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Abstract

X-ray phase contrast and dark field imaging are emerging imaging

modalities which provide significantly enhanced visibility of details

classically considered x-ray invisible and complementary information

on a samples micro-structure, respectively. To date they have been suc-

cessfully implemented in a series of applications at low x-ray energy,

but their translation to higher x-ray energies is still, to some extent,

problematic. Yet the ability to perform phase contrast and dark field

imaging at high x-ray energy would have a series of significant im-

plications in various applications, medical or otherwise. This thesis

work investigates this option through a combination of modelling and

experimental work. Particular attention has been dedicated to the be-

haviour of the optical elements (x-ray masks) that make phase contrast

and dark field possible at high energy, which required the design of new

methods of their implemention into simulation models. The modeling

results have been validated first through a pilot experiment at a syn-

chrotron facility, then in a series of lab experiments. Results clearly

indicate that implementations of phase contrast and dark field imaging

at high x-ray energy exist, however particular care must be taken in

the design and fabrication of the masks; moreover, a series of parasitic

effects which are absent at lower energies appear, which this thesis

work describes and against which it suggests mitigation solutions.
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Impact statement

Phase and dark field imaging reveal information about a sample’s

micro-structure, and thus have a variety of possible applications in

clinical, pre-clinical and industrial settings. High energy x-rays are

characterised by high penetration depths and by their low dose de-

position to samples; phase and dark field imaging that utilise high

energy x-rays would thus be an efficient tool for in-vivo experiments

and applications, where dose is typically a concern. The x-ray phase

contrast imaging (XPCi) technique of edge illumination (EI) is inves-

tigated here as a tool that may be operable in the high energy x-ray

regime.

Results presented in this thesis demonstrate that possibilities for high

energy implementations of XPCi using the EI technique exist; further-

more, if dose is a constraint, the energy may be tailored to produce

the best possible signal to noise ratio. Parasitic effects, which become

evident and in some ways problematic at high energy and for dark field

imaging in particular, are described and verified through models of the

experimental setup. The techniques for incorporating these effects into

models are expected to be useful not only for EI, but also for grating

interferometry, as the two methods make use of optical elements which

are fabricated in similar ways. The results’ implications are that new

designs of optical components may be needed for these and for any

similar techniques in the next generation of phase contrast methods.
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Also, in collaboration with another scientist, a combination of models

was also developed to rigorously model the dark field signal produced

by different ensembles of spheres in an edge illumination system, which

is expected to be especially useful for investigating the potential of the

technique in more complex settings such as angiography, for example.
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Introduction

The use of x-rays in imaging is widespread, as the technology it requires is rela-

tively cheap and the physics of their interactions with matter is well understood.

A typical method of predicting image contrast, or the distinguishability of differ-

ent features, is to compare differences in atomic number, as a proxy for electron

density, for different materials - the greater the difference, the greater the con-

trast. High energy x-rays, or hard x-rays, are desirable in imaging for two reasons:

they have a high penetration depth, and they interact more weakly with matter

than low energy ones. These properties mean that hard x-rays can be used to

examine internal structures of thick or dense samples, and that - per photon and

depending on the application - they deposit a comparably lower amount of dose

to a sample. As x-rays are a form of ionising radiation, capable of causing harm to

living tissue such as cells, the latter implication is particularly desirable in clinical

and pre-clinical imaging.

The difficulty in using hard x-rays is that, as a result of interacting only weakly

with matter, the efficiency of x-ray detectors, and the contrast between materials,

decreases. X-ray phase contrast imaging (XPCi) is an advanced imaging technique

that generates contrast from x-ray refraction, not attenuation, in particular: the

outlines of materials - even those that are weakly absorbing - are enhanced, thus

increasing the overall visibility. Dark field imaging is an extension of this phase

sensitivity and refers to multiple refractions on a scale smaller than the resolution

of the imaging system. These signals are usually generated by micro-structures
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of a material, with the signal being detected either directly, or inferred through

multiple measurements. As is the case for conventional x-ray imaging, the ability

to distinguish different materials is affected by their difference in electron den-

sity. However in phase-enhanced images, this difference need not be as large as in

absorption-based techniques.

In recent years, much research has been dedicated to combining phase-enhancement

techniques with hard x-rays. The technical challenges of this apply to all of the

components of the imaging system including the source, which is ideally small

and bright, any optical elements in play and the detector. Some XPCi techniques

rely on very small, coherent sources, with only synchrotrons - huge facilities with

power consumption being measured in Mega Watts - being capable of supplying

this in addition to high photon flux. Microfocal sources, which can be operated

on smaller scales, exist, but exposure times can be long due to their inherently

low flux. The optical elements used in some XPCi methods are also usually wave-

length specific, hence if used in polychromatic settings, their performance may

suffer as a result. Edge illumination (EI) is an XPCi technique that imposes low

coherence requirements on the source and is achromatic, whereby the individual

photon wavelengths used are not intrinsically “weighted” by the system.

The work of this thesis aims to discern what limitations, if any, apply to the

EI system parameters when using increasingly hard x-rays in a laboratory setting.

An overview of x-ray production, interaction with matter and ultimately detec-

tion, are given in chapter one, followed by a description of various XPCi methods

in chapter two. The third chapter presents experimental data collected at the

European Synchrotron Radiation Facility (ESRF), where high energy x-rays were

used to investigate the dark field signals produced by different concentrations of

microspheres. In the fourth chapter, I discuss similar experiments undertaken in
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a laboratory here at UCL, and describe the simulation tools that are used to un-

derstand the system outputs. The fifth chapter is focussed on understanding the

significance of previously neglected physical processes in EI, which become non-

negligible in high-energy settings, and how they may be incorporated into existing

models. A combination of the refined model is then used in conjunction with a rig-

orous wave optics simulation tool for ensembles of spheres in order to demonstrate

the flexibility and accuracy of the model for complex scattering samples.
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1

Introduction to x-ray imaging

In this chapter x-rays are defined, their interactions with matter explained and the

principles of x-ray imaging explored. While these concepts underpin all of x-ray

imaging, particular attention is given to the physics underlying XPCi. Finally,

a general overview of dose deposited by x-rays, and ways in which this can be

quantified and discussed are given.

1.1 Discovery of x-rays

Physically, most humans are equipped with the ability to detect and differentiate

parts of the electromagnetic spectrum, namely that of visible light. Photons in this

range have a wavelength typically measured in hundreds of nanometres; sodium

fluorescence light, the yellow historically seen in street lamps, have a wavelength

around 589 nm. Radio waves exist at the low-energy end of the spectrum, having

wavelengths measured in metres, while gamma rays, at the very top end, have

wavelengths on the scale of atomic nuclei (femtometres, 10−15 m). The x-ray

regime encapsulates photons of higher energy than visible and ultraviolet light,

but lower than gamma rays; their wavelengths are comparable to the atomic radius

and are thus typically measured in angstroms, Å= 10−10 m. Since x-rays span a
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1.1 Discovery of x-rays

very wide range of wavelengths, it is often simpler to discuss them in terms of

their energies, which range from 100 electron volts (eV) at the low end, to an

upper limit of several hundreds of keV. The wavelength λ is related to the energy

E, measured in electron Volts (eV), by the equation:

E =
hc

1.602× 10−19λ
, (1.1)

where h = 6.626 × 10−34 m2 kg/s is the Planck constant, and c = 3 × 108 m/s is

the speed of light. As an example, a 10 keV photon has a wavelength of 1.24 Å.

Wilhelm Roentgen was working with a partially evacuated cathode ray tube

in 1895, with a fortuitously placed fluorescent screen located some distance away,

when he discovered x-rays. The glass tubing housed a negatively charged cathode -

a heated filament - which spewed electrons toward the anode - a positively charged

metallic target. Upon contact with the anode, electrons were rapidly decelerated,

transferring a proportion of their kinetic energy into a burst of electromagnetic

radiation: x-rays. This “braking” radiation, referred to as Bremsstrahlung radia-

tion, has an energy range of 0 < E ≤ Eelectron, where Eelectron is the kinetic energy

of the electron.

When Roentgen saw the screen fluorescing, he deduced the existence of x-rays

as a form of penetrating radiation and, through experimentation, began to under-

stand how this penetrative capability varied according to different objects being

placed between the tube and screen. Paper, wood, aluminium and even copper

failed to completely stop the radiation, while a lead coated sheet of glass suc-

ceeded. Eventually, Roentgen placed a photographic plate in place of the screen

and made the first x-ray images of his wife’s hand. This was the first, and to date

the most common, implementation of attenuation based x-ray imaging.

25



1.2 X-ray production

Upon publication in late 1895, Roentgen and the scientific community in gen-

eral launched a genre of research that would profoundly affect the field of medicine.

The ability to non-invasively “see” inside a patient unlocked such a torrent of di-

agnostic potential that, within 5 years, it was widely considered to be “a useful

tool”, and by the 1930’s, x-ray machines were key features of hospitals [1]. Beyond

healthcare, however, x-rays have also found uses in a variety of scientific and engi-

neering fields, ranging from bio-mechanical observations to security applications.

To this end, the technology for producing and detecting x-rays has developed

considerably from partially evacuated cathode ray tubes and photographic plates,

though in many cases the principle remains the same.

1.2 X-ray production

Most parts of the electromagnetic spectrum result from electrons undergoing

changes in velocity, with gamma rays, which are produced by atomic nuclei, being

an obvious exception. There are several mechanisms we can use to accelerate or

decelerate electrons, and the one we choose is generally a function of what is re-

quired of the x-rays. With an understanding of the different sources available, it

is possible to choose one suited to a given purpose by identifying and comparing

their respective strengths and weaknesses.

1.2.1 X-ray tubes

Bremsstrahlung radiation, as mentioned above, is the braking radiation of an elec-

tron being rapidly decelerated; it is the primary mechanism for x-ray production

in x-ray tubes. Based on the cathode ray tube, electrons are emitted from a

heated filament and are accelerated by the potential difference, or Voltage (typi-

cally in the kV range), from cathode to anode. The anode is a metal plate of high

atomic number and melting point (e.g. tungsten, molybdenum, copper), and is
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1.2 X-ray production

Figure 1.1: Schematic of an x-ray tube with rotating anode target.

the “source” of x-rays, as depicted in Fig. 1.1. Fewer than 1% of incident electrons

actually emit x-ray photons, with most of their kinetic energy instead escaping

as heat. Rotating anodes, which spread the waste heat energy generated by the

electron beam over a larger area, are often used to allow higher intensity electron

beams, and thus flux of photons, to be produced [2].

In addition to Bremsstrahlung radiation, which describes a continuous spread

of photon energies up to the maximum electron energy, Fig. 1.2 shows how x-rays

are also generated through characteristic line emission. In this case, an incident

electron interacts with, and causes the ejection of, one of an atom’s inner shell

electrons. From the nucleus moving outwards, the orbitals are labelled as K, L,

M, N (etc.) shells, with each one corresponding to increments of the principal

quantum number of an electron in a potential well; these are further subdivided

according to the azimuthal, magnetic and spin quantum numbers. In order to eject

an electron from one of these orbitals, or to ionise the atom, the incident electron’s

energy must be greater than the work function or binding energy of the shell. Once

ejected from the atom, an electron from one of the higher energy levels decays into

the vacated orbital and emits an x-ray photon of energy Eγ = EK,L,M:1 −EK,L,M:2
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1.2 X-ray production

in the process. As energy levels are sub-divided by several quantum numbers,

transitions may occur for a variety of different energy gaps which also contribute to

characteristic emission lines, as illustrated in Fig. 1.2 (c). Energy level differences

are characteristic of the atoms in which they occur, and are seen in x-ray spectra

as sudden peaks of spectral intensity. In terms of the x-ray beam, these increases

in intensity both increase the overall flux and change the mean energy that would

otherwise be determined solely through the Bremsstrahlung mechanism.

A technical constraint of x-ray tubes is often the overall power input, whereby

the product of tube voltage and current usually has an upper limit. The value of

this limit depends primarily on the melting temperature of the anode, and is thus

a “hard” limit on the flux that can be produced by an x-ray tube. The maximum

photon energy is determined by the accelerating voltage, which can be very high

if the current is sufficiently reduced, though in doing so, the flux decreases propor-

tionally. A compromise between having a high mean energy in combination with

appreciable flux is usually sought, and can be achieved indirectly via filtering. In

the context of x-rays, filtering usually means placing some known material, which

strongly attenuates the lower-energy sections of the beam, and only weakly the

higher-energy sections, in the beam path. This reduces the overall flux, but can

be useful for lowering the beam’s dose-rate and is routinely used in clinical practice.

A useful quantity to consider when measuring the output of an x-ray source is

the Brilliance, as defined by:

Brilliance =
Nph

sec ·mrad2 ·mm2 · 0.1%BW
, (1.2)

which is an expression of the flux, or number of photons (Nph), per units time

(seconds), solid angle (mrad2) source area (mm2) and energy bandwidth of 0.1%.

For Bremsstrahlung radiation in a fixed or rotating anode source, the peak bril-
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1.2 X-ray production

Figure 1.2: Illustration of electron-ionisation and characteristic line emission. (a)
is a simplified model of an atom with labelled orbital shells; (b) shows the process
of characteristic photon emission: (i) an electron is incident on the atom, (ii) an
inner shell electron is emitted with some kinetic energy, (iii) an outer shell electron
fills the vacant low-energy orbital, (iv) a characteristic x-ray photon is emitted.
(c) shows an energy level diagram of an atom, with the possible transitions from
the L to K shells marked; n and l refer to the principal and azimuthal quantum
numbers, respectively. (d) shows an example tungsten spectrum for an accelerating
tube voltage of 125 kVp, with the characteristic line emissions indicated.
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1.2 X-ray production

liance achievable is on the order of 105-106 photons s−1 mm−2 mrad−2 per 0.1%

bandwidth, while for characteristic lines, it is typically two to three orders of mag-

nitude greater. If an experiment or measurement requires source brilliances much

greater than this, synchrotrons are usually required.

1.2.2 Synchrotron sources

Synchrotrons are capable of delivering monochromatic and polychromatic x-ray

beams with orders of magnitude more flux than x-ray tube sources [3]. These

facilities are roughly circular with a radius measured in kilometres. Electrons

are accelerated to relativistic speeds by high voltage electric fields, while bending

electromagnets, interspersed along the circular path, are used to confine them

within the storage ring. An electron traversing these magnetic fields experiences a

force acting perpendicular to their direction of travel, as described by the Lorentz

equation:

F = e(E + v ∧B), (1.3)

where E, B are the electronic and magnetic fields, v is the electron velocity and ∧

indicates the vector cross product. Magnetic fields do no work on charged particles,

instead they cause the particles to change direction, during which photons are

emitted into some solid angle. For relativistic electrons (E � 511 keV) moving

in a circular trajectory of radius R, Schwinger’s formula expresses the radiated

power as:

P =
2

3

e2c

R2
γ4; (1.4)

and the beam’s angular distribution is strongly collimated in the direction of v̂,

confined within a cone whose half-angle is given in radians by

α ≈ 1

γ
, (1.5)
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1.2 X-ray production

where γ ≡ 1/
√

1− v2

c2
is the Lorentz factor and c is the speed of light in vac-

uum. As an example, if electrons have been accelerated to energies in the GeV

range, which is typical in synchrotrons, the cone angle is measured in milliradians,

meaning the beam is narrow and, due to the very small area of emittance, highly

spatially coherent, i.e. each point on the wavefront produced is moving in phase.

Bending magnets are useful both in terms of electron confinement and as x-

ray sources, with peak brilliances of 1015 photons s−1 mm−2 mrad−2 per 0.1%

bandwidth. A more efficient approach to generating x-rays, however, is to insert

sets of magnetic dipoles or multipoles into the straight sections of a storage ring.

These devices are known as wigglers or undulators, depending on the degree of

overlap between the cones of radiation they produce, and are illustrated in Fig.

1.3.

Wigglers, a product of second generation synchrotrons, with peak brilliances one-

to-two orders of magnitude greater than those of bending magnets, emit multiple

cones of radiation at a range of angles. Dipole magnets cause the electron beam

to be deviated back and forth, with cones of synchrotron radiation emitted during

each “wiggle”. With N periods of magnetic dipoles / multipoles, the intensity

output from a wiggler increases proportionally to 2N , as individual emissions add

together linearly and interference between beams is negligible. Undulators, which

provide the greatest brilliance of the sources listed here - up to 1019 photons s−1

mm−2 mrad−2 per 0.1% bandwidth - are of third generation synchrotrons and

produce confined x-ray beams within very narrow emission cones. The intensity

of x-rays produced by an undulator varies according to N2, as here, photons are

emitted into solid angles being ≤ α and furthermore, the beams are emitted in

phase and thus interfere constructively when viewed at certain angles.
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1.3 X-ray propagation and interaction with electrons

Figure 1.3: Conceptual structure of a the wiggler and undulator sources used in
synchrotrons. Alternating magnetic dipoles cause the electron beam to deflect along
sinusoidal trajectories, emitting synchrotron radiation during each acceleration.

1.3 X-ray propagation and interaction with

electrons

As x-rays are electromagnetic waves, their evolution in free space is described by

Maxwell’s equations, listed below for the case of there being no local charges or

currents:

∇ ·E(x, y, z, t) = 0; (1.6)

∇ ·B(x, y, z, t) = 0; (1.7)

∇×E(x, y, z, t) = − ∂

∂t
B(x, y, z, t); (1.8)

∇×B(x, y, z, t) = ε0µ0
∂

∂t
E(x, y, z, t). (1.9)

32



1.3 X-ray propagation and interaction with electrons

ε0 is the electrical permittivity in vacuum, µ0 the magnetic permeability in vac-

uum, (x, y, z) the Cartesian coordinates, t is time and ∂
∂t

is the partial derivative

with respect to time.

By applying the curl operator to Eq. 1.8, and simplifying the resulting expres-

sion with the identity ∇× (∇×A) = ∇(∇ ·A)−∇2A, and using substitutions

from Eqs. 1.6 and 1.9, one obtains the well known wave equations for the electric

and magnetic fields:

(
ε0µ0

∂2

∂t2
−∇2

)
E(x, y, z, t) = 0; (1.10)(

ε0µ0
∂2

∂t2
−∇2

)
B(x, y, z, t) = 0. (1.11)

These are the d’Alembert equations, describing waves propagating at speed c =

1/
√
ε0µ0. From Eqs. 1.8 and 1.9, we can see that these two waves oscillate per-

pendicular to one another, and since |B| � |E|, we neglect it and only consider

the E field.

A general plane wave solution for a wave denoted as ψ, of wavelength λ, is:

ψ = ψ0e
−i(k·r−ωt+φ), (1.12)

where |k| = 2π/λ is the wavevector describing the propagation direction, r is the

(x, y, z) coordinate system, ω = 2πc/λ is the angular frequency and φ is a con-

stant phase term. By the principle of superposition, any waveform may also be

described by a linear combination of plane waves that satisfy k2 = k2x + k2y + k2z ,

where k2x,y,z are the vector components of k and k = ω/c is the wavenumber.

In general, one assumes knowledge of a wavefront at a fixed starting position,

z = 0, and seeks to understand how that wavefront behaves as the wave propagates
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1.3 X-ray propagation and interaction with electrons

in the z direction. There are two equivalent approaches to determine the outcome

if the paraxial approximation (
√
k2 − k2x − k2y ≈ k− k2x+k

2
y

2k
) is valid, i.e. we assume

that the wave propagates almost entirely in the z direction. The first is the

Helmoltz propagator -

Hz(x, y) =
eikz

iλz
exp

[ ik
2z

(x2 + y2)
]
, (1.13)

which acts upon the known wavefront, ψω(x, y, z = 0) via the convolution operator,

∗, as:

ψω(x, y, z) = ψω(x, y, 0) ∗Hz(x, y), (1.14)

or, explicitly via the convolution theorem:

ψω(x, y, z) = eikzF−1
{

[Fψω(x, y, 0)] exp
(
−iz

k2x + k2y
2k

)}
, (1.15)

with F and F−1 denoting the two-dimensional Fourier transform and its inverse,

respectively. It can be demonstrated with the above equation that, given a plane

wave in vacuum, this will remain a plane wave after propagating for some distance.

The propagator itself is very useful, as it allows us to calculate wavefronts for any

z (in the paraxial approximation) by a sequence of Fourier transforms which are

computationally efficient functions.

The second way of determining an evolved wavefront is via the transport-of-

intensity equation (TIE) [4]. As the name implies, this formulation is primarily

concerned with the propagation of intensity, rather than the full wavefront de-

scription. As intensity is the property that is ultimately measured, however, this

is a useful result. To derive the TIE, we begin by expressing ψω(x, y, z) in terms

of its intensity, I(x, y, z) ≡ |ψ(x, y, z)|2 (we have dropped the explicit dependence
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1.3 X-ray propagation and interaction with electrons

Figure 1.4: Compton scattering: the incident photon of energy Eγ interacts with
a stationary electron and is scattered through an angle θ and has a reduced energy
E′γ .

on angular frequency ω), and the phase as φ(x, y, z) = Im(ψ(x, y, z)), i.e.

ψ(x, y, z) =
√
I(x, y, z) exp

[
iφ(x, y, z)

]
. (1.16)

By again making the paraxial approximation within Maxwell’s equations, we can

separate the real and imaginary components of these equations to arrive at the

TIE:

∇⊥ · [I(x, y, z)∇⊥φ(x, y, z)] = −k∂I(x, y, z)

∂z
, (1.17)

where ∇⊥ = ( ∂
∂x
, ∂
∂y

) is the two-dimensional gradient operator.

In this thesis, the Helmholtz propagator is the primary method used in determining

the evolution of complex waveforms.

Let us now consider how an x-ray photon interacts with a free electron. The

situation is expressed in Fig. 1.4, in which a photon of energy Eγ interacts with

an approximately stationary electron, and is then scattered through an angle θ.

By conservation of four-energy and four-momentum, we can determine the energy

of the scattered photon, E ′γ, after this event as a function of θ. First, we isolate

an expression for the electron momentum after the interaction in terms of photon
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1.3 X-ray propagation and interaction with electrons

energies:

P 2
e = (Pγ − P ′γ)2; (1.18)

P 2
e = P 2

γ + P ′2γ − 2PγP
′
γ cos θ; (1.19)

P 2
e c

2 = E2
γ + E ′2γ − 2EγE

′
γ cos θ, (1.20)

where we have begun by squaring the conservation of momentum expression and

ended by multiplying both sides by c2 in order to express momentum in terms of

energy. Next, we consider the conservation of energy:

Eγ +m0c
2 = E ′γ +

√
P 2
e + (m0c2)2; (1.21)

P 2
e c

2 = (Eγ − E ′γ +m0c
2)2 − (m0c

2)2, (1.22)

where m0 is the rest mass of the electron. Now, by substituting Eq. 1.22 into 1.20

and rearranging, we obtain

E ′γ =
Eγ

1 + Eγ
m0c2

(1− cos θ)
, (1.23)

or, in terms of wavelength:

∆λ =
h

m0c

(
1− cos θ

)
. (1.24)

This result is known as Compton scattering, and is applicable not only to free elec-

trons, but also to weakly bound electrons in outer atomic shells, which are often

considered to be “free” in the case where Eγ is much greater than the binding

energy of the electron. In the special case of ∆λ ≈ 0, the electron oscillates in

phase with the incident wave, absorbing and rapidly re-emitting the photon at the

same frequency; this is coherent, or Thomson, scattering, which predominantly

occurs for lower energy photons.
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1.3 X-ray propagation and interaction with electrons

The cross section of scattering interactions for a given material may be ob-

tained by measuring the ratios of incident and scattered radiation. For Compton

scattering, this is a function of material density, ρ and photon energy:

σCompton ∝
ρ

E
. (1.25)

If, instead of interacting with an atomic outer-shell electron, an x-ray photon

interacts with an inner-shell electron, the photoelectric effect may occur. Referring

to Fig. 1.2 (b), the photoelectric effect is a result of a photon, rather than an

electron, ionising an atom by removal of an inner shell electron. This occurs if

the energy of the photon is greater than the work function, and after ionisation,

an electron from one of the outer shells transitions to fill the vacated orbital. As

is the case for characteristic line emission, a photon whose energy is equal to the

difference in atomic energy levels is emitted in the process. The photoelectric

cross-section varies approximately with the atomic number, Z, and the photon

energy as:

σpe ∝
Z3

E3
. (1.26)

This breaks down, however, near the absorption edges, where the cross-section

increases significantly due to the sudden expansion of the probability space.

In low-density materials such as soft tissues, the photoelectric effect is domi-

nant for photons up to energies of about 30 keV, above which Compton scattering

begins to dominate. For higher Z materials, the energy range where this transition

occurs is higher.

