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Abstract

Offshore Wind Turbines (OWTs) are a unique type of engineered structure.

Their design spans all engineering disciplines, ranging from structural engineer-

ing for the substructure and foundation to electrical or mechanical engineering

for the generating equipment. Consequently, the different components of an

OWT are commonly designed independently using codified standards. Within

the OWT design process, financial cost plays an important role as a constraint

on decision making, because of the competition between prospective wind farm

operators and with other forms of electricity generation. However, the current,

independent design process does not allow for a combined assessment of OWT

system financial loss. Nor does it allow for quantification of the uncertainties

(e.g., wind and wave loading, materials properties) that characterise an OWT’s

operations and which may have a strong impact on decision making.

This thesis proposes quantifying financial losses associated with an OWT

exposed to stochastic wind and wave conditions using a probabilistic risk

modelling framework, as a first step towards evaluating Offshore Wind Farm

(OWF) resilience. The proposed modelling framework includes a number of

novel elements, including the development of site-specific fragility functions

(relationships between the likelihood of different levels of damage experienced

by an OWT over a range of hazard intensities), which account for uncertain-

ties in both structural capacity and demands. As a further element of novelty,

fragility functions are implemented in a closed-form assessment of financial

loss, based on a combinatorial system reliability approach, which considers

both structural and non-structural components.
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Two important structural performance objectives (or limit states) are eval-

uated in this thesis: 1) the Ultimate Limit State (ULS) which assesses the

collapse of an OWT due to extreme wind and wave conditions, such as those

resulting from hurricanes; and 2) the Fatigue Limit State (FLS), which ad-

dresses the cumulative effects of operational loading, i.e., cracks growing over

the life of the structure until they threaten its integrity. This latter limit

state is assessed using a novel machine learning technique, Gaussian Process

(GP) regression, to develop a computationally-efficient surrogate model that

emulates the output from computationally-expensive time-domain structural

analyses.

The consequence of the OWT failing is evaluated by computing annu-

alised financial losses for the full OWT system. This provides a metric which

is easily communicable to project stakeholders, and can also be used to com-

pare the relative importance of different components and design strategies.

Illustrative applications at case-study sites are presented as a walk-through of

the calculation steps in the proposed framework and its various components.

The calculation of losses provides a foundation from which a more detailed

assessment of OWT and OWF resilience could be developed.



Impact Statement

This thesis contributes towards developing resilience-based methods for im-

proved design and assessment of OWTs. To achieve this aim, the thesis devel-

ops a set of novel techniques that can be used to quantify structural failure of

OWTs. The failure of the structural components is then combined with the im-

portant equipment in terms of financial loss, providing an easily communicable

metric of OWT performance.

The impact of this research can be summarised through societal, economic

and academic elements.

The work is highly relevant to UK society in helping to achieve national

and European targets associated with energy use and carbon reduction, partic-

ularly towards the legal obligations the UK has committed to under the 2015

Paris Agreement and the 2008 Climate Change Act. Impact in this area can

be realised through public and private organisations implementing improved

performance-based design and risk management strategies for OWTs based

on the frameworks presented in this study. The study proposes new risk as-

sessment techniques to help reducing the economic cost of offshore wind and

therefore will aid the sectors future development.

With respect to economic impact, the outputs from this study may pro-

vide both the offshore wind and the (re)insurance industry with tools to per-

form improved risk assessment of OWTs. This will enable them to operate

more competitively in the global energy and financing market, where there is

competition to provide cost effective yet reliable energy generation.

Finally, this study addresses major intellectual challenges by going beyond
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the state-of-the-art in assessment of OWTs by developing a comprehensive

probabilistic risk assessment method for offshore infrastructure. It has resulted

in academic impact, communicated through three journal papers:

1. D. Wilkie, C. Galasso, “Site-specific ultimate limit state fragility of off-

shore wind turbines on monopile substructures”, Engineering Structures,

under final review.

2. D. Wilkie, C. Galasso, “A probabilistic framework for offshore wind tur-

bine loss assessment”, Renewable Energy, under final review.

3. D. Wilkie, C. Galasso, “Using Gaussian processes in fatigue reliability

assessment of offshore wind turbines”, Structural Safety, under review.

Additionally, the research outcomes have been communicated through

participation in international conferences including:

1. The 13th International Conference on Applications of Statistics and

Probability in Civil Engineering (ICASP13), Seoul. The paper was

awarded the the International Civil Engineering Risk and Reliability As-

sociation (CEERA) Student Recognition Award.

2. The 12th International Conference on Structural Safety & Reliability

(ICOSSAR12), Vienna. The work presented won the The Interna-

tional Association for Structural Safety and Reliability (IASSAR) stu-

dent scholarship.

3. The European Geophysics Union (EGU) 2019, Vienna.

4. The Urban Sustainability and Resilience conference 2017, London.

5. The European Association of Wind Energy PhD forum 2017, Milton

Keynes.
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Chapter 1

Introduction

1.1 Offshore wind energy
The European Wind Energy Association reports that the offshore wind indus-

try began in 2000 [20] when the first utility-scale OWF was installed in the

Danish sector of the North Sea, at the Middelgrunden site. This makes off-

shore wind a relatively recent form of energy production compared to others,

even onshore wind which is now over 40 years old [21]. However, within this

short history large changes have occurred, including: rapid growth in OWT

capacity, increases in the size of OWFs, and recent reductions in the Levelised

Cost of Energy (LCoE) (i.e., the amount of money the generator charges for

each Mega watt (MW) hour of energy produced over the full life of the OWF).

Increases in OWT capacity have been such that the average rated capacity of

an OWT installed in 2018 was around 7MW, more than three times the 2MW

average capacity of OWT installed in 2000 [2]. Many of these changes are a

result of the industry working towards best practice in designing, constructing

and maintaining offshore assets, and governments improving policy to support

this activity [22].

The recent growth in total wind energy capacity, both offshore and onshore

wind, makes it the second largest source of electricity generation in Europe, as

shown in Figure 1.2. Since 2016 wind energy generation has been consistently

just behind natural gas, which has around 190GW of installed capacity [23].
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Indeed, if the trend shown on this figure continues wind will be the largest form

of energy production by 2021. The global offshore wind industry has grown

to the point that approximately 21GW of capacity are currently installed [24].

However, this means that the offshore industry is still small compared to the

onshore wind industry which, in Europe alone, has over 160GW of installed

capacity [23].

Nevertheless, offshore wind capacity continues to grow with Europe being

the focus of this expansion to date. It provides 88% (18.5GW) of worldwide

Figure 1.1: Distribution of wind offshore wind energy density by country, taken
from [1].

Figure 1.2: Energy production from different sources in the UK between 2008 and
2018. Taken from Selot et al. [2].
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installed capacity as of 2018, the year with most recent statistics, and a further

25GW worth of projects due to be installed by 2020 [25, 2]. The UK currently

has the largest market share of any single country at 43% of European capac-

ity [2] (or 38% of 2017 world capacity). The concentration within Europe is

partly due to formal agreements entered into by European governments to in-

crease reliance on renewable sources, including a European Commission target

to source “20% primary energy demand from renewable sources by 2020”. Indi-

vidual governments have committed to developing offshore wind, including the

UK government which has committed to supporting 30GW of offshore wind

energy by 2030 [22]. Additionally, the high wind energy density around the

North Sea means that farms in this region will have a particularly high energy

yield, as indicated in Figure 1.1, which shows the offshore wind energy yield

for each country with a sea border. Indeed, the UK Parliament’s Committee

for Climate Change [22] recently highlighted that the UK has the potential to

support between 95GW and 245GW of offshore wind energy generation, com-

pared to only 29GW to 96GW of onshore wind. Zheng et al. [26] highlighted

that high offshore wind energy density is present in other geographical regions,

some of which have plans to install OWFs, including North America [24] and

East Asia [27, 28, 11]. However, there is also high energy density in locations

currently without well-developed plans to install OWFs such as South Amer-

ica, Australia, and South Africa, as shown in Figure 1.1. This suggests a large

potential for future growth in offshore wind generation that surpasses the cur-

rently planned farms. Therefore, offshore wind has the potential to become

an important part of the energy mix in many countries even although current

installed capacity is relatively small.

Building an OWF is very capital intensive, and the ability to complete a

project is influenced by the cost at which the OWF developer can borrow [29].

In total around 70% of this capital cost is spent on the turbine and foundations,

as shown on Figure 1.3 which shows a breakdown of the capital cost of different

components for a typical bottom-fixed OWT. Any reduction in the capital cost
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will have the knock-on effect of reducing the cost of capital, as less borrowing

will be necessary. Additionally, any reduction in risk will have an indirect

effect on the cost of capital, due to lower risk premiums. However, these

costs have historically been high for offshore wind compared to other forms of

electricity generation, the high cost in 2012 is shown on Figure 1.4 compared

to other forms of electricity generation. Consequently, offshore wind energy

production has required support from national governments in order to make

the long-term financial commitments viable. The mechanism for supporting

OWF development currently used in the UK is the ‘contract for difference’

[30], in which wind farm operators bid for zones, and the most competitive

bid is awarded a contract to develop the site. These contracts typically last

for 15 years [30] and provide a minimum guaranteed income to the operator

for the electricity they generate. This is referred to as the strike price, and

is the amount paid (£/MWh) to an OWF operator for each megawatt hour

(MWh) of electricity produced. This effectively shields them from fluctuations

in wholesale electricity prices. The LCoE is the cost the operator will incur

and includes capital costs, operating costs and borrowing costs (i.e. the cost

of capital). Lowering the LCoE lowers the strike price at which operators can

bid to develop a site and still make a profit. Consequently, reducing LCoE

gives operators a competitive advantage over their rivals. Recent auctions

have resulted in strike prices below the most ambitious targets set by the

Crown Estate’s Cost Reduction Pathways Study published in 2012 [31] which

envisioned cost reduction to a LCoE of £100/MWh by 2020. The reductions

also beat the previous industry predictions of LCoE reaching £115/MWh by

the mid 2020s [11]. In the UK, the average LCoE for a new OWF, calculated

in 2016, was £97/MWh [32]. Furthermore recent auctions in the Netherlands

and Denmark have resulted in strike prices much lower [30, 33], leading to a

global LCoE around £92/MWh [34]. These reductions mean offshore wind

has become a competitive form of energy production, with lower LCoE than

nuclear and in some cases even gas as indicated on Figure 1.4. However, this
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later result is dependent on the ease with which the OWF site can be developed

[30], e.g., if there are existing electrical connections to the shore present from

nearby OWFs. The overall LCoE of offshore wind is still much higher than

onshore wind, which had a 2018 global LCoE of around £50/MWh [34].

Cost reduction remains an important goal for OWF operators as:

• The recent reductions in cost are partially due to historically low bor-

rowing costs [30] and therefore exposed to fluctuations in economic con-

Figure 1.3: Capital cost breakdown of an OWT components for a reference OWT.
Taken from Stehly et al. [3].

Figure 1.4: Cost of different types of energy, in terms of 2017 Euros. Taken from
Orsted [4].
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ditions.

• The auction mechanism for assigning OWF zones mean that additional

cost reduction will give bidding consortia a competitive advantage over

the other bidders.

Additionally, lower costs could improve the uptake of offshore wind in

markets without current plans for installations.

The Leanwind project [35] reviewed potential cost saving strategies and

highlighted that “Optimised foundations and novel designs need to be devel-

oped”. However novel technologies have been associated with higher borrowing

costs, due to technological risk, especially on offshore wind projects [36]. Prob-

abilistic risk modelling that can quantify the reliability of OWT structures

could help confirming the adequacy of new technologies, by quantifying their

risk in terms of lifetime financial losses and structural and nonstructural safety.

Additionally, these techniques could potentially be used to identify more op-

timised and capitally-efficient designs than attainable by current prescriptive

code-based approaches [37].

Achieving improved, integrated, design is challenging as OWTs are unique

engineering structures which depend on:

• electrical components - including a control system which regulates energy

production;

• mechanical components - including a generator, drive train and gearbox;

• and structural components - comprising a tower, monopile, transition

piece and blades;

to remain operational. Currently, design of these systems is fragmented

as all components are designed separately. This is especially true in the case

of structural design which is undertaken at the component level, where the

tower and monopile are designed separately, often by different companies [38].

There is a large gap between current practice and considering these structures
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as integrated systems comprised of structural and mechanical components.

Within this thesis, the framework of risk and resilience will be seen to provide

suitable tools for approaching this problem in a rigorous and quantitative way.

1.2 Offshore wind turbines
OWTs are typically much larger than their onshore counterparts. The largest

onshore wind turbine can produce 4.8MW of power compared to the largest

OWT which has a rated capacity of 9.5MW and a rotor diameter of 164m.

The growth in the size of OWT is charted in Figure 1.5, which shows their

development over time. Since 2002 the capacity and size of OWTs have in-

creased rapidly meaning that large specialist vessels are now used to assemble

them offshore.

Within an OWF, the individual OWTs are comprised of similar compo-

nents, allowing “mass” manufacturing. However, there are different mecha-

nisms that are used to attach the turbine to the seabed, as summarised by

Vorpahl et al. [39]. Floating OWTs are attracting a lot of interest in the

current research setting; however, to date, few have been installed in com-

mercial OWFs. For OWTs that are fixed to the seabed (fixed-bottom), there

are a range of support-structure types available. This thesis focuses on OWT

supported by monopile foundations, as these comprise over 80% of existing

offshore wind installations [2] and will be used in large quantities in future de-

velopments [40]. They have been found to be more adaptable than originally

envisaged, providing the most cost efficient foundation solution over a range of

water depths up to 38m [41]. These foundations take the form of large cylin-

drical members, with diameters up to 10m, which are driven into the seabed.

An example of this foundation type is shown in Figure 1.6. A platform is then

placed on top of the monopile; it allows correction of rotations introduced

during installation and supports the walkways that allow maintenance crews

access to the OWT.

The main structural components of a bottom fixed OWT are defined in



1.2. Offshore wind turbines 38

Figure 1.5: Increasing average size and capacity of offshore wind turbines with
time, taken from [5].

the design code International Electrotechnical Commission (IEC) 61400-3 [6]

and are shown on a typical turbine structure in Figure 1.6. The components

include a support structure comprised of: a foundation, a tower and a sub-

structure (which spans between the seabed to the tower). The Rotor Nacelle

Assembly (RNA) is located on top of the tower and contains the majority of

equipment used to generate electricity. This component sits on bearings and

can rotate about the vertical (central) axis of the tower. When the direction

of the wind changes the yaw system pivots the RNA into the wind direction so

that the rotor is perpendicular to the incoming wind flow, maximising energy

production. Each of the three blades connects to the hub and is installed on

its own set of bearings, allowing them to rotate about their central axis and

regulate the speed at which the rotor turns [11]. A shaft connects the rotor

and gearbox through a hole in the front of the RNA, transmitting rotations

from the blades into the generator.

The majority of OWT are operated using a variable speed, torque and

pitch controller, which regulates the angle of the blades relative to the incoming

wind. It attempts to produce a constant torque on the generator after the wind

speed at the RNA height reaches a pre-defined threshold. This rated wind
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Figure 1.6: Components of an offshore wind turbine as defined in IEC 61400-3 [6].
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speed is associated with the largest operational thrust forces; for instance, a

common OWT used in academic research has a rated speed of 12m/s [42].

Separately, a cut-in and cut-out speed govern the RNA mean wind speed at

which the OWT will start to produce electricity or will shut-down to protect

itself from high loading during storms. When in the shut-down state, the

blades are pitched 90° into the wind, minimising lift forces and preventing the

rotor from spinning. This means that rotor thrust has a complex, non-linear,

relationship to the mean wind speed [11], which is important to capture in the

assessment of OWT loads.

1.3 Research objectives
Cost reduction remains an important objective when planning offshore wind

installations. This is especially true as the OWT is unmanned for most of its

operating life, and therefore life safety issues are not a paramount concern.

As highlighted in Section 1.1, probabilistic risk modelling may be used to

justify designs which are less conservative than those produced by traditional

approaches based on design codes. However, suitable integrated assessment

techniques for quantifying financial losses do not currently exist, particularly

for the structure, as emphasised in the Leanwind project [35]. Motivated

by these observations, the primary questions that this thesis aims to answer

are: can computational tools be developed that allow integrated assessment of

OWT performance? How can OWT structural and non-structural performance

be communicated to stakeholders? The research vision which addresses these

questions is the development of an advanced, harmonised and engineering-

based risk assessment framework for offshore wind energy installations.

This overall aim can be split into a series of objectives and related tasks.

Most of these focus on the OWT structural components as the equipment com-

ponents will be seen to be sufficiently covered by existing empirical databases

in Section 2.2.4. Specifically, in order to achieve the overall aims, the following

objectives are addressed throughout this thesis:
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• To define types of failure that are important for OWT structures through

relevant limit states, investigating the structural ULS and FLS;

• To develop a probabilistic risk framework for the ULS using numeri-

cal fragility functions, focusing on extreme events and investigating the

sensitivity of structural fragility to various modelling and analysis as-

sumptions/strategies;

• To develop a probabilistic, computationally-efficient reliability assess-

ment framework for the FLS. This limit state is particularly important

and difficult to assess because it is associated with high computational

cost. Additionally, to date, little research has investigated this limit state

in a fully probabilistic manner.

• To demonstrate how the proposed fragility/reliability calculation for dif-

ferent limit states can be applied in practice through a series of case-study

applications. This will provide an integrated assessment of OWT failure

in terms of financial losses, including both the mechanical and structural

components. It goes beyond the current state of practice, as most pub-

lished studies focus on either the structural or mechanical components

in isolation.

This thesis focuses on wind farms located in the North Sea and OWTs

on monopile foundations, which comprise the majority of currently installed

turbines. Intense hurricane and earthquake conditions are not expected in

the North Sea and are therefore not the primary focus of this work; however

they would be relevant to OWT located in America or Southeast Asia. In

the assessment of the ULS an additional site on the USA East Coast is inves-

tigated. Additionally, the foundations which support the OWT are included

in the analysis of the FLS, but are not included in the explicit uncertainty

quantification.
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1.4 Thesis structure and publications
The research objectives are addressed within the main chapters of this thesis,

some of which have been published as stand-alone articles, as summarised in

the impact statement:

• Chapter 2 contains the literature review which introduces the concepts

of risk and resilience as applied to engineering systems in general. It then

focuses on the concepts of risk, reliability and resilience as developed for

structural engineering problems and the methods that have been applied

specifically to assess offshore wind infrastructure. This is followed by a

summary of structural analysis methods used for load-response assess-

ment of OWT and a review of the limit states used in design of OWT. The

current literature concerning risk assessment of wind energy is reviewed.

A number of gaps present in the existing literature are highlighted, and

a methodology addressing these is proposed.

• Chapters 3 and 4 assess OWTs at the ULS, initially proposing a prob-

abilistic risk modelling approach to evaluate the structural risk posed

by extreme weather conditions to OWTs in Chapter 3. This approach

is based on a Performance Based Engineering (PBE) framework which

uses fragility functions to expresses the likelihood of different levels of

damage experienced by the OWT structural components over a range of

hazard intensities. A closed-form technique, based on a combinatorial

system reliability approach, is proposed to assess failure consequences

(e.g., financial loss) for a OWT system comprised of both structural and

nonstructural components. This is a novel application of fragility func-

tions, which have been widely used for loss estimation of other civil engi-

neering structures, but not OWTs. In Chapter 4, fragility functions are

developed for OWTs on monopile foundations exposed to extreme meto-

cean conditions using dynamic aero-elastic simulations. This is done for

two case-study locations, one in the USA East Coast and one in the

North Sea. The impact of different modelling and analysis choices on
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the obtained fragility functions are quantified. Additionally, interdepen-

dencies between failure modes for different OWT components are inves-

tigated. A coherent treatment of epistemic uncertainties in the definition

of fragility functions (e.g., sampling variability in fragility estimation) is

implemented using statistical resampling to provide loss results account-

ing for uncertainty of estimation.

• Chapter 5 and 6 assess OWTs in the FLS. Chapter 5 summarises the

problems encountered in FLS assessment and proposes using novel,

computationally-efficient GP surrogate model to address these issues.

This approach makes it possible to evaluate the large number of load-

cases which comprise the operating conditions of an OWT through the

use of a surrogate model, surpassing the current state of the art tech-

niques that rely on simplifying the number of load-cases. The surrogate

model prediction of fatigue damage is incorporated into a framework for

calculating the reliability of an individual OWT including uncertainty in

the fatigue material properties. Chapter 6 demonstrates that the pro-

posed approach can reduce the computational effort required to evaluate

the FLS through application to three case-study offshore wind farm sites.

The sensitivity of various goodness of fit metrics to different model as-

sumptions is investigated in order to further reduce the computational

effort required to perform the GP regression. The efficient surrogate

model is finally used in a structural reliability calculation to evaluate

the probability of failure of an OWT when the fatigue parameters are

modelled as random variables, highlighting the large scatter inherent to

the fatigue limit state. The full loss calculation, developed for the ULS

in Chapter 3, is applied to the FLS, allowing the two limit states to be

compared in terms of financial losses.

• The conclusions of the observations arising from the analyses are pro-

vided in Chapter 7. This includes a critical review of the results and

recommendations for further work.
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The chapters of this thesis are developed to be largely self-contained be-

cause they have been published as individual journal articles. As such, there

is some repetition in introductions and background material. In addition, no-

tational conventions were chosen to be simple and clear for the topic of each

chapter rather than for the thesis as a whole; because of this, the notational

conventions may not be strictly identical for each chapter.



Chapter 2

Literature Review

2.1 Introduction
This chapter provides a review of the existing literature regarding probabilistic

risk assessment applied to OWTs. The chapter is organised as follows: Section

2.2 provides an overview of risk assessment, describing this in terms of its

relationship to resilience, then it summarises specific approaches that have

been developed for quantifying risk. Section 2.3 summarises the state-of-the-

art for modelling OWT structures, this includes a review of the important

limit states to be considered in the assessment. Section 2.4 discusses how these

limit states have been utilised in risk modelling studies of OWT structures.

Finally, Section 2.5 summarises the research gaps which have been identified

and proposes a framework for addressing them. The proposed framework is

developed in the main body of the thesis.

2.2 Resilience of infrastructure

2.2.1 Resilience modelling
The concept of resilience provides a framework in which to assess the behaviour

of complex systems over time, particularly after disruptive events which have

a large impact on the system functionality. A modern, technical, usage of the

term was originally developed within the field of ecology [43]. In this context,

resilience measures the magnitude of disturbance that a system can withstand
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while its functionality persists. However, the term is now widely applied out-

side of ecology, across a broad field of disciplines, including [43, 44]: economics,

psychology, disaster risk management and engineering (focusing on infrastruc-

ture management); and the literature contains many overlapping definitions

[44, 43, 45]. The USA Presidential Policy Directive (PPD) 21 [46] provides a

useful foundation by stating that “the resilience of a system’s function can be

measured based on the persistence of a corresponding functional performance

under uncertainty in the face of distress”. This emphasises the time-dependence

of resilience commonly utilised in most definitions [44, 43, 45]. Similar defini-

tions are provided by other institutions and, in the UK, the Civil Contingencies

Secretariat of the Cabinet Office defined resilience as: “the ability of a system

or organisation to withstand and recover from adversity”. The PPD definition

is advantageous as, in mentioning uncertainty, it is consistent with the Inter-

national Standards Organisation (ISO) definition of risk as being the “effect

of uncertainties on objectives” [43]. Thereby, this provides a definition that

allows risk assessment techniques to be incorporated within a framework for

assessing resilience. This definition is also broad, and therefore applicable over

a wide range of different infrastructure systems and stakeholders.

In order to assess or develop strategies to enhance resilience, a measure

of system performance is necessary; this can be qualitative or quantitative

[45]. Qualitative approaches are applicable to community-scale resilience [43].

Quantitative approaches, in contrast, can provide detailed and specific infor-

mation, useful for optimal decision making for engineering systems. A quanti-

tative approach requires a numerical measure that defines the resilience of the

system over time, such as through the mathematical theory of metrics [45].

However, quantitative approaches can also be described schematically through

Figure 2.1, often referred to as the resilience triangle [44]. The solid line in-

dicates the system’s performance (e.g., for an OWT this might be electricity

generation) which is reduced after a disruptive event (e.g., a windstorm) oc-

curring at t0. Performance is gradually recovered along the time axis, to an
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“as-new”, “at-event”, or “deteriorated” performance level. The system opera-

tor has different options for making repairs, depending on the desired level of

post-event functionality. This behaviour can be described by four attributes

which characterise the system [7]:

• Robustness - The capability of the system to withstand a disruptive

event. It can be quantified as the residual functionality directly after

the event occurs and is therefore a measure of the overall system perfor-

mance.

• Rapidity - The speed to recover, contain losses, and avoid future disrup-

tions. It can be viewed as the rate of recovery (i.e., the slope of recovery

in Figure 2.1), and therefore determines the time gap from t0 to tD, tE
or tN .

• Redundancy - The extent to which other components can satisfy and

sustain functional requirements after a disruptive event, which causes a

loss of functionality.

• Resourcefulness - The capacity to diagnose and prioritise problems that

can cause reduced functionality, then to initiate measures that will lead

to functional recovery. This relates to the ability of an organisation to

Figure 2.1: Graphical definition of resilience after an event (at t0), with different
repair options (adapted from [7]).
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react after an extreme event has occurred and therefore influences the

rapidity.

The focus on functionality over time, in the PPD definition, makes re-

silience a suitable tool for assessing engineering infrastructure. For example,

a full resilience study was conducted to assess recovery strategies for a bridge

by Deco et al. [47]. However, this analysis required a large number of details

about the bridge and costs incurred when the bridge was unusable (including

the financial impact of increased commuting time) to determine which recov-

ery strategy would incur the lowest cost. It would be difficult to apply this

type of assessment to all systems, as very detailed information is necessary.

This is especially true at the design stage when detailed information about the

operational stage is unlikely to be available to the engineer [48]. In the absence

of detailed information, resilience may be inferred through the robustness at-

tribute alone, by assuming that resilience and robustness are correlated [49].

This can then be used in a later, full assessment of resilience.

2.2.2 Probabilistic risk modelling
Modern risk assessment techniques are based on three distinct elements: haz-

ard, exposure and vulnerability [50]. This approach is consistent with the

ISO definition of risk: “the effect of uncertainties on objectives” [43], as each

component of the risk assessment is associated with uncertainty. For infras-

tructure systems, the objective is continued functionality in the presence of

natural hazards.

Hazard considers the likelihood and extent of a peril. This can be assessed

for natural hazards using either empirically recorded data from previous events

or physics-based models (e.g., climate prediction in the case of weather-related

hazards). Events are defined by their severity and probability of occurrence

across a geographical region of interest, e.g., for a hurricane hazard the inten-

sity might be represented using the peak gust wind speed and the extent by

the hurricanes footprint. A probabilistic model is necessary to generate event

likelihoods, and is commonly evaluated using synthetic catalogues [51]. These
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are effectively computational histories in which a long, 10,000 year, time-spans

are simulated using a climate model to predict events. The catalogue can then

be used to calculate event probabilities for a given Intensity Measure (IM)

by counting the number of year in which has an IM above the threshold and

dividing by the length of the catalogue.

Exposure considers the characteristics of the asset being assessed and its

location with respect to the hazard. This comprises information about the

asset, including: location, physical construction details, and replacement costs.

Vulnerability considers how susceptible the asset is to physical damage

from the specific hazard being assessed. The level of damage depends on the

severity of the hazard, and so the asset response needs evaluated over the full

range of plausible hazard intensities. Additionally, the different performance

levels of the asset need to be considered, e.g., for a building it is typical to

split the structural performance into various damage states corresponding to

no damage, moderate damage, severe damage and collapse thresholds [52].

Finally, some method for communicating the risk to stakeholders is nec-

essary. This is often achieved through a separate loss analysis which estimates

the consequence of physical damage in terms of either financial loss, casual-

ties/injury to users or downtime [51]. It provide a series of metrics for com-

municating performance, including Exceedance Probability (EP) curves which

represent the probability of incurring different levels of financial loss for a spe-

cific asset or over a region of interest. Integrating the EP curve yields another

useful metric in the form of average annual loss for the asset [53].

Two paradigms exist for applying the risk assessment framework to real

world engineering systems: PBE and Catastrophe Risk (CAT) modelling. The

overall approach used in both is very similar because they rely on combining

the different risk assessment components using the theorem of total probability.

However, they were both developed independently, and for different purposes,

so they will be briefly introduced separately.

PBE was developed within the field of Civil Engineering in the early
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2000’s, as a development of structural reliability techniques [50]. In the 1960’s,

previous to PBE, un-calibrated (or calibrated in a simplified way), code-based

approaches were used to design and assess structures. These were insufficient

as they could not guarantee a consistent level of structural reliability [50].

As a result, new Load Resistance Factored Design (LRFD) structural design

codes were developed, with safety factors calibrated using structural reliability

techniques; however higher levels of reliability were still necessary for criti-

cal buildings. Consequently, nuclear power stations and important buildings,

which were exposed to highly uncertain earthquake hazards, were the focus

of the first PBE applications [8]. The framework was subsequently extended

to encompass a wide variety of natural hazards, including: blast [48], wind

[54, 55] and tsunami hazards [56, 57]. PBE is typically applied to single struc-

tures as either a tool to improve design or select improved maintenance and

retrofitting strategies for existing ones [58]. The general approach is described

through the equation [59]:

λ(DV ) =
∫∫∫

F (DV |DM)|f(DM |EDP )||f(EDP |IM)||dλ(IM)|, (2.1)

in which the total probability theory has been applied to decompose the

mean annual frequency of occurrence, λ(·), of a Decision Variable (DV) into

the components of risk assessment. F (·|·) is a conditional Cumulative Distribu-

tion Function (CDF) and f(·|·) is a conditional Probability Density Function

(PDF). The variables within these functions are:

• IM, a quantity that indicates the severity of the hazard at a given site. It

acts as an interface between the natural hazard and the structure, e.g.,

wind hazard might be represented through the mean wind speed.

• Engineering Design Parameter (EDP), an engineering design parameter

describes the structural response to the hazard, e.g., by computing the

stress in a component.
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• Damage Measure (DM) describes the physical damage to the structure.

This is defined in terms of a limit state, which sets EDP thresholds above

which a certain level of damage will occur.

• DV represents the performance objectives of the system being assessed,

such as: casualties, monetary loss or downtime.

The full framework is compiled by integrating each term in Eq.(2.1). The

approach can also be described using the flowchart shown in Figure 2.2 and

relates to the components of risk assessment:

• Hazard - Model representing the frequency of occurrence of the param-

eters selected as the IM . In Eq. (2.1), it is represented through the

annual rate of occurrence of the IM, the term λ(IM).

