∣∣H⊗t〉= 1
2cos(π/8)t

∑
x̃∈Zt2

|x̃〉 (3.23)

where |x̃〉 is a t-qubit state such that

|x̃〉=⊗ti=1H
x̃i |0〉 . (3.24)

Each term in the decomposition is a tensor product of stabilizer states, gener-

ated by a subgroup of the Clifford group. Recalling Eq. 3.20, we can construct

a stabilizer state decomposition for a Clifford magic state |R〉 from a group

Q⊆ C2, and a state |φ0〉 : 〈φ0|R〉> 0. We can write

|R〉 ∝
∑
q∈Q
|φq〉 : |φq〉= q |φ0〉 .

To normalize the decomposition, we note that 〈φq|R〉 = 〈φ0|q−1|R〉 = 〈φ0|R〉.

Thus,

|R〉= 1
|Q| 〈φ0|R〉

∑
q∈Q
|φq〉

=⇒ |R〉⊗t = 1
(|Q|〈φ0|R〉)t

∑
~q∈Zt|Q|

∣∣∣φ~q〉 (3.25)

where |φ〉~q ≡⊗ti=1
∣∣∣φ~qi〉 and ~q is t-element vector where each entry denotes a

member of the group. Setting |Q| = 2 and |φ0〉 = |0〉, gives the same decom-

117



Chapter 3 Stabilizer Decompositions of Quantum States

position for
∣∣∣H⊗t〉 given in Eq. 3.23.

We can also define states |L〉, built from subspaces L ⊆ Zt|Q|

|L〉= 1√
|L|Z (L)

∑
~q∈L

∣∣∣φ~q〉 , (3.26)

where |L| is the number of elements in the subspace, and Z (L) is a normali-

sation factor, given by

〈L|L〉= 1 = 1
|L|Z (L)

∑
~p,~q∈L

〈φp|φq〉

= 1
|L|Z (L)

∑
~p~q

〈
φ~0

∣∣∣φ~p−1~q
〉

= 1
Z (L)

∑
~q

〈
φ~0

∣∣∣φ~q〉

where in the last line we have used the group properties of Q to simplify the

sum, and where
∣∣∣φ~0〉=

∣∣∣φ⊗t0
〉
.

How well does a given subspace with |L| < 2t approximate the full stabilizer

state decomposition? Each term in the subspace state has overlap (〈φ0|R〉)t,

and thus ∣∣∣〈R⊗t∣∣∣L〉∣∣∣2 =
|L|2 f tφ0

(R)
|L|Z (L) = |L|fφ0 (R)

Z (L) (3.27)

where we define fφ0 (R)≡ |〈φ0|R〉|2, the fidelity of |φ0〉 with |R〉.

The fidelity of the L approximation thus depends on the size of the subspace,

the initial overlap, and the quantity Z (L) which depends on the subspace we

choose. Bravyi & Gosset then showed for the case of the |H〉 state that we

can achieve Z (L)∼ 1 + |L|fφ0 (H)t by choosing subspaces at random [47].

This argument also extends to the more general case of Clifford symmetries.

Choosing subspaces uniformly at random, we can compute the expectation

value of the weight Z (L). Every subspace must contain
∣∣∣φ~0〉, which contributes〈

φ~0

∣∣∣φ~0〉 = 1 to the weight. Otherwise, each state
∣∣∣φ~q〉 is equiprobable, and
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occurs with probability |L−1|
|Q|t−1 . Thus,

E [Z (L)] = 1 + |L|−1
|Q|t−1

 ∑
~q∈Zt|Q|−1

〈
φ~q
∣∣∣φ~0〉

 . (3.28)

By replacing ∑~q∈Zt|Q|−1
〈
φ~q
∣∣∣φ~0〉 with ∑

~q∈Zt|Q|

〈
φ~q
∣∣∣φ~0〉− 1, and substituting

Eq. 3.25, we can write

E [Z (L)] = 1 + |L|−1
|Q|t−1

(
|Q|t fφ0 (R)−1

)
≈ 1 + (|L|−1)f tφ0 ≈ 1 + |L|f tφ0 ,

(3.29)

where we have assumed t and L are large.

Following the argument in [47], there is thus at least one subspace L such that

Z (L)≤ 1 + |L|fφ0(R)t. Substituting this value into Eq. 3.27 gives

∣∣∣〈R⊗t∣∣∣L〉∣∣∣2 ≈ |L|f t

1 + |L|f t ,

which can be rearranged to solve for how large we require |L| to obtain a given

fidelity. More formally, and again extending the argument of [47], we can use

Eq. 3.29 and Markov’s lemma to show that

P

 Z (L)(
1 + |L|fφ0(R)t

)
(1 + ε

2)
≥ 1

≤ E [Z(L)](
1 + |L|fφ0(R)t

)
(1 + ε

2)
≤ 1− ε

2 + ε
.

Thus, with O(1
ε ) samples, we can generate a subspace L′ : Z (L′) ≤(

1 + |L|fφ0(R)T
)(

1 + ε
2

)
[47].

If we now fix the size of the subspace such that

2≤
∣∣∣L′∣∣∣f tφ0ε≤ 4

=⇒
∣∣∣L′∣∣∣−1

f−tφ0
≤ ε

2
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then the corresponding subspace state |L′〉 achieves a fidelity

∣∣∣〈R⊗t∣∣∣L′〉∣∣∣2 = |L′|fφ0(R)(
1 + |L′|fφ0(R)

)
(1 + ε

2)

= 1
(1 + |L′|−1 f−tφ0

)(1 + ε
2)

≥ 1(
1 + ε

2

)2 ≈ 1− ε. (3.30)

We can thus generate an approximate stabilizer state decomposition that is

ε-close in fidelity by choosing a random subspace, provided that we have suffi-

ciently many terms in the decomposition. Again applying the inequality from

above, we have

χε
(∣∣∣R⊗t〉)= |L| ≤ 4f−tφ0

ε−1 =O
(
f−tφ0

ε−1
)
, (3.31)

where the asymptotic scaling depends on the term fφ0 . Thus, we introduce

the concept of stabilizer fidelity:

Definition 3.2 (Stabilizer Fidelity). F (ψ) = maxφ∈Sn |〈φ|ψ〉|
2

with the corollary that

Corollary 1 The approximate stabilizer rank of a Clifford magic state

χε
(∣∣∣R⊗t〉)=O

(
F (R)−t

)
.

We refer to this method of generating an approximation stabilizer state de-

composition as the ‘random codes’ method, because it can be conceptualised

as approximately encoding the state using a code-space of dimensionality |L|.

3.2.2.2 Sparsification

The method outlined above works by taking exact, even potentially ‘over-

complete’ stabilizer state decompositions, and dropping terms to obtain an

approximate decomposition with a given fidelity. This principle is similar to

approximate classical simulation methods based on quasiprobability represen-
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tations of quantum states [62]. In these models, the number of terms that must

be sampled scales as the ‘negativity’ of the state, given by the the one-norm

of the coefficients with respect to the phase-space under consideration.

It was shown by David Gosset that a similar strategy can be applied to stabi-

lizer state decomposition [107]. Given any valid stabilizer state decomposition,

we can sample terms at random using a probability distribution based on their

coefficients to build an approximate decomposition. We can rewrite a given

stabilizer state decomposition as

|ψ〉=
∑
i

ci |φi〉=
∑
i

|ci|
‖~c‖
|wi〉=

∑
i

pi |wi〉 (3.32)

where |wi〉 ≡ ci
|ci| |φi〉. The new coefficients |ci|‖~c‖ are positive, real-valued, and

also have the property that ∑i pi = 1. Thus, they define a probability distri-

bution. Let |ω〉 be one of the |wi〉 states, sampled with probability pi. It can

be shown thatE [|ω〉]∝ |ψ〉 and, by taking multiple samples |ωi〉, we can obtain

an approximate state

∣∣∣ψ̃〉= ‖c‖1
χε

χε∑
i=1
|ωi〉 :

∥∥∥∣∣∣ψ̃〉−|ψ〉∥∥∥≤ ε (3.33)

with high-probability, provided that we set [107]

χε (|ψ〉) =O
(
‖c‖21ε

−2
)
, (3.34)

Importantly, we note that this method guarantees an approximation that is ε

close in the one-norm, as opposed to fidelity as in Eq. 3.31.

Based on this approximation, we subsequently introduce the notion of ‘Stabi-

lizer Extent’:

Definition 3.3 (Stabilizer Extent). For a normalised quantum state |ψ〉, the

stabilizer extent ξ (ψ) is defined as the minimum value of ‖c‖21 over all stabilizer

state decompositions |ψ〉=∑
i ciφi.
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Thus, the approximate stabilizer rank of a sparsified decomposition scales as

χε (ψ) = dξ (ψ)ε−2e. (3.35)

The one-norm is a convex quantity, and thus we can be computed efficiently

using convex optimisation techniques [131]. However, as the search space scales

with the number of stabilizer states, which in turn scales exponentially with

the number of qubits, in practice extent is difficult to compute for more than a

few qubits. An equivalent quantity to extent was also introduced in Section 5.4

of [76], a general study of convex resource measures for quantum computing. It

follows from [76] that stabilizer extent is a faithful measure, such that ξ (ψ) = 1

if and only if |ψ〉 is a stabilizer state.

3.2.2.3 Stabilizer Fidelity

Interestingly, as a convex optimization problem, it is also possible to use the

‘dual’ convex problem to find a lower bound on the stabilizer extent. The

proof was given by Earl Campbell in Section VI.A of [107], but we quote the

key result here, namely

ξ (ψ)≥ 1
F (ψ) , (3.36)

where F (ψ) is the stabilizer fidelity introduced in Definition 3.2. It can also be

shown that this lower-bound is tight for injectable Clifford magic states [107].

Thus, despite the slightly different definition of approximation, the approxi-

mate stabilizer rank of Clifford magic states coincides under both the random

codes and the sparsification methods.

An important question is whether stabilizer extent is multiplicative. As extent

is lower bounded by the stabilizer fidelity, we can thus ask if the stabilizer

fidelity is multiplicative, namely

F
(∣∣∣ψ⊗t〉) ?= F (ψ)t

This can also be expressed as asking if there exists some entangled stabilizer
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state |ϕ〉, such that

∣∣∣〈ϕ∣∣∣R⊗t〉∣∣∣> ∣∣∣〈φ⊗t∣∣∣R⊗t〉∣∣∣= |〈φ|R〉|t .

Lemma 4 For single qubit states |S〉, the stabilizer fidelity of t copies

F
(
S⊗t

)
= F (S)t

Proof of Lemma 4. Consider a single qubit state |S〉. Using the Bloch-vector

representation, we can write this state as |S〉 = 1
2

(
1 +~r · ~P

)
, where ~P =

(X,Y,Z), and ~r = (rx, ry, rz) is the Bloch-vector with coefficients ri = 〈S|Pi|S〉.

We also consider a single qubit stabilizer state |P 〉, with corresponding stabi-

lizer group Sφ = {I,±P}, where P ∈ {X,Y,Z}.

The fidelity between |S〉 and a single qubit stabilizer state can be written in

terms of the stabilizer group as

|〈P |S〉|2 = 〈S|P 〉〈P |S〉= 1
2 〈S|(I±P ) |S〉

= 1
2 (1 + |rP |)

where rP is the Bloch-vector coefficient associated with P , and we use the result

that |φ〉〈φ| = 1
2n
∑
s∈Sφ s for an n-qubit stabilizer state. Thus, the stabilizer

fidelity of |S〉 is given by

F (S) = 1
2

(
1 + max

i
|ri|
)
.

Let us assume throughout the following that

|rz| ≥ |ry| ≥ |rx| .

This assumption can be made without loss of generality, substituting X or

Y for Z through the following argument. We will also assume that rz > 0,

otherwise the argument follows but replacing Z with −Z. We define |φ〉 to

the be single qubit stabilizer state with maximum fidelity with |S〉. For t
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copies, the stabilizer group of
∣∣∣φ⊗t〉= {Z (~z)}, where ~z are t-bit binary strings

and we employ the same notation for tensor products of Pauli operators as in

Chapter 2. The fidelity of
∣∣∣φ⊗t〉 with

∣∣∣S⊗t〉 is given by

∣∣∣〈φ⊗t∣∣∣S⊗t〉∣∣∣2 = 1
2t
∑
~z∈Zt2

〈
S⊗t

∣∣∣Z (~z)
∣∣∣S⊗t〉

= 1
2t

(
t∑
i=0

(
t

i

)
|rz|i

)

= 1
2t

(
1 + t |rz|+

t∑
i=2

(
t

i

)
|rz|i

)
(3.37)

where we have joined together the expectation values for elements of the group

with equal numbers of Pauli Z operators, and used the fact that |rz| ≤ 1.

Assume now that stabilizer fidelity is multiplicative up to t−1 copies. We will

prove @ |ϕ〉, a t qubit stabilizer state, such that
∣∣∣〈ϕ∣∣∣S⊗t〉∣∣∣2 > F (S)t .

For a general t-qubit stabilizer state, we have the stabilizer group Sϕ, and the

corresponding fidelity with
∣∣∣S⊗t〉 is given by

∣∣∣〈ϕ∣∣∣S⊗t〉∣∣∣2 = 1
2t

 ∑
s∈Sϕ

〈
S⊗t

∣∣∣s∣∣∣S⊗t〉
 .

For a t-qubit Pauli operator Q, we define the weight |Q| = ⊗t
i=1Pi as the

number of qubits where Pi 6= I [132]. Using the assumption above, we can

write the expectation value of Q on |S〉 in terms of the weight as

〈
S⊗t

∣∣∣Q∣∣∣S⊗t〉=
n∏
i=1
〈S|Pi|S〉 ≤ |rz||Q|

and thus ∣∣∣〈ϕ∣∣∣S⊗t〉∣∣∣2 ≤ 1
2t

 ∑
s∈Sϕ

|rz||s|
 .

