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Background: Panel sequencing based estimates of tumor mutational burden (psTMB) are increasingly replacing whole exome
sequencing (WES) tumor mutational burden as predictive biomarker of immune checkpoint blockade (ICB).

Design: A mathematical law describing psTMB variability was derived using a random mutation model and complemented by
the contributions of non-randomly mutated real-world cancer genomes and intratumoral heterogeneity through simulations in
publicly available datasets.

Results: The coefficient of variation (CV) of psTMB decreased inversely proportional with the square root of the panel size and
the square root of the TMB level. In silico simulations of all major commercially available panels in the TCGA pan-cancer cohort
confirmed the validity of this mathematical law and demonstrated that the CV was 35% for TMB¼ 10 muts/Mbp for the largest
panels of size 1.1–1.4 Mbp. Accordingly, misclassification rates (gold standard: WES) to separate ‘TMBhigh’ from ‘TMBlow’ using a
cut-point of 199 mutations were 10%–12% in TCGA-LUAD and 17%–19% in TCGA-LUSC. A novel three-tier psTMB classification
scheme which accounts for the likelihood of misclassification is proposed. Simulations in two WES datasets of immunotherapy
treated patients revealed that small gene panels were poor predictors of ICB response. Moreover, we noted substantial
intratumoral variance of psTMB scores in the TRACERx 100 cohort and identified indel burden as independent marker
complementing missense mutation burden.

Conclusions: A universal mathematical law describes accuracy limitations inherent to psTMB, which result in substantial
misclassification rates. This scenario can be controlled by two measures: (i) a panel design that is based on the mathematical law
described in this article: halving the CV requires a fourfold increase in panel size, (ii) a novel three-tier TMB classification scheme.
Moreover, inclusion of indel burden can complement TMB reports. This work has substantial implications for panel design, TMB
testing, clinical trials and patient management.
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Introduction

The immune system plays a central role in cancer recognition and

control. It does not only fight virus-driven tumors and limits

pro-tumorigenic states of inflammation, but also monitors cells

for expression of neoantigens and cell stress induced proteins [1].

Upregulation of immune checkpoint proteins such as programed

death ligand 1 (PD-L1) and cytotoxic T-lymphocyte associated

protein 4 (CTLA-4) represents a mechanism for cancer cells to es-

cape immune surveillance. Therapeutically, this can be overcome

by immune checkpoint blockade (ICB); however, only a subset of
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patients shows good clinical response and extended progression

free survival under such therapies. Due to potentially severe

adverse effects [2] and substantial costs it is paramount to pro-

spectively identify patients that most likely benefit from such

treatment strategies.

Currently, PD-L1 expression as assessed by immunohistochem-

istry is the most widely adopted and approved predictive biomark-

er for ICB [3] but its predictive power, especially negative

predictive value, is limited [4]. Consequently, additional markers

[5–7] including tumor mutational burden (TMB) are considered.

The more mutations a tumor accumulates, the higher the likeli-

hood of production and subsequent presentation of neoantigens

on major histocompatibility complex (MHC) molecules resulting

in a higher likelihood of tumor cell cytotoxicity after inhibition of

checkpoint signals [8]. This paradigm is supported by accumulat-

ing evidence that tumors with higher TMB are more likely to re-

spond to ICB in various settings including PD-(L)1 blockade in

non-small-cell lung cancer (NSCLC) [9] and urothelial carcinoma

[10], CTLA-4 blockade in malignant melanoma [11, 12] and com-

bined PD(L)-1 and CTLA-4 blockade in NSCLC [13–15] and

small-cell lung cancer (SCLC) [16]. Studies have shown that TMB

is to a large extent independent of PD-L1 status and might thereby

identify additional subgroups of patients who benefit from ICB

[13, 15, 17–19].