• Loss - A conditional distribution of the losses for different damage levels

DM , captured through the term F (DV |DM).

• Vulnerability - A distribution of the total loss or loss ratio (repair cost

over replacement cost) with respect to the IM. The fragility function

is a closely related concept which defines a structure’s susceptibility to

damage in terms of probability of a limit state being exceeded across

the full range of hazard intensity (IM). These typically are expressed as

a CDF, which can be extracted from Eq. (2.1) by integrating over the

EDP variable, yielding the term |f(DM |IM)|, and converting it to a

Figure 2.2: PBE risk modelling framework, taken from [8].
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CDF F (DM |IM). Fragility functions combine the structural analysis

and damage analysis component in Figure 2.2, and allow uncertainty in

structural capacity (e.g., geometry, material properties, models) to be

captured. The vulnerability function is evaluated by combining damage-

to-loss models and fragility functions, resulting in a distribution of loss

conditional on the hazard intensity F (DV |IM) .

CAT modelling uses the same approach as PBE for combining the risk

assessment components. However, it operates on a different scale, predicting

losses over large geographical regions, instead of for specific assets. This ap-

proach was developed within the insurance industry in the 1980’s [51], as the

previous method of manually recording insurance claims on maps was cum-

bersome and inaccurate for rare, catastrophic events, with a sparse historical

record. CAT modelling was based on newly developed scientific understanding

and modelling techniques which used computational platforms to predict the

occurrence of natural hazards [51]. This allowed risk assessment to be carried

out for large portfolios of assets, using the general structure shown in Figure

2.3. All the components of a CAT model are similar, and are combined in the

same way, as PBE. However, as these models can operate at a regional scale,

there are differences with the PBE approach [58]. A key one for this work, is

that vulnerability is defined over a large series of structures which are taken

as representative of the building stock in the region, not for each individual

structure [51].

Both PBE and CAT models are suitable for modelling the response of

infrastructure to extreme events. However, because they rely on decomposing

the risk assessment problem, specifically between the hazard and fragility /

vulnerability, it is difficult to include deterioration mechanisms which effect the

structure over time within the standard framework. These mechanisms include

corrosion and fatigue, and can be analysed using explicitly time-dependent life-

cycle techniques [60].
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Figure 2.3: CAT risk framework for a wind hazard.

2.2.3 Fragility evaluation techniques
Fragility functions describe the susceptibility of a structure or structural ele-

ment to damage [61]. This is expressed through a probability valued function

that represents the probability of exceeding the structures capacity at a given

level of hazard intensity for a single damage state [59], i.e., F (DM |IM) as

introduced in the previous section. Consequently, fragility functions sit in the

middle of the risk assessment process, and act as an interface between the

environmental conditions and the prediction of damage.

A wide range of techniques have been developed for producing fragility

functions within both PBE and CAT modelling frameworks [61]. Data from

historical, recorded events can be used to define fragility functions empirically.

This is a purely data-driven approach where statistical techniques are used

to estimate damage probabilities [62]. Empirical approaches are regarded as

the most reliable source of damage statistics as they are based on real-world

observations [52]. They may be more useful in a CAT modelling context, be-

cause they rely on averaging damage over a set of recorded data (typically from

buildings with a range of characteristics) [62]. However, an empirical approach

depends on high quality information from previous events. If detailed infor-

mation is unavailable, expert judgement can be used as an alternative method

for producing fragility functions. However, the reliability of expert judgement
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is questionable because it depends on the experience of the experts who are

consulted. A different approach driven by the problems inherent in expert

judgement and the scarcity of empirical data is based on generating fragility

functions numerically [63]. This relies on mathematical models to represent

the behaviour of a building, or series of representative (index) buildings un-

der different levels of hazard intensity [59]. However, the disadvantage is that

this approach requires detailed information in order to define a sufficiently

accurate structural model. Any of these approaches can be combined using

hybrid fragility techniques which attempt to compensate for the drawbacks of

individual approaches [61].

Structural reliability techniques can be thought of as predicting a single

point from an analytical fragility function. Indeed these techniques originated

for use in first generation of calibrated LRFD codes [50] for predicting the

probability of failure of a single code limit state, i.e., a single hazard-intensity

level. Reliability problems are often posed in terms of a response variable, Y ,

exceeding a specified performance threshold b, where the response is predicted

using a set of input variables, X, which are converted through a relationship

(h(·)):

Y = h(X). (2.2)

Reliability estimation is the process of evaluating how likely failure is to

occur when the value of the input variables are uncertain (and can be modelled

as a joint-PDF). The probability of failure is the probability of exceeding the

performance threshold P (Y > b). The reliability is then P (Y ≤ b) = 1−P (Y >

b), which can also be evaluated as an integral of the joint-PDF of the input

variables (q(x)) over the parameter space in which failure occurs (F ) [9]:

P (Y > b) =
∫
F
q(x)dx =

∫
IF (x)q(x)dx = E[IF (x)]. (2.3)

IF (x) is an indicator function that takes the value of 1 when x is in its
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failure space. The boundary between system failure and safety is defined using

a limit state equation (G(·)), which encodes the desired performance objectives

for the system:

G(x) = b−h(x). (2.4)

A large number of input random variables are typically used in modern

reliability simulation and mean that it can be difficult to visualise the integral

in Eq. (2.3). However, a simplified problem which has two random variables

can be observed, such as shown on Figure 2.4 (left). Depending on the function

that relates Y to X the failure region can be a complex shape, with a non-linear

boundary separating the failure and non-failure regions. The design point is

defined as the point on the failure boundary that is nearest to the origin, and

is highlighted with the symbol x∗ in Figure 2.4 (left).

One early method referred to as the First Order Reliability Method

(FORM) [64] simplifies the failure boundary by assuming it takes the form

of a linear relationship, as shown on Figure 2.4 (right) providing an analytical

solution. The approach is based on firstly transforming the joint-PDF of X

into a multivariate standard Gaussian distribution; this transformed version of

Figure 2.4: Failure space for a system with two random variables, each of which
follows a standard Gaussian distributions (left). The complex failure
surface is simplified to a linear relationship (right). Taken from [9].
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the reliability problem is plotted in Figure 2.4 (right). Numerical optimisation

is used to locate the design point and the distance of this point from the origin

is denoted β, the reliability index. The probability of failure can be estimated

by simply evaluating the CDF of −β, as the Gaussian PDF is axisymmetric.

A separate family of techniques for structural reliability assessment are

based on sampling. The most widely used approach is plain Monte Carlo sim-

ulation [64] which relies on the observation that probability of failure can be

viewed as an expectation (as indicated in Eq. (2.3)), and can be calculated

by statistical averaging [9]. Realisations of X are sampled and the system

response Y corresponding to each is evaluated. The probability of failure is

then the average over responses where the system exceeds it’s performance

threshold, when Eq. (2.4) is less than zero. However, because of it’s reliance

on averaging, Monte Carlo simulation requires a large number of samples to

evaluate small probabilities of failure. This can be computationally demand-

ing if the relationship between X and Y is complicated, e.g, evaluated through

Finite Element Analysis (FEA). Consequently modifications have been devel-

oped that either attempt to improve sampling efficiency (importance sampling,

subset simulation) or the Monte Carlo technique is combined with others, such

as response surfaces, to improve the sampling speed [64].

Surrogate models are another family of methods used in structural re-

liability assessment, and which also have a much larger field of application.

These replace the limit state with an approximation which is less computa-

tionally expensive to evaluate. Typically this approximation is a mathematical

function that does not contain any physics from the limit state (e.g., a finite

element model) [65]. These models are typically calibrated to the limit state

by analysing the physics-based model at a discrete number of locations, then

using an optimisation algorithm to find he parameters of the surrogate model

which represent the limit state data best. The locations used to calibrate the

surrogate model are selected using a design of experiment method such as:

random sampling, Latin Hypercube sampling or other space filling algorithms
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[66]. In the field of structural reliability analysis surrogate models based on

polynomials are referred to as ”response surfaces” [64], where the polynomial

represents the limit state function:

Ŷ = ĥ(X) (2.5)

This approximation of the limit state (ĥ(·)) can be rapidly evaluated, and,

for example be used to draw a large number of samples with a Monte Carlo

simulation.

2.2.4 Risk modelling of offshore wind turbines
Full resilience studies specifically focusing on OWTs are rare. Indeed, a search

of the Scopus abstract and citation database on 24/04/19 using keywords:

offshore, wind turbine, and resilience identified only two studies. The first was

a qualitative assessment of human error and organisational capacity, Mentes

and Turan [67], which is not relevant to the aims of this thesis. The second

paper, Feng et al. [68], proposed using series and parallel relationships to

quantify the system resilience of OWFs. However, this study only used OWFs

as an illustrative application of a general approach for evaluating resilience,

and did not investigate the failure of OWTs in detail. It completely neglected

the OWT structure and evaluated the reliability of OWT components using

existing empirical data. This study was focused on estimating resilience, in

terms of spare repair capacity, and not economic loss. It therefore neglected a

key element of OWF decision making.

Instead of resilience most literature has focused on characterising the

reliability of different wind turbine components, either: empirically, using

databases of recorded failures, or analytically, using mechanical models to

simulate the behaviour of the component/system over its operating life. Em-

pirical reliability analyses of the wind turbines and OWTs have tended to focus

on the mechanical components. Studies on onshore wind turbines have con-

sistently highlighted that the blades and drive-train components have a large
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influence on reliability [69, 70, 71, 72], but have often neglected the structural

components. Additionally, these studies have focused on failure rates and

down-time, as opposed to financial losses resulting from failure of the different

sub-systems. OWTs were assessed using empirical data by Delorm et al. [73]

using reliability block diagrams. However, this study only focused on failure

rates and didn’t include structural components. A similar study by Lazakis et

al. [74] used generic failure rates from an offshore Oil and Gas handbook for

the OWT components, but highlighted the importance of structural failure in

terms of life-safety and operations performance metrics. Data from real world

OWT operators was analysed by Carroll et al. [10] across ∼ 350 OWTs and in-

cluded financial losses for different component failures. The results are shown

on Figure 2.5 in terms of failure rates for different components. This study is

a useful comparison to other empirical studies as it included many large utility

scale OWTs. It confirmed the importance of the drive-train components and

blades, however did not include major replacement of the structural compo-

nents. It also confirmed the relationship between increasing mean wind speed

and increased component failure rate observed for onshore wind turbines by

Ferrari et al. [69].

Figure 2.5: Failure rates observed for different owt sub-assemblies, taken from Car-
roll et al. [10].
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The analytical reliability analysis of OWTs has been summarised in two

comprehensive literature reviews. Leimeister and Kolios [75] reviewed quali-

tative and quantitative approaches applied to all components of offshore wind

installations. The qualitative approaches, include techniques such as fault tree

diagrams, events tree diagrams and Bayesian belief networks, which can be

transformed into quantitative approaches by weighting the component failure

branches by a probability of occurrence. These approaches were used when

there was insufficient detailed information about the system to allow a fully

quantitative assessment. The quantitative approaches were found to provide

a detailed assessment of reliability and were typically more sophisticated than

qualitative approaches, at the cost of requiring detailed information about the

system. This category includes a wide variety of analytical methods based on

mechanics-based simulation, which was the focus of the review by Jiang et

al. [76]. Most studies focusing on OWT structural components evaluate reli-

ability using an analytical approach because few failures have been observed.

Consequently, studies investigating OWT structural reliability investigate dif-

ferent analytical limit states depending on the type of failure being modelled.

Two important analytical limit states for structural reliability, the ULS and

FLS, are reviewed in Section 2.3. Then approaches to reliability analysis are

described in Section 2.4.

2.3 Structural assessment of offshore wind

turbines

2.3.1 Structural analysis methods
OWTs are designed to withstand environmental loading over a 20-25 year de-

sign life. This requires precise assessment of the OWTs dynamic behaviour in

order to analyse the full range of conditions which it will experienced accu-

rately. The current state-of-the-art for structural design is assessment based

on integrated time-history analysis [39]. This approach enables modelling of

dynamic coupling, which is important to predict structural response, including:
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aerodynamic damping, changing blade pitch with wind speed and non-linear

dynamic properties of the blades (such as stiffness changes caused by centrifu-

gal forces).

Integrated, time-domain analysis of OWTs is based on evaluation of the

structures reaction to simulated time-series of environmental loading. The

OWT model typically includes the full support structure, blades, drive-train

and the control system. The motion of these components is integrated through

coupled equations of motion, and solved using a time stepping algorithm [77].

It is necessary for the time-step used by this algorithm to be small to prevent

numerical instabilities. Consequently, time-domain simulation is associated

with a large computational cost. This is magnified by the need to assess a

large number of design situations, referred to as Design Load Case (DLC), see

Section 2.3.2 and 2.3.3 for details of ULS and FLS assessment respectively.

Specialised, fully coupled aero-hydro-servo-elastic software packages exist that

allow this type of analysis including: FAST [77], Bladed, HAWC2 and 3DFloat.

FAST is often used in academic research as it is open-source and has been

validated against the other commercial aero-hydro-servo-elastic software pack-

ages [78]. Other, more computationally efficient, methods exist for analysis of

OWTs, but they are not commonly used in detailed structural design [11]. For

example, decoupled time-domain simulation applies wind and wave loading

independently and superimposes the resulting decoupled response. However,

this approach has been shown to be inaccurate for jacket structures [79]. Simi-

larly, frequency domain methods are computationally efficient [80] but are not

commonly used in the detailed design phase of OWTs as they cannot model

the non-linearities which are important to the structural response. Addition-

ally, both of these approaches require careful consideration of the aero-dynamic

damping to avoid large over-predictions of the OWT’s response [81].

Wind and wave conditions are the main external loads on OWTs and

both naturally vary over time. In computational simulation both processes are

split into long- and short-term components. For wind loading this is justified
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through observations of the wind spectrum where a trough in the spectral en-

ergy can be observed between the Diurnal (daily) and Turbulent (one minute)

frequencies, van der Hoven [12] and illustrated in Figure 2.6. This is a natu-

ral point at which to split the loading between variation modelled internally

within the simulation and externally. A similar justification is used for sepa-

rating waves into long- and short-term components. In both cases, long-term

variation is modelled statistically by running different computer simulations

with changing input conditions. Short-term variations are assessed within

the simulation by using stochastic environmental models which generate loads

rapidly changing within a time-series [39].

Short-term wind conditions are typically comprised of a mean and tur-

bulent component [13]. These are computed independently and summed to

produce a wind speed time-series. The mean component is static during the

simulation, but varies with increasing height from the Mean Sea Level (MSL)

as shown on Figure 2.7 and modelled mathematically using a logarithmic or

power rule [13]. Wind turbulence is defined through an energy spectrum and

converted into a time-domain signal using Fourier transforms. The Kaimal

spectrum is a common choice, and recommended in the wind turbine design

Figure 2.6: Wind spectrum taken from Burton [11], based on measurements from
van der Hoven [12].
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codes [6]. This calculation is carried out for a grid of points that overlay the

wind turbine rotor, with correlation between the spatially close points enforced

using an exponential coherence model [6]. Turbulence at the grid locations is

superimposed over the constant mean wind profile [39]. This produces a wind

speed time-series for each grid point which can be used to calculate forces in

the main structural calculation.

Linear wave kinematics are frequently modelled in OWF design as vary-

ing stochastically. The wave height is modelled through a frequency domain

energy spectrum which is converted into a time-domain signal using Fourier

transforms. Then water particle kinematics (position, velocities, accelerations)

are evaluated using a wave theory, linear Airy waves are a common choice

[82]. This model neglects higher-order, non-linear, effects that occur when

waves near their breaking limit [83], but has been found to be sufficient for

small waves that occur during normal conditions [84]. The wave kinematics

are converted into forces using Morrison’s equation [82] and used in the main

structural calculation.

OWTs are slender structures which respond to wind and wave loading

dynamically. For instance, every blade passes the tower once during each

revolution of the rotor, this momentarily shields the tower from wind load,

Figure 2.7: Mean wind profile, showing wind speed (Vgr) changing with height
over the atmospheric boundary layer, taken from Simiu [13].
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creating an excitation at a frequency referred to as the 3P frequency [15] (as it

is three times the rotor frequency). Similarly, an unbalanced cyclic force acts

on the tower each revolution of the rotor as a result of mass imbalances in the

rotor, referred to as the 1P frequency [15]. These properties depend on the

rotational speed of the rotor, which changes with the mean wind speed, and so

the 1P and 3P frequency cover a range of frequencies [11]. They are important

in design of OWTs as the structure will resonate during normal operation if its

natural frequency falls within the 1P or 3P bands. For OWTs on fixed founda-

tions it is common to select a natural frequency which falls between the 1P and

3P band [38], sometimes referred to as soft-stiff design. Additionally, the main

energy content of wind and wave loading typically occurs at frequencies below

or overlapping the 1P frequency band. These bands can be visualised using a

Campbell diagram, Figure 2.8 for the National Renewable Energy Laboratory

(NREL) 5MW OWT [42] (a common OWT model used in academic research),

which shows the safe natural frequency limits for the turbine.

However, the gap between the 1P and 3P bands is commonly narrow,

falling between between 0.22Hz and 0.32Hz for the NREL 5MW OWT on fixed

foundations [14] or non-existent for some other OWT structures [15], see Figure

Figure 2.8: Campbell diagram for the NREL 5MW OWT, taken from [14].
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2.9. Therefore accurate prediction of the OWTs natural frequency is vital in

order to select an appropriate structural stiffness. The natural frequency is

effected by the dynamic properties of the rotor (e.g., centrifugal stiffening),

the support structure and the foundation. The first two items are modelled in

the current generation of aero-hydro-servo-elastic software packages, including

FAST [77]. However, these software packages do not currently include tools for

detailed assessment of the OWT foundations, which are vital to the dynamic

response [85].

Another important dynamic feature is damping, which removes energy

from vibration of the OWTs structure, reducing the amplitude of the response

at resonant peaks and therefore reducing structural motion. Damping is com-

monly split into components which are caused by different sources, including:

aerodynamic, hydrodynamic, structural and soil. Aerodynamic damping is

caused by the drag generated as the rotating blades oscillate due to motion

of the RNA. It has a large impact, particularly on the fore-aft motion of an

operating rotor, but little influence on the side-to-side motion and when the

turbine is parked [86]. Aerodynamic damping is non-linear with changing

wind speed [81] as the wind turbine controller alters thrust forces and there-

fore motion of the RNA. One reason for preferring aero-elastic (time-domain)

Figure 2.9: Comparison of 1P and 3P frequencies for a series of different OWTs
[15].
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simulation is that aerodynamic damping is implicitly evaluated. Soil damp-

ing is a consequence of motion of the pile and hysteretic material damping

(as soil behaves non-linearly). It has been found to be important for parked

OWTs [87]. Structural damping is low for steel structures, but the presence

of a grouted connection at the transition piece may introduce higher levels of

damping [88]. Hydrodynamic damping is caused by motion of water around

the sub-structure and has been found to be of minimal importance [86].

In design of OWTs, analysis of monopile foundations is commonly based

on discrete spring models that utilise p-y curves [87]. These are an intuitive

approach and define a force displacement relationship along the pile, but have

a number of well-known limitations [87]. For example, it is common to simplify

the non-linear p-y curves to a linear relationship, but soil behaves non-linearly.

Additionally, the standard p-y implementation does not include foundation

damping. Selecting spring stiffness is also problematic, with the code-based

approach (used for offshore Oil and Gas piles) too have been found to be too

soft. A wide variety of other foundation models exist, with different levels

of computational complexity and empirical verification [89]. Recent work has

emphasised the importance of correctly replicating the stiffness and damping

of the foundation in order to reproduce measured OWT response during idling

conditions [89]. However the contribution of foundation damping to the overall

damping is smaller for operational load cases due to the presence of high aero-

dynamic damping [86] and the load cases drive fatigue loading [90].

2.3.2 Ultimate limit state
The ULS considers failure of OWT as a result of overload. Failure modes

in this limit state can include yielding or buckling, as specified by Det Norske

Veritas Germanischer Lloyd (DNVGL) [91]. The DNVGL-ST-0126 design code

requires checks against all of these failure modes to be conducted for steel

structures. However, the bucking check is particularly important as the tower

and sometimes monopile typically have a large diameter to wall thickness ratio

[92] which makes them susceptible to this failure mode. Additionally the tower
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includes a door which can act as a reduce the strength of the lower portion of

the tower and initiate the buckle [93].

When assessing the ULS, the OWT design code IEC 61400-3 [6] works in

parallel with the onshore wind turbine design code IEC 61400-1 [94], adding

provisions specific to OWTs, such as wave loading [11]. These standards em-

ploy the LRFD approach to specify a certain safety level in structural com-

ponents. They incorporate uncertainties in a conservative way, by employing

safety factors, to ensure a structural component (and therefore it is assumed

structural system) does not fail with a frequency greater than a pre-defined tar-

get threshold. The safety factors account for structural demand- and capacity-

affecting uncertainties by magnifying loads, and thereby ensure ‘safe’ designs.

In the current generation of design codes these are a combination the factors

used in the offshore Oil and Gas industry and for onshore wind turbines. The

factors are provided to mitigate against both aleatory uncertainties, associated

with the calculation of an OWTs structural capacity (e.g., geometry, materi-

als), and epistemic uncertainties, due to modelling and analysis assumptions.

Currently, code based design uses the uncalibrated partial safety factors as

a way for dealing with these uncertainties [95]. However, the unknown cali-

bration of these factors, when considering the actual risk profile of an OWT,

could produce design solutions that are either too conservative, and not cost-

effective, or unsafe, leading to potentially catastrophic losses such as those that

would be caused by a large numbers of cascading failures in an OWF. Indeed,

this is the situation, meaning that implied reliability levels are unclear, and

not intelligible to the engineers who design OWTs.

The IEC design code [6] captures the different situations that might lead to

overload by specifying a wide range of environmental conditions, each of which

needs to be assessed independently. These are specified through a set of DLC

which aim to model the full range of conditions an OWT will experience during

it’s life, including loads occurring during installation. Each DLC has a partial

safety factor that multiplies the maximum load to account for uncertainty in



2.3. Structural assessment of offshore wind turbines 67

load calculation. However, the specification of a structural capacity necessary

to resist loads determined by the DLC is left to existing, recognised offshore

standards (with their own material factors). The choice of code depends on

the type of sub-structure is being designed. The DLCs contain a range of

situations which fall into three broad categories [96, 11]:

• Normal operating environmental conditions with loads extrapolated to

50-year return period values.

• Extreme operating environmental conditions which have a 50-year return

period.

• Loads resulting from transient conditions or faults with the control sys-

tem.

The latter set of DLC are transient conditions (such as sudden wind

changes or yaw misalignment resulting from a loss of power to the control

system) which are highly dependent on the OWT specific control system. For

the NREL 5MW archetype OWT they were found not to drive maximum

loads in the structural components [95]. In contrast the extrapolated 50-year

loads were found to cause largest seabed moments, an indicator of ULS im-

portance for the sub-structure, when the NREL 5MW OWT was assessed at

the Ijmuiden wind farm site in the Dutch North Sea. The rotor is operational

during this set of DLC as they assess the full range of normal operating condi-

tions. The resulting load time series are post-processed to evaluate the 50-year

return period load of the normal operating condition (which do not consider

the probability that the environmental conditions will occur). The most se-

vere DLC in this category assessed operational wind speeds while applying the

maximum 50-year return period wave height (independent of the wind speed).

This means that the 50-year Mean Return Period (MRP) significant wave

height is coincident with the rated wind speed, the wind speed which produces

the highest loads. This is an unrealistic scenario as, in reality, the wind speed

and significant wave height are correlated, with larger wave heights tending
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to occur during higher wind speeds. The 50-year return period environmental

conditions were also found to result in large loads [95], generated using the

site joint probability distribution for mean wind speed and wave height (with

other environmental conditions selected using deterministic code parameters).

Hubler et al. [96] found that assessing the ULS using a fully probabilistic ap-

proach resulted in larger ULS loads than the deterministic DLC for the 50-year

return period. This method was developed by sampling environmental condi-

tions directly from site joint probability distribution function (PDF), avoiding

the determinism of the code DLC.

Both IEC [6] and DNVGL [91] standards specify ULS DLC characterized

by an upper limit of 50-year MRP wind and wave conditions. The proba-

bility of exceedence for this MRP is 33% over a 20-year design life. This is

substantially lower than the maximum MRP of 10,000 years used in LRFD

codes to assess offshore Oil and Gas structures [97, 98]. In other words, the

current design procedure appears to neglect rare, but severe, storm conditions

characterized by higher MRP, such as the typhoon conditions which have been

observed to cause failure in onshore wind turbines [99].

2.3.3 Fatigue limit state
During an OWTs operational life it experiences a large number of load cycles

from stochastic environmental loading and cyclic actions of the rotor at the

1P and 3P frequencies [39]. The consequence of these load cycles is that small

cracks develop from weak points in the structure, such as welded joints or

areas with high stress concentrations. Over time they can grow to threaten

the structural integrity of the OWT. This process is cumulative as load cycles

sequentially contribute to the crack initiation or growth, and is captured in

design of OWTs through evaluation of the FLS. To assess fatigue, the full load

spectrum acting on the OWT over it’s operating life needs to be considered.

However, this is a complex task as it must encompass situations where the

OWT is operating, parked (due to low/high wind speeds or is under main-

tenance) and operating under transient conditions (such as during start-up)



2.3. Structural assessment of offshore wind turbines 69

[11].

All structural components are exposed to fatigue, especially the welds

which join the monopile and tower [16]. Welds are particularly vulnerable

because small flaws (in the form on inclusions or voids) are introduced to the

structure as the joint solidifies, providing an initiation point from which cracks

can grow [16]. The base of the monopile is frequently the focus of analysis as

it experiences the largest bending moments. Additionally the rotating drive

train components are exposed to fatigue as they turn during power production.

The approach taken in the OWT design code (IEC 61400-3 [6]) to assess-

ment of the FLS is similar to that taken for the ULS. A series of DLC are

defined, with each assessed independently. They span the full range of scenar-

ios that it is expected the OWT will encounter, including: power production

(i.e., operating), fault, parked and shut-down each with differing assumptions

about the environmental conditions. However, the focus of research has been

on DLC 1.2 which assesses damage accumulated while an OWT is producing

power [90]. The FLS is computed by splitting the continuous range of wind

speeds at which the OWT is operational into a series of discrete bins. For each

wind speed bin the wind and wave parameters are also discretized using a table

that contains different combinations of the wave parameters (often referred to

as a scatter chart). Each combination of environmental conditions is evaluated

independently using time-history structural analysis to produce a load spec-

trum. A combined load spectrum over the entire OWT design life is evaluated

by weighting the damage caused by each set of environmental conditions by

the length of time they are predicted to persist during the OWT design life

[11]. This extrapolates the short interval over which the structural loads are

evaluated to the design life of the OWT.

The design code for OWTs, IEC 61400-3 [6], recommends either using a

certified fatigue design code or partial safety factors from the onshore code IEC

61400-1 if one is unavailable. The external fatigue design code is stipulated to

use combined (load, material and consequence of failure) partial safety factors
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no less than in those IEC 61400-1. For a fatigue design code that uses 99.7%

probability of survival fatigue design curves the partial safety factor is 1.1

on structural stresses. The commonly used fatigue design code DNVGL-RP-

C203 contains these fatigue design curves for offshore structures. It does not

employ partial safety factors but specifies using design fatigue factors which

are integers greater than one and less than 10, which scale the design curve.

They are selected by the designer depending on the ability of the structure to

be inspected for fatigue cracks during service.

In structural design based on time-history simulation, fatigue loads need

extracted from load time-histories produced for all components. This is done

through the DNVGL design code [100] using either:

• The Stress Life (SN) approach - where the fatigue crack is implicitly mod-

elled. Stresses are extracted from the global structural analysis model

and the development of the crack is assessed using data from laboratory

experiments on small test specimen.

• Fracture mechanics - where loads from a global structural analysis are

used to explicitly model the growth of a fatigue crack, either through a

series of equations (using Paris’ law) or a detailed structural FEA model.

In this approach, the crack length can be predicted at any point during

the structures life.

The stress life approach is most frequently used in structural design as it is

simple to implement. Fatigue loads are assessed using an SN curve (or design

curve) which records the number of tolerable cycles against the correspond-

ing constant amplitude stress range, as shown in Figure 2.10. Loading from

dynamic time-history analysis has a variable amplitude and is segmented into

individual load cycles using the rainflow counting algorithm [101]. Then the

fatigue damage caused by the each individual stress cycle is calculated using

linear damage accumulation (also referred to as Miner’s Law). This method

is linear and so the ordering of fatigue loads do not matter, i.e., a large stress
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cycle followed by a small cycle causes the same damage as a small stress cycle

followed by a large one.

Fracture mechanics explicitly models the development of the fatigue crack

and can include the effects of order on fatigue damage, e.g., a stress cycle

of equivalent magnitude will cause a larger growth in the crack length if it

occurs after a series of damaging stress cycles. However, it is not commonly

used in design assessment of OWTs, as load order was found to have little

effect on the overall fatigue life [102]. Additionally, fracture mechanics requires

selection of material properties which govern crack growth and aren’t available

for all materials [16]. One solution involves calibrating these factors so that

the fatigue life matches that predicted using the SN method [102]. However,

this means the only advantage of fracture mechanics over the SN approach

lies in knowing the crack length over time, as the predicted fatigue life will be

equal in both methods.

Discretisation of the environmental conditions is important for modelling

fatigue damage accurately, as it effects the fidelity at which the loads on the

turbine are evaluated. The mean wind speed is commonly split into 2m/s wide

discrete bins which span the operating wind speeds of the OWT. The blade

Figure 2.10: Example SN curve for a steel material, taken from Schijve [16]. The
stress amplitude is denoted Sa and the number of cycles ∆σ.
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controller behaves non-linearly with changing mean wind speed, and fatigue

loads typically increase until the rated wind speed is reached then reduce af-

terwards. Large wind speed bins need to be selected carefully to ensure the

peak mean wind speed for fatigue loading is properly captured. Furthermore,

a single value of turbulence intensity is commonly defined for each mean wind

speed, whereas in reality a distribution of values are encountered during the

design life. Additionally, for each mean wind speed bin, the standard recom-

mends using a conditional PDF to model the wave conditions [6]. However

this leads to a large number of analyses, more that 50,000 may be required

for evaluating DLC 1.2 [39] resulting in large computing times. The mean

wind and wave parameters are commonly combined into a single set of val-

ues [103] to reduce the number of simulations (and the overall computational

time). An early study suggested that this caused only few percent error in

the predicted lifetime fatigue damage [11]. However, more recent verification

against measurements from instrumented OWTs indicate that this low-fidelity

discretisation underestimates the variability in fatigue loading [104]. Fully

probabilistic environmental conditions capture these loads better [96] but are

computationally expensive to evaluate.

