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In contrast to KAT, whose equational theory is PSPACE-complete, we show that the equational theory of
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a suitable definition of well-nestedness that underpins our main results.

1 INTRODUCTION

Computer scientists have long explored the connections between families of programming lan-
guages and abstract machines. This dual perspective has furnished deep theoretical insights as
well as practical tools. As an example, Kleene’s classic result establishing the equivalence of reg-
ular expressions and finite automata [Kleene 1956] inspired decades of work across a variety of
areas including programming language design, mathematical semantics, and formal verification.
Kleene Algebra with Tests (KAT) [Kozen 1996], which combines Kleene Algebra (KA) with

Boolean Algebra (BA), is a modern example of this approach. Viewed from the program-centric
perspective, a KATmodels the fundamental constructs that arise in programs: sequencing, branch-
ing, iteration, etc. The equational theory of KAT enables algebraic reasoning and can be finitely
axiomatized [Kozen and Smith 1996]. Viewed from the machine-centric perspective, a KAT de-
scribes a kind of automaton that generates a regular language of traces. This shift in perspec-
tive admits techniques from coalgebra for reasoning about program behavior. In particular, there
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2 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva

are efficient algorithms for checking bisimulation, which can be optimized using properties of
bisimulations [Bonchi and Pous 2013; Hopcroft and Karp 1971] or symbolic automata representa-
tions [Pous 2015].
KAT has been used to model computation across a wide variety of areas including program

transformations [Angus and Kozen 2001; Kozen 1997], concurrency control [Cohen 1994b], com-
piler optimizations [Kozen and Patron 2000], cache control [Barth and Kozen 2002; Cohen 1994a],
and more [Cohen 1994a]. A prominent recent application is NetKAT [Anderson et al. 2014], a lan-
guage for reasoning about the packet-forwarding behavior of software-defined networks. NetKAT
has a sound and complete equational theory, and a coalgebraic decision procedure that can be
used to automatically verify many important networking properties including reachability, loop-
freedom, and isolation [Foster et al. 2015]. However, while NetKAT’s implementation scales well in
practice, deciding equivalence for NetKAT is PSPACE-complete in the worst case [Anderson et al.
2014].
A natural question to ask is whether there is an efficient fragment of KAT that is reasonably

expressive, while retaining a solid foundation. We answer this question positively with a compre-
hensive study of Guarded Kleene Algebra with Tests (GKAT), the guarded fragment of KAT. GKAT
is a propositional abstraction of imperative while programs. We establish the fundamental prop-
erties of GKAT and develop its algebraic and coalgebraic theory. GKAT replaces the union (e + f )

and iteration (e∗) constructs in KAT with guarded versions: conditionals (e +b f ) and loops (e(b ))
guarded by Boolean predicates b. The resulting language is a restriction of full KAT, but sufficiently
expressive to model typical, imperative programs—e.g., essentially all NetKAT programs needed
to solve practical verification problems can be expressed as guarded programs.
In exchange for a modest sacrifice in expressiveness, GKAT offers two significant advantages.

First, program equivalence (for a fixed Boolean algebra) is decidable in nearly linear time—a sub-
stantial improvement over the PSPACE complexity for KAT [Cohen et al. 1996]. Specifically, any
GKAT expression e can be represented as a deterministic automaton of size O(|e |), while KAT
expressions can require as many as O(2 |e |) states. As a consequence, any language property that
is efficiently decidable for deterministic automata is also efficiently decidable for GKAT. Second,
we believe that GKAT is a better foundation for probabilistic languages due to well-known is-
sues that arise when combining non-determinism—which is native to KAT—with probabilistic
choice [Mislove 2006; Varacca and Winskel 2006]. For example, ProbNetKAT [Foster et al. 2016],
a probabilistic extension of NetKAT, does not satisfy the KAT axioms, but its guarded restriction
forms a proper GKAT.
Although GKAT is a simple restriction of KAT at the syntactic level, its semantics is surprisingly

subtle. In particular, the “obvious” notion of GKAT automata can encode behaviors that would re-
quire non-local control-flowoperators (e.g,goto ormulti-level break statements) [Kozen and Tseng
2008]. In contrast, GKAT models programs whose control-flow always follows a lexical, nested
structure. To overcome this discrepancy, we identify restrictions on automata to enable an ana-
logue of Kleene’s theorem—every GKAT automaton satisfying our restrictions can be converted
to a program, and vice versa. Besides the theoretical interest in this result, we believe it may also
have practical applications, such as reasoning about optimizations in a compiler [Hendren et al.
1992]. We also develop an equational axiomatization for GKAT and prove that it is sound and com-
plete over a coequationally-defined language model. The main challenge is that without +, the
natural order on KAT programs can no longer be used to axiomatize a least fixpoint. We instead
axiomatize a unique fixed point, in the style of Salomaa’s work on Kleene Algebra [Salomaa 1966].

Outline. We make the following contributions in this paper.
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Guarded Kleene Algebra with Tests 3

• We initiate a comprehensive study of GKAT, a guarded version of KAT, and show howGKAT
models relational and probabilistic programming languages (§ 2).
• We give a new construction of linear-size automata from GKAT programs (§ 4). As a conse-
quence, the equational theory of GKAT (over a fixed Boolean algebra) is decidable in nearly
linear time (§ 5).
• We identify a class of automata representable as GKAT expressions (§ 4) that contains all
automata produced by the previous construction, yielding a Kleene theorem.
• We present axioms for GKAT (§ 3) and prove that our axiomatization is complete for equiv-
alence with respect to a coequationally-defined language model (§ 6).

Omitted proofs appear in the appendix.

2 OVERVIEW: AN ABSTRACT PROGRAMMING LANGUAGE

This section introduces the syntax and semantics of GKAT, an abstract programming language
with uninterpreted actions. Using examples, we show how GKAT can model relational and proba-
bilistic programming languages—i.e., by giving actions a concrete interpretation. An equivalence
between abstract GKAT programs thus implies a corresponding equivalence between concrete
programs.

2.1 Syntax

The syntax of GKAT is parameterized by abstract sets of actions Σ and primitive tests T , where
Σ and T are assumed to be disjoint and nonempty, and T is assumed to be finite. We reserve p
and q to range over actions, and t to range over primitive tests. The language consists of Boolean
expressions, BExp, and GKAT expressions, Exp, as defined by the following grammar:

b, c,d ∈ BExp ::=

| 0 false
| 1 true
| t ∈ T t
| b · c b and c
| b + c b or c

| b not b

e, f ,д ∈ Exp ::=

| p ∈ Σ do p
| b ∈ BExp assert b
| e · f e ; f
| e +b f if b then e else f

| e(b ) while b do e

The algebraic notation on the left is more convenient whenmanipulating terms, while the notation
on the right may be more intuitive when writing programs. We often abbreviate e · f by e f , and

omit parentheses following standard conventions, e.g., writing bc + d instead of (bc)+d and e f (b )

instead of e(f (b )).

2.2 Semantics: Language Model

Intuitively, we interpret a GKAT expression as the set of “legal” execution traces it induces, where
a trace is legal if no assertion fails. To make this formal, let b ≡BA c denote Boolean equivalence.
Entailment is a preorder on the set of Boolean expressions, BExp, and can be characterized in terms
of equivalence as follows: b ≤ c ⇐⇒ b + c ≡BA c . In the quotient set BExp/≡BA (the free Boolean
algebra on generatorsT = {t1, . . . , tn}), entailment is a partial order [b]≡BA ≤ [c]≡BA :⇐⇒ b+c ≡BA
c , with minimum and maximum elements given by the equivalence classes of 0 and 1, respectively.
The minimal nonzero elements of this order are called atoms. We let At denote the set of atoms
and use lowercase Greek letters α , β, . . . to denote individual atoms. Each atom is the equivalence
class of an expression of the form c1 · c2 · · · cn ∈ BExp with ci ∈ {ti , ti }. Thus we can think of
each atom as representing a truth assignment onT , e.g., if ci = ti then ti is set to true, otherwise if
ci = ti then ti is set to false. Likewise, the set {α ∈ At | α ≤ b} can be thought of as the set of truth

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article . Publication date: January 2020.
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assignments where b evaluates to true; ≡BA is complete with respect to this interpretation in that
two Boolean expressions are related by≡BA if and only if their atoms coincide [Birkhoff and Bartee
1970].

A guarded string is an element of the regular set GS ≔ At · (Σ · At)∗. Intuitively, a non-empty
string α0p1α1 · · ·pnαn ∈ GS describes a trace of an abstract program: the atoms αi describe the
state of the system at various points in time, starting from an initial state α0 and ending in a final
state αn , while the actions pi ∈ Σ are the transitions triggered between the various states. Given
two traces, we can combine them sequentially by running one after the other. Formally, guarded
strings compose via a partial fusion product ⋄ : GS × GS⇀ GS, defined for x ,y ∈ (At ∪ Σ)∗ as

xα ⋄ βy ≔

{
xαy if α = β

undefined otherwise.

This product lifts to a total function on languages L,K ⊆ GS of guarded strings, given by

L ⋄K ≔ {x ⋄y | x ∈ L,y ∈ K}.

We need a few more constructions before we can interpret GKAT expressions as languages repre-
senting their possible traces. First, 2GS with the fusion product forms a monoid with identity At
and so we can define the n-th power Ln of a language L inductively in the usual way:

L0 ≔ At Ln+1 ≔ Ln ⋄ L

Second, in the special case where B ⊆ At, we write B for At − B and define:

L +B K ≔ (B ⋄ L) ∪ (B ⋄K) L(B) ≔
⋃

n≥0

(B ⋄ L)n ⋄ B

We are now ready to interpret GKAT expressions as languages of guarded strings via the seman-
tic map J−K : Exp→ 2GS as follows:

JpK ≔ {αpβ | α , β ∈ At}

JbK ≔ {α ∈ At | α ≤ b}

Je · f K ≔ JeK ⋄ Jf K

Je +b f K ≔ JeK +JbK Jf K

Je(b )K ≔ JeK(JbK)

We call this the language model of GKAT. Since we make no assumptions about the semantics of
actions, we interpret them as sets of traces beginning and ending in arbitrary states; this soundly
overapproximates the behavior of any instantiation. A test is interpreted as the set of states satis-
fying the test. The traces of e · f are obtained by composing traces from e with traces from f in all
possible ways that make the final state of an e-trace match up with the initial state of an f -trace.
The traces of e+b f collect traces of e and f , restricting to e-traces whose initial state satisfies b and

f -traces whose initial state satisfies b. The traces of e(b ) are obtained by sequentially composing

zero or more be-traces and selecting traces ending in a state satisfying b.

Remark 2.1 (Connection to KAT). The expressions for KAT, denoted KExp, are generated by the
same grammar as for GKAT, except that KAT’s union (+) replaces GKAT’s guarded union (+b )

and KAT’s iteration (e∗) replaces GKAT’s guarded iteration (e(b )). GKAT’s guarded operators can
be encoded in KAT; this encoding, which goes back to early work on Propositional Dynamic
Logic [Fischer and Ladner 1979], is the standard method to model conditionals and while loops:

e +b f 7→ be + b f e(b ) 7→ (be)∗b

Thus, there is a homomorphismφ : Exp→ KExp fromGKAT to KAT expressions.We inherit KAT’s
language model [Kozen and Smith 1996], KJ−K : KExp→ 2GS, in the sense that J−K = KJ−K ◦ φ.

The languages denoted by GKAT programs satisfy an important property:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article . Publication date: January 2020.



Guarded Kleene Algebra with Tests 5

Definition 2.2 (Determinacy property). A language of guarded strings L ⊆ GS satisfies the determi-

nacy property if, whenever string x ,y ∈ L agree on their first n atoms, then they agree on their
first n actions (or lack thereof). For example, {αpγ ,αpδ , βqδ } and {αpγ , β} for α , β satisfy the
determinacy property, while {αpβ,α} and {αpβ,αqδ } for p , q do not.

We say that two expressions e and f are equivalent if they have the same semantics—i.e., if JeK =
Jf K. In the following sections, we show that this notion of equivalence

• is sound and complete for relational and probabilistic interpretations (§ 2.3 and 2.4),
• can be finitely and equationally axiomatized in a sound (§ 3) and complete (§ 6) way, and
• is efficiently decidable in time nearly linear in the sizes of the expressions (§ 4 and 5).

2.3 Relational Model

This subsection gives an interpretation of GKAT expressions as binary relations, a commonmodel
of input-output behavior for many programming languages. We show that the language model is
sound and complete for this interpretation. Thus GKAT equivalence implies program equivalence
for any programming language with a suitable relational semantics.

Definition 2.3 (Relational Interpretation). Let i = (State, eval, sat) be a triple consisting of

• a set of states State,
• for each action p ∈ Σ, a binary relation eval(p) ⊆ State × State, and
• for each primitive test t ∈ T , a set of states sat(t) ⊆ State.

Then the relational interpretation of an expression e with respect to i is the smallest binary relation
Ri JeK ⊆ State × State satisfying the following rules,

(σ ,σ ′) ∈ eval(p)

(σ ,σ ′) ∈ Ri JpK

σ ∈ sat†(b)

(σ ,σ ) ∈ Ri JbK

(σ ,σ ′) ∈ Ri JeK (σ ′,σ ′′) ∈ Ri Jf K

(σ ,σ ′′) ∈ RiJe · f K

σ ∈ sat†(b) (σ ,σ ′) ∈ RiJeK

(σ ,σ ′) ∈ Ri Je +b f K

σ ∈ sat†(b) (σ ,σ ′) ∈ Ri Jf K

(σ ,σ ′) ∈ RiJe +b f K

σ ∈ sat†(b) (σ ,σ ′) ∈ Ri JeK (σ ′,σ ′′) ∈ RiJe
(b )K

(σ ,σ ′′) ∈ Ri Je
(b )K

σ ∈ sat†(b)

(σ ,σ ) ∈ Ri Je
(b )K

where sat† : BExp→ 2State is the usual lifting of sat : T → 2State to Boolean expression over T .

The rules defining Ri JeK are reminiscent of the big-step semantics of imperative languages,
which arise as instances of the model for various choices of i . The following result says that the
language model from the previous section abstracts the various relational interpretations in a
sound and complete way. It was first proved for KAT by Kozen and Smith [1996].

Theorem 2.4. The language model is sound and complete for the relational model:

JeK = Jf K ⇐⇒ ∀i .RiJeK = Ri Jf K

It is worth noting that Theorem 2.4 also holds for refinement (i.e., with ⊆ instead of =).

Example 2.5 (IMP). Consider a simple imperative programming language IMPwith variable assign-
ments and arithmetic and boolean expressions:

arithmetic expressions a ∈ A ::= x ∈ Var | n ∈ Z | a1 + a2 | a1 − a2 | a1 × a2
boolean expressions b ∈ B ::= false | true | a1 < a2 | not b | b1 and b2 | b1 or b2

commands c ∈ C ::= skip | x ≔ a | c1; c2 | if b then c1 else c2 | while b do c

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article . Publication date: January 2020.



6 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva

IMP can be modeled in GKAT using actions for assignments and primitive tests for comparisons,1

Σ = {x ≔ a | x ∈ Var,a ∈ A} T = {a1 < a2 | a1,a2 ∈ A}

and interpreting GKAT expressions over the state space of variable assignments State ≔ Var→ Z:

eval(x ≔ a) ≔ {(σ ,σ [x := n]) | σ ∈ State,n = AJaK(σ )}

σ [x ≔ n] ≔ λy.

{
n if y = x

σ (y) else

sat(a1 < a2) ≔ {σ ∈ State | AJa1K(σ ) < AJa2K(σ )},

where AJaK : State → Z denotes arithmetic evaluation. Sequential composition, conditionals,
and while loops in IMP are modeled by their GKAT counterparts; skip is modeled by 1. Thus, IMP
equivalence refines GKAT equivalence (Theorem 2.4). For example, the program transformation

if x < 0 then (x ≔ 0 − x ; x ≔ 2 × x) else (x ≔ 2 × x)

 (if x < 0 then x ≔ 0 − x else skip); x ≔ 2 × x

is sound by the equivalence pq +b q ≡ (p +b 1) ·q. We study such equivalences further in Section 3.

2.4 Probabilistic Model

In this subsection, we give a third interpretation of GKAT expressions in terms of sub-Markov ker-
nels, a commonmodel for probabilistic programming languages (PPLs).We show that the language
model is sound and complete for this model as well.
We briefly review some basic primitives commonly used in the denotational semantics of PPLs.

For a countable set2 X , we let D(X ) denote the set of subdistributions over X , i.e., the set of prob-
ability assignments f : X → [0, 1] summing up to at most 1—i.e.,

∑
x ∈X f (x) ≤ 1. A common

distribution is the Dirac distribution or point mass on x ∈ X , denoted δx ∈ D(X ); it is the map
y 7→ [y = x] assigning probability 1 to x, and probability 0 to y , x . (The Iverson bracket [φ] is
defined to be 1 if the statement φ is true, and 0 otherwise.) Denotational models of PPLs typically
interpret programs asMarkov kernels, maps of type X → D(X ). Such kernels can be composed in
sequence using Kleisli composition, since D(−) is a monad [Giry 1982].

Definition 2.6 (Probabilistic Interpretation). Let i = (State, eval, sat) be a triple consisting of

• a countable set of states State;
• for each action p ∈ Σ, a sub-Markov kernel eval(p) : State→ D(State); and
• for each primitive test t ∈ T , a set of states sat(t) ⊆ State.

Then the probabilistic interpretation of an expression e with respect to i is the sub-Markov kernel
PiJeK : State→ D(State) defined as follows:

PiJpK ≔ eval(p) PiJbK(σ ) ≔ [σ ∈ sat†(b)] · δσ

PiJe · f K(σ )(σ
′) ≔

∑

σ ′′

PiJeK(σ )(σ
′′) · PiJf K(σ ′′)(σ ′)

PiJe +b f K(σ ) ≔ [σ ∈ sat†(b)] · PiJeK(σ ) + [σ ∈ sat
†(b)] · PiJf K(σ )

PiJe
(b )K(σ )(σ ′) ≔ lim

n→∞
PiJ(e +b 1)

n · bK(σ )(σ ′)

1Technically, we can only reserve a test for a finite subset of comparisons, as T is finite. However, for reasoning about

pairwise equivalences of programs, which only contain a finite number of comparisons, this restriction is not essential.
2We restrict to countable state spaces (i.e., discrete distributions) for ease of presentation, but this assumption is not essen-

tial. Appendix D for a more general version using measure theory and Lebesgue integration.
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The proofs that the limit exists and that PiJeK is sub-Markov for all e can be found in Lemma A.1.

Theorem 2.7. The language model is sound and complete for the probabilistic model:

JeK = Jf K ⇐⇒ ∀i .PiJeK = PiJf K

Proof Sketch. By mutual implication.

⇒: For soundness, we define a map κi : GS → State → D(State) from guarded strings to sub-
Markov kernels:

κi (α)(σ ) ≔ [σ ∈ sat
†(α)] · δσ

κi (αpw)(σ )(σ
′) ≔ [σ ∈ sat†(α)] ·

∑

σ ′′

eval(p)(σ )(σ ′′) · κi (w)(σ
′′)(σ )

We then lift κi to languages via pointwise summation, κi (L) ≔
∑

w ∈L κi (w), and establish
that any probabilistic interpretation factors through the language model via κi : PiJ−K =
κi ◦ J−K.

⇐: For completeness, we construct an interpretation i ≔ (GS, eval, sat) over GS as follows,

eval(p)(w) ≔ Unif({wpα | α ∈ At}) sat(t) ≔ {xα ∈ GS | α ≤ t}

and show that JeK is fully determined by PiJeK:

JeK = {αx ∈ GS | PiJeK(α)(αx) , 0}. �

As for Theorem 2.4, Theorem 2.7 can also be shown for refinement (i.e., with ⊆ and ≤ instead of
=).