37



1.4 X-ray interactions with bulk materials

1.4 X-ray interactions with bulk materials

With an understanding of how x-rays interact with isolated and partially-bound

electrons, we may now expand to consider how they interact with an ensemble

of atoms and molecules. For a homogeneous material with dielectric constant

ε = εrε0, and magnetic permeability µ = µrµ0, where εr and µr are the relative

dielectric and magnetic permeability constants respectively, the wave equations

1.10 and 1.11 become:

(εµ
∂2

∂t2
−∇2)E(x, y, z, t) = 0; (1.27)

(εµ
∂2

∂t2
−∇2)B(x, y, z, t) = 0. (1.28)

Hereafter, we make the (usually valid) assumption that the wave is not propagating

in a magnetic material, hence µr = 1. In the above case, we see the wave speed has

been reduced by
√
εr, so the wave propagates at speed v = c/

√
εr = c/n; n is the

refractive index, or ratio of the speed of light in vacuum to that inside a dielectric

medium. As photon-electron interactions are affected by the photon energy, the

refractive index is a function of photon energy also. In terms of the wavenumber,

k, it satisfies the dispersion relation:

k2 =
ω2n2

c2
. (1.29)

With this, our plane wave solution from Eq. 1.12 must be updated to represent

the new spatial dependence:

ψ = ψ0e
−iω(n

c
k̂·r−t), (1.30)

where we have included the arbitrary phase factor within ψ0.

In general, n is a complex quantity, with modulus very close to one, and is ex-
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1.4 X-ray interactions with bulk materials

pressed by:

n(ω) = 1− δ(ω) + iβ(ω). (1.31)

The significance of having a complex imaginary refractive index may not be im-

mediately obvious, but if we expand Eq. 1.30:

ψ(x, y, z, t) = ψ0(x, y, z)e−iω
(

1−δ+iβ
c

k̂·r−t
)

(1.32)

= ψ0(x, y, z)eiωt e
−iω
c

(1−δ)k̂·r︸ ︷︷ ︸
Complex

e
βω
c
k̂·r︸ ︷︷ ︸

Real

, (1.33)

where we have inserted the longhand version of n and then factored out the time-

varying part exponential, we see that the real part, 1 - δ, affects the phase of the

wave, while the imaginary part affects the amplitude. Considering that some of a

photon’s energy will be expended by inducing electron oscillators, we can deduce

that the photon’s amplitude must decrease as it propagates through the medium,

thus β is negative in Eq. 1.33. Another useful way of seeing how the “complex”

part of Eq. 1.33 affects the phase of a wave, is via the electric field:

E = E0 e
iω( 1−δ

c
k̂·r−t)︸ ︷︷ ︸

wave & phase

e−
ωβ
c
k̂·r︸ ︷︷ ︸

absorption

. (1.34)

If we consider the intensity, I = |E|2, in this medium, we have in fact arrived at

the Beer-Lambert law for attenuation:

I = |E0|2 exp
(
−2ωβ

c
l
)
; (1.35)

I = I0e
−µl, (1.36)

where we have defined the attenuation coefficient as µ = 4πβ/λ, and denoted

the wave’s path length through the medium as l = k̂ · r. If we make the further

assumptions that, as a wave passes through an object, the variations in its z

component are small and that the object is sufficiently thin1, we may forgo the

1The so-called “thin object approximation” [5]
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1.4 X-ray interactions with bulk materials

step of propagating the wave via Eq. 1.13, and instead model the object as a

complex planar transmission function:

T (ω, x, y) = exp
[
−k
∫
object

β(ω, x, y, z)dz − ik
∫
object

δ(ω, x, y, z)dz
]
, (1.37)

which can be applied directly to the waveform via multiplication.

This framing of the situation is powerful, and we can use it to derive the effects

of refraction of a wave due to a change in phase. We begin by denoting the phase to

be φ(x, y) = −k
∫
object

δ(z)dz and consider the effects of this due to the Helmholtz

propagator (Eq. 1.14). For simplicity, I consider the one-dimensional version of

the equation and make two approximations: first, that φ may be expressed by a

Taylor expansion around x = 0:

φ(x) = φ0 + x∂xφ, (1.38)

and secondly, that the decrease in amplitude, denoted by

M(x) = e−k
∫
object βdz, (1.39)

is constant over a small region.

Consider also a property of the Fourier transform:

F[eik0xf(x)] = f̃(k − k0), (1.40)

where f̃(k) is the Fourier transform of f(x), and the Helmholtz propagator as

expressed in terms of Fourier transforms in Eq. 1.15. Appling these to a wavefront

that has been modified by the presence of a sample, Mψ0e
φ0+x∂xφ, and neglecting
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1.5 Planar x-ray imaging

the constant phase from φ0, we find:

ψz/(Meikz) = F−1
{
F[ψ0e

x∂xφ] exp [
−iz
2k

k2x]
}
, (1.41)

= F−1
{
ψ̃0(kx − ∂xφ)e

−iz
2k

k2x
}
, (1.42)

and now changing variable: g = kx − ∂xφ

= F−1
{
ψ̃0(g) exp (

−iz
2k

[g2 + 2g∂xφ+ (∂xφ)2])
}
,

(1.43)

= exp (
−iz
2k

(∂xφ)2)×

F−1
{
ψ̃0(g) exp (

−iz
2k

g2)︸ ︷︷ ︸
Original format

exp (
−izg∂xφ

k
)︸ ︷︷ ︸

Shift function

}
.

(1.44)

The exponential term in (∂xφ)2 in front of the inverse Fourier transform accounts

for the extra path length of a deflected field by some object compared to the field

in the absence of that object. The terms marked “Original format” are essentially

the same expression as seen in Eq. 1.15, but again, from Eq. 1.40, we see the

exponential marked “Shift function” in Eq. 1.44 is in fact a lateral shift, in real

space, of the waveform by an amount z∂xφ/k; for a small angle, this corresponds

to an angular deflection given by

α = ∂xφ/k. (1.45)

In ray-optics terms, this is the refraction angle of a photon.

1.5 Planar x-ray imaging

From Eq. 1.37, it is apparent that if |∇β| > 0, then at different points in space

immediately after an object, the waveform will have differing intensities. In other

words: if an object is made up of materials that attenuate x-rays by different
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1.5 Planar x-ray imaging

Figure 1.5: Absorption imaging (a) schematic and (b) example - of my ankle -
showing the intensity variations between soft tissue, bone and metal.

amounts (they have different attenuation coefficients), such as bone and soft tissue,

then those materials may be distinguished by the intensities of any transmitted

x-rays. This is x-ray attenuation imaging and is illustrated schematically and by

example image in Fig. 1.5 (a). The contrast between two materials is defined as:

C =
|I1 − I2|

I1
= 1− e(µ1−µ2)l2 , (1.46)

where the subscripts 1 and 2 refer to the distinct materials encountered by the

beam.

1.5.1 X-ray dose

As photons propagate through a material, some are absorbed; this is quantified

as the dose received by an object. For biological samples, with the possibility of

cell degredation or destruction, possibly leading to cancerous mutations [6], dose

becomes an important controllable quantity. It is quantified in different ways,

with the metric of choice usually chosen depending on the context of exposure [7].

The following is a brief summary of the terminology in use.
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1.5 Planar x-ray imaging

• Exposure

– The ability of an x-ray beam to ionise a mass of air, it expresses the

amount of electron charge, Q, liberated per unit mass of air, measured

in kg.

– SI unit: C/kgair

– Conventional unit: Roentgen; R = 2.58× 10−4 C/kg.

– Use: measuring radiation received at a defined plane of interaction,

such as a patient’s skin.

• Kinetic Energy Released per unit Mass in ionised Air - Air KERMA

– Equivalent to exposure, but utilises different units.

– Unit: Gray / Gy (usually measured in mGy): the kinetic energy re-

leased per unit mass, or Joules per kilogram, J/kg.

– Use: Often more convenient to use than exposure when one wishes to

calculate an absorbed dose.

• Absorbed dose

– A measure of energy absorbed per unit mass of a specific material.

– SI unit: Gy.

• Equivalent dose

– A quantification of biological damage, depending on the type of radi-

ation. This quantity introduces a weighting factor depending on the

radiation type, which multiplies the absorbed dose.

– SI unit: Sievert (Sv) = weighting × absorbed dose.

– Example: x-rays have a weighting factor of 1, while alpha particles have

a weighting factor of 20.
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1.5 Planar x-ray imaging

• Effective dose [8]

– A generic quantification of biological damage depending on both the

type of radiation and the tissue being irradiated, as different organs

have distinct radiosensitivities.

– Each organ or tissue is given a weighting in percent, such that the total

weight is 100%.

– Use: guides imaging and radiotherapy practices for protection of oper-

ators and patients.

In this thesis, I make use of the Air KERMA description of dose, as it is a

measurable quantity that scales with the number of photons in a beam. Once

measured, the dose rate gives us the ability to deliver a consistent level of dose

across a variety of situations.
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X-ray phase contrast imaging

In attenuation imaging, the contrast is generated by differences in k
∫
object

β(E, r)dr

as a function of r. X-ray phase contrast imaging (XPCi) refers to generating con-

trast by exploiting differences in k
∫
object

δ(E, r)dr. To illustrate why this method

of imaging is appealing, the ratio δ/β for various elements is shown in Fig. 2.1

- depending on the photon energy, and material being considered, δ can be up

to three orders of magnitude greater than β. As δ ∝ E−2 and β ∝ E−ζ , where

3 < ζ < 4 depending on the proximity to absorption edges, this potential for

increased contrast generation often persists into the regime of hard x-rays, which

is ideal if one of the imaging goals is to minimise radiation dose.

Figure 2.1: The ratio of δ/β for carbon, aluminium, titanium and gold. The “water
window” is the part of the EM spectrum for which water is effectively transparent.
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2.1 Free space propagation (FSP) / In-line holography

While δ is indeed usually larger than β, direct detection of the change in a

wavefront’s phase is impossible, as detectors measure only the wave’s intensity.

Instead, different imaging schemes and, in most cases, optics are introduced to

the system that enable phase changes to be converted into changes of intensity.

This chapter aims to explain how such systems may work and is split into three

sections: a discussion of the different XPCi technologies, mentioning their advan-

tages and disadvantages where appropriate; a description of x-ray detectors - how

they function and their technical constraints - and finally, a brief summary of how

the x-ray masks and gratings mentioned in the imaging systems are manufactured.

2.1 Free space propagation (FSP) / In-line

holography

FSP is the simplest XPCi method in terms of its experimental set-up, as no optical

elements are required. The scheme, illustrated in Fig. 2.2, is very similar to that

of absorption based imaging, the only difference being the introduction of some

propagation distance between the sample and detector planes.

FSP was first studied using synchrotron radiation and a photo-sensitive film

that allowed for high spatial resolution [9, 10]. The extra propagation distance

allowed for the evolution of an interference pattern between the phase-shifted and

unperturbed wavefronts, observed as a series of fringes within and around the ob-

ject’s shadow. Later, Wilkins et al. used a micro-focal x-ray source, which had

a high spatial but low temporal coherence (i.e. the beam was polychromatic and

had a source size measured in microns), and was still able to produce FSP images

[11].

A phase map of a sample may be retrieved if the interference pattern is sampled
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2.2 Bonse-Hart interferometry

Figure 2.2: Plane wave implementation of a FSP system acquiring images at
multiple propagation distances.

at several propagation distances [12], as shown in Fig. 2.2, without any assump-

tions of sample homogeneity, via the transport of intensity equations [13]. If a

sample can be approximated as being homogeneous, however, it is only necessary

to acquire one interference image [14]. In general, FSP imaging systems operate

in the Fresnel regime, where the Fresnel number, a2

Lλ
, is much greater than one,

with a being the characteristic size of the image detail and L the propagation dis-

tance. An educational discussion on the meaning of the Fresnel number is made by

Gureyev et al. [15]. There are several reasons for acquiring images in this regime,

namely that to have a long propagation distance, which increases the intensity of

fringes, must be balanced against the loss of flux due to the inverse square law. In

particular, implementing FSP with micro-focal sources, which have an inherently

low flux, typically requires a long exposure time. In order to resolve the fringes

for small values of L, however, detector pixels are required to be very small, which

also places limitations on the field of view (FoV), as detectors rarely have more

than 2048 pixels per side.

2.2 Bonse-Hart interferometry

Bonse-Hart interferometry was the first form of XPCi to be implemented. In the

very first experiments, the Kα emission line in copper (≈ 8 keV) and a small
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2.2 Bonse-Hart interferometry

Figure 2.3: Schematic of a Bonse/Hart interferometer. A single crystal cut with
two large grooves allows for creation of two mutually coherent x-ray beams.

block of a perfect crystal - usually silicon - with two sections removed in order

to obtain three thin blades, were used to create x-ray interference patterns [16].

Single crystals are used in order to ensure that the crystal lattice parameter, which

affects the x-ray diffraction pattern, is consistent in all sections.

An incident x-ray beam is split by transmission-diffraction at the first crystal

plane into two mutually coherent beams. The beams are symmetrically reflected

at the second plane towards each other, as in Fig. 2.3, and upon reaching the

analyser crystal, the beams recombine in the detector plane. A phase shifter can

be introduced such that, when the beams ultimately recombine, they produce a

well defined interference pattern. The presence of a sample in one of the beam arms

then shifts and attenuates this pattern by some measurable amount. Quantitative

phase information can be extracted, even for complex biological samples, via a

fringe scanning procedure, as described by Momose et al. [17].

The method is highly sensitive to changes in phase [18], however it requires

high stability and incredibly precise alignment of the crystals. The original authors

noted distortions in their interference pattern as being due to non-uniform stresses
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2.3 Grating / Talbot-Lau interferometry

within the bulk crystal, equivalent to a misalignment of 2 Å. This illustrates the

difficulty in cutting well-aligned grooves even in single crystals with the result

being that interference conditions are usually only valid in small areas, and that

the FoV is inherently limited. Additionally, with some flux being discarded due

to transmission from crystal planes two and three, the method does not make

the most efficient use of photons. The use of Bonse-Hart interferometry is mostly

confined to synchrotrons.

2.3 Grating / Talbot-Lau interferometry

Another interference based form of XPCi is grating interferometry (GI) [19, 20]

and is based on the Talbot self-imaging effect [21]. The effect is: at certain

distances, the diffraction pattern created by a periodic object is an exact replica

of the object itself. These certain distances are located at integer multiples of the

Talbot distance, zTalbot, downstream of the object:

nzTalbot =
2np2

λ
, (2.1)

where p is the period of the object and n is the integer. These “self-images” also

appear at fractional Talbot distances, either with a change in phase or period.

The scheme for using this effect in an imaging system is shown in Fig. 2.4,

where two gratings are placed downstream of an object. The phase grating imposes

a known modulation of the wavefront; the absorption, or analyser, grating is

placed in a self-imaging plane and consists of periodic absorbing septa, such as

gold, and transmitting apertures. The periods of both these gratings are typically

on the scale of a few microns, with the absorption grating usually being half the

pitch of the phase grating (a fractional Talbot order is typically used to maximise

modulations [22]). The detector is placed immediately behind the analyser grating
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2.3 Grating / Talbot-Lau interferometry

Figure 2.4: TLI imaging system. (a) includes the optional source grating, G0 and
indicates the sample position; (b) demonstrates the self-imaging phenomenon as a
plane wave propagates beyond a phase grating, G1, to the analyser grating, G2;
(c) displays an example Visibility Curve that may be measured as either grating is
stepped in either of the indicated directions.

such that, by translating the analyser perpendicularly to the grating lines, the

self-image pattern may be finely sampled. The visibility of the system, V , which

ultimately determines the system performance, is defined as

V =
Imax − Imin

Imax + Imin

, (2.2)

where Imax and Imin are measured from the visibility curve, as shown in Fig. 2.4

(c). This curve is acquired in the absence of any samples, with a high V indicating

good system performance.

In the presence of a sample, the visibility curve acquired may be compared to the

reference pattern in order to retrieve the absorption, the first derivative of the

sample’s projected phase, and the dark field, or ultra-small-angle-x-ray-scattering

(USAXS) signal. Absorption causes the average intensity to decrease, refraction

causes a shift in the pattern and dark-field signals reduce the overall visibility.

In principle, GI is a coherent and chromatic method, though these limitations can

be somewhat mitigated by the following extensions to the technique:

• Extended sources: a spatially incoherent source may be split into an array
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2.3 Grating / Talbot-Lau interferometry

of coherent, but mutually incoherent sources through use of an absorption

grating placed before the sample (see G0 in Fig. 2.4 (a)); this is the Talbot-

Lau configuration for the interferometer [23], which allows for larger source

focal-spots to be used and in turn, may increase the amount of flux available.

• Polychromatic sources: the distribution of frequency components within a

polychromatic beam will not all produce self-images of the phase grating in

the same plane; however it has been shown that while this reduces the visi-

bility, it does not wash it out entirely [24]. In fact, the effective wavelength

range over which the system can be considered to perform satisfactorily is

given by:

∆λ =
λ0

2n− 1
, (2.3)

which in essence means that for high Talbot orders, the system tolerance to poly-

chromaticity decreases. A more thorough analysis is made by Engelhardt et al.

[25].

The restrictions on GI are both technical and practical. The first experiments

were conducted using synchrotron radiation with energies of 10 - 20 keV [19, 24],

with experiments today progressing to energies of up to 100 keV (though with

greatly reduced visibility compared to those low-energy experiments). A prime

difficulty in working with high x-ray energies is grating fabrication; the thickness

of a gold absorption grating for 100 keV photons would need to be 1mm. This

means that, for a 2 µm pitch grating, the absorbing septa would have an as-

pect ratio of 1000, and while the fabrication of gratings is examined later in this

chapter, generally speaking, creating structures with an aspect ratio of ≈100 is

considered highly challenging. An alternative to making high-aspect ratio struc-

tures is to simply turn the absorption grating on its side, which, while effective,

greatly reduces the FoV [26]. Finally, a general rule is that the smaller the pitch
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2.4 Analyser based imaging (ABI)

of an optical element, the more difficult it is to align within the system, and the

more sensitive it is to vibrations or thermal variations - this applies to the optical

elements in many XPCi systems.

An advantage of the GI system is that it is relatively flux-efficient in terms of

system length; i.e. a phase grating pitch of 4 µm, with λ = 0.5 Å, leads to the

first Talbot distance being 4 cm from the phase grating, meaning that very little

flux is lost due to the inverse-square law. However, if the absorption grating is

effective, this imaging modality results in half of the dose delivered to the sample

being wasted, as it does not contribute to image formation. If a source grating is

in place as well, much of the flux from the source is necessarily discarded, thus

increasing the exposure time required for measurements.

2.4 Analyser based imaging (ABI)

ABI systems are sensitive to attenuation, refraction and USAXS. They employ

monochromatic radiation via perfect crystals, which selectively reflect x-rays of

certain energies towards a detector; the schematic is illustrated in Fig. 2.5. Before

the introduction of a sample to the beam, the analyser crystal is rotated, as shown,

and the intensity is monitored. The crystal’s reflectivity is due to Bragg diffraction,

where scattering from ordered atomic planes within crystals results in constructive

interference at certain angles, as shown in Fig. 2.6 (a). The measurement of

reflectivity as the crystal is rotated is known as the Rocking Curve (RC) and is

shown in part (b) of the figure.

A sample inserted into the beam refracts it by some angle, typically by a

number of micro-radians, which changes the angle of incidence on the crystal.

If the crystal is rotated to either of the 50% intensity regions of the RC, where

the slopes are approximately linear, this change of incident angle results in an
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2.4 Analyser based imaging (ABI)

Figure 2.5: Analyser based imaging setup: monochromatic x-rays are incident
upon the analyser crystal, which is rotated to measure the crystal reflectivity as a
function of ω. X-ray refraction due to a sample results in a change in measured
intensity.

Figure 2.6: (a) Bragg diffraction occurs at certain angles where the optical path
length from different scattering layers is an integer multiple of the wavelength λ.
(b) An example rocking curve measured by rotation of the analyser crystal.

approximately linear change of measured intensity. The angle of refraction, which

is a measure of the gradient of integrated phase, is greatest at the interfaces

between details inside the sample and at the sample’s edges, leading to “edge

enhancement”. The refraction contrast - whether refraction leads to an increase

or decrease in intensity - can be inverted by rotating the crystal to the opposite

side of the RC.

The refraction angle, α, may be recovered by following the steps laid out by

Chapman et al. [27]: acquire sample images symmetrically at the angles of steepest

slopes, where R′′(θ1,2) = 0, where each ′ indicates a derivative with respect to θ.
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2.5 Edge Illumination

Then consider the Taylor expansion of R, such that

I1 = e−µl[R(θ1) +R′(θ1)α]; (2.4)

I2 = e−µl[R(θ2) +R′(θ2)α], (2.5)

where I1,2 are the measured intensities. These two simultaneous equations can be

re-arranged to solve for the transmission and refraction angle:

t = e−µl =
I1R

′(θ1)− I2R′(θ2)
R(θ1)R′(θ1)−R(θ2)R′(θ2)

; (2.6)

α =
I2R(θ1)− I1R(θ2)

I1R′(θ2)− I2R′(θ1)
. (2.7)

ABI requires precise alignment of the analyser crystal and a monochromatic source,

and its use is thus normally confined to synchrotron facilities. As the crystal also

acts as a monochromator, polychromatic sources can be used, but much of the

flux produced would then be discarded.

2.5 Edge Illumination

Edge Illumination, with which the experimental data in this thesis have been ob-

tained, was developed by Olivo et al. at the Elettra synchrotron [28]. In the

synchrotron setting, a narrow x-ray beam is partially incident on an absorbing

edge, which obscures some fraction of a pixel. A sample is translated perpen-

dicularly through the beam, with the intensity recorded throughout; attenuation

decreases the intensity, while refraction shifts some of the beam either further onto

the absorbing edge or further onto the pixel, leading to a reduction or increase

in intensity, respectively. For refraction, we generally assume that the beam is

refracted by some average amount; if there is instead a distribution of refraction

angles within the beamlet, then the measured refraction is this distribution’s cen-

tre of mass, and its width is the dark field, or USAXS, signal. Scattering broadens
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2.5 Edge Illumination

Figure 2.7: The schematic representation of edge-illumination, with dark areas
between the masks indicating low intensity regions. (a) Shows the system in the
absence of a sample for a plane wave incident on the sample mask, while (b) indicates
the position of a sample and its effect on beamlets.

the beam and usually leads to a reduction of measured intensity, though when the

beam is incident wholly on the absorbing edge, scattering may be measured as an

increase in intensity.

In the case of a divergent beam, as is typical in a lab setting, the beam is

first split into an array of beamlets by a periodically absorbing structure, or mask.

The absorbing edge in front of the detector is replaced by a second mask whose

pitch is the same as the detector, with the transmitting sections aligned with pixel

centres. To account for beam divergence, the masks are made with the system’s

geometry in mind, whereby the first mask’s pitch is the de-magnified pitch of the

second mask. This two-mask scheme was developed by Olivo and Speller [29, 30]

at UCL, and is displayed in Fig. 2.7.

At synchrotrons, EI has been demonstrated to be very sensitive to phase ef-

fects, with nanoradian refraction angles being resolvable at photon energies as high

as 85 keV at the European Synchrotron Radiation Facility (ESRF) in Grenoble

[31]. In such settings, the intermediate Fresnel regime - F ≈ 1 - may be employed,

while in the lab setting, F << 1.
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2.5 Edge Illumination

Figure 2.8: (a) Example illumination curve, with (b) and (c) showing wire profiles
acquired while the sample mask is located in each of the positions marked; the pro-
files show a mixture of phase and absorption effects, with the positive and negative
phase contrast peaks being inverted between (b) and (c).

When translating the pre-sample mask, M1, perpendicularly to the beam di-

rection over one period, the array of x-ray beamlets are also, in effect, shifted

with the mask. The intensity recorded will be a maximum when the beamlets are

aligned with the apertures of the detector mask, M2, and a minimum when they

are perfectly misaligned. This dependence of intensity as a function of M1’s posi-

tion is the Illumination Curve (IC), which is conceptually similar to the rocking

curve used in ABI, and an example is shown in Fig. 2.8 (a). Parts (b) and (c) of

this figure show intensity profiles of a wire measured on each of the IC slopes to

demonstrate the inversion of positive and negative phase peaks.

A retrieval process similar to that used in ABI may be employed to extract

the differential phase and projected transmission of the sample, with the formula

developed by Munro et al. [32] also accounting for the finite source size, σs, and

the divergent beam:

∂φ

∂x
=
σs
√
π

2z1

IR − IL
IR + IL

. (2.8)
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2.5 Edge Illumination

Figure 2.9: An illustration of dithering; in (a), the sample is moved in sub-pixel
steps, while the different coloured dots in (b) represent the different pixel intensities
is recorded during each step.

Dark-field signals may also be retrieved by acquiring one more image at a separate

position of the IC, such as the IC peak, as demonstrated by Endrizzi et al. [33]

In the scheme shown in Fig. 2.7, the sampling of the object is equal to the

pitch of M1, however, this may be increased by dithering the sample. Dithering

refers to translating the sample in sub-pixel steps, as shown in Fig. 2.9, acquiring

images for each position and then “stitching” the images together. This increased

sampling of the object leads to clearer definition of resolvable features. In the

direction parallel to the apertures - not shown - the resolution is determined by

blurring due to the source, detector cross-talk and the pixel size [34].