2.4 Reliability assessment of wind turbines

2.4.1 Ultimate limit state reliability
A wide range of techniques for reliability analysis have been applied to assess

the structural ULS of OWTs, some of which have worked within the proba-

bilistic risk frameworks described in Section 2.2.1.

An early investigation into the ULS reliability of onshore wind turbines,

Sørensen and Toft [105], developed a procedure for assessing the probability of

failure of onshore turbine towers based on the FORM. They also proposed a

range of random variables capturing the uncertainty in modelling assumptions,

loads and material properties, as factors multiplying the structural demand or

capacity. However, mechanical models for OWTs are more complex because
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they need to consider wind and waves simultaneously. The Incremental Wind-

Wave Analysis (IWWA) was developed for Oil and Gas platforms [106] and

models non-linear increases in bending moment due to increasing lever arm

by directly applying wave heights as opposed to scaling loads, as the case in

a standard pushover analysis. When applied to OWTs by Wei et al. [107,

18], the mean wind speeds and significant wave height were coupled using

a joint-PDF. Static structural analysis was conducted at all combinations of

the environmental conditions, yielding a deterministic response surface, and

the capacity was defined by a code-based equation. Then the reliability was

evaluated by using Monte Carlo simulation to sample from the response and

capacity surface to calculate the probability of failure. The response surface

was deterministic and avoided the need to run structural simulations for each

sample, but made it difficult to assess random variables that alter the structural

response. The material yield stress was included as a random variable by

scaling the capacity surface to each sample. This technique would be difficult to

apply to a probabilistic model with multiple random variables, as the capacity

or demand curve would need to be scaled by each. Ultimately, the probability

of failure for the NREL 5MW OWT on the Upwind jacket was found to be

low at a site on the East Coast of the USA, except where hurricane loads were

applied [18].

A strategy for including a wider range of random variables was utilised

by Muskulus et al. [108] using importance sampling directly on a range of

input variables; including material, hydrodynamic and aerodynamic proper-

ties. However, this study used an uncoupled time-domain structural analysis

with impulse based sub-structuring (a technique developed to speed up struc-

tural simulation), taking rotor thrust from a fixed hub aeroelastic simulation.

The random variables were applied directly to the structural analysis inputs

and therefore this represents a progression from the method used by Wei et

al. [18], which relied on deterministic inputs. Kim et al. [109] took a differ-

ent approach to reliability assessment, using the FORM. They simplified the
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structural assessment by using results from a static analysis multiplied by a

dynamic amplification factor. Morato et al. [95] used a Kriging model, this

approach involves building a surface to represent the response. This is similar

to the approach used by Wei et al. [107, 18], however the Kriging approach

includes statistical uncertainty of the structural model within the response

surface, i.e., it is a stochastic response surface.

PBE was applied to onshore wind turbines by Quilligan et al. [110] to

derive fragility functions considering uncertainties in material properties and

loading as direct inputs to the structural demand calculation. In their assess-

ment, failure is assumed to occur after a plastic hinge forms in the tower. The

fragility of OWTs was investigated by Mardfekri and Gardoni [111, 112, 113]

who developed fragility curves using dynamic analysis for the structural load

calculation. They used Monte Carlo simulation to generate a sample from

a wide range of random variables covering: material properties, load uncer-

tainty and response uncertainty. A fully coupled dynamic analysis was run in

FAST for each sample to assess whether or not structural failure would occur.

In addition, they added a correction term directly to the FAST results; the

correction was derived in advance by comparing dynamic simulation results to

those from a high fidelity FEA model. Two fragility curves were produced with:

(1) constant wave height Hs = 1m and varying wind speed Vw = [0 : 25]m/s, (2)

varying wave height Hs = [1 : 10]m and three wind speeds Vw = [3,12,25]m/s.

They concluded that the wave loads had little impact on the ULS fragility.

However, only uncoupled wind and wave environmental conditions were con-

sidered, i.e., the mean wind speed was varied while the significant wave height

was held constant and vice versa. This means that the fragility curves do not

cover a sufficient range of conditions to be applicable to the environment ex-

perienced by real OWTs. Wei et al. [18] developed fragility curves for OWTs

using the response surface technique described earlier. These were ultimately

embedded within a larger hurricane risk assessment procedure for OWF lo-

cated on the US Atlantic Coast [114]. However this framework stopped at
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the evaluation of expected failure rates for different OWF sites, and did not

attempt to evaluate losses. De Risi et al. [115] also developed fragility func-

tions for OWTs experiencing earthquakes occurring during normal operating

conditions.

This brief review has highlighted the lack of a harmonised framework

for defining fragility functions for OWTs exposed to severe wind and wave

conditions. In addition, there has been little research comparing the effect

of different modelling assumptions on the fragility of OWTs and the impact

that different random variable models, used to capture demand- and capacity-

related uncertainty, have on the predicted failure rate.

2.4.2 Fatigue limit state reliability
Direct comparison between the existing FLS reliability studies is difficult be-

cause they have used a range of different substructures, including: tripods

[116], jackets [117, 108] and monopiles [108, 118]. The different studies have

also used a combination of frequency and time-domain load-response calcula-

tions. In each case, the fatigue life calculation used Miners law to calculate

the damage arising from stress cycles counted using a rainflow counting algo-

rithm. Only Dong et al. [117] used fracture mechanics, for helping to schedule

structural inspections, where it is necessary to know the crack length.

Additionally, all have focused on OWTs in their operational state, there-

fore contributions to fatigue damage arising from storms, when OWTs are

parked, have been neglected. Reliability calculations have been carried out

using a variety of different techniques, including: the FORM [117, 118] and

importance sampling [108]. A modified FORM approach was used by Yeters

et al. [116], developed by fitting a distribution to the long term stress ranges

calculated using FEA, this allowed a simpler limit state function to be con-

structed based on the distribution of stress and other random variables. The

FORM was then used to calculate the probability of failure, without needing

to recalculate the long term stress distribution. A response surface was used

by Veldkamp [118], who fitted a 2nd order polynomial to the fatigue predicted
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by time-domain analysis building a simple relationship of the output in the

form of a multi-dimensional regression. Samples of the fatigue damage were

extracted from this response surface using FORM, resulting in a reduced anal-

ysis load compared to using FORM directly on the output from time-domain

simulation.

A number of studies have investigated which random variables effect fa-

tigue loading the most. Muskulus [108] reported that varying the aerodynamic

damping had the largest impact on fatigue life. Additionally fatigue damage

resistance and soil stiffness were found to be important. This was partially

confirmed Yeters et al. [116], who found that the reliability of the tripod was

most sensitive to the aerodynamic force parameter they defined and least sen-

sitive to the fatigue model variables. Some random variables such as fatigue

damage resistance [108] can be sampled after the load-response calculation

(i.e. FEA). This means that they can be sampled easily without the need to

re-run computationally expensive FEA calculations. Others, such as aerody-

namic damping would require a full re-run of the load-response calculation,

which is time consuming as each load case need to be re-analysed. However

this variable is likely to be more important when using an analysis technique in

which aerodynamic damping is not explicitly modelled. In contrast, Veldkamp

[118] found that material factors relating to the definition of the SN curve had

the largest impact on fatigue reliability, with all other wind related variables

contributing only 15% to to the variability in the probability of failure.

A useful contribution from the perspective of PBE was provided by

Muskulus [108] who plotted fatigue damage caused by each wind speed. This

provides a constant relationship between wind speed (IM) and damage (EDP)

that could be combined with a external hazard model. A different approach

to representing the FLS is to plot the increasing probability of fatigue failure

over the structures life [117, 116]. Dong et al. [117] combined the time depen-

dant structural reliability with a model for the effect of corrosion - estimating

both the increased likelihood of a fatigue crack and decay in the properties of
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the structure over time. This method for representing the FLS is particularly

useful for planning the likely in-service inspection requirements for a structure.

The literature highlighted that no work, to date, has considered the FLS

nor assessed an OWT within a PBE framework. Although a substantial con-

tribution was made by Veldkamp [118] who has estimated financial costs as-

sociated with fatigue failure of OWT structural components.

2.5 Research gaps and proposed framework
The focus of this thesis is to develop a harmonised risk assessment procedure

for OWTs, including both equipment and structural components. The pre-

ceding literature review has highlighted a number limitations in the current

approaches used to assess OWTs.

In the discussion of risk for offshore wind, a key gap was the lack of

a combined approach for assessing the different components of an OWT, as

summarised in Section 2.2.4. The equipment and structural components are

typically treated separately. The mechanical and electrical components are

commonly assessed using empirical databases of observed failure rates. How-

ever, analytical methods are necessary to assess the reliability of the structural

components, as their low failure rate means that historical empirical records

are insufficient. Additionally, efforts to reduce conservatism in the structural

capacity will make any existing empirical records inaccurate, as new structures

may have a higher probability of failure than those currently installed. The

correlation observed between the environmental conditions and probability of

failure is particularly important for the structural components as these are

directly exposed to environmental conditions, and consequently, a structural

model needs to accurately capture both wind and wave loading. The literature

review of the structural limit state for OWTs, Section 2.3.2 to 2.3.3, identified

that both the ULS and FLS are relevant.

A number of limitations are present in current approaches to ULS as-

sessment, a key one is that code specifications only assess environmental con-



2.5. Research gaps and proposed framework 78

ditions up to a MRP of 50 years. Additionally, the summary of reliability

procedures applied to ULS analysis of OWTs indicated that a wide range of

different techniques had been applied. However, none of literature reviewed

has computed the full PBE, framework described in Section 2.2.2. Fragility

analysis comprises a key component of PBE and the analytical approach re-

quires a method for uncertainty quantification. All existing methods have

evaluated fragility using simplified structural models, and none has developed

a satisfactory method for considering the variability in wind and wave load-

ing. Techniques using static analysis [119, 18] are not appropriate for dynamic

monopile substructures. Those based on dynamic analysis [112, 108] rely on

finite time-domain simulation which is assumed sufficiently long to capture the

worst case combination of wind and wave loading. However, this assumption

can cause the analysis model to under predict the ultimate loading [120], sta-

tistical treatment of the structural response can circumvent this problem [121].

Techniques based on capturing dynamic behaviour by combining the result of

a static analysis with a dynamic amplification factor (Dynamic Amplification

Factor (DAF)) fail to simplify the problem substantially. A large number of

time-domain analyses are still required to define the DAF. There are however a

set of reliability techniques which are suitable for fragility analysis of OWTs in

the ULS. The approach used in IWWA is a logical method for assessing increas-

ingly rare environmental conditions as it analyses stationary combinations of

mean wind speed and significant wave height in order to calculate the response.

It results in an approach which could build a fragility curve. Therefore this

technique produces results which fit easily within a PBE model. The main

gap lies in using dynamic structural analysis within the IWWA framework to

capture the reliability of OWTs.

A more general gap is present for the FLS relating to the methods that

are appropriate for implementing reliability analysis. As discussed, in Section

2.4.2, there have been a very limited number of general FLS reliability studies

across all civil engineering fields, not just for OWTs. To date, no attempts
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have been made to represent the FLS within a PBE modelling framework,

as fatigue damage estimates are time dependent and are therefore difficult to

decompose into the fragility and hazard components. However, it is possible

to represent fatigue loading using damage over the structures life, which will

allow a FLS to be assessed.

The main challenge present in developing structural models of OWTs is

caused by the need to assess loads arising from two stochastic processes (wind

and waves) simultaneously, as described in Section 2.3.1. Simplifying the OWT

model by assuming that the wind and waves act statically means that impor-

tant structural behaviour is neglected. For instance, when the turbine is oper-

ational a static analysis would be unable to capture coupling between the wind

load, wave load and tower motion. Coupled analysis techniques simulate joint

wind/wave loading but have long run times. This becomes important when

many calls to the analysis package are required, as is the case in a reliability

analysis of the FLS. This project utilises FAST for the full structural analysis,

due to the error introduced by using other, simpler, models [122].

In summary, the primary objective of this thesis is to develop a framework

for quantifying an OWT’s structural risk, using structural reliability assess-

ment to evaluate the ULS and FLS. Moreover, this thesis aims to produce a

combined assessment framework which also includes the equipment. The focus

on structural components is necessary due to the lack of existing formalised

approaches. These two limit states will be addressed seperately using the gen-

eral framework presented in Figure 2.11 for the ULS and Figure 2.12 for the

FLS.

This study addresses the gaps highlighted in the preceding review through

the steps summarised below:

1. Development of a framework for calculating the ULS risk of OWT struc-

tures using coupled time-domain simulation. In fact, existing work has

used static or uncoupled dynamic methods. The proposed approach also

ensures that the predictions of structural failure can be combined with
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Figure 2.11: Framework proposed to assess ULS risk.

equipment failure in terms of financial loss.

The general methodology followed for risk calculation is shown on Figure

2.11, where extreme environmental conditions at real offshore wind farms

will be used as input to a PBE framework. Fragility curves will be defined

to capture the probability of failure of different structural components as

the environmental conditions change in severity. Finally, fragility curves
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Figure 2.12: Framework proposed to assess FLS risk.

can be converted into distributions of annual failure rates. This will allow

a separate loss calculation to be developed that can combine failure of the

structural components with the equipment in terms of financial losses.

2. Application of the proposed ULS framework to case-study OWTs/sites to

demonstrate the calculation steps in the proposed framework and assess

financial losses.

3. Development of a framework for assessing FLS risk, as limited work has

been completed in this area to date. One of the challenges highlighted in
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the literature review relating to the FLS is the inclusion of the full range

of environmental conditions an OWT is expected to experience during

its operating life.

The approach that will be taken is summarised in Figure 2.12, where the

FLS is assessed over the full range of operational environmental condi-

tions. This calculation is made computationally feasible by applying the

machine learning technique GP regression, which is used as a surrogate

model for the fatigue damage calculation. This approach will allow un-

certainty in the fatigue material properties to be captured and ultimately

enable calculation of annual failure rates for structural components in the

FLS. The failure of structural components can then be combined with

the equipment using the previously developed loss calculation.

4. Application of the proposed FLS framework to case-study OWTs/sites to

demonstrate the calculation steps in the proposed framework and assess

financial losses.



Chapter 3

Ultimate limit state loss

framework

3.1 Introduction
The ULS assesses failure of a structural system due to overload of its com-

ponents in the form of yielding or buckling, as introduced in Section 2.3.2.

For OWTs this type of loading is a result of the site-specific wind and wave

conditions that are expected to be encountered over the turbine’s life. These

can include severe typhoons in Asia, hurricanes in the USA, and extra-tropical

cyclones (windstorms) in Europe. Indeed, failures of the tower and blades

on smaller onshore wind turbines have been observed as a result of recent ty-

phoons in China [99], during which 10-minute averaged hub height wind speeds

in excess of 60m/s were recorded.

The design and assessment of OWTs is currently based on semi-

probabilistic prescriptive approaches, described in IEC code 61400-3 [6] and

DNVGL-ST-0126 [91]. These standards employ the LRFD approach in an

attempt to guarantee a certain safety level in structural components. In par-

ticular, current state-of-the-art codes and standards do not explicitly consider

the structural risk posed by uncertainties associated with physical properties

of OWTs (e.g., material, geometry) and loading conditions (e.g., wind and

wave loading). Instead, they deal with such uncertainties in a conservative
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way, by employing safety factors to ensure a structure (or a structural com-

ponent) does not fail with a frequency greater than a pre-defined, target rate.

However, as discussed in Section 2.3.2 these safety factors have not been

calibrated specifically for OWT. Any “integrated design” of new OWTs (or

assessment of existing ones) should explicitly account for both uncertainty in

environmental conditions, especially those occurring during extreme events

(e.g., severe windstorm), as well as the possibly complex interdependencies

between components. For instance, stopping the rotor will change the loading

on the blades which will in turn influence loads on the tower and monopile.

The problem is how to quantify the risk associated with these diverse sub-

systems in a coherent way, accounting for the impact of their failure on the

overall structural performance of the farm. The concept of resilience provides

an effective framework in which to assess an OWT as a system of integrated

structural and mechanical/electrical components, focusing on the functionality

performance of the overall system and not just that of individual components.

Resilience was defined in the literature review, Section 2.2.1 and 2.2.1.

This definition is developed in Section 3.2 where resilience is discussed in rela-

tionship to the specific problem of assessing OWT performance. The analytical

method proposed to assess the combined losses of the structural and mechani-

cal / electrical components is discussed in Section 3.3. Annual losses associated

with the failure of an OWT system are evaluated by combining the probability

of failure of the individual components in Section 3.3.5. This includes a pro-

cedure for evaluating the failure probability of the structure based on a PBE

modelling approach, which employs time-domain structural analysis and un-

certainty modelling to derive structural fragility (i.e., the likelihood of different

levels of damage experienced by the OWT over a range of hazard intensities).

The overall calculation is illustrated through a case-study in Chapter 4 at two

wind farm locations: one in the Dutch sector of the North Sea, experiencing

windstorms (extra-tropical cyclones), and another on the USA East Coast,

experiencing hurricane-like conditions.
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3.2 Structural resilience
The concept of resilience provides an effective framework for enabling inte-

grated design of a given engineering system, allowing a rational assessment

of the system performance in the presence of uncertainties. Resilience can be

numerically quantified as the area below a system’s performance curve, and

is quantified through the following four metrics which characterise a given

system, as discussed in Chapter 2:

• Robustness,

• Rapidity,

• Redundancy,

• Resourcefulness.

It may be difficult to quantify some of these metrics, especially at the

design stage. For instance, information regarding the capacity of an organi-

sation to make budget available in the case of a disruptive event (i.e., part of

resourcefulness) is seldom available to a design engineer. Nor would it be clear

to a designer whether an operator would decide to restore functionality to an

improved, the original or a degraded level (i.e., tD in Figure 2.1). A method-

ology for assessing structural resilience of OWTs relying on their robustness

features would allow this concept to be directly applied at the design stage.

The initial design-stage estimate of an OWT robustness could be used in a

full resilience calculation at a later stage which would also consider recovery.

An approach, investigated by Bruneau and Reinhorn [49] and applied here,

assumes that loss of functionality after a disruptive event and the time to re-

covery are highly correlated. This is intuitive as, in general, if an event (e.g.

a windstorm) causes more damage, it will take longer to repair the considered

asset. A similar approach has previously been applied to structures experienc-

ing blast by defining a relative resilience indicator (RRI), which is correlated

to the overall structural resilience (R) as follows [48]:
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R(Ev)∝RRI(Ev) = 1/C(Ev). (3.1)

In Eq. (3.1), RRI can be defined as the inverse of the consequence (C)

of a disruptive event (Ev). Under this assumption, a structure experiencing a

lower consequence (i.e., less damage and lower financial loss) as the result of

a hazardous event, is viewed as more resilient.

This approach requires a metric quantifying the consequence of failure

that correctly represent the effect of failure of individual components on the

OWT (or OWF) functionality. Considering a single OWT structure, loss of

an important sub-assembly will completely stop production, resulting in the

OWT dropping to zero functionality. However, the failure of different compo-

nents will have different implications in terms of recovery time. Therefore, it is

not enough to define consequence using the reduction in functionality caused

by component failure alone. This consideration also precludes the use of some

common structural consequence measures, such as percentage of the structure

collapsing [48], or percentage of mechanical components failing, which do not

provide sufficiently detailed information about the type of failure. Other met-

rics, such as those relating to life-safety are not of primary importance for

offshore wind as turbines are normally unmanned, apart from brief periods of

maintenance activities [105]. Rose et al. [123] quantified resilience of an OWT

through robustness by estimating the cost incurred by loss of functionality af-

ter an extreme event. This allows the failure severity of different components

to be compared within a unified metric, because each has a different material

(replacement) cost. Financial loss is also easy to communicate to stakeholders

and is therefore used in this study. However, it neglects the operational costs

of repair, such as hiring vessels, which are expensive but the precise costs are

difficult to quantify as the length of the hire is unknown.
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3.3 Probabilistic risk modelling for offshore

wind turbines
A probabilistic risk modelling framework is proposed to assess structural risk

associated with OWTs in their ULS exposed to extreme environmental condi-

tions. This approach is based on decomposing the total risk into conditional

probability distributions which are evaluated sequentially and finally combined

using the law of total probability, as discussed in the literature review. It can

be used in principle to 1) test new design strategies, extending performance-

based design frameworks to account for multiple hazards; 2) devise efficient and

targeted asset management techniques; and 3) develop resilience-enhancing so-

lutions for combined wave and wind hazards, e.g. based on structural health

monitoring and structural control. These options all rely on assessing the

risks associated with OWTs, including uncertainties in structural modelling

and analysis. The basic structure of a probabilistic risk model was discussed

in the literature review, Section 2.2.1, where the overall framework is decom-

posed into a series of sequential components [124]. Given knowledge about the

repair costs for different types of damage, vulnerability functions can be es-

timated, defining the relationship between hazard intensity and expected loss

[125].

λ(L) =
∫∫

F [L|DS] · |f [DS|IM ]| · |dλ(IM)|. (3.2)

In Eq. (3.2), the variables are λ(L) the rate of incurring a level of financial

loss (L), F [·] a CDF, a measure of the intensity of a natural hazard (intensity

measure; or IM), e.g., wind speed or wave height, and damage states (DSs),

e.g., the performance level of the structure and/or its components, as a func-

tion of the given IM. This framework was schematically represented through

the flowchart in Figure 2.3, in the literature review Section 2.2.1, where the

individual tasks include:

• Hazard analysis,
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• Exposure (or structural) characterisation,

• Fragility analysis,

• Loss analysis.

Structural and equipment components need to be treated differently be-

cause structural failure is usually predicted analytically (or numerically) based

on structural simulations, whereas equipment failure data are usually obtained

from empirical databases, mainly recording the rate of failure without refer-

ence to specific environmental conditions. Consequently, equipment failure is

not typically conditional on the IM and does not require site-specific analysis.

The general probabilistic risk modelling framework shown in Figure 2.3 can

be adapted to the specific loss analysis of an OWT (Figure 3.1), considering

both structural and mechanical/electrical equipment. The elements of Figure

3.1 are described in more detail in the following sub-sections.

3.3.1 Hazard modelling
The primary environmental perils that threaten an OWT are those relating to

severe wind and/or wave conditions. Wind and wave conditions are frequently

parametrised using a separate variable to describe the severity of each (this is

further discussed in Section 4.2.1). Common choices are the significant waves

height (i.e., the average trough to crest height of the highest one-third waves

in a sea-state [82]) and mean wind speed (averaged over a 10-minute period).

The variables can be combined into a single IM by assuming that wind and

waves are linked through the MRP, i.e., the most extreme conditions associated

with each MRP are coincident, a conservative, yet practical assumption used

to assess OWTs [119]. If the hazard model is based on site environmental

measurements that are comprised of a limited amount of data, the uncertainty

introduced as a result of the limited number of observations should also be

quantified.

Specific values of mean wind speed and significant wave height can be

calculated using an appropriate probabilistic model, which describes frequency
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Figure 3.1: Proposed probabilistic risk modelling methodology used to calculate
financial losses in this study.

of occurrence of the environmental conditions at a site.

3.3.2 Exposure modelling
The structural response of an OWT is highly dependent on turbine-specific

parameters including the power rating and control system [39]. Consequently,

exposure data has to be more detailed than typically used in a probabilistic

risk model for buildings, where only general information (e.g., in terms of con-

struction class, height, and age of construction) about a portfolio of assets

may be included [51]. Exposure data should include all pertinent information

required to compute loss of the structure being assessed. This includes: lo-

cation, geometric characteristics, material properties, and failure costs (i.e.,

replacement costs) for the OWT components.



3.3. Probabilistic risk modelling for offshore wind turbines 90

3.3.3 Structural analysis
This step involves building a computational model capable of predicting the re-

sponse of the OWT to environmental conditions (wind and waves) represented

through the selected IMs. For an OWT exposed to stochastic environmen-

tal loading, the use of time-domain analysis is a common approach [39]. The

first step consists in specifying a set of EDPs representing the response of the

structural components of interest and computed through structural analysis.

A key element of this process involves a set of Damage States (DSs) defining

structural performance criteria. Violation of a limit state indicates failure of

the structure [64] and these conditions are usually formulated as an equation

containing a capacity (or resistance) and a demand (or load effect) terms. In

the ULS, for instance, failure of an OWT relates to the exceedance of the struc-

ture’s load-carrying capacity [6], where the demand is a function of the forces

caused by environmental loading and the capacity relates to the ability of the

structure to withstand these loads. All structural components are exposed to

this form of failure and should therefore be assessed by an analytical model

including the: tower, monopile, transition piece and blades; see Section 4.2 for

a longer discussion of OWT limit states.

3.3.4 Fragility analysis
Fragility functions express the probability that a damage state occurs for a

level of hazard intensity (IM), typically as a conditional complementary CDF,

F [DS|IM ] [59]. Damage states can range from minor damage to complete

structural collapse and are typically defined in terms of EDPs, e.g. the stress

in a component or hub displacement. They are used to assess the exceedance

of calibrated EDP thresholds for each limit state of interest. In the case of

OWTs, the environmental conditions are represented through an IM which

generates structural loading, and ultimately an EDP.

A structural analysis model is typically used to estimate the probability

of failure conditional on the IM. This is achieved by running simulations re-

peatedly over a discrete set of IM values, resulting in a set of analysis outputs
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corresponding to each realization of the IM. Scatter in the fragility function

parameters is caused by different wind and wave time-series causing differ-

ent structural loading, and the effect of other random variables used to model

structural demand and capacity. The probability of failure can be estimated as

the mean number of structural analyses resulting in exceedance of the consid-

ered limit state (i.e., failures) at each IM value. The probability of failure can

then be expressed as a functional relationship either by fitting a parametric

distribution or directly using the output from structural analysis to generate

an empirical fragility curve (e.g. [126]).

Fragility functions can be combined with a hazard model to compute the

mean annual rate of damage state exceedance, λf,DS , of the considered asset,

as in Eq. (3.3):

λf,DS =
∫
IM

F [DS|IM ] · |dλ(IM)|

≈
∑
i=1

F [DS|IMi] ·
( 1
MRPi

− 1
MRPi+1

)
. (3.3)

The term dλ(IM) in Eq. (3.3) can be computed through the derivative of

the hazard curve (λ(IM)); it can be approximated by converting each MRP

into an annual rate of exceedance as shown in Eq. (3.3) and summing over a

discrete set of MRP values, indexed by i. The fragility functions are calculated

using a sample of structural simulations and are therefore associated with un-

certainty. The effect of this statistical error can be quantified by resampling the

chosen consequence metric (defined in the following section) using bootstrap-

ping [127]. This method was developed during the 1990’s computing power

became widespread as it estimates standard errors and confidence intervals of

a sample by repeated re-sampling [127]. The data samples are assumed to be

representative of the population, and these are re-sampled with replacement,

allowing standard errors within the sample to be calculated. The application

of this technique is discussed in the case study, Section 4.6.1.
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This calculation required a method for assessing wind- and wave-induced

demands to the OWT structure. One applicable method is the IWWA pro-

posed for OWTs by Wei et al. [119]. In this case, the OWT structural response

is assessed at progressively severe environmental conditions, consisting of sig-

nificant waves heights (i.e., the average trough to crest height of the highest

one-third waves [128]) and mean wind speeds. However, the numerical model

used to evaluate the structural response is associated with idealisations, and

introduces uncertainty into prediction of the structural response. These ef-

fects are modelled as random variables, with a defined probability distribution,

and need to be sampled at each environmental condition, i.e., corresponding

to pairs of wind and wave conditions, for input to the numerical structural

model. This results in a fragility calculation procedure that is very similar

to the multi-stripe analysis method commonly used in earthquake engineering

[129]. In IWWA, wind and wave conditions can be coupled using the MRP,

or assessed jointly [119]. The output is the structural response to increasingly

rare environmental conditions. MRP values can be used as a proxy for the en-

vironmental conditions at the site (either from site measurements or by using

a climate model). Due to the low stiffness of OWT on monopiles in compar-

ison to those on jackets, which were the focus of existing implementations of

IWWA [18], and to explicitly capture the dynamic response to loads, IWWA

combined with a coupled time-domain analysis [39] is used here for OWTs on

monopile substructures.

The fragility calculation procedure which uses IWWA1 consists of the six

steps listed in the flowchart in Figure 3.2. These include:

1. Select a suite of IMs which can be used as predictors of the considered

EDPs; here the MRP is used with NMRP being the number of MRP

evaluated at a given site.

2. Calculate mean wind speed (Vw) and significant wave height (Hs) from

independent probability distributions, using the MRP to select events

with equivalent severity. The probability distributions should be devel-
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Figure 3.2: Flowchart describing the fragility calculation procedure.

oped for the OWF site-specific conditions.

3. Generate a Monte Carlo sample containing realisations of the environ-

mental conditions (in terms of turbulent wind and wave time histories)

and other random variables which influence the demand and capacity

of the OWT (where Nsamples realisations of those random variables are

generated at each MRP). This step is discussed in more depth in Section

4.3.3. The total number of random variables is NR−var.

4. Run structural analysis and evaluate every limit state equation for each

Monte Carlo sample at all MRP assessed; this employs a total of NMRP ·

Nsamples structural simulations.

5. Estimate the probability of failure at each MRP, as discussed in Section

4.3.3.



3.3. Probabilistic risk modelling for offshore wind turbines 94

6. Fit fragility function to the pairs of MRP and probabilities of failure

calculated in step 5.

3.3.5 Loss assessment
In general, for a system with a number (Nsys) of independent components, each

of which has two discrete states (failure or operation), there is a finite number

of permutations in the system state, where the total number of combinations

of component events (leading to system events) is 2Nsys . These combinations

of operating and failure states can be summarised in a matrix AAA [130], with

elements aij ∈ Z and [aij ] is a Nsys · 2Nsys matrix, Where the index i refers to

a component of the OWT and the index j to an operational state. An entry

of one indicates that the component fails or zero indicates that it remains op-

erational. For a generic OWT with 11 components used in the case study are

presented on Table 4.5), the matrix AAA will have elements aij ∈ Z11·2048; the

first column will read [00000000000]T indicating the case in which all compo-

nents are functional, and the last [11111111111]T indicating the case where

all components have failed. The intermediate columns will contain all other

permutations of ones and zeros for different system states.