The definition of cut-points to separate ‘TMBhigh’ from

‘TMBlow’ tumors is not consistent in recent NSCLC trials: For ex-

ample, in the CheckMate (CM) trials CM012 [15], CM227 [13]

and CM026 [17] cut-points of 158 mutations, 199 mutations (esti-

mated from a panel-based cut-point of 10 mutations per Mbp

[20]) and 243 somatic missense mutations were used, respectively.

While TMB was accurately measured by whole exome sequencing

(WES) in several studies, this is currently not feasible in a routine

clinical setting due to high costs, long turnaround times and limited

availability of sufficient tissue samples. At the same time, panel-

based sequencing of routinely available formalin-fixed and paraffin-

embedded tissue samples has been implemented at many clinical

centers. Therefore, stakeholders of academia and industry are work-

ing on implementing assays and workflows to reliably extrapolate

TMB from panel sequencing data (psTMB). Many parameters

influence psTMB measurement including pre-analytical factors,

the assay itself and the bioinformatics analysis pipeline [21–25].

Here, we address key issues regarding the clinical implementa-

tion of psTMB measurement: First, using a random mutation

model, we derive an algebraic formula for the coefficient of

variation (CV) of psTMB as a function of panel size and number

of detected mutations. Secondly, by the simulation of panel

sequencing in WES data, we quantify psTMB variability, assess

the degree of imprecision attributable to intratumoral heterogen-

eity, and analyze the capability of psTMB to predict response to

ICB. Thirdly, we introduce a three-tier TMB classification

scheme and shown how it can attenuate imprecision inherent to

psTMB. Finally, we analyze how the inclusion of synonymous

mutations, nonsense mutations and indels additionally to mis-

sense mutations can improve the precision of psTMB estimates.

Materials and methods

An algebraic formula for the CV of psTMB was derived assuming bino-
mial distribution of the number of detected mutations. Panel sequencing

using five commercially available panels (Table 1) was simulated in WES
data from the TCGA pan-cancer cohort, the TRACERx 100 cohort and
two cohorts of ICB treated patients [13, 26–28]. Statistical computing
and graphics generation was carried out with the programing language R.
P-values <0.05 were considered significant. Statistical methods are
described in detail in the supplementary Appendix S1 (available at
Annals of Oncology online).

Results

psTMB measurement extrapolates the total number of mutations

in the coding sequence (CDS) by analysis of a limited sequence

part. The largest commercially available panels cover between 1.0

and 1.5 Mbp, <5% of the total CDS. A multi-step analysis was

carried out to decompose different sources of imprecision inher-

ent in psTMB estimates.

Random mutation model

Assuming that each base is mutated with the same probability,

the number of mutations detected by panel sequencing is a ran-

dom variable following a binomial distribution. This assumption

reflects many current psTMB filtering approaches that disregard

evolutionary selected genes (e.g. classic oncogenes and tumor

suppressors) for TMB scores. Evaluating this binomial model,

we derived a mathematical formula for the CV of psTMB: the

CV inversely proportional to the square root of the panel size

and inversely proportional to the square root of the TMB level.

Figure 1A shows how the CV decreases when the panel size

increases for tumors with TMB scores¼ 1, 3, 10, 30 and

100 muts/Mpb. Figure 1B shows how the CV decreases when the

TMB level increases (exemplified for the major five commercially

available panels investigated in the present study plus the F1 CDx

panel by Foundation Medicine). For a tumor of 10 muts/Mbp,

the CV of psTMB ranged between 69% and 27% for panel sizes

ranging between 0.21 and 1.34 Mbp (Table 1).