While EI bears physical similarities to GI and processes data in much the same

way as in ABI, it is distinct from them for the following reasons:

• The gratings employed are both absorption gratings with pitches more often

close to 50 µm than 5 µm; they do not produce interfering x-ray beamlets

[35], so the technique is non-interferometric [36] and achromatic [37, 38];

• The rocking curve equivalent - the IC - has lower spatial and temporal co-

herence requirements from the x-ray source [39].

Another technical advantage of EI masks over the gratings of GI is that the re-

quired aspect ratio is significantly lower. This makes them easier to fabricate,
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2.5 Edge Illumination

Figure 2.10: Illustration of the source size’s effect on the IC: larger sources, if used
with the same EI system, lead to a reduction of sensitivity to phase effects.

more stable over time and, with their larger pitches, less sensitive to vibrations

during experiments.

In terms of dose delivered to the sample, the system is efficient, as most of

the photons that interact with the sample are used in image formation. The total

dose varies according to how much resolution is required (how many dithering

steps) and the levels of noise that can be considered acceptable (exposure time).

As an example of dose efficiency, the dose accumulated while imaging an ex-

vivo tissue sample has been shown to be comparable to that delivered in clinical

mammography environments [40].

2.5.1 Extensions to EI

As EI is the main focus of this thesis, developments that extend the method be-

yond its core principles are listed here for completeness, though not all are used

in the thesis.

Concerning source sizes, which contribute to image blurring and are a factor in

determining a source’s brilliance, contrast for a given sample has been shown to

remain fairly constant for sizes of up to 100 µm, despite the near complete loss of

spatial coherence [30]. However, conventional x-ray tubes found in hospitals, such
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2.5 Edge Illumination

as ones used in angiography, can have source sizes considerably bigger than this -

by several times - in order to produce the required flux. If EI systems were em-

ployed directly in these cases, contrast may be significantly affected; as beamlets

begin to overlap, the IC is significantly broadened - see Fig. 2.10. A “flattened”

IC means that refraction due to a sample causes little-to-no appreciable change

in intensity arriving at the detector, thus vastly reducing the sensitivity of the

system to phase effects. A solution to this issue is to either collimate the beam,

which removes the benefits of high-flux, or to employ a source-mask, which only

partially reduces the source flux; in either case the exposure time can be tailored

such that the total dose delivered to the sample, or alternatively the background

noise in the images acquired, is constant. If a source-mask is employed, it is pos-

sible to deconvolve the multiple sample images produced by the mini-sources and

retrieve a sharp image of the sample [41].

Considering the mask structures themselves, we find that the 1-dimensional

phase sensitivity is not an unavoidable limitation. As shown by Kallon et al. [42],

two-directional masks may be employed in order to achieve phase sensitivity in

both the x and y directions. The disadvantage of this system is in the scan time

requirements being squared if dithering in both directions is employed, i.e. scan

time ∝ N2
dither. Further, in order to maximise the dose-efficiency of the system,

in some cases it is possible to remove the detector mask and instead align the

beamlets such that they fall between two (or more, in the 2D implementation)

pixels [43]. This requires that the detector in use has a sharp point-spread func-

tion (PSF), which is most commonly the case in direct-conversion detectors. Such

an implementation reduces the resolution by a factor of 2, but the simplified setup

and increase in detected statistics for a given exposure time may occasionally be

preferable in terms of system implementation. As the dose rate for a single-mask

setup is the same as in the two-mask setup, there are also potential benefits in
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Figure 2.11: Beam tracking scheme. Only the pre-sample mask is needed, with
each beamlet arriving at the detector and detected by multiple pixels.

terms of total dose reduction.

If a single-mask setup is desired, but the detector PSF is large or the pixels

are smaller than the beam, beam-tracking may be an appropriate adaptation of

the EI technique [44]. In this configuration, shown in Fig. 2.11, the sample mask

has a relatively large period, or the magnification may be defined such that the

projected pitch on the detector is over multiple pixels. For example, if a beamlet

is centered on a given pixel, and n neighbouring pixels in all directions register

some signal due to this beamlet, then the next beamlet might be centered 2n+ 1

pixels away. By translating the sample mask perpendicular to the beamlets over

one pixel width, the intensity profiles of each beamlet may be finely sampled. In-

troducing a sample immediately after the mask in this case, and considering each

set of 2n pixels, the reduced intensity, shifted centre-of-mass and increased width

of the beamlets, corresponding to absorption, refraction and dark-field signals,

respectively, may be measured with a single acquisition.

Given the uncertainty in positioning of the sample mask during long acqui-
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2.5 Edge Illumination

Figure 2.12: Schematic of asymmetric (pre-sample) mask implementation of EI.
(a) Shows a possible mask design in terms of aperture positions and (b) shows the
corresponding ICs measured by the even and odd pixels respectively.

sitions, a system which requires only one positioning step and that still enables

multiple IC sampling, is sometimes needed. This demand is answered in the form

of asymmetric mask designs [45] - see Fig. 2.12 for an example. Here, the sample

mask is sub-divided into a number of different periods, where adjacent apertures

are shifted by a known amount such that, for the number of sub-divisions, there

are shifted ICs in each pixel. The advantage here is that, in a single sample-scan,

parts of a sample are imaged for different IC positions simultaneously, enabling

fast retrieval of attenuation, phase and dark-field signals.

Finally, while planar images of an object can be sufficient for many applica-

tions, for some, it is beneficial to have a fully 3-dimensional representation of a

sample. This can be achieved through computed tomography (CT) in conventional

x-ray imaging, and work has been done to enable extensions of this to many XPCi

methods, with those regarding EI being made by Hagen et al. [46, 47], among

others. Further developments by Zamir et al. [48] enabled relatively short CT

scans to produce detailed phase and attenuation maps of the internal structure of

biological specimens.
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2.6 X-ray detectors

2.6 X-ray detectors

There is a wide variety of detector technologies, of which this section aims to de-

scribe a few. As I mainly made use of two detectors here at UCL - the Hamamatsu

flat-panel and the photon-counter, Pixirad - I shall provide a broad overview of

detector characteristics, but focus mainly on those relevant to these two detectors.

Roentgen’s original experiments made use of a barium platinocyanide scintilla-

tor, which fluoresces in the presence of x-rays, producing a shower of visible light

photons that then interacted with photographic film [49]. In the case of a screen,

the granularity of photo-sensitive compounds determines its ability to create im-

ages in terms of resolution and uniformity. Ideally, all the grains are of similar size

and distributed evenly throughout the imaging plane of the screen and the smaller

they are, the better the resolution [50]. In the discussion that follows, much of the

information and illustrations are inspired by the paper by Allè et al. [51]

2.6.1 Indirect detectors

Indirect photon detection, where x-rays are detected through secondary effects,

uses a scintillator and collector, with pixels instead of film. Scintillators them-

selves can be made of a variety of materials, such as CsI:Tl or Gd2O2S:Tb, which

can be coupled to photodiodes through direct deposition, optical fibres or lenses.

The fibres are connected either to a charge-coupled device (CCD), or a comple-

mentary metal oxide semiconductor (CMOS) sensor. The signal diffusion due to

scintillation lowers their intrinsic resolution, however these systems are usually ca-

pable of performing with sufficient efficiency at high energies thanks to the high-Z

elements in the scintillator. [52]

CCDs are photon detectors that, after a scintillator converts x-rays to visible
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2.6 X-ray detectors

Figure 2.13: (a) Principle of indirect detection: xrays are converted to visible light
which excites electrons and these are stored in potential wells. (b) The clocking out
mechanism of a CCD: three electrodes execute a sequence of high and low potentials
to shunt charge clouds towards a readout terminal. Thermal excitation of electrons
contributes to the overall measurement as “dark noise,” which can be reduced by
cooling.

light, capture electrons excited by that light in a small region - a pixel. Electrons

then accumulate in potential wells, defined locally by one of three electrodes on

the pixel surface, until the integration time is reached - see Fig. 2.13 (a). To

readout the pixel intensities, or the size of each pixel’s charge cloud, the three

electrode potentials are increased and decreased in sequence, as shown in (b),

(i) - (iii). V3 is increased from the negative to positive voltage value until the

charge cloud is moved between the second and third electrodes, after which V2

decreases from positive to negative until the charge cloud is coupled only to the

third electrode (this is what is meant by charge-coupled device). Repeating this

shifting sequence of potentials many times results in electrons flowing from pixel

to pixel until reaching an amplifier, which measures the value of each charge cloud

and converts it to a voltage - the “output” - corresponding to each pixel. The

upper measurement limit of a CCD is determined by a pixel’s maximum charge

cloud capacity. Some other limitations of CCD-based detectors are:

• Long readout times (on the order of a second per frame) due to each pixel
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in a given column being read out by the voltage shifting sequence, one at a

time, as described above.

• Charges that have been excited by ambient thermal energy contribute to the

measured current. This “dark noise” increases with integration time, so the

only preventative measure is to lower the system temperature as much as

possible.

• The potential wells become saturated and then “overflow”, leading to incor-

rect measurements in adjacent pixels.

• During transfer of charges between pixels, electronic noise accumulates. This

can be due to some electrons not being transferred with the full cloud during

the voltage shifting sequence and eventually contributing, erroneously, to the

intensity measured in other pixels.

CMOS detectors are distinct from CCDs in that, instead of clocking-out the charge

clouds, they are read out directly by a transistor embedded within each pixel [53],

meaning they have reduced readout times compared to CCDs. If pixels are also

coupled with amplifiers, the sensor is said to be an active CMOS detector.

Flat panel detectors, which can be either indirect or direct detectors, are arrays

of detector material coupled to thin film transistors (or CMOS sensors). Similar

to the CMOS readout mechanism, these are read directly at the site of excitation.

The indirect flat panel detectors are typically based on amorphous silicon [54] and

direct detectors on amorphous selenium [55]. The Hamamatsu flat panel detector,

used in this thesis, is a single CMOS tile with a directly deposited CsI scintillator.

2.6.2 Direct detectors

Direct detectors do not make use of scintillators, rather, they use a sensor layer

which directly converts x-ray photons into electron-hole pairs which is accelerated
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Figure 2.14: (a) Direct detector scheme: x-rays create electron-hole pairs in the
sensor layer which are attracted to opposite electrodes. (b) Simplified electronics
diagram for x-ray photon counting: an applied voltage accelerates charge clouds
to an electrode and the resulting signal is amplified; the discriminator attempts to
distinguish individual photon events by noting how frequently a certain threshold
is exceeded. The electronic shutter controls for how long the counter increments -
it is a logic gate.

towards an electrode by an applied voltage, or bias, as shown in Fig. 2.14 (a).

To absorb x-ray photons, the sensor layer needs to be a high-Z material; CdZnTe,

CdTe, GaAs are some commonly used examples. A thicker sensor layer increases

the chance of stopping a given photon, however the likelihood of electron-hole re-

combination increases with the sensor thickness, and in addition, the bias voltage

must be increased to maintain a high electric field within the photoconductor,

which can occasionally be a limiting factor. Direct detection sensors can be inte-

grators or photon counters.

In the case of a photon counter, such as the Pixirad used in this thesis, the

signal due to a photon event is processed according to the (simplified) diagram in

Fig. 2.14 (b):

• Amplification of the signal by charge-amplifier,

65



2.6 X-ray detectors

Figure 2.15: Prevention of double counting of monochromatic x-rays by the dis-
criminator in photon counting electronics. A photon incident near the boundary
between pixel n and n + 1 of energy E is amplified to the corresponding signal
shown in (a). Pixel n and n+ 1 “see” the signals in shown in (b) and (c) and if the
threshold is set to E/2 as shown, then only one event is counted, in pixel n.

• The signal is compared against a threshold which, if exceeded, is then trans-

mitted.

• Temporal discrimination of photon events by the electronic shutter which,

if “ON”,

• The logic counter increments by one.

Photon counters do not rely on potential wells, so each pixel has a counting ca-

pacity limited only by their logical rank, or number of bits, e.g. a 16-bit counter

can theoretically record up to 216 − 1 photon events. While this means that the

detector can be saturated, in practice this can be avoided by a sensible choice

of photon-integration time, and if statistics greater than the saturation limit are

needed, acquiring multiple frames. The discriminator, whose operation is shown

in Fig. 2.15, plays an important role in preventing double-counting of photons due

to the charge-sharing effect. Charge sharing, which depends on where a photon

arrives within a pixel and its energy, refers to when electron clouds produced by a
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single photon are distributed between, and possibly detected, by two pixels, when

only one event should be counted. When considering a monochromatic photon, if

the discriminator threshold is half of the photon’s energy, only one of the pixels

can possibly measure a signal. In a polychromatic beam, however, it is usually

not worth setting the threshold to half of the maximum energy, which could result

in losing more than half of the photons, so a compromise of using lower threshold

values must be employed, with the acknowledgment that this will lead to some

amount of multi-counting.

2.6.3 Sources of image blurring

2.6.3.1 The source

As mentioned previously, an increasing source size leads to overlapping beamlets

and thus to wider, flatter ICs. We can examine this effect analytically via the

same framework laid out in Chapter 1. Here I follow the reasoning of Vittoria

et al. [56] for the one-dimensional case of a wave emitted from a point source

located at xs = 0, i.e. ψ0(x) = A0δD(x), where δD is the Dirac delta function. In

the absence of any optical system, the field reaching the detector plane, z2, after

traversing a sample located at z1, may be written as:

ψdet(x) = A0[Hz1Tobj(x)] ∗Hz2(x), (2.9)

where Hz1(x) and Hz2(x) are the propagators from source to sample, then sample

to detector respectively, and Tobj is the complex transmission function of a sample.

For a source not located at xs = 0, the first propagator must be replaced by

Hz1(x− xs). Expanding this propagator, we find:

ψdet(x, xs) =
eikz1

iλz1
e
ik
2z1

x2
e
ik
2z1

x2se
−ikxxs
z1 , (2.10)

ψdet(x, xs) =
iλz

eikz
Hz1(x)Hz1(xs)e

−ikxxs/z, (2.11)

67



2.6 X-ray detectors

which, once substituted into Eq. 2.9, means we may express the field at the

detector due to this moved point source as:

ψdet(x, xs) = exp
[
i
k

2zz
(1− z2

z1
)x2s − i

k

z1
xxs
]

︸ ︷︷ ︸
Phase factor

ψdet(x+
z2
z1
xs). (2.12)

Thus, for an incoherent source of finite width and spatial intensity distribution

A(x), the intensity measured at the detector plane is merely the sum over all

points of emittance, weighted by A(x), i.e.

ID(x) =

∫ ∞
−∞

A(xs)|ψdet(x, xs)|2dxs. (2.13)

If we rescale the source distribution, such that Ar(x) = z1
z2
A(−xz1/z2), we can

simplify the above expression by writing it as a convolution:

ID(x) = Ar(x) ∗ |ψdet(x, xs)|2, (2.14)

with the intensity being measured in a pixel n being given by

In =

∫ xn+p

xn

ID(x)dx, (2.15)

=

∫ ∞
−∞

rect
(x− (n+ 1/2)p

p

)
ID(x)dx, (2.16)

=

∫ ∞
−∞

rect
(x− (n+ 1/2)p

p

) ∫ ∞
−∞

A(xs)|ψdet(x, xs)|2dxsdx, (2.17)

where rect(x−(n+1/2)p
p

) is used to define the pixel region and is the rectangular, or

top-hat function:

rect(t) =


0 |t| > 0.5

1
2
|t| = 1

2

1 |t| < 1
2
.

(2.18)
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Figure 2.16: Illustration of source-induced blurring. (a) (i) - (iv) show the increas-
ing width of source profiles, with the x axis in µm for the source plane; (b) shows
the resulting intensity profiles incident on the detector, before pixel discretisation
of the signal occurs, in a five-period EI system. (c) (i) - (iv) shows the resulting
profiles, measured by the detector, of a highly sampled and weakly absorbing wire
obtained in each case, using the same y axis in each subplot to emphasise how the
edge-enhancement effect diminishes with source size.

In terms of how this affects the signal due to a sample, consider the case of a

monochromatic EI system of standard geometry: z1 = 1.6 m, z2 = 0.4 m, and

detector pixels 62 µm wide, with masks M1 and M2 having demagnified and equal

pitches of 49 µm and 62 µm, respectively. A small (49 µm diameter) wire is

placed in the sample mask plane and the source is assumed to be a Gaussian

of some variable width. We can see the effects of increasing the source size on

the intensity profile arriving at the detector in Fig. 2.16 (b): the high frequency

spatial components are diminished as the source size increases. Considering the

fully sampled wire profiles in (c), (i) - (iv), we see that this reflects a decreasing

phase contrast signal. If the source is so large that the beamlets following M1

are strongly overlapping, the assumptions of EI are no longer valid and it possible

that all contrast of such objects or samples may be reduced to zero.
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Figure 2.17: Illustration of a point-spread function measurement. (a) shows the
data acquisition procedure, (b) an example of the data acquired along a row of
pixels, and (c) shows the PSF, which is the derivative of the plot in (b).

2.6.3.2 The point spread function due to scintillation or charge

sharing

Depending on where an x-ray photon arrives in a pixel, not all of the resulting

signal may be recorded by that same pixel, as the photon (scintillator) or electron

(photoconductor) clouds may diffuse across pixel boundaries and be detected in

neighbouring pixels as well. This phenomenon is quantified by the point spread

function (PSF), which is a description of how a point-focussed signal is diffused in

space within a detector. An ideal PSF would be a Dirac delta function such that,

when convolved with the pixel function, the latter remains a top-hat as in Eq.

2.18. In reality, however, the PSF will always have some width, which is typically

smaller, but may be larger, than the pixel itself; ultimately, the PSF defines the

resolution of the detector.

The PSF is not usually measured directly - instead, the effective pixel function,

which is the convolution of a top hat and the PSF, is measured. The measurement

may be undertaken either by employing a pencil beam and scanning it across a
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pixel, or, if one assumes that the PSF is uniform for all pixels, the scheme shown

in Fig. 2.17 may be used. In this case, a non-transmitting wedge is placed in front

of the detector and each pixel’s intensity may be plotted as in (b). This is the

edge response function and its derivative, shown in (c), is the PSF.

This distribution of signal is due to the scintillator, charge sharing, or a com-

bination of both. A scintillator converts x-rays to optical photons, usually in

the ratio of 1:1000, which are emitted with a range of angles. Photons propagate

through the scintillator towards the array of photodiodes, where they are collected.

If the shower of visible light photons is both large and broad, multiple photodiodes

may register the signal from single events.

Charge sharing in photon counters has been already described in Sec 2.6.2,

so here we consider the diffusion of an electron cloud created by an x-ray in the

photoconductor layer. In relation to pixel electrodes, where this cloud is created

affects the likelihood of charge sharing between pixels, both in relation to pixel

boundaries and the depth at which the event occurs. The likelihood is intuitively

greater the closer a photon event occurs to a pixel’s edge, while the mean free

path of electrons in the material is the governing factor for how depth changes the

likelihood; it is also a function of the photon energy, pixel size and bias. Generally,

then, the effective pixel function will be slightly greater than the physical pixel

size, but less so than in the case of an indirect conversion detector. Thresholding

can prevent double-counting, as previously shown, but if not in use, the PSF for

a detector will be dependent on the photon energy.

2.6.4 Spectral sensitivities and multi-counting

Detector performance varies according to the photon energies involved; scintil-

lators, for example, make use of x-ray attenuation as described in Ch. 1, with
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Figure 2.18: Illustration of a detector’s energy response being accounted for. (a)
shows an example spectrum, (b) shows the measured energy response of the detector
and (c) shows their product, which is the effective spectrum.

hard x-rays producing large numbers of optical photons, but being less likely to

interact with the scintillator to begin with. For an integrating detector, the first

approximation is often one of a linear energy response, which assumes propor-

tionality between energy of the absorbed x-ray and detected signal. In the hard

x-ray regime, this breaks down, especially if the scintillator contains elements with

sharp absorption edges. Therefore, in polychromatic experiments, the full energy

response should be measured and taken into account. The effective spectrum,

σ(E), is obtained by multiplying the real spectrum by the energy response func-

tion, as shown in Fig. 2.18, then normalising the result such that the integral over

energy of the resulting spectrum, σ(E), is equal to one:
∫ Emax

0
σ(E)dE = 1.

In photon counting detectors, high energy photons create large clouds of elec-

trons which can lead to charge-sharing. For example, if a photon of energy

E > 4EThreshold is incident near the corner of a pixel, it may be counted up to four

times - once by each pixel in the vicinity - as shown in Fig. 2.19. As electronic

components continue to shrink in physical size as time progresses, ways of over-

coming this effect become open to us; one example is to bundle pixel corners with
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Figure 2.19: Illustration of multi-counting in a direct detector. A photon of energy
greater than four times the threshold is incident near a pixel bounday and the
electron cloud produced is detected by each of the pixels, leading to over-counting.

photon-coincidence electronics that discriminate against events occuring nearly si-

multaneously, thus attempting to increase specificity for individual photon events.

2.7 Fabrication of masks or gratings

In this section, a manufacturing method of masks or gratings used in x-ray ex-

periments is discussed [57, 58], with a focus on the technical challenges in making

them suitable for high-energy applications. Three reasons why it is difficult to

make optical components for x-ray systems are as follows:

• Such components are inherently wavelength specific, which works well in the

optical light regime, where lasers are available, but high brilliance monochro-

matic x-ray sources are usually only available in synchrotrons, outside of

which, in polychromatic settings, their performance suffers somewhat.

• The scale on which x-rays interact with matter is so much smaller than

the optical regime: refraction angles in focussing optics are on the order of

microradians and phase-shifters must be made to a high precision, while the

structures themselves require careful engineering to construct. [58]

• Beam-splitters and flat mirrors, which enable 45◦ and 90◦ reflections, do not
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Figure 2.20: A simplified workflow diagram for fabrication of masks or gratings.

exist in the x-ray regime, meaning that the x-ray beam cannot be guided or

confined in the same way as in optical systems.

A simplified workflow of the most up to date mask fabrication process is shown in

Fig. 2.20. First, a substrate upon which the mask or grating is to be constructed

is chosen: silicon or graphite wafers are typical choices, though graphite is known

to cause x-ray scattering, particularly at lower energies. The substrate is required

to be a sufficiently strong material in order to prevent bending of the mask, have

low rates of thermal expansion and be thick enough to support the eventual struc-

tures. A thin metallic seed layer (e.g. 3 µm of titanium) is then attached to

the substrate by atomic layer deposition. In order to provide a suitable site for

adhesion, the seed layer is randomly etched with shallow grooves whose depth is

<1 µm; the roughness provides grip for the materials that will be deposited.

Next, a photoresist, either positive or negative, is deposited onto the substrate.

A positive photoresist (e.g. PMMA) is one that is damaged by radiation such that

the molecular weight is reduced (bonds between molecules are broken): irradiated
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sections then become soluble in a developer solution. A negative resist (e.g. the

epoxy-resin based SU-8) becomes insoluble in a developer after being irradiated,

the damage in this case causing an increase of molecular weights by inducing the

cross-linking of molecules. The amount of radiation required is different for each

resist, with SU-8 having a greater sensitivity and thus requiring shorter exposure

times (on the order of minutes if using a synchrotron undulator). Deposition of

resists can be achieved through spin-coating, seen in Fig. 2.20, which ensures a

uniform height and low levels of porosity. Another method, more appropriate for

positive resists, involves gluing or casting sheets of the polymer, immersed in an

ionic solution, onto the substrate. After the polymer coat has been applied, the

solution is removed by baking.

Deep x-ray lithography is the next step, where a mask template is used to selec-

tively irradiate parts of the resist. In the desired sections, the resist is irradiated;

for a negative resist, such as SU-8, an embedded chemical salt produces an acid

upon exposure to x-rays. The acid acts as a catalyst for cross-linking of the poly-

mer molecules, changing their physical properties such that they do not dissolve

when treated by the developer solution, which occurs during the next bake. In

order for the lithography to be accurate, highly collimated synchrotron radiation

is required in order to ensure a 1:1 shadow is cast by the template mask, with the

precision of the technique being ultimately limited by Fresnel diffraction. In gen-

eral, resists that respond quickly to an applied dose will have sheerer side-walls,

which benefit mask and grating performances.

In the case of a phase grating, the steps up to this point may be sufficient, with

the tops of the resin merely being treated to ensure a uniform height. For masks

and absorbing gratings, however, the final step is one of micro-electroplating. This

process varies between manufacturers, and there are many possible variations in
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terms of details, but in general it involves the following elements:

• The metal to be electroplated is in an electrolyte solution along with the

mask structure;

• A voltage is applied such that the metal ions are attracted to the seed layer.

• The overall amount of electroplated material can be monitored by tracking

the current between cathode and anode.

Gold is a good choice of plating material, as this does not induce any hydrogen

evolution at the mask cathode, unlike other metals such as copper [59].