If each component has a deterministic cost, the discrete system failure

events can be combined to assess the probability of incurring a total material

cost (cr). The matrix of the failure events AAA is converted into a failure cost

matrix AAAc by multiplying each column of AAA by a vector containing the repair

cost of each component. This new matrix will contain the same number of

elements as AAA but the values will equal the material costs as opposed to a

logical value (1 or 0). Then Psys(cr) can be defined as the probability that a

set of components aaa∗ ∈ AAAc fail whose combined material cost is equal to the

target (cr):

Psys(cr) =
∑

aaa∗∈AAAc

Nsys∏
i=1

P ai
i (1−Pi)1−ai , (3.4)

Psys(cr) is evaluated over all the columns of the AAA matrix where the total
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material cost of the components equals cr, i.e., aaa∗ is a subset of AAA containing

all vectors of system status with an equal cost. The probability of each system

material cost is the product of the individual component failure probabilities in

the matrix of failure events aaa∗. This assumes statistical independence between

the different components and is discussed further in relation to a OWT system

in the case study, Section 4.2. When an element of the aaa∗ matrix ai is zero

then the probability that the component survives is used, i.e., (1−Pi)1−ai ; and

if ai is 1, then the probability that the component fails is used, i.e., P ai
i .

In Eq. (3.5), the overall failure consequence, C (Eq. (3.1) or total annual

loss, can be calculated by multiplying the yearly probability of different failure

costs occurring (Psys(cr)) by the failure consequence defined by direct material

cost (cr) and summing over all failure costs:

Cstorms = Losstotal =
∑
cr

Psys(cr) · cr (3.5)

3.4 Conclusions
This chapter proposed a probabilistic risk framework to quantify economic

losses due to extreme environmental conditions for an OWT. This framework

has been applied to a wide range of similar problems in civil engineering and

therefore has a strong basis.

Resilience is simplified here to the estimation robustness through financial

losses resulting from OWT failure. This allows the idea of resilience to be ap-

plied by practising engineers who will not have access to the full data required

for an evaluation of resilience, which includes subsequent recovery phases. Ro-

bustness is a component of a full resilience calculation, the simplified method

presented in this chapter could be used as an input to a more comprehensive

resilience assessment.

A method for calculating fragility curves based on time-domain structural

analysis is proposed. This is based on the robust IWWA methods developed for

offshore Oil and Gas structures. This calculation is implemented in Chapter
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4, which demonstrates a each step of a probabilistic risk framework.



Chapter 4

Implementation of ULS loss

framework

4.1 Introduction
A new framework for evaluating financial losses associated with the compo-

nents of an OWT was developed in Chapter 3. In this Chapter the framework

is applied to an OWT located at two case study OWFs. The approach taken is

to quantify financial losses using the material replacement cost of each OWT

component. This provides a simple metric for OWT performance in the form of

annualised material losses, allowing results from the two OWF to be compared

directly.

The case study locations and OWT structure are introduced in Section

4.2. This includes failure data for the equipment and details of the analysis

conducted to assess failure of the OWT structural components. Fragility curves

are derived for the main structural components of the OWT using limit states

defined in Section 4.3, and then presented in Section 4.4. These are used

in combination with the mechanical and electrical component failure rates

to produce annual loss estimates for the case study locations in Section 4.6.

Finally the results of the case study and limitations in the framework are

discussed in Section 4.7.
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4.2 Case study offshore wind farm
Two locations, both suitable for OWFs, but experiencing contrasting environ-

mental conditions, are investigated in this study. These sites were selected

because wind farms have been built or are planned, meaning the case study

is representative of real OWF sites. The Ijmuiden K13 site (referred to as

Ijmuiden site in the rest of this chapter) [131] is located in Dutch waters be-

tween the Hollandse Kust Zuid and Noord wind farm development sites, and

is exposed to extra-tropical cyclones. The other site is exposed to hurricanes

and is located on the USA East Coast, offshore from Massachusetts [18] (at

40.5°N 69.3°W), an area proposed for future wind farm developments [24].

The environmental conditions associated with a set of different MRPs are

plotted on Figure 4.1 (left). The MRPs for the Massachusetts site are selected

to cover the mean wind speed range from 40m/s to 80m/s. High MRP at

the Ijmuiden site are necessary to produce fragility functions that can capture

failure of structural components, which are rare, as discussed in Section 4.4,

and these require extrapolation far beyond measured environmental conditions.

However, this will not affect the main conclusions of this study, which relate

to the relative properties of the fragility functions derived for both sites and

different modelling/analysis assumptions.

The water depth at the Ijmuiden site is around 20m, making it a suitable

location for the NREL 5MW OWT on a monopile foundation. The Mas-

sachusetts site is deeper than 20m, but is assumed to have this water depth so

direct comparisons can be drawn between the two sites. The main elevations

of the structure are shown in Figure 4.1 (right). As indicated in the figure, the

tower reaches a top elevation of MSL+87.6m. A more detailed description of

the turbine is provided in Section 4.2.2.2.

4.2.1 Hazard model
The hazard intensity calculation is simplified in this study by combining the

wind and wave conditions into a scalar IM, the MRP, as shown on Figure

4.1 (left). This approach conservatively assumes that the maxima of wind and
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Figure 4.1: Comparison of the extreme wind and wave conditions associated with
different MRPs at Massachusetts and Ijmuiden OWF sites (left) where
the MRP is plotted beside the data points; the inset map shows the
locations of both sites. The schematic figure of the case-study OWT
used in this study, with main elevations highlighted (right).

wave occur simultaneously. It simplifies the analysis substantially, reducing the

number of required structural simulations. Wei et al. [119] have found that

using environmental conditions coupled through MRP values instead of their

joint probability distributions has little impact on the computed probability

of failure .

Mean wind speeds and significant wave heights are plotted against their

corresponding MRPs in Figure 4.1 (left). Both sets of data were evaluated

using site measured data, however different statistical model were found to

represent the environmental conditions experienced at both sites best.

Ijmuiden has 22 years worth of wind and wave measurements [131]. A

statistical model representing the occurrence of different mean wind speeds

and significant wave heights [82] was developed by Fischer et al. [131] by

applying linear regression with log correction to the recorded data:
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Hs = 0.479 · ln(MRP ) + 6.063 (4.1)

Vw = 2.645 · ln(MRP ) + 31.695. (4.2)

In Eq.(4.1) and (4.2), Hs is the predicted three-hour significant wave

height in meters, and Vw is the 10-minutes hub-height mean wind speed in

m/s (10 minute averaging is a standard assumption based on the observation

that mean wind speed is approximately static over this period of time [11]).

At the offshore Massachusetts site, hurricane conditions were estimated

by Wei et al. [18] who simulated a stochastic catalogue of hurricanes over a

100,000 year period (the typical length of stochastic catalogues in CAT mod-

els) and fitted a Generalised Extreme Value (GEV) distribution to the cal-

culated mean wind speed and significant wave height at different MRP. The

model used in this study was calculated by fitting a GEV distribution to the

points provided, the probability distribution (f(xGEV |kGEV ,σGEV ,µGEV )) is

defined:

f(xGEV |kGEV ,σGEV ,µGEV ) = 1
σGEV

(
1 +kGEV

xGEV −µGEV
σGEV

)(−1/kGEV )−1

exp

(
−
(

1 +kGEV
xGEV −µGEV

σGEV

))1/kGEV

, (4.3)

where the model parameters are shape (kGEV ), scale (σGEV ) and location

(µGEV ). These are defined for the Massachusetts site using the values in Table

4.1. The xGEV variable represents either the yearly maximum 10-minute mean

wind speed or significant wave height, depending on which set of parameters are

used. The environmental condition associated with a desired return period can

be calculated by evaluating the inverse CDF of each distribution independently

using the parameters defined above. These distributions were fit to wind speeds

converted from 10m to hub height values by a factor of 1.289 [18].
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Table 4.1: GEV parameters for the environmental conditions at the Massachusetts
(MA) wind farm site [18].

Parameter Shape (k) Scale (σ) Location (µ)

Vw 0.0915 6.2898 12.2264
Hs 0.0382 2.1172 2.9719

It is worth noting that a more detailed approach based on physics-based

event generation may be more suitable to capture the correlation between wind

and wave conditions at rare MRP [18]. However, the IEC guidelines [6] specify

a method for estimating a joint probability distribution function of wind and

wave conditions from basic site measurement data. At higher MRPs, the wave

conditions become more complicated, as waves start to break, and therefore

the maximum MRP has been limited to a value smaller than the one causing

structural failure in some cases. A set of 16 MRPs are assessed here, as listed

in Table 4.2. The corresponding wind and wave values have been calculated

using the distribution assumptions from Eq. (4.1) and (4.2) for Ijmuiden, and

Eq. (4.3) for Massachusetts.

Misalignment between the wind and wave conditions would also have an

important impact on structural loading. This was not modelled in the present

study as, at high mean wind speeds (above 30m/s), the misalignment was

observed to reduce at the Ijmuiden site [131] and for the Massachusetts site

this information was not available.
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4.2.2 Turbine mechanical model

4.2.2.1 Environmental load
The sea-state is modelled as a random process, using a wave spectrum to rep-

resent the energy content of different frequency waves. The assumed spectrum

is the JONSWAP [132] and a wave height time-series is then generated by

using the inverse Fourier transform. The spectrum is calculated using the

method recommended in IEC 61400-3 Annex B [6]. It is defined through the

parameters:

• significant wave height, which determines the energy content of the spec-

trum.

• peak spectral period (Tp), the wave period at which the wave spectrum

has a maximum [6].

• peak factor, which determines how peaked the spectrum is [132].

As the peak spectral period is an environmental variable, it can take on

a range of values and can be defined statistically. However in this calculation

it was defined deterministically using the range of Tp values necessary to meet

provisions in IEC-61400-3 specified by Myers et al. [14] as indicated in Eq.

(4.4). In this work, only the lower bound value is conservatively used since it

generates the largest loads, making the wave spectrum closest to the natural

frequency of the OWT.

11.7 ·
√
Hs/g ≤ Tp ≤ 17.2 ·

√
Hs/g. (4.4)

From the wave height time-series, the kinematics of individual water par-

ticles distributed along the monopile are calculated using the 2nd order wave

model developed by Agarwal and Manual [133]. This time-series is converted

into structural loads using Morrison’s equation (implemented in the software

package HydroDyn [134]).
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The turbulent wind acting on the OWT is continuous but is commonly

evaluated numerically at discrete points on a grid overlying the structure. Tur-

bulent wind time-series are evaluated using the program Turbsim [135], which

converts a Kaimal spectrum with turbulence type ‘B’ [128] into a stochastic

wind velocity field using inverse Fourier transforms at each grid point. The

correlation between the wind speed at different point is captured using an ex-

ponential coherence model as recommended in IEC 61400-1 [94]. Wind shear,

changing mean wind speed with elevation, was include using a power-law pro-

file with exponent 0.14 [128].

4.2.2.2 Global structural analysis
Structural analyses are based on time-domain simulation with integrated wind

and wave loading. Dynamic response of the structure to this loading is cal-

culated using the aero-elastic computer-aided engineering software FAST [77]

to run sets of time-domain analyses. Within FAST the tower, monopile and

blades are modelled as Euler-Bernoulli beams. No below seabed foundation is

included within the structural analysis.

The OWT considered in this study is based on the NREL 5MW reference

turbine [42] with a monopile sub-structure, as shown on Figure 4.1 (right) and

main properties listed on Table 4.3. The hub is supported by the tower and

is located at Elevation (EL)+87.6m above the MSL. It is attached to a 126m

diameter 3-bladed rotor, where the blades are labelled as blade 1, 2 or 3. The

hub can rotate around the central axis of the tower, where any misalignment

between the rotor axis and wind flow is referred to as yaw error. In this

situation the inflowing wind is no longer perpendicular against the rotor plane

and the loading on the structure tends to increase [136]. The blades rotate

about a horizontal axis running through the centre of the rotor plane; the

blade position is described by the azimuth angle: when azimuth is 0° blade 1

points directly upwards; as the azimuth angle increases, blade 1 rotates clock-

wise about the rotor-axis if observed while facing downwind. The monopile

support structure spans from EL+10m to the mudline at EL-20m. At the base
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of the tower, a transition piece connects the tower and monopile. A full list

of dimensions and material properties of the turbine structure are provided

by Jonkman et al. [42]. The dimensions of the material properties and the

geometry of the NREL 5MW blades are provided by Resor [137]. Finally, the

dimensions of the transition piece used in this study are taken from Lee et al.

[138]; these are local geometrical properties and, as such, did not impact the

global analysis but were used to evaluate the failure limit state.

The NREL 5MW turbine has a cut-off speed 25m/s, when this hub mean

wind speed is exceeded, the rotor enters its parked state by pitching the blades

into the wind to prevent damage. In all the analyses, the mean wind speed

was well-above the cut-off as this work assesses mean wind speeds well above

the prescribed 50-year extreme MRP.

4.2.2.3 Model limitations
The assumptions used in this study introduce a number of simplifications into

the load-response calculation, primarily: no foundation is modelled but the

soil is flexible and behaves non-linearly at high loads [139]. The error that

this assumption introduces into a dynamic analysis is discussed in Appendix

A through the error in dynamic amplification. Additionally, the aero-elastic

code FAST is based on small deflections and is not as accurate as non-linear

aeroelastic methodologies [140] for capturing extreme and transient loading.

The 2nd order wave model cannot capture the loads caused by large or

breaking storm waves. However, the aim of this analysis is to compare the

relative features of the fragility functions dependent on different assumptions.

Table 4.3: Table of main dimensions for the NREL 5MW OWT.

Parameter Value

Mass of the rotor-nacelle assembly (kg) 350,000
Tower diameter bottom, top (m) 6, 3.87
Tower wall thickness bottom, top (m) 35, 25
Monopile diameter (m) 6
Monopile wall thickness (mm) 60
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Therefore, the use of a simplified analysis was judged sufficient for the purpose

of this study. However this simplification could be overcome by inserting non-

linear waves to replace the large waves linear wave theory, for instance, by

using the approach proposed by Hallowell at al. [141].

The NREL 5MW OWT was not designed specifically for either site used

in this study, therefore the fragility values should not be expected to match

those derived for a OWT design based on the site hazard conditions, such as

those derived by Hallowell et al. [114].

4.3 Fragility analysis

4.3.1 Random variables modelled
The uncertainty introduced into the response of the case study OWT by using

numerical models is captured by defining the random variables shown in Table

4.4 and used in Eq. (4.5) to (4.12). For each random variable, Table 4.4

provides the probability model and its parameters, e.g., the mean value and

the Coefficient of Variation (CoV) (the ratio of the standard deviation to the

mean). The list includes variables associated with the models and materials.

The distribution types and moments are taken from published studies, based

on either engineering judgement or empirical data. The random variables

denoted X mostly take the form of multiplicative factors that are used to

scale either the demand or capacity term in the limit state, as seen from Eq.

(4.5) to (4.12) in Table 4.4. Other random variables relate to uncertainty in

the material properties.

As discussed above, the simulation assumes that the wind turbine is

parked; the initial azimuth angle of the rotor will therefore influence the load-

ing on the blades, as the wind profile is not constant over the height of the

OWT. However, it is not known what position the rotor will stop in, so az-

imuth is modelled as a random variable with a uniform distribution between

0° and 180° (an upper limit of 120° could also be used due to symmetry of

the rotor). Additionally, misalignment between the incoming wind flow and
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the turbine rotor will impact loading. The IEC recommends assessing up to

15° yaw error; and a recent study of Morato et al. [136] assessed 8° yaw mis-

alignment. However, no data was available to determine a distribution; in

its absence, a uniform distribution was assumed based on engineering judge-

ment with limits -8° to 8° adopted here following [136]. The environmental

load models utilise inverse Fourier transforms to convert stationary frequency

spectra into random time signals. In this context the random variable is the

random seed used to generate phase angles used in the transform. Unlike the

multiplicative factors, these random variables directly impact the structural

calculation and are inputs to FAST.

4.3.2 Limit-state definition
A limit state defines the conditions beyond which a component no longer sat-

isfies one of its performance requirements. The focus in this chapter is on

Table 4.4: Random variables used to capture uncertainty in demand and capacity.
The distribution properties for variables with a uniform distribution, in
square brackets, are the upper and lower limits. *Note - an azimuth of
0° indicates that blade 1 is pointing directly upwards.

Type Parameter Mean CoV Distribtuion Ref

Model uncertainty

Structural dynamics (Xdyn) 1 0.05 Lognormal [142]
Simulation statistics (Xsim) 1 0.10 Normal [105]
Stress evaluation (Xstr) 1 0.03 Lognormal [105]
Blade model
uncertainty (Xδl)

1 0.05 Lognormal [105]

Critical load
capacity (Xcr)

1 0.10 Lognormal [105]

Material model
uncertainty(Xmat)

1 0.05 Lognormal [105]

Material

Steel yield strength,
MPa (Fy)

240 0.05 Lognormal [105]

Steel Young’s modulus,
MPa (E) 2×105 0.02 Lognormal [105]

Concrete tensile
strength (Xcon) 1 0.30 Lognormal [143]

Rotor Blade 1 azimuth angle* (Xaz) [0°180°] Uniform
Yaw angle (Xyaw) [-8°8°] Uniform

Enviro-
nmental

Wind phase angle (Xseed,wa) [0 1] Uniform
Wave phase angle (Xseed,wi) [0 1] Uniform
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ULS failure of the OWT structural components, and to this end, failure of the

tower, monopile, blades, or transition piece are assessed.

Failure in the ULS relates to exceedance of the maximum load carrying

resistance [6]. These criteria are evaluated for the different OWT structural

components independently, as described in the following sections. Failure is

assumed to occur at the first exceedance of the structural capacity by the

demand in an analysis time-series.

4.3.2.1 Monopile and tower
Collapse of the monopile or tower is assessed using two different limit state

models. The first is taken from the work of Sørensen et al. [105] where failure

occurs when the maximum moment in the tower exceeds the cross-section plas-

tic moment reduced by a factor calculated from the cross sectional properties

and representing a linear relationship fitted to the Eurocode 3 buckling limit

state [144] for a shell with normal quality fabrication tolerance:

GMcr = 1
6

(
1−0.84φ

t

Fy
E

)(
φ3− (φ−2t)3

)
XmatXcrFy

−MULT

(
Xaz,Xyaw,Xseed

)
XdynXsimXstr. (4.5)

Where φ is the component diameter (m), t is the thickness (m), Fy is

the yield stress (N/m2), and Mcr is the critical moment (Nm). Additionally,

MULT (Xaz,Xyaw,Xseed) is the EDP, defined as the maximum bending moment

obtained from the linear elastic structural analysis. The X terms are variables

which capture modelling uncertainty and E is the Young’s Modulus, both are

defined on Table 4.4. For brevity the wind and wave seed variables have been

combined into a single parameter (Xseed). Eq. (4.5) will be referred to as the

Mcr limit state for the remainder of the thesis.

The NREL 5MW is a large utility scale OWT, both the monopile and

tower have a low thickness to diameter ratio and are non-compact according

to the definition provided in DNVGL-OS-J101 Section 7.3.1 [145]. Additionally
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they exceed the Eurocode Class 3 cross-section limits [146], indicating possible

local buckling. As a result, the DNVGL steel buckling code [145] is used as

the second limit state model, which uses von Mises stress as the EDP. The

buckling resistance (fcap,M
(
Fy,σV N,M

)
) is calculated using the provisions for

local shell buckling in Section 3.4 of DNVGL-OS-J101 [145].

The column buckling check is only necessary in the case that a combina-

tion of the shell geometrical properties is larger than 2.5 times the ratio of the

Young’s Modulus to the yield stress:

(
LefLc
ic

)
≥ 2.5E

fy
. (4.6)

Where k is the effective length defined by the code (2.1 for a cantilever

beam [145]), Lc is the cylinder length and ic is the radius of gyration. For

the monopile this limit was not violated as it is assumed to be fixed at the

mudline, reducing the unconstrained length to the water depth. However, the

tower does exceed this ratio, so the buckling resistance (fcap,T
(
Fy,σV N,T

)
) is

calculated using the provisions for column buckling in Section 3.8 of DNVGL

[145]. These were found to be the most onerous provisions. Both capacity

variables are time-variant because the buckling strength is dependent on the

stress state within the component; however, it is demonstrated later in the

chapter, that this variability is small. Structural demand is calculated by

transforming the force and moment outputs from FAST at each time step into

stresses using a membrane shell calculation [145]:

σMem = σAx+σBm (4.7)

= NAx
2πφt +

(
MFA

πφ2t
sin(θCS)−MSS

πφ2t
cos(θCS)

)
(4.8)

Where the membrane stress in the shell (σMem) is a summation of the

axial stress (σAx) and the membrane stress due to bending moments (σBm)

acting on the cross-section. The axial stress is the applied axial force (NAx)
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divided by the beam cross-sectional area. The stress due to bending moments

is the fore-aft (MFA) or side-to-side moment (MSS) evaluated at a location

around the beam cross-section (θCS). This approach assumes that torsional

and bending forces within the shell are negligible.

The DNVGL limit state is also considered for both the tower (T ) and

monopile (M), Eq. (4.9):

GDNV,T = fcap,T
(
Fy,σMem,T

)
·Xcr−σMem,T

(
Xaz,Xyaw,Xseed

)
·XdynXsimXstr

(4.9)

GDNV,M = fcap,M
(
Fy,σMem

)
·Xcr−σMem,M

(
Xaz,Xyaw,Xseed

)
·XdynXsimXstr.

(4.10)

The variables are the limit state functions (GDNV,T and GDNV,M ),

the tower cross-section stress at each time step (σMem,T

(
Xaz,Xyaw

)
), and

monopile cross-section stress at each time step (σMem,M

(
Xaz,Xyaw

)
).

It should be noted that the monopile limit state is evaluated at the mudline

only, as the shell is uniformly thick, and the largest moment occur at this

location. The tower code check is conducted along the height of the tower as

the cross-section is tapered.

4.3.2.2 Transition piece
A grouted connection is used to join the monopile to the transition piece. This

transfers all moment, shear and dead weight forces acting on the tower/rotor

into the monopile. Failure of the grout occurs at the interface between the

grout and pile or transition piece and may result in the transition piece slipping

relative to the monopile [147]. An analytical calculation for assessing grouted

connections is provided by DNVGL [91]. The maximum grout tensile capacity

(fTP ) can be calculated using the provisions in Section 4.5.1.13 of DNVGL-ST-

C502. The maximum tensile stress demand (σTP ) can be calculated using the

analytical equation in DNVGL [91] Appendix C.1, the background to which is
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provided by Lotsberg [147] (and includes experimental validation):

GTP = fTP ·Xcon−σTP
(
Xaz,Xyaw,Xseed

)
·XdynXsimXstr. (4.11)

Where the X terms are defined in Table 4.4. A tapered transition piece

with no shear keys is assumed and, as discussed in Section 4.2.2.2, the struc-

tural properties were taken from Lee et al. [138].

4.3.2.3 Blades
The blades convert wind flow into structural loading, and therefore failure of a

blade would reduce the loads experienced by the other structural components.

This effect has been observed in the failure of onshore wind turbines which

have been exposed to typhoon winds [99]. The fragility of these components

is noteworthy as it may impact the failure of the other structural components.

However, the blades are complex, they are geometrically complicated and are

usually made by composite materials. Detailed FEA models are typically used

to assess failure of the blades [148]. In lieu of this analysis, a simplified limit

state based on maximum blade root flapwise moment is used. The limit state is

defined as the blade flapwise moment capacity (Mcap) minus the blade flapwise

moment demand (Mdem):

Gbld =Mcap−Mdem

(
Xaz,Xyaw,Xseed

)
·XdynXδlXstr. (4.12)

The flapwise moment capacity is 15,310 kNm and was calculated by Resor

[137] using a detailed FEA analysis for the NREL 5MW OWT blades. The

moment demand is directly output from FAST for each blade.

4.3.3 Fragility function estimation
A total of 400 10-minute time-domain simulations with different seeds and

samples were run for each MRP value on Table 4.2 at each site. The number of

simulations (i.e., 400) was selected so that a probability of failure of 50% could
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be predicted with a CoV of 0.05. A study presented in Section 4.6.2 assesses the

error introduced by using a sample of 400, and demonstrates the number could

be reduced if the framework were applied in practice, where computational

power is a concern. This results in a series of limit state evaluations at a

discrete number of MRPs. The probability of failure for each OWT component

at different MRP can be estimated using the relevant limit state function. In

plain Monte Carlo simulation, an estimate of the probability of failure is simply

the mean value of an indicator function I(G≤ 0) which takes a value 1 when

the relevant limit state function associated with one analysis run is negative

(i.e. the structure is assumed to fail during that simulation):

pf
(
MRPi

)
= P

[
Gi < 0|MRPi

]
= 1
Nsamples

Nsamples∑
k=1

I
(
Gi,k ≤ 0

)
. (4.13)

In Eq. (4.13), pf (MRPi) is the probability of failure at discrete samples

of the MRP indexed by i and Nsamples is the number of samples, 400 in this

case. Where the fragility function Eq.(4.13) is used in the system reliability

calculation Eq.(3.4) by firstly calculating the mean annual failure rate using

Eq.(3.3) .

A continuous fragility function (pf (MRP )) is fitted to the discrete sam-

pled data, assuming that a lognormal CDF is capable of representing the sam-

ples probability of failure calculated using Eq. (4.13). This assumption, com-

monly used in the field of earthquake engineering, is a suitable parametric

model for several civil engineering structures [125, 149]. The lognormal as-

sumption regarding the shape of the fragility curve was confirmed using a

Chi-Square Goodness-of-Fit Test, and the results are only reported when the

hypothesis test failed.

The fragility fitting provides the median (η̂) and logarithmic standard

deviation parameters (β̂) of the fragility function from which estimates of the

probability of failure are evaluated, conditional on the IM (pf (MRP )):
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pf (MRP )∼ Φ(η̂, β̂,MRP ) (4.14)

.

The sets of MRP and corresponding probability of failures provide sample

data; the fragility function parameters are selected using Maximum Likelihood

Estimation (MLE) [150]. Specifically, the lognormal CDF parameters are se-

lected using a two-step procedure: (1) the method of least squares is used

to provide an initial estimate of the fragility function parameters; then (2)

the maximum likelihood method is applied to refine the parameter estimation,

where the samples are assumed to be binomially distributed, and the optimal

fragility function parameters maximise the product of the binomial Probability

Mass Function (PMF) at each of the NMRP MRP samples:

Likelihood(η̂, β̂) =
NMRP∏
i=1

(
Nsamples

ni

)
p̂f (MRPi)ni

(
1− p̂f (MRPi)

)Nsamples−ni
,

(4.15)

where p̂f (MRPi) is the estimated probability of failure at a given MRP us-

ing the estimated fragility curve parameters, Nsamples is the number of analyses

(i.e., 400) and ni is the number of observed failures. This two-step approach

is necessary because the MRP samples where all seeds fail (or survive) have

narrow binomial mass functions. If the initial parameter estimates are not in

the approximate region of the maximum likelihood solution, the logarithm of

likelihood equation becomes numerically unstable.

The fragility function derivation is run in batches, with five different ran-

dom variable configurations:

• X1 - Only randomness in the process through wind and wave time-series

(i.e. the random variables labelled as Environmental in Table 4.4); all

other variables are modelled as deterministic using their corresponding

mean values.
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• X2 - X1 plus model and material random variables, but not rotor random

variables.

• X3 - All random variables modelled explicitly.

• X4 - X1 plus rotor random variables, comprising the azimuth and yaw

angle.

• X5 - X1 plus only azimuth random variable.

The full fragility analyses were run three times, because adding the rotor

random variables required rerunning the structural analysis model, resulting

in a total of 19,200 time-domain simulations, for each site. This is necessary

because the X1/X2 conditions assume a fixed azimuth and yaw angle whereas

the X3/X4/X5 conditions require yaw and or azimuth angle to be modelled as

random variables.

4.4 Fragility results

4.4.1 Influence of analysis length
There is value in assessing the impact of analysis length on fragility functions

as a wide range of values, from 1.6 minutes [110] to 60 minutes [90], have been

used in the literature to derive fragility functions from time-domain analyses

(regardless of the hazard model). Figures 4.2 and 4.3 show fragility functions

produced by selecting different averaging periods for the Ijmuiden (IJ) and

Massachusetts (MA) sites using the X1 random variable conditions. Fragility

estimates for longer analysis periods were calculated by combining the required

number of 10-minute simulations. The results presented are for the tower and

monopile Mcr limit states only, however similar results were obtained for the

other limit states. Larger analysis lengths shifted fragility functions to failure

at lower MRP, as shown in Figure 4.2 and Figure 4.3. For instance, the IJ

tower (Figure 4.2 (left)), the median reduces from 1.017× 105 to 0.332× 105

while the standard deviation reduces by 33% (from 1.42 to 0.94) when the

10 and 70 minute fragility curves are compared. In the limit of increasing
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Figure 4.2: Comparisons of fragility functions produced for the tower (left) and
monopile (right) of the NREL 5MW turbine at IJ. Different curves
indicate different analysis lengths using the random variable condition
X1. Brackets on the x-axis labels contain (Vw (m/s) / Hs (m)).

the analysis length the fragility function will approach a step function. If

the environmental conditions are capable of inducing failure of the OWT this

will be captured by every sample. The longer analyses therefore will have a

smaller impact on the fragility function parameters as they approach this limit.

Additionally, the proportional increase in the analysis length is much smaller

for the long analyses. As the fragility function parameters are sensitive to the

analysis length, one should explicitly account for the impact of analysis length

on the fragility, otherwise bias will be introduced into the calculation of risk.

4.4.2 Influence of yaw and azimuth angles
The wind turbine enters its parked state at high wind speeds and the rotor

stops rotating, but it is not known at what angle relative to the vertical position

(for blade 1) the rotor will stop. Different rotor positions lead to different load

patterns depending on whether a blade is pointing upwards (with increasing

load along the length of the blade) or downwards (decreasing load along the
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Figure 4.3: Comparisons of fragility functions produced for the tower (left) and
monopile (right) of the NREL 5MW turbine at MA. The different
curves indicate different analysis lengths using the random variable
condition X1.

length of the blade) due to wind shear [82]. Additionally, there is the possibility

of an error in the yaw mechanism, meaning that the control system will not be

able to maintain a perpendicular angle between the plane in which the blades

rotate and the direction of wind flow as it changes. Both of these effects

have not been considered in existing wind turbine fragility studies, but have

been observed to impact ULS loading [136]. Additional analyses were run to

evaluate the the fore-aft bending moment at the tower base, mudline and blade

root varies with these properties. The range of azimuth and yaw angles [-8°

8°] were split into a discrete series of 10-minute simulations repeated for 10

random seeds at each. The resulting changing loads are shown in Figure 4.4

(azimuth) and 4.5 (yaw) and are used to explain the fragility results.