Example 2.8 (Probabilistic IMP). We can extend IMP from Example 2.5 with a probabilistic assign-
ment command x ∼ µ , where µ ranges over sub-distributions on Z, as follows:

c ::= . . . | x ∼ µ Σ = . . . ∪ {x ∼ µ | x ∈ Var, µ ∈ D(Z)}

The interpretation i = (Var → Z, eval, sat) is as before, except we now restrict to a finite set
of variables to guarantee that the state space is countable, and interpret actions as sub-Markov
kernels:

eval(x ≔ n)(σ ) ≔ δσ [x≔n] eval(x ∼ µ)(σ ) ≔
∑

n∈Z

µ(n) · δσ [x≔n]

A concrete example of a PPL based on GKAT is McNetKAT [Smolka et al. 2019], a recent lan-
guage and verification tool for reasoning about the packet-forwarding behavior in networks.

3 AXIOMATIZATION

In most programming languages, the same behavior can be realized using different programs. For
example, we expect the programs if b then e else f and if (notb) then f else e to encode the same
behavior. Likewise, different expressions in GKATcan denote the same language of guarded strings.
For instance, the previous example is reflected in GKAT by the fact that the language semantics
of e +b f and f +

b
e coincide. This raises the questions: what other equivalences hold between

GKAT expressions? And, can all equivalences be captured by a finite number of equations? In this
section, we give some initial answers to these questions, by proposing a set of axioms for GKAT
and showing that they can be used to prove a large class of equivalences.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article . Publication date: January 2020.
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Guarded Union Axioms Sequence Axioms (inherited from KA)

U1. e +b e ≡ e (idempotence) S1. (e · f ) · д ≡ e · (f · д) (associativity)

U2. e +b f ≡ f +
b
e (skew commut.) S2. 0 · e ≡ 0 (absorbing left)

U3. (e +b f ) +c д ≡ e +bc (f +c д) (skew assoc.) S3. e · 0 ≡ 0 (absorbing right)

U4. e +b f ≡ be +b f (guardedness) S4. 1 · e ≡ e (neutral left)

U5. eд +b f д ≡ (e +b f ) · д (right distrib.) S5. e · 1 ≡ e (neutral right)

Guarded Loop Axioms

W1. e(b ) ≡ ee(b ) +b 1 (unrolling)
W3.

д ≡ eд +b f

д ≡ e(b ) f
if E(e) ≡ 0 (fixpoint)

W2. (e +c 1)
(b ) ≡ (ce)(b ) (tightening)

Fig. 1. Axioms for GKAT-expressions.

3.1 Some Simple Axioms

As an initial answer to the first question, we propose the following.

Definition 3.1. We define ≡ as the smallest congruence (with respect to all operators) on Exp that
satisfies the axioms given in Figure 1 (for all e, f ,д ∈ Exp andb, c,d ∈ BExp) and subsumes Boolean
equivalence in the sense that b ≡BA c implies b ≡ c .

The guarded union axioms (U1-U5) can be understood intuitively in terms of conditionals. For
instance, we have the law e +b f ≡ f +

b
e discussed before, but also eд +b f д ≡ (e +b f ) ·д, which

says that д can be “factored out” of branches of a guarded union. Equivalences for sequential com-
position are also intuitive. For instance, 0 · e ≡ 0 encodes that any instruction after failure is irrele-
vant, because the program has failed. The axioms for loops (W1–W3) are more subtle. The axiom

e(b ) ≡ ee(b )+b 1 (W1) says that we can think of a guarded loop as equivalent to its unrolling—i.e., the
programwhile b do e has the same behavior as the program if b then (e; while b do e) else skip.

The axiom (e +c 1)
(b ) ≡ (ce)(b ) (W2) states that if part of a loop body does not have an effect (i.e.,

is equivalent to skip), it can be omitted; we refer to this transformation as loop tightening.
To explain the fixpoint axiom (W3), disregard the side-condition for a moment. In a sense, this

rule states that if д tests (using b) whether to execute e and loop again or execute f (i.e., if д ≡

eд +b f ) then д is a b-guarded loop followed by f (i.e., д ≡ e(b ) f ). However, such a rule is not
sound in general. For instance, suppose e, f ,д,b = 1; in that case, 1 ≡ 1 · 1 +1 1 can be proved

using the other axioms, but applying the rule would allow us to conclude that 1 ≡ 1(1) · 1, even
though J1K = At and J1(1) ·1K = ∅! The problem here is that, while д is tail-recursive as required by
the premise, this self-similarity is trivial because e does not represent a productive program. We
thus need to restrict the application of the inference rule to cases where the loop body is strictly
productive—i.e., where e is guaranteed to execute some action. To this end, we define the function
E as follows.

Definition 3.2. The function E : Exp→ BExp is defined inductively as follows:

E(b) ≔ b E(p) ≔ 0 E(e +b f ) ≔ b · E(e)+b · E(f ) E(e · f ) ≔ E(e) · E(f ) E(e(b )) ≔ b

Intuitively, E(e) is the weakest test that guarantees that e terminates successfully, but does not
perform any action. For instance, E(p) is 0—the program p is guaranteed to perform the action p.
Using E, we can now restrict the application of the fixpoint rule to the cases where E(e) ≡ 0, i.e.,
where e performs an action under any circumstance.
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Guarded Union Facts Guarded Iteration Facts

U3’. e +b (f +c д) ≡ (e +b f ) +b+c д (skew assoc.) W4. e(b ) ≡ e(b ) · b (guardedness)

U4’. e +b f ≡ e +b b f (guardedness) W4’. e(b ) ≡ (be)(b ) (guardedness)

U5’. b · (e +c f ) ≡ be +c b f (left distrib.) W5. e(0) ≡ 1 (neutrality)

U6. e +b 0 ≡ be (neutral right) W6. e(1) ≡ 0 (absorption)

U7. e +0 f ≡ f (trivial right) W6’. b(c) ≡ c (absorption)

U8. b · (e +b f ) ≡ be (branch selection) W7. e(c) ≡ e(bc) · e(c) (fusion)

Fig. 2. Derivable GKAT facts

Theorem 3.3 (Soundness). The GKAT axioms are sound for the language model: for all e, f ∈ Exp,

e ≡ f =⇒ JeK = Jf K.

Proof Sketch. By induction on the length of derivation of the congruence ≡. We provide the full
proof in the appendix and show just the proof for the fixpoint rule. Here, we should argue that

if E(e) ≡ 0 and JдK = Jeд +b f K, then also JдK = Je(b ) f K. We note that, using soundness of (W1)

and (U5), we can derive that Je(b ) f K = J(ee(b ) +b 1)f K = Jee(b ) f +b f K.
We reason by induction on the length of guarded strings. In the base case, we know that α ∈ JдK

if and only if α ∈ Jeд +b f K; since E(e) ≡ 0, the latter holds precisely when α ∈ Jf K and α ≤ b,

which is equivalent to α ∈ Je(b ) f K. For the inductive step, suppose the claim holds for y; then

αpy ∈ JдK

⇐⇒ αpy ∈ Jeд +b f K

⇐⇒ αpy ∈ JeдK ∧ α ≤ b or αpy ∈ Jf K ∧ α ≤ b

⇐⇒ ∃y, β . y = y1βy2 ∧ αpy1β ∈ JeK ∧ βy2 ∈ JдK ∧ α ≤ b or αpy ∈ Jf K ∧ α ≤ b (E(e) = 0)

⇐⇒ ∃y, β . y = y1βy2 ∧ αpy1β ∈ JeK ∧ βy2 ∈ Je(b ) f K ∧ α ≤ b or αpy ∈ Jf K ∧ α ≤ b (IH)

⇐⇒ αpy ∈ Jee(b ) f K ∧ α ≤ b or αpy ∈ Jf K ∧ α ≤ b (E(e) = 0)

⇐⇒ αpy ∈ Jee(b ) f +b f K = Je(b ) f K �

3.2 A Fundamental Theorem

The side condition on (W3) is inconvenient when proving facts about loops. However, it turns out
that we can transform any loop into an equivalent, productive loop—i.e., one with a loop body e

such that E(e) ≡ 0. To this end, we need a way of decomposing a GKAT expression into a guarded
sum of an expression that describes termination, and another (strictly productive) expression that
describes the next steps that the program may undertake. As a matter of fact, we already have a
handle on the former term: E(e) is a Boolean term that captures the atoms for which e may halt
immediately. It therefore remains to describe the next steps of a program.
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Definition 3.4 (Derivatives). For α ∈ At we define Dα : Exp→ 2 + Σ × Exp inductively as follows,
where 2 = {0, 1} is the two-element set:

Dα (b) =

{
1 α ≤ b

0 α � b
Dα (p) = (p, 1) Dα (e +b f ) =

{
Dα (e) α ≤ b

Dα (f ) α ≤ b

Dα (e · f ) =




(p, e ′ · f ) Dα (e) = (p, e
′)

0 Dα (e) = 0

Dα (f ) Dα (e) = 1

Dα (e
(b )) =




(p, e ′ · e(b )) α ≤ b ∧ Dα (e) = (p, e
′)

0 α ≤ b ∧ Dα (e) ∈ 2

1 α ≤ b

We will use a general type of guarded union to sum over an atom-indexed set of expressions.

Definition 3.5. Let Φ ⊆ At, and let {eα }α ∈Φ be a set of expressions indexed by Φ. We write

+
α ∈Φ

eα =




eβ +β

(
+

α ∈Φ\{β }

eα

)
β ∈ Φ

0 Φ = ∅

Like other operators on indexed sets, we may abuse notation and replace Φ by a predicate over
some atom α , with eα a function of α ; for instance, we could write+α ≤1 α ≡ 1.

Remark 3.6. The definition above is ambiguous in the choice of β . However, because of skew-
commutativity (U2) and skew-associativity (U3), that does not change the meaning of the expres-
sion as far as ≡ is concerned. For the details, see Appendix B.

We are now ready to state the desired decomposition of terms. Following [Rutten 2000; Silva
2010], we call this the fundamental theorem of GKAT, in reference to the strong analogy with the
fundamental theorem of calculus, as explained in [Rutten 2000; Silva 2010]. The proof is included
in Appendix A.

Theorem 3.7 (Fundamental Theorem). For all GKAT programs e , the following equality holds:

e ≡ 1 +E(e ) D(e), where D(e) ≔ +
α : Dα (e )=(pα ,eα )

pα · eα . (1)

The following observations about D and E are also useful.

Lemma 3.8. Let e ∈ Exp; its components E(e) and D(e) satisfy the following identities:

E(D(e)) ≡ 0 E(e) · D(e) ≡ D(e) E(e) · e ≡ D(e)

Using the fundamental theorem and the above, we can now show how to syntactically transform
any loop into an equivalent loop whose body e is strictly productive.

Lemma 3.9 (Productive Loop). Let e ∈ Exp and b ∈ BExp. We have e(b ) ≡ D(e)(b ).

Proof. Using Lemma 3.8, we derive as follows:

e(b )
FT
≡ (1 +E(e ) D(e))

(b ) U2≡ (D(e) +
E(e )

1)(b )
W2
≡ (E(e)D(e))

(b )
≡ D(e)(b ) �

3.3 Derivable Facts

The GKAT axioms can be used to derive other natural equivalences of programs, such as the ones

in Figure 2. For instance, e(b ) ≡ e(b )b, labelled (W4), says that b must be false when e(b ) ends.

Lemma 3.10. The facts in Figure 2 are derivable from the axioms.
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Proof Sketch. Let us start by showing (U6).

e +b 0 ≡ be +b 0 (U4. e +b f ≡ be +b f )

≡ 0 +
b
be (U2. e +b f ≡ f +

b
e)

≡ bbe +
b
be (Boolean algebra and S2. 0 ≡ 0e)

≡ be +
b
be (U4. e +b f ≡ be +b f )

≡ be (U1. e +b e ≡ e)

To prove (W7), we use the productive loop lemma and the fixpoint axiom (W3).

e(c) ≡ e(c) +bc e
(c) (U1. e +b e ≡ e)

≡ (D(e))(c) +bc e
(c) (Productive loop lemma)

≡ (D(e)D(e)(c) +c 1) +bc e
(c) (W1. e(b ) ≡ ee(b ) +b 1)

≡ c · (D(e)D(e)(c) +c 1) +bc e
(c) (U4 and Boolean algebra)

≡ c · D(e)D(e)(c) +bc e
(c) (U8. b · (e +b f ) ≡ be)

≡ D(e)D(e)(c) +bc e
(c) (U4 and Boolean algebra)

≡ D(e)e(c) +bc e
(c) (Productive loop lemma)

≡ D(e)(bc)e(c) (W3)

≡ e(bc)e(c) (Productive loop lemma)

The remaining proofs appear in the appendix. �

We conclude our presentation of derivable facts by showing one more interesting fact. Unlike
the derived facts above, this one is an implication: if the test c is invariant for the program e given
that a test b succeeds, then c is preserved by a b-loop on e .

Lemma 3.11 (Invariance). Let e ∈ Exp and b, c ∈ BExp. If cbe ≡ cbec , then ce(b ) ≡ (ce)(b )c .

Proof. We first derive a useful equivalence, as follows:

cb · D(e) ≡ cb · E(e) · e (Lemma 3.8)

≡ E(e) · cbe (Boolean algebra)

≡ E(e) · cbec (premise)

≡ cb · E(e) · ec (Boolean algebra)

≡ cb · D(e) · c (Lemma 3.8)

Next, we show the main claim by deriving

ce(b ) ≡ c · D(e)(b ) (Productive loop lemma)

≡ c · (D(e) · D(e)(b ) +b 1) (W1)

≡ c · (D(e) · e(b ) +b 1) (Productive loop lemma)

≡ c · (b · D(e) · e(b ) +b 1) (U2)

≡ cb · D(e) · e(b ) +b c (U5’)

≡ cb · D(e) · ce(b ) +b c (above derivation)
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≡ c · D(e) · ce(b ) +b c (U2)

≡ (c · D(e))(b )c (W3)

≡ D(ce)(b )c (Def. D, Boolean algebra)

≡ (ce)(b )c (Productive loop lemma)

This completes the proof. �

3.4 A Limited Form of Completeness

Above, we considered a number of axioms that were proven sound with respect to the language
model. Ultimately, we would like to show the converse, i.e., that these axioms are sufficient to
prove all equivalences between programs, meaning that whenever JeK = Jf K, it also holds that
e ≡ f .

We return to this general form of completeness in Section 6, whenwe can rely on the coalgebraic
theory of GKAT developed in Sections 4 and 5. At this point, however, we can already prove a
special case of completeness related to Hoare triples. Suppose e is a GKAT program, and b and c
are Boolean expressions encoding pre- and postconditions. The equation JbeK = JbecK states that
every finite, terminating run of e starting from a state satisfying b concludes in a state satisfying
c . The following states that all valid Hoare triples of this kind can be established axiomatically:

Theorem 3.12 (Hoare completeness). Let e ∈ Exp, b, c ∈ BExp. If JbecK = JbeK, then bec ≡ be .

Proof Sketch. By induction on e . We show only the case for while loops and defer the full proof
to Appendix A.

If e = e
(d )
0 , first note that if b ≡ 0, then the claim follows trivially. For b . 0, let

h =
∑
{α ∈ At : ∃n.JbK ⋄ Jde0K

n ⋄ JαK , ∅}.

We make the following observations.

(i) Since b . 0, we have that JbK ⋄ Jde0K
0 ⋄ JbK = JbK , ∅, and thus b ≤ h.

(ii) If α ≤ hd , then in particular γwα ∈ JbK ⋄ Jde0K
n ⋄ JαK for some n and γw . Since α ≤ d , it

follows that γwα ∈ Jbe(d )0 K = Jbe(d )0 cK, and thus α ≤ c . Consequently, hd ≤ c .
(iii) If αwβ ∈ Jdhe0K, then α ≤ h and hence there exists an n such that γxα ∈ JbK ⋄ Jde0K

n ⋄ JβK.
But then γxαwβ ∈ JbK ⋄Jde0K

n+1 ⋄JβK, and therefore β ≤ h. We can conclude that Jdhe0K =
Jdhe0hK; by induction, it follows that dhe0h ≡ dhe0.

Using these observations and the invariance lemma (Lemma 3.11), we derive

be
(d )
0 c ≡ bhe

(d )
0 c (By (i))

≡ b · (he0)
(d )hc (Invariance and (iii))

≡ b · (he0)
(d )dhc (W4)

≡ b · (he0)
(d )dh (By (ii))

≡ b · (he0)
(d )h (W4)

≡ bhe0
(d ) (Invariance and (iii))

≡ be0
(d ) (By (i))

This completes the proof. �

As a special case, the fact that a program has no traces at all can be shown axiomatically.
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s1 s2 s3

α

β/p c/q

Fig. 3. Graphical depiction of a G-coalgebra 〈X , δX〉. States are represented by dots, labeled with the name
of that state whenever relevant. In this example, δX(s1)(α) = 1, and δX(s1)(β) = (p, s2). When γ ∈ At such
that δX(s)(γ ) = 0, we draw no edge at all. We may abbreviate drawings by combining transitions with the
same target into a Boolean expression; for instance, when c = α +β , we have δX(s2)(α) = δX(s2)(β) = (q, s3).

Corollary 3.13 (Partial Completeness). If JeK = ∅, then e ≡ 0.

Proof. We have J1 · eK = JeK = ∅ = J1 · e · 0K, and thus e ≡ 1 · e ≡ 1 · e · 0 ≡ 0 by Theorem 3.12. �

We will return to deriving a general completeness result in Section 6. This will rely on the
coalgebraic theory of GKAT, which we develop next (Sections 4 and 5).

4 AUTOMATON MODEL AND KLEENE THEOREM

In this section, we present an automaton model that accepts traces (i.e., guarded strings) of GKAT
programs.We then present language-preserving constructions fromGKAT expressions to automata,
and conversely, from automata to expressions. Our automatonmodel is rich enough to express pro-
grams that go beyond GKAT; in particular, it can encode traces of programs with goto statements
that have no equivalent GKAT program [Kozen and Tseng 2008]. In order to obtain a Kleene The-
orem for GKAT, that is, a correspondence between automata and GKAT programs, we identify
conditions ensuring that the language accepted by an automaton corresponds to a valid GKAT
program.

4.1 Automata and Languages

LetG be the functorGX = (2 + Σ × X )At, where 2 = {0, 1} is the two-element set. AG-coalgebra is a
pairX = 〈X , δX〉 with state space X and transition map δX : X → GX . The outcomes 1 and 0 model
immediate acceptance and rejection, respectively. From each state s ∈ X , given an input α ∈ At,
the coalgebra performs exactly one of three possible actions: it either produces an output p ∈ Σ

and moves to a new state t , halts and accepts, or halts and rejects; that is, either δX(s)(α) = (p, t),
or δX(s)(α) = 1, or δX(s)(α) = 0.
A G-automaton is a G-coalgebra with a designated start state ι, commonly denoted as a triple
X = 〈X , δX, ι〉. We can represent G-coalgebras graphically as in Figure 3.
A G-coalgebra X = 〈X , δX〉 can be viewed both as an acceptor of finite guarded strings GS =

At · (Σ · At)∗, or as an acceptor of finite and infinite guarded strings GS ∪ ω-GS, where ω-GS ≔
(At · Σ)ω . Acceptance for a state s is captured by the following equivalences:

accept(s,α) ⇐⇒ δX(s)(α) = 1

accept(s,αpx) ⇐⇒ ∃t . δX(s)(α) = (p, t) ∧ accept(t , x)
(2)

The language of finite guarded strings ℓX(s) ⊆ GS accepted from state s ∈ X is the least fixpoint
solution of the above system; in other words, we interpret (2) inductively. The language of finite
and infinite guarded strings LX(s) ⊆ GS ∪ ω-GS accepted from state s is the greatest fixpoint

solution of the above system; in otherwords, we interpret (2) coinductively.3 The two languages are

3The set F of maps F : X → 2GS∪ω -GS ordered pointwise by subset inclusion forms a complete lattice. The monotone map

τ : F → F, τ (F ) = λs ∈ X . {α ∈ At | δX (s)(α ) = 1} ∪ {apx | ∃t . δX (s)(α ) = (p, t ) ∧ x ∈ F (t )}
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e Xe δe ∈ Xe → GXe ιe (α) ∈ 2 + Σ × Xe

b ∅ ∅ [α ≤ b]

p {∗} ∗ 7→ 1 (p, ∗)

f +b д Xf + Xд δf + δд

{
ιf (α) α ≤ b

ιд(α) α ≤ b

f · д Xf + Xд (δf + δд)[Xf , ιд]

{
ιf (α) ιf (α) , 1

ιд(α) ιf (α) = 1

f (b ) Xf δf [Xf , ιe ]




1 α ≤ b

0 α ≤ b, ιf (α) = 1

ιf (α) α ≤ b, ιf (α) , 1

Fig. 4. Construction of the Thompson coalgebra Xe = 〈Xe ,δe 〉 with initial pseudostate ιe .

related by the equation ℓX(s) = LX(s)∩GS. Our focuswill mostly be on the finite-string semantics,
ℓX(−) : X → 2GS, since GKAT expressions denote finite-string languages, J−K : Exp→ 2GS.
The language accepted by a G-automaton X = 〈X , δX , ι〉 is the language accepted by its initial

state ι. Just like the language model for GKAT programs, the language semantics of aG-automaton
satisfies the determinacy property (see Definition 2.2). In fact, every language that satisfies the
determinacy property can be recognized by a G-automaton, possibly with infinitely many states.
(We will prove this formally in Theorem 5.8.)