Micro-electroplating on a lithographic sample is a mechanically complex pro-

cess. The high aspect ratio of the resists are responsible for disrupting convection

currents and determining the size of metal-ion diffusion zones, which is the pre-

ferred (stable) mechanism for gold growth, in addition to causing inhomogeneities

in the current density across the mask. The voltage applied must also be chosen

carefully: too low and the electrodeposition is slowed, limited by surface kine-

matics, too high and the process is ion-diffusion limited, with the possibility of

depleting ions completely at the cathode site.
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High energy dark field imaging

with simplified retrieval and

Monte Carlo modelling

In EI, dark field contrast can either be seen directly at the cost of dose-efficiency

[60], where most of the primary beam is discarded, or can be retrieved through

the processing of multiple image acquisitions [33]. With an assumption of sample

homogeneity [14, 61], quantitative parameters of the sample (typically thickness)

may be retrieved with a single sample image. If pixel sizes are small enough to

allow individual beams to be resolved, beam-tracking (BT) can also be used to

retrieve multiple contrasts from a single image. GI and ABI are also capable of

extracting the different contrast maps [11, 62, 63], though with differing conditions

on system length or detector resolution, optical elements and processing methods

[64, 65, 66, 67]; in general, these methods are reliant upon spatially coherent or

monochromatic x-rays, respectively. A more thorough discussion of the systems’

requirements is made by Diemoz et al [68].

This chapter describes high-energy XPCi that utilises multi-modal retrieval of
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transmission, refraction and USAXS with fewer than normal input frames (and no

assumptions on sample homogeneity). Further, a model based on this experiment

is used to examine how the position of the pre-sample mask, in general terms,

affects the accuracy of the retrieved signal in both EI and BT modalities, in the

special case of a beam having widths approximately equal to the pixel size.

Fewer exposures of the sample to radiation can result in lower dose, and the

ability to access different contrasts leads to a more complete understanding of

a sample’s internal structures. Conducting the experiment using synchrotron

radiation has the benefit of having relatively few unknowns: highly collimated

monochromatic radiation means there are no issues with beam hardening or de-

tector energy response, so benchmarking a model using the data collected here is

reasonably straightforward. With a model established, it could be used to test sys-

tem performance in different settings that would be difficult to achieve in practice,

e.g. clinical environments.

3.1 System parameters and method

A weakly absorbing Nylon-6 wire of radius 500 µm and three different concentra-

tions of microbubbles, of known size distribution, were imaged with a modified EI

system at the European Synchrotron Radiation Facility (ESRF) using the ID17

beamline. A double-bent Laue crystal [69] was used to select 50 keV photons,

which were emitted approximately 150 m upstream of the detector; this was a

CMOS detector that utilised a PCO.Edge (type 5.5) camera [70], coupled with

a 20% optics and a 50 µm thick GADOX scintillator; the effective pixel size was

21.6 µm.

The EI system is illustrated in Fig. 3.1 (a), with M1 being 2 m from M2, itself

0.5 m from the detector. As the beam was almost parallel, M1 and M2 were made
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Figure 3.1: (a) Diagram of the EI implementation used at the ESRF (not to
scale); the small gap between M2 and the detector is a practical necessity. (b)
shows the global and pixel-specific ICs, normalised to appear on the same scale,
which are acquired by scanning the pre-sample mask, M1, across an aperture of
the detector mask, M2. Pixel 6 has a lower peak intensity as it is almost entirely
generated through pixel crosstalk.

with the same pitch of 450 µm, but with five apertures each of 20 µm and 100

µm respectively; the thickness of the absorbing tungsten septa in both masks was

1 mm. The detector mask apertures were designed to be much larger than the

sample mask apertures in order to ensure that, in the EI modality, all refracted

x-rays were collected, thus achieving a high dynamic range for the system. This

setup allowed for a direct comparison between conventional edge illumination and

beam tracking, which was conducted with some experimental data and more thor-

oughly through Monte Carlo modelling of a single-shot acquisition being used for

a retrieval of all three contrasts.

To achieve the required thickness of absorbing septa, the masks were made by

interlocking three separate components, rather than as a single absorbing piece -

see Fig. 3.2. For the experiment described in this chapter, only three apertures

were aligned, as it was practically difficult to align all five due to the small beam

divergence. ICs were acquired by scanning M1 perpendicularly to the beam, with

individual pixel intensities being summed to create the global IC seen in Fig. 3.1

(b); both the local and global ICs were finely sampled and fitted with smoothing

splines. When considering the EI modality of the system, the global IC is usually

referred to, while the alternative implementation considers the individual pixel
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Figure 3.2: Schematic drawing of the masks used during the ESRF experiment,
the numbers marked in the face-view diagram are measured in mm.

intensities, similar to the format employed in BT. Samples were also scanned

perpendicularly to the beam in discrete steps, with the measured intensities from

each step being stitched together to form images. The dose rate of the experiment

was monitored by scanning a calibrated ion chamber (0.125 cm3 semiflex tube

chamber, Model 31002; PTW-Freiburg, Freiburg im Breisgau, Germany) across

the sample position to measure the air kerma; the measurement protocol followed

the procedure described by Mittone et al. [71].

3.1.1 Microsphere samples

ExpancelTM microspheres are polymer shells filled with isobutane gas. The shell

is rigid unless subjected to large changes in temperature or pressure and has negli-

gible thickness compared to the sphere radius. Following the preparation method

described by Millard et al. [60], the microspheres were added to a volume of ultra-

sound gel and stirred carefully to avoid the introduction of air bubbles. Ultrasound

gel is used for two reasons: the high viscosity ensures that microspheres do not

float and, as the gel is mostly (>98%) water, the refractive index properties can be

assumed to be those of water also. This stock concentration of microspheres was

optically imaged at 20× magnification, using more than 200 images to determine

the average concentration (≈ 2.3% by volume) and size distribution, with the

results being shown in Fig. 3.3 (b). Lower concentrations of microspheres were

prepared by taking controlled amounts of the stock concentration and diluting
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Figure 3.3: (a) Example image displaying 20× optical magnification of
ExpancelTM microspheres; (b) measured size distribution; (c) the three concen-
trations of microspheres used for imaging: left = 100%, middle ≈ 50% and right ≈
33%.

them with water, making relative concentrations of 1/2 and 1/3. The stock and

diluted concentrations were pipetted into 10 mm wide and 4.1 mm deep cuvettes,

then sealed and stuck together with tape to prevent spillage and enable imaging

of all three concentrations in a single scan.

In the conventional EI modality, the retrieval procedure described by Endrizzi

et al. [33] was used to retrieve the sample parameters of both the wire and

microsphere concentrations, using two and three input frames respectively. When

using the individual pixel ICs to perform retrievals, a least-squares minimisation

approach was implemented. The difference to be minimised was that between

interpolated values of local ICs convolved with a sample function - f(xi, t, r, s) =

IC(xi) ∗ O(t, r, s), where O(t, r, s) is the sample function - and the experimental

data points, i.e.

χ
Minimise−−−−−→

N∑
i=1

(
yi − f(xi, t, r, s)

)2
; (3.1)

here i refers to pixel numbers within the aperture window, yi corresponds to each

pixel value with the sample in the beam and f(xi, t, r, s) the interpolated val-

ues for sample transmission, t, refraction, r, and scattering, s. As the wire was

assumed to be non-scattering, the sample function was modelled simply as an
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O(t, r) = tδD(r), where δD is the Dirac delta function; for the scattering samples,

O(t, r, s) was modelled as a non-zero centered Gaussian distribution, with t being

incorporated into its amplitude.

M1 was positioned at ±49.5 µm for the wire sample, as marked in Fig. 3.4

(a); the image scan was performed at a rate of 10µm per step and the exposure

time was 190ms (≈10mGy entrance dose). For the scattering sample, M1 was

positioned at -53.0 µm; -34.5 µm and 41.0 µm; with the samples being scanned in

20 µm steps at an exposure rate of 100ms (≈5mGy) per step.

3.1.2 Optimal sampling positions in Edge Illumination

and beam tracking modalities

In order to retrieve multiple contrasts in a standard implementation of EI, it is

usually necessary to acquire multiple images of a sample corresponding to different

displacements of the pre-sample mask. More formally, the sample must be imaged

at linearly independent (usually symmetric) positions on the IC, with each new

position enabling the retrieval of a higher order contrast or moment, as defined by

Modregger et al. [72]. Determining which sampling positions on the IC are best

for accurate retrieval of sample parameters is a non-trivial exercise, and depends

also upon the sample parameters. However, for quantitative single-shot methods,

it is possible to examine, on a case-by-case basis, a retrieval algorithm’s accuracy

and precision numerically (where noise is present and controllable).

The individual pixel ICs - one for each of the pixels within the aperture of

M2 and further, one pixel on each side of the aperture, so seven pixels in total

- obtained using McXtrace were modified to account for the presence of various

samples. The sample parameters were randomly generated such that transmission,

t, was between 97% and 100%; refraction, r, from -5 µrad to 5 µrad and scattering
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signal, s, from 0 to 5 µm2 - similar to the range of parameters encountered in the

real experiment. This modification was enacted by a convolution of the ICs with

a Gaussian defined as

O(x) = t exp
(−(x− r)2

2s2
)
/
√

2πs2. (3.2)

Noise was incorporated by multiplying the convolution output by a matrix that

took the form of

((1− a) + 2a× rand(7, 10)), (3.3)

where a was close to zero, and rand(x, y) creates an x × y matrix of uniformly

distributed values between 0 and 1. For each position of M1, the retrieval was

called 10 times - once for each of the columns in the noise matrix - in order

to obtain a spread of retrieved sample parameters whose “measurements” were

affected by similar levels of noise. The aim of this procedure was to reduce the

likelihood of encountering false positive or negative sampling positions in terms of

retrieval performance. The retrieval algorithm used was identical to Eq. 3.1, with

the accuracy of retrieved parameters being tracked for each position of M1, and

was performed for both the EI and BT cases.

3.1.3 Monte Carlo model for comparison with beam

tracking and single-shot retrieval

The experiment was recreated in a Monte Carlo environment called McXtrace

[73]. McXtrace was originally developed as a ray-tracing software for x-ray op-

tics, beamlines and interactions; it is interfaced with via a psuedo-C programming

language, written by the code’s authors. The software is freely available with doc-

umentation for use through other platforms, such as MATLAB, and was adapted

for EI use by Millard et al. [74]. The advantages of using a ray-tracing programme

in this case are that it automatically includes Poissonian noise in the data and
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that it does not inherently rely on the projection approximation, which is impor-

tant when considering scattering objects distributed over relatively large regions

in three-dimensional space such as the cuvettes described above. If necessary,

McXtrace can reproduce interference effects, however in this case and for EI in

general, which is a non-interferometric technique, this faculty is not needed. One

disadvantage is that, as a statistical model, if noise is to be minimised, the number

of photons in the simulation must be increased, which increases the computational

workload.

The masks were modelled one aperture at a time as pairs of three dimensional

absorbing blocks, 1mm in depth and separated by 20 µm and 100 µm for M1 and

M2, respectively. The monochromatic source was placed 147.5 m from M1 and

photons were confined to travel in the 3D space bound by source and detector.

The detector was modelled as a two-dimensional grid whose pixels were of equiv-

alent size to those of the PCO.Edge. Local ICs were simulated by finely scanning

M1 over a single period using a large number of photons; for the comparison with

beam-tracking, the detector mask was removed and M1 scanned again, only over

one pixel width instead of the mask period. Only one pixel was necessary in

this simulated case as it is guaranteed that each pixel will respond in the same

way, thus the beam profile can simply be extrapolated (if the simulated pixels are

required to behave in the same manner as in the experiment, simple adjusting

factors may be used for each of them until the measured response is equal to the

simulated one). The point-spread function was included in all simulated data by

convolving the raw output data with a Lorentzian curve of width parameter 0.8

pixels. This value was determined by considering a raw experimental image of the

beam in the absence of a sample - the intensity profile across an edge of M2 was

used to determine the line-spread function, which was then assumed to be sym-

metric in both directions. The best fit resulted from use of a Lorentzian of width
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parameter 0.8 pixels, which was also found to produce a good match between the

simulated and measured ICs.

The Nylon-6 wire was modelled as a cylinder and photons that encountered it

were adjusted for attenuation and refraction via the Beer-Lambert law and Snell

laws, respectively. A step size of 10 µm was used for the wire scan and 5×106

photons of energy 50 keV were simulated, corresponding to an integration time of

roughly 50 ms in the real beam.

The microspheres in gel were modelled as being inside a cylinder of water.

Sphere centres were determined by a random co-ordinate map which was generated

in MATLAB, and exported to a text file for reading by McXtrace. For simplicity,

the volume density was set to 2.5% (approximately 108 microspheres / ml), with

microbubbles randomly filling the volume and with the same size distribution as

the measured one shown in Fig. 3.3 (b). Likewise for the wire, photons that

interacted with spheres were refracted according to Snell’s law. A scan step-size

of 10.8 µm across the aperture of M1 was employed for the spheres, with each step

simulating 1.5×107 50 keV photons (roughly 3300 photons per pixel), equating to

an integration time of approximately 150ms. The refractive index data for the

wire, water and the shell boundaries (acrylonitride) were acquired through the

xraylib library programme [75].

3.2 Results and discussion

Figures 3.4 and 3.5 show the ICs, raw Nylon-6 wire intensity profiles and retrieved

transmission and refraction for the two-frame (standard EI) and one-frame acqui-

sition modalities (respectively) enabled by this setup. Both approaches result in

a good image quality and agreement with theory, as seen by the match between

the retrieved and theoretical profiles in parts (c) and (d) of both figures. Of note
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Figure 3.4: EI implementation for retrieval of the Nylon-6 wire using two input
frames. (a) is the average IC, marked with the sampling points used; (b) displays the
raw data profiles obtained by summing all pixels in the vicinity of an aperture; (c)
and (d) show the retrieved and theoretical profiles for transmission and refraction,
respectively.

Figure 3.5: Single-shot EI implementation for retrieval of the Nylon-6 wire. (a)
The individual pixel ICs, marked with the single sampling point used; (b) the nor-
malised raw data profiles as recorded by each pixel within the aperture of M2; (c)
and (d) show the retrieved and theoretical profiles for transmission and refraction,
respectively.
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Figure 3.6: Retrieved transmission (a) and scattering (b) parameters of the differ-
ent microsphere concentrations, as acquired via the individual pixel approach, which
used two input frames, and the average IC approach, which used three frames. Rela-
tive microbubble concentrations are 1/3, 1/2 and 1 from left to right. Gaps between
data groups skip the edges of the cuvettes.

Figure 3.7: Alternative measurement of the dark field signal due to the different
microsphere concentrations. (a) Shows the individual pixel ICs and the sampling
position (red cross), indicating that the primary beam is almost fully obscured. (b)
Shows the intensity measurements corresponding to each concentration, normalised
to the mean of the lowest microsphere concentration.

is that, in the single-shot case, transmission has been retrieved with an improved

accuracy, despite using only half the data set used in the two-frame case. This

could be due to small displacements of M1 compared to it’s nominal position,

which may have affected the two-frame retrieval more than the one-frame case.

Additionally, this retrieval provides direct access to the quantitative transmission

and refraction angle, despite making no assumptions on sample homogeneity.

Three M1 acquisition points were used in the retrieval of the scattering micro-

spheres using the global IC, with only two of these (inner) positions being used

in the individual pixel case. The results are shown for each of the different micro-
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sphere concentrations in Fig. 3.6. The plots show good discrimination between

the different concentrations in the dark field and poor discrimination in transmis-

sion. With each set of apertures having shifted ICs with respect to one another, it

is possible to compare these retrieved signals with a dark field image of the micro-

spheres that was acquired by pixels in an adjacent aperture - see Fig.3.7, where

the primary beam falls completely on an absorbing section of M2. This method of

measuring dark field signal is the same as described by Olivo et al. [76] and relies

on the scattering “tail” being detected, i.e. only part of the scattering signal is

integrated. For this reason, the dark field signals from increasing concentrations

are seen to increase, though with less obvious distinction between the samples

than in the previous figures (note the different y axis scales).

The results of the optimal sampling position study are displayed in Figures 3.8

and 3.9 for EI and BT modalities respectively. Both figures show that while trans-

mission and refraction are consistently retrieved well for most sampling positions,

the accuracy and precision of retrieved scattering values vary greatly according

to where the beam is sampled. The variation in precision, or height of the error

bars, as M1’s position is varied, highlights how a given level of noise (Eq. 3.3:

a = 0.09) impacts the retrieval performance in a non-uniform way; in both the

EI and BT settings, the optimal sampling windows are found near x = 2.3 µm,

where the beam is mostly centered on the pixel and far from the edges of M2.

For various lower noise levels (not shown in the these figures), it was also found

that the retrieval of scattering was most accurate at the IC peak positions. If the

beam is positioned in the middle of the aperture, the EI system is effectively the

same as BT (albeit in the specific case of the beam width being the same size as

the pixel), as M2 has no impact on the measured intensity, thus the same levels

of accuracy and precision is expected and indeed is shown in Figures 3.8 and 3.9

for transmission and dark field signals, though retrieval of refraction appears to
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Figure 3.8: Testing of retrieval algorithm accuracy under single-shot conditions for
different positions of M1 with a detector mask present. A set of sample parameters
with positive and negative refraction angles are considered. Individual pixel ICs
are shown in (a), with an example sampling vector marked; (b) - (d) show the
accuracy (the distance from the average value to the zero-line) of retrieved values,
and their precision (height of error bars) for the different possible positions of M1
relative to M2. The optimal sampling window for single-shot retrieval of scattering
is highlighted in (d).

Figure 3.9: Testing of retrieval algorithm accuracy under single-shot conditions
for different positions of M1 without a detector mask present - the BT modality.
Sample parameters with positive and negative refraction angles are considered. The
beam profile is shown in (a), with an example sampling vector marked; (b) - (d)
show the accuracy (the distance from the average value to the zero-line) of retrieved
values, and their precision (height of error bars) for the different positions of M1
relative to the centre of a pixel. The optimal sampling window for single-shot
retrieval of scattering is highlighted in (d).
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3.3 Monte Carlo modelled single-shot dark field retrieval

Figure 3.10: Single shot retrieval from simulated data of transmission (a), refrac-
tion angle (b) and dark field signals (c) at 50 keV. The sample is a cylinder of water,
with a radius of 550 µm, with a 2.5% volume concentration of microspheres in the
central region.

be more accurate in the EI implementation.

Considering that the scattering sample data used in the two-shot retrieval

was acquired while M1 was positioned at -34.5 µm and 41.0 µm, Fig. 3.8 helps to

explain why the spread of retrieved values in Fig. 3.6 was much greater in the two-

shot case than for the EI-based three-shot scenario. The data in question comes

from non-ideal sampling positions and is subjected to relatively high amounts

of noise compared to the noise matrix used in the numerical study on retrieval

accuracy.

3.3 Monte Carlo modelled single-shot dark

field retrieval

As proof of concept for a single-shot retrieval, the virtual phantom described in

Sec. 3.1.3, with M1 positioned at x = 2.3 µm and with the detector mask being

present, was simulated. Fig. 3.10 displays the retrieved transmission, refraction

and scattering signal of this phantom, with the microspheres only being present

in the central region of the cylinder. The lack of dark field signal in the upper
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and lower regions of the cylinder confirm that the scattering signal is due to the

spheres and not the water surrounding them.

The fewer-frame retrievals implemented here are possible because of the rela-

tively large crosstalk between pixels, where pixel neighbours and next neighbours

record≈ 14% and≈ 4% of a beam’s primary intensity, respectively. For sufficiently

large counts, these parasitic signals become significant enough to be considered

as inputs for the retrieval. Indeed, as Lorentzians are characterised by long tails

compared to Gaussians, subsequent pixels record similar levels of intensity as the

next-neighbour pixels, which increases the number of possible inputs to the re-

trieval. With the optimal sampling position found to be in the centre of the M2

aperture, all of the dose deposited within the sample is used in image formation,

which is the most efficient use of photons possible in EI.

3.4 Chapter summary and conclusion

The implementation of EI XPCi in this chapter allows for direct comparison be-

tween high-dynamic range EI and beam-tracking modalities, and enables single-

shot retrieval of transmission, phase and dark-field signals. The approach takes

advantage of crosstalk to form uniformly separated IC functions within the de-

tector mask aperture. Data from these pixels represent complementary sampling

points which can then be used to numerically determine the transmission, average

refraction angle and dark field signals to a good degree of accuracy.

The comparison between EI and BT modalities shows that for the retrieval of

transmission and refraction contrasts, BT is as stable and accurate as EI, while

depositing less dose to the sample for a given background intensity level (as M2

is not present to reduce the overall number of photons). However, for retrieval

of the dark field signal, multiple sampling points vastly benefit the precision of
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dark-field imaging and, considering that the EI modality allows for direct imaging

of this contrast, it may be the preferred option.

Upon testing, it was found that the optimal position of the pre-sample mask

for single-shot retrieval was also the most dose-efficient; namely the centre of the

detector mask aperture. Since this position makes the mask-based setup equiva-

lent to the BT setup, it is advisable that, if only single-images are to be taken,

the latter setup be used, as it has more relaxed alignment requirements.

The ability of EI to detect and distinguish between dark-field signals of varying

concentrations of microspheres at high energy implies that the same should be

possible in a polychromatic lab setting, which is the focus of the next chapter.
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4

Lab-based high energy XPCi

4.1 Chapter introduction and motivation

Having demonstrated the possibility to retrieve phase and dark field signals at high

energy using synchrotron radiation, the aim of this chapter’s study is to test this

ability in a laboratory setting, where the extended source, polychromatic beam

and larger EI masks present new challenges in signal retrieval. Models of this

more complex experimental system must be benchmarked against changing spec-

tra such that, once validated, they can be used to predict outcomes in situations

that could not be tested in a lab (e.g. clinical settings).

The chapter begins by listing the equipment and methodologies employed in

two experiments that compare the signal to noise ratio (SNR) of wires imaged in air

and in water, at constant dose, with increasingly filtered tungsten spectra. Various

concentrations of microspheres in ultrasound gel and a porous sponge, chosen

as scattering samples, are then also imaged through different filter thicknesses

for scenarios of constant dose and constant accumulated photons. The results

for both SNR and dark field signal strength are then presented along with an

analysis of differences between the two systems, and which of these differences
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lead to key improvements in image quality. Finally, a wave-optics model of the

system is used in an attempt to recreate the wire experiments. The experiments

involving “thinner” masks are recreated successfully, however attempts to simulate

experiments that use thicker masks fail due to limitations of the model which are

discussed and developed in the next chapter.

4.2 Equipment and methods

4.2.1 Source characterisation and KERMA

measurements

A Rigaku MultiMax-9 source, with a tungsten rotating anode and take-off angle

of 6◦ was used. The voltage was set to the maximum value of 60 kVp and the

current to 20 mAs, which was the maximum current allowed at that voltage, in all

experiments but for the dose rate measurements behind the Hamamatsu sample

mask, where the current was set to 10 mAs. A gold-plated pinhole of diameter

75 µm was placed 13 cm downstream of the source shutter (the closest practical

position), and a Photonic Science (Mountfield, U.K.) CCD camera, with pixel size

4.54 µm, was placed 204.5 cm from the shutter along the optical axis (chosen to

be as close as possible to the standard EI distance of source to detector, which

is 2 m). The detector has 1:1 bonding between pixels and optical fibres and uses

a gadolinium oxysulphide scintillator, whose nominal density is 3 mg/cm2. The

resulting image and horizontal profile of the source are shown in Fig. 4.1. The

magnification of the system, 15.7, was high enough to justify the approximation

that image blurring due to the detector PSF was negligible in comparison with

blurring due to the source, meaning that the image is an accurate magnified rep-

resentation of the source spot. As the size of the pinhole is comparable to the

source profile, however, it was necessary to account for image blurring due to the

pinhole; this was achieved by demagnifying, then deconvolving the source profile
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Figure 4.1: (a) Image of the source used; (b) shows the horizontal profile before
deconvolution with the pinhole.

with a top-hat function whose width was 75 µm. The result was then fitted with

a Gaussian:

a exp (
(x− b)2

2σ2
source

)/
√

2πσ2
source, (4.1)

whose width parameter was found to be σsource ≈ 31 µm, though we note that, in

general, σsource depends on the angle from which the source is viewed.

The KERMA was measured using a PTW soft x-ray ion chamber (TW30010-

1), calibrated by PTW-Freiburg with a rated uncertainty of 1.1%. The chamber

was placed in the sample position, approximately 1.6 m from the source, held in

place by a retort stand and clamp, then connected to an electronic readout, the

UNIDOS E, by an RS232 cable. With the source active, the chamber integrated

dose over ten second intervals three times, with the readings then being averaged.