When the azimuth angle is modelled as a random variable, using the

X5 condition, changes in fragility function parameters are shown in Figure

4.6 (left). For example, comparing X1 to X5 conditions for the IJ monopile

with DNVGL limit state leads to an unchanged location parameter and small
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Figure 4.4: Comparison of load changing with azimuth angle at the mudline (top),
tower base (middle) and blade 1 root (bottom). In each panel the mean
moment is indicated by a horizontal line.

reduction in standard deviation (from 1.88 to 1.83, a 3% reduction). This can

be understood from Figure 4.4, where the mudline and tower base moment are

shown. A trend is visible whereby the moment is lowest when the rotor is in

a position where one blade is pointing directly downwards (i.e., when blade 1

is at 60°, 180° and 300° from the vertical). The changing azimuth angle has a

small impact on the coefficient of variation in loading which is 1.65% and 2.11%

for the monopile and tower respectively, especially when compared to the ∼ 1%

caused by seed variability (shown as grey dots in Figure 4.4). This explains the

small influence this parameter has on the fragility function. Azimuth angle has

a larger impact on the blade loads, as shown in Figure 4.4 (bottom); only the

results for blade 1 are presented for brevity (as the others followed the same

trend with a 120° angle shift). A fixed azimuth means that each blade has the

same load pattern for all seeds, whereas when azimuth is modelled as a random
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Figure 4.5: Comparison of loads changing with yaw angle at the mudline (top),
tower base (middle) and blade 1 root (bottom). In each panel the
mean moment is indicated by a horizontal line.

variable the load pattern changes. The loading will increase or decrease along

the blade depending whether it is angled upwards or downwards relative to

the hub. Therefore, over a sufficiently large random sample of the azimuth

angle all blades experience approximately the same load pattern, because the

azimuth angle is assumed uniformly distributed. As a result, the fragility

functions for each blade in the X5 condition overlap, unlike the X1 fragility

functions, Figure 4.6 (right). In this case a single fragility function could be

used for the blades (i.e. which aggregates the individual results) whereas in

the case where a single deterministic azimuth was used blades 1 and blade 2

& 3 have a distinct behaviour, see Figure 4.6 (right).

A similar deviation of changing load with azimuth angle was observed for

the yaw error variable in the tower and monopile components, as in Figure

4.5. However, a continuous trend of increasing load with increasing yaw error
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Figure 4.6: Fragility functions for the monopile and tower (left) and the blade
(right) at the IJ site. Where the different random variable conditions
are highlighted and ‘Mon’ represents the monopile and ‘Twr’ the tower.

is visible. The variation in loading only caused a small change in the tower

and monopile fragility functions, see Figure 4.6 (left) for the X4 condition,

e.g., for the monopile compared to the X1 condition the location parameter

was constant and the standard deviation reduced (from 1.88 to 1.71, ∼ 10%).

However, the limits on yaw error were enforced by applying the values from

Morato et al. [136], and it would be expected that if a larger range of yaw error

were used, the impact on the fragility function would be greater. In contrast,

a noticeable impact was observed on the blade fragility, this is again a result

of the larger impact yaw has on the blade root moment Figure 4.5 (bottom).

For blades, inclusion of azimuth and yaw error increases the variation of the

fragility function substantially in comparison to the case where neither is mod-

elled (X1 condition) and this effect can be seen by comparing the X1, X4 and

X5 fragility functions in Figure 4.6 (right). These results also suggest that an

assumption of lognormal behaviour is not suitable for the blades when azimuth

and yaw are modelled as random variable, this was confirmed by the results of



4.4. Fragility results 120

the Chi-Square Goodness-of-Fit Test which returned values in the range 0.21

to 0.53 (larger than the 0.05 significance threshold). In the remainder of this

thesis they will be represented using an empirical CDF.

4.4.3 Influence of different random variables sets
The impact of including various random variables affecting OWT capacity

(e.g., those representing material and modelling uncertainties, as summarised

in Table 4.4) on the resulting fragility functions is investigated here. The

results shown in Figures 4.7 and 4.8 demonstrate that, as expected, including

model random variables changes the standard deviation of both limit states

fragility functions by a similar amount, but has little impact on the location of

the curve. Comparing the X1 to X3 condition for the Mcr limit state at the IJ

site results in a < 3% change in the mean and ∼ 22% increase in the standard

deviation (from 2.03 to 2.27). As discussed in the previous section, inclusion

of the azimuth and yaw random variables have a small impact on the location

of the tower and monopile fragility functions; this is visible in Figures 4.7 and

4.8 where the X1 and X4, and X2 and X3 conditions result in very similar

fragility functions. For the blades, including model random variables (factors

on the limit state equation) had very little impact on the fragility functions

(see Figure 4.9). The yaw and azimuth variables are observed to dominate the

response.

4.4.4 Site and component comparison
Comparing the results for different component limit states at the two sites

allows an assessment of which are the most critical. The X1 conditions will

be used in this section for clarity; however, findings are consistent across the

various cases.

Due to the hurricane-type conditions, the Massachusetts site produces

the most severe loading, resulting in relatively high probability of failure of

the tower at low MRP. For instance, in Figure 4.8, probabilities of failure

above 5% are observed between MRP of 50 and 200 years. At the Ijmuiden
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Figure 4.7: Comparison of the fragility functions produced for the tower and
monopile of the NREL 5MW turbine at IJ using the Mcr limit state
(left) and the DNVGL limit state (right). ‘Mon’ represents the
monopile, ‘Twr’ the tower.

Figure 4.8: Comparisons of fragility functions produced for the tower and monopile
of the NREL 5MW turbine at MA using the Mcr limit state (left) and
the DNVGL limit state (right). ‘Mon’ represents the monopile, ‘Twr’
the tower.
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Figure 4.9: Comparisons of fragility functions produced for the blades of the NREL
5MW turbine at IJ (left) and MA (right) site.

site, the MRP range where most components fail with a probability of more

than 20% is outside the bounds usually considered in a CAT model, which

usually extend up to a MRP of 100,000 years.

The DNVGL and Mcr limit states for the tower and monopile result in

different fragility, with the Mcr limit state causing failure at higher MRP than

the DNVGL limit state. This is particularly visible in the case of the tower

and monopile fragility for IJ site, Figure 4.10 (right), and can be justified by

looking at the limit states in more depth. In Figure 4.11, the moment capacity

predicted using different limit states are compared, with the DNVGL limit

state converted into an equivalent bending moment using a membrane stress

calculation. The small variations in DNVGL capacity are caused when the

von Mises stress approaches 0, which affects the characteristic buckling stress.

As discussed in Section 4.3, the Mcr limit state is calculated by subtracting a

factor from the cross-section plastic moment to provide a linear relationship

approximating Eurocode 3 [144]. For the NREL 5MW OWT the reduction

factor is approximately 0.1. Therefore, using the Mcr limit state, failure of
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the monopile will occur well above the point at which the outer fibre of the

cross section first yields. On the other hand, the DNVGL local buckling limit

state is calculated by dividing the yield stress by one plus the slenderness ratio

to the power of 4, it will always be less than the material yield stress, and

therefore represents a more conservative failure. The column buckling limit

state is based on a similar process of reducing the buckling strength. This

explains why the fragility function is shifted to lower MRP when the DNVGL

limit state is used. It is notable that there is no overlap between the monopile

and tower fragility functions for any of the random variable sets. This indicates

that in all cases, the tower is observed to fail before the monopile.

Violation of the transition piece limit state was found to occur at MRP

greater than 500 years, this is higher than both the tower and monopile for

the MA site, Figure 4.10 (left). In contrast, no failures in this limit state

were observed at the Ijmuiden site. This indicates that, particularly when

using the more conservative DNVGL limit state, the transition piece is unlikely

Figure 4.10: Fragility function for the transition piece at the MA site (left), and
comparison of monopile and tower limit states at the IJ site (right).
‘Mon’ represents the monopile, ‘Twr’ the tower.
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Figure 4.11: Comparison between the monopile limit states, all stresses converted
into an equivalent bending moment. Graph is a segment from a full
600s time-series run at a MRP of 3 ·107

to contribute to failure of the OWT in the ULS, as failure in the tower or

monopile limit states was observed to always occur first. However, it should

be noted that only one OWT geometry is used in this work, and the transition

piece geometry are taken from academic research, not current industry practice

(where bolted transition pieces are sometimes used in preference to the grouted

connection assumed in this study).

Fragility results for blade failure at both sites is shown on Figure 4.12 and

indicate that failure of blade 1, the blade with largest demand (i.e. pointing

upwards) for the X1 conditions, occurs at higher MRP than would cause failure

of the tower. However, as discussed in Section 4.4.2, fragility of the blade is

sensitive to modelling decisions. When azimuth and yaw are random variables

the failure of all blades is equally likely and occurs at lower MRP than in the

deterministic case. When using the rotor random variables there is overlap

between the tower and blade fragility functions (visible in Figure 4.12). This

indicates that the interaction between blade and tower failure hypothesised

by Chen et al. [99] is plausible. Failure of the blade may reduce loading

on the tower and therefore potentially prevent its failure. However, the tower

fragility function are generally decisive as they occur at lower MRP, indicating

that failure of the tower independently remains the most probable scenario.
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Figure 4.12: Fragility function for tower and blade limit states at the MA site
(left), and fragility functions for tower and blade limit state at the IJ
site (right). Where ‘Twr’ represents the tower.

4.4.5 Conclusion
The analysis length was found to effect both median and standard deviation

of the fragility function for all components. However, this value should be

selected to be consistent with the hazard model. The yaw and azimuth were

found to only have a large impact on the blades, and modelling these effects is

considered to be more realistic, as in reality the angle at which the blades stop

will be unknown. In contrast the choice of other random variables in the limit

state equation were found to have a small impact on the standard deviation

of the fragility function for all components. Site and limit state were found

to have the largest impact on fragility functions, this was particularly visible

for the structural components where a large shift between the DNV and Mcr

limit state was observed.
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4.5 Loss analysis

4.5.1 Loss model
The structural components included in the loss calculation are the tower and

blades, as the monopile and transition piece were observed to always fail after

the tower had reached 100% probability of failure in Section 4.4. The replace-

ment cost for the tower is estimated through a parametric equation described

in Section 4.5.2. Data for the non-structural components of the OWT (and

the replacement costs for the blades) are taken from the work of Carroll et al.

[10]. They analysed data from maintenance records of ∼350 OWTs ranging

from 2MW to 4MW in European waters and presented the results for different

components. In this work, we focus on severe failures associated with either

major repairs or full component replacement, and not on routine maintenance

tasks. Only the failure rates for the top nine components in terms of replace-

ment cost, out of a total of 19 sub-systems, are used in this work, shown in

Table 4.5. The costs have been rounded to the nearest e1,000, to improve

computational efficiency when evaluating Eq. (3.4) numerically, so that step

sizes of e1,000 could be used.

The different failure conditions considered in this study are shown in Fig-

ure 4.13, which presents the scenarios considered through an event-tree dia-

gram. The equipment is lumped together, as the failure of these components

is assumed to have no impact on the failure of other components. Based on

Figure 4.13, it is assumed that if the blades fail, the wind loads on the tower

reduce (as blades are the main source of aerodynamic loading) and, as a conse-

quence, the tower may survive. This simplified assumption tests observations

about the failure of onshore wind turbines exposed to typhoon conditions [99].

However, it should be noted that a blade may impact the tower if it breaks first.

If the blades survive but the tower collapses, it is assumed that all equipment

and the blades fall into the sea and are damaged.
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Table 4.5: Material cost for major replacement and failure rate of OWT compo-
nents. 1Eq. (4.16) with data - [PWT = 5MW].

Source of
cost data Component Major

replacement (e)
Failure rate

(/turbine/year)

Carroll [10]

Gearbox 230,000 0.154
Hub 95,000 0.001
Transformer 70,000 0.001
Generator 60,000 0.095
Circuit breaker 14,000 0.002
Power supply 13,000 0.005
Pitch system 14,000 0.001
Yaw system 13,000 0.001
Controller 13,000 0.001

Blades (x3) 270,000 MA: 9.89 ·10−4

IJ: 2.32 ·10−5

Parametric equations Tower 770,0001 MA: 4.97 ·10−4

IJ: 8.36 ·10−5

Total cost 1,562,000

4.5.2 Structural failure cost
Total OWT cost (cWT ) in ke, including blades and drive-train but exclud-

ing foundations, was estimated using a parametric equation. It represents a

relationship between cost and the rated power of the turbine (PWT ) in MW

which was fit to data from real OWT at seven different power ratings, 2MW

through to 5MW [151]. This was converted into Euros (from Pound Sterling)

by Dicorato et al. [152] resulting in:

cWT = 2.95 ·103 · ln(PWT )−375.2. (4.16)

Analysis by NREL [153] reported that the cost of an onshore wind tur-

bines tower comprised 17.6% of the total turbine cost. The cost of the OWT

tower is calculated by factoring down the wind turbine cost to 17.6% of cWT ,

assuming consistency in the relative cost between onshore and OWT compo-

nents. Information about the specific cost of OWT towers would improve this

calculation. However, the comparison between structural and mechanical /
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Figure 4.13: Event trees for an OWT that combines structural and equipment
components. The analysis case corresponding to each event tree is
labelled.
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electrical components presented in this study only relies on the tower being

more expensive than the other components.

4.6 Loss results

4.6.1 Fragility curves used in loss assessment
The fragility curve comparisons highlighted the impact of different modelling

decisions on the fragility parameters at both sites. In the loss assessment

the X3 random variable set is modelled. The tower component is represented

using a parametric log-normal fragility curve and the blade using an empirical

fragility curve (as the log-normal assumption was found to be a poor fit). All

fragility curves used a total of 400 structural simulations (NAn) at each MRP

to calculate the probabilities of failure in Table 4.6. These relationships are

shown in Figure 4.14 for both sites.

The fragility calculation was implemented by assigning an indicator func-

tion to the output from structural analyses, run at each MRP. When the limit

Table 4.6: MRP with corresponding probability of failure and standard error for
the monopile and tower.

IJ MRP IJ Pf
Tower

IJ Pf
Blades MA MRP MA Pf

Tower
MA Pf
Blades

1.00E+02 0.000 0.000 4.13E+01 0.000 0.000
3.00E+02 0.000 0.002 5.55E+01 0.000 0.000
1.00E+03 0.003 0.005 7.40E+01 0.000 0.000
3.00E+03 0.013 0.034 9.79E+01 0.000 0.003
1.00E+04 0.100 0.059 1.29E+02 0.000 0.011
3.00E+04 0.370 0.113 1.68E+02 0.000 0.032
1.00E+05 0.803 0.143 2.19E+02 0.000 0.062
3.00E+05 0.975 0.204 2.82E+02 0.000 0.109
1.00E+06 1.000 0.265 3.63E+02 0.013 0.142
3.00E+06 1.000 0.323 4.63E+02 0.038 0.178
1.00E+07 1.000 0.366 5.88E+02 0.160 0.253
3.00E+07 1.000 0.394 7.43E+02 0.428 0.291
1.00E+08 1.000 0.428 9.34E+02 0.778 0.338
3.00E+08 1.000 0.443 1.17E+03 0.958 0.379
1.00E+09 1.000 0.442 1.46E+03 0.998 0.400
3.00E+09 1.000 0.468 1.81E+03 1.000 0.439
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Figure 4.14: Fragility curves for the tower and blade at the IJ (left) and MA
(right) site. The grey lines indicate the empirical fragility curves for
individual blades and the black line indicates the expectation over
the three blades.

state (G) was violated i.e., I(G ≤ 0), a value of one indicated that the struc-

tural component (tower or blade) failed during the simulation. A fragility

function was fitted to discrete data providing a continuous prediction of the

probability of failure conditional on the IM. In the case of the tower MLE was

used to predict best-fit parameters of the lognormal distribution, the the log-

normal mean µLN and lognormal standard deviation σLN . In the case of the

blades, an empirical fragility curve (non-parametric) used previous neighbour

interpolation between the 16 MRP analysed.

The results in the previous section were based on estimating the fragility

function parameters through MLE based on a sample of structural simula-

tions. This estimation is naturally associated with statistical error, and there-

fore there is uncertainty in the prediction of fragility function parameters,

i.e. they will vary depending on the sample size. For this reason, a large

number of samples were used in Section 4.4 (a single fragility curve requir-

ing NMRP ·NAn = 6,400 simulations). This is a fairly large number for many

practical applications and therefore the loss assessment uses statistical resam-

pling to assess the error introduced by using a reduced structural simulation
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size. Epistemic uncertainty is assessed by sampling new sets of fragility data,

with replacement, from the original set of analysis results. The impact of the

uncertainty caused by a smaller sample size can be evaluated by quantifying

the scatter in failure rates that results from scatter in the resulting fragility

curve parameters.

The original set of indicator functions at each IM (size NAn) can be resam-

pled with replacement for new, reduced number of analyses (NAn,Red). The

impact of analysis sample size can then be evaluated by quantifying the scatter

in the failure rate that results from scatter in the fragility curve parameters.

An example of the variability in the fragility curves is shown in Figure 4.15

for the OWT blades at the MA site, comparing the original NAn of 400 to a

NAn,Red of 50. It can be observed that for the larger sample, the scatter in

the curves is reduced, however the mean prediction (bold black line) does not

vary significantly.

4.6.2 Structural component yearly failure rates
The integral in Eq. (3.2) is solved numerically, over the range of MRP values

bounded by the limits MRPi = [10,106] and using a step size of 1 year. The

failure rate is then calculated using each of the resampled fragility functions

Figure 4.15: Resampled fragility curves shown in grey for the blades at the MA
site. The number of samples used to calculate the probability of
failure at discrete IM is 50 (left) and 400 (right).
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(over a set of 50≥NAn,Red ≤ 400), resulting in scatter in the fragility function

parameters. The mean annual failure rates are presented in Table 4.5, and

the individual samples through histograms in Figure 4.16 for the IJ site and

in Figure 4.17 for the MA site, using a small subset of the NAn,Red sampled.

These figures show the reduced scatter as the number of samples increases.

The NAn,Red sample size of 100 is used in remainder of this work (by fitting a

lognormal distribution to the histogram using MLE) as the maximum coeffi-

cient of variation is around 0.5% (for the IJ tower).

4.6.3 Combined loss assessment
Loss estimation is initially implemented using the mean failure rates from

Table 4.5. As discussed in Section 4.2, if any blade fails the loading pattern

on the OWT will change (as the blades are the main source of aerodynamic

loading). A simplified interpretation of this event is that if the blades fail the

tower will be protected from failure through reduced loading. Conversely, if

the blades survive but the tower collapses, it is assumed that all equipment

and the blades fall into the sea and are damaged. To gain insight into the

impact of these possible failure scenarios, four assumptions relating to failure

of the OWT components are tested here:

Figure 4.16: Histograms of failure occurrences for tower (left) and blades (right)
for the IJ site.
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Figure 4.17: Histograms of failure occurrences for tower (left) and blades (right)
for the MA site.

• Case 1: Tower and other failures are perfectly correlated - a new matrix

KKK1 is generated where failure of the tower results in the failure of all

other components.

• Case 2: Blade failure prevents failure of the tower - a new matrix KKK2 is

generated. Firstly, failure events that include the blades are modified to

prevent failure of the tower. Then the remaining cases where the tower

fails (but the blades do not) cause the failure of all other components.

• Case 3: Uncorrelated components - the KKK matrix left unchanged.

• Case 4: No structural failure, only equipment components fail, and em-

pirical failure rates from Table 4.5 are used.

These assumptions about the dependency between OWT components are

encoded within the loss calculation by creating an updated matrix of failure

events (KKK). The updated matrix is used to evaluate which subset of failure

events are used kkk∗ ∈KKKc at each cost level in Eq. (3.4). Events that include

failure of the tower can be identified, and the indices relating to all other com-

ponents modified to correspond to a failure state. In the case where blade

failure prevents failure of the tower, events where the tower and blades fail
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are first identified, then the tower component index is changed so that it sur-

vives. In the equipment only case, the probability of failure of the structural

components is set to zero.

The annual loss Complementary Cumulative Distribution Function

(CCDF) is shown in Figure 4.18 (left) for the IJ site and (right) for the

MA site. These show that losses of individual OWT occur with relatively

large probability driven by the more frequently occurring equipment failures,

with annual probability of occurrence around 22% at both sites. Losses that

also include structural components occur with annual probability of around

0.008% at IJ and 0.5% at MA, indicating the large difference in hazard between

the two sites.

The failure case which excludes structural components predicts a maxi-

mum material costs well below e1M, which is the sum of all equipment ma-

terial costs. All material costs higher than this include one of the structural

components. Using independent components (Case 3) results in a range of

failure costs that involve the tower, whereas the correlated failure cases only

predicts a material cost that is the sum of all equipment and tower costs,

e1,562,000 (Table 4.5). This is more accurate, as collapse of the tower will

have consequences for all equipment in the hub. Differences in assumptions

Figure 4.18: Loss CCDF comparing the four assumptions used in calculating loss
at the IJ site (left) and MA site (right).
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about blade failure (Case 1 and 2) do not have a visible impact, due to the

rarity of blade failures in comparison to the tower at both sites. This is ex-

plained by Eq. (3.4), as for each set of failure events the yearly probability of

occurrence is the product of the probability of failures (for components that

fail) and probability of survival (for components that survive).

4.6.4 Annual loss distribution
Loss for the OWT is estimated using Eq. (3.5). Uncertainty in the structural

failure rates can be included in the loss calculation by sampling the distri-

butions describing failure rates of the blade and tower (i.e., Figure 4.16 and

Figure 4.17) and using the random samples as input to Eq. (3.2). The resulting

distribution of annual losses is shown in Figure 4.19. For IJ, little difference

visible in the two cases where perfect correlation in the failure cases is as-

sumed, the mean annual loss of both is e3.87×104. The uncorrelated case is

not conservative, because the average annual losses are lower, however the dif-

ference is only marginal as the mean Case 3 annual loss is e3.86×104. Results

for the MA site, Figure 4.19 (right), indicate that the structural components

have a more important impact on annual loss. The Case 1 and 2 histograms

both have mean annual loss of e4.62×104, whereas the Case 3 (independent

results) has a lower mean annual loss of e4.25× 106. This is due to the hur-

ricane type conditions at the site, these differences emphasise the need for a

site-specific approach to the structural components of OWT. This calculation

can be scaled to the OWF by multiplying the losses from a single OWT by the

number of OWT in the farm, assuming that all act independently.

The specific numerical results should be considered with caution, given

the simplifying assumptions used in the illustrative application. However, the

relative importance of the different analysis cases suggests that Case 1 provides

a conservative estimation of annual losses.
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Figure 4.19: Histogram of annual loss for IJ (top) and MA (bottom) when uncer-
tainty in the fragility function parameters is modelled.
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4.7 Conclusions
The framework proposed in Chapter 3 for calculating financial losses associated

with an OWT in the structural ULS was implemented for two case study

OWTs. Uncertainty in the definition of fragility curves was explicitly included

in this analysis by resampling the fragility function parameters. The resulting

distribution of structural component failure rates was then included in the loss

calculation using Monte Carlo sampling.

The fragility functions for the tower and monopile were found to depend

on the limit state equation used to model failure. Consequently, the choice

of a limit state that accurately describes the problem being investigated is

important. For a large diameter utility scale OWT, the DNVGL limit state

was found to be more conservative. Additionally, model uncertainties were

found to have an important impact on all limit states, while the azimuth and

yaw variables were only important for the blades. Other conclusions relating

to the fragility curves include:

• The hazard model should explicitly account for the impact of analysis

length on the fragility, otherwise as demonstrated, bias will be introduced

into the risk calculation due discrepancy between analysis length and

environmental averaging period.

• Overlap between the fragility functions for the blades and tower was

observed, indicating that, in some instances, the blades may fail before

the tower reducing loading. However in the loss calculation this was

found to be of little consequence because of the low failure rate of the

blades compared to that of the tower.

• The monopile and transition piece were found to fail at much higher

return periods than the tower (or not at all in the case of the transi-

tion piece assessed at the Ijmuiden site), indicating that for the OWT

geometry assessed these components are robust.

• For the Ijmuiden site, representative of European conditions, the OWT
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was found to fail in the ULS at very high MRPs, which are out with the

values typically included within a CAT model.

The case-study assessed an OWT comprised of both generation equip-

ment and structural components. Although structural failure rates were low

in comparison to the mechanical / electrical components, they are associated

with very high financial losses (especially when it is assumed that structural

failure also results in loss of the equipment). For this reason, they were found

to have a notable impact on the annual loss at the MA site, where severe hurri-

cane conditions occur. This highlights the site specific nature of the structure

and emphasises the need to include details of site loading into risk calculation.

The following chapters describe and approach for analysing the structural FLS,

which may be the driving failure mode for OWT in European waters.



Chapter 5

Fatigue limit state loss

framework

5.1 Introduction
The design of OWT sub-structures is currently specified by prescriptive codes,

e.g., the IEC 61400-3 [6] or the DNVGL-ST-0126 [91], as summarised in Chap-

ter 2. These codes implement the LRFD approach to attain a certain level of

safety in the structural components. This is ensured by prescribing a wide

range of load cases encompassing all environmental and operating conditions

expected during the 20-25 year design life. Moreover, uncertainties affecting

structural demands and capacities are accounted for by using partial safety

factors, that are typically calibrated to ensure a desired level of structural re-

liability [154]. However, the current generation of partial safety factors used

in the design of OWTs are a combination of those used in the offshore Oil &

Gas industry and those used to assess onshore wind turbines [95]. They have

not been specifically calibrated for OWTs and so the implied reliability level

is unknown.

An essential step in understanding the suitability of the current partial

safety factors is to perform explicit reliability assessment of OWT structural

components, as this can help understanding the implied reliability levels. Ad-

ditionally, this could allow OWT (sub-)structures to be optimised through an



5.1. Introduction 140

explicitly probability-based design approach. Such a probabilistic-based de-

sign would provide a more rational and consistent design approach for fatigue

assessment. To date, most reliability studies have assessed the OWT ULS,

including the development and use of statistical surrogate models to improve

computational efficiency of the assessment [155]. These studies have utilised

fully-coupled time-domain simulations [95], which is considered the state-of-

the-art technique for both design and assessment of OWTs [39]. Indeed, a

method for assessing ULS failure using a probabilistic risk framework was de-

veloped in Chapter 3 and implemented for a case study location in Chapter

4. However, there is a limited number of studies employing reliability tech-

niques to assess the FLS, which often drives the design of OWT sub-structures

in European waters [156]. In fact, OWTs are especially vulnerable to fatigue

damage. Highly irregular wind and wave loading combined with variable ma-

terial properties make design against fatigue a challenging task, as fatigue

damage is accumulated throughout the life of an OWT. An assessment of this

limit state should include all the wind and wave conditions that are expected

to be encountered during OWT operation and, therefore, should encompass

a wide range of environmental conditions, requiring in the order of >50,000

time-domain simulations [39]. Current code provisions, such as IEC 61400-3

[6], allow the mean wind speed to be discretised into 2m/s bins and the analy-

sis of a single combination of significant wave height and peak spectral period

for each wind speed bin. However, this is a simplification, as the environ-

mental parameters are better described by a joint-PDF, resulting in complex

inter-dependencies between parameters [156]. Additionally, the code requires

performing time-domain analyses, with at least 60-minutes of simulated time,

for each set of environmental conditions; this is to ensures a stable estima-

tion of damage accumulating over an OWTs design life. The large number of

environmental conditions (and the need for time-domain analyses) makes the

assessment of an OWT in the FLS computationally expensive and often pre-

vents a full structural reliability assessment. Different approaches to managing
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this computational burden are summarised in Section 5.1.1.

Motivated by the need to improve the computational efficiency of evaluat-

ing the FLS, this chapter introduces a probabilistic risk calculation for fatigue

that relies on a surrogate modelling technique. This approach allows financial

losses to be estimated for the FLS, thereby quantifying robustness. This ap-

proach follows the general framework shown on Figure 5.1. The specific steps

are introduced in this chapter.

The fatigue limit state is introduced in Section 5.2, describing the uncer-

tainties characterising fatigue life. The proposed approach also allows quantifi-

cation of the variability introduced by modelling fatigue material parameters as

random variables. GP regression is the selected surrogate modelling technique,

and its characteristics are described in Section 5.3. An illustrative application,

combining case-study environmental conditions with a representative OWT

model is described in Chapter 6.

Figure 5.1: Framework for calculation of financial losses when the structural FLS
combined with equipment components.
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5.1.1 Analysis reduction for the fatigue limit state
The structural response of an OWT to environmental loading is commonly cal-

culated using computer-based models or simulators, which are specified using a

set of input parameters unique to the OWT and location specific environmen-

tal conditions. The response is predicted through a series of well established

numerical relationships [11]. From a general, high-level perspective, a simula-

tion tool for an OWT can be considered a “black box” which takes a vector of

unique inputs (x) and produces an output (y) described by the relationship:

y = h(x) (5.1)

The simple form of Eq. (5.1) means that the simulator can encompass

a wide range of specific analysis procedures, i.e., any model that predicts the

OWT response. In practice, time-domain simulations are most commonly used

[39], where the response to various loads is evaluated at a series of discrete

consecutive time-steps [157]. This technique can assess transient conditions

caused by the turbine control system [80]. However, time-domain simulations

are computationally expensive. Long simulation times are required by the

current design codes - 60 minutes or more for each load case. Additionally,

small time-steps are needed to ensure numerical stability and convergence in

the time-stepping algorithm [17], further increasing the computational burden.

As discussed in the introduction, Section 5.1, current design codes for

OWTs [6, 158] require assessment of a large number of load cases consisting

of different environmental conditions, in an attempt to comprehensively assess

all conditions that an OWT is expected to experience during its operating

life. It is not computationally feasible to explicitly evaluate each load-case in

the time-domain and also quantify uncertainty in the response through com-

mon sampling-based reliability analysis techniques (e.g., plain Monte Carlo

method). This requires a method to reduce the computational burden of eval-

uating the FLS. Different solutions to this problem have fallen into two broad

categories, either making the analysis more computationally efficient or reduc-
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ing the total number of simulations required using:

• Load-case reduction;

• Surrogate models (simple and complex), also commonly referred to as

meta-models or emulators;

• Simplified mechanical models, based on frequency domain simulations.

