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1. Introduction. 
 
Despite highly effective antibiotics and intensive care support, the mortality associated with 

pneumonia has not substantially decreased since the 1960’s (1). Hence, there remains a major 

requirement for improved treatment and preventative strategies, which will need new 

knowledge on the pathogenesis of pneumonia. Animal models have obvious high value when 

investigating the molecular mechanisms involved in pneumonia pathogenesis, but they are 

also directly relevant for clinically orientated research into new therapies and vaccines, com-

plications of pneumonia, and identifying high risk groups. In this article we describe how re-

search using animal models will be essential if we are to reduce the immense morbidity and 

mortality associated with pneumonia. 

 

2. Background on animal models.  

Animal models are low cost, broadly available, and can be used for invasive protocols, facili-

tatings detailed mechanistic studies to inform the clinical approach. Issues involving work with 

animals are summarized below and addressed in detail by Mizgerd and Skerett (2) and in a 

European Respiratory Society statement ‘Optimising experimental research in respiratory dis-

eases’ (3). A wide variety of animal models of pneumonia exist, and which model is the most 

appropriate will depend on the research question(s) being addressed. Non-mammalian spe-

cies (insects, roundworms, and zebra fish) are inexpensive and powerful tools that recapitulate 

many aspects of human innate immunity and host cell signalling. They have been used to 



identify virulence determinants (4-9), and their lack of high-order sentience makes them attrac-

tive from an ethical perspective. However, they are limited by the lack of a mammalian respir-

atory system or an adaptive immune response. Non-human primates are the opposite extreme, 

closely recapitulating human physiology, immunology, and pathology, and generally suscepti-

ble to human pathogens, but their use raises major ethical concerns. Hence, non-human pri-

mates models are generally restricted to testing the pharmacokinetics, toxicology and efficacy 

of vaccines or potential therapeutics (10) prior to testing in humans, or the validation of key 

results obtained with other animal models (11, 12).  Rodent models are a compromise that 

accurately model most aspects of human innate and adaptive immunity, and are also suscep-

tible to the majority of human pneumonia pathogens (13-16). There are some important ana-

tomical differences between rodents and humans (17, 18), and animal models of pneumonia 

frequently require forced aspiration of high numbers of bacteria (often >106) (19) rather than 

inhalation (20, 21) or aspiration from the upper airway (Figure 1A).  Additionally, most investi-

gators use healthy young adult rodents, whereas in humans, pneumonia largely affects infants, 

the immnunodeficient, or the elderly.  Despite these issues the overlap in anatomy, physiology, 

immunology and cell biology means animal models still replicate many important parameters 

of human infection. 

 

The major advantage of animal models is the number of ways they can be manipulated to 

answer very precise research questions. Infection models can be combined with genetic ma-

nipulation of the pathogen to define the specific microbial processes required for pneumonia 

to develop (22, 23).  Comparing different strains of the same pathogen can elucidate why some 

strains dominate the clinical picture (24, 25), and dual infection models provide important in-

sights into why respiratory viral infection often leads to a secondary bacterial infection (26-28). 

The host can be manipulated using therapeutic or genetic depletion of immune effectors (29), 

including tissue specific targeting to precisely define how a host factor influences disease de-

velopment (30).  Host and pathogen responses in infection models can be characterised using 

all the ‘omic’ techniques (including single cell sequencing and dual-species RNA seq), flow 



cytometry, and in vivo imaging, collectively providing a detailed level of information that is im-

possible for human studies to replicate and at considerable less cost.  Hence, animal models 

are of immense benefit for therapeutic testing of immune modulators, antibiotics, ventila-

tion/oxygenation regimens, vaccination, or countering immunosenescence (Figure 1B).  Thus, 

animal models can identify whether a new intervention is likely to succeed in a much shorter 

period of time, at a considerably lower cost and with a reduced risk than human studies.   