4.2 Expressions to Automata: a Thompson Construction

We translate expressions to G-coalgebras using a construction reminiscent of Thompson’s con-
struction for regular expressions [Thompson 1968], where automata are formed by induction on
the structure of the expressions and combined to reflect the various GKAT operations.
We first set some notation. A pseudostate is an element h ∈ GX . We let 1 ∈ GX denote the

pseudostate 1(α) = 1, i.e., the constant function returning 1. Let X = 〈X , δ〉 be aG-coalgebra. The
uniform continuation of Y ⊆ X by h ∈ GX (in X) is the coalgebra X[Y ,h] ≔ 〈X , δ [Y ,h]〉, where

δ [Y ,h](x)(α) ≔

{
h(α) if x ∈ Y , δ (x)(α) = 1

δ (x)(α) otherwise.

Intuitively, uniform continuation replaces termination of states in a region Y of X by a transition
described by h ∈ GX ; this construction will be useful for modeling operations that perform some
kind of sequencing. Figure 5 schematically describes the uniform continuation operation, illustrat-
ing different changes to the automaton that can occur as a result; observe that since h may have
transitions into Y , uniform continuation can introduce loops.
Wewill also need coproducts to combine coalgebras. Intuitively, the coproduct of two coalgebras

is just the juxtaposition of both coalgebras. Formally, for X = 〈X , δ1〉 and Y = 〈Y , δ2〉, we write
the coproduct as X + Y = 〈X + Y , δ1 + δ2〉, where X + Y is the disjoint union of X and Y , and
δ1 + δ2 : X + Y → G(X + Y ) is the map that applies δ1 to states in X and δ2 to states in Y .

Figure 4 presents our translation from expressions e to coalgebras Xe using coproducts and
uniform continuations, and Figure 6 sketches the transformations used to construct the automaton
of a term from its subterms. We model initial states as pseudostates, rather than proper states.

arising from (2) has least and greatest fixpoints, ℓX and LX , by the Knaster-Tarksi theorem.
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Y

α β γ

β

β/q γ/p

β/p

h

γ/p

β/q

α

Fig. 5. Schematic explanation of the uniform continuation X[Y ,h] of X, where Y ⊆ X and h ∈ GX . The
pseudostate h and its transitions are drawn in blue. Transitions present inX unchanged by the extension are
drawn in black; grayed out transitions are replaced by transitions drawn in red as a result of the extension.

Xf Xд

ιf

α
/p

β
/q

γ

β

ιд

α
/r

β
/s

η

α

ιe

α
/p

β
/s

γ , η

(a) e = f +b д, with α ,γ ≤ b and β ,η ≤ b .

Xf Xд

ιf

α
/p

γ , η

β

ιд

β
/r

γ
/s

η

α

ιe

α
/p

γ
/s

η

β/r

(b) e = f · д

Xf

ιf

β
/p

γ

β

ιe

β
/p

α

β/p

α/q

(c) e = f (b ), with β ,γ ≤ b and α ≤ b

Fig. 6. Schematic depiction of the Thompson construction for guarded union, sequencing and guarded loop
operators. The initial psuedostates of the automata for f and д are depicted in gray. Transitions in red are
present in the automata for f and д, but overridden by a uniform extension with the transitions in blue.

This trick avoids the ε-transitions that appear in the classical Thompson construction and yields
compact, linear-size automata. Figure 7 depicts some examples of our construction.
To turn the resulting coalgebra into an automaton,we simply convert the initial pseudostate into

a proper state. Formally, when Xe = 〈Xe , δe 〉, we write X
ι
e for the G-automaton 〈{ι} + Xe , δ

ι
e , ι〉,

where for x ∈ Xe , we set δ ιe (x) = δe (x) as well as δ
ι
e (ι) = ιe . We call Xe and Xι

e the Thompson

coalgebra and Thompson automaton for e , respectively.
The construction translates expressions to equivalent automata in the following sense:

Theorem 4.1 (Correctness I). The Thompson automaton for e recognizes JeK, that is ℓX
ι
e (ι) = JeK.

Proof Sketch. This is a direct corollary of Proposition 4.5 and Theorem 4.8, to follow. �

Moreover, the construction is efficiently implementable and yields small automata:

Proposition 4.2. The Thompson automaton for e is effectively constructible in time O(|e |) and has

#Σ(e) + 1 (thus, O(|e |)) states, where |At| is considered a constant for the time complexity claim, |e |

denotes the size of the expression, and #Σ(e) denotes the number of occurrences of actions in e .
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ιe ∗p

b/p

b b

b/p

(a) e = while b do p

ιf

∗q ∗r

c/
q c/r

1 1

(b) f = if c then q else r

ιд ∗p

∗q ∗r

b/p
b/p

bc/q bc/r

bc/r

bc
/q

1 1

(c) д = e · f

Fig. 7. Concrete construction of an automaton using the Thompson construction. First, we construct an
automaton for e , then an automaton for f , and finally we combine these into an automaton for д. In these
examples, p,q, r are single action le�ers, not arbitrary expressions.

4.3 Automata to Expressions: Solving Linear Systems

The previous construction shows that every GKAT expression can be translated to an equivalent
G-automaton. In this section we consider the reverse direction, from G-automata to GKAT expres-
sions. The main idea is to interpret the coalgebra structure as a system of equations, with one
variable and equation per state, and show that there are GKAT expressions solving the system,
modulo equivalence; this idea goes back to Conway [1971] and Backhouse [1975]. Not all sys-
tems arising from G-coalgebras have a solution, and so not all G-coalgebras can be captured by
GKAT expressions. However, we identify a subclass of G-coalgebras that can be represented as
GKAT terms. By showing that this class contains the coalgebras produced by our expressions-to-
automata translation, we obtain an equivalence between GKAT expressions and coalgebras in this
class.
We start by defining when a map assigning expressions to coalgebra states is a solution.

Definition 4.3 (Solution). Let X = 〈X , δX〉 be a G-coalgebra. We say that s : X → Exp is a solution
to X if for all x ∈ X it holds that

s(x) ≡ +
α ≤1
⌊δX(x)(α)⌋s where ⌊0⌋s ≔ 0 ⌊1⌋s ≔ 1 ⌊〈p, x〉⌋s ≔ p · s(x)

Example 4.4. Consider the Thompson automata in Figure 7.

(a) Solving the first automaton requires, by Definition 4.3, finding an expression se (∗p ) such

that se (∗p ) ≡ p · se (∗p ) +b 1. By (W1), we know that se (∗p ) = p(b ) is valid; in fact, (W3) tells
us that this choice of x is the only valid solution up to GKAT-equivalence. If we include ιe
as a state, we can choose se (ιe ) = p

(b ) as well.
(b) The second automaton has an easy solution: both ∗q and ∗r are solved by setting sf (∗q) =

sf (∗r ) = 1. If we include ιf as a state, we can choose sf (ιf ) = q · sf (∗q) +b r · sf (∗r ) ≡ q +b r .
(c) The third automaton was constructed from the first two; similarly, we can construct its so-

lution from the solutions to the first two. We set sд(∗p ) = se (∗p) · sf (ιf ), and sд(∗q) = sf (∗q),
and sд(∗r ) = sf (∗r ). If we include ιд as a state, we can choose sд(ιд) = se (ιe ) · sf (ιf ).

Solutions are language-preserving maps from states to expressions in the following sense:

Proposition 4.5. If s solves X and x is a state, then Js(x)K = ℓX(x).

Proof Sketch. Show thatw ∈ Js(x)K⇔ w ∈ ℓX(x) by induction on the length of w ∈ GS. �

Wewould like to build solutions forG-coalgebras, but Kozen and Tseng [2008] showed that this
is not possible in general: there is a 3-stateG-coalgebra that does not correspond to anywhile pro-
gram, but instead can only be modeled by a program with multi-level breaks. In order to obtain an
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exact correspondence to GKAT programs, we first identify a sufficient condition forG-coalgebras
to permit solutions, and then show that the Thompson coalgebra defined previously meets this
condition.

Definition 4.6 (Well-nested Coalgebra). Let X = 〈X , δX〉 andY = 〈Y , δY〉 range overG-coalgebras.
The collection of well-nested coalgebras is inductively defined as follows:

(i) If X has no transitions, i.e., if δX ∈ X → 2At, then X is well-nested.
(ii) If X and Y are well-nested and h ∈ G(X + Y ), then (X +Y)[X ,h] is well-nested.

We are now ready to construct solutions to well-nested coalgebras.

Theorem 4.7 (Existence of Solutions). Any well-nested coalgebra admits a solution.

Proof Sketch. Assume X is well-nested. We proceed by rule induction on the well-nestedness
derivation.

(i) Suppose δX : X → 2At. Then

sX(x) ≔
∑
{α ∈ At | δX(x)(α) = 1}

is a solution to X.
(ii) LetY = 〈Y , δY〉 andZ = 〈Z , δZ〉 be well-nestedG-coalgebras, and leth ∈ G(Y +Z ) be such

that X = (Y +Z)[Y ,h]. By induction,Y andZ admit solutions sY and sZ respectively; we
need to find a solution sX to X = Y + Z . The idea is to retain the solution that we had for
states inZ—whose behavior has not changed under uniform continuation—while modifying
the solution to states in Y in order to account for transitions from h. To this end, we choose
the following expressions:

b ≔
∑
{α ∈ At | h(α) ∈ Σ × X } ℓ ≔

(
+
α ≤b

⌊h(α)⌋sY
) (b )
· +
α ≤b

⌊h(α)⌋sZ

We can then define s by setting s(x) = sY(x) · ℓ for x ∈ Y , and s(x) = sZ(x) for x ∈ Z . A
detailed argument showing that s is a solution can be found in the appendix. �

As it turns out, we can do a round-trip, showing that the solution to the (initial state of the) Thomp-
son automaton for an expression is equivalent to the original expression.

Theorem 4.8 (Correctness II). Let e ∈ Exp. Then Xι
e admits a solution s such that e ≡ s(ι).

Finally, we show that the automata construction of the previous section gives well-nested au-
tomata.

Theorem 4.9 (well-nestedness of Thompson construction). Xe and X
ι
e are well-nested for all

expressions e .

Proof. We proceed by induction on e . In the base, let Z = 〈∅,∅〉 and I = 〈{∗}, ∗ 7→ 1〉 denote
the coalgebras with no states and with a single all-accepting state, respectively. Note that Z and
I are well-nested, and that for b ∈ BExp and p ∈ Σ we have Xb = Z and Xp = I.
All of the operations used to build Xe , as detailed in Figure 4, can be phrased in terms of an

appropriate uniform continuation of a coproduct; for instance, when e = f (b ) we have that Xe =
(Xf +I)[Xf , ιe ]. Consequently, the ThompsonautomatonXe is well-nested by construction. Finally,
observe that Xι

e = (I +Xe )[{∗}, ιe ]; hence, X
ι
e is well-nested as well. �

Theorems 4.1, 4.7 and 4.9 now give us the desired Kleene theorem.

Corollary 4.10 (Kleene Theorem). Let L ⊆ GS. The following are equivalent:
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(1) L = JeK for a GKAT expression e .

(2) L = ℓX(ι) for a well-nested, finite-state G-automaton X with initial state ι.

5 DECISION PROCEDURE

We saw in the last section that GKAT expressions can be efficiently converted to equivalent au-
tomata with a linear number of states. Equivalence of automata can be established algorithmically,
supporting a decision procedure for GKAT that is significantly more efficient than decision proce-
dures for KAT. In this section, we describe our algorithm.
First, we define bisimilarity of automata states in the usual way [Kozen and Tseng 2008].

Definition 5.1 (Bisimilarity). Let X and Y be G-coalgebras. A bisimulation between X and Y is a
binary relation R ⊆ X × Y such that if x R y, then the following implications hold:

(i) if δX(x)(α) ∈ 2, then δY(y)(α) = δX(x)(α); and
(ii) if δX(x)(α) = (p, x ′), then δY(y)(α) = (p,y′) and x ′ R y′ for some y′.

States x and y are called bisimilar, denoted x ∼ y, if there exists a bisimulation relating x and y.

As usual, we would like to reduce automata equivalence to bisimilarity. It is easy to see that bisim-
ilar states recognize the same language.

Lemma 5.2. If X and Y are G-coalgebras with bisimilar states x ∼ y, then ℓX(x) = ℓY(y).

Proof. We verify thatw ∈ ℓX(x) ⇔ w ∈ ℓY(y) by induction on the length ofw ∈ GS:

• For α ∈ GS, we have α ∈ ℓX(x) ⇔ δX(x)(α) = 1⇔ δY(y)(α) = 1⇔ α ∈ ℓY(y).
• For αpw ∈ GS, we use bisimilarity and the induction hypothesis to derive

αpw ∈ ℓX(x) ⇐⇒ ∃x ′. δX(x)(α) = (p, x ′) ∧w ∈ ℓX(x ′)

⇐⇒ ∃y′. δY (y)(α) = (p,y′) ∧w ∈ ℓY(y′) ⇐⇒ αpw ∈ ℓY(y). �

The converse direction, however, does not hold for G-coalgebras in general. To see the problem,
consider the following automaton, where α ∈ At is an atom and p ∈ Σ is an action:

s1 s2α/p

Both states recognize the empty language, that is i.e., ℓ(s1) = ℓ(s2) = ∅; but s2 rejects immedi-
ately, whereas s1 may first take a transition. As a result, s1 and s2 are not bisimilar. Intuitively,
the language accepted by a state does not distinguish between early and late rejection, whereas
bisimilarity does. We solve this by disallowing late rejection, i.e., transitions that can never lead to
an accepting state; we call coalgebras that respect this restriction normal.

5.1 Normal Coalgebras

We classify states and coalgebras as follows.

Definition 5.3 (Live, Dead, Normal). Let X = 〈X , δX〉 denote aG-coalgebra. A state s ∈ X is accept-
ing if δX(s)(α) = 1 for some α ∈ At. A state is live if it can transition to an accepting state one or
more steps, or dead otherwise. A coalgebra is normal if it has no transitions to dead states.

Remark 5.4. Note that, equivalently, a state is live iff ℓX(s) , ∅ and dead iff ℓX(s) = ∅. Dead states
can exist in a normal coalgebra, but they must immediately reject all α ∈ At, since any successor
of a dead state would also be dead.
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Example 5.5. Consider the following automaton.

ι s1 s2s3 α/pβ/p α/q

α/qα/q

β

The state s3 is accepting. The states ι and s3 are live, since they can reach an accepting state. The
states s1 and s2 are dead, since they can only reach non-accepting states. The automaton is not

normal, since it contains the transitions ι
α /p
−−−→ s1, s1

α /q
−−−→ s2, and s2

α /q
−−−→ s2 to dead states s1 and s2.

We can normalize the automaton by removing these transitions:

ι s1 s2s3 β/p

α/q

β

The resulting automaton is normal: the dead states s1 and s2 reject all α ∈ At immediately. �

The example shows how G-coalgebra can be normalized. Formally, let X = 〈X , δ〉 denote a

coalgebra with dead states D ⊆ X . We define the normalized coalgebra X̂ ≔ 〈X , δ̂〉 as follows:

δ̂ (s)(α) ≔

{
0 if δ (s)(α) ∈ Σ × D

δ (s)(α) otherwise.

Lemma 5.6 (Correctness of normalization). Let X be a G-coalgebra. Then the following holds:

(i) X and X̂ have the same solutions: that is, s : X → Exp solves X if and only if s solves X̂; and

(ii) X and X̂ accept the same languages: that is, ℓX = ℓ X̂; and

(iii) X̂ is normal.

Proof. For the first claim, suppose s solves X. It suffices (by Lemma A.3) to show that for x ∈ X

and α ∈ At we have α · s(x) ≡ α · ⌊δ X̂(x)(α)⌋s . We have two cases.

• If δX(x)(α) = (p, x ′) with x ′ dead, then by Proposition 4.5 we know that Js(x ′)K = ℓX(x ′) = ∅.

By Corollary 3.13, it follows that s(x ′) ≡ 0. Recalling that δ X̂(x)(α) = 0 by construction,

α · s(x) ≡ α · ⌊δX(x)(α)⌋s ≡ α · p · s(x
′) ≡ α · 0 ≡ α · ⌊δ X̂(x)(α)⌋s

• Otherwise, we know that δ X̂(x)(α) = δX(x)(α), and thus

α · s(x) ≡ α · ⌊δX(x)(α)⌋s ≡ α · ⌊δ X̂(x)(α)⌋s

The other direction of the first claim can be shown analogously.

For the second claim, we can establish x ∈ ℓX(s) ⇔ x ∈ ℓ X̂(s) for all states s by a straightforward
induction on the length of x ∈ GS, using that dead states accept the empty language.

For the third claim, we note that the dead states of X and X̂ coincide by claim two; thus X̂ has
no transition to dead states by construction. �
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5.2 Bisimilarity for Normal Coalgebras

We would like to show that, for normal coalgebras, states are bisimilar if and only if they accept
the same language. This will allow us to reduce language-equivalence to bisimilarity, which is easy
to establish algorithmically. We need to take a slight detour.
Recall the determinacy property satisfied by GKAT languages (Definition 2.2): a language L ⊆

GS is deterministic if, whenever strings x ,y ∈ L agree on the first n atoms, they also agree on the
first n actions (or absence thereof). Now, let L ⊆ 2GS denote the set of deterministic languages.
L carries a coalgebra structure 〈L, δ L〉 whose transition map δ L is the semantic Brzozowski
derivative:

δ L(L)(α) ≔




(p, {x ∈ GS | αpx ∈ L}) if {x ∈ GS | αpx ∈ L} , ∅

1 if α ∈ L

0 otherwise.

Note that the map is well-defined by determinacy: precisely one of the three cases holds.
Next, we define structure-preserving maps between G-coalgebras in the usual way:

Definition 5.7 (Homomorphism). AhomomorphismbetweenG-coalgebrasX andY is amaph : X →
Y from states of X to states of Y that respects the transition structures in the following sense:

δY(h(x)) = (Gh)(δX(x)).

More concretely, for all α ∈ At, p ∈ Σ, and x , x ′ ∈ X ,

(i) if δX(x)(α) ∈ 2, then δY(h(x))(α) = δX (x)(α); and
(ii) if δX(x)(α) = (p, x ′), then δY(h(x))(α) = (p,h(x ′)). �

We can now show that the acceptance map ℓX : X → 2GS is structure-preserving in the above
sense. Moreover, it is the only structure-preserving map from states to deterministic languages:

Theorem 5.8. If X is normal, then ℓX : X → 2GS is the unique homomorphism X → L.