Load-case reduction attempts to mitigate the computational burden of

evaluating the FLS, by reducing the number of load cases combining those

producing similar outputs. This avoids using a statistical model to directly

predict the response; but it means that the full set of structural simulations

required to compute the FLS is required to calibrate the reduced set of load

cases. This approach was first developed for application to OWTs by Kuhn

[159]. It was based on a unidirectional scatter chart, originally consisting of

200 load cases, which were condensed into a reduced set of 21 load cases. The

reduction was achieved by combining fatigue load cases resulting in similar

damage estimates and linearly scaling the results of the new, composite, load

case. A similar approach was used by Damgaard et al. [85], but the technique

was extended to encompass multi-directional environmental conditions includ-

ing wind and wave misalignment. Using a similar reduction criteria to Kuhn

[159], a set of 1584 load cases was reduced to 200 with a reported error of less

than 1% in terms of damage equivalent load (Design Equivalent Load (DEL))

[85]. Hafele et al. [160] reported similar results, reducing 2048 load cases into

210 equivalent load cases for an OWT located at a different site. In all the

above examples, the number of load-cases were significantly reduced, by up to

a factor of 10. However, the computational burden still remains large as the

full set of load cases need evaluated in the first step of the procedure.

Surrogate models approximate complex systems, attempting to mimic

their behaviour while being computationally cheaper to evaluate. Different

surrogate models have been used to represent the output from complex struc-

tural analysis packages for OWTs by using a simple statistical model. Simple
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linear meta-models are suitable for expressing a structural response quantity

that is linearly related to the set of input variables x. A simple model can also

be adapted to non-linear problems by fitting multiple linear models over pre-

defined ranges of the non-linear variable. Toft et al. [161] used models based

on linear interpolation and linear regression to estimate the fatigue response

of onshore wind turbines. Non-linearity arising from response of the turbine

controller at different mean wind speeds was mitigated by fitting a separate

interpolation function at 11 pre-defined wind speed bins. Zwick and Muskulus

[103] fitted both a piece-wise linear regression and a linear statistical model to

predict a fatigue damage curve for OWT (i.e., fatigue damage against increas-

ing wind speed). The analysis was simplified by using a set of load-cases that

had already been simplified with the load-case reduction technique developed

by Kuhn [159]. However, the case of OWTs is different as they additionally

respond non-linearly to wave loading [39]. Fitting separate surrogate models

to wind and wave parameters may not be feasible.

Complex linear surrogate models can capture a large range of behaviours

at the cost of complexity and specificity (i.e., the model may accurately fit

the observed training data but not a new set of validation data). One highly-

flexible type of surrogate model is regression built on the use of a GP, which

provides a localised prediction of a simulators response based on the input

training data. For instance, in the case of OWTs, Huchet et al. [162] found that

a GP model was suitable for estimating the FLS using two input environmental

variables, mean wind speed, and wind-wave misalignment. Similarly, Brandt et

al. [163] used a GP model using wave height, wave peak spectral period, mean

wind speed, wind turbulence, wind direction, and wave direction with small

bias as model co-variates (i.e., predictors). A different approach was applied by

Hafele et al. [164] who used a GP regression to represent post-processed fatigue

damage against different geometrical parameters in an optimisation procedure

for OWTs on jacket sub-structures. The GP regression has therefore been

used in two different contexts: (1) direct representation of time-domain output
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against environmental conditions; and (2) to represent analysis output post-

processed into design-life fatigue-damage against properties of the turbine.

The proposed GP models have been fitted to all parameters of a conventional

scatter chart without introducing large model uncertainty.

Replacing the expensive aero-elastic time-domain model with a simpli-

fied mechanical model means that assessment of the OWT is much faster,

allowing evaluation of each environmental load-case. One common approach

is frequency domain calculation. The theoretical background to these models

is summarised comprehensively by Baltrop [165] and Tempel [38], and so only

a brief overview of the application to OWTs is provided here. Kuhn [159]

developed an early simplified approach, where analysis of the OWT response

to wind and waves is carried out separately, with the fatigue damage arising

from both processes summed in the final stage. Tempel [38] developed a differ-

ent approach by combining the separately evaluated response spectra directly

before estimating fatigue damage. Similarly, Yeters et al. [116] and Ziegler

et al. [166] developed variants based on decoupled frequency domain models.

This approach has been applied in FLS reliability assessment by Marquez-

Dominguez and Sørensen [167], Dong et al. [117] and Oest et al. [168]. These

past studies all assessed the FLS using simplified mechanical models to esti-

mate reliability of different OWT components. Muskulus and Schafhirt [90]

developed a fatigue reliability model for OWTs on jackets sub-structures. This

study included uncertainty in both the environmental loading (e.g., wind and

waves) and material properties, but was not based on a fully-coupled simula-

tion which are the current state-of-practice.

Based on the discussion above, load-case reduction does not provide suf-

ficient savings in terms of computational effort to allow numerical sampling of

structural analysis random variables. Simplified frequency-domain models are

not commonly used in detailed design [80] as they do not capture the com-

plex non-linear, coupled relationships that characterise OWT response, such

as between the control system and mean wind speed. Surrogate models offer a
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possible solution, by representing the structural response through a statistical

model which is computationally efficient to sample. They also allow the use of

advanced, detailed time-domain simulation techniques. Hence, these advanced

statistical models are particularly relevant as they can represent various non-

linearities in the structural response.

5.2 Fatigue damage limit state

5.2.1 Fatigue life estimation
Fatigue damage is cumulative [16], increasing over a structures operating life

as it responds to randomly varying loads. In structural assessment, fatigue

damage is commonly estimated by assuming that the number of load cycles

to fatigue failure resulting from constant-amplitude loading (N) is a function

of the applied stress range (σr); this relationship is described by an SN-curve

[16]:

N =Kµ ·σ−mr (5.2)

The m-parameter is the slope of the SN-curve and Kµ is a constant de-

termining the location of the x-axis intersection (i.e., on the number of cycles

to failure axis). The ratio between the number of applied cycles and the tol-

erable number of cycles (n/N) is assumed “to consume” a fixed proportion of

the fatigue life. Stochastic environmental conditions cause variable-amplitude

loading comprised of multiple load cycles with different stress ranges. The

total fatigue damage is assumed equal to the sum of the damage caused by

each stress cycle, also known as Miners rule [16]. These assumptions result in

the following equation,

Dj =
∑
i=1

nji
Nji

= 1
Kµ

∑
i=1

nji

σ−mr,ji
, (5.3)

in which Eq. (5.2) has been substituted for the Nij term, and Dj is

the total fatigue damage calculated over all the stress ranges (indexed by i)
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occurring during a time-domain analysis conducted at a set of environmental

parameters (indexed by j). The fatigue damage is then linearly scaled from

the time-domain analysis length (Tanalysis) to the life of the structure (Tlife):

Dj,life = Tlife
Tanalysis

·Dj . (5.4)

Fatigue damage can also be evaluated using the DEL:

DELj,life = Kµ

Neq
· (Dj,life)1/m, (5.5)

which is the constant-amplitude stress causing the same fatigue damage

as the variable amplitude loading at a reference number of tolerable cycles

(Neq) over the assessed time period.

A given structural component is assumed to fail when the fatigue damage

reaches a pre-specified threshold, typically assumed equal to one. Equivalently,

failure in terms of DEL occurs when the equivalent constant amplitude stress

is larger than the SN curve stress at Neq. For structures assessed using the

DNVGL fatigue assessment code [100], failure predicted using the SN-curves

corresponds to crack a growing through the thickness of the structures cross-

section.

In order to calculate the stress range (σr,ji) and the number of applied

cycles (nji) terms in Eq. (5.3), a structural simulation is run at a specific

combinations of environmental parameters, from which the mudline stresses

are extracted as time-series, as discussed later in Chapter 6. A rainflow count-

ing algorithm is then used to post-process the time series [165] by extracting

number of stress cycles at given magnitudes. These can be distributed into

bins of a specified stress range, and the corresponding number of cycles in each

bin can be counted, allowing fatigue damage to be predicted using Eq. (5.3)

and Eq. (5.4).
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5.2.2 Limit state definition
Assessing whether or not a structural component of an OWT is expected to

fail due to fatigue during its operating life can be achieved by introducing a

limit state (or performance) equation [64]. This is a relationship describing

whether or not a structural component, or a structure, satisfies the perfor-

mance objective defined by the limit state being assessed. It is assumed that

failure occurs if the limit state function (G) assumes negative values. A fa-

tigue limit state is defined in Eq. (5.6), where the performance of a structural

component is parametrised through a capacity (or resistance, R) term and a

structural demand (or load, S) term. Both demand and capacity depend on a

set of random variables (X), e.g., material properties, geometry and modelling

uncertainty. The time dependence of fatigue loading (t) can be simplified by

considering only the accumulated damage at the structures design life, making

the problem time-invariant:

G(t,X) =R(t,X)−S(t,X)⇒GDlife(X) =RDlife(X)−SDlife(X). (5.6)

In this case, structural demand and capacity are formulated directly in

terms of fatigue damage; therefore, RDlife is simply the tolerable fatigue dam-

age before failure and SDlife is the damage caused by stress cycles occurring

over the structures life, across all environmental conditions, weighted by their

probability of occurrence [169]. Lange [170] expressed SDlife, for onshore wind

turbines, as a double integral of damage across an environmental variable (e)

and stress ranges (σr), as in Eq. (5.7):

SDlife(X) =
∫ ∞
e=0

∫ ∞
σr=0

fΣr|E(σr|e,X)
N(σr,X) fE(e,X) ·dσr ·de, (5.7)

which includes the probability of an environmental variable (fE(e,X)),

for instance mean wind speed, and the probability of stress levels conditional

on the environmental variable (fΣr|E(σr|e,X)) divided by the number of cycles
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to failure at each stress range (N(σr,X)).

For an OWT, a large number of environmental variables need to be con-

sidered within the limit state; this expands the order of the integral in Eq.

(5.7). Calculation of the fΣr|E(σr|e,X) term requires reference to a dynamic

structural calculation to estimate the occurrence of various stress cycles. The

dependence of fΣr|E(σr|e,X) on X is also problematic as it means that the

structural model will need to be rerun over the full limits of the integral with

different samples of X.

The limit state used in this study takes the same general form as Eq.

(5.6) and Eq. (5.7). However, the load parameter, SDlife(X) in Eq. (5.7), is

computed numerically using Monte Carlo simulations across all environmental

parameters and expressed as a single sum in Eq. (5.8) for simplicity. The

integral over stresses in Eq. (5.7) is contained within the damage term Dj,life,

which is estimated using GP regression:

G(Xδ,XSN ) =Xδ−XSN

[
1

Nsmp

Nsmp∑
j=1

Dj,life ·Prj
]
. (5.8)

The resistance term (RDlife) is simply equal to the damage tolerance

(Xδ) which is modelled as a random variable [100]. The GP surrogate model

estimates the damage term (Dj,life) calculated assuming a continuous 20-year

exposure to the environmental conditions over all samples of these conditions

(Nsmp). The predictions are weighted by the joint probability distribution

over the environmental parameters (Prj) in order to evaluate the composite

damage occurring throughout the operating life of an OWT.

An SN curve is typically fitted to measured data from experimental tests,

which includes large variability. In fatigue design, the 10th percentile of the

experimental data is typically used as a “design curve” and, therefore, designs

according to this method include a large degree of conservatism, as indicated

in Figure 5.2. This graph also shows SN curves resulting from taking differ-

ent quantiles of the x-axis intersection, described by the assumed distribution

(XK). The XK distribution parameters are provided by DNVGL [100]. The
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design curve x-axis intersection (Kµ) is used in Eq. (5.3). The fatigue dam-

age evaluated in Eq. (5.8) is normalized through multiplication by Kµ and

then re-weighting by the random variable XK . In Eq. (5.8) the notation is

simplified by including the re-weighting inside the random variable XSN by:

(1) calculating the reciprocal of XK and (2) evaluating the parameters of this

distribution multiplied by a constant (Kµ).

Additionally the tolerable damage, x∆, is modelled as a random variable,

as indicated in Table 5.1.

5.2.3 Reliability calculation
Uncertainty introduced by the considered random variables into the limit state

equation, Eq. (5.8), can be evaluated using plain Monte Carlo simulation [171].

The estimate probability of failure, Pf , is the average over all the randomly

Table 5.1: Statistical properties of the random variables used to model the fatigue
material behaviour.

Random variable Reference Distribution Mean of
logarithm

Standard dev
of logarithm

Tolerable damage (x∆) [100] Log-normal 0 0.3
SN intersection (xK) [100] Log-normal 27.99 0.46
SN uncertainty (xSN ) N/A Log-normal -0.90 0.46

Figure 5.2: Scatter in SN curve when the full distribution of x-axis intersections
are utilised. The 10th percentile curve, used in structural design, is
highlighted as the mean curve minus two standard deviations.
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generated samples, as expressed in Eq. 5.9:

Pf = 1
NLSsmp

NLSsmp∑
i=1

I
(
Gi(Xδ,XK)

)
, (5.9)

where NLSsmp is the number of samples generated from the limit state

equation and I
(
·
)

is an indicator function which takes a value of one if the limit

state sample Gi(Xδ,XK) is negative (i.e. the structural component/structure

fails).

5.3 Gaussian process surrogate model

5.3.1 Surrogate models
As introduced previously, surrogate models mimic the behaviour of complex

systems by predicting the value of some target variable given a combination

of the input variables. The parameters defining the relationship between tar-

get and input variables are not known in advance. They are estimated from

a training set of (observed) data, containing pairs of input (covariates) and

output data. In the context of the FLS, the assumed target variable for this

study is the fatigue damage (i.e., Dj,life) which depends on input variables (x̂),

which include environmental variables such as mean wind speed or significant

wave height. An estimate of the complex series of relationships represented by

Eq. (5.1) is developed, which also includes some prediction error (ε):

ŷ = ĥ(x̂,w) + ε, (5.10)

where ĥ(x̂,w) is a statistical model fitted to the outputs from structural

analyses (for the training set) by finding the set of model parameters w. The

statistical model can be sampled directly, avoiding the need to refer back to

the computationally-expensive time-domain structural simulations.

The surrogate model must fulfil two criteria. Firstly, it should accurately

predict the fatigue loading of an OWT under a wide range of conditions that

could be experienced during its operational life. Secondly, the error in the
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surrogate model predictions should be quantifiable and small, so that minimal

model uncertainty [172] is introduced into the subsequent reliability calcula-

tion.

The model must also be sufficiently adaptable to encompass all the vari-

ables that are important for predicting the OWT response. Previous sensitivity

analyses by other authors on onshore and offshore wind turbines have identified

a number of parameters that are relevant. The response of an OWT to wave

loading was investigated by Ziegler et al. [173] for a monopile-supported OWT

in 35m deep water. This study emphasised the importance of mean sea level

and peak spectral period in fatigue damage. Hubler et al. [174] applied a four

stage sensitivity analysis starting with 100 parameters - that covered a wide

range of wind, waves, soil and geometrical properties - and concludes by rank-

ing the 14 which have the greatest impact on FLS response. Each of the four

successive steps filtered variables and used a more complex sensitivity analy-

sis. This allows a full variance-based sensitivity analysis (with non-linearities

and interaction effects) to be conducted in the final step on a reduced subset

of parameters. For an OWT on a monopile substructure, mean wind speed

(Vw), peak spectral period (Tp), significant wave height (Hs), wind direction

(θwind) and wave direction (θwaves) were the main parameters identified by

the study and were not ranked in order of importance. Then, soil properties,

marine growth thickness, pile dimensions and water depth were found to be

important. Interestingly, turbulence intensity (Ti) was not on the final list of

important parameters, but has been consistently highlighted as a critical envi-

ronmental parameter in studies of onshore wind turbines [161, 175]. Brandt et

al. [163] conducted a global sensitivity analysis for an OWT on a jacket and

identified similar main environmental parameters to Hubler et al. [174], but

found the FLS was insensitive to θwind, θwaves and yaw error, but was sensitive

to Ti.

A number of parameters have been consistently identified as effecting the

FLS and will therefore be used in this study. The main parameters from Hubler
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et al. [174] were Vw, Hs and Tp with Ti, θwind and θwaves are included in the

proposed surrogate model as site environmental conditions.

5.3.2 Gaussian process regression
Regression techniques assume that observed data can be modelled using some

mathematical function. Often, the shape of this underlying function is un-

known, or the function might be hard to evaluate analytically. GP regression

assumes this function takes the form of a stochastic process in which the target

variables are jointly-Gaussian. In other words, a GP is a probability distribu-

tion over possible functions. This is a localised technique estimating responses

as a weighted combination of the surrounding training points. It is a non-

parametric Bayesian approach towards regression problems. It can capture a

wide variety of relations between inputs and outputs by utilising a theoreti-

cally infinite number of parameters and letting the data determine the level of

complexity through the means of Bayesian inference.

A GP defines a prior distribution over functions, which is converted into

a posterior by conditioning on the training data. The act of conditioning

allows a practical, finite-dimensional, model to be extracted from the infinite-

dimensional process because the surrogate model reduces to a multi-variate

Gaussian distribution through the marginalisation property of GPs. This is

how, in a GP, the posterior can be derived from the prior and to observations.

Consequently, estimates of the functions values (ŷ) corresponding to a new

set of input variables (x̂) can be obtained by drawing samples from the ob-

tained conditional distribution [176]. This multivariate conditional Gaussian

distribution is fully defined by a mean vector (µx̂) and a covariance matrix

(Σx̂):
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Pr
(
ŷ|x̂,x,y

)
∼N (µx̂,Σx̂), (5.11)

µx̂ = kx̂,x
(
kx,x +σ2

nI
)−1

y, (5.12)

Σx̂ = kx̂,x̂−kx̂,x
(
kx,x +σ2

nI
)−1

kx,x̂, (5.13)

where σ2
n models the variability in the function value at an input location,

allowing covariates with the same value x to produce different values y. The

identity matrix I assigns this noise term to diagonal terms in the covariance

matrix (kx,x). Both components depends on partitioned elements of the full

covariance matrix k:

k =

kx,x +σ2
nI kx,x̂

kx̂,x kx̂,x̂

 . (5.14)

The value of each entry is defined by evaluating a kernel function at the

corresponding training or test input vector. The form of the kernel function

is variable and encodes assumptions about the spatial correlation between the

response at different input locations. One common choice is the Squared-

Exponential (kernel function) (SE) which depends on the magnitude of the

distance between two vectors in input space
∣∣∣x−x′

∣∣∣ as:

kSE(x,x′) = σ2
f exp

(
− 1

2l2
(
x−x′

)(
x−x′

)T)
. (5.15)

The parameters σf and l define the variance and length scale of the kernel

function respectively. These parameters are referred to as hyper-parameters

because they apply equally to all entries in the covariance matrix. They are un-

known in advance and can be estimated from the training data using maximum

likelihood estimation [176]. When applied to regression through Eq. (5.11),

the SE kernel assumes that response estimates vary smoothly with changing

input. However, other kernel functions can provide different forms of response,

for example functions that aren’t smooth, as discussed in Chapter 6.
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The form of the conditional Gaussian distribution given in Eq. (5.11)

assumes the unconditioned GP has a constant mean equal to zero. If prior

information is known about the relationship being estimated, this assumption

can be altered, for example, fitting the GP to an underlying linear function

to capture general trends in the data [176]. This technique is also applied

under the name kriging in the field of geostatistics [177]. Two types of GP

model are relevant for this work: prediction using only the mean function

(simple kriging) and using the full GP to model uncertainty in the predictions

(standard or universal kriging). Indeed, the suitability of GP regression for

application to OWTs has already been demonstrated by others [162, 163].

However, they have not yet been applied to the full range of random variables

that drive fatigue loading nor to reliability assessment.

5.4 Fatigue loss calculation
The review of fatigue damage assessment in Section 5.2.1 highlighted that eval-

uating total fatigue damage requires predictions of damage for every environ-

mental condition weighted by the probability of occurrence (i.e, the hazard).

The disaggregation of risk into hazard and fragility used in a CAT modelling

framework, described in Section 3.3 can be used for this calculation. How-

ever using this approach directly is computationally inefficient as calculating

fragility requires the limit state function to be computed, by Monte Carlo

sampling, for all environmental conditions. A more efficient procedure in-

volves evaluating the lifetime fatigue damage first, then solving the limit state

equation. Consequently, the fatigue limit state in Eq. (5.8) is solved directly

in a single step, yielding the probability of fatigue failure. The structural fail-

ure rates from the FLS can be combined with those from the ULS and other

non-structural components using the loss calculation procedure described in

Section 3.3.5.

This calculation is split into three distinct elements, shown on Figure 5.1.

It utilises the GP surrogate model described in Section 6.3 to enable high
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fidelity assessment of fatigue damage. The individual steps are:

1. A GP surrogate model is fitted, this replaces the computationally expen-

sive structural analysis package FAST with a statistical model that can

be sampled rapidly. Fitting the model is achieved by sampling from the

site environmental conditions and running a structural analysis for each

sample. The samples are split into two sets, one for model fitting, and

one to validate the quality of the model (cross validation).

2. The FLS reliability is evaluated by drawing fatigue damage predictions

from the surrogate model, which are combined with probability distribu-

tions describing the site environmental conditions. The fatigue material

properties are sampled separately and used to solve random variables in

the to solve Eq. (5.8) using Monte Carlo simulation.

3. The probability of failure from fatigue is combined with the reliability

of other components in an assessment of financial loss using cost data,

similarly to the ULS case.

5.5 Conclusions
A method for evaluating FLS risk was proposed. This is particularly important

as fatigue is often the limit state that drives structural design in European

waters. A similar approach can also be used for the calibration of code-based

partial safety factors to be used in the design of OWTs. The proposed model

allows for the rapid evaluation of monopile fatigue failure based on time-domain

structural analysis. This will allow an accurate analysis of the fatigue damage

using the full site probability distribution of environmental conditions. Other

techniques for reducing the computational burden of this same problem would

not have yielded the same benefits. A simplified model would not include the

accurate analysis and load-case lumping still requires the full FLS analysis to

define the reduced set of load cases.

The same approach for combining losses from the structural and equip-

ment components as used in the ULS, Chapter 3, was proposed. This will
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allow combined ULS, FLS and equipment loss assessment, as is implemented

in Chapter 6 for a case study OWF located in European waters. This assess-

ment compares losses resulting from the FLS with those evaluated using the

ULS in Section 4.



Chapter 6

Implementation of FLS loss

framework

6.1 Introduction
In Chapter 5 a framework was developed for calculating FLS risk and then

combining this with the loss calculation described in Chapter 3. The present

chapter implements the FLS calculation for a series of case study locations. In

Section 6.2 the case study sites and structural model are introduced, then the

GP model developed is described in Section 6.3. The output from the model

is discussed in Section 6.4, focusing on the accuracy of different GP modelling

assumptions. The number of samples necessary to estimate OWT reliability

and the applicability of a surrogate model trained at one site to others with

different environmental conditions is also evaluated. The FLS reliability is

combined with the electrical and mechanical components in Section 6.5 to

estimate annualised losses. In Section 6.6, losses arising from the ULS, FLS and

equipment are compared in order to assess which are relevant to the assessment

of OWT.
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6.2 Case study definition

6.2.1 Site and environmental conditions
This study uses environmental data measured by three met-masts which are

part of the FINO project to record environmental conditions in the North

and Baltic Seas [19]. They are located in the German North Sea (FINO1

and FINO3) and the Danish sector of the Baltic Sea (FINO2) as indicated

in Figure 6.1. Each site has between 7 and 13 years worth of continuously

recorded environmental data. The environmental data used for the ULS loss

calculation, Section 4.2, is not used for this case study as Ijmmuiden K13 only

provide scatter charts, and do not provide recorded site data, nor the full site

probability distributions required for a FLS assessment. In contrast, all data

recorded by the FINO met-masts has been published, making it more suitable

for fatigue analysis.

The FINO3 met-mast is the main focus of this study. The variables used

in this study (as discussed in Section 5.3) are summarised in Table 6.1 and

are modelled as random variables with assigned probability distributions. The

Figure 6.1: Location of the three FINO met-mast sites. Territorial waters are
shown with a dashed line and exclusive economic zones using a double-
dashed line.
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only independent parameter is the mean wind speed; all other parameters are

modelled by conditional distributions with dependencies indicated in Table 6.1.

The wind and wave direction variables are modelled through non-parametric

Kernel Density Estimator (KDE), because the measured site data was found

to have multiple peaks caused by different prevailing directions. The depen-

dencies are visible by plotting the conditional probability distributions for the

FINO3 site, where the relationships become clear. Figure 6.2 and 6.3 show

the discrete bins into which the continuous environmental variables were seg-

mented. Full details of this calculation and details of the conditional proba-

bility distributions at the other FINO sites are provided by Hubler et al. [19].

Similar distributions were provided for the FINO1 and FINO2 sites [19], but

are not shown here to save space. The distribution of wave angle is not plotted

as it is dependent on three variables.

The water depth at the FINO3 met-mast is 22m (the site depth varies

between 22m and 30m).

6.2.2 Fatigue damage calculation

6.2.2.1 Structural model
The 3-bladed NREL 5MW OWT on monopile sub-structure [42] is used as

the reference structure in this study. The structural analysis is conducted in

FAST, which is an aero-elastic simulation package. Both the structural model

and the simulation package are described in detail in Section 4.2.2.2.

The below mudline foundation has been found to significantly influence

Table 6.1: Probability distributions used to model environmental conditions at the
FINO3 site, showing the conditional dependencies defined by Hubler et
al. [19].

Parameter Variable Distribution Dependencies

Mean wind speed Vw Weibull N/A
Turbulence intensity Ti Weibull; Gamma Mean wind speed
Significant wave height Hs Gumbel; Weibull Mean wind speed
Peak spectral period Tp Bimodal Gumbel Significant wave height
Wind direction θwind Non-parametric KDE Mean wind speed
Wave direction θwave Non-parametric KDE Significant wave height; Wind direction
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(a) Mean wind speed.
(b) Turbulence intensity dependent

on mean wind speed.

(c) Significant wave height depen-
dent on mean wind speed.

(d) Peak spectral period dependant
on significant wave height

Figure 6.2: Probability distributions of environmental conditions at the FINO3
met-mast. The mean of each distribution is identified by an ’x’, the
0.05 and 0.95 quantiles by a circle, and the mode by a red line. The
normalised values are calculated such that the highest mode occurs at
a PDF value of 1.

Figure 6.3: PDFs of wind angle dependent on the mean wind speed, increasing
wind speed is indicated by lighter coloured line.
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the structural response in dynamic analysis of OWTs [178]. In this study

the foundation is modelled using the AF method [179], with the fixity length

selected to match the first natural frequency between the AF supported OWT

and an OWT with a linear-elastic foundation model, described in Appendix

A. The soil properties were taken from Damgaard et al. [85]. Individual

analyses of 11-minute length were conducted and the first minute was deleted

to remove transient effects [120]. The IEC 61400-3 load case DLC 1.2 [6] was

used to represent general analysis conditions. However, instead of simplifying

the environmental variables the full joint-probability distributions described

in Section 6.2.1 are used to calculate loads on the OWT.

In a post-processing step, the mudline bending moment time-series is ex-

tracted and converted into stresses. Assuming that the stresses in the wall of

the monopile behave in-plane (with no bending moments) a membrane stress

calculation can be used. This negates the need for complex finite-element anal-

ysis and can be implemented using a simple set of membrane stress equations.

6.2.2.2 Fatigue damage
Fatigue damage is calculated for a single weld located at the mudline. The

weld is a transverse butt weld with no weld toe grinding (DNVGL class D

[100]) and is assumed to be protected from corrosion by cathodic protection.

The DNVGL SN curves [100] are bi-linear in the log scale; to simplify the limit

state calculation, only the initial part of the SN curve is used. Fatigue damage

is estimated using this method at 12 locations equally distributed around the

mudline cross-section, with the largest value extracted for use in the fatigue

life calculation.

Hubler et al. [19] observed that fatigue damage increased with the simu-

lated duration of a time-series analysis. This was due to the effect of un-closed

cycles in the rainflow counting algorithm, the proportion of which reduce with

an increased time-series length. One solution is to append copies of the time-

series, producing a long composite time-series. Following the recommendations

of Hubler et al. [19] the stress time-series is duplicated 35 times, generating a
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six-hour long time-series. The rainflow counting algorithm [165] is then used to

extract the magnitude and number of different stress ranges occurring within

the six-hour stress time-series allowing fatigue damage to be estimated using

the equations in Section 5.2.1.

6.3 Development of the surrogate model

6.3.1 Training and validation data sets
As discussed above, GP regression is used here to approximate the OWT re-

sponse in terms of 20-year fatigue damage. This is done by fitting the proposed

surrogate models to the results obtained from the structural analysis. Training

sets are used to fit the surrogate model and a validation set is used to assess

the goodness of fit. The number of dimensions in the input vector matches the

number of parameters in the environmental model, with the only difference

being that the wind and wave angle are combined into a single variable, θmis.

The first training set is generated using a sample of 1000 analyses, se-

lected as a representative large number, the accuracy of which will be tested

in the results section. For each sample 6 stochastic seeds are used, following

the recommendations in IEC 61400-3 [6]. The sample is drawn randomly from

the input environmental parameters at the FINO3 site, resulting in a total

6000 structural simulations. The sample is constructed sequentially by tak-

ing 1000 uniformly distributed random numbers from the Inverse Cumulative

Distribution Function (iCDF) of each environmental variable at the site. The

sequence of the sampling is defined by the dependency structure from Table

6.1: Vw is sampled first followed by conditional Ti, θwind and Hs, then finally

the Tp and θwave distributions.

Site-specific conditional distributions are truncated to prevent unrealistic

environmental conditions. This is achieved by scaling the uniformly distributed

random numbers to produce acceptable range of environmental conditions val-

ues after being converted using the iCDF. The mean wind speed is truncated

to values occurring between 3m/s and 25m/s, conditions in which the turbine
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is operational [42]. Additionally, the significant wave height (at low mean wind

speeds) and peak spectral period are both represented by extreme value dis-

tributions which support negative values. However, numbers less than zero

are not permissible as inputs into the spectral equations which are used to

generate environmental conditions, described in Section 6.2.2.1, and therefore

the distributions were truncated to avoid negative numbers.

A second training set is generated using a common Design of Experiment

(DOE) approach by defining an upper and lower bound for each input param-

eter then by splitting this range into evenly spaced intervals for the FINO3

site. The bounds and the criteria for selecting them for each variable are sum-

marised in Table 6.2. A grid is generated from these sets of points, leading to

6×5×5×6×7 = 6300 sample points (only three seeds are run at each to save

computational effort).

The same approach used to generate the first (random) training set is

also used to generate a separate random validation set for each FINO site.