 

3. Alternatives to animal models.  What about the experimental alternatives to animal mod-

els such as tissue culture models, organoids, ex vivo human material models, and pathogen 

challenge of human volunteers?  Can these replace animal models?  The short answer is no; 

pneumonia develops through multiple stages of infection involving a complex interplay be-

tween lung-resident and recruited immune cells, a rapidly changing microbial population, dif-

ferent anatomical compartments, and requiring extensive cross-talk between cell types.  This 

is far too complex to be adequately replaced by tissue culture systems or even an organoid 

model.  Ex vivo models such as precision-cut lung slice (PCLS) or human whole lung perfusion 

/ ventilation models (31) are limited by their expense and the small number of biological repli-

cates possible.  Human models of infection are largely restricted to investigating mucosal host 

/ pathogen interactions during milder infections (32, 33) (34), rather than the mechanisms in-

volved during alveolar infection. 

 

4. Research areas where animal models have made important contributions 

Specific areas where animal models have produced important data on pneumonia that could 

not have readily been obtained using other methodologies are discussed below (examples are 

listed in Table 1 and illustrated in Figure 2). 

 

4.1 Defining who is at risk of pneumonia.  A clear understanding of who is at risk of pneu-

monia is required, but can only be obtained by epidemiology studies if the risk factor is common 



(e.g. age, smoking, comorbidities) or has particularly strong effects (e.g. complement deficien-

cies).  In contrast, animal studies can identify weaker or less common predispositions to pneu-

monia, and also define the underlying molecular mechanisms involved.  For example, the ex-

ponential increased risk of S. pneumoniae pneumonia in the elderly (35, 36) has multifactorial 

causes which are hard to define using epidemiology alone.  Animal model research has linked 

age-related changes in DNA integrity and the gut microbiome to increased background inflam-

mation that impairs immunity to S. pneumoniae by increasing expression of epithelial ligands 

for bacterial adhesion, impairing monocyte function, and reducing TLR2 expression (37-39).  

Without animal models we would not have identified these mechanisms and the potential for 

modulating the gut microbiome to prevent pneumonia.  Animal model data can identify mech-

anistic links between different subgroups susceptible to pneumonia; for example, exposure to 

welding fumes, cigarette smoke, air pollution, and aging all increase the risk of S. pneumoniae 

pneumonia partly through increased epithelial expression of Platelet Activating Factor receptor 

(PAFr) (40-42).  Animal model data can also predict groups that might have increased suscep-

tibility to particular infections that can then be looked for in clinical practice, e.g. tyrosine kinase 

inhibitors were shown to impair immunity to Aspergillus fumigatus in mice, and clinical data 

have confirmed this is the case in patients (43, 44). 

 

4.2 Defining mechanisms underlying differences in pathogen virulence potential.  As 

pathogen and host can both be clonal, animal model research allows investigators to exclude 

unselected pathogen and host variability in order to identify molecular explanations for disease 

phenotypes.  For example, using deletion mutants site-specific roles were identified for pneu-

mococcal virulence determinants, which helps explain why pneumococcal strains vary in their 

ability to cause disease at different anatomical sites (45, 46).  Similarly, dual infection animal 

models have characterised how host and pathogen factors affect influenza-induced transmis-

sion of S. pneumoniae and the efficacy of vaccination in blocking this key event (47, 48). 

 



4.3 Pathogenesis of the complications of pneumonia.  The complications of pneumonia 

such as empyema, bacteraemia, the impact of sepsis on airway immunity, spread of infection 

to the heart or central nervous system, and inflammation-mediated lung damage including al-

veolar:capillary barrier breakdown all involve multiple cell types interacting with progressive 

states of bacterial invasion, and are influenced by multiple host factors including sex, age, 

underlying comorbidities, genetics and environmental exposures.  Animal models have helped 

our understanding why many of these complications develop, including the identification of S. 

pneumoniae myocardial invasion in pneumonia (49), how bacteria translocates through mes-

othelial cells to cause empyema (50), and why Staphylococcus aureus induces an excessive 

inflammatory response to cause a destructive pneumonia (51). 