The beam was increasingly filtered by placing sheets of dural - an aluminium based

alloy containing up to 5% copper and some amount (less than 1%) of manganese,

magnesium, iron, silicon, zinc, titanium and possibly chromium - in front of the

source window, in increments of 0.5 mm and 1 mm. One 300 µm thick sheet of

high-purity copper was also available, and was used as a benchmark filter, as cop-

per filters are routinely used in clinical x-ray systems [77, 78]. The measurements

were then repeated with two different sample masks (designed for use with either

the Hamamatsu or Pixirad detector) placed between source and ion chamber to

determine the true dose incident on the sample rate in the EI system. The two
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Hamamatsu Mask Pixirad Mask
Manufacturer Creatv Microtech MicroWorks

Nominal gold thickness 150 µm 300µm
Period 78 µm 48 µm

Aperture size 23 µm 12 µm
Substrate Graphite (500 µm) Silicon (525 µm)

Aperture filling Epoxy resin SU-8
Appropriate detector Hamamatsu Flat Panel Pixirad Photon counter

Table 4.1: Specifications of masks used in dose and SNR measurements.

Figure 4.2: Measured dose rate of 60 kVp tungsten anode source, operated at
10 mAs through increasing thicknesses of dural filter, with and without different
sample masks preceding the ion chamber.

masks were of different designs and their specifications are presented in Table 4.1,

while the dose measurements themselves are shown in Fig. 2.18. Each curve in

the plot, but for the dose rate measurements behind the Hamamatsu mask, where

the current was 10 mAs instead of 20 mAs, was scaled down by a factor of 2 in

order to portray dose rates due to equivalent amounts of flux. Of note is the fact

that, despite the masks having a large difference in their gold thicknesses, the dose

rate behind each of them is very similar after filters are introduced.

4.2.2 Detectors

A “standard” double mask EI setup was used for both experiments in this chapter.

The sample and pre-sample mask were placed 1.6 m from the source, while the
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Figure 4.3: Measured PSF of the Hamamatsu detector with next-neighbour in-
tensities marked; for ths detector, ceasium iodide is grown in columns directly onto
the detector.

detector and detector mask were placed a further 0.4 m downstream. Different

detectors were used in the experiments: a Hamamatsu flat panel CMOS detector

(C9732DK-11) and a Pixirad photon counting and energy resolving detector. The

Hamamtsu features a CsI scintillator and 50 µm pixels and integrates the number

of visible light photons produced by x-rays interacting with the scintillator; its

energy response function is shown in Fig. 2.19 (b). The PSF of the detector

had already been characterised by the procedure described in Sec. 2.6.3.2 and

the result is shown in Fig. 4.3. In order to minimise the impact of the relatively

large PSF, the Hamamatsu masks had a line-skipped design, meaning the masks

illuminated every other pixel column. Before acquisitions, “dark” images, taken

when the source was shuttered and the detector is reading only electronic noise,

were acquired for subtraction from any following images.

The Pixirad detector consists of two modules containing 402×512 pixels in

each; as the modules are slightly rotated with respect to one another, only one was

used for the EI experiments. Pixirad, which uses a cadmium telluride sensor layer,

is capable of applying some degree of spectral discrimination on the counted x-rays.

A lower energy limit of 10 keV was selected, with photons below this threshold
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not contributing to any images acquired. The upper energy limit was set to 70

keV in order to reject any contributions by electronic pileup in the pixels. A low

operational temperature of -20◦C (achieved via Peltier cooling) was used to reduce

the electronic noise of the detector and a constant flow of dry, inert air was used

to reduce the humidity on the detecting surface, thus preventing the formation of

water droplets or ice crystals. The sensor layer material is cadmium telluride and

the crosstalk between pixels, of size 62 µm, was assumed to be negligible.

4.2.3 Samples, acquisition processes and retrieval

methods

A selection of wires were used in both experiments, with the Pixirad experiment

also utilising samples that would generate dark-field signals, such as microspheres

and a porous sponge. Some wires were imaged through air and others through

water, with the various combinations being listed in Table 4.2.

For wire imaging, an IC was acquired immediately before the experiment and the

half-maximum positions were determined. The procedure was to then acquire

flat images (no sample in the beam) at these IC points, with 2× the exposure

time, then wires, then flats with 2× the exposure time again, before finally being

averaged. Flat images, which do not contribute to the dose to the sample, are used

to correct for variations in pixel response and beam inhomogeneities; the increased

exposure time was to minimise the impact of Poissonian noise in the flats on the

sample images. In each filtration setting, the exposure time for the sample images

was determined such that the total dose from imaging would be constant.

The procedure for imaging wires through water was slightly different in each

experiment. In the Hamamatsu setup, the wires were affixed to a frame and placed

in a sealable, thin plastic bag. Upon being filled with water, the bag’s surface be-

came curved, thus leading to a non-uniform background. As it was impossible
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Host medium Wire material Radius /µm Hamamatsu Pixirad
Air Maxima 150
Air PEEK 72
Air PET 52
Air PET 85
Air Boron with tungsten core 105; 14
Air Sapphire 125
Air Nylon 50

Water PMMA 1520
Water Teflon 500
Water Nylon 675
Water Hollow cannula 500

Table 4.2: Wires used for imaging in the Hamamatsu and Pixirad experiments.
Maxima, PEEK and PET are all plastics, with Maxima being a trademarked ma-
terial used in the production of fishing lines. The hollow cannula is a 20 Gauge B
Braun product and consists of a PUR shell, lined with thin strands of iron.

to construct another water host of the same dimensions, flat field images had to

be acquired in air, meaning the spectrum was slightly different between sample

and flats. To avoid this non-uniformity in the Pixirad version of the experiment,

wires were affixed to a rod which was placed inside a polypropylene box of 1 mm

wall thickness, which was then filled with water. A separate polypropylene box,

of the same dimensions, was filled with water and placed next to the sample box

so flat field images and ICs could be acquired with the same spectra as the sample

images. Aside from using the same spectra, flats and ICs were acquired in the

same way as described above.

In both experiments, the dose per dithering step was kept constant for differ-

ent thicknesses of the dural filter by varying the exposure time and number of

frames. The “in-air” samples accumulated an entrance dose of 2.45 mGy per re-

trieved dithering step and the “in-water” samples a dose of 13.7 mGy per retrieved

dithering step. The number of dithering steps varied between experiments, with

the Hamamatsu having ten and five for the in-air and in-water samples, respec-

tively. The Pixirad experiment had a finer sampling rate, in which twelve dither-
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ing steps were acquired throughout; this meant there was a finer sampling of, and

therefore sharper, refraction peaks. Lastly, when imaging scattering samples, only

one dithering step was used, as sampling was not a concern. For each experiment,

filter thicknesses of 0 mm, 2 mm, 4 mm and 8 mm dural were employed, however

some acquisitions were not successful and so the unfiltered Hamamatsu in-air and

Pixirad 4 mm dural in-water measurements are missing from the analysis.

The two types of scattering sample used in the Pixirad experiment were a

cuboid sponge (commercially available “Wunderschwamm”) - approximately 1 cm

thick and chosen as a weakly absorbing and highly porous material - and varying

concentrations of microspheres. The microspheres were prepared and diluted using

the method described in Sec. 3.1.1, but with a wider range of relative concentra-

tions: 1, 0.5, 0.1, 0.005 and 0.01 (with 1 being the same concentration of 2.3% by

volume, as before). The sponge was imaged from within a polypropylene box filled

with air and then water, and acquisitions were made at three symmetric points on

the ICs: the half-maximum and peak intensities. The microsphere concentrations

were imaged though 4.1 mm thick cuvettes at five symmetrically located points

on the ICs, shown in Fig. 4.4. Dural filter thicknesses of 0 mm, 4 mm and 8

mm (and for 2 mm in the case of the sponge) were used in imaging these samples

and for each filtration, multiple frames were acquired in the sampling positions

such that, in each case, the average number of counts was approximately constant.

This meant that the overall noise was kept constant if the full data sets were used,

and by using a subset of frames in the less filtered cases, images at a constant

cumulative dose of 2.4 mGy for the microspheres, and 1.4 mGy and 7.2 mGy for

the sponge in air and water, respectively, could also be obtained. Having access

to both constant noise and constant dose data sets allows us to observe how noise

affects the spread and accuracy of the retrieved dark field signals.
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Figure 4.4: (a) Varying concentrations of microspheres inside cuvettes and (b) the
IC sampling positions used when imaging.

To retrieve transmission, refraction and dark field signals, ICs corresponding

to individual pixels were fitted according to the equation:

F (a, b, c2, d, x) = a exp
(−(x− b)2

2c2
)
/
√

2πc2 + d, (4.2)

where F is the function to be fitted, with (a, b, c, d) being coefficients to be deter-

mined and x is the vector of sample mask positions used in acquiring the IC. This

equation differs from Eq. 4.1 only by the parameter d, which encapsulates the

IC offset intensity due to mask transmission and any other background signals.

Sample images were normalised by appropriate flat fields and for each sampling

position, the values were scaled to the fitted IC values such that, in background

areas, they lie on the curve. A least-squares approach was then used to retrieve

the sample absorption, refraction and scattering i.e.

χ(t, r, σ)
Minimise−−−−−→

∑
(Y 2 − t× F (a, b− r, c2 + σ2, d)), (4.3)

where Y is sample data vector and F is the fitted IC function.
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4.2.4 Spectrum and wave-optics based modelling of Edge

Illumination

In order to model the system, knowledge of the spectrum used in the experiments

is required - both in the filtered and unfiltered cases. The TASMICS (tungsten

anode spectral model using interpolating cubic splines) software, developed by

Hernandez and Boone [79], was used to simulate the unfiltered spectrum. TAS-

MICS was created through Monte Carlo modelling of electron interactions with a

tungsten anode, then measuring the distribution of x-ray energies this produces.

The software is made available as an Excel spreadsheet and was obtained upon

request from the authors.

A distinguishing feature between the source modelled in TASMICS and the one

used here is the difference in take-off angles, with the modelled angle being 12◦

and our source having an angle of 6◦. This difference can be corrected by filtering

the model spectrum by a small amount (≈ 2-4 µm) of tungsten to account for the

extra self-filtration of our source. In the figures of this chapter, “unfiltered” spectra

refer to the TASMICS output after this initial tungsten anode self-filtration has

been taken into account. The hardening of the beam due to dural filters was

calculated using data from the xraylib library through a MATLAB interface,

and approximating the material as being 95% aluminium and 5% copper. The

unfiltered and filtered spectra are shown in Fig. 4.5.

The wave optics simulation framework was developed in house by Vittoria et

al., [56] and makes use of the Helmholtz propagator (Eq. 1.13), with convolutions

being implemented via successive fast Fourier transforms. The masks in this model

are constructed in two steps, the first of which is the template: a convolution of a
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Figure 4.5: TASMICS tungsten spectra used in reproduction of experiments (3
µm W self-filtration included): unfiltered and filtered by 2 mm, 4 mm, and 8 mm
of dural. Vertical lines indicate average beam energies.

top-hat function with a sequence of Dirac delta functions, i.e.

Mask template = Top hat(x) ∗Dirac delta sequence (4.4)

= heaviside(w/2− |x|) ∗
∑
a∈N

δ(x− ap), (4.5)

where w is the aperture width, p is the mask period, a is an integer and N is the

number of apertures. The second step is, for regions where the template is zero, to

replace these values with those of the mask transmission: exp
(
−2π

λ

[
iδAu + βAu

]
tAu

)
,

with tAu being the gold thickness. In this way, the mask is constructed efficiently

with the apertures remaining fully transmitting.

Samples are simulated using the projection approximation: the object’s complex

phase function multiplies the wavefront after the sample mask, which is then

propagated to the detector plane. To implement a polychromatic simulation,

the monochromatic simulation is performed for each 1 keV energy bin and then

combined in a weighted sum, with the weights being the spectral intensities. A

Gaussian source of width σsource = 31 µm, as previously measured, was used in

simulations and was found to produce ICs whose widths were similar to those

measured experimentally.
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4.3 Experimental results and discussion

For each version of the experiments listed above, simulations are called using

the nominal parameters for mask thickness, sample properties and filter thick-

nesses. In the Hamamatsu case, the spectra were pre-filtered by 1 mm graphite

(total thickness of mask substrates) and multiplied by the energy response func-

tion. Spectra used in modelling the Pixirad experiments were pre-filtered by 1.05

mm silicon (total thickness of mask substrates). Illumination curves were simu-

lated using the same procedure as in experiment: translation of the sample mask

in an orthogonal direction to the apertures over one period. The ICs are produced

first, followed by the wires and both are then quantitatively compared to their

experimental counterparts. The modelling approach here is to reproduce mixed

signal intensity profiles due to sample absorption and refraction, or in other words,

to produce profiles equivalent to those obtained experimentally before processing,

as seen through the different filter thicknesses.

4.3 Experimental results and discussion

The SNR for transmission and refraction of the wires in both setups, air and

water, is displayed in Fig. 4.6. For ease of reading, this section is subdivided into

distinct subsections for the SNR measurements corresponding to transmission and

refraction, in air and in water.

4.3.1 Transmission of wires in air

Retrieved transmission profiles for both detectors are shown in Fig. 4.7. Weakly

absorbing wires, such as PEEK and PET, have transmission SNRs less than 5

(below the Rose criterion), while the boron wire, with its inner tungsten core,

shows a strong absorption signal that benefits from the increased sampling pro-

vided by dithering. The overall trend in this case is that SNR decreases slowly

104



4.3 Experimental results and discussion

F
ig

u
re

4
.6

:
C

ol
le

ct
io

n
of

si
g
n
a
l

to
n

o
is

e
ra

ti
o

p
lo

ts
fo

r
w

ir
es

im
ag

ed
th

ro
u

gh
ai

r
(t

op
ro

w
)

an
d

w
at

er
(b

ot
to

m
ro

w
);

le
ft

an
d

ri
gh

t
co

lu
m

n
s

co
rr

es
p

on
d

to
m

ea
su

re
m

en
ts

fr
o
m

th
e

H
am

am
at

su
an

d
P

ir
ix

ra
d

d
et

ec
to

rs
,

re
sp

ec
ti

ve
ly

.
D

os
e

d
el

iv
er

ed
to

th
e

w
ir

es
w

as
co

n
st

an
t

fo
r

al
l

in
-a

ir
ex

p
er

im
en

ts
(2

.4
5

m
G

y
/

d
it

h
er

in
g

st
ep

)
an

d
al

l
in

-w
at

er
ex

p
er

im
en

ts
(1

3.
7

m
G

y
/

d
it

h
er

in
g

st
ep

.)
.

105



4.3 Experimental results and discussion

Figure 4.7: Hamamatsu (a) and Pixirad (b) detector measurements for retrieved
transmission wire profiles for varying filter thicknesses, averaged over 20 vertical
pixels. From left to right, the wires in (a) are maxima, PEEK, PET, boron with
tungsten core, PET and sapphire; in (b), they are maxima, PEEK, nylon, boron
with tungsten core and sapphire. The dashed lines indicate the decreasing signals
for the sapphire wire as the average energy increases.

with increasing filter thickness. This is only valid, however, for the wires that

exhibit sufficient absorption signals in the unfiltered case, as no clear trend can be

discerned when considering these weakly absorbing wires against increasing filter

thickness. That the transmission signal of given wires is quantitatively different

between the detectors is a result of:

• The increased sampling in the Pixirad case (particularly for the 14 µm tung-

sten core in the boron wire); this has an associated dose increase of 20%;

• The different energy responses of the two detectors, with the Hamamatsu

energy response increasing the effective energy and thus measuring lower

signals compared to those measured by the Pixirad detector.

4.3.2 Transmission of wires in water

In both detectors, the cannula with iron thread results in significant absorption

contrast for each filtration. Other wires, however, are mostly below the Rose

criterion - even the PMMA wire, whose diameter is greater than three millimetres.

This low SNR is mostly due to the high noise value surrounding the wire, which
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4.3 Experimental results and discussion

Figure 4.8: Attenuation coefficients of PMMA and water as a function of energy;
attenuation of water becomes greater at approximately 35 keV.

is faintly visible in the full image; the absorption contrast of PMMA actually

decreases and inverts before increasing between 4 mm and 8 mm dural filtration.

The reason for this inversion is that the β for PMMA and water intersect at

approximately 35 keV, as shown by Fig. 4.8; that the contrast increases is due to

the difference between βPMMA and βH2O increasing with energy. As teflon (imaged

only in the Pixirad experiment) is the only other wire whose SNR is above the

Rose criterion, no clear conclusions may be drawn regarding the SNR trend in

these cases. Further, as the Hamamatsu experiments used different spectra for

ICs and flats compared to sample images, these data sets are particularly difficult

to draw conclusions from since the nature of the noise in these settings will be

different. The reason for this is that, as the detector energy response increases with

photon energy, beam hardening due to water means that noise is more correlated

in the sample images (i.e. smoother) than in the flats.

4.3.3 Refraction profiles of wires in air

Retrieved refraction angles for the various wire profiles are shown in Fig. 4.9. The

refraction SNR for the Hamamatsu and Pixirad data is, on average, more than five

times and ten times greater than the transmission SNR, respectively. As several

of these wires were below the Rose criterion in the transmission plots, this figure
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4.3 Experimental results and discussion

Figure 4.9: Hamamatsu (a) and Pixirad (b) detector measurements for retrieved
refraction angle wire profiles for varying filter thicknesses, averaged over 20 vertical
pixels. From left to right, the wires in (a) are maxima, PEEK, PET, boron with
tungsten core, PET and sapphire; in (b), they are maxima, PEEK, nylon, boron
with tungsten core and sapphire. The dashed lines indicate the decreasing signals
for the sapphire wire as the average energy increases.

shows how significantly the image contrast is improved by the EI system. The

overall trend for refraction SNR in air for constant dose is similar to that of the

transmission SNR in air: decreasing with increasing filter thickness, though with

a smaller average gradient.

4.3.4 Refraction profiles of wires in water

Fig. 4.6 shows clearly how wires with only slight absorption contrasts in water

benefit from phase enhancement, with several of the wires becoming “visible” in

both experiments (SNR ≥ 5) upon retrieval of the refraction angles. For the

Hamamatsu experiments, which used flat images taken through air (thus using

softer spectra), the refraction SNR of wires in water for constant dose increases

with increasing filter thickness. For the wires measured with Pixirad, where the flat

images used the same spectra as the sample images, the trend is either decreasing

or approximately constant SNR with increasing filter thickness.
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4.3 Experimental results and discussion

4.3.5 Noise in images of constant dose

In order to better understand the trends described so far, it is useful to consider

the noise separately from the wire signals. Fig. 4.10 shows how the noise (stan-

dard deviation of the background, relative to the mean) decreases with increasing

filter thickness as the dose is kept constant and each line is corrected by flats of the

same spectra (flats are assumed to be noiseless relative to the sample frames used).

In the Hamamatsu case, these “same-spectra” flats through water were obtained

by considering a small region of interest (RoI) and using frames from different

dithering steps of the sample images while ensuring that the sample was far from

the RoI. The variation in water thickness due to the curving host medium was

assumed to be negligible over the dithering span of 50 µm. Missing data points

for the unfiltered Hamamatsu in-air and Pixirad 4 mm dural in-water experiments

were obtained by using data from incomplete or failed acquisitions - usually due

to crashing of the detector software or failure of the source cooling. The total

dose used in determining these noise variations was comparable for the in-air and

in-water settings.

Taken together, Figures 4.6 and 4.10 therefore indicate that the wires’ con-

trasts in air decreases at a faster rate than the noise as the average energy of

the beam increases. In water, however (and in the Hamamtsu measurements in

particular, where the flat field spectra was different from the sample’s), the wires’

contrasts are decreasing at a rate less than or equal to that of the noise in the

background. This difference in the behaviour of SNR must therefore be due to

the difference between the wires’ absorption and refraction parameters compared

to those of the background: as energy increases, the difference between wire and

water can reach a minimum and then increase depending on the material.

The key point is that when imaging weakly absorbing materials in air, shorter
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Figure 4.10: A dimensionless measure of standard deviation divided by the average
background intensity (which differs between all settings) for increasing dural filter
thickness and constant dose. The lines refer to measurements taken in air and
water by both the Hamamatsu and Pixirad detectors; with the pixel responses
being normalised by flat field images acquired through the same backgrounds of air
and water.

acquisitions at low energy lead to a high SNR, whereas if imaging through water,

the reduction in noise obtained by exposing the sample for a longer time and

using a higher energy is a more effective strategy. For sources with a greater

brilliance than the one used for these experiments, this higher exposure would not

necessarily require a longer time in the beam - the longest acquisitions for these

experiments, through 8 mm of dural, were 560 seconds per dithering step using

the Pixirad detector, and 252 seconds per dithering step with the Hamamatsu.

4.3.6 Scatterers and discussion of dark field signals

Comparing absorption and scattering contrast is a useful way of visualising the

benefits of dark field imaging, however in the case of the sponge, the transmission

signal was consistently less than 1%, and so Fig. 4.11 shows only the retrieved

scattering signal for the sponge in air and in water for different dural thicknesses.

The data was taken by considering a 20×130 region of pixels within the sponge

shadow and using their mean and standard deviation as the central points and
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Figure 4.11: Retrieved scattering signals for sponge in air (a) and in water (b)
through increasing dural filter thicknesses. Constant dose (solid blue lines) of 1.4
mGy and 7.2 mGy for air and water measurements were used, and the dashed red
lines correspond to constant cumulative photon counts, as measured by the Pixirad
detector.

uncertainties in the figure. In air, the scattering signal changes noticeably with

increasing filter thickness, increasing slightly between 0 and 2 mm dural filtration,

then decreasing. In water, however, the scattering signal is almost nonexistent

and this persists with increasing filter thickness; nor does increasing the photon

statistics have any discernible impact. The sponge becoming near-invisible in the

dark field regime as it is immersed in water illustrates the difficulty in detecting

fine structures when immersed in a medium with a similar value of δ.

The retrieved transmission and dark field signals for the different microsphere

concentrations are shown in Fig. 4.12 (a) - (b) and 4.12 (c) - (d) for constant dose

and constant noise, respectively. For each concentration, a small region of pixels

near the middle of each cuvette was selected, with their average and standard

deviations being used as the central points and uncertainties in the measurements.

In both cases, the absorption and scattering signals decrease as the filter thickness

increases, with the absorption signals decreasing in a consistent manner for all
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of the concentrations. While the error bars for transmission measurements are

overlapping in some cases, the average transmission of concentrations 1 and 0.1

are almost identical, with the same being the case for concentrations 0.5 and 0.05.

The average transmission of the 0.01 concentration is between those of the two

pairs. As the filter thickness increases, these groupings of average transmission

become slightly less apparent.

Scattering from the different concentrations decreases with increasing filter

thickness also, while the average signals they produce have a relatively large

spread, with lower concentrations generating higher signals in some cases. This

is consistent in both the constant noise and constant dose cases, with the size of

the error bars at the lower filtration settings being the most obvious change be-

tween constant dose and constant noise plots in Fig. 4.12. As the average energy

increases, however, the mean scattering signals begin to separate in the way one

might expect, with the highest to lowest concentrations generating the highest

to lowest signals, with the exception of the 1% concentration having the median

scattering signal.

If the grouping pairs for average transmission, identified above and applied

also to the average scattering signals, are considered as well as the trends of those

signals, they can be linked to where in the FoV the concentrations were imaged,

shown in Fig. 4.13 (a). The same pairings of transmission and scattering signals

for the different concentrations (Fig. 4.12) can be seen in the positions of the

cuvettes, with concentrations 1 and 0.1 in the same position, 0.5 and 0.05 sharing

another, and 0.01 in the centre of the field of view. A pixel-by-pixel retrieval, which

should account for different pixel responses by using their unique ICs, was used,

yet the retrieved scattering signals do not appear to correlate with microsphere

concentration. Considering data obtained by Millard et al. [80], which show
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Figure 4.12: Transmission contrast (a), (c) and scattering signals (b), (d) for
various concentrations of microspheres suspended in ultrasound gel, imaged through
increasing thicknesses of dural filter. (a) and (b) are retrieved contrasts in the case
of dose being kept constant for each measurement; (c) and (d) for constant total
counts.
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Figure 4.13: (a) Positions of the different microsphere concentrations in the Pixi-
rad field of view, with pixel numbers marked at the top of the grid; the porous
sponge was imaged in approximately the same position as the 100% and 10% mi-
crosphere concentrations. (b) Illumination curves corresponding to the centres of
each marked location in the FoV.

that this correlation exists in XPCi, and that the results of the previous chapter

validate this for high x-ray energies, the large difference in retrieved scattering

signals between 1 and 0.5, compared with that between 1 and 0.1, must be due to

one or two effects:

• The effective energy of the system varies significantly between the two sec-

tions of the detector used in imaging the sphere concentrations, thus chang-

ing the real scattering signal by some amount, and / or

• The illumination curve functions used in the retrieval of dark field signals,

seen in Fig. 4.13 (b), are different in a way that significantly affects the

sensitivity of the retrieval algorithm, i.e. the retrieved scattering signal is

changed.
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A difference in effective energies, and a contributing factor to the difference in ICs,

could be a result of the Heel effect. This, and a variety of physical mechanisms

that may affect IC parameters, are investigated in the next chapter. That the

scattering signals appear to correlate with the microsphere concentrations when

imaged through 8 mm dural supports the hypothesis of there being different effec-

tive energies, as the change in mean energy across the FoV due to the Heel effect

should decrease with increasing filter thickness due to the reduction in spectral

bandwidth.