The site-specific probability distributions of the environmental variables are

sampled with 1000 new points and a new set of 6 random seeds were used

as input to the structural model. This set of data is used to compare the

goodness of fit between different models which are trained on the random and

DOE training data sets.

Table 6.2: Input range of each environmental variable in the GP model. The upper
and lower bounds were used to generate the DOE sample.

Variable Lower
bound

Upper
bound

Number of
DoE

samples
Criteria

Vw 4 24 6 Range of Vw where the OWT is operational
Ti 0.01 0.18 5 The upper limit is two standard deviations above the

mean Ti of the lower Vw bin; the lower limit is selected
above 0 (for turbulence spectrum equation).

Hs 0.01 7 5 The upper limit is two standard deviations above the
mean Hs of the largest Vw bin; the lower limit is above
0 (for wave spectrum equation).

Tp 1 15 6 The upper limit is the mode of 2nd peak in the largest
Hs bin.

θmis 0 180 7 Full range of misalignments, given the symmetry of the
OWT.
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6.3.2 Statistical models
GP models are fitted to the training set observations by selecting values of

noise (σn) and kernel hyper-parameters minimising the log marginal likelihood.

This is achieved using a gradient descent algorithm, which iterates from a set

of assumed, initial conditions to the optimal combination of parameter values.

Different assumptions concerning the form of the GP were tested, as described

by Rasmussen and Williams [176], including:

• Kernel function: SE, Matern 3/2, Matern 5/2 and rational quadratic.

• Underlying function on which the GP is fit: none and linear function.

• Inputs: not standardized and standardized (i.e. the inputs are trans-

formed from their natural distribution to a standard normal distribu-

tion).

The squared exponential kernel has been introduced in Eq. (5.15), and

results in a GP that is smooth (infinitely mean square differentiable). The

Matern kernel has more parameters and can model functions that are not

infinitely smooth. The kernel has two commonly used variants of parameter,

the 3/2 (kMT,3/2) and 5/2 (kMT,5/2), which simplify the kernel functions to:

kMT,3/2(x,x′) =
(

1 +

√
3
(
x−x′

)(
x−x′

)T
l

)
exp

(
−

√
3
(
x−x′

)(
x−x′

)T
l

)
,

(6.1)

kMT,5/2(x,x′) =
(

1 +

√
5
(
x−x′

)(
x−x′

)T
l

+
5
(
x−x′

)(
x−x′

)T
3l2

)

exp

(
−

√
5
(
x−x′

)(
x−x′

)T
l

)
, (6.2)

where l is the length scale.
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The rational quadratic covariance function decays less quickly with dis-

tance than the squared-exponential:

kRQ(x,x′) =
(

1 +

(
x−x′

)(
x−x′

)T
2αl2

)−α
(6.3)

where α is a positive-valued scale-mixture parameter, and the rational

quadratic converges to the squared-exponential when α−→ inf.

All kernel functions are of the automatic relevance detection type [176],

meaning that they allow different length scales for each input dimension. The

parameter values are calibrated to the training data using the maximum like-

lihood method.

6.3.3 Fitting Gaussian process
The Gaussian process can be fitted computationally using the algorithm pre-

sented by Rasmussen and Williams [176]. This has been encoded into pack-

ages for both Matlab (through the Statistics and Machine Learing Toolbox)

and Python (through the scikit-learn package). These make it simple to fit a

GP model, as indicated on Figure 6.4 which shows the code required to fit a

model to a series of X input variables and damage predictions y. The “fitgp”

function calculates the MLE prediction of the kernel parameters for the kernel

function selected. It should be noted that to keep the figure simple the full

text input options for the “fitgp” function have not been quoted.

6.3.4 Metrics for goodness of fit
The accuracy of different meta-models is compared using three metrics:

• Bias, Bias= E
[
ŷi−yi

]
• Mean squared error (MSE), which is the a combination of the bias and

sum of squared error (SSE), MSE =Bias2 +SSE = 1
n−p

∑n
i=1

(
ŷi−yi

)2

• Coverage of the 50%, 90% and 95% confidence intervals

These metrics all rely on: the meta-model prediction at the ith ∈ [1,n]

test point (ŷi), predicted by the GP, and the observed value at same location
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Figure 6.4: Flowchart showing code used to fit the GP.

(yi), computed using structural analysis. The number of dimensions of the

predictor is denoted p, which is 5 per Section 6.2.1.

The bias is the expected value of the difference between GP predictions

and the structural analysis outputs, indicating whether the predictor consis-

tently under or over-estimates the training values. MSE gives the expected

error, by combining bias and sum of square error (the expected deviation of

the predictor about its mean value), therefore estimating the goodness of fit

[180]. The coverage measures the proportion of test samples falling within a

set of confidence intervals: if the 95% confidence intervals are well estimated,

then approximately 95% of the data should fall within these bounds. It there-

fore measures how well the model estimates scatter in the underlying data.

It also identifies whether the statistical model introduces a large magnitude

of model uncertainty, as the confidence bounds in the GP prediction would

become much larger than the validation data.
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6.4 Fatigue reliability analysis results

6.4.1 Comparison of surrogate models

6.4.1.1 Random and DoE training data sets
Various GP models (as detailed above) are fitted to the DOE and the ran-

dom training set analysis results. In advance the DOE model is expected to

perform worse than the random sample as these models are unable to capture

high frequency variation the behaviour of a function due to the uniform place-

ment of sample points [66]. In this section, the GP models fitted to the full

DOE and random sample sets are compared, these comprised 18900 and 6000

analyses respectively. The GPs fitted using the DOE training data is found to

estimate the FINO3 validation set poorly in comparison to those fitted using

the random sample training data. The best fitting GP model in the case of

the DOE training set is shown against the best fitting GP model in the case

of the random training set using the same kernel function (i.e., squared expo-

nential) in Figure 6.5 (in terms of DEL). The DOE-based GP model results

in greater scatter and tends to underestimate test values as indicated by the

mean trend-line. The quality of the DOE-based surrogate model is worse, even

if a larger number of samples has been used to fit the GP, because the samples

are sparsely distributed. In the case of the DOE-based training set, the se-

lected training points are evenly distributed over the input space - as opposed

to being clustered around the mean values of the site-specific (conditional)

probability distributions of environmental conditions as in the random sam-

ple. Observation around the mean values of each environmental variable have

a much larger contribution in estimating fatigue damage. These findings are

confirmed using the goodness of fit metrics reported in the first three columns

of Table 6.3, where the DOE training data produces a model that has much

higher uncertainty than the underlying data, with 100% coverage observed at

all confidence levels. In contrast, the GP fitted to the random training set has

much better coverage, although it tends to underestimate scatter at all cover-
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age quantiles. Therefore, in the remainder of this chapter, only the random

sample training set will be used.

The GP fit using the FINO3 random training is compared with the vali-

dation sets from the FINO1 and FINO2 site data in Table 6.3. This indicates

that, while the bias and MSE increase when the GP model trained at FINO3

is validated against fatigue damage predicted at other sites, the errors are not

large. As the environmental probability distributions change between the sites,

the observed differences are not large, especially as the FINO1 and FINO3 met-

masts are close (both in the North Sea) whereas the FINO2 met-mast is in

the Baltic sea. This explains the reduced accuracy of the GP when validated

against the FINO2 data. This is visible by comparing the Tp parameter from

all sites; the FINO1 and FINO3 distributions are broadly similar while the

FINO2 distribution is more peaked.

The relatively high accuracy of the GP surrogate model suggests that a

single GP model could be developed across multiple sites experiencing similar

environmental conditions, even if the model is trained against data sampled

using single-site joint-probability distributions.

(a) Validation plot for
DOE sample with
squared-exponential
kernel.

(b) Validation plot for
random sample with
squared-exponential
kernel.

(c) Validation plot for
random sample with
Matern 5/2.

Figure 6.5: Validation plots for two representative GP models. The line shows the
result of a simple linear regression fitted to the data and the shaded
areas show the 95% confidence intervals.
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Figure 6.6: Probability distribution of Tp parameter across the FINO1 (left),
FINO2 (middle) and FINO3 (right) sites.

6.4.1.2 Optimal gaussian proccess kernel
All combinations of kernel function, basis function, and standardization listed

in Section 6.3.2 are tested, with a summary of the key results listed in Table

6.4. Validation predictions from the SE and Matern 5/2 kernels, are shown in

Figure 6.5b and 6.5c, confirming the slightly reduced bias and scatter observed

with the Matern kernel; however, the coverage metrics are slightly worse. The

Matern 3/2 has slightly lower MSE, but higher bias. Including standardised

variables and/or a linear basis function make the fit worse but slightly improved

the bias. The same results are found when different kernels were tested against

the FINO1 and FINO2 validation sets, as shown in Table 6.4 where the SE

and Matern 5/2 kernels are compared.

Based these findings, the random sample data sets with a Matern 5/2

kernel and zero basis function will be used in the remainder of this work; as

it provides a good trade off between bias, MSE and coverage. These findings

agree with Hafele et al. [160] who found a Matern 5/2 kernel to be best for

representing joint fatigue loads for a OWT on jacket substructure.
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6.4.1.3 Number of training samples
The computational burden required to run 6000 time-domain structural simu-

lations is large. The random sample-based GP models derived in the previous

sections are relatively accurate, partly as a result of the high sample density.

In practice, this computational burden may be infeasible on a standard work-

station. Any reduction in the required number of samples has a benefit on

computational efficiency. Moreover, GPs need to take into account the whole

training data each time they make a prediction. This means not only that

the training data has to be kept at inference time but also means that the

computational cost of predictions scales with the number of training samples.

Hence, the impact of reducing the number of analyses on the model goodness

of fit is investigated in this section.

Generally, it is not clear in advance whether reducing the number of sam-

ples or seeds will have a greater impact on the accuracy of the surrogate model.

The number of seeds will affect the number of analyses at a specific set of input

conditions and may affect the coverage metrics (as the scatter at each input

point will be defined better). Reducing the number of samples will affect the

sampling quality over the input conditions, which should, in turn, effect the

mean square error.

Different numbers of random samples and seeds are tested by drawing sets

of 1000 bootstrapped samples from the full set of analysis results (1000 ∗ 6);

the consequent scatter in the goodness of fit metrics are assessed for these

reduced analysis sets. The results, presented in Figure 6.7, suggest that both

the number of samples and seeds can be reduced without a large impact on

the mean squared error and the coverage. It is noted the MSE reported on

Table 6.4 are relatively large, even for the Matern 5/2 kernel, which was found

to be the best fitting. The lifetime fatigue damage was calculated using the

sample of environmental conditions used in the validation set, allowing direct

comparison between the GP prediction and structural analysis output. The

results are presented on Table 6.5, and demonstrate that the surrogate model
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results in predictions of fatigue life damage similar to that predicted using a

structural simulation. The relative error is comparable to those reported by

Huchet et al. [181] who found a 4.43% error between an adaptive Kriging

algorithm (requiring only 174 simulator calls) and aero-elastic analysis.

The apparent improvement over the MSE error results is because the

fatigue lifetime damage is weighted by the probability of occurrence of the

environmental conditions, meaning that the rare but high damage events that

skew the MSE are averaged out using this metric.

The absolute value of damage predicted on Table 6.5 should be interpreted

with caution as it is predicted using only 1000 samples. Whereas the values

used in the reliability analysis use a much larger sample.

In the remainder of this study 300 samples and 2 seeds (300 ∗ 2), will

be used because this provides the best trade off in terms of MSE. For this

analysis set the standard deviation in coverage is under 5%. This reduces the

computational difficulty of fitting the GP by a factor of 10, from 6000 to 600

analyses. It also improves the speed at which the FLS meta-model can be

sampled, as the conditional GP is computed using a reduced training set.

6.4.2 Fatigue reliability analysis
FLS reliability assessment is finally implemented using a plain Monte Carlo

approach, Eq. (5.9), in combination with the limit state equation defined in

Eq. (5.8). The Matern 5/2 kernel trained using 300× 2 samples is used to

evaluate damage - as it combined the most accurate kernel function with an

appropriate number of samples, as discussed above. In Eq. (5.8), the 20-year

damage predictions are weighted by the site environmental joint probability

distribution.

Table 6.5

Validation GP 1000x6 GP 300x2
DEL (N/m2) 36.380 36.731 36.555
Damage 0.829 0.853 0.841
Difference Damage (%) 2.90 1.45
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(a) 50% coverage. (b) 90% coverage. (c) Mean squared error.

Figure 6.7: Impact of different combinations of samples and seed on the GP ac-
curacy metrics, these estimates were generated by taking the mean of
1000 bootstrap samples drawn from the full set (1000×6) of random
samples.

The fatigue damage is calculated numerically using a Monte Carlo inte-

gration with 1×106 samples from the joint PDF of environmental conditions

(with the upper and lower boundaries in Table 6.2). The finite sample of the

GP is associated with some error and the accuracy of the prediction is as-

sessed by rerunning the integration 1000 times for each site using the mean

GP. The resulting histograms of fatigue damage are shown in Figure 6.8. A

normal probability distribution is fit to the histograms and this distribution

assumption was confirmed using the Anderson-Darling normality test at a 5%

significance level. The low CoV of 6.3% indicates that the 1×106 Monte Carlo

samples are sufficient to provide a consistent estimate of fatigue damage.

The fully probabilistic GP was also sampled at the FINO3 site. The

resulting histograms of fatigue damage are shown in Figure 6.8. The result-

ing distribution of the lifetime fatigue damage is the same as that generated

when using the GP mean function, as shown in Figure 6.8. Therefore, when

evaluating the fatigue limit state in the reliability assessment, damage can be

modelled using the mean function value from Figure 6.8. In the subsequent

analysis fatigue damage is predicted using the GP mean estimates for each of

the FINO sites.

The mean values of lifetime damage calculated for the respective sites are

0.366 (FINO1), 0.175 (FINO2) and 0.427 (FINO3). The similarity between
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Figure 6.8: Histograms of fatigue damage samples calculated for the three FINO
sites (in block gray). The FINO3 site calculation was also run using
the fully probabilistic GP with results shown in gray lines and the
best-fit normal distribution in black.

fatigue damage using the FINO1 and FINO3 met-masts is consistent with the

findings in Section 6.4.1 due to similar environmental conditions between the

two sites. However, the damage predicted at the FINO2 site is much lower

than the others primarily as a result of lower significant wave heights [19].

The probability of failure is finally evaluated by drawing a Monte Carlo

sample from the limit state equation and solving Eq. (5.9). A sample size of

2×106 was because it was larger than the sample size of 3.996×105 necessary

to achieve a CoV of 5% for a probability of failure of 0.001 calculated using

the theoretical equation for error in the Monte Carlo estimator [171]. Limit

state samples are plotted in the histogram on Figure 6.9, which also shows the

best fit GEV distribution. The resulting probability of failure over a 20-year

design life is 1.03 ·10−3. Comparing this value to code target reliability levels

seem to suggest that the NREL 5MW located at the FINO3 site has a non

conservative level of safety. DNVGL Classification Note 30.6 [182] recommends

a probability of failure of 10−4 if significant warning is visible before failure and

10−5 if there is no warning of failure for non-redundant structures with a low

consequence. However, the NREL 5MW has not been specifically designed for
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the FINO site-conditions and therefore a direct comparison between calculated

and code-based failure rates is only illustrative.

Figure 6.9: Histogram of the Monte Carlo limit state evaluations with a GEV
distribution fit using MLE. The limit state evaluated using the mean
SN curve and design SN curve with a damage threshold of 1 are also
shown.

Scatter in the limit state is caused by uncertainty in the SN curve and

tolerable damage variables. The GEV distribution has a CoV of 0.394, indi-

cating the high uncertainty introduced by modelling the tolerable damage as

a random variable. Within the limit state equation, the two random variables

act against each other. Modelling the SN curve as random increases capac-

ity (as the design curve is conservative), whereas modelling tolerable damage

as random reduces capacity (because the median of random variable is below

one). When the limit state equation is evaluated using the design SN curve

and a fixed tolerable damage the limit state is 0.557 and when the mean SN

curve is used 0.8236. When both random variables are modelled 22% of the

limit state samples fall below the value predicted using the design SN curve

and damage tolerance of one.
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6.5 Fatigue loss
A comparison between the losses caused by different modelling assumptions for

the structures FLS is presented in Figure 6.10. In Section 4.6.3 the monopile

cost was not modelled, as the probability of failure of this component was found

to be low. However, failure of the monopile is observed as a consequence of

fatigue. The cost of the monopile is estimated using the equation proposed by

Dicorato et al. [152]:

cmon = 320 ·PWT · (1 + 0.02(hwater−8))(1 + 8×10−7(hhub(0.5φR)2−105)),

(6.4)

where the cost estimate depends on: PWT the rated capacity (MW), hwater
the water depth (m), hhub the hub height above mean sea level (m) and φR

the rotor diameter (m). The equation originated from a 2003 feasibility study

into OWT, and was validated against actual foundation costs from five real

OWF. The average error was large, at 8.7%, but Eq. (6.4) was found to

predict foundation cost better than two other cost models. Monopile cost was

calculated using parameters for the NREL 5MW OWT, with: PWT = 5MW ,

D = 20m, h= 87.6m, D = 20m; the resulting cost was e2.38 ·106.

The analysis cases are the same as in Section 4.6.3, where, in Case 1 tower

failure causes failure of other components, in Case 2 blade failure prevents that

of the tower, in Case 3 the components are modelled independently and Case

4 structural failure is not modelled (and includes only equipment).

The bar chart Figure 6.10 (right) indicates that when structural failures

are included (as in Case 1) there is a marginal increase in the loss over just

modelling the equipment (Case 4) of around 10%. Modelling the components

as independent caused small, 2%, reduction in loss.

The equipment only assessment (Case 4) resulted in a relatively large loss

e3.86 · 104, this is a consequence of the high failure rate of some expensive

pieces of equipment, particularly the gearbox. However, it should be noted
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Figure 6.10: Loss CCDF comparing the OWT loss evaluated using the FLS and
the equipment components (left). Bar chart comparing annual loss
(right).

that the fatigue failure rate is equivalent to some of the equipment commonly

included in empirical databases such as: controller, yaw system, transformer in

Table 4.5 but causes much larger losses. The difference is that fatigue damage

is cumulative over the life of the structure.

Preventative blade failure was not found to change the loss, as show by

the minimal difference the loss bars for Case 1 and 2. This is due to low

failure rate of the blade (8.36 · 10−5) in comparison to that of the structure

(1.00 ·10−3).

6.6 Ultimate and fatigue loss comparison
The combined loss expected from an OWT can be predicted by merging the

ULS and FLS structural limit states with failure of the equipment. Using

the same procedure as described previously for evaluating the annual financial

losses. The ULS losses are included using the results derived for the Ijmuiden

K13 site in Section 4.6. The FLS losses are evaluated at the FINO3 site, as

described in the previous sections. The loss data comes from different locations,

however both are in the Dutch and German sectors of the North Sea, so the

environmental conditions are expected to be broadly similar.
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The results are presented as a CCDF in Figure 6.11 (left) and as loss in

Figure 6.11 (right). The CCDF indicates that there is little change is observed

when the ULS is modelled in addition to the FLS structural failure. This

is confirmed by the aggregated loss in the bar chart, where modelling ULS in

addition to the equipment results in a less than %1 increase over the case where

only equipment is modelled. However, assessing the combined structural and

equipment failures increases the annual loss by 11.2% over the equipment only

case. The reason for this large difference is the larger failure rate and much

higher cost of failure in the FLS, as the monopile is more expensive than the

sum of all other equipment (including the tower).

In the design stage loss analysis applied in this thesis, only material costs

are modelled, and the difference may be expected to be substantially larger

if costs associated with vessel hire, required to implement repairs, had been

included. Additionally, the failure of the structure would have a substantial

additional impact on power production (i.e., through business interruption)

which as not been modelled. The low impact of the ULS suggests that it

might be able to be neglected in assessment of OWT structures.

Figure 6.11: Loss CCDF comparing the OWT loss evaluated using the FLS and
ULS (left). Boxplot comparing financial losses when ULS and FLS
structural failure is included in the damage calculation (right).
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6.7 Conclusions
The study presented in this chapter demonstrated that a surrogate model based

on GP regression can enable calculation of fatigue reliability using detailed

environmental conditions. The number of structural analysis samples required

for a given level of error in the damage calculation was evaluated by statistical

resampling. The sample could be reduced to 600 structural analyses, resulting

in an acceptable scatter in fatigue damage, with a CoV of 6.3%. The use of

GPs allowed a comprehensive assessment of the FLS, above what is achievable

through standard analysis because it utilised a full joint-PDF of environmental

conditions. The SN uncertainty and tolerable fatigue damage were modelled

as random variables, and were shown to cause large scatter in the fatigue limit

state, introducing a CoV around 40%.

The probability of failure for the case study NREL 5MW OWT was found

to be 1 · 10−3. This is a relatively large probability of failure compared to

values recommended by design codes. However the dimensions of the NREL

5MW OWT had not been optimised for the site environmental conditions, and

therefore the calculated probability of failure cannot be taken as representative

of a real OWT at the site. Other OWT with different properties could be

assessed as the approach taken in this chapter is flexible. Situations where the

turbine is not operational, such as wind speeds above and below the operating

range, can be assessed by fitting another GP to models representing those

conditions.

Extending the fatigue calculation to other sites in European waters

demonstrated that a surrogate model developed for a single site may be usable

at other locations. This suggests that further computational savings would be

possible if a representative GP was generated for a OWT model which is used

across multiple locations.

The loss framework, developed in Section 3.3.5, was combined with FLS

reliability to predict financial losses arising from failure of the OWT. This anal-

ysis indicated that the FLS is important to the reliability of the OWT. When
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combined with the ULS loss from Section 4.6, the FLS was found to cause sub-

stantially larger financial losses. However, this analysis was conducted for an

OWT located at a European site with relatively mild extreme environmental

conditions.



Chapter 7

Conclusions

7.1 Summary
This thesis presented a novel decision-support framework to quantify risk for

OWTs in a probabilistic manner. The framework enables an OWT to be

treated as a system comprised of integrated structural and mechanical com-

ponents, for which financial losses can be estimated. This allows identification

of the components that contribute most to the total system loss. For exam-

ple, based on a case study, the high failure rates of the equipment meant that

these components dominated financial losses. However, the structural FLS was

found to provide an important contribution due to its large financial conse-

quence coupled with relatively high failure rates. The loss calculation provided

in this thesis is an advancement towards enabling full resilience analysis for

OWTs, and nearer to integrated design by evaluating overall system loss.

The majority of the work presented in this thesis was focused on the

structural components of OWTs, as these had been neglected in the existing

literature, but were found to represent potentially large financial losses. Ad-

ditionally, databases of empirical data, which record failures of real OWTs,

were found to be insufficient for the structural components. These databases

only contain historical data, and therefore cannot be taken as representative

of any changed design which reduces cost by optimising the currently conser-

vative structural capacity. Hence, a numerical approach was used to model
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the fragility of OWT structural components following a PBE approach. The

focus of this analysis was the ULS and FLS of the primary structural compo-

nents. The financial losses due to failure in both limit states were quantified

and compared to financial losses from the equipment components.

The main contributions provided by this thesis are described in detail in

the following paragraphs, and can be summarised as:

• For the ULS - a novel probabilistic risk assessment framework was de-

veloped by proposing a computational approach to evaluate structural

fragility of OWTs. The probability of failure was evaluated computa-

tionally, through a series of limit states which were identified for the

important structural components. This analysis used state-of-the art

aero-elastic simulation and included uncertainties in the structural de-

mand and capacity. Then a combinatorial method was implemented to

evaluate the joint failure of the structure and the equipment that could

model the dependencies between components.

• For the FLS - a computationally efficient method for fatigue damage

assessment was developed, allowing structural reliability analysis of the

structural FLS to be conducted using the full site joint-PDF of environ-

mental conditions.

• A series of case studies were provided, demonstrating applicability of the

proposed framework in practice. These evaluated the integrated financial

losses arising from failure of the structural and equipment components

allowing the identification of those that contributed most to financial

loss. This is an essential step towards quantifying resilience by assessing

the robustness of an OWT.

The was assessed by modelling extreme conditions that occur during

tropical and extra-tropical cyclones, and that can damage OWTs through large

wind speeds and high wave heights. These events have had a devastating

impact on some onshore wind turbines [99], but the current design codes for
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OWTs only assess environmental conditions up to a 50-year MRP. This is

especially low, as equivalent marine structures like oil and gas platforms are

commonly assessed using a maximum MRP of 10,000 years.

The study developed a method for calculating the probability of failure

of OWT structures exposed to extreme environmental conditions. It was ob-

served that a full calculation of resilience would be difficult to apply at the

design stages of an offshore wind project. A practical solution was to assess

resilience through the robustness, which could then be used in a later evalua-

tion of resilience. Probabilistic risk modelling was suitable for the ULS, where

risk is decomposed into independent components that are combined using total

probability theorem and can be used to predict financial losses. Limit states

were developed to quantify performance of the main OWT structural com-

ponents including: the tower, monopile, blades and transition piece. These

included a series of random variables which were specified to capture uncer-

tainties in modelling and material properties. This study focused on deriving

fragility curves for a reference OWT located at two sites: one in Europe, and

one on the East Coast of the USA. Hurricane conditions were experienced at

the USA site, meaning that structural failures were observed at relatively low

MRP, around 200 for the monopile. However, the relatively mild conditions at

the European site meant that structural failures were observed very rarely.

Modelling recommendations for the fragility of offshore wind turbine were

highlighted through a parametric study. Specifically, the scatter in fragility

curve parameters was estimated using statistical resampling, indicating that

if the calculation were to be implemented in practice the burden of structural

simulations could be reduced.

In European waters, fatigue loading accumulated during operational con-

ditions often drives design of OWTs structural components [156]. However,

it is challenging to assess this mode of failure due to the need for compu-

tationally expensive time-domain analysis combined with a large number of

environmental conditions (i.e, the structural analysis needs to be run a large



7.1. Summary 186

number of times). This makes evaluation of FLS complicated, and difficult

to implement in a full structural reliability assessment. State-of-the-art de-

sign methods simplify the environmental conditions, leading to a granular,

and potentially inaccurate, assessment of the fatigue damage [156]. However,

surrogate models offer a flexible and computationally tractable solution by al-

lowing assessment of fatigue damage using the full probability distributions of

environmental conditions fit to site measured data.

A GP surrogate model was proposed to represent fatigue damage expe-

rienced by an OWT monopile. This replaced the computationally expensive

structural analysis with a statistical model that was simple to evaluate. The

proposed surrogate model was able to include the relevant wind and wave en-

vironmental conditions and was found to represent the fatigue damage well on

verification analyses run at the site of the three FINO met-masts. A range of

different GP kernels were compared and the Matern 5/2 was found to repre-

sent fatigue damage best, in agreement with other research [183]. A sensitivity

analysis highlighted the acceptable number of samples and seeds, emphasis-

ing the potential computational saving in comparison to standard approaches,

which may require in the order of 100 times more structural simulations [39].

However, the ULS probabilistic risk modelling approach, of decomposing

risk, as used in the ULS assessment, was not used for the fatigue damage esti-

mation. In the FLS, hazard is integral to the prediction of loading, and it was

found to be more computationally efficient to evaluate the damage once, than

solve the limit state repeatedly for different environmental conditions. Conse-

quently a fatigue limit state equation was developed that included the large

material property uncertainty inherent in fatigue damage prediction. This

limit state was solved in a single step using Monte Carlo sampling. The reli-

ability assessment indicated a relatively large probability of failure when this

calculation was applied to the NREL 5MW OWT at the FINO3 site.

OWTs are systems comprised of multiple components, each of which is

necessary for the production of electricity. A method for estimating financial
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loss was proposed which can incorporate those caused by structural failure as

well as those resulting from failure of the equipment. This approach avoided

the need for detailed information about maintenance routines, which may not

be available at early stages of the design process.

Additionally, the proposed approach allowed for comparison between fail-

ure consequence resulting from the ULS with that from the FLS. For an OWT

located in the North Sea, the FLS was found to drive structural financial losses,

with the ULS contributing less than 1% to the estimated annual losses. This

was primarily a result of the greater probability of occurrence and consequence

(cost) of fatigue failure in the monopile. These results suggest that the ULS

may be neglected in situations where FLS is found to drive structural loads,

such as for OWFs in European waters. However, for an OWF located in a site

that is exposed to tropical cyclones, such as on the USA East Coast, the ULS

limit state may become critical.

7.2 Limitations and future work

7.2.1 Ultimate limit state
The case study derived fragility curves which used the MRP as the measure

of environmental intensity (IM). This is a metric which combines the wind

and wave climate into a single measure of environmental severity, however it

assumed that environmental conditions with the same MRP occur simulta-

neously. This assumption is conservative because in practice a lag between

the most severe wind and wave conditions during a storm has been observed

[184]. To further advance the framework, a vector IM, which uses multiple

parameters, could be utilised to provide a more accurate expression of the

environmental hazard.

The fragility curves were based on a simplified structural model, which

did not include foundations below the mudline. These have a large influence

on the OWT stiffness and a modest impact on OWT loading in the parked

state [179]. Additionally, the linear Airy wave model was used to evaluate wave
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kinematics for extreme storm waves. This wave model is suitable for assessing

small sea-states, such as those experienced during normal operation, but has

been found to represent the peaked waves observed during storms poorly [83].

Both of these limitations could be removed by using a different structural model

that includes a more suitable foundation [89] and load calculation utilising a

different wave model [114]. Both of these factors would have the effect of

increasing the fragility of the OWT in its ULS, as the non-linear wave models

add additional load and the foundation model would add additional flexibility

(however also increasing the damping).

The NREL 5MW OWT is a reference structure commonly used in aca-

demic studies. It was designed for a specific site in the Dutch sector of the

North Sea, however its dimensions have not been fully optimised. This means

that failure rates for the NREL 5MW cannot be taken as representative of

structures designed to the current generation of codes for the two case study

sites.

The purpose of the case study was to demonstrate the ULS calculation

framework and to provide a comparison against the FLS. For both of these

objectives the NREL 5MW OWT is a suitable structure. In a future project

a spring foundation model will be added into the OpenFAST software [185]

framework, allowing simulation of foundation flexibility.

7.2.2 Fatigue limit state
The fatigue case study utilised the same structural model as in the ULS study

and consequently, the same limitations carry through to the FLS assessment.

However, this study added a linear foundation model, in the form of the AF

foundations to allow flexibility below the mudline. Misalignment between the

wind and wave conditions were modelled, however, only the maximum fatigue

loading around the monopile cross-section was extracted for damage calcula-

tion. This is a conservative assumption, as multiple fatigue cracks can grow

simultaneously around the circumference of the monopile.