Real-world cancer genomes

Next, we simulated psTMB measurement with the five major

sequencing panels in the pan-cancer TCGA cohort of >10 000

tumors (Figure 2, supplementary Figures S1 and S2, available at

Annals of Oncology online). Strong correlations were observed be-

tween the numbers of mutations detected by panel sequencing

and the reference standard WES: Pearson correlation reached

0.95 for the OCAv3 panel, 0.97 for the TST170 panel and 0.99 for

the three large panels (Figure 2A, D and G). Linear models were

fitted to analyze the correlation of panel-approximated TMB and

WES-measured TMB. As expected, the values for the slopes

reflected the ratio of the panel size to the size of the sequence re-

gion covered by WES (supplementary Figure S2, available at

Annals of Oncology online). Additionally, we detected intercepts

ranging from 0.82 to 1.23 mutations, which were substantially

different from the unbiased situation of an intercept of zero. This

means that typically about one additional mutation was detected

by panel-based sequencing in addition to what would be expected

by multiplicative scaling, a bias that reflects the enrichment of

typical panel designs for frequently mutated cancer genes. The

variance of the residuals in the linear fit of psTMB versus WES-

TMB showed a linear increase with the number of mutations
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Table 1. Precision of TMB measurement of five commercially available sequencing panels

Panel
acronym

Panel Provider Panel size
(Mpb)

CDS covered by
panel (Mbp)

CV (random
mutation model)
for TMB 5 10
muts/Mbp (%)

Additional CV
contribution from
real-world cancer
exomes (%)

CV (real-world
cancer exomes)
for TMB 5 10
muts/Mbp (%)

TSO500 TruSight oncology 500 Illumina 1.95 1.34 27 28 35
QIAseq Human tumor mutational

burden panel
Qiagen 2.58 1.26 28 26 35

OTML Oncomine tumor mutational
load assay

Thermo Fisher
Scientific

1.66 1.18 29 17 34

TST170 TruSight tumor 170 Illumina 0.53 0.41 49 21 60
OCAv3 Oncomine comprehensive

assay v3
Thermo Fisher

Scientific
0.35 0.21 69 28 88

The CV (coefficient of variation) of the panel TMB (tumor mutational burden) score was calculated in a random mutation model and estimated in simula-
tions in the real-world cancer exomes (TCGA pan-cancer data). The numbers of mutations in the CDS (coding sequence) regions covered by the panels
were compared with the total number of mutations in the CDS.
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Figure 1. Analysis of the precision of tumor mutational burden (TMB) estimation by panel sequencing in a random mutation model.
Visualization of the algebraic formula for the coefficient of variation (CV, in %). The CV decreases inversely proportional to the square root of
the TMB level and inversely proportional to the square root of the panel size. (A) Decreasing CV with increasing panel size for tumors with
TMB¼ 1, 3, 10, 30 and 100 muts/Mbp. (B) Decreasing CV with increasing TMB for five commercially available sequencing panels.
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(Figure 2B, E and H). These data demonstrate that the mathemat-

ical law derived in the random mutation model—a decrease of

the CV of the panel TMB estimate with the square root of the

TMB level—remained valid for real-world cancer exomes. Of

note, the CV in the real-world situation was 17%–28% higher

than in the random mutation model (Figure 2C, F and I;

Table 1).

To analyze the influence of selected genes on the variance of

psTMB we simulated three different kinds of panels: (i) panels

exclusively composed of oncogenes and tumor suppressor genes,

(ii) panels of randomly drawn genes, (iii) panels of randomly

drawn genes excluding oncogenes and tumor suppressor genes.

Again, the mathematical law before could be confirmed (supple-

mentary Figure S3, available at Annals of Oncology online).

The additional variance adding to the one predicted by the

random mutation model was approximately twice as high (15%)

for panels composed of oncogenes and tumor suppressor genes

compared with the other panels (6%).
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Figure 2. Analysis of the precision of tumor mutational burden (TMB) estimation by panel sequencing in real-world cancer exomes.
Simulation of sequencing panels in the TCGA WES data. Only missense mutations were included in the calculation of TMB. Linear fit of the
number of mutations in the panel region against the total number of mutations (A, D and G). Linear fit of the variance of the residuals against
the total number of mutations (B, E and H). The variance was estimated within sliding windows of 200 tumors with similar TMB. Coefficient
of variation (CV, in %) describing the real world (simulation in the TCGA data, solid line) and combinatorial (random mutation model, dashed
line) imprecision in TMB estimation by targeted sequencing (C, F and I).
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Intra-tumor inhomogeneity of psTMB

We compared the TMB in different regions of 100 tumors of the

TRACERx lung cancer cohort [27]. TMB and simulated psTMB

were calculated including the missense mutations with variant

allele frequency (VAF) greater or equal to 5% (Figure 3A).