All t-qubit stabilizer states are equivalent to a graph state, up to a sequence of

local Clifford operations. As this is a local circuit, the weight of the stabilizers

is left unchanged, and thus we can characterize the weights of Sϕ using the

124



Chapter 3 Stabilizer Decompositions of Quantum States

stabilizer group of a graph states.

The stabilizer group of a graph state is generated from the underlying graph

G= (V,E). The jth generator is given by

gj =
t⊗
i=1

XδijZ1E(i,j)

where 1E (i, j) is an indicator function that returns 1 if qubits/vertices i and j

are connected by an edge. A product of m graph-state generators has weight

≥ m, arising from the Pauli X term acting on each qubit. There are
(
t
m

)
elements which are the product of m generators. We can also limit ourselves

to considering only connected graphs, as otherwise the state |ϕ〉 is separable

with respect to some bipartition, and thus

∣∣∣〈ϕ∣∣∣S⊗t〉∣∣∣= ∣∣∣〈ϕA∣∣∣S⊗|A|〉∣∣∣ ∣∣∣〈ϕB∣∣∣S⊗|B|〉∣∣∣≤ F (S)|A|F (S)|B|

as stabilizer fidelity is multiplicative up to t−1 copies. Thus, every generator

must have |gj | ≥ 2.

Splitting up the sum, we thus have

∣∣∣〈ϕ∣∣∣S⊗t〉∣∣∣2 ≤ 1
2t

1 +
∑
j

|rz||gj|+
∑

s∈Sϕ\{I,gj}
|rz||s|


≤ 1

2t

(
1 + t |rz|2 +

t∑
i=2

(
t

i

)
|rz|i

)

≤ 1
2t

(
1 + t |rz|+

t∑
i=2

(
t

i

)
|rz|i

)
, (3.38)

where in the final line, we have brought down the expression from Eq. 3.37.

For t= 2, we can verify explicitly that

1
4
(
1 + 2 |rz|2 + |rz|2

)
≤ 1

4
(
1 + 2 |rz|+ |rz|2

)

for all |rz| ≤ 1. Thus, from Eq. 3.38 and using proof by induction, stabilizer
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fidelity is multiplicative for all single qubit states.

It was subsequently shown by David Gosset that stabilizer fidelity is multi-

plicative for 1, 2 and 3 qubit states, but that in fact for typical states with

n ≥ 4 qubits the stabilizer fidelity is not multiplicative [107]. This in turn

suggests that, in general, stabilizer extent is submultiplicative.

3.3 Discussion

In this chapter, we have presented a number of results that extend our un-

derstanding of both exact and approximate stabilizer rank beyond just the

‘edge-type’ family of single qubit magic states.

In the case of exact stabilizer rank states, we focused on examining Conjec-

ture 1, which asserts that the exact stabilizer rank of single-qubit states is

smallest for the Clifford magic states. Explicit computational searches up to 3

copies, and an upper bound based on groups of Clifford symmetries, both pro-

vide evidence in favor of this being true. However, for other families of states,

stabilizer rank has proven difficult to quantify precisely. The performance of

numeric searches breaks down as the number of qubits increases. We were able

to provide explicit upper bounds for the stabilizer rank of up to 5 copies of

any quantum state, by considering the properties of the symmetric subspace.

Nonetheless, our results would suggest that in general the stabilizer rank is

smallest for Clifford magic states on any number of qubits, as both the |CS〉

and |CCZ〉 magic states have stabilizer ranks significantly smaller than either

their computational basis expansion, or the upper bounds obtained from the

symmetric subspace.

It is also interesting to note that the |T 〉, |CS〉 and |CCZ〉 magic states, all

of which can be used to inject an operator from C3, also all have the same

stabilizer rank. Given the properties of exact stabilizer rank discussed at the

beginning of Section 3.2.1, in particular invariance under Clifford unitaries, this

equal stabilizer rank might appear to suggest that there exists some Clifford
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circuit V and stabilizer states |φ〉 such that V (|T 〉⊗ |φ〉) = |CCZ〉. This would

in turn suggest that a |CCZ〉 gate can be realised using just Clifford gates and

a single T gate. However, the best known unitary circuit for synthesising a

CCZ gate from Clifford+T operations requires 7 T -gates [28].

Smaller circuits, have also been shown to exist that allow a CCZ gate to be

synthesised using Clifford gates, T -gates, and Pauli measurements. Again,

appealing to the properties of the exact stabilizer rank, we might expect that

as χ
(∣∣∣T⊗3

〉)
> χ(|CCZ〉), we could find such a circuit with a T -count of 3.

However, the current optimal circuit known has a T -count of 4 [133]. Similar

results exist for the CS gate, for which the optimal circuit known requires 3

T -gates.

Additionally, there is evidence from alternative resource formulations of ‘magic’

that these circuits are in fact optimal. For example, in the ‘Robustness of

Magic’ picture, it can be shown that R
(∣∣∣T⊗3

〉)
<R (|CCZ〉)<R

(∣∣∣T⊗4
〉)

[73].

It is also important to note that no circuits with smaller T -counts have been

found since these circuits were first proposed, despite continued research into

gate-synthesis by the community. This includes efforts employing computa-

tional searches [134].

This has important consequences for the interpretation of the exact stabilizer

rank as a resource measure. In particular, it is clear that the exact stabilizer

rank is not a useful quantifier of magic as it relates to problems of gate synthe-

sis. While Clifford equivalent states naturally have the same stabilizer rank,

equal stabilizer rank does not imply Clifford equivalence.

However, this observation does have an important consequence for how we in-

terpret other resource measures of magic. As previously mentioned, for exam-

ple, the |CCZ〉 state has a greater robustness of magic than the |T 〉. However,

both states have equivalent stabilizer rank, and subsequently given an appro-

priate algorithm a circuit with either a single CCZ or a single T gate would be

broadly equivalently difficult to simulate. Phrased another way, large ‘magic’

127



Chapter 3 Stabilizer Decompositions of Quantum States

does not guarantee that a circuit shows significant non-classical behaviour.

We also present results showing how to construct approximate stabilizer state

decompositions for broad classes of states, most generally with the sparsifi-

cation method and the associated quantity of stabilizer extent. As a convex

resource measure [76], it lends itself to easier explicit computation than the

exact stabilizer rank, which as a form of sparse optimization is NP-hard even

not-withstanding the exponentially growing search space [135]. As mentioned

previously, the number of stabilizer states grows exponentially with the num-

ber of qubits and so in practice extent is difficult to compute for more than

a few qubits. However, in some cases stabilizer rank calculations can be sped

up by taking into account features of the state like all-real amplitudes. Recent

work by Gross et al. looked at optimizing a similar computation for Robust-

ness of Magic, using symmetries in the Clifford group to significantly reduce

the number of states to be considered [136].

As a convex measure, extent is also well behaved as a magic monotone [76]. For

example, unlike in the case of the exact stabilizer rank, subsequent work has

used the stabilizer extent to find lower bounds on the ‘non-Clifford’ resources

required for different quantum computations [2].

From a simulation perspective, we can demonstrate the impact of building

direct stabilizer state decompositions by comparing the stabilizer fidelity of

states. As quoted above, the current optimal T -counts known to be required

for synthesing the CS and CCZ gates are 3 and 4, respectively. Comparing

the stabilizer fidelities, we can show that

F (T )−2 ≈ 1.373< F (CS)−1 = 1.6 < F (T )−3 ≈ 1.608

F (T )−3 ≈ 1.608< F (CCZ)−1 ≈ 1.778 < F (T )−4 = 1.884.
(3.39)

Asymptotically, these savings in stabilizer rank become significant. For exam-

ple, a circuit built out of 40 CCZ gates would require ∼ 11% of the resources

compared to an equivalent circuit built in the Clifford+T basis. At 80 CCZ

gates, a direct decomposition needs just 1.1% of the terms that a synthesised
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decomposition would require. We also note that, like in the case of robust-

ness, these inequalities support the claim that 3 and 4 T-gates is the optimum

number required to synthesise CS and CCZ.

The comparison becomes even more significant if we consider resource states

that could be used to realise gates from outside of the 3rd level of the Clifford

hierarchy. For example, consider a state

|θ〉= 1√
2
(
|0〉+ eiθ/2 |1〉

)
. (3.40)

These resource states can be used to realize single-qubit rotations around the

Pauli Z axis through an angle θ. As previously discussed, such rotations can

require up to 100 T -gates to synthesize [123] as θ→ 0. However, the stabilizer

fidelity of |θ〉 actually increases as θ gets smaller. In fact, any rotation smaller

than a T gate will require multiple T gates to synthesize, but has a smaller

approximate stabilizer rank.

A caveat of this method is that to be used in a state-injection circuit, resource

states like |θ〉 require non-Clifford ‘correction operations’. In the approximate

simulation case, however, we cannot post-select on the measurement gadgets

to avoid these additional non-Clifford gates [47]. Thus, to be used in a simula-

tion scheme, we need a different formulation than the PBC method discussed

in Section 3.1.1. We will discuss the problem of applying the sparsification

method to simulation in the following chapter.

It is interesting to note that there is a tension between trying to minimize

the exact or the approximate stabilizer rank. For example, consider the two

classes of single-qubit magic states. While the face state has a smaller stabi-

lizer fidelity that the edge-type states — in fact it has the smallest possible

stabilizer fidelity, c.f. Fig 3.3 — both states have equivalent exact stabilizer

rank. Alternatively, single-qubit states exponentially close to a stabilizer state

will have a small approximate stabilizer rank, but have a larger exact stabi-

lizer rank. In fact, for any single qubit state with stabilizer fidelity ≥ 1√
2 , its
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Figure 3.3: Heatmap showing the inverse stabilizer fidelity, F (ψ)−1, for all single-qubit
states lying in a single quadrant of the Bloch sphere. We note that the state
with the largest inverse fidelity, and thus largest stabilizer extent, is the face-
type magic state. Figure taken from [107].

approximate stabilizer rank will have an asymptotic scaling smaller than 20.5t,

the upper bound obtained from computational searches in Section 3.2.1.

Importantly, we note that all the results shown here serve only as upper bounds

on the stabilizer rank. While stabilizer fidelity is capable of lower bounding the

stabilizer extent, this is itself also an upper bound on the approximate stabilizer

rank. Currently, the only lower bounds that have been explicitly proven apply

to the case of the |T 〉 state. It was argued in [121] that χ
(∣∣∣H⊗n〉) = Ω(

√
n),

based on constructing states with finite stabilizer rank but which require a large

number of T gates to create. In [107], it was also shown that the approximate

stabilizer rank χε
(∣∣∣H⊗n〉)= Ω

(
F (H)−nε−2

)
, but only under the assumption

that the decomposition is built from the states |0〉 and |+〉, as used in the

random codes construction.

Part of this difficulty likely arises from the fact that, as a sparse optimization

problem, even approximately computing the optimal stabilizer rank is NP-

hard [135]. Currently, the best explicit lower bound is a complexity theoretic

argument. It was shown by Dalzell that any classical simulation of a Clifford+T
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circuit must have a runtime that scales asymptotically as 2γt, where γ > 1
128 ,

otherwise the polynomial hierarchy would collapse to the third level [36]. This

result acts as a lower-bound on the approximate stabilizer rank of the |T 〉magic

states, and is significantly looser than the current best known decompositions

with γ ≈ 0.23. It is a open question if this complexity theoretic argument can

be tightened.

In the case of approximate stabilizer rank, we might also ask if alternative

strategies for building decompositions could be yield a smaller approximate

stabilizer rank.

For example, inspired by the random codes method, we might consider us-

ing Schumacher compression to efficiently encode many copies of a resource

state [31]. In [47], the authors compared the Shannon entropy of the |H〉 state

with the asymptotic 20.23t scaling obtained using random codes, showing that

it outperforms Schumacher compression. Figure 3.4, taken from [108], shows a

similar analysis comparing the Shannon entropy with the stabilizer extent for

|θ〉 states as a function of the angle θ. We can see that in fact, at small angles,

Schumacher compression can achieve a smaller decomposition than sparsifica-

Figure 3.4: Graph comparing the Shannon entropy (blue) and stabilizer extent (red) of |θ〉
states, defined in Eq. 3.40, as a function of the angle |θ〉.
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tion. However, over most of the parameter range, the sparsification method

performs significantly better.

Alternatively, we could consider techniques that construct an approximate

stabilizer state decomposition by discarding only the terms which contribute

least to the overall decomposition. Indeed, an interesting feature of both the

random codes and sparsification methods is that the resulting decompositions

are uniform mixtures of the sampled stabilizer states.

In the most general case, the simulation overhead achieved by discarding terms

is related to the notion of ε-sparsity, namely how many terms in the decom-

position can be discarded while retaining an additive error ε in the output

distribution [45]. The notion of ε-sparsity is closely related to the smooth max

entropy Hε
max, the logarithm of the number of terms with coefficients |ci|> ε.

An ideal truncation method of this type would have approximate stabilizer

rank 2Hε
max , but as previously stated computing optimal sparse decomposi-

tions of this type constitutes an NP-hard problem.

In some tensor network methods for classical simulation, such as Rollright

and qFlex, the output state of the computation before measurement is bro-

ken up into a decomposition of largely independent states, which contribute

roughly equally to the norm [137, 138]. Thus, they can achieve an approxi-

mate fidelity f by dropping all but a fraction f of the states [137]. In practice,

this method does slightly worse than the target fidelity due to small overlaps

∼ 10−6 between states [138], but the reduction in the number of terms achieved

is significant.

The overlap between general n-qubit stabilizer states, in contrast, varies signif-

icantly from 0 to 2−s : s∈ [1,n]. The sparsification method works around this,

using the fact that sampling states according to cj
‖~c‖1

, the expectation value

E [|ω〉] = |ψ〉
‖c‖

,

i.e. the sampled states have equal norm on average [107]. Additionally, group-
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ing like terms, we can see that in the sampled state

E
[∣∣∣ψ̃〉]= E

[
‖c‖
χε

χε∑
i=1
|ωi〉

]
= E

‖c‖∑
j

# |wj〉
χε

|wj〉

= ‖c‖
∑
j

pj |wj〉 .