Since the identity function is trivially a homomorphism, Theorem 5.8 implies that ℓL is the identity.
That is, in the G-coalgebra L, the state L ∈ L accepts the language L! This proves that every
deterministic language is recognized by a G-coalgebra, possibly with an infinite number of states.
Theorem 5.8 says thatL is final for normalG-coalgebras. The desired connection between bisim-

ilarity and language-equivalence is then a standard corollary [Rutten 2000]:

Corollary 5.9. Let X and Y be normal with states s and t . Then s ∼ t if and only if ℓX(s) = ℓY(t).

Proof. The implication from left to right is Lemma 5.2. For the other implication, we observe that
the relation R ≔ {(s, t) ∈ X × Y | ℓX(s) = ℓY(t)} is a bisimulation, using that ℓX and ℓY are
homomorphisms by Theorem 5.8:

• Suppose s R t and δX(s)(α) ∈ 2. Then δX(s)(α) = δ L(ℓX(s))(α) = δ L(ℓY(t))(α) = δY(t)(α).

• Suppose s R t and δX(s)(α) = (p, s ′). Then δ L(ℓY(t))(α) = δ L(ℓX(s))(α) = (p, ℓX(s ′)).

This implies that δY(t)(α) = (p, t ′) for some t ′, using that ℓY is a homomorphism. Hence

(p, ℓY(t ′)) = δ L(ℓY(t))(α) = (p, ℓX(s ′))

by the above equation, which implies s ′ R t ′ as required. �

We prove a stronger version of this result in Lemma C.1.
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Algorithm 1: Hopcroft and Karp’s algorithm [Hopcroft and Karp 1971], adapted to G-
automata.

Input: G-automata X = 〈X , δX, ιX〉 and Y = 〈Y , δY , ιY〉, finite and normal; X , Y disjoint.
Output: true if X and Y are equivalent, false otherwise.

1 todo← Queue.singleton(ιX , ιY); // state pairs that need to be checked

2 forest← UnionFind.disjointForest(X ⊎Y );

3 while not todo.isEmpty() do
4 x ,y ← todo.pop();

5 rx , ry ← forest.find(x ), forest.find(y);

6 if rx = ry then continue; // safe to assume bisimilar

7 for α ∈ At do // check Definition 5.1

8 switch δX(x)(α), δY(y)(α) do

9 case b1,b2 with b1 = b2 do // case (i) of Definition 5.1

10 continue

11 case (p, x ′), (p,y′) do // case (ii) of Definition 5.1

12 todo.push(x ′,y′)

13 otherwise do return false; // not bisimilar

14 end

15 end

16 forest.union(rx , ry ); // mark as bisimilar

17 end

18 return true;

5.3 Deciding Equivalence

We now have all the ingredients required for deciding efficiently whether two expressions are
equivalent. Given two expressions e1 and e2, the algorithm proceeds as follows:

(1) Convert e1 and e2 to equivalent Thompson automata X1 and X2;

(2) Normalize the automata, obtaining X̂1 and X̂2;
(3) Check bisimilarity of the start states ι1 and ι2 using Hopcroft-Karp (see Algorithm 1);
(4) Return true if ι1 ∼ ι2, otherwise return false.

Theorem 5.10. The above algorithm decides whether Je1K = Je2K in time O(n ·α(n)) for |At| constant,
where α denotes the inverse Ackermann function and n = |e1 | + |e2 |.

Proof. The algorithm is correct by Theorem 4.1, Lemma 5.6, and Corollary 5.9:

Je1K = Je2K ⇐⇒ ℓ
X1(ι1) = ℓ

X2(ι2) ⇐⇒ ℓ
X̂1(ι1) = ℓ

X̂2(ι2) ⇐⇒ ι1 ∼ ι2

For the complexity claim, we analyze the running time of steps (1)–(3) of the algorithm:

(1) Recall by Proposition 4.2 that the Thompson construction converts ei to an automaton with
O(|ei |) states in time O(|ei |). Hence this step takes time O(n).

(2) Normalizing Xi amounts to computing its dead states. This requires time O(|ei |) using a
breadth-first traversal as follows (since there are at most |At| ∈ O(1) transitions per state).
We find all states that can reach an accepting state by first marking all accepting states, and
then performing a reverse breadth-first search rooted at the accepting states. All marked
states are then live; all unmarked states are dead.
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(3) Since X̂i has O(|ei |) states and there are at most |At| ∈ O(1) transitions per state, Hopcroft-
Karp requires time O(n · α(n)) by a classic result due to Tarjan [1975]. �

Theorem 5.10 establishes a stark complexity gap with KAT, where the same decision problem
is PSPACE-complete [Cohen et al. 1996] even for a constant number of atoms. Intuitively, the gap
arises because GKAT expressions can be translated to linear-size deterministic automata, whereas
KAT expressions may require exponential-size deterministic automata.
A shortcoming of Algorithm 1 is that it may scale poorly if the number of atoms |At| is large. It is

worth noting that there are symbolic variants [Pous 2015] of the algorithm that avoid enumerating
At explicitly (cf. Line 7 of Algorithm 1), and can often scale to very large alphabets in practice.
As a concrete example, a version of GKAT specialized to probabilistic network verification was
recently shown [Smolka et al. 2019] to scale to data-center networks with thousands of switches.
In the worst case, however, we have the following hardness result:

Proposition 5.11. If |At| is not a constant, GKAT equivalence is co-NP-hard, but in PSPACE.

Proof. For the hardness result, we observe that Boolean unsatisfiability reduces to GKAT equiv-
alence: b ∈ BExp is unsatisfiable, interpreting the primitive tests as variables, iff JbK = ∅. The
PSPACE upper bound is inherited from KAT by Remark 2.1. �

6 COMPLETENESS FOR THE LANGUAGEMODEL

In Section 3 we presented an axiomatization that is sound with respect to the language model,
and put forward the conjecture that it is also complete. We have already proven a partial com-
pleteness result (Corollary 3.13). In this section, we return to this matter and show we can prove
completeness with a generalized version of (W3).

6.1 Systems of Le�-affine Equations

A system of left-affine equations (or simply, a system) is a finite set of equations of the form

x1 = e11x1 +b11 · · · +b1(n−1) e1nxn +b1n d1
... (3)

xn = en1x1 +bn1 · · · +bn(n−1) ennxn +bnn dn

where +b associates to the right, the xi are variables, the ei j are GKAT expressions, and the bi j and
di are Boolean guards satisfying the following row-wise disjointness property for row 1 ≤ i ≤ n:

• for all j , k , the guards bi j and bik are disjoint: bi j · bik ≡BA 0; and
• for all 1 ≤ j ≤ n, the guards bi j and di are disjoint: bi j · di ≡BA 0.

Note that by the disjointness property, the ordering of the summands is irrelevant: the system
is invariant (up to ≡) under column permutations. A solution to such a system is a function s :
{x1, . . . ,xn} → Exp assigning expressions to variables such that, for row 1 ≤ i ≤ n:

s(xi ) ≡ ei1 · s(x1) +bi1 · · · +bi (n−1) ein · s(xn) +bin di

Note that any finite G-coalgebra gives rise to a system where each variable represents a state,
and the equations define what it means to be a solution to the coalgebra (c.f. Definition 4.3); indeed,
a solution to a G-coalgebra is precisely a solution to its corresponding system of equations, and
vice versa. In particular, for a coalgebra X with states x1 to xn , the parameters for equation i are:

bi j =
∑
{α ∈ At | δX(xi )(α) ∈ Σ × {x j }}

di =
∑
{α ∈ At | δX(xi )(α) = 1} ei j = +

α : δX (xi )(α )=(pα ,x j )

pα
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Systems arising from G-coalgebras have a useful property: for all ei j , it holds that E(ei j ) ≡ 0.
This property is analogous to the empty word property in Salomaa’s axiomatization of regular
languages [Salomaa 1966]; we call such systems Salomaa.
To obtain a general completeness result beyond Section 3.4, we assume an additional axiom:

Uniqueness axiom. Any system of left-affine equations that is Salomaa has at most

one solution, modulo ≡. More precisely, whenever s and s ′ are solutions to a Salomaa
system, it holds that s(xi ) ≡ s

′(xi ) for all 1 ≤ i ≤ n.

Remark 6.1. We do not assume that a solution always exists, but only that if it does, then it is
unique up to ≡. It would be unsound to assume that all such systems have solutions; the following
automaton and its system, due to [Kozen and Tseng 2008], constitutes a counterexample:

x1

x2

x0

α0 + α3 α1 + α3

α2 + α3

α1/p01

α
2 /p

02

α0/p10

α 2
/p
12α 1
/p
21

α
0 /p

20

x0 ≡ p01x1 +α1 p02x2 +α2 (α0 + α3)

x1 ≡ p10x0 +α0 p12x2 +α2 (α1 + α3)

x2 ≡ p20x0 +α1 p21x1 +α0 (α2 + α3)

As shown in [Kozen and Tseng 2008], no corresponding while program exists for this system.

When n = 1, a system is a single equation of the form x = ex +b d . In this case, (W1) tells us that

a solution does exist, namely e(b )d , and (W3) says that this solution is unique up to ≡ under the
proviso E(e) ≡ 0. In this sense, we can regard the uniqueness axiom as a generalization of (W3) to
systems with multiple variables.

Theorem 6.2. The uniqueness axiom is sound in the model of guarded strings: given a system of

left-affine equations as in (3) that is Salomaa, there exists at most one R : {x1, . . . , xn} → 2GS s.t.

R(xi ) =

( ⋃

1≤j≤n

Jbi jK ⋄ Jei j K ⋄R(x j )

)
∪ Jdi K

Proof Sketch. We recast this system as a matrix-vector equation of the form x = Mx + D in the
KAT of n-by-nmatrices over 2GS; solutions to x in this equation are in one-to-one correspondence
with functions R as above. We then show that the map σ (x) = Mx +D on the set of n-dimensional
vectors over 2GS is contractive in a certain metric, and therefore has a unique fixpoint by the
Banach fixpoint theorem; hence, there can be at most one solution x . �

6.2 General Completeness

Using the generalized version of the fixpoint axiom, we can now establish completeness.

Theorem 6.3 (Completeness). The axioms are complete w.r.t. J−K: given e1, e2 ∈ Exp,

Je1K = Je2K =⇒ e1 ≡ e2.

Proof. Let X1 and X2 be the Thompson automata corresponding to e1 and e2, with initial states ι1
and ι2, respectively. Theorem 4.8 shows there are solutions s1 and s2, with s1(ι1) ≡ e1 and s2(ι2) ≡

e2; and we know from Lemma 5.6 that s1 and s2 solve the normalized automata X̂1 and X̂2. By

Lemma 5.6, Theorem 4.1, and the premise, we derive that X̂1 and X̂2 accept the same language:

ℓ
X̂1(ι1) = ℓ

X1(ι1) = Je1K = Je2K = ℓ
X2(ι2) = ℓ

X̂2(ι2).
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This implies, by Corollary 5.9, that there is a bisimulation R between X̂1 and X̂2 relating ι1 and
ι2. This bisimulation can be given the following transition structure,

δ R(x1, x2)(α) ≔




0 if δ X̂1(x1)(α) = 0 and δ X̂2(x2)(α) = 0

1 if δ X̂1(x1)(α) = 1 and δ X̂2(x2)(α) = 1

(p, (x ′1, x
′
2)) if δ X̂1(x1)(α) = (p, x

′
1) and δ

X̂2(x2)(α) = (p, x
′
2)

turning R = 〈R, δ R 〉 into a G-coalgebra; note that δ R is well-defined since R is a bisimulation.
Now, define s ′1, s

′
2 : R → Exp by s ′1(x1, x2) = s1(x1) and s

′
2(x1, x2) = s2(x2). We claim that s ′1 and s

′
2

are both solutions to R; to see this, note that for α ∈ At, (x1, x2) ∈ R, and i ∈ {1, 2}, we have that

α · s ′i (xi , xi ) ≡ α · si (xi ) (Def. s ′i )

≡ α · ⌊δ X̂i (xi )(α)⌋si (si solves X̂i )

≡ α · ⌊δ R(x1, x2)(α)⌋s ′i (Def. s ′i and ⌊−⌋)

Thus, s ′i is a solution by Lemma A.3.
Since the system of left-affine equations induced by R is Salomaa, the uniqueness axiom then

tells us that s1(ι1) = s ′1(ι1, ι2) ≡ s
′
2(ι1, ι2) = s2(ι2); hence, we can conclude that e1 ≡ e2. �

7 COALGEBRAIC STRUCTURE

The coalgebraic theory of GKAT is quite different from that of KA and KAT because the final
G-coalgebra, without the normality assumption from § 5.1, is not characterized by sets of finite
guarded strings. Even including infinite accepted strings is not enough, as this still cannot dis-
tinguish between early and late rejection. It is therefore of interest to characterize the final G-
coalgebra and determine its precise relationship to the language model. We give a brief overview
of these results, which give insight into the nature of halting versus looping and underscore the
role of topology in coequational specifications.
In Appendix C we give two characterizations of the final G-coalgebra, one in terms of nonex-

pansive maps Atω → Σ
∗ ∪ Σ

ω with natural metrics defined on both spaces (§ C.1.1) and one in
terms of labeled trees with nodes indexed by At+ (§ C.1.2), and show their equivalence. In § C.2,
we state and prove Lemma C.1 a stronger form of the bisimilarity lemma (Corollary 5.9).

We have discussed the importance of the determinacy property (Definition 2.2). In § C.3 we
identify another important property satisfied by all languages LX(s), a certain closure property de-
fined in terms of a natural topology on Atω . In § C.4, we define a languagemodelL ′, aG-coalgebra
whose states are the subsets of GS ∪ ω-GS satisfying the determinacy and closure properties and
whose transition structure is the semantic Brzozowski derivative:

δ L
′

(A)(α) =




(p, {x | αpx ∈ A}) if {x | αpx ∈ A} , ∅

1 if α ∈ A

0 otherwise.

Although this looks similar to the language model L of Section 5.2, they are not the same: states
of L contain finite strings only, and L and L ′ are not isomorphic.
We show that L is identity on L ′ and that L ′ is isomorphic to a subcoalgebra of the final G-

coalgebra. It is not the finalG-coalgebra, because early and late rejection are not distinguished: an
automaton could transition before rejecting or reject immediately. Hence,L : (X , δX ) → L ′ is not a
homomorphism in general. However, normality prevents this behavior, and L is a homomorphism
if (X , δX ) is normal. Thus L ′ contains the unique homomorphic image of all normalG-coalgebras.
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Finally, in Theorem C.5 we identify a subcoalgebra L ′′ ⊆ L ′ that is normal and final in the
category of normalG-coalgebras. The subcoalgebraL ′′ is defined topologically; roughly speaking,
it consists of sets A ⊆ GS ∪ ω-GS such that A is the topological closure of A ∩ GS. Thus L ′′ is
isomorphic to the language model L of Section 5.2: the states of L are obtained from those of
L ′′ by intersecting with GS, and the states of L ′′ are obtained from those of L by taking the
topological closure. Thus L is isomorphic to a coequationally-defined subcoalgebra of the final
G-coalgebra.

We also remark that L ′ itself is final in the category of G-coalgebras that satisfy a weaker
property than normality, the so-called early failure property, which can also be characterized topo-
logically.

8 RELATED WORK

Program schematology is one of the oldest areas of study in the mathematics of computing. It is
concernedwith questions of translation and representability among and within classes of program
schemes, such as flowcharts, while programs, recursion schemes, and schemes with various data
structures such as counters, stacks, queues, and dictionaries [Garland and Luckham 1973; Ianov
1960; Luckham et al. 1970; Paterson and Hewitt 1970; Rutledge 1964; Shepherdson and Sturgis 1963].
A classical pursuit in this area was to find mechanisms to transform unstructured flowcharts to
structured form [Ashcroft and Manna 1972; Böhm and Jacopini 1966; Kosaraju 1973; Morris et al.
1997; Oulsnam 1982; Peterson et al. 1973; Ramshaw 1988;Williams and Ossher 1978]. A seminal re-
sult was theBöhm-Jacopini theorem [Böhm and Jacopini 1966], which established that all flowcharts
can be converted to while programs provided auxiliary variables are introduced. Böhm and Ja-
copini conjectured that the use of auxiliary variables was necessary in general, and this conjecture
was confirmed independently by Ashcroft and Manna [1972] and Kosaraju [1973].

Early results in program schematology, including those of [Ashcroft and Manna 1972; Böhm and Jacopini
1966; Kosaraju 1973], were typically formulated at the first-order uninterpreted (schematic) level.
However, many restructuring operations can be accomplished without reference to first-order
constructs. It was shown in [Kozen and Tseng 2008] that a purely propositional formulation of
the Böhm-Jacopini theorem is false: there is a three-state deterministic propositional flowchart
that is not equivalent to any propositional while program. As observed by a number of authors
(e.g. [Kosaraju 1973; Peterson et al. 1973]), while loops with multi-level breaks are sufficient to rep-
resent all deterministic flowcharts without introducing auxiliary variables, and [Kosaraju 1973]
established a strict hierarchy based on the allowed levels of the multi-level breaks. That result was
reformulated and proved at the propositional level in [Kozen and Tseng 2008].
The notions of functions on a domain, variables ranging over that domain, and variable assign-

ment are inherent in first-order logic, but are absent at the propositional level. Moreover, many
arguments rely on combinatorial graph restructuring operations, which are difficult to formalize.
Thus the value of the propositional view is twofold: it operates at a higher level of abstraction and
brings topological and coalgebraic concepts and techniques to bear.
Propositional while programs and their encoding in terms of the regular operators goes back

to early work on Propositional Dynamic Logic [Fischer and Ladner 1979]. GKAT as an indepen-
dent system and its semantics were introduced in [Kozen 2008; Kozen and Tseng 2008] under the
name propositional while programs, although the succinct form of the program operators is new
here. Also introduced in [Kozen 2008; Kozen and Tseng 2008] were the functor G and automaton
model (Section 4), the determinacy property (Definition 2.2) (called strict determinacy there), and
the concept of normality (Section 5.1) (called liveness there). The linear construction of an automa-
ton from a while program was sketched in [Kozen 2008; Kozen and Tseng 2008], based on earlier
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results for KAT automata [Kozen 2003], but the complexity of deciding equivalence was not ad-
dressed. The more rigorous alternative construction given here (Section 4.2) is needed to establish
well-nestedness, thereby enabling our Kleene theorem. The existence of a complete axiomatization
was not considered in [Kozen 2008; Kozen and Tseng 2008].

Guarded strings, which form the basis of our language semantics, come from [Kaplan 1969].
The axiomatization we propose for GKAT is closely related to Salomaa’s axiomatization of reg-

ular expressions based on unique fixed points [Salomaa 1966] and to Silva’s coalgebraic general-
ization of KA [Silva 2010]. The proof technique we used for completeness is inspired by [Silva
2010].
The relational semantics is inspired by that for KAT [Kozen and Smith 1996], which goes back

to work on Dynamic Logic [Fischer and Ladner 1979]. Because the fixpoint axiom uses a non-
algebraic side condition, extra care is needed to define the relational interpretation for GKAT.

9 CONCLUSIONS AND FUTURE DIRECTIONS

Wehave presented a comprehensive algebraic and coalgebraic study of GKAT, an abstract program-
ming language with uninterpreted actions. Our main contributions include: (i) a new automata
construction yielding a nearly linear time decidability result for program equivalence; (ii) a Kleene
theorem for GKAT providing an exact correspondence between programs and a well-defined class
of automata; and (iii) a set of sound and complete axioms for program equivalence.
We hope this paper is only the beginning of a long and beautiful journey into understanding the

(co)algebraic properties of efficient fragments of imperative programming languages. We briefly
discuss some limitations of our current development and our vision for future work.
As in Salomaa’s axiomatization of KA, our axiomatization is not fully algebraic: the side condi-

tion of (W3) is only sensible for the language model. As a result, the current completeness proof
does not generalize to other natural models of interest—e.g., probabilistic or relational. To over-
come this limitation, we would like to adapt Kozen’s axiomatization of KA to GKAT by developing
a natural order for GKAT programs. In the case of KAwe have e ≤ f :⇐⇒ e+ f = f , but this nat-
ural order is no longer definable in the absence of + and so we need to axiomatize e ≤ f for GKAT
programs directly. This appears to be the main missing piece to obtain an algebraic axiomatization.
On the coalgebraic side, we are interested in studying the different classes ofG-coalgebras from

a coequational perspective. Normal coalgebras, for instance, form a covariety, and hence are char-
acterized by coequations. If well-nested G-coalgebras could be shown to form a covariety, this
would imply completeness of the axioms without the extra uniqueness axiom from Section 6.