Analyzing a TMB cut-point of 199 mutations, 11% of the 100

tumors were classified inconsistently by different regions.

Classification with psTMB resulted in higher inconsistency rates

of 18%, 16%, 17%, 15% and 24% for the TSO500, QIAseq,

OTML, TST170 and OCAv3 panels, respectively; however, these

differences reached significance only for one of the smaller panels:

OCAv3 (P¼ 0.026). Next, we quantified the intra-tumor vari-

ation of TMB by calculating the CV between the regions of

each of the 100 tumors (Figure 3B–D, supplementary Figure S4,

available at Annals of Oncology online). The average CV of the co-

hort was substantially higher for all panel estimations of TMB

(23.1%, 24.1%, 24%, 27.6% and 28.2% for TSO500, QIAseq,

OTML, TST170 and OCAv3, respectively) compared with the

WES calculation of TMB (15.3%).

Prediction of response to IO therapy

We analyzed two clinically annotated cohorts of ICB treated

patients with tumors characterized by WES [13, 28].

In the Miao et al. dataset [28], we compared the capability of

psTMB to separate responders (CR/PR, n¼ 70) from patients

with progressive disease (PD, n¼ 123). The analysis was carried

out in the subcohort of lung cancer patients (n¼ 36), melanoma

patients (n¼ 125) as well as in the mixed cohort types (five cancer

types, n¼ 193) for which WES data were available (Figure 4). In

lung cancer, high TMB was strongly predictive of response to

ICB: areas under the curve (AUC) were between 0.78 and 0.94.

WES performed significantly better than the OCAv3, TST170

and QIAseq panels (P¼ 0.011, P¼ 0.01 and P¼ 0.048), but not

significantly better than the OTML and the TSO500 panel

(P¼ 0.063 and P¼ 0.11). Analyzing the cut-point of 199 muta-

tions, misclassification rates compared with WES (16.7%) were

considerable higher for the small panels OCAv3 (33.3%,

P¼ 0.087) and TST170 (36.1%, P¼ 0.054). Odds ratios of object-

ive response rates (OR; TMB above 199 mutations versus TMB

below 199 mutations) were considerably lower for the OCAv3

and the TST170 panels (OR¼ 4.0 and OR¼ 3.1) compared with

WES (OR¼ 27.6, 95% CI 5.2–233.1). Using a very low cut-point

of 100 mutations, misclassification rates compared with WES

(16.7%) were considerably higher for all five panels (OCAv3:

36.1%, P¼ 0.054; TST170: 30.6%, P¼ 0.13; OTML: 38.9%,

P¼ 0.033; QIAseq: 36.1%, P¼ 0.054 and TSO500: 33.3%,

P¼ 0.087). Results of the analysis in melanoma cases and the

overall cohort are described in the supplementary Appendix

(SR.1, available at Annals of Oncology online).

Analysis of the Hellmann et al. dataset of NSCLC patients treated

with PD-1 plus CTLA-4 blockade [13] showed similar results (sup-

plementary Figure S5, available at Annals of Oncology online).

Three-tier versus two-tier TMB classification

In the TCGA data, we analyzed the feasibility to classify tumors

by panel sequencing compared with the gold standard of WES.

The four ‘WES thresholds’ 158 muts, 199 muts (equivalent to 10

muts/Mpb [20]), 243 muts and ‘median TMB’ were converted to

corresponding ‘panel thresholds’ using a linear transformation

(supplementary Table S1, available at Annals of Oncology online).