The reliability calculation did not include periodic inspections, instead fo-
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cusing on assessing the fatigue reliability. Inspections may be able to identify

fatigue cracks before they propagate sufficiently to cause failure of the struc-

ture, allowing preventative maintenance to take place. However detection of

these cracks is difficult, especially for the mudline weld analysed in this study,

and therefore it is not certain that they would be identified before reaching

a size that threatened the structural integrity of the OWT. The loss calcula-

tion focused only on quantifying financial losses in terms of replacement cost.

However, for the structural elements, vessel hire would make up a substantial

proportion of the repair cost, and would further magnify the importance of

the FLS.

Future work could mitigate these limitations by developing more detailed

structural models. The structural risk analysis could be used alongside tech-

niques for inspection planning to quantify the trade off between structural

reliability and different inspection regimes. However, this would require sub-

stantial input from OWF operators regarding their inspection techniques, e.g.,

what vessels they sent on inspection campaigns.

7.2.3 Combined resilience of offshore wind turbines
This study focused on quantifying resilience through robustness and it didn’t

attempt to quantify resilience over time. Additionally, the work presented

in this thesis considered a single OWT whereas multiple OWTs are located

in farms comprised of many similar structures. Future work should move

from assessing single structures to considering the resilience (robustness, re-

dundancy and recovery characteristics) of OWFs. As OWTs are not designed

in isolation, rather they comprise a network of structures exposed to simi-

lar (correlated) conditions. Scaling from a single structure to a OWF can be

achieved by applying structural analysis combined with advanced probabilistic

techniques (including machine learning) at the farm scale. This would allow a

rational characterisation of OWF performance and reduce the risk associated

with OWT failure through a decision-making tool, which rigorously incorpo-

rates uncertainties. Specific tasks that would improve OWT design and allow
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assessment of the feasibility of life-extension include:

• From OWT to OWF risk and resilience models: investigating (1) the

spatial distribution of site conditions across an OWF, including water-

depth and geotechnical properties [166] and, (2) the influence of wake

and shielding effects caused by interaction between adjacent OWTs. This

could utilise a quantitative sensitivity analysis to rank the conditions that

vary across the OWF which have a large impact on structural fragility,

risk and resilience of OWTs.

• Structural resilience of an OWF: Through resilience analysis of OWTs

located at a small number of different locations across the OWF. The

correlation between the fragility of OWT at different locations can be

modelled using machine learning techniques, allowing extrapolation to

locations not explicitly assessed. It will result in a tool which can define

optimal structural properties at different locations across the OWF us-

ing a system-level approach, resulting in a consistent level of structural

resilience across the farm.

• Cost models for OWFs: This task will develop a parametric model for

the cost of different OWT structural components, based on published

material costs [156]. This will provide a general plug-in framework to

estimate the annual yearly losses across an OWT. Business interruption

due to the unavailability of OWT will also be modelled. Monetary loss

and business interruption represent easily interpretable metrics for the

communication of project risks to stakeholders.

• Economic feasibility of life-extension: Update the OWT / OWF design

models with information obtained during the operation of the OWF, e.g.,

data from inspections and structural monitoring. These will be combined

using a Bayesian framework which provides a rational method for updat-

ing prior information (the design model) with structural monitoring data
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from actual OWTs. Different scenarios, such as continuing full or partial

operation, will be used to quantify different end-of-life strategies.
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Appendix A

Foundation model

A.1 Introduction
Utility scale OWTs on monopile foundations are supported by large diameter

piles which are driven around 30m to 50m into the seabed [186]. The com-

paratively low stiffness of soil compared to the steel (from which the OWT

are constructed) means the upper segment of the pile is not fully restrained,

however, for ease of computation foundation flexibility is sometimes neglected

in dynamic analysis of OWT. This is especially true in reliability studies where

a structural model needs to be run a large number of times where a fixed foun-

dation is commonly assumed [117, 187, 168] for ease of computation. However,

including a foundation model has a large impact on the modal properties of

the turbine [178] and therefore also on fatigue loading [85]. Although it is

still not clear the extent to which the large uncertainties in the soil properties

propagate through into variability in the probability of failure of the OWT

[85].

Aero-hydro-elastic calculations allows for fully coupled analysis of all rel-

evant OWT degrees of freedom (DOF), including those related to the blades,

control system and structure [39]. However, some popular analysis packages,

such as FAST [77], do not currently provide integrated analysis of the below

seabed foundations. To include the effect of foundation flexibility, the software

would need to be modified or a work around solution developed. A further com-
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plication is that the number of DOF in aero-elastic codes is limited to around

22 to prevent long analysis run times. Inclusion of a detailed finite element

based foundation model would add a large number of DOF and therefore be

computationally expensive.

In the existing literature a number of different models to represent foun-

dation flexibility have been implemented into aero-elastic codes including: ap-

parent fixity [179, 188], mudline springs [188, 189, 190], distributed springs

[188] and lumped parameter models [191, 192]. Of these the AF is the sim-

plest to implement within FAST, as the foundation simply involves extending

the pile below the seabed a predetermined length and can be implemented

without any changes to the source code. Selection of the length to extend the

pile is problematic, the natural frequency of the OWT substructure is found

to be sensitive to this parameter [193] and it is not a physical quantity, but

rather simulates flexibility. Two methods for selecting fixity length are: match-

ing the first natural frequency of the OWT with AF to the natural frequency

with a real foundation model [193] or changing the pile cross sectional prop-

erties to match the average mudline motion under the expected loading [188].

The lumped parameter model (LPM) simplifies the foundation into number

of DOF at the mudline, this include springs, damping and internal DOF all

of which are linear, but would require source code modification. Using the

first method for selecting fixity length Damgaard [179] noted the AF model

produced fatigue loading closer to his LPM foundation model than the fixed

foundation assumption and therefore provides an improved prediction of the

OWT dynamics.

Soil properties are inherently variable and complex, however it is noted

that under low strain conditions soil behaves in a visco-elastic manner [194].

Using this assumption soil can be modelled as a linear isotropic material with

its behaviour described fully by a stiffness (shear modulus) and damping (loss

factor) parameter. However, both these properties are correlated and vary

with the mean load level, e.g., Damgaard used mean wind speed [85]. Effects
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of cyclic loading on soil stiffness over time is neglected in the current work.

This appendix summarises a linear foundation model developed in Abaqus

and how it fits within a broader framework for FLS analysis of an OWT us-

ing FAST. The model was verified by (1) matching pile tip displacements to

published results and (2) matching the natural frequency to an analytical case

which assumes very stiff soil properties, so the pile is effectively fixed at the

mudline. At this stage the aim is to include foundation flexibility within FAST

using the AF method, a framework for achieving this is proposed. Then the

foundation model is included within a larger calculation used to evaluate a FLS

equation, which can be run on a high performance computing cluster without

an Abaqus license.

A.2 Foundation models

A.2.1 Abaqus foundation model
A procedure for creating a FEM of single piles in a soil matrix was proposed

by Abdel-Rahman [139], who conducted FEA of soil-structure interaction by

embedding a steel pile in a larger cylinder comprised of 3D brick elements.

Material properties were selected to represent (the elasto-plastic) behaviour

of soil and soil-structure interaction was modelled explicitly through friction

interface elements. A similar procedure was used by Mardfekri [112] but the

pile was represented using shell elements and the soil had linear-elastic prop-

erties with contact between the pile and soil modelled using ties, not friction,

resulting in a linear model.

The FEM presented in this report is intended to represent foundations

under operational loading, where shear strains are expected to be low [195],

in this situation linear-elastic model to represent the soil may be justified as

soil behaviour approaches visco-elastic at strain levels below 10−4. This was

modelled using standard 8-noded 3D solid elements. Shell elements (4-noded)

were selected for the pile, as opposed to beam elements, so that soil located

inside the pile could be explicitly modelled. Contact was modelled by tie
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elements, due to the low shear stains non-linearities in the response of the

soil were expected to be low. In modal analysis these act as fixed constraint

between the pile and soil unless an initial load or displacement is applied which

causes a change in the contact stiffness.

The FEM model shown on Figure A.1 the soil matrix has a 90m radius,

the pile is embedded 30m and an additional 15m of soil is modelled below the

pile toe [139]. The geometrical and material properties of the pile are shown

on Table A.1.

A.2.2 Arany foundation model
A simplified hand calculation for estimating the natural frequency of an OWT

was proposed by Arany et al. [196]. A brief outline of the main equations is

provided in this section and full details of the calculation can be found in the

original paper [196]. The approach is based on simplifying the wind turbine

Table A.1: Geometry and material properties of the pile.

Pile diam-
eter (m)

Pile thick-
ness (m)

Pile
density
(kg/m3)

Pile pois-
son ratio

Young’s
modulus
(N/m2)

Verification 7.5 0.09 8050 0.200 2 ·1011

NREL 5MW 6.0 0.06 8500 0.238 2 ·1011

Figure A.1: Layout of Abaqus foundation model.
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Figure A.2: Abaqus boundary conditions and interaction model showing: pinned
BD (left), symmetry BD (middle) and contact BC (right). Note: the
BC have been properly applied to all nodes 1.

tower to a cantilever beam with top mass, for which an analytical expression

exists the calculate the natural frequency (ffb)

ffb = 1
2π

√
ko
mo

, (A.1)

where ko is the effective stiffness of the tower (N/m) and mo is the effective

mass (kg). The full OWT natural frequency fOWT (Hz) is estimated by

multiplying the fixed base tower frequency by coefficients accounting for the

lateral foundation resistance (CL), rotational foundation resistance (CR) and

the substructure (CS):

fOWT = CLCRCSffb. (A.2)

The foundation factors are calculated using non-dimensional stiffness val-

ues relating to the lateral stiffness (ηL), rotational stiffness (ηR) and cross-

stiffness (ηLR), whose calculation is not shown for brevity:
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CL = 1− 1
1 + 0.5(ηR−η2

LR/ηL) (A.3)

CR = 1− 1
1 + 0.6(ηL−η2

LR/ηR) (A.4)

The substructure factor is calculated using the equation:

CS =
√

1
1 + (1 +ψ)3χ−χ

. (A.5)

It is based on two dimensionless parameters, the bending stiffness ratio

(χ) and the length ratio (ψ):

χ= ET IT
EP IP

(A.6)

ψ = LS
LT

(A.7)

Where ET and EP are the Young’s modulus of the tower and pile (N/m2).

IT and IP are the second moment of area of the tower and pile (m4). LS is

the length of the sub-structure and LT is the length of the tower (m).

A.2.2.1 Input data for Arany foundation model
The calculation described in the previous section requires a information about

the geometry of the OWT and the material properties of the tower, monopile

and foundation. The tower geometry and the material properties for the struc-

tural components are taken from the NREL [42]. The soil properties are taken

from the work of Damgaard et al. [85]. These properties are summarised on

table A.2.

A.3 Linear soil material properties
Material properties used to represent soil in this study were taken from Abdel-

Rahman [139] (verification) and properties proposed by Damgaard [85] (for
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Table A.2: Input data used in the Arany foundation model hand calculation

Variable Value
Tower height (m) 75.60
Tower diameter top (outer) (m) 3.87
Tower diameter bottom (outer) (m) 6.00
Tower thickness average (m) 0.02
Platform height (m) 30.00
Monopile diameter (outer) (m) 6.00
Monopile thickness (m) 0.06
Mass of rotor nacelle (tonne) 350.00
Monopile Young’s modulus (GPa) 210.00
Tower Young’s modulus (GPa) 210.00
Tower density (kg/m3) 7850.00
Soil Young’s modulus (Gpa) 0.17
Soil Poisson ratio 0.30

future work), as shown on Table A.3. The properties used by Abdel-Rahman

[139] were non-linear, for use in this work they were linearised by selecting a

stiffness modulus (Elin) tangential to the initial stiffness from the non-linear

model.

A.4 Foundation verification

A.4.1 Linear FEA model
Three verification studies were run to ensure that the linear Abaqus model

behaved as expected. All geometrical and material properties in this section

Table A.3: Material properties for the soil. 1Calculated using the reference stiff-
ness modulus from the elasto-plastic model and assuming linear mate-
rial property relationship Gs =Elin/(2 · (1+ν)) with Elin = 6 ·104kPa;
2Calculated from the soil unit weight γsoil = 11.0kN/m3; 3Variables
correlated using correlation matrix

Shear modulus
Gs (KPa)

Poission’s ratio ν
(KPa)

Density ρ
(kg/m3) Loss factor η

Verification,
linearised 2.4e4 1 0.25 1121.3 2 n/a

Proposed for
future work

Mean = 1.7e4;
CoV = 0.4; Dis-
tribution = Log-
normal

0.3

Mean = 1700;
CoV = 0.07; Dis-
tribution = Log-
normal

Mean = 0.05;
CoV = 0.4;
Distribution =
Log-normal
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relate to the verification case listed on Table A.1 and Table A.3, unless other-

wise defined.

Firstly, a parametric study was run to ensure the dimensions of the soil

matrix or the mesh density did not influence the natural frequency. Conver-

gence was assessed using the gradient between natural frequency calculated at

different parameter inputs. In some cases the limits of the parametric study

(e.g. the maximum mesh density) were determined by computational resources

(i.e., a laptop with 8Gb RAM):

• Soil matrix mesh density - default mesh element size = 1.4m linearly

varying to 20.0m (at outside of matrix), the inner element size was varied

[8 0.4]m. Default value had a local gradient below 0.01 Hz/m and was

used in further studies.

• Pile/Soil interface mesh density - default = 16 elements around radius

(6m) and 18 down pile depth (30m). Gradient 0.003 Hz/element from de-

fault number of elements around radius. Natural frequency not sensitive

to number of elements along depth of pile.

• Soil radius - varied between [90 190]m. Change in natural frequency

below between extremes was 0.2%, natural frequency not sensitivity to

radius therefore use 90m.

• Soil depth - varied between [45 80]m. Change in natural frequency below

0.2% between extremes used 45m in further analysis.

• Boundary conditions around soil perimeter changed from pinned to slid-

ing. Change 0.01%, probably not much influence due to the large diam-

eter soil matrix.

As noted previously the embedded length of the pile is 30m, a sensitiv-

ity study run with pile embedded lengths lemb = [27.5 : 2.5 : 45.0]m resulted

in a 2.5% change to the predicted natural frequency between the maximum

and minimum embedded length. From this we concluded that FEA model is
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insensitive to this parameter and that variability in it can be neglected from

further studies.

Secondly, mudline displacements from the linear Abaqus model were com-

pared to those from, more complex, published numerical tests by Abdel-

Rahman [139] of a monopile responding to a static load. The purpose of

this comparison was to verify that the pile displacements were approximately

correct for the load levels expected during operation of the OWT. Abdel-

Rahman [139] developed two FEA models; one with properties based on API

p-y curves and another non-linear model with elastic-plastic soil (i.e. stiffness

varies with stress) and friction contact elements representing pile-soil inter-

action. Displacements were introduced by applying a static horizontal point

load to the upper face of the pile at El+30m, and the corresponding mudline

displacement recorded. For low load levels the mudline displacement matched

Abdel-Rahman’s output well, with results diverging as the applied load in-

creased, Figure A.3. The linear Abaqus results are a good match to the load

displacement relationship derived from API p-y curves, which are non-linear

but at the low strain to diameter ratio situations modelled [139] they approach

linear behaviour. For comparison, the average load on an operational NREL

5MW turbine at Vw = 12m/s is around 2.2MN and at Vw = 24m/s around

1.4MN , therefore non-linear soil effects (constitutive and interaction) are not

expected to have a significant impact on FLS response during operational wind

speeds.

The third validation test compared natural frequency of the linear Abaqus

model (modified to have very high shear modulus) with that predicted analyt-

ically for a OWT fixed at the mudline using: (1) hand-calculation proposed by

Arany [15] (ωn,FA1 = 7.5737Hz) and (2) the FAST linear frame finite-element

beam module SubDyn [17] (ωn,FA1 = 7.5691Hz). The shear modulus of the

soil was increased to a large value, approximating fixed BC, the first fore-aft

natural frequency of the linear Abaqus model converged to ωn,FA1 = 7.5734Hz.

This verifies that the representing the pile as a shell with kinematic constraints
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Figure A.3: Verification of pile mudline displacements against Abdel-Rahman re-
sults. Results from linear Abaqus model are shown as blue diamonds.

on its upper face similarly to a beam element with equivalent properties ex-

pected.

A.4.2 Fixed and flexible at seabed
Different chapters of the thesis used different assumptions regarding the foun-

dation fixity. The ULS application (Chapter 4) used a model with a fixed-base

foundation in comparison to the FLS application (Chapter 6) which included

a linear foundation model. This section assesses the difference between these

two approaches, where the results have been calculated using the properties

presented on Table A.2.

Including a foundation model reduces the stiffness of the structure and

therefore also its natural frequency. Consequently, a structural analysis with-

out a foundation model may underestimate the maximum loading, as the peak

of the wind and wave spectra, which drive structural loading, are typically be-

low the natural frequency of the OWT. Not to modelling the foundation may

also be over-conservative if it pushes the natural frequency into the range of

frequencies at which the blade passes the tower (3P range), see Section 2.3.

The natural frequency of the NREL 5MW OWT was calculated using the

method proposed by Arany et al. [196], and described previously. The natural

frequency with no foundation model was 0.271Hz and the natural frequency if

a foundation is included was 0.214Hz, a 27% difference. The 3P frequency for

the NREL 5MW OWT is 0.35Hz, meaning that the fixed bottom assumption
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does not make the structural model impinge upon the operational frequencies

of the rotor. It should also be noted that during ULS analysis utilised in this

thesis the turbine was not operational.

The error caused with respect to the loading frequencies by assuming the

turbine has a fixed foundation can be quantified by calculating the dynamic

amplification factor (D), using [157]:

D = 1√
(1−β2)2 + (2ηβ)2

. (A.8)

Where η is the damping ratio and β is the ratio of the applied loading

frequency to the natural free-vibration frequency.

A fixed damping ratio of 0.03 is assumed for a parked OWT following

Chen and Duffour [86]. Dynamic amplification therefore depends only on the

ratio between the natural frequency (calculated in the previous paragraph)

and the applied loading. Environmental loading spectra for typical operating

conditions are shown in Figure A.4 (left) and the mildest storm conditions

from Chapter 4 are shown in Figure A.5 (left). The large difference in dy-

namic amplification factor between the fixed and foundation cases in Figure

A.4 (right) indicates modelling a foundation is vital in order to correctly cap-

ture the operating wind conditions. However the small difference in Figure

A.5 (right) indicates that for extreme conditions, characterised by high period

waves, modelling foundations has a smaller impact. This is further emphasised

in Figure A.6 which shows the difference between dynamic amplification fac-

tors assuming a fixed base and a foundation over a range of loading frequencies,

the error grows large when the loading frequency is above 0.1Hz. From Figure

A.5 it is observed that the peak in the wave load spectrum occurs below 0.1Hz.

A.5 Fatigue calculation with foundation
This section describes how the linear foundation model was included within

the fatigue calculation work-flow. The foundation element of the calculation is

shown on Figure A.7, which uses properties, Table A.3, as inputs. The aim was
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Figure A.4: Load spectra (left) and dynamic amplification factor (right). Assum-
ing mean wind speed of 10m/s, significant wave of 3m and peak spec-
tral period using Eq.(4.4).

Figure A.5: Load spectra (left) and dynamic amplification factor (right). Assum-
ing mean wind speed of 40m/s, significant wave of 10m and peak
spectral period using Eq.(4.4).

to run this analysis on Legion, the UCL high performance computing cluster,

which does not have Abaqus installed. A custom Matlab script was developed

to predict the first eigenvalue of the OWT with soil properties (ω1,FA). This

uses the p-y curve method and was verified against the Abaqus model. The

natural frequency is extracted and used in an iterative calculation to determine

the correct apparent fixity length to use in FAST. The iterations stop when
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Figure A.6: Difference between fixed base and foundation dynamic amplification
factor.

the natural frequency of the AF model matches that from the linear Abaqus

model within a threshold (of 1−4). Separately, a linear damping coefficient is

calculated using the soil damping ratio and the pile natural frequency which

is applied to the transition piece node.

The aim was to run this analysis on Legion, the UCL high performance

computing (HPC) cluster, which does not have Abaqus installed. A series of

functions were written to enable this work flow and output estimates of fatigue

damage. The function was written in Matlab but utilises to call some external

programs:

• SubDyn, A linear frame finite element solver. It generates lumped stiff-

Figure A.7: FAST calculation work-flow including pile with AF method.
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ness and mass matrices representing the substructure, which are required

to in order to calculate the tower mode shape. These quantities change

when the stiffness of the soil properties change.

• BModes, A finite-element package that calculates the frequencies and

mode shapes of a circular hollow section tapered beam with an offset

tip mass. This is used to calculate the tower mode shapes, which are

necessary as FAST uses the Rayleigh-Ritz method to calculate the tower

response.

• Turbsim, Generates a turbulent wind time history which is an input to

FAST.

• FAST, Calculates time history response of the OWT to internally gen-

erated waves and the wind speed time series generated by Turbsim.

The HPC cluster utilises the Linux operating system, FAST and Turbsim

were installed and tested but SubDyn and BModes proved difficult to install.

The functionality provided by these programs was rewritten as custom Matlab

functions:

• SubDyn to fem OWTPy

• BModes to fem Tower

Allowing the full fatigue calculation to be carried out on Legion. The

purpose of this section is to describe the layout of the Dmg WrapFun func-

tion then verify that the fem MPile and fem Tower functions provide accurate

results.

A.5.1 Function layout
The layout of “Dmg WrapFun” is shown on Figure A.8, this wrapper function

takes site data, realisations of random variables and the natural frequency

regression model then calculates the resulting fatigue damage arising from an

hours worth of dynamic simulation. The input data is:
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• Site - Mean wind speed, significant wave height, peak spectral period

and turbulence intensity.

• Nf reg – Natural frequency regression model from Abaqus.

• X - Samples of the soil shear modulus and damping.

Computation within Dmg WrapFun is split across 3 main calculation func-

tions (starting “fun ” in Figure A.8) each of which has its own dependencies:

• fun Laf - Iteratively calculates the apparent fixity length that will repro-

duce the same natural frequency the Abaqus foundation model (using

NF Diff and fem MPile). Also calculates equivalent stiffness and mass

matrices for the substructure at the transition point, i.e. the lowest tower

node (using fem MPile).

• fun FASTRun - Pre-process and initiate an hour long FAST analysis of

the OWT with the apparent fixity depth calculated in fun Laf. This func-

tion starts by calling Turbsim to generate a turbulent wind time history

(Turbsim) then updates the tower mode shapes based on substructure

flexibility (fem Tower) and prepares FAST input files (all FAST func-

tions). The final line in fun FASTRun runs FAST.

• fun ImpRFC - Imports data from the output file produced by FAST

(Import FzMxMy) and converts the mudline reaction forces into a stress

time history (Pr Stress Mn), finally calling the WAFO toolbox [197] to

conduct rainflow counting on the time history. The fatigue damage is

then estimated.

A.5.2 Description of fem Tower
This function models the OWT tower as a beam supported by the Monopile

substructure with the hub represented as a point mass offset form the top

tower node, indicated on Figure A.11 (right). The purpose is to calculate the
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Figure A.8: Function dependencies of Dmg WrapFun.

coefficients of a 6th order polynomial that is fit to the tower mode shape, a

required input for FAST.

The tower has a tapered diameter and wall thickness which is discretized

into concentric uniform segments with constant diameter and wall thickness.

A 12 DOF Timoshenko beam elements [198] are used, to be consistent with

BModes [199], the element matrices are shown in Figure A.9 and A.10, the

coordinate system is shown on Figure A.11 (left).

The lower BC is restrained by the substructure, therefore the equivalent

mass and stiffness matrices, produced by “fem MPile” function, are added to

DOF associated with the tower base node.

The upper BC, located at the tower tip is free. The mass matrix is changed

Figure A.9: Element stiffness matrix.
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Figure A.10: Element mass matrix.

Figure A.11: Diagram showing coordinate system, with a beam comprised of 4
elements (left) and tower coordinate system [17] (right).

to include the influence of hub inertia. The hub mass (mhub) was added to

all the translational DOF. The hub moments of inertia had been previously

calculated about its centre of mass (Itx, Itxz, Itzx, Itz) by NREL and were

translated into the tower centreline using parallel axis theorem where necessary

(with r the distance between the hub centre of mass and the centreline of the

tower). The resulting mass matrix which was added to the upper BC node

took the form:
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Mtip =



mhub 0 0 0 0 0

0 mhub 0 0 0 0

0 0 mhub 0 0 0

0 0 0 Itx 0 Itzx

0 0 0 0 Ity +mhub · r2 0

0 0 0 Itxz 0 Itz +mhub · r2



(A.9)

The natural frequencies of the substructure are then calculated using the

eigenvalue solver built-in to Matlab. In a final step a 6th order polynomial is

fit to mode shape, so that the coefficients can be input to FAST:

f(x) = C0 +C1 ·x+C2 ·x2 +C3 ·x3 +C4 ·x4 +C5 ·x5 +C6 ·x6 (A.10)

The first-order coefficient (C1) and constant term (C0) are deleted as these

are insignificant. Tower modal properties in the format required by FAST are

calculated by normalizing the remaining coefficients so that they sum to 1.

The function also calculates cross sectional properties for the tower at

11 elevations including: mass density, flexural rigidity and cross section area

which are required by FAST.

The function outputs are: the unmodified mode shapes, natural frequen-

cies, normalised mode shape coefficients and the tower cross-sectional proper-

ties. The latter two outputs are necessary to run FAST.

A.5.3 Description of fem OWTPy
This function models the full OWT as a series of Timoshenko beam elements

and outputs the natural frequency, and equivalent stiffness and mass matrices.

This is achieved using the built-in Matlab eigenvalue solver combined with

Guyan reduction, as described in the following paragraphs.

The model of the wind turbine tower is the same as used in fem Tower,
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so will not be described.

The 12 DOF Timoshenko beam elements, shown in Figure A.9 and A.10,

are built into global a matrix representing the entire substructure (from the

bottom of the pile to the tower top).

The BC for the below mudline pile can either be rigid or restrained by

distributed linear springs. In the rigid case the DOF below the mudline are

deleted from the global mass and stiffness matrices. In the spring case, soil

stiffness is modelled as linear translational springs distributed at nodes along

the pile using the method described by ISO [97] to calculate spring stiffness.

The pile toe is restrained in the vertical and rotational directions.

The upper BC is free, no modification.

The global stiffness matrix is condensed into an equivalent matrix with

a reduced number of DOF using Guyan reduction (also known as static con-

densation [200]) to calculate equivalent 6DOF global stiffness matrices where

only DOF associated with the upper node are retained. This is achieved by

segmenting the stiffness matrix into retained DOF (K11 6-by-6) and discarded

DOF (K22):

K =

K11 K12

K21 K22

 (A.11)

With a translation matrix defined:

Tr =

 I

K−222 ·K21

 (A.12)

Which was used to calculate the equivalent stiffness and mass matrices:

Keq = T Tr ·K ·Tr (A.13)

Meq = T Tr ·M ·Tr (A.14)

The natural frequencies of the substructure are then calculated using the
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eigenvalue solver built-in to Matlab to solve:

(Keq−λ ·Meq) ·Φ = 0 (A.15)

The function outputs both the equivalent matrices (Meq and Keq) and the

first natural frequency (
√
λ1).

A.5.4 Verification
The function was verified using the standard NREL 5MW turbine monopile ge-

ometry [42] with an apparent fixity length equal to 5.9846m (the total monopile

length is therefore 35.9846m).

The first natural frequency match well between fem OWTPy and SubDyn,

which predict 4.296Hz and 4.256Hz respectively (difference less than 1%). Also

the equivalent stiffness and mass matrices agree well, as indicated on Table A.4,

with the majority of the diagonal terms matching to three decimal places.

Additionally verification of the natural frequency of the NREL 5MW with

foundation properties values published by Myers et al. [14] and Carswell et al.

[201] indicate the fem OWTPy calculation is accurate.
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The function was verified by comparing the normalised mode shape coef-

ficients and the tower cross-sectional properties. Results for the tower cross-

sectional properties are not shown here, but were found to match the NREL

certification tests well.

The mode shape coefficient test took the same geometry as used previously

and used the equivalent mass and stiffness matrices shown on Table A.5. The

first two FA and SS natural frequencies and modes shapes predicted using

fem Tower and BModes are compared in Table A.5. The first coefficients

(C2) match well but significant differences occur between some of the higher

order coefficients. When we investigate the actual mode shape predicted by

these coefficients, shown on Figure A.12, they match well, particularly the first

mode. The coefficients are normalised therefore the mode shapes are equal

when x = 1. Additionally the higher order terms are less important over the

majority of the range 0≤ x≤ 1, which mitigates against the large differences

in these coefficients.

From this it can be seen that the fem Tower calculation is sufficiently

accurate.

Table A.5: Comparison of mode natural frequencies and corresponding mode
shape coefficients from “fem Tower” and BModes. The difference be-
tween the two methods are shown at the bottom. Note: coefficients
match Eq. (A.10).

Natural Frequency (Hz) Mode Shape Coefficients
C2 C3 C4 C5 C6

fem Tower FA1 0.315 0.973 0.172 -0.169 0.125 -0.101
FA2 2.267 31.026 -10.977 -20.660 -0.883 2.494
SS1 0.311 0.962 0.177 -0.167 0.127 -0.099
SS2 1.805 16.551 -4.742 -10.840 1.010 -0.978

BModes FA1 0.339 0.981 0.138 -0.110 0.076 -0.086
FA2 2.363 29.955 -12.312 -16.258 -3.652 3.267
SS1 0.335 0.971 0.142 -0.106 0.076 -0.083
SS2 1.896 16.365 -5.652 -8.688 -0.571 -0.455

Difference FA1 -0.024 -0.008 0.034 -0.059 0.049 -0.016
FA2 -0.096 1.070 1.335 -4.402 2.769 -0.773
SS1 -0.024 -0.008 0.035 -0.061 0.051 -0.016
SS2 -0.091 0.185 0.910 -2.153 1.581 -0.523

Difference (%) FA1 7.76 0.821 19.532 -35.021 39.337 -15.545
FA2 4.22 3.450 -12.161 -21.307 -313.503 30.969
SS1 7.65 0.853 19.559 -36.647 40.333 -16.571
SS2 5.06 1.118 -19.191 -19.858 156.484 -53.480



A.5. Fatigue calculation with foundation 215

Figure A.12: Comparison between the normalized mode shapes predicted using
BModes (black) and fem Tower function (grey).
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