On average, then, building uniform decompositions in this way does effectively

weight each stabilizer state according to its contribution to the decomposition.

It might however be interesting to test alternative sampling strategies, such

as sampling without replacement or excluding terms with a coefficient below

some small threshold value.
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Chapter 4

Simulating Quantum Circuits with the

Stabilizer Rank Method

4.1 Introduction

Previously, we have discussed decompositions of quantum computations, where

each individual term can be efficiently simulated classically. This connection to

classical simulation gives an easy operational interpretation to these decompo-

sitions, and suggests a way of building a classical simulator along these lines.

In this chapter, we will make this connection explicit, introducing methods

that can be used to simulate universal quantum circuits, and discussing their

implementations.

Despite the fact that they are believed to be intractable in the general case,

classical simulations play an important role in the research and development of

quantum technologies. In recent years, as quantum hardware has continued to

improve, an increasingly important role of simulations has been to support the

transition and adoption of quantum technology. Providing classical simulators

as a test bed enables the development of software engineering, protocols and

applications that take into account non-classical features, even while access to

actual quantum devices is still limited.

For example, SimulaQron and NetSquid are classical simulations of quantum

communications networks, developed as part of an effort to promote the de-

velopment of practical quantum communications [139, 140]. These tools have

been used to develop proposals for link layer protocols in quantum networks,

which can then be tested in the lab [141].
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In the context of quantum computing, many classical simulators in use today

form part of ‘Quantum Development Kits’ (QDKs), software environments for

the development of quantum software. These tools broadly follow a similar

architecture to that of ProjectQ, described in [142]. Typically, the user-facing

component is a ‘high-level’ description of a quantum programme, either as

an API or with a domain-specific language (DSL), which is agnostic to how

it will be evaluated. These programmes can be built out of algorithms and

meta-algorithms, such as the Variational Quantum Eigensolver; subroutines

and operations, such as the quantum Fourier transform; or even individual

gates. The resulting description of the programme can then be compiled to a

quantum circuit, and either simulated clasically, or else dependent on require-

ments further compiled and dispatched to a quantum processor. Multiple such

QDKs have been developed over the past 5 years, and a brief summary of the

some of the available options is shown in Table 4.1.

Framework High-level
Description

Classical
Methods

Supported
Hardware

Microsoft QDK [17] Q# [143] State vector None
ProjectQ [144] DSL State vector IBMQ [5]

Qiskit [1] QASM [145],
Python API Various IBMQ [5]

Circ [146] Python API State vector,
density matrix Bristlecone1 [18]

Forest [147] Quil,
Python API [148]

State vector
density matrix Rigetti QPU [149]

Table 4.1: A non-exhaustive list of different quantum software frameworks or QDKs. We
note that many of these frameworks have additional components aimed at sup-
porting application development that are not mentioned here.

In practice, most of the QDKs mentioned above make use of what could be

described as ‘textbook’ classical simulations of quantum computing, where a

circuit is simulated by matrix multiplication of the unitary associated with

each gate, acting on either a state-vector or a density matrix description [28].

These simulators have the advantage that they are relatively straightforward

to implement, and can leverage mature computational libraries for linear alge-

bra such as Numpy [124]. Probabilities in the computational basis can also be
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trivially obtained, either by reading off the right diagonal entry in the density

matrix or computing the absolute value squared of the corresponding ampli-

tude in a state-vector. Noise in these models is also relatively straightforward

to model, either by using a stochastic noise model inserting extra operators into

the circuit in the state-vector case, or else applying Kraus operators directly

in the density matrix case [28].

However, the main drawback to these simulators is their spatial complexity.

A state-vector requires 2n complex numbers to define, and a density matrix

requires up to 22n, where n is the number of qubits. As each complex number

requires two 64-bit floating point numbers to specify, the memory requirements

can quickly approach the limits of personal computing. A simulation on 30

qubits requires 16GB of memory, and up to 45 qubits this requires 0.5PB [150].

The current top-ranked supercomputer in the world has access to 2.7PB of

memory, meaning it could simulate up to 47 qubits using these methods [151].

These classical representations also have a significant temporal overhead. In

the most straightforward implementation, applying gates requires multiplying

2n× 2n matrices. These updates require time 22n in the state-vector case,

and 24.746n for density matrices. In practice though, significant optimizations

are possible that can make state-vector simulators reasonably performant at

accessible sizes. For example, the 2n× 2n matrices representing single qubit

gates are sparse, with the vast majority of entries being 0 or 1. Other op-

timizations that have been applied include parallelising single-qubit gate up-

dates [152, 153, 154], optimising permutation operations such as CNOT and

Pauli X [153], replacing certain arithmetic operations with classical equiva-

lents [150], and accelerating algorithms using parallel execution via OpenMP,

MPI or GPUs [152, 153, 154, 155].

In practice, this limit of approximately 30 qubits when simulating circuits with

personal computers roughly corresponds to the kind of quantum programmes

that can be run on current publicly accessible devices, which have anywhere

from 5-20 qubits [5, 149]. However, with continued development of quantum
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hardware into the 50–72 qubit range [156, 157], classical simulations need

to be pushed further, to continue in their other role in the verification and

benchmarking of quantum devices.

Given that the complexity of classical simulations generally scales exponen-

tially in the system size, the question of verifying quantum computations

without simulation constitutes a separate branch of research, based on the

idea of ‘interactive proofs’ [158, 159]. Nonetheless, classical simulations of-

fer a unique opportunity in verification as at any point the simulation can

be paused and the system state inspected. Large-scale classical simulations

also provide a performance baseline, as part of attempts to establish Quantum

Supremacy [93, 97].

Recent work has focused on tensor-network methods, as introduced in Sec-

tion 1.2.2, to push classical simulations up past 45 qubits, and have achieved

some of the largest scale classical simulations to date [160, 161, 162, 137, 100].

These papers on large classical simulations focus on on simulating quantum

circuits on grids of qubits with local connectivity. This restriction is motivated

by the designs of current quantum processors, and also allows for specific op-

timizations that reduce the temporal complexity of the simulation. State of

the art methods typically split this grid into sub-blocks which are locally con-

tracted, leaving only connections between blocks [160, 162, 137, 138]. The

remaining s contractions are then ‘sliced’, fixed to one of 2s values and con-

tracted fully [160]. This has a natural operational interpretation in terms of a

sum-over-paths expansion [137], and has the advantage that the contractions

within blocks can be parallelised.

These methods all achieve runtimes that scale as max
[
2dl,2n

]
, where l is the

length of the longest edge of the grid and d is the circuit depth [57]. They

also have exponential spatial requirements, though these are reduced compared

to a state-vector method by virtue of tensor slicing. Through application of

supercomputing resources, these methods have simulated random universal

circuits of up to depth 40 on 72 qubits [138], depth 35 on 100 qubits [161], and
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depth 24 on 121 qubits [100].

Because this generation of quantum hardware aims to maximize qubit count, it

will not employ full error-correction routines. As a result, noise is a significant

factor in the system, and limits the depth of circuits that can be run. We refer

to this regime of quantum computing as ‘Noisy Intermediate Scale Quantum’

or NISQ [98]. Thus, much like system size for the state-vector simulator, the

exponential simulation overhead in the depth does not render the simulations

intractable. In fact, simulators can benefit from the increased noise level, by

dropping terms from the simulation and reducing the overall computational

time required by a constant factor, as discussed in Section 3.3.

4.2 Results

In the rest of this chapter, we will discuss a distinct method for simulating

universal quantum circuits, based on stabilizer state decompositions. These

methods are then implemented in software, including a version integrated into

the Qiskit QDK. Using these implementations, we will present simulation re-

sults for several types of quantum circuit, and argue that this method has

a great potential for simulating circuits on current and near-term quantum

hardware.

4.2.1 Methods for Manipulating Stabilizer Decompositions

At a high level, simulating a quantum circuit U using a decomposition into

efficiently simulable terms requires two main stems. Firstly, we need to build

a representation of the circuit state U |x〉 for an input state |x〉, which is itself

part of our efficiently representable set of states. Then, we need a routine for

computing output variables from the distribution, either computing explicit

probabilities if we interested in strong simulation, or else sampling from the

output distribution if we are interested in weak simulation.

In the following, we will use U to denote a classical description of the quantum

circuit U . We store U as a sequence of gates, where each gate includes its label,

e.g. ‘H’, and the labels of the qubits it acts on.
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Stabilizer states will be encoded classically using either the CH or the DCH

representations, introduced in Chapter 2.

4.2.1.1 Building Decompositions

The main method for constructing a stabilizer state decomposition, given a

description of a quantum circuit U , is the PBC method introduced in [121]

and [47], and outlined previously in Sections 3.1.1 and 3.1.2. We will review

the method briefly here, with a focus on implementation in software.

Implementing a PBC requires rewriting U as an equivalent Clifford circuit V .

We achieve this by walking through the circuit U, and replacing each of the m

non-Clifford gate with an appropriate magic state or states, and state-injection

gadget, such as the example shown in Figure 3.1. We note that this requires a

library of known gadgets for implementing different gates. The result is a new

circuit U ′, acting on n qubits and m magic states.

State-injection gadgets include additional, measurement controlled ‘correction’

operations. By post-selecting on these measurement-outcomes, we can expand

out U ′ as a sum of different Clifford circuits V~y

U |~x〉=
∑
~y
〈~y|Vy|~x⊗ψ〉

where ~y is the post-selection string with length O(m), and |ψ〉 is the joint state

of all the magic states.

It was shown in [47] that given some approximate stabilizer state decomposi-

tion of the magic states
∣∣∣ψ̃〉, we can construct a PBC to sample from the out-

put distribution of the circuit by sampling the post-selection string at random.

Thus, for each gadget, we sample the measurement outcomes appropriately to

build-up the Clifford circuit V.

As previously discussed, when injecting a gate U the correction operation has

the form UPU † for some Pauli operator P . If U ∈ C3, then by definition UPU †

is a Clifford operator and we are done. Otherwise, we will need to introduce

additional layers of state-injection until we build an all-Clifford circuit V.
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Finally, we need to construct an approximate stabilizer state decomposition

for the magic states |ψ〉. In general, |ψ〉 will be a tensor-product of different

‘species’ of magic state, and so we build the full approximation using the

multiplicative upper bound

χε (|ψ〉) = χε
(
|T 〉#T

)
χε
(
|CCX〉#CCX

)
χε
(
|θ〉#θ

)
· · ·

For Clifford magic states, we can make use of the random codes construction.

Otherwise, we can use sparsification. We note that this again implies a library

of best-known decomposition strategies for each magic-state we introduce.

Overall then, the gadgetization method takes as input a classical description

of an n-qubit circuit U and target error ε, and returns a new description of a

Clifford circuit V acting on n qubits and m magic states, the corresponding

post-selection string ~y, and an approximate stabilizer state decomposition
∣∣∣ψ̃〉.

A pseudo-code description of this method is given in Algorithm 3.

The Sum-over-Cliffords picture

The PBC model has an interesting feature where the number of qubits in the

stabilizer state expansion depends only on the magic states, and not on the

number of qubits in the circuit. Stabilizer circuits are efficient to simulate

in terms of the number of qubits, but the O(n3) overhead is still considered

significant in practice. Thus, if there are fewer magic states, the PBC can

reduce the number of variables in the simulation. But, in general, universal

quantum computations have a number of gates that scales as poly(n), and

gadgetization will result in more qubits.

An alternative strategy for building stabilizer state decompositions makes use

of the equivalence between stabilizer circuits and stabilizer states. If we con-

sider a Clifford gate decomposition Q = ∑
iαiVi, then the action of Q on a

stabilizer state results in a stabilizer state decomposition

Q |φ〉=
∑
i

αiVi |φ〉=
∑
i

αi |φi〉 , (4.1)
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which we can then turn into an approximation stabilizer state decomposition

with sparsification, giving a decomposition with a rank O(‖~α‖2).

From this, we can define a notion of ‘extent’ for a unitary

ξ (Q) = min
V
‖~α‖2 : Q=

∑
i

αiVi. (4.2)

For example, considering single-qubit rotations in around the Z axis of a Bloch

sphere with θ ∈ [0,π/2], we can expand them into two Clifford branches

RZ (θ) =
(

cos θ2 − sin θ2

)
I+ e−iπ/4√2sin θ2S, (4.3)

with corresponding extent ξ (R (θ)) =
(
cos θ2 + tan π

8 sin θ
2

)2
[107]. Similar re-

sults can be found for all Z rotations, where we slightly adjust the phase and

the Clifford operations on each branch.

This expansion corresponds with the stabilizer extent of the |T 〉 state by set-

ting θ = π
4 . In fact, it was shown by Earl Campbell that for injectable Clifford

magic states, such as |T 〉 and |CCZ〉, the extent-optimal stabilizer state de-

composition can be used to ‘lift’ a Clifford gate expansion of the corresponding

unitary (i.e. T and CCZ), that is also optimal [107].