In principle, it should be possible to correct for the Heel effect by using a

tungsten wedge placed in front of the source that compensates for the self filtration

of the anode, but such a task is not undertaken as part of this thesis. That the Heel

and other effects could cause such large variations in a laboratory-based system’s

parameters, and hence have such a significant impact on dark field imaging, was

never observed or hypothesised before and is discussed here for the first time.

Unfortunately, the observation was only made during the data analysis phase,

when the experimental setup was no longer available for more experimentation.

4.4 Modelling results and discussion

Modelling of the Hamamatsu experiment considered sapphire wire profiles, which

were simulated using 10 dithering steps and dividing by flats simulated at the

same points on the illumination curves as were used experimentally - the IC half

maximum positions. The results, which show a moderately good match between

simulated and experimental wire profiles, but a poor match between ICs, are shown

in Fig. 4.14.

In the Pixirad case, PEEK and sapphire wire profiles were simulated using

12 dithering steps and again dividing the output by appropriate flat fields, with
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Figure 4.14: (Hamamatsu) Simulated and experimental ICs and sapphire wire pro-
files as measured through different thicknesses of dural filter; the simulated spectra
are generated via the TASMICS software and filtered by 3 µm of tungsten; the mask
thicknesses used in simulations were equal to the nominal thickness of 150 µm.

the results being shown in Fig. 4.15. These show that the simulated ICs strongly

deviate from the measured equivalents, and in the case of the sapphire wire, neither

the absorption or refraction signals are being simulated correctly; the PEEK wire,

however, appears to be simulated reasonably well. As is evident from figures

4.14 and 4.15, simply using the nominal values from experimental conditions is

insufficient to reproduce the results correctly. Therefore, possible corrections and

adjustments to the initial model parameters are explored in the following sections.

4.4.1 Adjusting Hamamatsu model inputs to match

experimental results

There are two system parameters that have significant effects on simulation out-

puts and about which it is difficult to be certain: the thickness of the absorbing

septa used in the masks, and the spectrum. When seeking to match simulated

and experimentally measured ICs, the former parameter, with only one degree of

freedom as opposed to the N energy bins making up the spectrum, is expected

to have a stronger effect on the IC simulation outputs. Changing the spectra,

however, is expected to have a more significant effect on the wire profiles. As
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Figure 4.15: (Pixirad) Simulated and experimental ICs, normalised by the peak
intensity of the unfiltered IC; sapphire and PEEK wire profiles as measured through
different dural filter thicknesses. The simulated spectra are generated via the TAS-
MICS software and filtered by 3 µm of tungsten; the mask thicknesses were equal
to the nominal thickness of 300 µm.
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Figure 4.16: (Hamamatsu) Simulated and experimental ICs and sapphire wire
as measured through different thicknesses of dural filter; the simulated spectra are
generated via the TASMICS software and filtered by 3 µm of tungsten; the mask
thicknesses were reduced from the nominal thickness to 120 µm. ICs have been
normalised by the maximum intensity of the unfiltered beam.

TASMICS has been repeatedly proven to be reliable [81, 82], and the assumption

of some additional self-filtration of our source reasonable, we leave this variable

unchanged for now and change only the thickness of the absorbing gold septa in

the masks. Indeed, a simple trial and error approach of reducing the amount of

gold in the absorbing septa and observing the effect of this on the ICs finds that

a septa thickness of 130 µm (for the Hamamatsu experiment, where the nominal

septa thickness was 150 µm), in both masks, leads to a better match for the ICs

and some small improvement in the wire profiles, as shown in Fig. 4.16. As the

simulated and experimental outputs match for each of the filter thicknesses, it is

clear that the parameters used in the simulation must be sufficiently close to those

used in the experiment. A lower projected thickness of gold could be due to the

electroplating not continuing to the nominal septa thickness, or possibly because

the electroplated material has a lower density than solid gold. An effective 20%

loss of gold for masks of this thickness (which the supplying company agrees can be

considered acceptable) results in the IC offset being 10-15% higher than expected.
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4.4.2 Hamamatsu modelling of the SNR of wires in water

Concerning the SNR of wires varying with filter thickness, the wires imaged ex-

perimentally through water with the Hamamatsu detector used flat fields taken

in air, hence the SNR trends in Fig. 4.6 for this setting are inconsistent com-

pared to the other measurements. Our model, in combination with data from

Fig. 4.10, can be used to make predictions on how the SNR would vary had the

experiment been conducted using flat fields in water of the same thickness. Using

the simulation parameters determined in the previous section, nylon, PMMA and

teflon wires of (arbitrary) radius 675 µm were simulated in a water medium with

an unfiltered spectrum, and spectra filtered by 2 mm, 4 mm and 8 mm dural,

with normalisations by flat profiles acquired through the same amount of water

and filter thickness. Noise, whose standard deviation was set to the same values

seen in Fig. 4.10, was added to these profiles before processing. The profiles were

processed in the same way as the experimental data (Section 4.2.3) to retrieve

absorption and refraction SNR values, with the results being plotted in Fig. 4.17.

The actual SNR values are arbitrary in this case, as they depend on the beam

intensity and integration time of an actual experiment, however the trend is dis-

cernible for wires in water being imaged with the Hamamatsu detector for a con-

stant dose. While the results are dependent on the wire material, the general trend

of refraction SNR is semi parabolic, with a peak when imaging through 2 mm du-

ral. The absorption SNR shows greater variation with filter thickness, increasing

significantly for PMMA and teflon, but decreasing for nylon. Comparing these re-

sults with the measured SNR of PMMA in Fig. 4.6, we can qualitatively say that

the different spectrum of the flat field “shifts” the SNR curve’s peak to the higher

filtration setting in refraction. This is reasonable, as we expect smoother noise in

the sample images than in the flats due to the energy response of the detector, but

this difference decreases as the beam is hardened by filters. If the filter becomes
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Figure 4.17: Simulated signal to noise ratio trends of nylon, PMMA and teflon
wires (675 µm radius) immersed in water and imaged at constant dose with the
Hamamatsu system through increasing thickness of dural filters. The simulated 60
kVp tungsten spectra were generated by the TASMICS software.

sufficiently thick, the difference in spectra between air and water media, outside

of the sample region, will become small. From the simulation, refraction signals of

the PMMA wire normalised by a flat field through air are almost identical to those

normalised by a flat through water. The absorption contrast, again according to

the simulation output, is improved slightly by 2.5% when using a flat field through

air, however as seen in Fig. 4.6, the SNR for this wire is already very low and so

the small boost in contrast is of little significance.

4.4.3 Pixirad modelling adjustments

Fig. 4.15 used the nominal mask thickness of 300 µm and the same initial spectrum

as in the Hamamatsu case. The simulated IC offset, the absorption signal at

the centre of wires being lower than experimentally measured (by 2.7% in the

unfiltered case), and the magnitude of phase peaks being greater than in the

experiment, all indicate that the spectrum used in the model is too soft, i.e. the

average energy is too low. The deviation between modelled and experimental ICs,
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Figure 4.18: Difference function between simulated and experimentally measured
IC and wire profiles for varying mask septa and tungsten filtration thicknesses.

however, is not limited to the offset: it persists for all points on the IC such that

the simulated peak intensity, or the expected attenuation of the raw beam due to

filters, is systematically lower than measured in experiment.

Fig. 4.16 implies that the refractive index parameters used to simulate the sap-

phire wire are correct, thus, as the masks and detectors are the most significant

changes in system parameters, the inaccuracies of modelling is likely to be due to

these elements. The Hamamatsu and Pixirad experiments were also conducted a

little over a year apart; it is possible that, as the source was in almost continuous

operation during this time, the tungsten anode could have ejected particles over

time that coated the source window, forming an additional filtration layer. With

this in mind, I attempted to find a combination of parameters for gold thickness

and tungsten filter thickness that led to a match between simulation and experi-

ment.

Changing the amount of self filtration has a predictable effect on each of the

N energy bins of the spectra, so a systematic approach was taken in order to find

a solution that worked for all the changing variables. Eq. 4.6 is the minimisation

used:

χ
Minimise−−−−−→

∑
f 2(tAu, tW)− Y 2

IC, wire, (4.6)
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Figure 4.19: Effective specta of a beam filtered by 42 µm of tungsten used to
best-match experimental Pixirad measurements through increasing thicknesses of
dural filters. Vertical lines indicate mean energies.

where f(tAu, tW) produces a matrix of simulated IC data and wire profiles as a

function of gold column and tungsten filter thickness. The output for χ is dis-

played in Fig. 4.18, with a global minimum being found for tAu = 147 µm and

tW = 42 µm. Fig. 4.19 shows the spectra and mean energies for this level of

filtration, while Fig. 4.20 shows the simulation outputs for this combination of

parameters. Even for this extreme filtration and less than 50% gold in the masks

- both of which are excessive - the ICs and wire profiles fail to consistently match

their experimental equivalents through the various filters. The observation that

dark field signals originating from the microspheres (Fig. 4.12) are significantly

influenced by where they are positioned in the detector FoV implies that there are

systematic effects present that have not been accounted for, and a more sophisti-

cated model may be required to determine what these effects are - this will be the

subject of the next chapter.

4.5 Conclusions

For constant dose, the SNR of wires measured in air decreases with increasing

energy for both absorption and refraction. For wires in water, however, the SNR

trend is curved, with a positive or negative turning point depending on which of
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Figure 4.20: Simulated and experimental ICs, normalised by the peak intensity
of the unfiltered IC, and sapphire wire profiles as measured by the Pixirad detector
through different thicknesses of dural filter. Simulated spectra were generated by
the TASMICS software and filtered by 42 µm of tungsten; the mask thicknesses
were reduced from the nominal thickness of 300 µm to 147 µm in order to provide
a better, though still imperfect, match between simulated and measured ICs.
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the two available detectors was used. This change in SNR behaviour due to the

different host media can be attributed to two significant physical effects:

• The attenuation of photons through water being different to that of their

attenuation in air. In both cases, more photons accumulate at the detector

plane at higher filtration settings if the dose is kept constant, but this effect

is greater in the case of water, meaning the noise is more reduced with

increasing filter thickness in this case.

• The way in which the difference of refractive indexes varies between the

“wires in air”, and “wires in water” cases, with contrast only decreasing in

the former case and possibly increasing with mean beam energy in the latter

case (neglecting the effect of absorption edges).

For the in-air measurements, lower energy experiments lead to a higher SNR, as

the wires’ signals decrease at a faster rate than the noise with increasing energy.

Since at constant dose, noise decreases with increasing filter thickness, the data

suggest that it may be possible to choose an optimal filter thickness for a given

imaging experiment, if enough is known about the material properties a priori.

Comparing the two systems employed in this chapter, it is clear in both cases

that EI enhancement enables detection of wires that would otherwise go unde-

tected in transmission-only systems. The Pixirad detector, with a near-flat energy

response (and thus lower effective energy compared to the Hamamatsu detector,

which weights high-energy photons more than low energy ones), measures greater

refraction and transmission signals than the Hamamatsu. As the crosstalk be-

tween pixels in the Hamamatsu case is relatively large, the Pixirad detector also

provides greater resolution when sample dithering is not employed. The thicker

masks used in the Pixirad experiments also result in a lower IC offset, but mod-

elling suggests that this offset should be even lower than measured experimentally.

124



4.5 Conclusions

Scattering signals for a porous sponge were acquired at different energies for a

constant dose and are seen to decrease with increasing mean energy when imaged

in air. In water, however, the sponge becomes invisible for all retrieved contrasts,

showing that not all micro-structured objects will produce dark-field signals when

immersed in a host medium with similar δ. Dark field signals due to different

concentrations of microspheres immersed in ultrasound gel are seen to decrease

with increasing energy in both the constant number of photons and constant dose

cases, with smaller signal uncertainties at the highest energies for constant dose,

but relatively constant uncertainties for constant number of photons. The ability

to distinguish between different concentrations, however, is low in general, and

appears to be affected more by their position in the FoV of the detector than by

their concentration, at least for the two orders of magnitude in concentration that

were used in the experiment. The precision could possibly be improved at the cost

of an overall increased dose, but the change in dark field signal with position in the

FoV is suspected to be a result of the Heel effect and variations in the IC param-

eters, whose impact is diminished by using large amount of filtration. Correcting

for these effects should improve the ability to distinguish different concentrations,

though this is yet to be tested.

When modelling the two experiments, the Hamamatsu system parameters were

straightforward to determine: 3 µm ± 1µm of tungsten filtering the spectra pro-

duced by TASMICS in order to account for the different take-off angles between

our source and the one modelled by TASMICS and 20% less gold than the nom-

inal amount of 150 µm in the masks’ absorbing septa. Using these settings, a

wave-optics simulation was capable of re-creating the same ICs and wire profiles

as measured experimentally. Having benchmarked the simulation in this way,

it was possible to virtually recreate the SNR measuring experiments of wires in
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water for the Hamamatsu detector in a way that was consistent with the other

measurements. The results emphasise that being able to tailor the average beam

energy by filtering can improve SNR if dose is a constraint. Re-creating experi-

mentally measured ICs and wire profiles with the model as it currently stands was

not possible in the Pixirad experiment case, which used masks from a different

manufacturer, with different specifications, and which was conducted a year after

the Hamamatsu experiments (thus potentially having a slightly different amount

of tungsten self filtration due to source window coating). The next chapter is

aimed at refining the models to enable this recreation.
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5

Model refinements required for

high energy XPCi

implementations

5.1 Chapter introduction and motivation

The previous chapter showed that, when using masks designed for high energies,

the position of a sample in the detector’s FoV played a significant role in the

measured signals. This chapter describes how models which reproduce these effects

were developed, while also incorporating additional effects that become relevant

at high x-ray energies.

Various experimental measurements on the Pixirad masks, and the EI system of

which they are a part, are presented as an ensemble. The addition of physical

processes to the Monte Carlo and wave optics models are presented in order of

significance to the simulation output over several sections. As the two models in

use have unique advantages over one another, there are some cases where only

one is refined, and this is made clear in the text. The last section describes

how the fully upgraded model is utilised in combination with another simulation
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5.2 Experimental measurements of the Edge Illumination masks

tool for wavefront propagation through ensembles of spheres to recreate the dark

field experiments from the previous chapter. While the Pixirad masks described

previously are the main focus of this chapter, it is expected that the knowledge

gained will be useful when designing and characterising high energy EI systems in

the future, and in understanding any inherent limitations of such setups.

5.2 Experimental measurements of the Edge

Illumination masks

A source of uncertainty in modelling the EI system is the true thickness and den-

sity of the absorbing septa used in the masks. Normally this is not an issue, as the

gold thickness parameter may be adjusted (as well as the source width, spectrum,

and mask aperture widths) until a match between simulated and experimentally

measured illumination curves is obtained. The results from the previous chapter,

however, showed that this approach can lead to unreasonable results, where the

gold thickness is less than half the nominal value (300 µm) and the spectrum is

excessively hardened (42 microns of tungsten filtration) by anode self filtration

from the outset. The following subsection describes the IC parameters measured

across the Pixirad FoV, highlighting areas where measured values deviate signifi-

cantly from expectation, then an experiment undertaken in an attempt to remove

uncertainties regarding the masks used.

5.2.1 Pixirad IC parameters across the detector FoV

With the Pixirad EI system set up as described in Chapter 4, ICs were acquired

in the normal manner by scanning the sample mask, M1, over one period and

measuring the intensity at the detector. Fig. 5.1 (a) shows ICs across the FoV for

the unfiltered 60 kVp tungsten spectrum and (b) - (d) show the fitted parameters

of amplitude, IC centre position and width according to Eq. 4.1 for the unfiltered,

128



5.2 Experimental measurements of the Edge Illumination masks

Figure 5.1: (a) Illumination curves across the Pixirad detector FoV for an unfil-
tered 60 kVp tungsten spectrum; each curve is an average of ten pixel columns. (b),
(c) and (d) are fitted parameters for amplitude, centre position and width across
the FoV for the unfiltered, 4 mm and 8mm dural filtered spectra; (e) is the ratio of
IC minimum and maximum intensities.

4 mm and 8 mm dural filtered cases. Panel (e) shows the ratio of IC minimum and

maximum intensities across the FoV for the same filtration settings. The following

features of the EI system can be deduced from this figure:

• (a), (b) and (c) - The IC peak intensity decreases by more than 50% when

moving from one side of the FoV to the other - a length slightly greater than

3 cm;

– The stable position of the IC peaks indicate that this loss of intensity is

not due to misalignment of the masks (which can lead to Moiré fringes).

– The high level of mask alignment indicates that the masks are uniform

in pitch across the FoV.

• (d) - The width parameter of the IC decreases and increases across the FoV;

– The projected source size is expected to vary across the FoV, but should

only be increasing from some minimum value.

• (e) - The offset-to-peak intensity ratio increases significantly across the FoV

and is, on average, much greater than simulations predict for the nominal

mask thickness and spectra (which would be 1%, instead of the measured

10% for pixels along the detector’s left edge (DLE) for the unfiltered beam).
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5.2 Experimental measurements of the Edge Illumination masks

Figure 5.2: Illustration of angular filtration due to tall mask septa affecting beam-
let intensity and IC widths (not to scale).

To some extent, the loss of intensity and the decreasing IC width can be explained

by the angular filtration of the masks, the effect of which is illustrated in Fig. 5.2.

If a fully 3D model is used for the masks instead of the projection approxi-

mation, it should be possible to replicate the loss of intensity and decreasing IC

width from the left to right edges of the detector. Making the masks into 3D

components, however, requires making assumptions on how thick the absorbing

septa are and, potentially, the density profile of those septa, which may or may

not be significant. In practice, when using the nominal thickness and density of

solid gold, a model that utilises 3D mask components predicts some loss of inten-

sity across the FoV when the masks are aligned, but not as much as is measured

experimentally. Moreover, if the full IC is modelled using these masks, the offset

intensity they predict is the same as that predicted by models using 1D masks,

which is significantly lower than what is measured. In the former case, where in-

tensity is decreasing, the model thus implies that the thickness of the mask septa

must be greater than the nominal 300 µm. In the latter case, to increase the offset

to match what is measured, the septa thicknesses are required to be less than the
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5.2 Experimental measurements of the Edge Illumination masks

nominal amount. Finally, it is also impossible, from these measurements alone, to

decouple the attenuation due to M1 or M2 individually, which increases the com-

plexity of the problem. ICs, however, are not the only measurements available.

5.2.2 X-ray measurements of the Pixirad masks

Two different experiments were performed using the available tools in attempts

to discern the amount of gold in both mask septa. The difficulty shared by any

approach using x-rays, however, is that decoupling the density of the gold septa

from their thickness simultaneously requires both high energy and high resolution,

which can be difficult to access. The density of solid gold is 19.3 g/cm3, equal to

that of tungsten, however this is an upper limit for gold that has been electroplated,

as there is no guarantee that the packing efficiency of gold atoms during the

electroplating process will be the same as that of solid gold. After the masks have

been fabricated, the individual structures are also difficult to image with x-rays due

to the close proximity of neighboring gold columns. Any measurements utilising

the Pixirad EI system are also affected by some amount of tungsten filtration due

to the Heel effect, which is not known a priori and may have changed since the

Hamamatsu experiments described in Chapter 4.

5.2.2.1 Edge illumination field of view

Fig. 5.3 shows an example image of the entire Pixirad FoV when the system was

aligned (note that the left side of the detector is not aligned for EI as the module

was slightly rotated with respect to the module on the right). As shown, there is

an active area where the EI condition is realised and an inactive area, where only

the detector mask, M2, obscures the detector. With M1 decoupled from M2, the

loss of intensity across the FoV should be primarily due to the angular filtration

of M2 alone (see the red line in part (b) of the figure). Thus, it may be possible
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5.2 Experimental measurements of the Edge Illumination masks

Figure 5.3: (a) Example FoV image from the Pixirad detector. For this system
geometry, the angle subtended between the detector’s left and right edges is ap-
proximately 1◦; the Heel effect causes the spectrum to change across the FoV in the
horizontal direction. (b) The loss of intensity due to both masks (54% ± 2%) and
due to M2 only (29% ± 1%).

to create and use a forward model that aims to match this 29% ± 1% loss of

intensity.

From the geometry of the setup, the detector’s right-edge (DRE) makes an angle

of ≈ 1◦ with the DLE (≈ 3 cm across, with the beam originating 2 m upstream);

this can be used as an approximate value in determining the change in average fil-

tration by the mask septa between pixels near the DLE and those near the DRE.

All possible path lengths through the absorbing septa that arrive within given

pixel boundaries must then be determined and weighted via the Beer-Lambert

law.

Considering the polychromatic spectrum, there is some degree of uncertainty

due to the Heel effect, but all other sources of filtration, such as the mask substrate

(525 µm silicon), and 2 m of air, can be accounted for; the overall intensity loss

across the inactive region of the detector, due to some thickness of M2’s septa
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5.2 Experimental measurements of the Edge Illumination masks

Figure 5.4: Forward model attenuation of the unfiltered 60 kVp tungsten x-ray
beam due to angular filtration of the detector mask only. The experimentally mea-
sured attenuation was 29% ± 1%, i.e. the grey region of this figure.

(for now assuming the nominal density of solid gold) and for different amounts of

tungsten filtration, may then be determined. Fig. 5.4 is the result of this, with

the grey region defining the possible combinations of tungsten self filtration (x

axis) and gold septa thickness (y axis) that produce the measured attenuation.

The range of possible septa thickness from this approach is 305 µm - 320 µm,

corresponding to 0 - 10 µm of tungsten filtration. As the nominal septa thickness

is 300 µm, this range of predicted thicknesses appears reasonable both in terms of

accuracy and precision. If a reduced gold density is considered and the calcula-

tions performed again, the required amount of gold increases. By way of example:

gold whose density is 75% that of solid gold requires septa thicknesses in the range

of 325 µm - 340 µm, in combination with 0 - 8 µm tungsten filtration, in order to

reduce the beam intensity by approximately 29%.

With plausible combinations of gold-tungsten thicknesses determined, it should

be possible to use the same model to infer a range of septa thicknesses for the sam-

ple mask, M1, that satisfy the loss of attenuation due to both masks, as measured

in Fig. 5.3. The geometry of the setup is again considered and a range of differ-

ent septa thicknesses for M1 are assumed. In combination with pairs of M2 septa
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thickness and tungsten filtration values that resulted in the measured loss of inten-

sity due to M2 alone, the decrease in intensity is determined for these thicknesses;

with thicknesses of M1 that cause an intensity loss of 54% ± 2% being noted.

For the lowest value of M2’s septa, 305 µm (no tungsten filtration), this approach

implies that the septa of M1 has a thickness of approximately 275 µm. For the

largest M2 septa value of 320 µm (10 µm tungsten filtration), the corresponding

M1 thickness according to the model is approximately 270 µm. However, using

any of the combinations of M1, M2 and tungsten thicknesses calculated here in an

IC simulation does not produce ICs that match those measured experimentally.

Hence, given that:

• The Heel effect varies the amount of tungsten filtration and the flux intensity

across the FoV, and

• EI models predict IC offset intensity for this septa thickness being much

lower than is measured,

questions regarding the gold density and variations in the tungsten filtration thick-

ness remain.

5.2.2.2 Attenuation images of Pixirad masks with the Hamamatsu

detector

Attenuation images of the masks were taken under different conditions. In house

at UCL, a microfocal (≈ 7.5 µm) tungsten source, operated at 60 kVp, was used in

combination with the well-characterised Hamamatsu detector. A high magnifica-

tion (10.2) was used and planar images of the masks were acquired alongside dark

and flat field images. The projected source size and image blurring due to pixel

crosstalk were small relative to the magnified pitch of both masks and the results

of these measurements are shown in Fig. 5.5. Advantages of this method are that

the source spectra and energy response of the detector were well known, image
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Figure 5.5: Normalised intensity profiles of attenuation images of (a) the sample
mask, with (b) showing several periods close to the global maximum, and (c) and
(d) showing the same for the detector mask. Magnification was 10.2, a 60 kVp
tungsten spectrum was used in combination with the Hamamatsu detector.

blurring effects were small and the experiment was straightforward to implement.

Considering periods near the DLE, and assuming nominal mask parameters,

the intensities measured through the apertures were approximately 10 - 15% lower

than predicted by the simulations, while minimum intensities through the septa

were approximately 5 - 6% greater than predicted. Similar to the problem of

decreasing intensity across the Pixirad FoV, which contrasts with the IC mini-

mum intensity being relatively high, this experiment failed to explain how the

gold septa were simultaneously tall enough to cause significant angular filtration

while not causing greater attenuation to the primary beam. However, the trans-

mission through apertures being lower than expected led to the suggestion of

including the effect of aperture-filling epoxy resin in the models, which did atten-

uate the beam more than expected (≈10% of an unfiltered 60 kVp beam). This

experiment would possibly have benefited from an even greater magnification, as
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Figure 5.6: Optical (a) and electron (b) microscope example images of the Pixirad
sample mask. The gold thickness of the sample mask was found to be 310 µm, with
SU-8 in the apertures being approximately 203 µm thick with a triangular top.

simulation work later revealed that the density profiles of the absorbing septa may

be non-uniform which, if this is the case, can affect how photons are attenuated

by different parts of the septa.