Various extensions of KAT to reason about richer programs (KAT+B!, NetKAT, ProbNetKAT)
have been proposed, and it is natural to ask whether extending GKAT in similar directions will
yield interesting algebraic theories and decision procedures for domain-specific applications. For
instance, recent work [Smolka et al. 2019] on a probabilistic network verification tool suggests
that GKAT is better suited for probabilistic models than KAT, as it avoids mixing non-determinism
and probabilities. The complex semantics of probabilistic programs would make a framework for
equational and automated reasoning especially valuable.
In a different direction, a language model containing infinite traces could be interesting in many

applications, as it could serve as a model to reason about non-terminating programs—e.g., loops
in NetKAT in which packets may be forwarded forever. An interesting open question is whether
the infinite language model can be finitely axiomatized.
Finally, another direction would be to extend the GKAT decision procedure to handle extra equa-

tions. For instance, both KAT+B! and NetKAT have independently-developed decision procedures,
that are similar in flavor. This raises the question of whether the GKAT decision procedure could
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be extended in a more generic way, similar to the Nelson-Oppen approach [Nelson and Oppen
1979] for combining decision procedures used in SMT solving.
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A OMITTED PROOFS

Theorem 2.4. The language model is sound and complete for the relational model:

JeK = Jf K ⇐⇒ ∀i .RiJeK = Ri Jf K

Proof. Recall from Remark 2.1 that there is a language-preserving map φ from GKAT to KAT
expressions. As with GKAT’s language model, GKAT’s relational model is inherited from KAT;
that is, Ri J−K = R

KAT
i J−K◦φ. Thus, the claim follows by Kozen and Smith [1996], who showed the

equivalent of Theorem 2.4 for KAT:

KJeK = KJf K ⇐⇒ ∀i .RKAT
i JeK = RKAT

i Jf K. �

Lemma A.1. PiJeK is a well-defined subprobability kernel. In particular, PiJ(e +b 1)
n · bK(σ )(σ ′) in-

creases monotonically in n and the limit for n→ ∞ exists.

Proof. We begin by showing the first claim by well-founded induction on ≺, the smallest partial
order subsuming the subterm order and satisfying

(e +b 1)
n · b ≺ e(b )

for all e,b,n. The claim is obvious except when e = f (b ). In that case, we have by induction

hypothesis that Fn ≔ PiJ(f +b 1)
n ·bK(σ )(σ ′) is well defined and bounded above by 1 for all n. To

establish that limn→∞ Fn exist and is also bounded above by 1, it then suffices to show the claim
that Fn increases monotonically in n.

If Fn = 0 then Fn+1 ≥ Fn holds trivially, so assume Fn > 0. This implies that σ ′ ∈ sat†(b). Thus

Fn+1 = PiJ(f +b 1)
n+1 · bK(σ )(σ ′) (def.)

= PiJ(f +b 1)
n+1K(σ )(σ ′) (σ ′ ∈ sat†(b))

=

∑
σ ′′PiJ(f +b 1)

nK(σ )(σ ′′) · PiJf +b 1K(σ
′′)(σ ′) (def.)

≥ PiJ(f +b 1)
nK(σ )(σ ′) · PiJf +b 1K(σ

′)(σ ′) (nonnegativity)

= PiJ(f +b 1)
nK(σ )(σ ′) (σ ′ ∈ sat†(b))

= Fn �

Theorem 2.7. The language model is sound and complete for the probabilistic model:

JeK = Jf K ⇐⇒ ∀i .PiJeK = PiJf K

Proof. By mutual implication.

⇒: For soundness, we will define a map κi : GS → State → D(State) that interprets guarded
strings as sub-Markov kernels, and lift it to languages via pointwise summation:

κi (L) ≔
∑

w ∈L

κi (w)

To establish the claim, we will then show the following equality:

PiJ−K = κi ◦ J−K (4)

We define κi : GS→ State→ D(State) inductively as follows:

κi (α)(σ ) ≔ [σ ∈ sat
†(α)] · δσ

κi (αpw)(σ )(σ
′) ≔ [σ ∈ sat†(α)] ·

∑

σ ′′

eval(p)(σ )(σ ′′) · κi (w)(σ
′′)(σ )

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article . Publication date: January 2020.



Guarded Kleene Algebra with Tests 31

To prove Equation (4), it suffices to establish the following equations:

κi (JpK) = eval(p) (5)

κi (JbK)(σ ) = [σ ∈ sat†(b)] · δσ (6)

κi (Je · f K)(σ )(σ ′) =
∑

σ ′′

κi (JeK)(σ )(σ
′′) · κi (Jf K)(σ ′′)(σ ′) (7)

κi (Je +b f K)(σ ) = [σ ∈ sat†(b)] · κi (JeK)(σ ) + [σ ∈ sat
†(b)] · κi (Jf K)(σ ) (8)

From there, Equation (4) follows by a straightforward well-founded induction on ≺, the par-
tial from the proof of Lemma A.1.
For Equation (5), we have

κi (JpK)(σ )(σ ′) =
∑

α ,β

κi (αpβ)(σ )(σ
′)

=

∑

α ,β,σ ′′

[σ ∈ sat†(α)] · eval(p)(σ )(σ ′′) · [σ ′′ ∈ sat†(β)] · δσ ′(σ
′′)

=

∑

α ,β

[σ ∈ sat†(α)] · eval(p)(σ )(σ ′) · [σ ′ ∈ sat†(β)]

= eval(p)(σ )(σ ′),

where the last line follows because {sat†(b) | b ∈ BExp} ⊆ 2State is a Boolean algebra of sets
with atoms sat†(α), α ∈ At, meaning that

State =
⊎

α ∈At

sat†(α) and thus
∑

α

[σ ∈ sat†(α)] = 1.

For Equation (6), we have

κi (JbK)(σ ) =
∑

α ≤b

κi (α)(σ ) =
∑

α ≤b

[σ ∈ sat†(α)] · δσ = [σ ∈
⊎

α ≤b

sat†(α)] · δσ

= [σ ∈ sat†(b)] · δσ .

For Equation (7), we need the following auxiliary facts:
(A1) κi (αx)(σ )(σ

′) = [σ ∈ sat†(α)] · κi (αx)(σ )(σ ′)
(A2) κi (xα)(σ )(σ

′) = [σ ′ ∈ sat†(α)] · κi (xα)(σ )(σ ′)
(A3) κi (xαy)(σ )(σ

′) =
∑

σ ′′ κi (xα)(σ )(σ
′′) · κi (αy)(σ

′′)(σ ′)

(A4) JeK ⋄ Jf K � {(α , xα ,αy) | α ∈ At, xα ∈ JeK,αy ∈ Jf K}
Fact (A1) is immediate by definition of κi , and facts (A2) and (A3) follow by straightforward
inductions on |x |. We defer the proof of (A4) to Lemma A.2. We can then compute:

κi (Je · f K)(σ )(σ ′)

=

∑

w ∈JeK⋄Jf K

κi (w)(σ )(σ
′)

=

∑

α ∈At

∑

xα ∈JeK

∑

αy∈Jf K

κi (xαy)(σ )(σ
′) (by A4)

=

∑

α ∈At

∑

xα ∈JeK

∑

αy∈Jf K

∑

σ ′′

κi (xα)(σ )(σ
′′) · κi (αy)(σ

′′)(σ ′) (by A3)

=

∑

σ ′′

∑

α ,β ∈At

∑

xα ∈JeK

∑

αy∈Jf K

[α = β] · κi (xα)(σ )(σ
′′) · κi (βy)(σ

′′)(σ ′)
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and, observing that

κi (xα)(σ )(σ
′′) · κi (βy)(σ

′′)(σ ′) , 0

=⇒ σ ′′ ∈ sat†(α) ∧ σ ′′ ∈ sat†(β) (by A1 and A2)

=⇒ σ ′′ ∈ sat†(α · β) (Boolean algebra)

=⇒ α = β (α , β ∈ At)

we obtain Equation (7):

κi (Je · f K)(σ )(σ ′) =
∑

σ ′′

∑

α ,β ∈At
xα ∈JeK
βy∈Jf K

κi (xα)(σ )(σ
′′) · κi (βy)(σ

′′)(σ ′)

=

∑

σ ′′

κi (JeK)(σ )(σ
′′) · κi (Jf K)(σ ′′)(σ ′).

For Equation (8), we need the following identity (for all α , x ,b,σ ):

[α ≤ b] · κi (αx)(σ ) = [σ ∈ sat
†(b)] · κi (αx)(σ ) (9)

Using A1, it suffices to show the equivalence

α ≤ b ∧ σ ∈ sat†(α) ⇐⇒ σ ∈ sat†(b) ∧ σ ∈ sat†(α)

The implication from left to right follows directly by monotonicity of sat†. For the implica-

tion from right to left, we have that either α ≤ b or α ≤ b. Using again monotonicity of sat†,
the possibility α ≤ b is seen to cause a contradiction.
With Identity (9) at our disposal, Equation (8) is easy to establish:

κi (Je +b f K)(σ )

=

∑

w ∈Je+b f K

κi (w)(σ )

=

∑

αx ∈JeK

[α ≤ b] · κi (αx)(σ ) +
∑

βy∈Jf K

[α ≤ b] · κi (βy)(σ )

=

∑

αx ∈JeK

[σ ∈ sat†(b)] · κi (αx)(σ ) +
∑

βy∈Jf K

[σ ∈ sat†(b)] · κi (βy)(σ )

= [σ ∈ sat†(b)] · κi (JeK)(σ ) + [σ ∈ sat
†(b)] · κi (Jf K)(σ )

This concludes the soundness proof.
⇐: For completeness, we will exhibit an interpretation i over the state space GS such that

JeK = {αx ∈ GS | PiJeK(α)(αx) , 0}. (10)

Define i ≔ (GS, eval, sat), where

eval(p)(w) ≔ Unif({wpα | α ∈ At}) sat(t) ≔ {xα ∈ GS | α ≤ t}

We need two auxiliary observations:
(A1) α ∈ sat†(b) ⇐⇒ α ∈ JbK
(A2) Monotonicity: PiJeK(v)(w) , 0 =⇒ ∃x .w = vx .

They follow by straightforward inductions onb and e , respectively. To establish Equation (10),
it suffices to show the following equivalence for all x ,y ∈ (At ∪ Σ)∗:

PiJeK(xα)(xαy) , 0 ⇐⇒ αy ∈ JeK
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We proceed by well-founded induction on the ordering ≺ on expressions from the proof of
Lemma A.1:
• For e = b, we use fact (A1) to derive that

PiJbK(xα) = [α ∈ sat†(b)] · δxα = [α ∈ JbK] · δxα .

Thus we have

PiJbK(xα)(xαy) , 0 ⇐⇒ y = ε ∧ α ∈ JbK ⇐⇒ αy ∈ JbK.

• For e = p, we have that

PiJpK(xα) = Unif({xαpβ | β ∈ At}).

It follows that

PiJpK(xα)(xαy) , 0 ⇐⇒ ∃β .y = pβ ⇐⇒ αy ∈ JpK.

• For e +b f , we have that

PiJe +b f K(xα)(xαy) =

{
PiJeK(xα)(xαy) if α ∈ sat†(b)

PiJf K(xα)(xαy) if α ∈ sat†(b)

We will argue the case α ∈ sat†(b) explicitly; the argument for the case α ∈ sat†(b) is
analogous. We compute:

PiJe +b f K(xα)(xαy) , 0 ⇐⇒ PiJeK(xα)(xαy) , 0 (premise)

⇐⇒ αy ∈ JeK (ind. hypothesis)

⇐⇒ αy ∈ JbK ⋄ JeK (A1 and premise)

⇐⇒ αy ∈ Je +b f K (A1 and premise)

• For e · f , recall that

PiJe · f K(xα)(xαy) =
∑

w

PiJeK(xα)(w) · PiJeK(w)(xαy).

Thus,

PiJe · f K(xα)(xαy) , 0

⇐⇒ ∃w . PiJeK(xα)(w) , 0 ∧ PiJeK(w)(xαy) , 0 (arg. above)

⇐⇒ ∃z. PiJeK(xα)(xαz) , 0 ∧ PiJf K(xαz)(xαy) , 0 (A2)

⇐⇒ ∃z. αz ∈ JeK ∧ PiJf K(xαz)(xαy) , 0 (ind. hypothesis)

⇐⇒ ∃z, β . zβ ∈ JeK ∧ PiJf K(xzβ)(xαy) , 0 (A2)

⇐⇒ ∃z, z′, β . zβ ∈ JeK ∧ PiJf K(xzβ)(xzβz′) , 0 ∧ αy = zβz′ (A2)

⇐⇒ ∃z, z′, β . zβ ∈ JeK ∧ βz′ ∈ Jf K ∧ αy = zβz′ (ind. hypothesis)

⇐⇒ αy ∈ Je · f K (def. J−K, ⋄)

• For e∗, recall that

PiJe
∗K(xα)(xαy) = lim

n→∞
PiJ(e +b 1)

n · bK(xα)(xαy)
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Since this is the limit of a monotone sequence by Lemma A.1, it follows that

PiJe
∗K(xα)(xαy) , 0

⇐⇒ ∃n. PiJ(e +b 1)
n · bK(xα)(xαy) , 0 (arg. above)

⇐⇒ ∃n. αy ∈ J(e +b 1)
n · bK (ind. hypothesis)

⇐⇒ ∃m. αy ∈ J(be)m · bK (to be argued)

⇐⇒ αy ∈ Je(b )K (def. J−K)

The penultimate step is justified by the identity

J(e +b 1)
n · bK =

n⋃

m=0

J(be)m · bK, (11)

which we establish by induction on n ≥ 0:
The case n = 0 is trivial. For n > 0, we have the following KAT equivalence:

(be + b)
n
· b ≡ (be + b) · (be + b)

n−1
· b

≡ (be + b) ·

n−1∑

m=0

(be)m · b (ind. hypothesis)

≡

n−1∑

m=0

(be) · (be)m · b +

n−1∑

m=0

b · (be)m · b

≡

n∑

m=1

(be)m · b + b ≡

n∑

m=0

(be)m · b,

where the induction hypothesis yields the KAT equivalence

(be + b)
n−1
· b ≡

n−1∑

m=0

(be)m · b

thanks to completeness of the KAT axioms for the language model. The claim follows by
soundness of the KAT axioms.

This concludes the proof of Theorem 2.7. �

Lemma A.2. For deterministic languages L,K ∈ L, we have the following isomorphism:

L ⋄K � {(α , xα ,αy) | α ∈ At, xα ∈ L,αy ∈ K}

Proof. We clearly have a surjective map

(α , xα ,yα) 7→ xαy

from right to left. To see that this map is also injective, we show that for all x1α , x2β ∈ L and
αy1, βy2 ∈ K satisfying x1αy1 = x2βy2, we must have (α , x1α ,αy2) = (β, x2β, βy2). This is obvious
when |x1 | = |x2 |, so assume |x1 | , |x2 |. We will show that this is impossible.

W.l.o.g. we have |x1 | < |x2 |. By the assumed equality, it follows that x2 must be of the form
x2 = x1αz for some z, and further zy1 = βy2. Now consider the language

Lx1 ≔ {w ∈ GS | x1w ∈ L}.

The language is deterministic, and it contains both α and αzβ ; but the latter contradicts the former.
�
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Theorem 3.3 (Soundness). The GKAT axioms are sound for the language model: for all e, f ∈ Exp,

e ≡ f =⇒ JeK = Jf K.

Proof. Formally, the proof proceeds by induction on the construction of ≡ as a congruence. Practi-
cally, it suffices to verify soundness of each rule—the inductive cases of the congruence are straight-
forward because of how J−K is defined.

(U1) For e +b e ≡ e , we derive

Je +b eK = JeK +JbK JeK (Def. J−K)

= JbK ⋄ JeK ∪ JbK ⋄ JeK (Def. +B )

= (JbK ∪ JbK) ⋄ JeK (Def. ⋄)

= At ⋄ JeK (Def. B)

= JeK (Def. ⋄)

(U2) For e +b f ≡ f +
b
e , we derive

Je +b f K = JeK +JbK Jf K (Def. J−K)

= JbK ⋄ JeK ∪ JbK ⋄ Jf K (Def. +B )

= JbK ⋄ Jf K ∪ JbK ⋄ JeK (Def. ∪)

= JbK ⋄ Jf K ∪ JbK ⋄ JeK (Def. J−K, B)

= Jf K +JbK JeK (Def. +B )

= Jf +
b
eK (Def. J−K)

(U3) For (e +b f ) +c д ≡ e +bc (f +c д), we derive

J(e +b f ) +c дK = JcK ⋄ (JbK ⋄ JeK ∪ JbK ⋄ Jf K) ∪ JcK ⋄ JдK (Def. J−K)

= JbK ⋄ JcK ⋄ JeK ∪ JbK ⋄ JcK ⋄ Jf K ∪ JcK ⋄ JдK (Def. ⋄)

= JbcK ⋄ JeK ∪ JbcK ⋄ (JcK ⋄ Jf K ∪ JcK ⋄ JдK) (Def. J−K, ⋄)

= JeK +JbcK (Jf K +JcK JдK) (Def. +B )

= Je +bc (f +c д)K (Def. J−K)

(U4) For e +b f ≡ be +b f , we derive

Je +b f K = JeK +JbK Jf K (Def. J−K)

= JbK ⋄ JeK ∪ JbK ⋄ Jf K (Def. +B )

= JbK ⋄ (JbK ⋄ JeK) ∪ JbK ⋄ Jf K (Def. ⋄)

= (JbK ⋄ JeK) +JbK Jf K (Def. +B )

= Jbe +b f K (Def. J−K)
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(U5) For (e +b f ) · д ≡ eд +b f д, we derive

J(e +b f ) · дK = (JeK +JbK Jf K) ⋄ JдK (Def. J−K)

= (JbK ⋄ JeK ∪ JbK ⋄ Jf K) ⋄ JдK (Def. +B )

= (JbK ⋄ JeK) ⋄ JдK ∪ (JbK ⋄ Jf K) ⋄ JдK (Def. ⋄)

= JbK ⋄ (JeK ⋄ JдK) ∪ JbK ⋄ (Jf K ⋄ JдK) (Def. ⋄)

= (JeK ⋄ JдK) +JbK (Jf K ⋄ JдK) (Def. ⋄)

= Jeд +b f дK (Def. J−K)

(S1) For (e · f ) · д ≡ e · (f · д), we derive

J(e · f ) · дK = (JeK ⋄ Jf K) ⋄ JдK (Def. J−K)

= JeK ⋄ (Jf K ⋄ JдK) (Def. ⋄)

= Je · (f · д)K (Def. J−K)

(S2) For 0 · e ≡ 0, we derive

J0 · eK = J0K ⋄ JeK (Def. J−K)

= ∅ ⋄ JeK (Def. J−K)

= ∅ (Def. ⋄)

= J0K (Def. J−K)

(S3) The proof for e · 0 ≡ 0 is similar to the above.
(S4) For 1 · e ≡ e , we derive

J1 · eK = J1K ⋄ JeK (Def. J−K)

= At ⋄ JeK (Def. J−K)

= JeK (Def. ⋄)

(S5) The proof for e · 1 ≡ e is similar to the above.