Using submultiplicativty, we can thus upper-bound the stabilizer extent of the

circuit U as

ξ (U) =
m∏
i=1

ξ (Ui) (4.4)

for each non-Clifford gate Ui. We can then build up a term in the stabilizer

state decomposition by iterating through U. If the gate is Pauli or Clifford, we

just apply it and update the state. Otherwise, for each non-Clifford gate Ui
we sample a branch j from the Clifford expansion with pi,j = |αi,j|‖ ~αi‖

as in the

sparsification method, and apply the corresponding Clifford gate Vi,j . We can

repeat this O(ξ (U)) times, to produce a stabilizer state decomposition of the

U |~x〉. This algorithm is outlined in Algorithm 4.
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Algorithm 3 Pseudocode description of the computational routine for construction
a stabilizer state decomposition of a quantum circuit using state-injection gadgets.
Require: Known set of gadgets for non-Clifford gates.
function GadgetDecomposition(U, ε)

V←∅ . Output Clifford circuit
|ψ〉 ← ∅ . Magic states
for Ui ∈ U do

if Ui /∈ C2 then
Sample a measurement outcome z
V← V∩G∩Vz . G is the gadget for Ui.
|ψ〉 ← |ψ〉⊗ |ψG〉 . Add magic state associated with G

else
V← V∩Ui

end if
end for
Reorder qubits in V, |ψ〉 to join common species of magic state∣∣∣ψ̃〉= ∅

for
∣∣∣ψ⊗#Uj
Uj

〉
∈ |ψ〉 do∣∣∣ψ̃〉← ∣∣∣ψ̃〉⊗ ∣∣∣ψ̃Uj〉 . Rank is set by ε.

end for
return V,

∣∣∣ψ̃〉
end function

Algorithm 4 Pseudocode description of building stabilizer state decompositions in
the sum-over-Cliffords picture.
Require: Clifford decompositions of non-Clifford gates.
function SumOverCliffordDecomposition(U, ε, |x〉)∣∣∣ψ̃〉= ∅

ξ← ComputeExtent(U)
i← 0
while i < χε =O

(
ξε−2) do

|φ〉 ← |x〉
c← 1
for Ui ∈ U do

if Ui /∈ C2 then
Sample Clifford branch j of gate Ui
|φ〉 ← Vi,j |φ〉
c← αi,j

|αi,j | c

else
|φ〉 ← Ui |φ〉

end if
end for∣∣∣ψ̃〉← ∣∣∣ψ̃〉+ c |φ〉
i← i+ 1

end while
return

∣∣∣ψ̃〉
end function
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Algorithm 5 Pseudocode outline of the Norm Estimation routine for computing
expectation values of Pauli projectors.
Require: L, number of samples to take, n, number of qubits, Π, Pauli projector
function NormEstimation(Π,

∣∣∣ψ̃〉)
~η←{ηi = 0}
{|ηi〉} ← {RandomEquatorialState(n)}
for αi, |φi〉 ∈

∣∣∣φ̃〉 do
Γ← 1
for P ∈Π do

ΓP , |φi〉 ←MeasurePauli(P ,|φ〉)
if ΓP = 0 then

Γ← 0, Break loop
end if
Γ← ΓΓP

end for
if Γ 6= 0 then

for |ηi〉 ∈ {|ηi〉} do
ηi← Γαi 〈ηi|φi〉+ηi

end for
end if

end for
return 2n

L

∑
i |ηi|

2

end function

Algorithm 6 Pseudocode description of the Metropolis-style Monte Carlo method
for sampling a computational basis string x from the output distribution of a stabi-
lizer state decomposition.
Require: n, number of qubits
function MetropolisSampling(

∣∣∣ψ̃〉, m)
~x← Random initial n-bit binary string
px← |

∑
iαi 〈~x|φi〉|

2

for j ∈ [1, . . . ,m] do . m repetitions of the random walk step
j← Random integer ∈ [1, . . . ,n]
~x′← ~x⊕~ej
px′ ← |

∑
iαi 〈~x′|φi〉|

2

if px = 0 then . Always move away from 0 amplitudes
~x← ~x′, px← px′

else
Generate r ∈ [0,1) uniformly at random
if r < px′

px
then . Always accept if px′ > px

~x← ~x′, px← px′

end if
end if

end for
return ~x

end function
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4.2.1.2 Output Variables

There are two main methods for computing output variables from a given

stabilizer state decomposition. The first is the ‘norm estimation’ routine, in-

troduced in [47] and refined in [107]. Norm estimation can be used to compute

measurement probabilities, and also to sample as described in Section 3.1.2.

The second is a Metropolis-style Monte Carlo method, which can be used to

return samples in the computational basis. Both methods were developed by

Sergey Bravyi, and we introduce them here with a view to their implementa-

tion. The two methods are also outlined in Algorithms 5 and 6, respectively.

Norm Estimation

This routine allows us to quickly compute an approximation to ‖ψ‖. Impor-

tantly, given a projector Π, we can compute the probability of that outcome

as

p(Π) = ‖Πψ‖
2

‖ψ‖2
. (4.5)

In particular, it is possible to show that if we generate equatorial stabilizer

states |η〉 uniformly at random, then the random variable η ≡ 2n/2 |〈η|ψ〉| has

the property that

E
(
η2
)

= ‖ψ‖2 E
(
η4
)
≤ 2‖ψ‖4

and thus, the average inner product of |ψ〉 with equatorial stabilizer states is

equal to norm of |ψ〉 squared, with variance at most ‖ψ‖4 [107].

The number of samples we need depends on the accuracy desired. It can be

shown that given an estimate

η̄ = 1
L

∑
i

|ηi|2

then η̄ approximates ‖ψ‖ to within ε relative error η̄ = (1± ε)‖ψ‖ with proba-

bility 3
4 , provided L= 4ε−2 [107]. We can then decrease the failure probability

to δ ≤ 1
4 by taking O

(
logδ−1

)
estimates of η̄.

In Section 2.2.2, we introduced an algorithm for computing inner products
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between stabilizer states |φ〉 and equatorial stabilizer states. This method has

computational complexity O(n3). Thus, given a stabilizer state decomposition∣∣∣ψ̃〉, we can use it to compute
∥∥∥ψ̃∥∥∥ in time O(Lχn3), where L is the number

of samples of η.

As part of the sampling routine described in Section 3.1.2, we want to com-

pute marginal probabilities P (x1,x2, . . .xj) for some j-bits. These marginals

correspond to fixing j qubits, and projecting the rest onto a 2n−j dimensional

codespace, generated by j Pauli operators [47]. This codespace can be gener-

ated by j Pauli operators, giving

Π =
j∏
i=1

1
2 (I+Pi)

where Pi are n qubit Pauli operators. We can thus apply this projector by

measuring each of the Pauli generators in turn. Recall that each Pauli mea-

surement takes time O(n2), (c.f. Section 2.2.2) and thus computing
∥∥∥Πψ̃∥∥∥2

also has runtime O
(
Lχn3

)
.

To avoid accumulation of errors, each marginal probability needs to be com-

puted with multiplicative error O(w−1) when sampling from w output bits. Us-

ing the bound on the approximation accuracy above, this implies L = O(w2).

As there are w marginals to compute, sampling with the norm estimation

method thus takes time O(χn3w3).

In the gadgetized picture, we can employ norm estimation by first setting the

measurement projector Π, and then updating it to obtain the corresponding

PBC Πs by conjugating the projector with the Clifford circuit Vy. These Pauli

updates can be computed efficiently classically, using similar update rules as

for a stabilizer tableau [64]. Otherwise, for decompositions obtained using the

sum-over-Cliffords method, no further preprocessing is required.

We note that norm estimation is also required to compute individual compu-

tational basis amplitudes, and to convert a stabilizer state decomposition into

the state vector picture. Recalling that in the CH and DCH representations,
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we can compute 〈~x|φ〉 in time O(n2), this means that for a given stabilizer

state decomposition we can compute
〈
~x
∣∣∣ψ̃〉 as

p(~x) = |〈~x|ψ〉|2 ≈
∣∣∣〈~x∣∣∣ψ̃〉∣∣∣2 = |

∑
iαi 〈~x|φi〉|

2∥∥∥ψ̃∥∥∥2 (4.6)

in time O(χn2). To avoid potential floating point errors, stabilizer states in

the decomposition are stored only with their relative phase coefficients. Thus,

these amplitudes needs to be reweighted by
∥∥∥ψ̃∥∥∥.

Metropolis Estimation

One advantage of norm estimation is that it can be used to compute the

probability of arbitrary Pauli measurements. However, as discussed, while

technically polynomial it has a runtime up to O(n6) in the number of qubits.

Thus, an alternative strategy based on Metropolis Monte Carlo methods was

proposed by Sergey Bravyi, that also makes use of the ability to compute

individual computational basis amplitudes.

The idea is to define a random walk through the set of computational basis

strings, flipping one bit at a time and computing the amplitude of the new

string. If at some time-point we have computational basis string ~x and ampli-

tude
∣∣∣〈~x∣∣∣ψ̃〉∣∣∣, then we obtain ~x′ by flipping a single bit at random, and compute∣∣∣〈~x′∣∣∣ψ̃〉∣∣∣. If the new amplitude is larger, we accept the move. Otherwise, we

accept with fixed probability

p=

∣∣∣〈~x′∣∣∣ψ̃〉∣∣∣2∣∣∣〈~x∣∣∣ψ̃〉∣∣∣2 .
It can be argued that, assuming that the random walk is ‘irreducible’ such that

for any pair of strings ~x,~y there exists a path of single-bit moves between them

with non-zero amplitude, the steady state distribution of this walk converges

to the output distribution of the circuit in time poly(n) [107]. In practice,

we have used this method to obtain samples from the output distribution on
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50 qubit circuits with mixing time of ∼ 2000 steps [107]. Importantly, once

the chain has been mixed, we can then obtain samples by continuing to run

the core random-walk step (contained within the For loop in Algorithm 6) for

a further s repetitions, recording the string ~x at the end of each step as one

sample.

In general, computing amplitudes requires time O
(
χn2

)
, combining the contri-

butions from each term in the decomposition. While we store an unnormalised

description of the approximate state
∣∣∣ψ̃〉, here we can avoid the need to per-

form norm estimation as in Eq. 4.6, as we are interested in ratios of amplitudes

and so the norms cancel. We might expect then that the Metropolis method

to have a runtime that scales as O
(
χn2

)
. However, we can actually remove a

factor of n from the runtime of the random-walk step by exploiting the fact

we are flipping single bits at a time.

Recall from Section 2.2.2 that we compute the computational amplitudes ~x

in the CH and DCH picture by commuting a Pauli X(~x) past the CH/DCH

layers which we denote here as a Clifford circuitW . We can store this resulting

Pauli operator P ′ =W †X(~x)W , which takes O(n2) to compute, for a constant

memory cost. We can then compute the operator Q′, obtained by commuting

X(~x′), as

Q′ =WX(~x′)W † =WX(~ej)X(~x)W † =WX(~ej)W †P ′.

Because X(~ej) acts as the identity everywhere except qubit j, commuting this

operator through the Clifford layer can be optimised to ignore any terms except

for those involving qubit j. By inspection of Eqs. 2.45, 2.46, 2.47 and 2.48,

this takes time O(n) as each vector-matrix multiplication will involve only a

single row or column.

Thus, overall then, if we run the Metropolis method for time m+ s = T to

obtain s samples, the runtime scales as O
(
χn2

)
+O (Tχn).

148



Chapter 4 Simulating Quantum Circuits with Stabilizer Rank

4.2.2 Implementation of the Simulator

To implement these simulation methods, the fundamental data-structures we

consider are arrays of stabilizer states, and their complex coefficients. The

stabilizer states themselves are encoded using either the CH or the DCH rep-

resentation, as each encoding supports the necessary update routines including

fast inner-product calculations with equatorial states.

Building on the existing implementations of the CH and DCH simulators dis-

cussed in Section 2.2.3, the simulator was written in C++. In the previous

section, we introduced two distinct approaches for building stabilizer state de-

compositions, and two distinct methods for computing output variables. Thus,

the simulator was designed using the ‘strategy’ design pattern [163], which al-

lows different algorithms for the same task to be used interchangeably.

The core of the simulator is a class we call Runner, which is responsible for

maintaining the stabilizer state decomposition. The Runner class is initialized

with the target stabilizer rank, the number of qubits and, optionally, the initial

(stabilizer) state of the computation |~x〉. By default, we set |~x〉=
∣∣∣~0〉

Because the specifics of building a stabilizer state decomposition will depend

extensively on the circuit, including factors like the choice of gadget or Clifford

decomposition, the Runner accepts user-defined strategies. These can be imple-

mented using ‘function objects’, classes that can be called like functions [164].

This allows the decomposition strategy to have internal state information, e.g.

the choice of ‘subspaces’ used to decompose Clifford magic states, which is

kept separate from the resulting stabilizer state decomposition. The user de-

fines their decomposition strategy by sub-classing the DecompositionBuilder

class, and at runtime the Runner class simply calls the function object χ times

to build up the decomposition. The Runner method then also implements both

the norm estimation and metropolis methods.

Details of the specific strategies used to build stabilizer state decompositions

will be given in the descriptions of simulations in Section 4.2.3.
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In their implementation, the DCH and CH classes have the same set of public

methods, differing only in their internal representation of the stabilizer state.

We formalise this using the notion of ‘template’ programming [163, 165]. Tem-

plates allow the implementation of the simulator to be agnostic to the choice

of internal representation. The choice of encoding is made at compile-time, by

specifying either the CHState or DCHState classes.

4.2.2.1 Parallelization

An important feature of all the routines outlined in Algorithms 3–6 is that they

each include a step where we operate on every single term in the stabilizer state

decomposition independently. In the decomposition routines, each stabilizer

state term is built up separately. Similarly, in the output routines we use

a ‘map-reduce’ model, where the same calculation is applied to every state

before combining the results at the end. For example, computing a probability

amplitude requires summing the value of 〈~x|φi〉 for every state.

These kind of computations are called ‘embarrassingly parallelisable’, as there

is little to no dependency between the tasks, and thus they can be easily

sped-up by providing multiple parallel workers. Importantly, these loops are

also the only parts of the computation where the complexity scales as O(χ);

other steps, such as gadgetizing a circuit or computing a PBC, are efficiently

computable. Thus, these parallelisable loops dominate the runtime, and by

Amdahl’s law we can significantly reduce the runtime of the programme by

adding parallel workers [166].