5.2.3 Direct measurement of the Pixirad mask

thicknesses and bulk density

Ultimately, as different measurements were unable to converge on a single set

of parameters that described the masks, the septa thickness and density were

measured directly via destructive methods by technicians at microWorks. The

information gained here, in combination with the previous measurements, led to

a working model of the masks (and hence the EI system) and may be useful both

in the fabrication of EI masks and in the design of future high energy EI systems.

A diamond saw was used to slice 0.7 mm wide sections of both masks. Optical

imaging was performed under a microscope to determine the septa thickness, and

again with an electron microscope in order to determine the thickness of epoxy

resin in the apertures; the sections were also weighed in order to ascertain the
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Sample mask Detector mask
Thickness / µm 310 319

Gold density / g cm−3 17.3 17.5
Density / Percentage of solid gold density 89.5 90.8

Table 5.1: Pixirad mask parameters determined by direct measurement; the sub-
strate and epoxy resin masses were accounted for in the calculations.

bulk density of the electroplated gold.

Fig. 5.6 (a) and (b) shows example optical and electron microscope images of

a section of the sample mask. Some gold lamellae were also removed and individ-

ually measured in height in order to further verify the optical measurements. The

final results of septa length and density for both masks are listed in Table 5.1.

The gold septa thickness being slightly greater than the nominal 300 µm in both

cases explains the intensity loss across the Pixirad FoV, while the bulk density

being ≈90% of that for solid gold gives insights as to why the Pixirad IC offset

intensity is greater than models predict. The SU-8 filling the apertures appears to

fill roughly 2/3 of the aperture volume, and has a triangular top; since the process

of stripping SU-8 down from the original height of 350 µm was a passive process

of oxygen free radicals interacting with the material, this shape is not necessarily

going to be the same in other EI masks.

Understanding the reasons for less-than-nominal gold density is beyond the

scope of this thesis, but by using data gleaned from the x-ray experiments and

these direct measurements, a density profile of the absorbing septa that allows

models to accurately recreate measurements of the masks, and the EI system of

which they form a part, may be posited. Although this experiment requires at least

partial destruction of the masks, the information gleaned is reliable and contains

as much detail as is possible to acquire. It is expected that these results will have

some applicability to other EI masks and gratings.
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5.3 Model refinements

Many physical processes were built into the two models, with varying levels of

significance in terms of their outputs. The following subsections are thus in order

of priority for making a working model.

5.3.1 Angular filtration with three-dimensional mask

models

Both the Monte Carlo model described in Chapter 3 and the wave optics model

from Chapter 4 can be adjusted in order to reproduce the effect of angular fil-

tration. The manner of implementation varies according to the models’ com-

putational workflow, illustrated in Fig. 5.7 (a) and (b); when discussing model

upgrades, this figure can be used as a reference for each of the virtual objects being

altered. In its first implementation developed by Millard et al., EI masks used in

the Monte Carlo model were simulated using the projection approximation, with

photons entering an aperture (1) or absorbing septa (0) according to the function:

T (x) =


1 if cos (2πx

P
) ≥ cos (πw

P
)

0, otherwise,

(5.1)

where P is the mask pitch and w is the aperture width [74]. The refractive index of

the septa is determined by a (formatted) look-up table and the incident photon’s

energy. A real photon is either absorbed or transmitted through the septa, and

the Beer-Lambert law describes the statistical distribution of these events; simu-

lations of such a process can be made to be computationally efficient by ascribing

each photon an initial weight which is adjusted by the Beer-Lambert law as the

photon traverses a material, then added to a given pixel bin at the detector (i.e.

a photon that traverses N different media with attenuation coefficients µi and
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Figure 5.7: Computational workflows of the Monte Carlo model, McXtrace (a),
and the wave optics model (b). McXtrace uses random numbers to select x, y, z
emission points and energies of photons in the source plane, while the wave optics
model iterates over discretised energy bins in the spectrum and blurs each intensity
profile with the projected source function.
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path lengths ti has its weight adjusted from 1 to exp (−
N∑
i

µiti; all the weights

of photons that arrive within a specified pixel area are summed to produce the

intensity in that pixel). The efficiency gain lies in simulating only those events

which will contribute to the final image statistics, rather than the full range of

photons which are either transmitted or absorbed. For the mask component, a

photon’s weight is only adjusted when entering the septa, according to the single

specified thickness in all cases, and is not at all attenuated if it enters an aperture.

The only change necessary in this Monte Carlo model is to make the absorbing

septa into fully three dimensional cuboid structures by using the box intersect

function from the McXtrace library. Eq. 5.1 is still called to determine if a

photon enters an aperture window or absorbing septa, however at this point,

box intersect is called to determine whether the photon will intersect an adjacent

septum or window, or remain in the current section until the photon has traversed

the full length of the component. The path lengths through absorbing septa

and aperture are recorded in allocated variables and are then used to weight

the photon, as described, as the photon leaves the component. This formulation

improves on the model in a general way by determining the different path lengths

through gold in all parts of the mask, which will have some deviation from the

nominal thickness except in the case of a photon travelling parallel to the septa

walls. As the model uses Cartesian geometry and simple equations to determine

intersection of lines with planes, the additional computational cost is small.

The wave optics model uses a projected transmission function for the masks.

A concise modelling method for angular filtration, then, is to replace this function

with one that accounts for the curvature of the wavefront at different points. Fig.

5.8 (a) and (b) illustrates how a two-dimensional image, or matrix, of the mask

is constructed and used in calculating the projected transmission functions. Each
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Figure 5.8: Illustration of how angular filtration may be handled in an XPCi wave
optics model. (a) Shows the mask image and projected path length through gold
for apertures parallel to the beam axis and (b) shows the same but for apertures
far from the beam axis.

entry in the matrix takes a value of 1 or 0 to indicate the presence, or lack, of gold.

For a given angle subtended by a point in the detector FoV, the matrix is rotated

and integrated in the direction shown in order to determine the projected thickness

of gold. The projected thickness is then used to determine a complex transmission

function of the mask; the waveform is then propagated as normal to the detector

mask, whose transmission function is determined using the same method. With

this upgrade, the entire FoV may be simulated if necessary, though simulating

larger fields of view means more image-rotation operations which, depending on

the image size (determined by the sampling), can slow the simulation.

Both models return the same decreasing IC peak intensity, and Fig. 5.9 il-

lustrates their increased resemblance to the experimental case they probe, by

comparing the McXtrace output with real and simulated data from the model

that did not use three dimensional mask structures. The new simulation output

does not yet match the intensity gradient from real data, however - this is because

the mask septa density, Heel effect and variations in source size have not yet been

incorporated into the models.
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Figure 5.9: (a) IC peak intensities across the FoV of Pixirad for unfiltered 60
kVp experimental data and Monte Carlo simulated data that uses the projection
approximation (red dotted line) and fully three-dimensional masks of thickness 300
µm (yellow dashed line). (b) IC minimum intensity, relative to the peak, for real
and simulated (using 3D mask functions) data.

5.3.1.1 SU-8 inside apertures and variable mask septa density

SU-8 in the apertures leads to a small decrease (absorbing ≈9% of an unfiltered

60 kVp tungsten spectrum) in intensity transmitted through the apertures, and

its beam hardening effect is negligible. The internal phase of a beamlet, however,

may be affected, especially given the triangular top of SU-8 filling the apertures

seen in Fig. 5.6 (b).The variable septa density also has a moderate impact on the

EI system characteristics, such as the IC offset intensity. These are not “strong”

effects, but are a straightforward addition to the models once the three dimen-

sional nature of the masks has been included.

The chemical formula (C723H65O182F12S6Cl2Sb9) and physical density (1.265

g/cm3) of SU-8 were provided by the mask manufacturers microWorks GmbH,

which enabled the x-ray refractive index to be generated by the xraylib software.

The shape of the aperture filling is known from the electron microscope image

in Fig. 5.6; while it could be modelled this way in the wave optics model, for

convenience in McXtrace it is usually modelled as a cuboid that fills approximately

two thirds of the aperture: this led to no visible difference in model outputs.

Variations in the gold septa density are easier to implement in the wave optics

model: as the projected thickness is determined by summing pixels which are
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normally set to 1, the values may instead be set to have reduced values depending

on their position. A single reduced value can be applied universally to all septa

pixels or, if the density profile were known, this could be applied as appropriate

to the image pixels.

5.3.2 The Pixirad detector response

For an EI system, the potential impact of multi counting can be significant. Re-

ferring to Fig. 2.14, multi counting may occur when a photon of sufficiently high

energy is incident near the edge of a pixel; the generated charge cloud spreads

across both pixels and is sufficient to exceed the threshold in both cases. Consider

two cases of the EI system:

• M1 is aligned with M2 (the IC peak) -

– Any photons not absorbed by the septa that reach the pixel do so near

its edge and are likely to be of high energy, thus having a high likelihood

of being counted multiple times, however:

– Flux due to the primary beam through M2’s aperture accounts for the

majority of photon events.

• M1 is out of phase with M2 (the IC minimum) -

– High energy photons, which are more likely to be transmitted through

some amount of gold in the septa of M1 or M2, form the majority of

photons being detected; they arrive near pixel edges and corners and

are thus likely to be counted multiple times.

The relative intensity measured for these two cases will be affected as the ratio of

multi-to-single counts is shifted. In order to incorporate this effect in the mod-

els,“near pixel boundaries” must be defined. Charge-sharing for a similar detector,

the Pixirad-1 photon counter, was characterised by Vincenzi et al. [83], based on
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Figure 5.10: Scheme for multi-counting implementation in (a) McXtrace and (b)
wave optics models; the Pixirad detector they represent had a low energy threshold
of 10 keV, thus only photons of twice this energy or more can be counted mul-
tiple times. McXtrace implements sub-pixel energy resolution, with each energy
band having a specified weighting scheme; the wave optics model changes the pixel
function for each energy band through use of a cosh function such that pixel edges
contribute

√
A more to the final intensity than pixel centres, with A being 2, 3 and

4 for each of the energy ranges considered in this 1D model.

methods described by Iniewski et al. [84]. Thus, I make an approximation for the

radius r of a diffuse electron cloud at a pixel anode to be given by the equation:

r = 2.3d
√

2kBT/qV , (5.2)

where d is the photoconductor thickness (650 µm), kB is the Boltzmann constant,

T is the temperature in Kelvin (253 K), q is the charge of an electron and V is

the applied bias voltage (400 V). Using these values leads to a charge cloud with

an approximate radius of 7.8 µm. Considering whether such a cloud may spread

from its point of origin in one pixel, across boundaries and into another pixel, this

value is used as a baseline.

Figures 5.10 (a) and (b) show how multi counting is approximated in the Monte

Carlo and wave optics models, respectively. In McXtrace, pixels are sub-divided

into 5×5 grids (of 12.4 µm sides) and are simulated as being semi-energy resolv-

ing. As the low energy threshold of the Pixirad detector was set to 10 keV in

all experiments, only four energy bins of 10 < E < 20 keV, 20 < E < 30 keV,
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Figure 5.11: Effect of the Pixirad detector counting single photons multiple times
on IC measurements in the case of an unfiltered and 8 mm dural filtered 60 kVp
tungsten spectrum: on the detector’s left edge (a), and on the detector’s right edge
(b).

30 < E < 40 keV and E > 40 keV are necessary. After the simulation is com-

plete, the true pixel regions are defined, with the edge and corner sub-pixels being

weighted according to their energy range, before the sub-pixels are finally binned.

In the wave optics model, the pixel function - normally a top-hat - is adjusted in

a similar, but continuous, manner according to the energy range in question. A

cosh function is used to modify the pixel function, as it encapsulates the pixel’s

symmetry and the exponential damping of electron movement in the semiconduc-

tor material. As wave optics typically considers the one-dimensional case, the

adjusted pixel function increases only to the square root of the maximum weight

used in the McXtrace weighting scheme.

Fig. 5.11 (a) shows the effect of multi counting on a simulated IC for an

unfiltered and 8 mm dural filtered 60 kVp tungsten spectrum for pixels located

on the DLE and (b) shows the same for pixels located near the DRE, where the

angle of beamlets results in more photons arriving near pixel boundaries. For ICs
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acquired near the DLE, multi-counting has very little effect on the offset intensity

for both the unfiltered and highly filtered beam. Far from the axis, however,

the increase in the offset intensity is visible, particularly for the unfiltered beam.

The reason for this lies with the ratio of multi-to-singly counted photons: in the

unfiltered case, where the spectral bandwidth is large, the ratio increases as M1

moves out of phase with M2 due to the relative increase in high energy photons

being detected, as these are the ones that are more likely to be transmitted through

the mask septa. In the highly filtered case, the bandwidth is smaller, meaning that

the number of high energy photons that induce multiple counts is high for all points

of the IC.

5.3.3 The Heel effect and variable source size

The apparent size of the source, its brilliance and the amount of self-filtration due

to the Heel effect vary depending on the angle from which the source is viewed, as

illustrated by Fig. 5.12 (a). Our source having a shallow take-off angle, which en-

ables high power output from a small region, enhances this effect and is evidenced

by the measured width parameter of ICs across the FoV shown in Fig. 5.1 (d). For

a source of fixed size, models predict that the IC width should decrease uniformly

across the FoV due to the effective aperture size decreasing; the measured curve,

however, decreases and then increases again across the FoV.

To model the Heel effect perfectly would require full knowledge of the electron

beam’s penetration depth and exact geometry of the anode, which is not available.

Some assumptions were thus made in order to determine the appropriate level of

filtration of the system for different source-viewing angles. These are that:

• The transverse variation in tungsten filter thickness would be linear.

• Any variations of tungsten filter thickness in the vertical direction could be

neglected.
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Figure 5.12: (a) Illustration of the variation in source size and average beam
energy as a function of viewing angle. (b) Basic geometric model for determining
the different amounts of tungsten that filter the beam as a function of the angle at
which the source is viewed; (i) is the face-on view, while (ii) is for the source being
viewed from 1◦.

Remembering that ≈ 3 µms of tungsten filtration led to a good match between

simulation and experiment in the Hamamatsu experiments, and that this inherent

filtration may have increased due to coating of the source window (assuming an

upper limit of 1 µm additional filtration), we can estimate the possible variation in

filtration with a simple geometric model of the anode. Construction of triangles,

shown in Fig. 5.12 (b), then allows for an estimation of how much tungsten is

filtering photons being emitted across the 1◦ arc being considered. The estimated

range of tungsten thickness is then ≈ 0.5 µm regardless of which initial filtration

is assumed, and is thus smaller than the inherent uncertainty in filtration. The

inherent tungsten thickness (seen from the DLE) was thus modelled as being 4

µm, decreasing to 3.5 µm at the DRE, making this one of the smallest changing

physical parameters across the FoV. For completeness, the effect was built into

both models, but appears to be of little significance overall.

To implement the Heel effect and variations in source size, consider first the

Monte Carlo model. In McXtrace, the emission point of a photon is first deter-

mined by generating a random number and using a cumulative density function

(CDF; see the inset plots in Fig. 5.7 (a)) that describes the measured source

147



5.3 Model refinements

profile to determine the point of emission, then the photon’s initial direction is

randomly generated in the same way. By swapping the order of computations such

that the angle of emission is determined first, the photon may be weighted by an

appropriate amount of tungsten filtration before it has left the source component.

Further, the source’s size may be allowed to vary by re-scaling the x axis of the

CDF according to a pre-determined function of the emission angle. This method

is straightforward and efficient.

Implementing the Heel effect in the wave optics model is also straightforward,

however the variations in source size are more difficult to recreate. To account for

spectral changes, instead of weighting all pixel intensities in the same way with a

single spectrum, the pixel’s position in real space may be used in determining a

spectrum that corresponds to the appropriate amount of tungsten filtration. For

the variable source size, the blurring effect is achieved by a convolution, so only

one source function may be used at a time for each pixel. If a given region of pix-

els, and the local change in source size, is small, a single well-chosen single source

size may be used. For large FoVs, however, groups of smaller pixel regions must

be simulated one at a time and convolved with the appropriate source function,

then recombined to form the larger image.

How the source size varies as a function of the view angle can be extrapolated

by comparing the widths of ICs output by the model with the experimentally

measured widths, and is shown as a smoothed fit in Fig. 5.13 (a), with parts (b)

and (c) comparing the simulated and measured IC widths and offsets due to this

variable source, and one whose size is constant for all viewing angles. Also shown

in plots (d) and (e) is the effect of variable mask septa densities on the IC offset

for the increasing source size: the effect is greatest near the DLE, where there is

negligible angular filtration, and negligible as the viewing angle increases. The
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simulated offset, which is mostly unaffected by these relatively small changes in

source source, exhibits the same trend seen experimentally and deviates from the

measured values only by 3-4%, indicating that the model has captured most of

the significant physical mechanisms.

Figures 5.14 and 5.15 conclude this section on “primary” effects by comparing

the experimentally measured absorption and refraction of a sapphire wire with the

simulated equivalents predicted by the basic model, and by a model which accounts

for angular filtration, Pixirad’s energy response and the changes in source size and

spectrum. The wire radius was 125 µm, the spectrum was that of a 60 kVp

tungsten source filtered by 0, 2 mm, 4 mm and 8 mm of dural. The former figure

demonstrates that the refined model predicts the absorption signal of the wire with

greater accuracy, while the latter figure shows that the basic and refined model are

both capable of producing the wire’s phase profile, however the refraction angles

at the wire edges are over-estimated in both cases. The subsections that follow

describe model changes only applicable to McXtrace that aim to bridge the gap

between simulated and experimental IC offset intensities.

5.3.4 Refraction through and reflection from gold septa

in EI masks

Refraction of photons inside the mask components can affect their total path

length through gold, and if the incident angle is below the critical angle (θcrit =
√

2δ), reflections may occur, which may increase the overall width of the beamlets

if the propagation distance is sufficiently long. These effects are illustrated in Fig.

5.16 (a) and (b). Here, I model refraction only using McXtrace, as it is naturally

suited to 3D interactions, however it could also be modelled in wave optics if small

discrete propagation distances, or “slices”, through the mask component are con-

sidered.
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Figure 5.13: (a) Fitted and static source width as a function of the viewing angle;
(b) and (c) compare simulated and experimental IC widths and offsets respectively
for a 60 kVp tungsten spectrum. The effect of having variations in mask septa
density, shown in (d), on the IC offset are shown in (e). The Heel effect is included
in the relevant plots.
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Figure 5.14: Comparison of the absorption profiles of a sapphire wire for (a) 0,
(b) 2 mm, (c) 4 mm and (d) 8 mm dural filtration and the simulated equivalents
produced by the basic and refined wave optics models.

Figure 5.15: Comparison of the refraction profiles of a sapphire wire for (a) 0,
(b) 2 mm, (c) 4 mm and (d) 8 mm dural filtration and the simulated equivalents
produced by the basic and refined wave optics models.
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Figure 5.16: (a) Possible effects of reflection on the beamlet may include broaden-
ing if propagation distance of beamlet is long after the mask. (b) Slightly increased
path length through gold columns due to refraction, increasing the effects of angular
filtration by some amount.

Refraction between different media within the mask object were handled via

Snell’s law, while reflections required the introduction of a new function. X-rays

reflect mainly from high-Z materials (i.e. heavy metals) and only do so for very

shallow angles of incidence. The reflection coefficient, R(θ), for an x-ray beam

falling at an angle θ on a solid surface is given by the Fresnel formula [85]:

R(θ) =
(θ − θ1)2 + θ22
(θ + θ1)2 + θ22

exp
(
−4k2σ2

rough sin2 θ
)
, (5.3)

where θ1 = 2−
1
2 [((θ2− 2δ)2 + (2β)2)

1
2 + θ2− 2δ]

1
2 , θ2 = 2−

1
2 [((θ2− 2δ)2 + (2β)2)

1
2 −

θ2− 2δ]
1
2 , σrough is the root-mean-square height of the material roughness, k is the

wavenumber and δ and β are the real and imaginary parts of the refractive index.

The surface roughness of the gold septa could not be measured directly, how-

ever, as scientists at microWorks were investigating their electroplated structures

as possible x-ray mirrors, they were able to provide an estimate of the surface

roughness as being 15 nm. As Fig. 5.17 (b) shows, this reduces the likelihood of

reflections for all but the lowest energy photons nearly to zero.

The variation in simulation outputs for illumination curves where refraction is

enabled or disabled, for pixels along the optical axis and at the edge of the Pixirad

152



5.3 Model refinements

Figure 5.17: Reflection coefficient heat-maps of x-ray photons from SU-8 incident
on (a) smooth gold and (b) gold with root-mean-square surface roughness of 15 nm.

FoV, is shown in Fig. 5.18. Note that in producing this figure, the mask septa

are of uniform density, and the Heel effect and multi-counting physics were not

enabled in order to isolate the effect of refraction only.

Along the DLE, the IC offset does not increase noticeably when refraction is

included, however the effect is significantly greater towards the right edge of the

Pixirad FoV, where the IC offset is increased by ≈5%. This difference in IC offset

is similar to that due to multi-counting of photons, indicating that a model using

only the projection approximation for the masks, even if accounting for a curved

wavefront, may be insufficient to recreate experimental measurements.

5.3.5 Scattering through air

The EI masks are, by design, anti-scattering grids. However, scattering through

air was investigated here as a possible mechanism for increasing the flux arriving

at the detector while the masks are misaligned. The procedure for implementing

this in McXtrace is similar to that described by Busi et al. [86]. An “air-block”

component is placed between the source and M1, and also between M1 and M2.
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Figure 5.18: Effect of internal mask refraction physics on the IC for pixels on (a)
and far from (b) the optic axis.

Photons in these components move in discrete amounts depending on the total

thickness of the component, and after each movement a scattering event may

occur. The function used to determine whether or not scattering occurs does so

by comparing a randomly generated number against the probability of scattering

through a given volume of air coherently:

P (coherent) = 1− exp (−siρairσcoh(E)), (5.4)

and incoherently:

P (incoherent) = 1− exp (−siρairσinc(E)), (5.5)

where ρair is the density, si is the path length of the ray through the ith volume

and σcoh(E); σinc(E) are the coherent and incoherent scattering cross sections,

respectively, which were obtained from the NIST database. The probabilities of

scattering coherently and incoherently through 0.4 m of air (the distance between

sample and detector masks in a standard EI setup), and the Thompson and Klein-

Nishina distributions, are shown in Fig. 5.19. The scattering angles in both the

coherent and incoherent case are determined in the same way as described by Beni
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Figure 5.19: (a) The probabilities, as a function of photon energy, of coherently
and incoherently scattering through 0.4 m of air - the distance between M1 and
M2. (b) The angular energy dependent distributions of the scattering cross sections
for Thompson scattering (black dot-dashed line) and incoherent scattering (other
lines).

et al. [87]. In the event of coherent scattering, the angles are determined relating

a random number to a CDF described by:

CDFcoh =
1

2
− 1

8
cos3 θ − 3

8
cos θ. (5.6)

For incoherent scattering, the energy α of a scattered photon, relative to the

unscattered energy, α0, is first related to a random number ξ by the equation:

α =
α0

1 + ( α0

1+0.5625α0
)ξ +

(
2α0 − ( α0

1+0.5625α0
)
)
ξ3
, (5.7)

which arises from the Klein-Nishina formula. The scattering angle may then be

determined by the relation:

α

α0

=
1

1 + α0(1− cos θ)
. (5.8)

Upon simulating the ICs with these air-blocks in place, however, the effect of air-

scattering on all IC parameters was found to be negligible across the FoV for the

standard geometry of the EI setup. Experiments using low x-ray energies or long

setup lengths may measure some moderate effects due to scattering in air, but for

the purposes of this analysis, it may be safely neglected.
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Figure 5.20: Panel (a): (i) and (ii) show ICs produced by the refined wave optics
and McXtrace models, respectively, normalised by the DLE IC peak. Panel (b):
the amplitude (i), IC centre position (ii), IC width parameter (iii) and IC offset (iv)
for the simulated and measured ICs using an unfiltered spectrum. Panel (c): the
amplitude (i), width (ii) and offset (iii) for the simulated and measured ICs using
an 8 mm dural filtered beam.

Fig. 5.20 shows a collection of simulated ICs and their fitted parameters, in

addition to the measured parameters, for the unfiltered and maximally (8 mm

dural) filtered cases. Panel (a) shows example IC outputs from the wave optics

and Monte Carlo models, normalised by the peak value of the IC simulated in the

same position as the DLE, for an unfiltered 60 kVp beam. Panel (b) shows the

corresponding IC parameters, both measured and simulated, for amplitude (i),

centre position (ii), IC width (iii) and offset (iv). The trends for the simulated
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parameters of (i) - (iii) are generally in good agreement with the measured val-

ues, whereas the offset parameter is predicted by models as being slightly lower

than is measured, but this deviation decreases - particularly in the Monte Carlo

model - as the viewing angle increases. Panel (c) shows the amplitude, width and

offset parameters predicted by the wave optics model, along with the measured

values, for the 8 mm dural filtered beam; here the simulated and measured am-

plitudes and offsets are in agreement, with the latter indicating that refraction of

x-rays through the gold septa becomes less of a discrepancy between model and

experimental settings for high energy photons. Differences in the measured and

simulated width parameter, however, are evident, which could be due to chromatic

structure in the source spot being selectively filtered, or perhaps due to variations

in the gold septa’s density resulting in more (high energy) x-rays being transmit-

ted as the angle of incidence between wavefront and mask increases.