 

4.4 Identifying new therapeutic approaches.  The lung inflammatory response to microbial 

challenge are similar in animal models and humans, including the pattern of early recruited 

neutrophils for pathogen elimination followed by exudate macrophage recruitment to facilitate 

resolution of lung inflammation.  Growth factors such as GM-CSF, G-CSF and M-CSF also 

exhibit a high degree of structural and functional similarities between rodents and humans (52, 

53).  This allows the roles of these common molecular traits to be characterized in animal 

pneumonia models to inform on adjuvant therapies for pneumonia.  For example, GM-CSF 

regulates terminal macrophage differentiation (54, 55) and protects against pneumonia in 

mouse models (56, 57), whereas GM-CSF deficiency is a critical risk factor for bacterial pneu-

monia (58).  Intrapulmonary overexpression of GM-CSF provided a high degree of protection 

to mice from S. pneumoniae pneumonia, suggesting GM-CSF could be a future adjuvant ther-

apy.  Indeed, inhaled recombinant GM-CSF (Sargramostim, Leukine®) improved oxygenation 

and outcome in patients with pneumonia-associated acute respiratory distress syndrome 

(ARDS) (59), demonstrating that preclinical animal models aid the development of adjuvant 

therapies against infectious lung diseases. Human pluripotent stem cells (iPSC) -derived mac-

rophages prevent early P. aeruginosa respiratory tract infections in mice (60); this and other 

examples (61, 62) may help develop antibiotic-independent cellular immunotherapies for use 



in humans. Antibiotic compound screening in animal models can identify novel antibacterial 

therapies for human pneumonia, and newer techniques such as bioluminescence and biopho-

tonic imaging of bacterial provide powerful tools for monitoring real-time progression of pneu-

monia and assessing drug efficacy (63-68). 

 

4.5 Novel preventative approaches. There are no vaccines available for the majority of res-

piratory pathogens including most respiratory viruses, S. aureus, the Gram negative pneumo-

nia pathogens, Pneumocystis jirovecii, and Aspergillus fumigatus.  Furthermore, the existing 

vaccines all have major limitations; the H. influenzae vaccine does not protect against the non-

typeable strains that cause adult infections, and the existing influenza and S. pneumoniae 

vaccines have restricted strain coverage and reduced efficacy in the elderly, precisely the pop-

ulation they are most needed for.  Hence new vaccines against pneumonia pathogens are 

needed, yet inducing protective pulmonary immunity is harder to achieve than immunity to 

bacteraemia (69, 70).  Animal models will be essential for defining the adaptive immune mech-

anisms that prevent lung infection, identifying the most protective antigens, and improving ad-

juvants and methods of antigen delivery (71).  Animal models identified the key role for CD4 

Th17 responses in protecting the respiratory mucosa from pathogens such as K. pneumoniae 

and S. pneumoniae (70, 72) that is dependent on specific dendritic cell subsets (73), and an 

unexpected role for Tregs in protecting against S. pneumoniae (74). These data suggest vac-

cine approaches against extracellular pathogens could induce cellular rather than humoral im-

munity.  Novel vaccine delivery systems and adjuvants developed using animal models are 

now reaching clinical use (75), and should hopefully improve targeting of vaccine-induced im-

munity to the lung in the future.  Animal models can also identify new vaccine antigen candi-

dates by screening for genes highly expressed during infection, or identifying antigens recog-

nized by naturally acquired protective immune responses (76, 77).  Overall, it is difficult to see 

how pre-clinical studies of new vaccines can be performed without using animal models. 

 



4.6 Strategies for reducing weaknesses of animal model data.  Despite their strengths, 

animal models do not fully recapitulate human conditions. This can be partially alleviated by 

combining the data obtained with tissue culture, organoids, or ex vivo lung experiments data.  