In contrast to ‘data parallelism’, such as the SIMD methods discussed in Sec-

tion 2.3, this kind of computation is called Multiple Instruction Multiple Data

(MIMD) computation [116]. MIMD programmes can be further subdivided

into ‘shared memory’ execution, where parallel threads run on a single com-

puter, or ‘distributed’ execution, where separate processes run independently

on multiple processing units.

Shared memory parallelism is the most straightforward to implement. The

programme is mainly executed by a single thread, with additional parallel
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threads ‘forked’ from the programme for specific subroutines [167]. In C++,

this can be implemented using OpenMP, which allows parallelising loops and

map-reduce operations with single-line annotations [168].

However, the benefits of shared memory parallelism are limited by the kind

of hardware available, in particular the maximum memory and number of

threads. While this kind of parallelism is sufficient for personal computers,

scaling the simulator to large problem sizes requires distributed memory tech-

niques.

We employ a ‘message passing’ model of distributed memory parallelism, where

multiple processes each execute a unique copy of the programme, and synchro-

nise and share results through inter-process communication [167]. In particu-

lar, we use Open-MPI, an open source implementation of the Message Passing

Interface standard [169, 170].

We implement a subclass of Runner, called MPIRunner, for distributed mem-

ory computations. On initialization, each process is assigned a ‘rank’, with

the rank-0 process designated the ‘master’ [170]. All processes run the same

setup steps to initialize the simulation, and the ‘master’ process then splits the

decomposition, allocating a unique fraction of states fi to each of the ‘worker’

processes. The worker processes then perform computations locally on their

share of the decomposition. Initialization is done entirely locally, with the

only communication being to pause the programme until all processes have

computed their terms [170]. For output variables, processes again apply the

map-reduce model locally, before sending their results to the master process

which performs a final reduction step [170]. We can also allow for ‘hybrid’

parallelism, where each distributed process also uses local, shared memory

execution to further speed up its part of the simulation task.

Through distributed memory execution, the stabilizer rank simulator can be

scaled up to even larger problem sizes. In this thesis, the largest simulation we

considered used 32GB of memory, running on UCL’s Myriad supercomputing
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cluster, but this method could be scaled to even larger instances.

4.2.2.2 Integration with Qiskit-Aer

Building on the Runner class outlined above, we were also able to integrate our

simulation method with Qiskit-Aer, the component of IBMs Qiskit QDK

that is responsible for classical simulations. Here, we briefly outline the Qiskit

execution model, and show how our simulator is incorporated with it.

The fundamental data-structure in Qiskit is the Qobj or ‘Quantum Object’,

which contains information about a quantum programme in the form of the

available quantum and classical registers, and the circuits to be run. The Qobj

is then converted to Javascript Serial Object Notation (JSON), such that it

can be transmitted over the internet to the IBM Quantum Experience, or

dispatched to the Aer suite of classical simulators.

This classical backend also employs a version of the strategy pattern. The

Qobj is first parsed by a Controller, which is responsible for setting up the

simulation, including configuring the shared-memory parallel execution, and

creating an internal representation of the quantum circuit as an sequence of

Gate objects. This includes reading configuration options related to the choice

of strategy, or else picking a strategy automatically by inspecting the memory

requirements for the circuit. The Controller class is also responsible for im-

plementing noisy simulations using a stochastic noise model, where additional

random gates and measurements are inserted according to a specified noise

model. It does this by sampling additional gates, and inserting them into the

circuits. The controller then initializes a State class for each circuit in the

Qobj, passing in the details of the circuit and quantum and classical registers.

We integrate the stabilizer rank simulator by creating a custom State class.

These objects are responsible for parsing the quantum circuit, and maintaining

an internal representation of the quantum state called a qreg or ‘quantum

register’ object. In our case, the qreg object is a version of the Runner class.

We begin by first iterating through the circuit, checking it contains only gates

we know how to decompose, computing the (multiplicative upper-bound) on
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the circuit extent ξ, and initializing the Runner with χε = dξε−2e copies of the

initial stabilizer state |~x〉.

The simulation strategy then depends on whether the circuit contains inter-

mediate measurements, whether as a result of sampled noise operators or just

as part of the circuit to be run. If there are no intermediate measurements,

then the simulation is embarrassingly parallel up until the final measurement

stage. Thus, we can iterate through the circuit in parallel, building up each

term in the decomposition using the sum-over-Cliffords method.

Otherwise, we need to coordinate the simulator at each measurement opera-

tion. Thus, we instead build up the circuit one gate at a time. For each gate,

we then begin a parallel loop, taking χε samples of the corresponding Clifford

branches if it is a non-Clifford gate. When we reach a measurement step, we

then run the metropolis method to produce a single sample, and apply the cor-

responding Pauli projector to decomposition, again parallelising over the χε
terms. This model is performs less well, as it requires blocking the computa-

tion until all parallel workers have finished, and also as it requires entering and

exiting parallel execution multiple times, which has some associated overhead.

The current implementation in Qiskit-Aer only uses the metropolis method,

as this is the most general method for sampling from the output distribu-

tion of the circuit. However, the output distribution of some circuits will not

satisfy the irreducibility requirement. We can in practice achieve good perfor-

mance, passing the benchmark suite of test circuits for Qiskit, by re-mixing

the metropolis method for each sample. This avoids us becoming stuck in a

non-zero amplitude, and returning the same bit-string for 100% of the samples.

Finally, as well as implementing the software for simulating circuits, we also

introduce additional wrapper code for automatically switching to the stabilizer

rank method based on the memory requirements of the circuit. Circuits too

large to simulate with the previous default method will now automatically be

run using the stabilizer rank method, provided the memory usage does not
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Figure 4.1: Figure comparing the runtime of stabilizer rank-based simulations to the
Qiskit state-vector simulation for random circuits, using Qiskit-Aer. The
solid red region corresponds to the regime where quantum circuits required
too much memory to simulate with state-vector methods.

exceed the available memory.

This version of the simulator was made public in April, 2019, in the 0.1.0

release of Qiskit-Aer. As an example of the capabilities of our simulator, we

ran a small random circuit benchmark using both the default Qasm simulator

of Qiskit-Aer, which is based on the state-vector method, and our simulator,

which is called extended_stabilizer in the Qiskit-Aer package. We used

the default parameters for the stabilizer rank-based method, which sets ε= 0.05

and mixes the Metropolis method for 3000 steps.

We generated random circuits with a fixed number of non-Clifford gates, and

simulated these circuits 10 times each with both methods, running on the UCL

Myriad cluster with access to 4 2.3GHz processors and 16GB of RAM, and

a maximum of 90 minutes of compute time. These conditions are intended

to simulate typical personal computers. We then recorded the runtime, and

plotted the ‘speedup’ as the ratio of Extended Stabilizer Runtime
Qasm Runtime . The results are

shown in Figure 4.1. As we can see, the runtime of the stabilizer-rank based

methods increases with the number of non-Clifford gates, which we expect as

the extent also increases. However, even for circuits with small extent, below
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20 qubits the stabilizer rank method requires significantly increased runtime

compared to the state-vector approach.

As the number of qubits continues to increase, the state-vector method be-

comes increasingly inefficient. Above a hard upper limit of 30 qubits, the

spatial requirements of the state-vector simulator exceed the available mem-

ory, and so the circuits can no longer be run. The stabilizer rank simulator,

however, is still capable of running the simulation. It is also important to note

that, as expected, the runtime of the stabilizer state method does not increase

significantly with the number of qubits. For example, a circuit on 50 qubits

and with 20 non-Clifford gates required on average 246 seconds to simulate

with the stabilizer-rank method, compared to the 213 seconds required by the

state-vector method to simulate a similar circuit on 30 qubits.

4.2.3 Simulations of Quantum Circuits

In this section, we will present results using the stabilizer rank method to sim-

ulate three common classes of quantum circuit: ‘oracle’ or black-box circuits,

variational methods, and random circuits.

4.2.3.1 Hidden Shift Circuits

Oracle-based circuits are a common technique for designing quantum algo-

rithms, encompassing everything from toy methods such as the Deutsch-

Jozsa algorithm up to famous algorithms like Grover search and Shor’s al-

gorithm [171]. These methods generally involve initializing the quantum state

in a superposition of computational basis states, and then applying a black-box

unitary Of that computes some classical function f [28].

The hidden-shift problem is an example of a computational task where quan-

tum algorithms require fewer invocations or queries to the oracle than any

classical method [172]. Consider a ‘bent’ boolean function f(~x) : Zn2 → ±1,

which has the property that its Fourier coefficients f̂ (~w) = 1
2n
∑
~x (−1)~w·~x+f(~x)

are equal for all n-bit strings w.

For any boolean function, we can also define a shifted function f~s as f~s (~x) =

f (~x⊕~s), where ~s ∈ Zn2 is a fixed binary string. Finally, we can also define the
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Fourier transformed dual of the bent function as [172]

f̃ (~x) = 2−n/2
∑
~y∈Zn2

(−1)~x·~y f (~y)

Given oracles Of~s and Of̃ that will evaluate both the shifted function and its

unshifted dual for some input string ~x, it will take a classical method O(n)

queries to determine the ‘hidden’ shift string ~s. However, a quantum algorithm

can determine ~s in just two queries.

|0⊗n〉 H⊗n Of~s H⊗n Of̃ H⊗n |~s〉

Figure 4.2: Circuit diagram of the quantum method for solving the hidden-shift problem,
described in [172].

It is interesting to note that, if we further restrict this problem to only have

access to f~s and f , and not the dual bent function, there nonetheless exists

an alternative quantum algorithm capable of solving for ~s in O(n) queries.

The authors conjecture that in this case a classical method would require an

exponential number of queries [172].

The specific class of bent functions considered in [172] are called Majorana-

McFarland functions. In practice, we can construct a quantum oracle for

random bent functions from this family using a fixed number of CCZ gates.

This method was outlined in Appendix F of [47], which used the hidden-

shift problem to benchmark the performance of the stabilizer rank simulation

method. Because we specify the string ~s in the construction of the oracle, this

method has ‘built-in’ verification that the simulator is running correctly.

In particular, [47] detail how to construct a bent function starting from a

random boolean function g : Zn/22 →±1, which they generate using a random

sequence of Z and CZ gates and a fixed number of CCZ gates. If we denote

this circuit Or, then the oracles for the hidden-shift problem are defined as

Of~s =
[(∏n/2

i=1CZi,i+n/2

)
I⊗Or

]
Z (~s) Of̃ =

(∏n/2
i=1CZi,i+n/2

)
Or⊗ I

(4.7)

156



Chapter 4 Simulating Quantum Circuits with Stabilizer Rank

For m CCZ gates, the overall circuit thus contains 2m non-Clifford gates.

In [47], they simulate these circuits by using a gadget for CCZ gates built

out of 4 T gates. Here, we use the hidden-shift circuits on 40 qubits as a way

to test our results on decomposing alternate Clifford magic states, and the

sum-over-Cliffords picture. In particular, we simulate the hidden-shift circuits

using four distinct methods

• A gadgetized decomposition, using 4 |T 〉 magic states to synthesis each

CCZ gate

• A gadgetized decomposition, using |CCZ〉 magic states directly

• A sum-over-Cliffords decomposition, using 4 T gates per CCZ gate

• A sum-over-Cliffords decomposition, using CCZ gates

This allows us to directly compare the sum-over-Cliffords and gadgetized meth-

ods, and to compare direct decompositions with Clifford+T synthesis.

The simulation was developed in collaboration with Mark Howard, based on

the previous simulations developed by David Gosset in [47]. The setup for the

simulation, including constructing the oracle circuits, and constructing the

PBC projectors in the gadgetized method, are implemented in MATLAB.

As previously stated, sampling from n output bits with the norm estimation

routine has a runtime that scales as O
(
χεn

6
)
. To circumvent this, we exploit

the fact that we can cache the state of the simulation before measurement,

and that the output state of the simulation is an approximation of a single

output string |~s〉, and learn the string ~s by sampling single qubits a time. An

example of this is shown in Figure 4.3. Overall, this method takes time
(
χεn

4
)

to sample from all n bits.

To cache the decomposition between each norm estimation step, we store the

choice of subspace or Clifford branches in MATLAB. We then make use of

the MEX API to pass this data, and the Pauli projectors to be applied, to the

C++ simulator. This computes and returns the probability pxi=1, and we then
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Figure 4.3: Figure showing the probability P (xi = 1) for 20 bits, obtained using the sum-
over-Cliffords methods and synthesizing the CCZ gate with 4 T gates. Each
output probability is computed individually.

sample bits by generating uniform random numbers r ∈ [0,1) and returning 1

iff r < pxi=1.

In the gadgetized case, the number of terms in the decomposition depends on

the stabilizer fidelity and the target infidelity, which we will denote here as ∆.

Using the stabilizer fidelity of the |T 〉 and |CCZ〉, then for a bent function

using m CCZ gates the size of the decomposition χ scales as

F (T )≈ 0.853 χ= b4F (T )−8m

∆ c ≈ b4
(

3.57m
∆

)
c

F (CCZ)≈ 9
16 χ= b4F (CCZ)−2m

∆ c ≈ b4
(

3.16m
∆

)
c

(4.8)

Similarly, for the sum-over-Cliffords method, the number of terms is given by

the stabilizer extent, and the target error ε. For m CCZ gates, the number of

terms is given by

ξ (T )≈ 1.17 χ= d1.178mε−2e= d3.57mε−2e

ξ (CCZ) = 16
9 χ= d1.782mε−2e= d3.16mε−2e

(4.9)
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Recall that for Clifford magic states, the stabilizer fidelity and stabilizer extent

coincide, which explains the correspondence in the scaling between the random

codes and sum-over-Cliffords method. In all the simulations, we set ∆ = ε =

0.3. Due to platform limitations, the C++ component was executed serially,

though decompositions were built in parallel using MATLAB’s built in parallel

execution. All simulations were run on a dual-core 1.9GHz Intel Xeon, with

32GB of RAM. The results are shown in Figure 4.4.