The median TMB was analyzed additionally to the clinical vali-

dated thresholds, because for many cancer types very few tumors

had TMB above these thresholds (supplementary Table S2, avail-

able at Annals of Oncology online). For most of the cancer types,

misclassification rates were substantially lower when using the

three larger panels (with panel sizes >1 Mbp) compared with the

two smaller panels (Figure 5A and supplementary Table S2, avail-

able at Annals of Oncology online); however, even with the three

large panels, misclassification rates (exemplified for a threshold

of 199 mutations) were substantial: 17%–19% for lung squamous

cell carcinoma (LUSC), 10%–12% for lung adenocarcinoma

(LUAD), 7%–11% for cutaneous melanoma (SKCM) and 5%–

6% in the pan-cancer cohort. To deal with the substantial fraction

of misclassified tumors, we studied a refined classification ap-

proach of replacing the cut-point by a three-tier classifier that is

based on the likelihood of misclassifications (Figure 5B). The

interval width was determined in such a way, that the percentage

of strong misclassifications (tumor classified as ‘TMBhigh’ by

panel sequencing, when harboring low TMB and vice versa) was

<5%. The interval width was substantially smaller for the three

larger panels compared with the two smaller panels and smaller

in the pan-cancer cohort compared with the lung cancer and mel-

anoma subcohorts (Figure 5C–F).

In an exploratory analysis of the 36 ICB treated lung cancer

patients [28], we compared the performance of three-tier and

two-tier classification using a cut-point of 199 mutations.

Performance of the OCAv3, TST170, OTML, QIAseq and

TSO500 panels improved from misclassifying 33.3%, 36.1%,

19.4%, 19.4% and 19.4% to misclassifying 21.1%, 19%, 14.3%,

16.7% and 14.7% of the patients (supplementary Table S3, avail-

able at Annals of Oncology online).

Tumor classification by psTMB and tumor indel
ratio

In addition to missense mutations, we analyzed synonymous

mutations, nonsense mutations and indels and calculated the

ratio of the number of the latter mutations to the number of the

former mutations for each of the tumors in the TCGA pan-

cancer cohort (Figure 6). Indel burden in conjunction with either

high or low TMB identified specific tumor types and genetic sub-

groups including MSI-H tumors which are known to respond

well to ICB (for details see supplementary Appendix SR.2 and

Figure S6, available at Annals of Oncology online).

Discussion

The predictive power of TMB as biomarker for response to ICB

is currently investigated in many clinical trials [22, 23] across

various cancer types. At first WES was widely used to determine

TMB, but now there are a growing number of clinical studies

which interrogate subsets of the genome by gene panels to

approximate TMB (psTMB) [22, 23]. While in the clinical trial

context these analyses are mainly carried out by commercial pro-

viders, many clinical laboratories depending on the regulatory
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Figure 3. Inhomogeneity of tumor mutational burden (TMB) across different regions of lung tumors TRACERx 100 data [27]. (A) TMB of 323
regions of 100 lung carcinoma measured by WES and classification using a cut-point of 199 mutations. Regions of the same tumor were clas-
sified inconsistently for 11 tumors (red dots). (B–D) The coefficient of variation (CV) of TMB across regions was calculated for each of the
tumors. The CV was substantially higher in simulated panel sequencing data (TSO500, QIAseq and OTML panels) compared with the WES
data.
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approval context will eventually use pre- or self-designed gene

panels to determine TMB scores.

TMB is a continuous variable and cut-points that discriminate

between likely ICB responders and likely non-responders have to

be investigated in clinical trials separately for each cancer type;

however, many parameters influence TMB measurement and

thus the TMB score for an individual tumor. In this work, we de-

scribe key influencing factors that are inherent to the nature of

the analytical design of psTMB testing and need to be carefully

considered when implementing any TMB assay in the clinic. Our

analysis lays the foundation for future studies that will investigate

additional parameters influencing wet-lab performance (e.g. pre-

analytical factors, enrichment and sequencing technologies [25]),

which is beyond the scope of this work. Several consortial

approaches are under way to address these issues [29]; however,

while careful control of wet-lab parameters may minimize their

influence and potential bias, the methodological limitations

described in this article will remain unaffected by any of these

efforts and apply to any panel.