Overall, the effects of angular filtration, variable source size, detector response,

internal refraction within the masks and the Heel effect are all seen to affect ICs

with varying levels of significance, but the cumulative effects are important when

considering large FoVs, and cannot be neglected. As the average energy of the

spectrum increases, the effects of angular filtration and detector response begin

to dominate the IC offset parameter, as evidenced by the one produced by the

wave optics model - which neglects internal mask refraction - beginning to match

the experimental offset. Variations in mask septa density may lead to some minor

changes to the IC parameters, but as only the bulk density is known, this potential

effect was not examined thoroughly.
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5.4 A multi-slice wave optics model for wave

optics based dark field simulations

In comparison with Monte Carlo models, wave optics models are entirely deter-

ministic and, as a result, can be computationally efficient since there is no noise

due to an insufficient photon count, which is occasionally a drawback of Monte

Carlo methods. Complicated samples may be simulated in the current 1D EI

model, however there are two restrictions:

• In the 1D case, simulating objects whose size varies over small regions (i.e.

comparable to the mask apertures) in two dimensions (e.g. microspheres as

cylinders) is a poor approximation.

• The projection approximation for complex samples in 3D space must be

valid [88].

A simulation tool developed recently within the Advanced X-ray Imaging group at

UCL [89] overcomes both of these issues by partitioning a sample into slices thin

enough such that the projection approximation is valid. In this way, the projection

approximation is applied to each slice in sequence. The code is inherently 3D ready

and, in collaboration with the author, was adapted for use in conjunction with

my refined EI model that accounts for changing system parameters in different

positions of the FoV.

The models were combined as shown in Fig. 5.21. The refined EI model

calculates a waveform corresponding to a plane wave that has been transmitted

through M1. The sample mask transmission function is a projection of a mask

rotated through some angle, as described previously, depending on which pixel

region in the Pixirad FoV is being simulated. For each energy, the sampling of

the wavefront, as well as the attenuation of the beam by the mask, is adjusted
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Figure 5.21: Scheme for combining multi-slice and refined wave optics model for
dark field EI simulations: the refined model produces a wavefront immediately after
the sample mask, which is used as input to the multi-slice code. After propagating
the wavefront through the sample and to the detector mask plane, the refined EI
model processes the waveform to produce an IC.

to ensure that aliasing is negligible. In representing the sample - in this case

an arrangement of microspheres suspended in water - the multi-slice code is ex-

ecuted. The waveform is multiplied with the projected transmission function of

each sphere, and then propagated from the plane of the sphere’s centre to that of

the next sphere using angular spectrum propagation. Finally, the wave is propa-

gated from the end of the sample to the detector plane, where a convolution on

the field intensity to account for source blurring is performed, then the EI model

again provides a transmission function for M2. This is applied to the intensity

matrix before convolutions with the pixel and PSF functions take place as normal.

In order to reduce the computation time of the simulation, which guarantees

correct sampling of the field, several optimisations were made to the code, as listed

below.

• In the original version of the code, slice thicknesses were set to be equal

to the spacing between spheres with adjacent axial coordinates. This was

altered such that slices of thickness 500 µm were considered. This required

that each sphere within the slice be represented by the projection function

corresponding to the slice in which it is located. Furthermore, angular spec-
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trum propagation is used to propagate the field by a distance of 500 µm for

each slice considered.

– The effect of using thicker slices was investigated by comparing the IC

outputs for slice thicknesses ranging from 1 µm to 500 µm. The ICs in

a 5×5 pixel grid were found to remain constant, as illustrated in Fig.

5.22. The discretisation having little impact on the resulting intensity

is in agreement with the findings reported by Malecki et al. [90].

• As the complex amplitude matrices could be as large as 3 GB in some cases,

the size of the area being sampled was restricted to a 5×5 pixel region for all

energies, with the sampling being increased as necessary; this reduced the

memory requirements by more than three times.

• ICs were acquired by shifting the detector mask over one mask period, in-

stead of the sample mask, thus removing the need to repeatedly simulate

the sample, which was the most computationally demanding step. This was

found to produce the same ICs as previously output by the refined 1D model,

in which the sample mask was translated.

• As the multi-slice code iterates for all energies in a spectrum being consid-

ered, the size of each energy bin was increased from 1 keV to 2 keV.

– The error in average beam energy due to this change is less than 0.5

keV for both the unfiltered and 8 mm filtered spectra.

• Microsphere shells were not modelled, with the spheres instead being treated

as voids (as was originally modelled in the method by Millard et al. [80]).

Four concentrations of microspheres in water, for 0, 4 mm and 8 mm dural filtra-

tion applied to a 60 kVp tungsten spectra were simulated. These concentrations

corresponded to 100%, 50%, 10% and 5% of the stock concentration described

in the previous chapter (where 100% concentration implies 2.3% fill by volume),
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Figure 5.22: Effect of increasing the size of discrete slices used in the multi-
slice wave optics code on IC outputs. Each subplot corresponds to individual pixel
ICs where discretisations of 1 µm, 100 µm, 250 µm and 500 µm are used in the
simulation. These ICs are monochromatic 30 keV - the approximate mean energy
of the unfiltered 60 kVp beam - with a point-like source and a detector with a delta
function PSF in order to ensure any changes are due to the discretisation alone.

and were simulated in the same detector FoV positions as in those experiments

(see Fig. 4.13 (a)); the maps of sphere coordinates were generated in the same

way as described in Chapter 3. Simulated mask parameters were those that have

been described for the Pixirad masks in this chapter, with a uniform density septa

of 90% solid gold and septa thicknesses as measured. The simulated area was a

square of sides 310 µm, or 5 pixels in both the horizontal and vertical directions.

Transmission and dark field signals were retrieved on a pixel-by-pixel basis

using the same method described in Chapter 4 with 21 sampling points on the

IC, and also using the three-Gaussian method developed by Maughan-Jones et

al. [91], with the retrieved signals - shown in Fig. 5.23 - being equivalent. As in

Fig. 4.12, the transmission and USAXS signals of all concentrations decrease, in

general, with increasing dural filter thickness. The USAXS signals produced by the

different concentrations are of the same magnitude seen experimentally, and have

mean values that do not “cross over” each other as the filter thickness increases.

Except for the 10% concentration, which has a lower retrieved signal than the
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Figure 5.23: Retrieved transmission (a) and dark field signals (b) from wave optics
simulation of different concentrations of microspheres in water, accounting for the
angular filtration, variations in source size, and the Heel effect, for increasing dural
filter thickness. Each concentration was simulated as being in the same FoV position
as in experiments - see Fig. 4.13 (a).

5% concentration, signals produced by the different phantoms are correlated with

their microsphere concentrations. In addition, the range of scattering uncertainties

for all concentrations, or the spread of retrieved signals over the 5×5 pixel grid,

is very large relative to the mean signals. The reasons for these two observations

are as follows:

• The retrieval:

– The average width parameters of ICs simulated in the absence of a

sample, for pixel numbers 100 and 400, are ≈ 8.55 µm and ≈ 8.14 µm,

with 95% confidence regions being on the order of 0.04 µm; the widths

of ICs simulated in the presence of a scattering sample are on the order

of ≈ 8.6 µm and ≈ 8.3 µm, for the 50% and 100% concentrations

respectively. As the scattering signal is the difference between squared

width parameters of the sample and flat ICs, only scattering signals

produced by the highest concentrations, or greater, can be distinguished

while, although the lower concentrations may generate some detectable
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dark field signal, they cannot be well separated from each other by

those signals.

– Absorption due to a sample cannot be well separated from the effects of

scattering, as these signals affect the ICs in “opposite” ways, depending

on where the IC is being sampled - in general, scattering redistributes

the area under the IC, decreasing the peak value and increasing the

offset, whereas absorption decreases the IC uniformly. This mixing

of signals is reflected in the size of the error bars associated with the

transmission contrast in Fig. 5.23 (a), which are greatest for the highest

concentration of microspheres. That the IC offset varies significantly

across the FoV also makes retrieval of a consistent scattering signal

more difficult.

• Differences in mean energy reaching the detector for the different pixel po-

sitions.

– In the absence of any samples for the two pixel positions, the average

energies are shown for each IC position in the unfiltered and 8 mm dural

filtered cases in Fig. 5.24. While possibly small in absolute terms, this

effect would become relatively more important when signals from low

concentrations of microspheres need to be retrieved. When considering

this figure, it should be noted that, as the masks become misaligned,

the high energy photons transmitted through the mask septa do not

contribute to the dark field signals, rather, they contribute only to the

background.

• Different microsphere ensembles.

– As described above, the sensitivity of the IC width fitting is required

to be very high; different numbers, and placement, of spheres within a

given sphere map, and especially between different maps, lead to vari-
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Figure 5.24: Average energy of spectra arriving at the detector plane for pixels 100
and 400. Each position of the IC is considered and (a) corresponds to an unfiltered
60 kVp tungsten spectrum, while (b) corresponds to the same beam filtered by 8
mm dural.

ations in scattering signal that arrive in any given pixel. The accuracy

of average scattering signals could perhaps be improved by simulating

larger volumes of microspheres in water, though this would increase the

computational load significantly.

In terms of the dark field signal, Fig. 5.23 (b) shows that, if only the mean

signal is considered, different concentrations of microspheres may be distinguished

if the absolute concentration is sufficiently high. Indeed, comparing this figure

with Fig. 3.6, which showed considerable variation in retrieved scattering signals

for different sphere concentrations, we are assured that microspheres do produce

USAXS signals at high energies, and that different concentrations may be sepa-

rated through comparison of their dark field signals in an optimised EI system.

Taking into account the spread of scattering signals shown by the error bars in

Fig. 5.23 (b), however, implies that distinguishing different microsphere concen-

trations with this EI system has several inherent difficulties. First, that there is

a minimum detectable scattering distribution that depends on the accuracy, and

values, of the fitted IC parameters; this is exemplified by the 10% concentration’s

scattering signal, which falls within a “gray zone” of detectability, as its error bars

extend below zero and the mean signal is the lowest of those simulated. Second,
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noise - and by extension, the position in the FoV, which determines the overall

intensity due to angular filtration - will have a significant effect on the retrieval,

meaning that larger RoIs may be required in order to produce a statistically sig-

nificant average scattering signal. Third, samples placed in different areas of the

detector FoV produce different transmission and scattering signals; this could be

accounted for through modelling, where the work required would potentially be

extensive, or by calibration of a scattering sample in the experimental environ-

ment. Optimisation of a lab-based setup may potentially be achieved by reducing

the initial width of the system’s illumination curve, which would increase the sen-

sitivity to scattering, and to find ways of reducing the experimental offset intensity

as much as possible, thus decoupling the effects of absorption and scattering in the

retrieval phase. These could both be accomplished through a variety of methods,

such as changing the system geometry, decreasing the widths of mask apertures,

collimating the source, or finding ways of increasing the density of electroplated

gold.

5.5 Conclusions

The active FoV of the Pixirad detector is approximately 3 cm long, but EI char-

acteristics - as seen in the illumination curve function - vary significantly over this

region. Thick mask septa, and the high energies employed during these experi-

ments, have made these effects particularly evident, and a sophisticated model was

required in order to understand the physical mechanisms at play in the system.

In order of significance, these effects are:

• Angular filtration of the beam due to the thick mask septa, which must be

accurate if simulating a large FoV;

• Variations in source size, energy and flux due to the system geometry (due

to the Heel effect and inverse square law, respectively);
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• The detector response as a function of both photon energy and how closely

the photon arrives to a pixel boundary;

• Refraction within the mask structures at the aperture - septa interfaces,

which become more important as the angle at which the source is viewed

increases, particularly for low energies, as refraction increases the angular

filtration effect.

Each of the above effects were incorporated into two existing models based on

wave optics and Monte Carlo techniques. Accurate spectral modelling - affected by

the mechanisms described above - benefits retrieval of absorption signals, whereas

phase retrieval of wire profiles is not noticeably improved by the refined models

compared to the basic versions. The IC parameters, which characterise the EI

system, were recreated well across the FoV in both models for all filter thick-

nesses, though small deviations between simulation and experiment exist, these

are likely due to small-scale variations of the real mask parameters across the FoV.

Concerning the retrieval of weakly scattering ensembles of microspheres, a

model for multi-slice dark field simulations was used in combination with the

refined EI model to virtually recreate the conditions of microsphere scattering

experiments described in the previous chapter. The results of this investigation

suggest that, if the difference in microsphere concentrations is sufficiently large

(the threshold for which depends on the spectrum and IC parameters), a lab-

based EI system may be capable of distinguishing them under certain conditions,

namely that their positions in the FoV be accounted for, and that the accuracy of

fitted IC parameters is sufficiently high - the requirements of which, again, depend

on the magnitude of scattering signal being considered.

The implications of this refined model, and the experimental data they recre-

ate, are that if large fields of view are required in conjunction with current designs
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of thick absorbing masks, angular filtration is likely to reduce the system’s perfor-

mance. Possible applications of the model exist in both EI and grating interferom-

etry, and would be especially useful for predicting the performance of new mask

or grating designs. In-house, the model may be useful when considering ways to

optimise existing EI systems for phase and dark field imaging. Further research

regarding the effects of the IC offset (produced by the physical mechanisms de-

scribed above) on the retrieval algorithm’s accuracy may also be beneficial, as this

is the IC parameter that varies most significantly within the EI system’s FoV.
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Conclusion and future work

The work presented in this thesis explores the feasibility and inherent challenges

of edge illumination (EI) based X-ray phase contrast imaging (XPCi) with high

x-ray energies to produce images of good quality while maintaining a constant

dose. The motivations for the work are derived, in part, from successful dark

field imaging experiments of different concentrations of microspheres [80] using

synchrotron based ABI and hence repeating those measurements in an EI system

with thick mask septa which, if successful, would have potential applications in a

variety of industrial, security and medical settings. The investigation was carried

out through a combination of experimental XPCi measurements, dedicated mea-

surements of individual EI optical components (masks) themselves, and extensive

modelling of the EI system in various settings. In this chapter, summaries of the

thesis’ main findings are presented, followed by suggestions for further research

that could build on these results to better optimise the EI system for a variety of

applications.
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6.1 Conclusion

XPCi techniques, which generally produce superior images compared to tradi-

tional x-ray attenuation images, are on the verge of being adopted in a variety of

medical and industrial applications. Their use, however, has often been restricted

to synchrotron facilities, with limited availability, high costs and fixed locations

restricting their use. Translating from synchrotron to in-house, or research facili-

ties, while maintaining image quality, remains one of the key challenges in XPCi

research. In particular, fast, dose-constrained measurements and rapid analysis of

data for large, complex samples, ex- and in-vivo, are perhaps the most significant

barriers to the widespread use of XPCi in clinical or commercial settings.

X-ray sources, x-rays, their interactions with matter and their use in imaging

were examined broadly, after which several XPCi methods were described, with a

focus on EI. To provide a basis upon which fine details of the EI system could be

discussed, the technologies used in x-ray imaging detectors, along with methods

used in the creation of XPCi masks and gratings, were also described. EI setups

in experimental and simulated environments were used in order to demonstrate

the possibility of high energy phase and dark field imaging; components used

in these EI systems, and their positioning therein, were examined in detail to

understand how the system behaviour changes under a variety of conditions. With

an understanding of why certain limitations arise, it is hoped that the knowledge

may be used to find new implementations that overcome these limits.

6.1.1 Dark field imaging with high energy synchrotron

radiation

A description of the experimental setup was provided, followed by an overview of

the simulation tool, McXtrace, that was used to model the system. Illumination
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curves (ICs), which characterise EI systems, were acquired for all pixels that were

not obscured by the detector mask, with both the ensemble and individual curves

being used in two different retrieval approaches. The use of individual pixel ICs

in this case presents an opportunity to use fewer input frames than are normally

required by retrieval algorithms.

Experiments that used monochromatic 50 keV photons were performed first

on standard wire samples, which allowed for a straightforward comparison of the

two retrieval approaches where single-frame acquisitions achieved equal or better

signal to noise (SNR) values of the wire than the “standard” two-frame approach,

despite using only half of the data set. The fact that the noise in retrieved images

was lower even while using half the data set was attributed to errors in the IC

sampling positions used, which affected the retrieval algorithm more in the two-

frame case. Microspheres of increasing concentrations in ultrasound gel were then

imaged at multiple sampling points on the IC, and the reduced-frame (two in this

case) approach was again compared with the standard approach (which requires

three frames). Both retrievals enabled the recovery of dark field signals whose

magnitude increased with the concentration of microspheres. It was found, how-

ever, that the uncertainty in retrieved dark field signals was significantly greater

in the reduced-frame case compared to the standard three frame one.

A combination of analytical and McXtrace modelling was then used to un-

derstand why this was the case. The retrieval algorithm was tested against all

possible sampling positions, revealing that those used in-experiment were sub-

optimal when considering a reduced-frame implementation. As the experimental

setup in the reduced-frame case shared similarities with that used in beam tracking

(BT), a comparison of both setups was also carried out, with the retrieval outputs

being of similar quality. Finally, McXtrace was used to demonstrate that a single

170



6.1 Conclusion

frame could be used to retrieve scattering signals where the sampling position of

the IC was chosen according to best-predictions from the analytical model.

6.1.2 Lab-based XPCi experiments with increasing mean

energies.

In some imaging scenarios, such as those found in clinical settings, x-ray beams

are polychromatic and samples can be dense, have significant depth, or exhibit

some combination thereof. This can lead to inefficient use of photons due to the

majority of low-energy x-rays being absorbed by the sample and not contributing

to image formation. A possible solution is to pre-filter the beam such that these

low energy rays do not reach, and hence do not deposit, any unnecessary dose in

the sample. The disadvantage of filtering is that the contrast of materials typically

decreases with the increasing average energy resulting from the filtration itself.

Experiments were performed with two different systems employing two differ-

ent detectors (a CdTe single photon counter - Pixirad - and an indirect conversion

CMOS-based flat panel - Hamamatsu) in order to determine how the SNR, for a

variety of wires of differing materials imaged using an EI system, depends upon

the amount of filtration applied to a 60 kVp tungsten anode beam. Different mask

designs, host media, dose and noise constraints were considered, with a wave optics

model being benchmarked by the experimental measurements. Samples expected

to exhibit ultra-small-angle x-ray scattering (USAXS) were also imaged with the

system that was expected to be more suited to high-energy x-rays - the “Pixirad

system” - due to the thick septa used in the masks and the supposedly “flat”

energy response of the Pixirad detector. Good agreement was found between

experimental and simulated data for the “Hamamatsu system”, with the model

then being used to make predictions of how SNR for different materials measured

through water varies with increasing average energy. Simulations meant to model
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the Pixirad system were only partially successful, whereby the best agreement

between simulated and experimental results was achieved by assuming the values

of some physical parameters as being excessively different to their nominal ones,

which was considered unrealistic.

The SNR for wires in air decreases with increasing energy, with refraction ef-

fects enabling detection of wires that would be invisible using attenuation contrast

alone. For wires imaged through water, which is often a better representation of

imaging in-vivo features, the SNR was found to increase initially - due to noise

decreasing at a greater rate than wire signals - and then decrease with increas-

ing energy. When retrieving dark field signals due to scattering samples with the

Pixirad system, the porous sponge material showed a decreasing signal in air for

increasing filter thickness, and had no discernible signal when immersed in water,

thus illustrating the finite ability to distinguish materials when immersed in media

of similar refractive index. The different concentrations of microspheres produced

scattering signals whose large uncertainties made distinguishing them difficult. It

was observed that the position in the filed of view (FoV) at which the concen-

trations were imaged had a significant impact on the retrieved scattering signal,

which prompted further investigations.

6.1.3 Model refinements for high energy Edge

Illumination XPCi systems

Models of imaging systems are useful for their ability to predict performance of, or

discover issues with, proposed implementations. In EI and other XPCi methods,

models exist and have been benchmarked against a variety of different experimen-

tal settings. However, using standard EI models for the Pixirad experiments failed

to adequately capture the system parameters, especially when considering differ-

ent x-ray spectra. A variety of x-ray based and ultimately direct measurements of
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the EI masks were performed in order to determine the thickness and density of

their absorbing septa. Different physical mechanisms were then incorporated into

the Monte Carlo and wave optics models until it became possible to reproduce the

system characteristics measured experimentally.

The effects that were added were as follows:

• Mask components were changed from a 2D to 3D implementation that allows

for evaluation of angular filtration as a function of mask thickness.

• The density profiles of absorbing mask septa are allowed to diverge from the

nominal density of solid gold; this is to account for the difference in density

exhibited by electroplated gold.

• Mask aperture fillings of epoxy-resin based SU-8, which harden the spectrum

and reduce the beam flux.

• The apparent size of the source is allowed to vary as a function of the angle

at which it is viewed.

• The energy response of a photon counting detector is included to account

for single photons being counted multiple times if their energy is more than

twice that of the lower energy threshold for the detector. This is particularly

important in an EI setting, as when the masks are misaligned, high energy

photons are predominantly detected, thus increasing the IC offset parameter.

• The Heel effect, which weakly changes the average beam energy across the

FoV due to variations in the x-ray anode’s self filtering, was included.

• Refraction of photons within mask components; photons refract along septa

walls to be directed further into the gold, thus increasing the loss of intensity

due to angular filtration.
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This refined model was then used in combination with an additional model,

developed for wave optics simulations of ensembles of spheres, to recreate the

scattering signal results of the previous chapter; the simulated sphere ensembles

produced dark field signals of a similar magnitude to those measured experimen-

tally in the lab. Furthermore, in terms of the distinguishability between different

concentrations of microspheres, high absolute concentrations appear to be sepa-

rable by their dark field signals, even when imaged in different parts of the FoV,

while smaller absolute concentrations produce dark field signals too small to be

cleanly separated. The limitations of dark field sensitivity are due to the width

of the IC function, the non-zero offset parameter, noise - each of which vary con-

siderably across the FoV - and, potentially, the size of the RoI being considered,

as scattering distributions are non-uniform by their very nature, and larger RoIs

may improve the precision of retrieved USAXS signals.

6.2 Future work

A rigorous model capable of simulating complex attenuating, refracting and scat-

tering samples has been constructed and with it, the sensitivity of the EI system to

small dark field signals has been explored. An important application of this model

would be to explore which system factors (e.g. IC parameters, geometry of setup,

mask parameters) impose the most significant limitations in the detection of dark

field signals; comparisons of such signals measured in a single FoV location, for

example, may result in greater distinguishability, while multiple imaging locations

could be used to construct a calibration function that could be verified through

experimental work. Techniques developed to predict trends in noise statistics for

different levels of beam filtration, while maintaining constant dose, should also

be combined with the refined EI models both to improve their accuracy and to

improve their predictive capabilities.
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In terms of the retrieval methods used, one that corrects for the position in the

FoV could potentially be constructed through a calibration function, for instance,

the scattering signal of a sample is determined for several pixel positions, and the

variation then used to scale subsequently retrieved values. Alternatively, as the

Pixirad detector is to some extent capable of photon discrimination by energy,

experiments could be performed where the lower energy threshold is gradually

increased, and the pixel responses across the FoV monitored, thus revealing more

detailed information about the spectrum, which could be used to implement multi-

energy retrievals.

As high IC offsets reduce the sensitivity to phase effects, and are determined

by a combination of source size, transmission through the masks, and other sec-

ondary effects, finding ways of reducing the offset that do not rely solely on thick

mask septa should also be investigated. These could begin by considering possi-

ble changes to the setup geometry, collimating the source, or reducing the mask

aperture widths, to name but a few options.

Secondly a focus on the practical elements of EI, with the aim of minimis-

ing the IC offset parameter consistently across the FoV, should also be pursued;

potentially this could involve new designs of the masks themselves. However, as

new mask formats are difficult to fabricate, it would first be useful to learn how

the density profiles of mask septa evolve during fabrication, as this may be ad-

vantageous in some designs. Alternatively, it may be possible to develop masks

with a defined curvature that matches that of a wavefront, thus transmitting the

beam uniformly and without any angular filtration. If both of these pursuits are

followed, the possible gains in fast, dose-constrained dark field imaging could be

significant.
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The practical limitations of the EI setups considered here need not apply uni-

versally, and if the above attempts to reduce the lower limit of detectable dark

field signals are successful, EI could be used in a variety of medical, security and

industrial settings. In particular, considerations of dose, or of minimising exposure

time, in relation to SNR should be combined with the refined models, which could

be extended even further to compare the efficacy of EI against that of different

XPCi systems in a variety of settings, with GI - which utilises gratings fabricated

in similar ways to the EI masks - being one possible example.
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