4.2.3.2 QAOA

As mentioned in Section 4.1, current NISQ computers lack full error correc-

tion and thus accumulate noise as the circuit depth increases. Thus, there is a

great deal of interest in relatively low-depth quantum algorithms that can run

on NISQ devices. The main class of these algorithms are ‘variational meth-

ods’, hybrid quantum-classical algorithms with applications in optimization

and quantum computational chemistry [10].

In general, variational methods use a simple processing scheme where the quan-

tum computer is used to prepare an ‘ansatz’ state using a low-depth circuit.

The gates in the circuit are typically parameterized. We then perform a se-

ries of measurements, and these outcomes are post-processed by a classical

algorithm. This can be iterated, where the parameters of the ansatz state are

updated by the classical algorithm, to converge to a heuristic solution [10, 98].

The Quantum Approximate Optimization Algorithm (QAOA) is an example

of a variational method, applied to classical combinatorial optimization prob-

lems [173]. These kind of optimization problems are usually specified by a

number of boolean clauses, and we are interested in optimizing a function

‘satisfied clauses’

C (~z) =
∑
α
Cα (~z) ,

where each sub-clause Cα acts on a subset of bits from the full n-bit string
~z, and evaluates to either {0,1} or ±1 depending on the definition of the

problem [173]. A clause is said to be ‘satisfied’ if it evaluates to 1. Examples

of combinatorial optimization problems include MaxSat, where we are tasked
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Figure 4.4: Figures demonstrating the performance of the stabilizer rank method on sim-
ulating the hidden shift problem, using 4 methods of building the stabilizer
state decomposition. Figures originally created for [107]
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with finding the string ~z that satisfies the most clauses simultaneously.

Given a clause Cα, we can define an operator Ĉα by replacing the bits zαi in

the clause with Pauli Z operators, and in turn we can define Ĉ =∑
α Ĉα [173].
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Different computational basis strings are eigenstates of this operator, such that

Ĉ |~z〉= C (~z) |~z〉 .

The QAOA algorithm proceeds by preparing an ansatz state parameterized

by 2p angles βi and γi, for some fixed value of p. The system is initialized in

the ground state |g〉 of the operator Ĉ, which depends on the definition of the

problem but is typically a trivial assignment such as
∣∣∣0⊗n〉 or ∣∣∣+⊗n〉 [173, 174].

We then apply p rounds of a pair of parameterised rotation operators

UC (γi) = e−iγĈ UB (βi) =∏
j eiβiX(~ej) .

For each paramaterised sate

∣∣∣ψ
~γ,~β

〉
=

p∏
i=1

(UB (βi)UC (γi)) |g〉

has been prepared, we then perform measurements to determine the expecta-

tion value of the Ĉ operator

E
~γ,~β

=
〈
ψ
~γ,~β

∣∣∣Ĉ∣∣∣ψ
~γ,~β

〉
.

Importantly, it can be shown that as p→∞, the maximum of this expectation

value corresponds to the maximum of C (~z) [173]. The authors further show

that even with p = 1, reasonable results that some classical strategies can be

obtained [173, 174].

We consider the application of QAOA to a combinatorial optimization problem

called MaxE3Lin2, where QAOA has been shown to outperform random

classical guesses at p= 1 [174]. In particular, we consider randomly generated

instances of MaxE3Lin2 with 50 variables and 66 clauses, requiring 50 qubits

and 66 Pauli Z rotations.
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Figure 4.5: Heat-map showing the expectation value Eβ,γ for the simulated instance of
MaxE3Lin2, generated using the method of [54], implemented in MATLAB.

The goal of MaxE3Lin2 is to maximize an objective-function

C (~z) = 1
2

∑
1≤u<v<w≤n

duvwzuzvzw

where each clause acts on 3 variables [174, 107], and the coefficients duvw =

{0,±1}. The number of clauses is given by the number of non-zero coefficients.

When generating the problems, restrict ourselves to instances with fixed degree

4, such that each qubit appears in at most 4 terms. We then prepare a state

∣∣∣ψγ,β〉= UB (β)UC (γ)
∣∣∣+⊗n〉

with two parameters [174].

Classical preprocessing methods exist for estimating Eγ,β, which can be used

to speed-up the classical step of the variational algorithm. In particular, we use

a method that allows the expectation variables of a sparse Hamiltonian with

‘computationally tractable’ states, states which can be efficiently specified in

the computational basis [54]. This allows us to approximately compute

〈ψγ |UB (β)† ĈUB (β)|ψγ〉
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with additive error ε in time O(m4ε−2) [107]. Figure 4.5 plots the estimates of

Eγ,β for a particular instance of MaxE3Lin2.

In their original paper, Farhi et al. fix β = π/4. This has the advantage that

the rotation UB becomes a Clifford operator

e−iπ4X(~ei) =H (~ei)S (~ei)H (~ei) ,

meaning all non-Clifford terms arise from the Z rotations. We can also see

from Figure 4.5 that the line from β = π/4 passes through a local minima

and maxima of C (~z). Thus, in our simulation, we also fix β = π/4. The cost

function is antisymmetric about γ = 0, and so we sweep γ from 0 to π.

Each rotation in UC has a sum-over-Cliffords expansion [107]

e−iγ2 duvwZuZvZw =


αI+βCNOTu,vCZv,wSvSwCNOTu,v duvw = 1

αI+ iβCNOTu,vCZv,wS†vS†wCNOTu,v duvw =−1

where the coefficients α and β are the phase terms associated with each branch

b0 = eiγ− i α = b0
|b0|

b1 = 1− eiγ β = b1
|b1|

.

For each value of γ, we build the corresponding stabilizer state decomposition

with

χ= dξ (γ)ε−2e= d(|b0|+ |b1|)2m ε−2e

terms form clauses. We then run the Metropolis method to take 40000 samples

from the output distribution of the state |ψγ〉, and compute an estimate of the

expectation value

Esim (γ) 1
40000

40000∑
s=1

C (zs) . (4.10)

The simulations were run on the UCL Legion supercomputing cluster, running

on Dell C6100 compute nodes, using a shared-memory parallelism model with

12 parallel threads and 24GB of RAM. We ran these methods with ε = 0.1
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and 0.15, and compare our estimates to the results from the heuristic method

of [54]. Results are shown in Figure 4.6.
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(a) Plot comparing the estimates of Eγ obtained using the methods
of [54], with the estimates obtained using the sum-over-Cliffords
simulator and sampling from the output distribution with the
Metropolis method.
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(b) Plot showing how the stabilizer rank of the decomposition
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Figure 4.6: Graphs showing the results of the sum-over-Cliffords simulations of a 50-qubit
instance of MaxE3Lin2 with 66 clauses. We use the same plotting code as
in [107], where the error in Esim (γ) is computed using the methods of [175].
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4.2.3.3 Random Circuit Models

The final simulation task we consider are random circuit models. It is well

known that the output distribution of Haar random unitaries satisfy a property

called anti-concentration [46], and that random quantum circuits also satisfy

this property for sufficient depth [97, 176, 90]. Random circuit models like

this are not computationally useful but, as discussed in Section 1.2.4, satisfy

complexity theoretic conjectures that make them hard to sample from using

classical simulation.

Here, we consider a class of random circuits introduced by the Google AI

group, referred to as either ‘Google Circuits’ or as ‘Qubit Speckle’ [97, 177].

Circuits are built up using alternating layers of entangling two-qubit gates, and

randomly placed single qubit gates, either Clifford rotations e−iπ4X = HSH,

e−iπ4 Y = S†HSHS, or the T gate [178]. These choices are designed to try

and frustrate commuting gates through the circuit to, for example, combine

T rotations and cancel them to reduce the overall depth of the circuit [90].

This gate-set also has the property that it forms an approximate unitary t-

design, and thus that the problem of sampling from their output distributions

satisfies both the average-case hardness [179, 180] and anti-concentration [46,

181] criteria sought for a test of quantum supremacy.

These circuits have the property that with increasing depth, their output dis-

tribution converges to the Porter-Thomas distribution [178]. Based on this

property, the authors introduce a metric called the cross-entropy difference

that quantifies the accuracy of a given sample of m bitstrings from the output

distribution of a random circuit [178].

α = log2n+γ− 1
m

n∑
j=1

log
(

1
pU (~xj)

)
(4.11)

where γ is the Euler-Mascheroni constant, and pU
(
~xj
)
is the probability of

the output string string ~xj [178]. This quantity has the property that α = 1

for an ideal sample, and α = 0 if the sample is from a uniform distribution.

165



Chapter 4 Simulating Quantum Circuits with Stabilizer Rank

Recalling the discussion Section 1.2.4, we can thus define two distinct classical

tasks as part of a quantum supremacy test using random circuits: ‘cross-

entropy benchmarking’ (XEB), where we compute the probabilities pU , and

‘heavy output generation’ (HOG), sampling from the output distribution of

the circuit U [97, 100].

The depth of the circuit required to achieve α = 1 depends on the locality

restrictions of two-qubit gates. For example, if we can perform two-qubit

gates between arbitrary qubits, then the distribution will converge to Porter-

Thomas with a depth O(logn) in the number of qubits [176, 178]. If instead

we are limited to two-qubit interactions only between neighbouring qubits on

a 2D lattice, then the depth required scales as O(
√
n) [182].

As discussed in Section 4.1, large scale simulations of Google circuits have

focused on lattices with 2D connectivity, a restriction which is driven by com-

parisons with current and future quantum hardware which also uses qubits

connected on a 2D grid. The simulation techniques employed also exploit this

locality restriction in their design [160, 162, 137, 100]. These simulators are

capable of both the XEB and HOG tasks [100].

Our simulation method, in contrast, makes no restrictions on qubit connectiv-

ity in its design. Here, we will explore the feasibility of using the stabilizer rank

method for HOG. We introduce an extension of the Google circuits to different

connectivities, and examine the stabilizer extent and simulation runtime as a

function of the circuit depth.

Google’s random circuits are constructed with the following method

1. Initialize the system in the
∣∣∣+⊗n〉 state.

2. Apply CZ gates to a subset of qubits, following a ‘CZ Schema’.

3. Apply single-qubit gates from the set {e−iπ4X ,e−iπ4 Y ,T}, according to one

of two rules.

4. Repeat steps 2 and 3 d−1 more times for depth d.
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5. Apply a Hadamard gate to each qubit.

6. Sample in the computational basis.

The ‘CZ Schema’ defines how we place CZ gates. A limitation of current

quantum hardware is the inability to reliably apply CZ gates on neighbouring

qubits [138, 178]. Thus, for each layer of the circuit, we apply a pattern of

CZ gates obeying this hardware restriction, and such that for sufficient depth

d every qubit is involved it at least one CZ gate. The authors describe CZ

patterns for 2D lattices [138, 178], which are made up of 8 layers. For each

time-step l in the random circuit, the authors use the CZ pattern of layer l

mod 8.

We can extend these schema to arbitrary-dimensional connectivity using the

method outlined in Algorithm 7. For each layer, we iterate along one dimension

of the lattice, greedily adding edges. Each time we add an edge, we drop those

Algorithm 7 Pseudo-code description of a greedy algorithm for constructing a ‘CZ
Schema’, covering every edge in a d dimensional square lattice or ‘grid’ graph. Each
axis of the lattice di has |di| points.
Require: d-dimensional square lattice graph
G= {V = {vi = (c1,i, . . . , cd,i)}, E = {vi,vj}}

Require: N (v), the neighbourhood of v ∈G.
E ← ∅ . Set of visited edges.
S←{} . Initialize an empty array S.
while E 6= E do

H = (V ′,E′ = E \E)≤G, . Graph minor from deleting E
for i ∈ {1, . . . ,d} do
L← ∅ . New layer in the CZ schema
for j ∈ {1, . . . |di|} do

for vk ∈ V ′ : ci,k = j do
if {vk,vk′ : ci,k′ = j+ 1} ∈ E′ then
L←L∩{vk,vk′ : ci,k = j+ 1}
W ←{vk,vk′ ,N (vk) ,N (vk′)} . Set of vertices to exclude.
H ←H ′ = (V ′,E′)≤H Minor induced by deleting vertices W .

end if
end for

end for
E ← E ∩L
S← S+{L} . Append layer L to the schema.

end for
end while
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vertices and their neighbourhood from being involved in any other CZ gate

in that layer. Applying this to a 2D grid gives the same pattern described

in [138]. Examples of 1, and 2D CZ schema are given in Figure 4.7. For all-

to-all connectivity, we instead apply fn
2 CZ gates to random pairs of qubits,

such that we involve some fraction f of qubits in each layer of the circuit.

Previous work has described two distinct rules for placing single-qubit gates.

In the first scheme, we place one of the three gates with equal probability

on any qubit that was acted on by a CZ gate in the previous layer [178].

However, with this strategy can produce configurations like T CZT , which

can be rearranged to cancel the T gates as diagonal unitaries commute. Thus,

an updated rule was proposed. The first single-qubit gate applied must always

be a T gate. Then, we apply either e−iπ4X or e−iπ4 Y to qubits acted on by

CZ in the previous layer, and T if a qubit was acted on by a one of these

two rotations on the previous layer [138]. We use the second rule to place

single-qubit gates, except in the 1D case as otherwise this rule will never place

more than a single T gate on each qubit. An example random circuit for a 1D

lattice is shown in Figure 4.8.

|0〉 H • T

|0〉 H • • e−iπ4 Y

|0〉 H • •

|0〉 H • e−iπ4X •

|0〉 H • T

Figure 4.8: Circuit diagram showing 3 layers of the random circuit applied to a 5-qubit,
1D lattice. Each dashed line represents the end of a single layer.