How accurately murine responses to inflammatory stimuli reflect human responses is debated 

(78-80), but exposure of laboratory mice to petshop or wild mice ensures the mouse inflam-

matory response more closely mimics human responses (81, 82). This provides a potentially 

simple method for improving the utility of mouse models of infection.  Genetic modification of 

the animal model can also improve their utility. For example deleting either cytidine-monophos-

phate-N acetylneruaminic hydroxylase (CMAH, converts N-acetlyneuraminic acid to N-

glyclylneuraminic acid on airway epithelium sialylated glyconjugates) or ApoB-100 lipoprotein 

(a potent inhibitor of the S. pneumoniae toxin pneumolysin) increased mouse susceptibility to 

S. pneumoniae infection (83, 84) . 

 

4. Concluding remarks 

Only animal models intrinsically allow the study of complex multicellular systems in anatomical 

context over time. The tractability of the mouse to genetic manipulation, combined with the 

application of new ‘omics technologies and in vivo imaging has increased our ability to deter-

mine the impact of host or pathogen factors on pneumonia susceptibility, pathogenesis, and 

resolution.  The animal model remains the only method for testing the efficacy of novel vac-

cines or antimicrobial approaches.  Thus, animal models are likely to remain essential for the 

successful development of novel therapeutic advances for pneumonia. 
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Legends: 
 
Figure 1: (A) Main differences in anatomical and biochemical characteristics between human 
and mouse lungs that influence interpretation and the use of animal models of pneumonia 
including the mode of infection, the horizontal position of mouse lungs, lung anatomy, and 
distinct cell surface glyconjugates due to mutation in the cmah gene in humans. (B) The dif-
ferent roles which animal models of pneumonia can be used for when developing novel pre-
ventative and therapeutic interventions against pneumonia in humans. NHP, non-human pri-
mate. 
 
Figure 2: Examples of how recent discoveries using animal models could lead to new thera-
peutic and preventative strategies in the near future. 

  



 

Table 

 
Table 1: Specific research areas where animal models have been / are important for the answer with selected exemplar studies: 

Category Research areas Selected example with potential clinical relevance Reference 

Pathogen Identifying pathogen mechanisms of pathogenesis Demonstration of the importance of bacterial iron acquisition for the de-
velopment of Acinetobacter baumannii pneumonia 

(85) 

 Comparative virulence of pathogen strains Characterisation of the additional effects of Panton-Valentine leukocidin 
toxin during S. aureus pneumonia 

(86) 

 Investigating the effects of dual infection Demonstration that prior influenza infection impairs TLR mediated innate 
responses to subsequent S. pneumoniae pneumonia 

(87) 

Host Characterising natural mechanisms of innate immunity Identification of the importance of the classical complement pathway for 
innate immunity to S. pneumoniae 

(88) 

 Characterising natural mechanisms of adaptive immunity Demonstration that Th17 CD4 cells are required for lung immunity 
Demonstration that human natural adaptive immunity to S. pneumoniae 
is dependent on antibody to protein antigens 

(72) 
(77) 

 Defining effects of age or comorbidity on pathogenesis Demonstration that cellular senescence increases expression of host lig-
ands for bacterial adhesins in the lungs 

(40) 

 Characterising effects of environmental exposures Welding fumes increases expression of PAFr, resulting in increased S. 
pneumoniae adhesion to respiratory epithelium 

(42) 

 Defining protective inflammatory responses Identification of an important role for CXCL1 mediated crosstalk between 
macrophages and neutrophils for immunity to P. aeruginosa 

(89) 

 Defining harmful inflammatory responses Identification that S. aureus stimulate the TNF receptor to cause destruc-
tive pneumonia 

(51) 

 Identifying complications and their pathogenesis Identification of foci of S. pneumoniae in the myocardium in pneumonia (90) 

Therapies Identifying and testing novel vaccine approaches and 
antigens 

Identification of Th17 antigens that protect against S. pneumoniae 
Confirmation that vaccination with a recombinant glycoconjugate is as 
efficacious as Prevnar vaccination against S. pneumoniae 

(91) 
(92) 

 Assessing efficacy of immunomodulation  Demonstration that intrapulmonary overexpression of GM-CSF protects 
mice against S. pneumoniae pneumonia 

(56, 57) 

 Assessing efficacy of antibiotic therapies Multiple studies (routine pharmaceutical company practice)  
 Pharmokinetics and toxicology Multiple studies (routine pharmaceutical company practice)  

 