(W1) For e(b ) ≡ ee(b ) +b 1, we derive

Je(b )K = JeK(JbK) (Def. J−K)

=

⋃

n≥0

(JbK ⋄ JeK)n ⋄ JbK (Def. L(B))

= JbK ⋄ J1K ∪ JbK ⋄ JeK ⋄
⋃

n≥0

(JbK ⋄ JeK)n ⋄ JbK (Def. ⋄, Ln ,
⋃
)

= JbK ⋄ J1K ∪ JbK ⋄ JeK ⋄ Je(b )K (Def. L(B))

= Je · e(b ) +b 1K (Def. J−K, +B )
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(W2) For (ce)(b ) ≡ (e +c 1)
(b ), we first argue that if w ∈ (JbK ⋄ JcK ⋄ JeK ∪ JcK)

n
for some n, then

w ∈ (JbK ⋄ JcK ⋄ JeK)m for somem ≤ n, by induction on n. In the base, where n = 0, we have
w ∈ At; hence, the claim holds immediately. For the inductive step, let n > 0 and write

w = w0 ⋄w
′ w0 ∈ JbK ⋄ JcK ⋄ JeK ∪ JcK w ′ ∈ (JbK ⋄ JcK ⋄ JeK ∪ JcK)

n−1

By induction, we know thatw ′ ∈ (JbK ⋄ JcK ⋄ JeK)m
′

form′ ≤ n − 1. Ifw0 ∈ JcK, thenw = w ′,
and the claim goes through if we choosem =m′. Otherwise, if w0 ∈ JbK ⋄ JcK ⋄ JeK, then

w = w0 ⋄w ∈ JbK ⋄ JcK ⋄ JeK ⋄ (JbK ⋄ JcK ⋄ JeK)m
′

= (JbK ⋄ JcK ⋄ JeK)m
′
+1

and thus the claim holds if we choosem =m′ + 1. Using this, we derive

J(ce)(b )K = JceK(JbK) (Def. J−K)

=

⋃

n≥0

(JbK ⋄ JcK ⋄ JeK)n ⋄ JbK (Def. L(B))

=

⋃

n≥0

(JbK ⋄ JcK ⋄ JeK ∪ JcK)
n
⋄ JbK (above derivation)

= (JcK ⋄ JeK ∪ JcK ⋄ J1K)
(JbK)

(Def. L(B), ⋄, J−K)

= (JeK +JcK J1K)(JbK) (Def. +B )

= J(e +c 1)
(b )K (Def. J−K)

This completes the proof. �

Theorem 3.7 (Fundamental Theorem). For all GKAT programs e , the following equality holds:

e ≡ 1 +E(e ) D(e), where D(e) ≔ +
α : Dα (e )=(pα ,eα )

pα · eα . (1)

Proof. By induction on e . For a primitive action p, Dα (p) = (p, 1), for all α ∈ At, and E(p) = 0.
Then

p
U7
≡ 1 +0 p

Lem.B.3
≡ 1 +0 +

α ≤1
α · p · 1 = 1 +E(p) +

α : Dα (e )=(pα ,eα )

pα · eα .

For a primitive test c , Dα (c) = [α ≤ c] and E(c) = c . Then

c
U6
≡ 1 +c 0 = 1 +E(c) +

α : Dα (e )=(pα ,eα )

pα · eα .

For a conditional e1 +c e2, we have inductively:

ei ≡ 1 +E(ei ) +
α : Dα (ei )=(pα ,eα )

pα · eα , i ∈ {1, 2}. (12)

Then

e1 +c e2 ≡

(
1 +E(e1) +

α : Dα (e1)=(pα ,eα )

pα · eα

)
+c

(
1 +E(e2) +

α : Dα (e2)=(pα ,eα )

pα · eα

)
(Eq. (12))

= 1 +E(e1)+cE(e2)

(

+
α : Dα (e1)=(pα ,eα )

pα · eα +c +
α : Dα (e1)=(pα ,eα )

pα · eα

)
(skew assoc.)

= 1 +E(e1+ce2) +
α : Dα (e1+ce2)=(pα ,eα )

pα · eα . (def Dα (e1 +c e2))
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For sequential composition e1 · e2, suppose e1 and e2 are decomposed as in (12).

e1 · e2

≡

(
1 +E(e1) +

α : Dα (e1)=(pα ,eα )

pα · eα

)
· e2 (Eq. (12))

= e2 +E(e1) +
α : Dα (e1)=(pα ,eα )

pα · eα · e2 (right distri. U5)

=

(
1 +E(e2) +

α : Dα (e2)=(pα ,eα )

pα · eα

)
+E(e1) +

α : Dα (e1)=(pα ,eα )

pα · eα · e2 (Eq. (12))

= 1 +E(e1)E(e2)

((

+
α : Dα (e2)=(pα ,eα )

pα · eα

)
+E(e1)

(

+
α : Dα (e1)=(pα ,eα )

pα · eα · e2

))
(skew assoc. U3)

= 1 +E(e1)E(e2) +

α :
Dα (e1)=(pα ,eα )
Dα (e2)=(pα ,eα )

(
pα · eα +E(e1) pα · eα · e2

)
(skew assoc.+)

= 1 +E(e1e2) +
α : Dα (e1e2)=(pα ,eα )

pα · eα (def E(e1 · e2) and Dα (e1 · e2))

Finally, for a while loop e(c) we will use Lemma 3.9 (Productive Loop):

e(c) ≡ (D(e))(c) (Lemma 3.9)

≡ 1 +c D(e) · (D(e))
(c) (W1 and U2)

≡ 1 +c

(

+
α : Dα (e )=(pα ,xα )

pα · xα

)
e(c) (Lemma 3.9 and def. of D(e))

≡ 1 +c

(

+
α : Dα (e )=(pα ,xα )

pα · xα · e
(c)

)
(U5)

= 1 +E(e (c )) +
α : Dα (e (c ))=(pα ,eα )

pα · eα . (Def. D(e(c)) and E(e(c)) = c)

�

Lemma 3.8. Let e ∈ Exp; its components E(e) and D(e) satisfy the following identities:

E(D(e)) ≡ 0 E(e) · D(e) ≡ D(e) E(e) · e ≡ D(e)

Proof.

E(D(e)) = E

(

+
α : Dα (e )=(pα ,eα )

pα · eα

)
=

∑

α : Dα (e )=(pα ,eα )

E(pα · eα ) = 0

E(e) · D(e) = E(e) ·

(

+
α : Dα (e )=(pα ,eα )

pα · eα

)
Lem B.2
≡ +

α :
Dα (e )=(pα ,eα )

α ≤E(e )

pα · eα
∗
= D(e)

E(e) · e
FT
≡ E(e) · (1 +E(e ) D(e))

U8
≡ D(e)
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Note that for *we use the observation that for all α such that Dα (e) = (pα , eα ) it is immediate that

α � E(e) and hence the condition α ≤ E(e) is redundant. �

Lemma 3.10. The facts in Figure 2 are derivable from the axioms.

Proof. We start by deriving the remaining facts for guarded union.

(U3’) For e +b (f +c д) ≡ (e +b f ) +b+c д, we derive

e +b (f +c д) ≡ (д +c f ) +
b
e (U2)

≡ д +
bc
(f +

b
e) (U3)

≡ д +
b+c
(f +

b
e) (Boolean algebra)

≡ (e +b f ) +b+c д (U2)

(U4’) For e +b f ≡ e +b b f , we derive

e +b f ≡ f +
b
e (U2)

≡ b f +
b
e (U4)

≡ e +b b f (U2, Boolean algebra)

(U5’) For b · (e +b c f ) ≡ be +c b f , we derive

b(e +c f ) ≡ b · (f +c e) (U2)

≡ ((b + c)(b + c))(f +c e) (Boolean algebra)

≡ (b + c)((b + c)(f +c e)) (S1)

≡ (b + c)((f +c e) +b+c 0) (U6)

≡ (b + c)(f +c (e +b 0)) (U3’)

≡ (b + c)((e +b 0) +c f ) (U2)

≡ (b + c)(be +c f ) (U6)

≡ (be +c f ) +b+c 0 (U6)

≡ be +c (f +b 0) (U3’)

≡ be +c b f (U6)

(U7) For e +0 f ≡ f , we derive

e +0 f ≡ (0 · e) +0 f (U4)

≡ 0 +0 f (S2)

≡ (0 · f ) +0 f (S2)

≡ f +0 f (U4)

≡ f (U1)

(U8) For b · (e +b f ) ≡ be , we derive

b(e +b f ) ≡ be +b b f (U4’)

≡ be +b bb f (U4’)

≡ be +b 0f (Boolean algebra)

≡ be +b 0 (S2)

≡ be (U6)
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Next, we derive the remaining loop facts.

(W4) For e(b ) ≡ e(b )b, we derive

e(b ) ≡ (D(e))(b ) (Productive loop lemma)

≡ D(e)(D(e))(b ) +b 1 (W1)

≡ D(e)(D(e))(b ) +b b (U4’)

≡ (D(e))(b )b (W3)

≡ e(b )b (Productive loop lemma)

(W4’) For e(b ) ≡ (be)(b ), we derive

e(b ) ≡ (D(e))(b ) (Productive loop lemma)

≡ D(e)(D(e))(b ) +b 1 (W1)

≡ b · D(e)(D(e))(b ) +b 1 (U4)

≡ (b · D(e))(b ) (W3)

≡ (D(be))(b ) (Def. D)

≡ (be)(b ) (Productive loop lemma)

(W5) For e(0) ≡ 1, we derive

e(0) ≡ (0 · e)(0) (W4’)

≡ 0(0) (S2)

≡ 0 · 0(0) +0 1 (W1)

≡ 0 +0 1 (S2)

≡ 1 (U7)

(W6) For e(1) ≡ 0, we derive

e(1) ≡ e(1) · 1 (W4)

≡ e(1) · 0 (Boolean algebra)

≡ 0 (S3)

(W6’) For b(c) ≡ c , we derive

b(c) ≡ (D(b))(c) (Productive loop lemma)

≡ 0(c) (Def. D)

≡ 0 · 0(c) +c 1 (W1)

≡ 0 +c 1 (S2)

≡ 1 +c 0 (U2)

≡ c · 1 (U6)

≡ c (Boolean algebra)

This completes the proof. �

Theorem 3.12 (Hoare completeness). Let e ∈ Exp, b, c ∈ BExp. If JbecK = JbeK, then bec ≡ be .
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Proof. By induction on e . In the base, there are two cases to consider.

• If e = d for some Boolean d , then the claim follows by completeness of the Boolean algebra
axioms, which ≡ subsumes by definition.
• If e = a ∈ Σ, then JbecK = JbeK implies JcK = J1K, hence c ≡ 1 by completeness of Boolean
algebra; the claim then follows.

For the inductive step, there are three cases:

• If e = e0 +d e1, then JbecK = JbeK implies that Jdbe0cK = Jdbe0K and Jdbe1cK = Jdbe1K. By

induction, we then know that dbe0c ≡ dbe0 and dbe1c ≡ dbe1. We can then derive as follows:

b(e0 +d e1)c ≡ be0c +d be1c (U4’)

≡ dbe0c +d dbe1c (U4, U4’)

≡ dbe0c +d dbe1 (dbe1c ≡ dbe1)

≡ dbe0 +d dbe1 (dbe0c ≡ dbe0)

≡ be0 +d be1 (U4, U4’)

≡ b · (e0 +d e1) (U4’)

• If e = e0 · e1, then let d =
∑
{α ∈ At : Jbe0αK , ∅}. We then know that Jbe0dK = Jbe0K, and

hence be0d ≡ be0 by induction. We furthermore claim that Jde1cK = Jde1K. To see this, note that
if αwβ ∈ Jde1K, then α ≤ d , and hence there exists an xα ∈ Jbe0αK ⊆ Jbe0dK = Jbe0K. Thus, we
know that xαwβ ∈ Jbe0e1K = Jbe0e1cK, meaning that β ≤ c; hence, we know that αwβ ∈ Jde1cK.
By induction, de1c ≡ de1. We then derive:

be0e1c ≡ be0de1c (be0 ≡ be0d)

≡ be0de1 (de1 ≡ de1c)

≡ be0e1 (be0 ≡ be0d)

• If e = e
(d )
0 , first note that if b ≡ 0, then the claim follows trivially. Otherwise, let

h =
∑
{α ∈ At : ∃n.JbK ⋄ Jde0K

n ⋄ JαK , ∅}.

We make the following observations.
(i) Since b . 0, we have that JbK ⋄ Jde0K

0 ⋄ JbK = JbK , ∅, and thus b ≤ h.

(ii) If α ≤ hd , then in particular γwα ∈ JbK ⋄ Jde0K
n ⋄ JαK for some n and γw . Since α ≤ d ,

it follows that γwα ∈ Jbe
(d )
0 K = Jbe

(d )
0 cK, and thus α ≤ c . Consequently, hd ≤ c .

(iii) If αwβ ∈ Jdhe0K, then α ≤ h and hence there exists ann such thatγxα ∈ JbK⋄Jde0K
n⋄JβK.

But then γxαwβ ∈ JbK ⋄ Jde0K
n+1 ⋄ JβK, and therefore β ≤ h. We can conclude that

Jdhe0K = Jdhe0hK; by induction, it follows that dhe0h ≡ dhe0.
Using these observations and the invariance lemma (Lemma 3.11), we derive

be
(d )
0 c ≡ bhe

(d )
0 c (By (i))

≡ b · (he0)
(d )hc (Invariance and (iii))

≡ b · (he0)
(d )dhc (W4)

≡ b · (he0)
(d )dh (By (ii))

≡ b · (he0)
(d )h (W4)

≡ bhe0
(d ) (Invariance and (iii))
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≡ be0
(d ) (By (i))

This completes the proof. �

Proposition 4.5. If s solves X and x is a state, then Js(x)K = ℓX(x).

Proof. We show that

w ∈ Js(x)K ⇐⇒ w ∈ ℓX(x)

for all states x by induction on the length ofw ∈ GS. We will use thatw is of the formw = αu for
some α ∈ At, u ∈ (At · Σ)∗ and thus

w ∈ Js(x)K ⇐⇒ w ∈ Jα · s(x)K (def. J−K)

⇐⇒ w ∈ J⌊δX(x)(α)⌋sK (def. sol., soundness)

Forw = α , we have

α ∈ J⌊δX(x)(α)⌋sK ⇐⇒ δX(x)(α) = 1 (def. ⌊−⌋ & J−K)

⇐⇒ α ∈ ℓX(x) (def. ℓX)

Forw = αpv , we have

αpv ∈ J⌊δX(x)(α)⌋sK ⇐⇒ ∃y. δX(x)(α) = 〈p,y〉 ∧v ∈ Js(y)K (def. ⌊−⌋ & J−K)

⇐⇒ ∃y. δX(x)(α) = 〈p,y〉 ∧v ∈ ℓX(y) (induction)

⇐⇒ αpv ∈ ℓX(x) (def. ℓX)

This concludes the proof. �

Lemma A.3. Let X = 〈X , δX〉 be aG-coalgebra. A function s : X → Exp is a solution to X if and only

if for all α ∈ At and x ∈ X it holds that α · s(x) ≡ α · ⌊δX(x)(α)⌋s .

Proof. We shall use some of the observations about+ from Appendix B.

(⇒) Let s be a solution to X; we then derive for α ∈ At and x ∈ X that

α · s(x) ≡ α · +
α ≤1
⌊δX(x)(α)⌋s (s solves X)

≡ α · +
α ≤α
⌊δX(x)(α)⌋s (Lemma B.2)

≡ α · ⌊δX(x)(α)⌋s (Def.+, U8)

(⇐) Suppose that for all α ∈ At and x ∈ X we have α · s(x) ≡ α · ⌊δX(x)(α)⌋s . We can then derive

s(x) ≡ +
α ≤1

s(x) (Lemma B.3)

≡ +
α ≤1

α · s(x) (Lemma B.4)

≡ +
α ≤1

α · ⌊δX(x)(α)⌋s (premise)

≡ +
α ≤1
⌊δX(x)(α)⌋s (Lemma B.4)

This completes the proof. �

Theorem 4.7 (Existence of Solutions). Any well-nested coalgebra admits a solution.

Proof. AssumeX is well-nested. We proceed by rule induction on the well-nestedness derivation.
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(i) Suppose δX : X → 2At. Then

sX(x) ≔
∑
{α ∈ At | δX(x)(α) = 1}

is a solution to X.
(ii) SupposeX = (Y+Z)[Y ,h], whereh ∈ G(Y +Z ) andY andZ are well-nested with solutions

sY and sZ . We need to exhibit a solution sX to X. For y ∈ Y and z ∈ Z we define

sX(y) ≔ sY(y) · ℓ sX(z) ≔ sZ(z)

ℓ ≔

(
+
α ≤b

⌊h(α)⌋sY
)(b )
· +
α ≤b

⌊h(α)⌋sZ b ≔
∑
{α ∈ At | h(α) ∈ Σ × Y }

By Lemma A.3, it then suffices to prove that for x ∈ Y + Z and α ∈ At, we have

α · sX(x) ≡ α · ⌊δX(x)(α)⌋sX

There are two cases to distinguish.
• If x ∈ Z , then

α · sX(x) = α · sZ(x) (def. sX)

≡ α · ⌊δZ(x)(α)⌋sZ (sZ solves Z)

= α · ⌊δZ(x)(α)⌋sX (def. sX)

= α · ⌊δX(x)(α)⌋sX (def. X)

• If x ∈ Y , then we find by choice of sX and sY that

α · sX(x) = α · sY(x) · ℓ = α · ⌊δY(x)(α)⌋sY · ℓ

We distinguish three subcases:
– If δY(x)(α) ∈ {0} ∪ Σ × Y then δY(x)(α) = δX(x)(α) and thus

α · ⌊δY (x)(α)⌋sY · ℓ = α · ⌊δX(x)(α)⌋sY · ℓ (def. X)

≡ α · ⌊δX(x)(α)⌋sX (def. sX)

– If δY(x)(α) = 1 and h(α) ∈ Σ × Y , then α ≤ b and we can derive

α · ⌊δY (x)(α)⌋sY · ℓ ≡ α · ℓ (def. ⌊−⌋)

≡ α · ⌊h(α)⌋sY · ℓ (α ≤ b)

= α · ⌊h(α)⌋sX (def. sX)

= α · ⌊δX(x)(α)⌋sX (def. X)

– If δY(x)(α) = 1 and h(α) < Σ × Y , then α ≤ b and we can derive

α · ⌊δY (x)(α)⌋sY · ℓ ≡ α · ℓ (def. ⌊−⌋)

≡ α · ⌊h(α)⌋sZ (α ≤ b)

= α · ⌊h(α)⌋sX (def. sX)

= α · ⌊δX(x)(α)⌋sX (def. X)

This completes the proof. �

Lemma A.4. Let e ∈ Exp and α ∈ At. Then ιe (α) = 1 if and only if α ≤ E(e).

Proof. We proceed by induction on e . In the base, there are two cases.
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• If e = b ∈ BExp, then ιe (α) = 1 if and only if α ≤ b = E(b).
• If e = p ∈ Σ, then ιe (α) = 0 and E(e) = 0.

For the inductive step, there are three cases.

• If e = f +b д, then suppose α ≤ b. In that case, ιe (α) = 1 holds if and only if ιf (α) = 1, which
by induction is true precisely when α ≤ E(f ), which is equivalent to α ≤ E(f +b д). The
other case can be treated analogously.
• If e = f · д, then ιe (α) = 1 implies that ιf (α) = 1 and ιд(α) = 1, which means that α ≤ E(f )

and α ≤ E(д) by induction, and hence α ≤ E(e). The other implication can be derived in a
similar fashion.
• If e = f (b ), then ιe (α) = 1 is equivalent to α ≤ b = E(e). �

Theorem 4.8 (Correctness II). Let e ∈ Exp. Then Xι
e admits a solution s such that e ≡ s(ι).

Proof. We proceed by induction on e , showing that we can construct a solution se to Xe . For the
main claim, if we then show that e ≡+α ≤1⌊ιe (α)⌋se , it follows that we can extend se to a solution
s of Xι

e , by setting s(ι) = e and s(x) = se (x) for x ∈ Xe . In the base, there are two cases.