We examined the performance and resource requirements of the stabilizer rank

method for HOG, sampling 1000000 amplitudes in the computational basis

from the output distribution of Google circuits. We first consider how the

runtime and requirements scale as a function of the circuit depth and the

precision ε, for a 4× 5 qubit grid, for d ∈ [10,20]. We then pick a precision
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Figure 4.7: Examples of CZ schema for different dimensionalities of square qubit lattice.
Connected qubits are subject to a CZ gate in that layer, and each layer appears
sequentially according to the numbering. In some layers, we have marked
qubits excluded by the neighbouring CZ restriction in red.

(a) CZ schema for a 5-qubit 1D lattice. Here, we highlight in each layer
the qubits excluded by the neighbouring CZ restriction.

(b) CZ schema for a 4× 4 qubit grid. As described in Algorithm 7, we apply CZ
gates along alternating the dimensions of the grid in each layer.

(c) Example showing how two layers of 2D schema are built up step-by-step us-
ing Algorithm 7, read left-to-right. Striped qubits indicated those excluded
by the neighbouring CZ restriction.
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value ε= 0.995, comparable to that used in [138], and explore how the runtime

varies with depth for each connectivity pattern, for depth d ∈ [15,20].

Circuits were generated using custom C++ code, and interfaced with Python

using Pybind. The resulting circuits were then converted to a Qobj, and run

with our simulator as part of Qiskit-Aer. All simulations were run on UCL’s

Myriad computing cluster, with 2.3GHz processors. The 4× 5 qubit simula-

tions were run with 36 parallel workers and 32GB of RAM. Due to scheduling

restrictions on the cluster, the simulations for differing connectivities were run

with 28 parallel workers, and 28GB of RAM.

Figure 4.9: Resource Analysis of Google circuits on a 20 qubit lattice.
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Figure 4.10: Average time required in seconds to take 1000000 samples from the output
distribution of a Google circuit, for different values of the precision ε. Also
shown is the corresponding T count of the circuit.
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4.3 Discussion

We have presented in this chapter a broad range of simulation results, using

the techniques introduced in Section 4.2.1 and 4.2.2. These represent the state

of the art in simulating quantum circuits using stabilizer state decompositions.

As a previously studied benchmark, and as a method with in-built validation,

the hidden-shift circuits offer the clearest method to compare our work against

the previous results in [47]. Looking at Figure 4.4a, it is clear to see the impact

of direct decompositions of non-Clifford gates. The small difference in stabilizer

fidelity is blown-up by the exponential scaling, resulting in a 7-fold reduction

in the number of terms in the decomposition of 16 CCZ gates, and a similar

reduction in the overall runtime of the simulation.

As discussed, decompositions built using the sum-over-Cliffords method re-

quire the same number of terms for the T and CCZ gates. However, we might

expect it performs better than the gadgetized method when the number of

magic states required would be larger than the initial quantum register. In

fact, we observe a decrease in runtime using the sum-over-Cliffords method

across all values of #CCZ. We also similarly observe smaller gradient in the

runtime of the CCZ decompositions

The increased performance of the sum-over-Cliffords method is likely due to

the greatly simplified preprocessing required. In the Sum-over-Cliffords case,

we simply iterate over the circuit to build the decomposition and then apply

the measurements. Instead, on the PBC case, we first need to gadgetize the

circuit, build the decomposition, and finally building the Pauli projector for

each outcome we want to compute the probability of. While each of these steps

is individually efficient, O(n2) run-times can amount to a significant overhead

in practice. This improved performance is why the sum-over-Cliffords strategy

was also employed for the random circuit simulations, despite these also being

based only on T gates.

Finally, it is interesting to compare the observed error in sampling from the
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output distributions of circuits to the theoretical bounds. Recall that for

both approximate decomposition strategies, the simulation has relative error

leqε with high probability provided number of terms is chosen proportional to

log
(
ε−2

)
. As we sample from single qubits at a time, we define the observed

error as the maximum error across all qubits for each simulation.

In almost all of the simulations, this maximum observed error was well below

the bound of ε= 0.3. The two exceptions were the decompositions built using

the random codes method and T -gate gadgets, with 52 and 64 T -gates respec-

tively. This suggests that, despite the probability of picking a valid subspace

being large, nonetheless the random subspace method can fail at these problem

sizes. In contrast, the smaller decompositions used for the CCZ states, and the

sum-over-Clifford methods, all showed relatively consistent error performance

across the parameter range.

The failures of the random codes method suggest that for large scale sim-

ulations, explicit calculation of the fidelity of the approximation would be

necessary. Interestingly, in the sum-over-Cliffords case, a consequence of the

‘tail bound’ proven in Lemma 7 of [107] is that whenever F (|ψ〉) falls off ex-

ponentially with the number of copies,

∥∥∥|ψ〉− ∣∣∣ψ̃〉∥∥∥2
≤
〈
ψ̃
∣∣∣ψ̃〉−1 + ε2. (4.12)

Thus, using norm estimation to compute
〈
ψ̃
∣∣∣ψ̃〉, we can quickly obtain an

estimate of the error achieved. Thus, as we move to larger simulations, we

can adapt the sum-over-Cliffords simulation method to get better guarantees

of the achieved error rate.

4.3.1 Simulating NISQ Circuits

Looking at the plots in Figure 4.6a, we can see that the estimates of Eγ ob-

tained using the sum-over-Cliffords method agree closely with the estimates

obtained using the methods of [54], across the entire parameter range. This

serves as a useful validation of the Metropolis method of sampling from the

output distribution of the circuit. We can also compare the relative perfor-
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mance of the estimate for both values of the precision ε. Importantly, it must

be noted that our reference value is itself a classical estimate. Thus, these

results cannot be used to ask about the overall error performance of the sim-

ulation. However, it is interesting as a means of comparing between the two

runs. In general, as expected, we observed the ε = 0.1 results agree better

with the classical estimate, with an average error |Esim−E| = 0.125, smaller

than the 0.1505 achieved with ε = 0.15. However, this comes with an as-

sociated 2.25-fold increase in the number of terms in the decomposition, as

shown in Figure 4.6b. Due to the aforementioned overhead associated with

shared-memory parallelism, this translates to a roughly 2.3-fold increase in

computational runtime.

In [107], we also presented simulation results for MaxE3Lin2, with ε= 0.15.

These simulations were run using only a single thread, and with access to just

8GB of RAM. Overall, it took several days to generate the data required. In

contrast however, the data shown here was obtained running with 12 parallel

workers and up to 16GB of memory. Taking advantage of this parallelization,

the runtime of the simulation is significantly reduced. For example, comput-

ing E(π8 ), which has the largest stabilizer rank across the parameter range,

with ε = 0.15 required 270 minutes when running serially. With access to

12 parallel threads, the same simulation could be completed in just 33 min-

utes. In general, we achieved a roughly 8-fold speedup through parallelisation.

As previously discussed, the computational overhead associated with entering

and leaving parallel regions, and portions that cannot be parallelised such as

reading and writing files, account for this discrepancy between the number of

parallel threads and the achieved performance boost [166].

These QAOA simulations represent a significant increase in the types of circuits

that can be simulated compared to previous state of the art. As discussed,

using T gate synthesis, the number of gates required per rotation e−iγ2Z could

vary from 1 when γ = π/4, to 100 for γ = 1e−8. Given that a circuit with a

T -count of 120 requires ∼ 370GB of memory to simulate, these QAOA circuits

174



Chapter 4 Simulating Quantum Circuits with Stabilizer Rank

are only accessible to the sum-over-Cliffords method.

In fact, in general the memory requirements of the stabilizer rank method are

significantly reduced compared to other methods. For example, a 100 qubit

simulation of the MaxCut problem with qTorch requires 96GB of RAM [183].

Using the sum-over-Cliffords method with ε= 0.15, we can simulate similar 50-

qubit circuits on a laptop computer with just 8GB of RAM, increasing to just

32GB if we extended these simulations to 100 qubits.

In general, circuits targeting NISQ architectures make a good candidate for

simulating with the stabilizer rank methods. These circuits are typically lim-

ited in depth and in the number of qubits, meaning the problem sizes stay

within ranges accessible to our simulator.

Another important aspect of NISQ devices is that noise in the circuit increases

with the depth, due to accumulation of individual gate errors. While our

simulation method as described does not account for noise directly, we can

accordingly relax the target error rate ε, which helps to reduce the simulation

overhead as the number of qubits or the depth of the circuit grows.

Recent work has questioned the computational advantage offered by the QAOA

algorithm, even when accounting for extending the algorithm beyond p = 1

repetitions, by demonstrating classical algorithms which show similar perfor-

mance [184]. This, coupled with the relatively accessibility of QAOA circuits

to our sum-over-Cliffords approach, highlight the importance of considering

classical techniques when developing variational quantum algorithms.

One example application could be examining the stabilizer extent of different

families of ansatz states could potentially be used to rule out classically acces-

sible parameter ranges. However, if we return to the instance of MaxE3Lin2

considered here, then the parameter value that maximises the expectation,
γ
π ∼ 0.1, is in fact not the ansatz with maximal extent. This could be taken as

an indication of the limitations of QAOA over classical methods, but also shows

that large extent does not directly correlate to ‘computationally interesting’.
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4.3.2 Simulating Random Circuits

To simulate the Google circuits here, we used the most straightforward ap-

proach, decomposing each T gate with the sum-over-Cliffords method using

the version of the simulator developed for Qiskit-Aer. Unfortunately, as

shown in Figure 4.9, the T -count of these circuits grows rapidly in both the

depth and the size of the system. This presents a significant limit on the kind

of parameter ranges we can explore. While they incorrectly claimed that stabi-

lizer rank necessarily doubles with each non-Clifford gate, the authors of [100]

nonetheless note that the large non-Clifford gate counts in Google circuits

might make them intractable to the stabilizer rank method.

Focusing on Figures 4.9c and 4.9d, we can see that the number of qubits in

the system only linearly impacts the maximum extent. This is a consequence

of the stabilizer state representations developed in Chapter 2. As we pack

our representations into 64-bit integers, up to n = 64 qubits we see only a

linear increase in the spatial complexity, as we require O(n) integers to encode

each state. In turn, there is a quadratic dependence on the precision in the

decomposition, which we expect from Equation 3.35.

As we are focusing on large NISQ circuits, the fidelity of an experimental

realization can be very low as the circuit depth and system size increase [100,

138], meaning that precision values of ε = 0.995 are potentially acceptable.

These precisions can keep the memory requirements, and correspondingly the

runtime, reasonably small. For example, a circuit with T -count 100 requires

just 9GB of memory to simulate at this precision. They do not, however,

prevent the eventual exponential blow up in the circuit extent; with access to

the full 192GB of memory available to a compute node on the Myriad cluster,

the maximum achievable T -count at ε= 0.995 is still just ∼ 110. Using 0.5PB

of memory as in [100] would only add an additional 40 T-gates to the accessible

range.

However, the results of Figures 4.10 and 4.11 underline that it is the stabilizer

rank, controlled directly by the extent and the desired precision, that is the only
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significant factor on the runtime of our simulator. This represents a significant

potential advantage over qFlex and comparable methods, the runtime of which

depends on being able to decompose the circuits into large blocks with as few

multi-qubit gates between blocks as possible.

Interestingly, examining the T -count of the all-to-all connectivity pattern in

Figure 4.9b, we also see that there appears to be a value of the CZ fraction

0.1 < f < 0.5 which maximises the number of T -gates in the circuit. At too

low a CZ-fraction, the circuits are too sparse, as we only add single qubit gates

following a CZ gate. Similarly, at too high a fraction, qubits are frequently

involved in an entangling gate, and we add fewer single-qubit gates. We in

fact observe the same behaviour for the 1, 2 and 3D lattices, where the 2D

connectivity has the largest T -count of all. Thus, not only is our simulator

able to handle arbitrary connectivities, but the reduction in T -count means

the extent of these random circuits actually decreases as the connectivity of

the architecture increases.

In future, it would be interesting to examine how the cross-entropy difference

varies under the different parameter ranges and connectivities explored in this

thesis. This would require an additional ideal realisation of the circuit, but

given the circuit sizes considered this could be provided by a vector-based

model. While Qiskit-Aer does implement a simulator of this type, access to

the underlying state-vector is not yet supported.

In particular, understanding how the cross entropy difference behaves as a func-

tion of the precision factor ε in our simulations would be an important aspect

in establishing our simulator as a potential benchmark in quantum supremacy

testing. As discussed in Section 4.2.3.3, the closer the cross-entropy difference

is to 0, the more similar the output distribution sampled from resembles a uni-

form distribution, which can be trivially sampled by flipping unbiased coins

to select each bit in the bitstring. Thus, establishing the achievable cross-

entropy is a requirement for making a comparison with quantum hardware in

this benchmarking scheme.
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It would also be interesting to examine if the stabilizer rank method could be

used to perform XEB. By definition, an approximate stabilizer rank decom-

position cannot be used to compute an exact probability PU (~x); this could be

achieved with an exact stabilizer rank expansion, using the results presented

in Section 3.2.1, at the expense of a significant increase in the number of terms

required.

Alternatively, we could consider computing estimates of pU (~x). We can com-

pute a computational basis amplitude in time O
(
χεn

2
)
, but also additionally

need to reweight the result as

p̃U (~x) = 1∥∥∥ψ̃∥∥∥
∑
i

αi 〈~x|φi〉 ,

which requires O
(
χεLn

3
)
for L rounds of norm estimation. Recall that to

achieve relative error ε in the norm estimate, we need L= 4ε−2 samples.

The key term in Equation 4.11 is an arithmetic mean of the logarithm of the

inverse probability of each sampled string, which we can rewrite as a geometric

mean. Thus, given a set ofm sampled strings ~xs, and approximate probabilities

p̃U (~xs), our estimate is given by

α̃ =
[
m∏
s=1

1
p̃U (~xs)

] 1
m

= η̄

 m∏
s=1

1∣∣∣〈~xs∣∣∣ψ̃〉∣∣∣


1
m

,

where η̄ is the estimate of the norm of ψ̃ used to reweight each amplitude.