Analyzing a stochastic mutation model, we observed that the

variability of TMB counts (CV) is an algebraic function of panel

size and TMB. Specifically, the CV is inversely proportional to the

square root of the panel size and inversely proportional to the

square root of the TMB of the tumor. Practically speaking, a scen-

ario with low cut-points and TMB scores determined by small

gene panels will result in a high imprecision of TMB measure-

ment and will not reliably identify patients who benefit from ICB.

For a tumor with a TMB close to the cut-point of 10 muts/Mb the

CV turned out to be 22%, 26%, 32%, 45% and 63% for sequenc-

ing with panel sizes of 4, 2, 1, 0.5 and 0.25 Mbp. Translating this

A B C

D E F

G H I

Figure 4. Prediction of response to immune checkpoint blockade (ICB) (RECIST CR/PR versus PD) by tumor mutational burden (TMB) (Miao
et al. [28] data). Performance comparison of TMB measured by panels (simulations) with TMB determined by WES. (A–C) Receiver operating
characteristic (ROC) curves and areas under the curve (AUC). (D–F) Misclassification rates for different TMB cut-points. (G–I) Odds ratios of
response rates (OR; TMB above 199 mutations versus TMB below 199 mutations; with 95% confidence intervals).
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data to a concrete real-world case, let us assume a trial enrollment

scenario where a patient’s tumor has a true TMB score of 15 and

10 muts/Mb is used as the cut-point separating TMBhigh from

TMBlow patients. When TMB is estimated by a 2 Mbp panel the

CV value mentioned above corresponds to a CI of 10.1–

21.4 muts/Mbp meaning that there is a strong likelihood that this

patient will be enrolled into the TMBhigh group. Now let us con-

sider two slightly different scenarios where a 1 or a 0.5 Mbp panel

was used to estimate TMB for the very same patient: the corre-

sponding CIs would be 8.4–24.7 muts/Mbp and 6.3–30.2 muts/

Mbp, respectively. In the latter scenarios one cannot exclude that

this patient although belonging to the TMBhigh group would be

A B

C D

E F

Figure 5. Analysis of the cut-point of 199 missense mutations to separate ‘TMBhigh’ from ‘TMBlow’ tumors. Simulations in the TCGA lung
squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), cutaneous melanoma (SKCM) and pan-cancer cohorts. (A) Numbers of mis-
classified tumors (in %) using tumor mutational burden (TMB) measurements of five commercial sequencing panels. (B) Introduction of a
three-tier scheme to keep the rate of strongly misclassified tumors (classified as TMBhigh instead of as TMBlow and vice versa) under control.
(C–F) The interval width was determined in such a way that strong misclassifications (classification above the gray by panel sequencing,
while the tumor is classified below the gray area by WES and vice versa) occurred for <5% of the tumors.
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A

slope=1 (0.998 to 1.01), P < 2.2e–16
intercept=–0.432 (–0.442 to –0.421), P < 2.2e–16

slope=0.915 (0.906 to 0.924), P < 2.2e–16
intercept=–0.973 (–0.991 to –0.955), P < 2.2e–16

slope=0.602 (0.587 to 0.617), P < 2.2e–16
intercept=–0.492 (–0.521 to –0.464), P = 2.1e–241

P=6.4e–151

P=4.1e–122

P=0

B

C D

E F

Figure 6. Analysis of other mutation types in relation to missense mutations. (A, C, E) Scatterplots showing strong correlations of synonym-
ous mutations and nonsense mutations with missense mutations, but moderate correlation of indels with missense mutations. (B, D, F) Violin
plots showing the ratio of numbers of a specific mutation type to missense mutations.
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enrolled into the TMBlow group based on test results. This can

evidently influence trial results but can also affect individual pa-

tient management outside clinical trials. In summary, the inher-

ent imprecision of psTMB estimates drastically increases for

panel sizes <1 Mbp. Simulation of panels in the TCGA dataset

showed that this algebraic law remained valid in real-world can-

cer genomes with CVs (and corresponding CIs) that are even

larger than in the random mutation model.