• If e = b ∈ BExp, then we choose for se the (empty) map from Xe to Exp; this (vacuously)
makes se a solution to Xe . For the second part, we can derive using Lemmas B.3 and B.4:

b ≡ +
α ≤1

b ≡ +
α ≤1

αb ≡ +
α ≤1

α · [α ≤ b] ≡ +
α ≤1
[α ≤ b] ≡ +

α ≤1
⌊ιb (α)⌋se

• If e = p ∈ Σ, then we choose se (∗) = 1. To see that se is a solution to Xe , note by Lemma B.3:

se (∗) = 1 ≡ +
α ≤1

1 ≡ +
α ≤1
⌊δp (∗)(α)⌋se

For the second part, derive as follows, using the same Lemma:

e = p ≡ +
α ≤1

p ≡ +
α ≤1

p · se (∗) ≡ +
α ≤1
⌊ιp (α)⌋se

For the inductive step, there are three cases.

• If e = f +b д, then by induction we have solutions sf and sд to Xf and Xд respectively. We
now choose se as follows:

se (x) =

{
sf (x) x ∈ Xf

sд(x) x ∈ Xд

To see that se is a solution, we use Lemma A.3. Suppose x ∈ Xf ; we derive for α ∈ At that

α · ⌊δe (x)(α)⌋se ≡ α · ⌊δf (x)(α)⌋se (def. δe )

≡ α · ⌊δf (x)(α)⌋sf (def. se )

≡ α · sf (x) (induction)

≡ α · se (x) (def. se )
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The case where x ∈ Xд is similar. For the second part of the claim, we derive

e = f +b д

≡
(
+
α ≤1
⌊ιf (α)⌋sf

)
+b

(
+
α ≤1
⌊ιд(α)⌋sд

)
(induction)

≡
(
b · +

α ≤1
⌊ιf (α)⌋sf

)
+b

(
b · +

α ≤1
⌊ιд(α)⌋sд

)
(U4, U4’)

≡
(
+
α ≤b

⌊ιf (α)⌋sf

)
+b

(
+
α ≤b

⌊ιд(α)⌋sд

)
(Lemma B.2)

≡
(
+
α ≤b

⌊ιe (α)⌋se

)
+b

(
+
α ≤b

⌊ιe (α)⌋se

)
(def. ιe )

≡
(
b · +

α ≤1
⌊ιe (α)⌋se

)
+b

(
b · +

α ≤1
⌊ιe (α)⌋se

)
(Lemma B.2)

≡
(
+
α ≤1
⌊ιe (α)⌋se

)
+b

(
+
α ≤1
⌊ιe (α)⌋se

)
(U4, U4’)

≡
(
+
α ≤1
⌊ιe (α)⌋se

)
(U1)

The case where α ≤ b follows similarly.
• If e = f · д, then by induction we have solutions sf and sд to Xf and Xд respectively. We
now choose se as follows:

se (x) =

{
sf (x) · д x ∈ Xf

sд(x) x ∈ Xд

To see that se is a solution to Xe , we use Lemma A.3; there are three cases to consider.
– If x ∈ Xf and δf (x)(α) = 1, then we can derive

α · ⌊δe (x)(α)⌋se ≡ α · ⌊ιд(α)⌋se (def. δe )

≡ α · ⌊ιд(α)⌋sд (def. se )

≡ α · д (induction)

≡ α · ⌊δf (x)(α)⌋sf · д (premise)

≡ α · sf (x) · д (induction)

≡ α · se (x) (def. se )

– If x ∈ Xf and δf (x)(α) , 1, then we can derive

α · ⌊δe (x)(α)⌋se ≡ α · ⌊δf (x)(α)⌋se (def. δe )

≡ α · ⌊δf (x)(α)⌋sf · д (premise)

≡ α · sf (x) · д (induction)

≡ α · se (x) (def. se )

– If x ∈ Xд , then we can derive

α · ⌊δe (x)(α)⌋se ≡ α · ⌊δд (x)(α)⌋se (def. δe )

≡ α · ⌊δд (x)(α)⌋sд (def. se )

≡ α · sд(x) (induction)

≡ α · se (x) (def. se )
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For the second claim, suppose ιf (α) = 1; we then derive

α · f · д ≡ α · ⌊ιf (α)⌋sf · д (induction)

≡ α · д (premise)

≡ α · ⌊ιд(α)⌋sд (induction)

≡ α · ⌊ιe (α)⌋se (def. ιe )

Otherwise, if ιf (α) , 1, then we derive

α · f · д ≡ α · ⌊ιf (α)⌋sf · д (induction)

≡ α · ⌊ιf (α)⌋se (def. se )

≡ α · ⌊ιe (α)⌋se (def. ιe )

From the above and Lemma B.3 we can conclude that e = f · д ≡+α ≤1⌊ιe (α)⌋se .

• If e = f (b ), then by induction we have a solution sf to Xf . We now choose se by setting
se (x) = sf (x) · e . To see that se is a solution to Xe , we use Lemma A.3; there are two cases:
– If δf (x)(α) = 1, then we can derive

α · ⌊δe (x)(α)⌋se ≡ α · ⌊ιe (α)⌋se (def. δe )

≡ α · e (induction)

≡ α · ⌊δf (x)(α)⌋sf · e (premise)

≡ α · sf (x) · e (induction)

≡ α · se (x) (def. se )

– Otherwise, if δf (x)(α) , 1, then we can derive

α · ⌊δe (x)(α)⌋se ≡ α · ⌊δf (x)(α)⌋se (def. δe )

≡ α · ⌊δf (x)(α)⌋sf · e (premise)

≡ α · sf (x) · e (induction)

≡ α · se (x) (def. se )

For the second part of the claim, we consider three cases:
– If α ≤ b and ιf (α) = 1, then derive

α · e ≡ α · (1 +E(f ) f )
(b ) (Theorem 3.7)

≡ α · (E(f ) · f )
(b )

(U2, W2)

≡ α · (E(f ) · f · (E(f ) · f )
(b )
+b 1) (W1)

≡ α · E(f ) · f · e (α ≤ b, U8)

≡ 0 (Lemma A.4)

≡ α · ⌊ιe (α)⌋se (def. ιe )
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– If α ≤ b and ιf (α) , 1, then we derive

α · e ≡ α · (f f (b ) +b 1) (W1)

≡ α · f f (b ) (α ≤ b, U8)

≡ α · ⌊ιf (α)⌋sf · e (induction)

≡ α · ⌊ιf (α)⌋se (premise)

≡ α · ⌊ιe (α)⌋se (def. ιe )

– Otherwise, if α ≤ b, then we derive

α · e ≡ α · (f f (b ) +b 1) (W1)

≡ α (α ≤ b, U8)

≡ α · ⌊ιe (α)⌋se (def. ιe )

The claim then follows by Lemma B.3. �

Theorem 5.8. If X is normal, then ℓX : X → 2GS is the unique homomorphism X → L.

Proof. We need to establish the following claims:

(1) the language ℓX(s) is deterministic for all states s ∈ X ;
(2) the map ℓX is a homomorphism X → L; and
(3) the map ℓX is the unique homomorphism X → L.

Before we turn to proving these claims, let L ⊆ GS be a language and define

Lαp ≔ {x ∈ GS | αpx ∈ L}.

We will need the following implication:

δX(s)(α) = (p, t) =⇒ ℓ
X(s)αp = ℓ

X(t). (13)

To see that it holds, we observe that given the premise, we have

w ∈ ℓX(s)αp ⇐⇒ αpw ∈ ℓX(s) ⇐⇒ w ∈ ℓX(t).

We can now show the main claims:

(1) We begin by showing that ℓX(s) is deterministic for s ∈ X . Recall that a language L is
deterministic if, whenever x ,y are in the language and x and y agree on their first n atoms,
then they agree on their first n actions (or lack thereof). More precisely, we need to show
that

x = α1p1α2p2 · · ·αnpnx
′ ∈ ℓX(s)

y = α1q1α2q2 · · ·αnqny
′ ∈ ℓX(s)

}
=⇒ pi = qi (∀1 ≤ i ≤ n),

where the final actions may be absent (i.e., pn = x ′ = ε or qn = y′ = ε). We proceed by
induction on n. The case n = 0 is trivially true. For n ≥ 1, take x and y as above. We proceed
by case distinction:
• If p1 is absent, i.e., n = 1 and p1 = x ′ = ε , then by Equation (2) we must have δX(s)(α1) = 1
and thus cannot have q1 ∈ Σ; hence q1 is also absent, as required.
• Otherwise p1 ∈ Σ is a proper action. Then by Equation (2), there exist t , t ′ ∈ X such that:

δX(s)(α1) = (p1, t) ∧ α2p2 · · ·αnpnx
′ ∈ ℓX(t)

δX(s)(α1) = (q1, t
′) ∧ α2q2 · · · αnqny

′ ∈ ℓX(t ′)

This implies (p1, t) = (q1, t
′) and hence

p1 = q1 ∧ α2p2 · · ·αnpnx
′ ∈ ℓX(t) ∧ α2q2 · · ·αnqny

′ ∈ ℓX(t)
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Using the induction hypothesis we can now also conclude that p2 = q2, . . .pn = qn .
(2) Next, we show that ℓX is a homomorphism: (G ℓX) ◦ δX = δ L ◦ ℓX.

If δX(x)(α) = 1, then α ∈ ℓX(x) and hence δ L(ℓX(x))(α) = 1 by definition of δ L .
If δX(x)(α) = 0, then α < ℓX(x) and for all p ∈ Σ,w ∈ GS, αpw < ℓX(x) and hence
ℓX(x)αp = ∅. Thus δ L(ℓX(x))(α) = 0 by definition of δ L .

If δX(x)(α) = 〈p,y〉, then y is live by normality and thus there exists a word wy ∈ ℓ
X(y).

Thus,

αpwy ∈ ℓ
X(x) (def. ℓX)

=⇒ wy ∈ ℓ
X(x)αp (def. Lαp )

=⇒ δ L(ℓX(x))(α) = 〈p, ℓX(x)αp〉 (def. δ L)

=⇒ δ L(ℓX(x))(α) = 〈p, ℓX(y)〉 (Equation (13))

(3) For uniqueness, let L denote an arbitrary homomorphism X → L. We will show that

w ∈ L(x) ⇐⇒ w ∈ ℓX(x)

by induction on |w |.
Forw = α ,

α ∈ L(x) ⇐⇒ δ L(L(x)) = 1 (def. δ )

⇐⇒ δX(x)(α) = 1 (L is hom.)

⇐⇒ α ∈ ℓX(x) (def. ℓX)

Forw = αpv ,

αpv ∈ L(x)

⇐⇒ δ L(L(x))(α) = 〈p, L(x)αp〉 ∧ v ∈ L(x)αp (def. δ L , Lαp )

⇐⇒ ∃y. δX(x)(α) = 〈p,y〉 ∧ v ∈ L(y) (L is hom., Equation (13))

⇐⇒ ∃y. δX(x)(α) = 〈p,y〉 ∧ v ∈ ℓX(y) (induction)

⇐⇒ αpv ∈ ℓX(x) (def. ℓX)

This concludes the proof. �

Theorem 6.2. The uniqueness axiom is sound in the model of guarded strings: given a system of

left-affine equations as in (3) that is Salomaa, there exists at most one R : {x1, . . . , xn} → 2GS s.t.

R(xi ) =

( ⋃

1≤j≤n

Jbi jK ⋄ Jei j K ⋄R(x j )

)
∪ Jdi K

Proof. We recast this system as a matrix-vector equation of the form x = Mx + D in the Kleene
algebra with Tests of n-by-n matrices over 2GS; solutions to x in this equation are in one-to-one
correspondence with functions R as above.
We now argue that the solution is unique when the system is Salomaa. We do this by showing

that the map σ (x) = Mx + D is contractive in a certain metric on (2GS)
n
, therefore has a unique

fixpoint by the Banach fixpoint theorem.
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For a finite guarded string x ∈ GS, let |x | denote the number of action symbols in x . For example,
|α | = 0 and |αpβ | = 1. For A,B ⊆ GS, define

|A| =

{
min{|x | | x ∈ A} A , ∅

∞ A = ∅
d(A,B) = 2−|A△B |

where 2−∞ = 0 by convention. One can show that d(−,−) is a metric; in fact, it is an ultrametric,
as d(A,C) ≤ maxd(A,B),d(B,C), a consequence of the inclusion A △ C ⊆ A △ B ∪ B △ C .
Intuitively, two sets A and B are close if they agree on short guarded strings; in other words, the
shortest guarded string in their symmetric difference is long. Moreover, the space is complete, as
any Cauchy sequence An converges to the limit

⋃

m

⋂

n>m

An = {x ∈ GS | x ∈ An for all but finitely many n}.

For n-tuples of sets A1, . . . ,An and B1, . . . ,Bn , define

d(A1, . . . ,An,B1, . . . ,Bn) =
n

max
i=1

d(Ai ,Bi ).

This also gives a complete metric space (2GS)
n
.

For A,B,C ⊆ GS, from Lemma A.5(i) and the fact |A ⋄ B | ≥ |A| + |B |, we have

|(A ⋄ B) △ (A ⋄C)| ≥ |A ⋄ (B △ C)| ≥ |A| + |B △ C |,

from which it follows that

d(A ⋄ B,A ⋄C) ≤ 2−|A |d(B,C).

In particular, if Dα (e) , 1 for all α , it is easily shown by induction on e that |x | ≥ 1 for all x ∈ JeK,
thus |JeK| ≥ 1, and

d(JeK ⋄ B, JeK ⋄C) ≤ 2−|JeK |d(B,C) ≤ 1
2d(B,C). (14)

From Lemma A.5(ii) and the fact |A ∪ B | = min |A|, |B |, we have

|(bA1 ∪ bA2) △ (bB1 ∪ bB2)| = |(bA1 △ bB1) ∪ (bA2 △ bB2)|

= min |bA1 △ bB1 |, |bA2 △ bB2 |,

from which it follows that

d(bA1 ∪ bA2,bB1 ∪ bB2) = maxd(bA1,bB1),d(bA2,bB2).

Extrapolating to any guarded sum by induction,

d(
⋃

α

αAα ,

⋃

α

αBα ) = max
α

d(αAα ,αBα ). (15)

Putting everything together,

d(σ (A),σ (B)) = max
i

d(
⋃

j

Jei jK ⋄Aj ∪ JdiK,
⋃

j

Jei j K ⋄ Bj ∪ JdiK)

= max
i
(max(max

j
d(Jei jK ⋄Aj , Jei jK ⋄ Bj )),d(JdiK, Jdi K)) by (15)

= max
i

max
j

d(Jei jK ⋄Aj , Jei j K ⋄ Bj )

≤ 1
2 maxj d(Aj ,Bj ) by (14)

=
1
2d(A,B).
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Thus the map σ is contractive in the metric d with constant of contraction 1/2. By the Banach
fixpoint theorem, σ has a unique solution. �

Lemma A.5. Let A △ B denote the symmetric difference of A and B. We have:

(i) (A ⋄ B) △ (A ⋄C) ⊆ A ⋄ (B △ C).

(ii) (bA1 ∪ bA2) △ (bB1 ∪ bB2) = (bA1 △ bB1) ∪ (bA2 △ bB2).

Proof. (i) Suppose x ∈ (A ⋄ B) \ (A ⋄C). Then x = y ⋄ z with y ∈ A and z ∈ B. But z < C since
x < A ⋄C , so z ∈ B \C , therefore x ∈ A ⋄ (B \C). Since x was arbitrary, we have shown

(A ⋄ B) \ (A ⋄C) ⊆ A ⋄ (B \C).

It follows that

(A ⋄ B) △ (A ⋄C) = (A ⋄ B) \ (A ⋄C) ∪ (A ⋄C) \ (A ⋄ B)

⊆ A ⋄ (B \C) ∪ A ⋄ (C \ B)

= A ⋄ ((B \C) ∪ (C \ B))

= A ⋄ (B △ C).

(ii) Using the facts

A = bA∪ bA b(A △ B) = bA △ bB,

we have

A △ B = b(A △ B) ∪ b(A △ B) = (bA △ bB) ∪ (bA △ bB),

therefore

(bA1 ∪ bA2) △ (bB1 ∪ bB2)

= (b(bA1 ∪ bA2) △ b(bB1 ∪ bB2)) ∪ (b(bA1 ∪ bA2) △ b(bB1 ∪ bB2))

= (bA1 △ bB1) ∪ (bA2 △ bB2).

�

B GENERALIZED GUARDED UNION

In Section 3.2 we needed a more general type of guarded union:

Definition 3.5. Let Φ ⊆ At, and let {eα }α ∈Φ be a set of expressions indexed by Φ. We write

+
α ∈Φ

eα =




eβ +β

(
+

α ∈Φ\{β }

eα

)
β ∈ Φ

0 Φ = ∅

Like other operators on indexed sets, we may abuse notation and replace Φ by a predicate over
some atom α , with eα a function of α ; for instance, we could write+α ≤1 α ≡ 1.

The definition above is ambiguous in that the choice of β is not fixed. However, that does not
change the meaning of the expression above, as far as ≡ is concerned.

Lemma B.1. The operator+ above is well-defined up-to ≡.
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Proof. We proceed by induction on the number of atoms in Φ. In the base cases, when Φ = ∅ or
Φ = {α}, the claim holds immediately as the whole expression is equal to, respectively, 0 and eα .
For the inductive step, we need to show that for any β,γ ∈ Φ:

eβ +β

(
+

α ∈Φ\{β }

eα

)
≡ eγ +γ

(
+

α ∈Φ\{γ }

eα

)

We can derive

eβ +β

(
+

α ∈Φ\{β }

eα

)
≡ eβ +β

(
eγ +γ

(
+

α ∈Φ\{β,γ }

eα

))
(induction)

≡ (eβ +β eγ ) +β+γ

(
+

α ∈Φ\{β,γ }

eα

)
(U3’)

≡ (eγ +β eβ ) +β+γ

(
+

α ∈Φ\{β,γ }

eα

)
(U2)

≡ eγ +β (β+γ )

(
eβ +β+γ

(
+

α ∈Φ\{β,γ }

eα

))
(U3)

≡ eγ +γ

(
eβ +β

(
+

α ∈Φ\{β,γ }

eα

))
(Boolean algebra)

≡ eγ +γ

(
+

α ∈Φ\{γ }

eα

)
(induction)

This completes the proof. �

The following properties are useful for calculations with+.

Lemma B.2. Let b, c ∈ BExp and suppose that for every α ≤ b, we have an eα ∈ Exp. The following
then holds:

c · +
α ≤b

eα ≡ +
α ≤bc

eα

Recall from above that the predicate α ≤ b is replacing the set Φ = {α | α ≤ b}.

Proof. We proceed by induction on the number of atoms below b. In the base, where b ≡ 0, the
claim holds vacuously. For the inductive step, assume the claim holds for all b ′ with strictly fewer
atoms. Let β ∈ At with b = β + b ′ and β � b ′. There are two cases.