η̄ thus also gives a relative error contribution to α̃. From the sparsification

lemma, we also know that
∥∥∥ψ− ψ̃∥∥∥

1
≤ δ, and thus each computational ampli-

tude estimate has an average additive error O( ε
2n ).

Recalling that the Porter-Thomas distribution has significant support on terms

with pU ≤ 1
2−n [178], this would suggest we need to target ε = O

(
2−n/2

)
to

obtain good estimates of the cross-entropy, and this in turn would imply a

stabilizer ranks and a number of samples L that are O(2n), suggesting that

exact decompositions would likely be better suited to the XEB task.
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Otherwise, if the stabilizer rank method is to be applied to problems of HOG,

how can its performance be improved to access random circuits with greater

depth and greater number of qubits? In Section 4.3.3, we will discuss more

technical methods that could be used to better scale the simulator to HPC re-

sources, and optimize its resource requirements. Here, we will consider possible

methods looking at compiling circuits for the stabilizer rank method.

In particular, recent work by Qassim et al. introduced a method for recompiling

circuits based on sum-over-Clifford expansions of non-Clifford unitaries. As

Clifford operators can be written in terms of Pauli rotations as

V =
∏
i

eiθiPi

for some Pauli operator P and θi is a multiple of π4 . Thus, given a sum-over-

Cliffords expansion U =∑
j αjVj of a non-Clifford gate U , we can commute a

Clifford operator C through it as [185]

CU = CUC†C =
∑

j

αjCV C
†

C
=
∑

j

∏
j

Ceiθi,jPi,jC†

C
=
∑

j

∏
j

Ceiθi,jCPi,jC†
C

=
∑

j

∏
j

eiθ′i,jP
′
i,j

C. (4.13)

Starting with a circuit built up of interleaved Clifford and non-Clifford layers

acting on an initial stabilizer state

U = CmUmCm−1 · · ·C1U1 |φ〉

Clifford recompilation allows us to commute all Clifford operations through to
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the beginning of the circuit

U = U ′mU
′
m−1 · · ·U ′1CmCm−1 · · ·C1 |φ〉

= U ′m · · ·U ′1C ′ |φ〉

= U ′m · · ·U ′1
∣∣∣φ′〉 ,

where we have used the fact that the input is a stabilizer state to remove the

Clifford terms. This reduces the runtime of the simulation as we only have

to apply the Clifford sequence once, to compute the initial state, rather than

applying each operator χ times for every term in the decomposition.

For Google circuits, the recompilation task is made easier as the only non-

Clifford gate is already specified as a Pauli rotation, meaning we don’t need

to first make use of its sum-over-Cliffords expansion. This allows us to rewrite

the circuit as a sequence of multi-qubit Pauli rotations acting on an initial

stabilizer state.

In addition, the authors also show concrete cases where it is possible to build

sum-over-Cliffords expansions of products of unitaries UiUj that are ‘contrac-

tive’ — they have smaller extent than the multiplicative expansion [185]. In

particular, the authors show that a product of any two Pauli rotations with

the same angle has a contractive expansion. The argument relies on the exis-

tence Clifford circuit W that maps two multi-qubit Pauli operators P and Q

to operators P ′, Q′ with support on the same pair of qubits [185]. We provide

an explicit description of how to construct such a Clifford circuit W in Algo-

rithm 8. As a Clifford-recompiled Google circuit is just a sequence of exactly

these rotations, contractive expansions could significantly reduce the stabilizer

extent.

Applying Clifford recompilation to Google circuits would significantly reduce

both the runtime of the simulation, and the value of the extent of the circuit,

and thus expand the parameter space accessible to the stabilizer rank method.
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Algorithm 8 Explicit algorithm for constructing a Clifford circuit W that takes
two n-qubit Pauli operators P and Q and maps them to new operators P ′, Q′′ that
have support on at most 2 qubits.
Require: n-qubit Pauli operators P =⊗ni=1Pi, Q=⊗ni=1Qi

Pick qubit i : Pi =X or Y .
WP ← I . Initialize empty Clifford circuit
for j 6= i : Pj = {X,Y } do

WP ← CNOTi,jWP . CNOT (XX)CNOT † =XI
end for
for j 6= i Pj = {Z,Y } do

WP ← CZi,jWP . CZ (XZ)CZ† =XI
end for
P ′←WPPW

†
P . |P ′|= 1

Q′←WPQW
†
P

Pick qubit k 6= i : Q′k =X or Y .
WQ← I . Initialize empty Clifford circuit
for j 6= i,k : Q′j = {X,Y } do

WQ← CNOTi,jWQ

end for
for j 6= i,k Q′j = {Z,Y } do

WQ← CZk,jWQ

end for
Q′′ =WQQ

′W †Q . |Q′| ≤ 2
return W =WQWP . P ′ ≡WPW †Q′′ =WQW † as required.

4.3.3 Optimizing Decompositions and Sampling

Finally, there are several strategies that could be used to reduce the memory

requirements and otherwise improve the scalability of the sum-over-Cliffords

simulations. We focus only on sum-over-Cliffords here as this method is sub-

stantially more versatile than the gadgetized methods, and showed better per-

formance overall.

Firstly, and recalling the discussion at the end of Section 3.3, the sampling

method used to build a sum-over-Cliffords decomposition can generate multiple

copies of the same state with non-zero probability. In current implementations,

samples are taken a gate at a time, independently, and typically across mul-

tiple parallel threads, and so there is no deterministic way to check if a given

term previously exists in the decomposition without sacrificing parallelization.

Additionally, these inclusion checks would incur an additional cost of O(χ′n2),

where here we denote χ′ < χ as the number of terms in the decomposition
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obtained by grouping states.

One possible strategy then would to be precompute the samples for each non-

Clifford gate in the circuit, and store this path. For a circuit with m Clifford

gates, checking equality of two paths with require time O(m) rather than

O(n2). Sampling sum-over-Cliffords paths in this way would also enable us to

optimize building stabilizer state decompositions. For example, if we have two

paths s,s′ that are equal for the first c Clifford gates, we can first compute

VcVc−1 . . .V1 |φ〉, then copy this state and use it as the input for the remaining

fractions of the Clifford circuits.

Similar strategies could be employed to produce multiple samples using the

Norm Estimation method. For example, say we want to take m samples from

the full output distribution of a circuit. We begin by computing P (x0 = 0), and

we sample bits 0 or 1 m times using the result. Say now we obtained a strings

with x0 = 0. We now compute the next probability, P (x0 = 0,x1 = 0), which

together with the previous result allows us to sample from the distribution

P (x1 = 0|x0 = 0). We take a samples, and repeat this process for the next bit.

This method has the advantage that we do not need to run the full O
(
χn6

)
norm estimation step to obtain every sample. Instead, we build up multiple

samples one bit at a time.

Finally, it is also interesting to note that as our simulation method can also

produce estimates of output probabilities p̃U (~x), including for subsets of qubits

using the norm estimation routine, the rejection sampling method of [138]

should in principle also be implementable with our simulator.
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Chapter 5

General Conclusions

Classical simulation has been integral to the study and development of quan-

tum computation from its beginnings [29]. Continued development of classical

methods has cast light on the requirements for a quantum advantage [51],

and even guided the development of quantum hardware by excluding potential

systems such as NMR quantum computation [186]. Now, in the NISQ era,

classical simulations are also key to quantum supremacy experiments [93, 97].

This project considered classical simulation of quantum circuits based on the

stabilizer rank method. Stabilizer rank decompositons are of particular inter-

est as they have a clear connection to the notion of non-stabilizer states as a

resource for quantum computing, and an immediate interpretation in terms of

hardness of classical simulation.

In Chapter 2, we introduced novel classical simulators for stabilizer circuits,

with additional capabilities beyond commonly used existing methods. Our

implementations also have performance that is comparable to or improves on

existing publicly available tools. It would also be interesting to compare our

method for stabilizer inner products with those of [103], which are currently

closed source.

Simulating stabilizer circuits has applications in quantum communication [187,

188], and in studying encoding and decoding circuits for stabilizer error cor-

recting codes [64, 132]. Decompositions into stabilizer circuits can also be used

to simulate universal quantum computations, and the additional information

and routines in our classical data structures makes them advantageous for this

purpose [107].

We discuss these kind of decompositions in Chapter 3, where we are able to
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both extend previous results [47, 121] to different species of magic states, and

also present techniques for building stabilizer rank decompositions of arbitrary

quantum states.

Exact stabilizer rank is a non-convex quantity, and has proven difficult to

characterise. We present evidence linking exact stabilizer rank to symmetries

of the state, in particular with respect to the Clifford group. We also introduce

the notion of stabilizer extent, a convex quantity that acts as an upper bound

on approximate stabilizer rank, and show that it can be lower-bounded by the

stabilizer fidelity.

Finally, in Chapter 4, we combine these two ingredients and show how they can

be used to construct classical simulations of quantum circuits. In particular,

we show how to perform strong and weak classical simulations, both in the

exact case or approximate to within additive error [107]. The corresponding

spatial and temporal complexity of our simulations scales as

O (χpoly(n)) , (5.1)

n the exact case, or as

O (χεpoly(n,ε)) (5.2)

in the approximate case.

This method is especially appealing as its spatial requirements scale only poly-

nomially with the number of qubits, enabling simulations of quantum cir-

cuits on large system sizes and with a bounded number of non-Clifford gates

tractable even on a personal computer. However, our techniques also have a

great propensity to be scaled to HPC systems, and we identify some inter-

esting potential optimizations to the simulation method that could improve

performance in this context. Finally, we note that the ability to both strongly

and weakly simulate quantum circuits means the stabilizer rank methods also

have the potential to act as both verifiers and ‘heavy output generators’ in the

context of quantum supremacy experiments [97].
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An important caveat to the discussions in this thesis is that all the methods

discussed relate to simulating noiseless quantum circuits on pure states. The

only method for incorporating noise into these simulations methods is with

stochastic sampling of Pauli or Clifford errors, including measurements and

resets. Incorporating these kind of operations cannot increase the simulation

complexity, as can be seen from the properties of stabilizer rank discussed

in Section 3.2. In fact, it is likely that the stabilizer rank would decrease if

we included resets and measurements in the noise model. However, sampling

noise in this way does incur an overhead, in that it requires running many

repetitions of the circuit.

This restriction to pure circuits appears in tension with the knowledge that,

given a sufficient level of noise in the system, quantum circuits can be efficiently

classically simulated. As well as the fact that the complexity theoretic argu-

ments for the hardness of classical simulating quantum systems discussed in

Chapter 1 only hold for simulation with a sufficiently small error rate, the no-

tion of a certain noise threshold beyond which the behavior is effectively classi-

cal appears in multiple areas of quantum information theory, especially around

the distillation of ‘resource states’ in quantum resource theories [66, 67, 189], in

the role of non-local correlations in general probabilistic theories [190], or even

in the heuristic observation that macroscopic dynamics are entirely classical.

Indeed, the discounting of NMR quantum computing was motivated by the ex-

istence of sufficiently large environmental noise as to make the entanglement

in the system bounded throughout the computation [186].

Thus, in order to use the stabilizer rank method as a way of trying to evaluate

the ‘non-classicality’ of quantum hardware, it would be important to relate the

stabilizer rank and the imprecision ε to measures commonly quoted in experi-

mental realizations such as fidelity or gate errors. It would also be important

to better characterise what errors are achieved in practice by the simulator, as

the results in Chapter 3 are worst-case bounds, and this would be important in

terms of making a fair comparison between the accuracy achieved by hardware
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and the simulator.

An alternative formalism would be investigate possible extensions of the stabi-

lizer rank method to mixed states. One possible candidate would be simply to

employ stabilizer rank decompositions to each term in a pure state decompo-

sition; using this method, we could avoid an additional negativity overhead by

using positive decompositions of the mixed state. However, there is no guaran-

tee on how the overall stabilizer rank would behave for such a decomposition.

A natural mixed-state analogue of stabilizer rank would appear to be the

Robustness of Magic, which can be defined as [73]

RM (ρ) = min
〈φ|φ〉
‖~c‖1 : ρ=

∑
i

~ci 〈φi|φi〉 . (5.3)

Continuing research of the robustness of magic has looked at characteris-

ing the ‘non-stabilizerness’ of noisy quantum channels, and presented sev-

eral techniques for simulating mixed state quantum computations with this

method [79]. However, it is interesting to note that for pure states, it can

be shown that 2ξ (ψ)−1≤RM (〈ψ|ψ〉) [76]. This may suggest that there are

potential savings to be found in extending stabilizer extent to the mixed state

case.

Finally, we briefly consider the consequences of this thesis in terms of the

hardness of simulating quantum computation. As discussed in Section 3.3,

while we have presented various upper bounds on stabilizer rank, few lower

bounds are known. While the work of [36] presents evidence of an exponential

lower-bound for T -gates, we have shown that operations with large T -synthesis

costs can in fact have much smaller stabilizer extent.

This leaves open the question of what causes the stabilizer rank of a system

to grow exponentially, and in what cases it grows at most polynomially in

the number of non-Clifford gates. Indeed, from Equations 5.1 and 5.2, the

stabilizer rank method is explicitly capable of efficiently classically simulating

any circuit with this property. However, the results presented in this thesis
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are often for individual magic states or non-Clifford gates, and extended to

circuits through the submultiplicativity of stabilizer rank. Thus, even while

we can conceive of states with small stabilizer extent ∼ 1, their approximate

stabilizer rank would still exhibit exponential growth. The existence of families

of states or gates that admit such an efficient stabilizer rank simulation is an

important open question. The results of [185] represent an important step in

improving these multiplicative bounds, and their application has the potential

to greatly extend the range of circuits accessible to the stabilizer rank method.

Work in this direction could also potentially help to close the gap between the

bounds of [36], and the decompositions given in this thesis.
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