For only a few cancer types, including colorectal cancer, stom-

ach cancer and uterine corpus endometrial carcinoma, TMB

shows a bi- or multimodal distribution [30]. In these cancers, the

TMB distribution is shaped by the occurrence of hypermutation

in MMR deficient and/or POLE/POLD1 mutated tumors and

permits a clean dichotomization; however, for most of the other

cancer types including lung adenocarcinoma, lung squamous cell

carcinoma and cutaneous melanoma, TMB is unimodally distrib-

uted with a dense point cloud of TMB scores scattering around

the cut-point. For accurate classification of these tumors, TMB

scores need to be determined by gene panels of a considerable size

to obtain reliable results, i.e. with an acceptable CV. While we ac-

knowledge that the CV will never be zero, it is evident that uncon-

trolled high CV values derived from insufficiently powered gene

panels can misclassify individual patients. Moreover, it can lead

to false assignment to TMB groups in clinical trials and thus im-

pact clinical trial datasets as well as subsequent treatment

guidelines.

Employing two datasets [13, 28], we showed that the AUC of

psTMB substantially differs from WES-TMB particularly when

using small gene panels [31] leading to substantial clinical mis-

classifications. This scenario can be controlled by establishing a

three-tier classification that depends on the likelihood of mis-

classification instead of a single cut-point. Setting the error margin

for cases which were designated TMBhigh whereas they were

TMBlow in reality (and vice versa) at 5%, a subset of patients is

identified where the panel itself operates with such substantial vari-

ability that clinically meaningful assignment of an individual pa-

tient to either one of the groups (low/high) is not possible—even

though a cut-point has demonstrated clinical utility when analyz-

ing a cohort of patients in a clinical trial. Introducing this concept

of a ‘gray zone’ of TMB values would provide a safety margin in

which clinicians could weigh in additional factors to their decision

making (i.e. co-morbidities, other treatment options). This con-

cept is transparent for clinicians as it conveys which TMB values to

take for certain and which might be more error prone, a concept

proposed for quantitative diagnostic tests before [32].

psTMB scores are also influenced by regional sampling of the

tumor further contributing to the imprecision of psTMB when

considering an individual case detailed above. This is a substan-

tial finding as psTMB will be determined in biopsy material from

stage IV lung cancer patients reflecting a proportion but not the

entirety of the tumor, and is in line with seminal work on intratu-

moral genetic heterogeneity [33–35].

Both synonymous mutation burden and nonsense mutation

burden turned out to be proportional to tumor (missense) muta-

tion burden for the majority of tumors; however, in line with sem-

inal work by Turajlic et al. [36], our work highlights indel burden

as an independent parameter in the mutational spectrum of TMB.

We found that the proportion of indels (in relation to missense

mutations) in conjunction with either high or low TMB values

identifies different tumor types and genetic subgroups including

MSI-H cases which are well known to respond to ICB [37].

In conclusion, our work shows that a universal mathematical

law describes an imprecision inherent to psTMB, which is inde-

pendent of pre-analytics and specific analysis parameters

(e.g. coverage) and can influence patient management and

clinical trial results. This scenario is further aggravated by spatial

inhomogeneity of psTMB scores. Panel designs that consider

the mathematical law described in this article as well as a novel

three-tier classification system can control for the variable preci-

sion of psTMB. Moreover, our analysis suggests that indel burden

can complement TMB results. These findings have implications

for panel designs, psTMB testing and clinical decision making.
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