• If β ≤ c , then we derive

c · +
α ≤b

eα ≡ c ·
(
eβ +β

(
+
α ≤b ′

eα

))
(Def.+)

≡ c · eβ +β c ·
(
+
α ≤b ′

eα

)
(U4’)

≡ c · eβ +β

(
+

α ≤b ′c

eα

)
(induction)

≡ eβ +β

(
+

α ≤b ′c

eα

)
(U4, Boolean algebra)

≡ +
α ≤bc

eα (Def.+, Boolean algebra)
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where in the last step we use b + c ≡ β + b ′c and β � b ′c .
• If β � c , then we derive

c · +
α ≤b

eα ≡ c ·
(
eβ +β

(
+
α ≤b ′

eα

))
(Def.+)

≡ c ·
(
+
α ≤b ′

eα

)
(U8, Boolean algebra)

≡ +
α ≤b ′c

eα (induction)

≡ +
α ≤bc

eα (Boolean algebra)

where for the last step we use bc ≡ (b ′ + β)c = b ′c . �

Lemma B.3. For all e ∈ Exp and b ∈ BExp, we have +
α ≤b

e ≡ be

Proof. The proof proceeds by induction on the number of atoms below b. In the base, where
b ≡ 0, the claim holds immediately. Otherwise, assume the claim holds for all b ′ ∈ BExp with
strictly fewer atoms than b. Let β ∈ At be such that b = β ∨ b ′ and β � b ′. We then calculate:

+
α ≤b

e ≡ e +β

(
+
α ≤b ′

e
)

(Def.+)

≡ e +β b
′e (induction)

≡ βe +β βb ′e (U4, U4’)

≡ βbe +β βbe (Boolean algebra)

≡ be +β be (U4, U4’)

≡ be (U1)

This completes the proof. �

Lemma B.4. Let b ∈ BExp and suppose that for α ≤ b we have an eα ∈ Exp. The following holds:

+
α ≤b

eα ≡ +
α ≤b

αeα

Proof. The proof proceeds by induction on the number of atoms below b. In the base, whereb ≡ 0,
the claim holds immediately. Otherwise, assume that the claim holds for all b ′ ∈ BExpwith strictly
fewer atoms. Let β ∈ At be such that b = β ∨ b ′ and β � b ′. We then calculate:

+
α ≤b

eα ≡ e +β

(
+
α ≤b ′

eα

)
(Def.+)

≡ βeβ +β

(
+
α ≤b ′

αeα

)
(U4)

≡ +
α ≤b

αeα (Def.+)

This completes the proof. �

C COALGEBRAIC STRUCTURE

C.1 Final coalgebra

We give two alternative characterizations of the final G-coalgebra.
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C.1.1 Nonexpansive maps. For any x ∈ A∗ + Aω , let x |n denote the prefix of x of length n, or x
itself if the length of x is less than n. One characterization of the finalG-coalgebra is (F ,D), where

• F is the set of maps f : Atω → (Σ∗ × 2) + Σ
ω that are nonexpansive under the usual metric

on Atω and (Σ∗ × 2) + Σ
ω ; that is, if x ,y ∈ Atω and x |n = y |n , then f (x)|n = f (y)|n .

Nonexpansiveness is the manifestation of determinacy in the final coalgebra. It follows from
nonexpansiveness that hd f (αx) = hd f (αy) for all x ,y ∈ Atω . Here hd and tl are the usual
head and tail functions on nonnull finite or infinite sequences.
• Dα : F → 2 + Σ × F , where

Dα (f ) =

{
(hd f (αx), λx . tl f (αx)), if f (αx) < 2

f (αx), if f (αx) ∈ 2.

The unique homomorphism N : (X , δ ) → (F ,D) is defined coinductively by

N (s) = λx : Atω .

{
p · N (t)(tl x), if δhd x (s) = (p, t)

δhd x (s), if δhd x (s) ∈ 2.

A state s of this coalgebra is live if N (s)(x) ∈ Σ∗ × {1} for some x ∈ Atω .

C.1.2 Labeled trees. Another characterization of the finalG-coalgebra is in terms of labeled trees.
The nodes of the trees are represented by elements of At∗ and the labels are elements of Σ and 2.
A labeled tree is a partial map t : At+ ⇀ Σ + 2 such that if t(x) ∈ 2, then t(y) ∈ Σ for all nonnull
proper prefixes y of x , and t(z) is undefined for all proper extensions z of x . The root ε is always
unlabeled. In this characterization, the structure map is

Dα : (At+ ⇀ Σ) → 2 + Σ × (At+ ⇀ Σ)

Dα (t) =




(t(α), t@α) if α ∈ dom t and t(α) ∈ Σ,

t(α), if α ∈ dom t and t(α) ∈ 2,

undefined, if α < dom t

where t@α is the subtree rooted at α : (t@α)(x) = t(αx), x ∈ At+.
The unique homomorphismT from (X , δ ) to the final coalgebra is defined coinductively by

T (s)(α) =

{
p, if δα (s) = (p, t)

δα (s), if δα (s) ∈ 2
T (s)(αx) =

{
T (t)(x), if δα (s) = (p, t)

undefined, if δα (s) ∈ 2.
x ∈ At+.

C.2 Bisimilarity

Let N andT denote the unique homomorphisms from anyG-coalgebra to the finalG-coalgebra as
characterized in § C.1.1 and C.1.2, respectively. Let ∼ denote bisimilarity (Definition 5.1).

Lemma C.1. The following are equivalent:

(i) s ∼ t ;
(ii) N (s) = N (t);

(iii) T (s) = T (t).

In addition, if X and Y are normal, then these conditions are also equivalent to

(iv) ℓ(s) = ℓ(t);
(v) L(s) = L(t).

Proof. The equivalence of (ii) and (iii) follows from the one-to-one correspondence between non-
expansive maps f : Atω → (Σ∗ × 2) + Σ

ω and labeled trees t : At+ ⇀ Σ + 2 and the observation
that N and T assign corresponding values to any state. Given a labeled tree t , the corresponding
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non-expansive map f assigns to x ∈ Atω the concatenation of the labels t(x |n) along the path
x . Conversely, given f , the corresponding t assigns to x ∈ Atn the n-th symbol of f (y) for any
y ∈ Atω such that x ≺ y.

To show the equivalence of (i) and (ii), we show that the kernel ofN is the maximal bisimulation.
To show that it is a bisimulation, suppose N (s) = N (t). If δα (s) ∈ 2, then for any x , N (t)(αx) =
N (s)(αx) = δα (s) ∈ 2, so δα (t) = N (t)(αx) = N (s)(αx) = δα (s).
If δα (s) = (p,u), then for any x , N (t)(αx) = N (s)(αx) = p · N (u)(x). Thus it must be that

δα (t) = (p,v) for some v and

p · N (v)(x) = N (t)(αx) = N (s)(αx) = p · N (u)(x).

Since x was arbitrary, N (u) = N (v).
Now we show that any bisimulation refines the kernel of N ; that is, if s ≡ t , then N (s) = N (t).

Let αx ∈ Atω be arbitrary. If δα (s) = δα (t) ∈ 2, then

N (s)(αx) = δα (s) = δα (t) = N (t)(αx).

On the other hand, if δα (s) = (p,u) and δα (t) = (p,v), then u ≡ v and

N (s)(αx) = p · N (u)(x) N (t)(αx) = p · N (v)(x).

By the coinductive hypothesis, N (u) = N (v), therefore

N (s)(αx) = p · N (u)(x) = p · N (v)(x) = N (t)(αx).

Thus in all cases, N (s)(αx) = N (t)(αx). As αx was arbitrary, N (s) = N (t).
For (iv) and (v), see [Kozen and Tseng 2008, §2.5]. It was shown there that if the two normal

G-automata accept the same set of finite strings, then they are bisimilar. This is because normality
implies that ℓ(s) is dense in L(s). The result of [Kozen and Tseng 2008, §2.5] was proved under the
assumption of no failures, but this assumption turns out not to be needed. Normality implies that
any dead state s must immediately fail under all inputs, that is, δα (s) = 0 for all α , thus any two
such states are bisimilar. �

C.3 Determinacy and closure

We have discussed the importance of the determinacy property (Definition 2.2) of languages repre-
sented by GKAT expressions and G-automata.
In addition to the determinacy property, the languages L(s) satisfy a certain topological closure

property. Let Atω have its Cantor space topology generated by basic open sets {y ∈ Atω | x � y}

for x ∈ At∗, where � is the prefix relation. This is the same as the metric topology generated by
the metric d(x ,y) = 2−n , where n is the length of the longest prefix on which x and y agree, or 0 if
x = y. The space is compact and metrically complete (all Cauchy sequences converge to a limit).

For x ∈ GS∪ω-GS, let at(x) ∈ At+ ∪Atω be the sequence of atoms in x and let ac(x) ∈ Σ∗ ∪ Σω

be the sequence of actions in x . E.g., at(αpβqγ ) = αβγ and ac(αpβqγ ) = pq. For A ⊆ GS ∪ ω-GS,
let

A↑ =
⋃

x ∈A

{y ∈ Atω | at(x) � y}.

The property of L(s) of interest is

Closure. A set A ⊆ GS ∪ ω-GS satisfies the closure property if A↑ is topologically closed in Atω .

The set L(s)↑ is the set of infinite sequences of atoms leading to acceptance, starting from state s .
This is a closed set, as the limit of any Cauchy sequence of atoms leading to acceptance—whether
after a finite or infinite time—also leads to acceptance.
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The set ℓ(s)↑ is the set of infinite sequences of atoms leading to acceptance after a finite time,
starting from state s . This is an open set, as it is the union of basic open sets {x}↑ for x ∈ ℓ(s).
The set L(s)↑ is the disjoint union of strings in Atω leading to acceptance after a finite (respec-

tively, infinite) time:

L(s)↑ = ℓ(s)↑ ⊎ {at(x) | x ∈ Lω (s)}

The two sets on the right-hand side are disjoint due to the determinacy property. The complement
of this set is Atω \ L(s)↑, the set of strings leading to rejection after a finite time starting from
s . Since L(s)↑ is closed, its complement Atω \ L(s)↑ is open, thus a union of basic open sets. Let
B ⊆ At∗ be a collection of minimal-length finite strings of atoms such that

Atω \ L(s)↑ =
⋃

x ∈B

{x}↑.

Because the strings in B are of minimal length, they are prefix-incomparable, thus the basic open
sets {x}↑ for x ∈ B are disjoint and maximal with respect to set inclusion.

C.4 Language models

The subsets of GS ∪ ω-GS satisfying the determinacy property and the closure property form the
carrier of aG-coalgebra L ′. The structure map is the semantic Brzozowski derivative:

δ L
′

α (A) =




(p, {x | αpx ∈ A}) if {x | αpx ∈ A} , ∅

1 if α ∈ A

0 otherwise.

Exactly one of these conditions holds by determinacy. Although this looks similar to the language
model L of Section 5.2, they are not the same: the states of L ′ contain finite and infinite strings,
whereas the states of L contain of finite strings only. The models L and L ′ are not isomorphic.
We derive the precise relationship below.

Lemma C.2. If A ⊆ GS ∪ ω-GS satisfies determinacy and closure, then so does {x | αpx ∈ A}.

Proof. Suppose A satisfies determinacy. Let y, z ∈ {x | αpx ∈ A} agree on their first n atoms.
Then αpy,αpz ∈ A and agree on their first n + 1 atoms. Since A satisfies determinacy, αpy and
αpz agree on their first n + 1 actions. Then y and z agree on their first n actions. As y and z were
arbitrary, {x | αpx ∈ A} satisfies determinacy.
Now suppose A also satisfies closure. Let x0, x1, . . . be a Cauchy sequence in {x | αpx ∈ A}↑.

Then αx0,αx1, . . . is a Cauchy sequence inA↑. SinceA↑ is closed, the sequence has a limit αx ∈ A↑.
There must exist z ∈ A such that αx = at(z). By determinacy, z must be of the form αpy, and
αx = at(z) = αat(y), thus at(y) is the limit of x0, x1, . . . . �

Lemma C.3. For A a state of L ′, L(A) = A.

Proof. We wish to show that accept(A, x) iff x ∈ A. For α ∈ At,

accept(A,α) ⇔ δ L
′

α (A) = 1⇔ α ∈ A.

For αpx ,

accept(A,αpx) ⇔ ∃B δ L
′

α (A) = (p,B) ∧ accept(B, x)

⇔ {y | αpy ∈ A} , ∅ ∧ accept({y | αpy ∈ A}, x)

⇔ x ∈ {y | αpy ∈ A} by the coinductive hypothesis

⇔ αpx ∈ A. �
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The language model L ′ embeds in the final G-coalgebra F of § C.1.1. For x ∈ Atω and z ∈

Σ
∗ ∪ Σ

ω , let us write x ‖z for the unique y ∈ GS ∪ ω-GS such that at(y) � x and ac(y) = z. For A
satisfying the determinacy and closure conditions,

A 7→ λx : Atω .




z, z ∈ Σω ∧ x ‖z ∈ A,

z1, z ∈ Σ∗ ∧ x ‖z ∈ A,

z0, z ∈ Σ∗, z is �-minimal such that for no extension z′ of z is x ‖z′ ∈ A.

However, L ′ and F are not isomorphic, because L ′ does not distinguish early and late rejection:
an automaton could take several transitions before rejecting or reject immediately, and the same
set of finite and infinite strings would be accepted. Consequently, L : (X , δX ) → L ′ is not a
coalgebra homomorphism in general. However, normality rules out this behavior. As we show in
Lemma C.4, L is a homomorphism if (X , δX ) is normal. ThusL ′ contains the unique homomorphic
image of all normalG-coalgebras.
In Theorem C.5 we will identify a subcoalgebra L ′′ of L ′ that is final in the category of normal

G-coalgebras.

Lemma C.4. If (X , δX ) is normal, then the following hold:

(i) L(s)↑ is the closure of ℓ(s)↑ in Atω ;
(ii) L : (X , δX ) → L ′ is a coalgebra homomorphism.

Proof. (i) Let y ∈ L(s)↑. Then there exists x ∈ GS ∪ ω-GS such that either (a) x ∈ ℓ(s) and
at(x) ≺ y, or (b) x ∈ Lω (s) and at(x) = y. In the (a) case, y ∈ ℓ(s)↑ and we are done. In the (b) case,
by normality, all prefixes z of x have an extension z′ such that z′ ∈ ℓ(s). The strings at(z′) are in
ℓ(s)↑ and form a Cauchy sequence with limit at(x) = y, thus y is in the closure of ℓ(s)↑.
(ii) We wish to show that for any s ∈ X and α ∈ At,

GL(δXα (s)) = δ L
′

α (L(s)), (16)

where GL(p, t) = (p, L(t)),GL(1) = 1, andGL(0) = 0. We have

δXα (s) = 1⇒ α ∈ L(s) ⇒ δ L
′

α (L(s)) = 1,

so (16) holds if δXα (s) = 1. Similarly,

δXα (s) = 0⇒ ∀x αx < L(s) ⇒ α < L(s) ∧ {x | αpx ∈ L(s)} = ∅⇒ δ L
′

α (L(s)) = 0,

so (16) holds if δXα (s) = 0.
Finally, if δXα (s) = (p, t), then by normality t is live, so ℓ(t) , ∅. But if x ∈ ℓ(t), then αpx ∈

ℓ(s) ⊆ L(s), so {x | αpx ∈ L(s)} , ∅. By definition of L ′, δ L
′

α (L(s)) = (p, {x | αpx ∈ L(s)}), and
L(t) = {x | αpx ∈ L(s)} since accept(s,αpx) iff accept(t , x). Thus

GL(δXα (s)) = GL(p, t) = (p, L(t)) = (p, {x | αpx ∈ L(s)}) = δ L
′

α (L(s)). �

Theorem C.5. Let L ′′ denote the subcoalgebra of L ′ consisting of those sets A ∈ L ′ such that A↑ is

the closure of (A∩GS)↑; that is, such that (A∩GS)↑ is dense in A↑. Then L ′′ is normal and final in

the category of normal G-coalgebras.

Proof. To show that L ′′ is normal, we need to show that JAK is nonempty for all nonempty
A ∈ L ′′. Suppose x ∈ A. Either x ∈ GS itself or at(x) ∈ A↑, in which case at(x) is the limit of
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strings in (A ∩GS)↑. In either case A ∩ GS is nonempty, thus

JAK = L(A) ∩ GS by definition of JAK

= A ∩ GS by Lemma C.3

, ∅.

We have shown that L ′′ is normal. By Lemma C.4(ii), for any normalG-coalgebra (X , δ ), L : X →
L ′ is a coalgebra homomorphism, and by Lemma C.4(i), its image is in L ′′. By Lemma C.3, L is
the identity on L ′′, thus L ′′ is final. �

We conclude that L ′′ is isomorphic to the language model L of Section 5.2: the states of L are
obtained from those of L ′′ by intersecting with GS, and the states of L ′′ are obtained from those
of L by taking the topological closure. This establishes that L is isomorphic to a coequationally-
defined subcoalgebra of the final G-coalgebra.
We remark that there is a weaker notion of normality that corresponds exactly to the language

model L ′. Let us call a state s of a G-coalgebra an explicit failure state if all computations from s

lead to explicit failure after a finite time; that is, if L(s) = ∅. By König’s lemma, if s is an explicit
failure state, then there is a universal bound k such that all computations from s fail before k steps.
Every explicit failure state is a dead state, but the converse does not hold in general.
Let us say aG-coalgebra satisfies the early failure property if there are no transitions to explicit

failure states. The coalgebra L ′ satisfies the early failure property and is final in the category of
G-coalgebras satisfying early failure.

One can identify explicit failure states by depth-first search and convert to an equivalent au-
tomaton satisfying early failure by replacing all transitions to explicit failure states with immediate
failure.

D PROBABILISTIC MODELS – CONTINUOUS VERSION

In this subsection, we give a more general version of the probabilistic models of Section 2.4, in
terms of Markov kernels, a common class of interpretations for probabilistic programming lan-
guages (PPLs). We show that the language model is sound and complete for this class of models
as well. We assume familiarity with basic measure theory.
We briefly review some basic primitives commonly used in the denotational semantics of PPLs.

For a measurable space (X ,B), we let D(X ,B) denote the set of subprobability measures over
X , i.e., the set of countably additive maps µ : B → [0, 1] of total mass at most 1: µ(X ) ≤ 1. In
the interest of readability, in what follows we will write D(X ) leaving the B implicit. A common
distribution is the Dirac distribution or point mass on x ∈ X , denoted δx ∈ D(X ); it is the mapA 7→
[x ∈ A] assigning probability 1 or 0 to a measurable setA according asA contains x .4 Denotational
models of PPLs typically interpret programs as Markov kernels, maps of type X → D(X ). Such
kernels can be composed in sequence using Kleisli composition, since D(−) is a monad.

Definition D.1 (Probabilistic Interpretation). Let i = (State,B, eval, sat) be a triple consisting of

• a measurable space (State,B)with states State and a σ -algebra ofmeasurable sets B ⊆ 2State,
• for each action p ∈ Σ, a Markov kernel eval(p) : State→ D(State), and
• for each primitive test t ∈ T , a measurable set of states sat(t) ∈ B.

4The Iverson bracket [φ] is defined to be 1 if the statement φ is true, and 0 otherwise.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article . Publication date: January 2020.



58 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva

The probabilistic interpretation of e ∈ Exp with respect to i is the Markov kernel PiJeK : State →
D(State) defined as follows:

PiJpK ≔ eval(p)

PiJbK(σ ) ≔ [σ ∈ sat(b)] · δσ

PiJe · f K(σ )(A) ≔

∫

σ ′
PiJeK(σ )(dσ

′) · PiJf K(σ ′)(A) (Lebesgue integral)

PiJe +b f K(σ ) ≔ [σ ∈ sat(b)] · PiJeK(σ ) + [σ ∈ sat(b)] · PiJf K(σ )

PiJe
(b )K(σ ) ≔ lim

n→∞
PiJ(e +b 1)

n · bK(σ )

It is known from [Kozen 1985] that the limit in the definition of PiJe
(b )K exists, and that PiJeK is

a Markov kernel for all e .

TheoremD.2. The language model is sound and complete for the probabilistic model in the following

sense:

JeK = Jf K ⇐⇒ ∀i .PiJeK = PiJf K

Proof Sketch. The⇒ direction is essentially Lemma 1 of [Kozen 1985].

⇒: For soundness, we define a mapκi : GS→ State→ D(State) that interprets guarded strings
as Markov kernels as follows:

κi (α)(σ ) ≔ [σ ∈ sat(α)] · δσ

κi (αpw)(σ )(A) ≔ [σ ∈ sat(α)] ·

∫

σ ′
eval(p)(σ )(σ ′) · κi (w)(σ

′)(A).

We then lift κi to languages via pointwise summation,

κi (L) ≔
∑

w ∈L

κi (w)

and establish that any probabilistic interpretation factors through the language model via
κi :

PiJ−K = κi ◦ J−K.

⇐: For completeness, we construct an interpretation i ≔ (GS,B, eval, sat) over the state space
GS as follows. Let B be the Borel sets of the Cantor space topology on GS.

eval(p)(w) ≔ Unif({wpα | α ∈ At}) sat(t) ≔ {xα ∈ GS | α ≤ t}

and show that JeK is fully determined by PiJeK:

JeK = {αx ∈ GS | PiJeK(α)({αx}) , 0}. �
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