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ABSTRACT1
Bike sharing has been found to present environmental, economic and social benefits. Identifica-2
tion of factors influencing ridership is necessary for policy–making, as well as when examining3
transferability and aspects of performance and reliability. In this work, a data–driven method is4
formulated to correlate arrivals and departures of station–based bike sharing systems with built5
environment factors in multiple cities. Ridership data from stations of multiple cities are pooled6
in one data-set regardless of their geographic boundaries. The method bundles the collection,7
analysis, and processing of data, as well as, the models’ estimation using statistical and machine8
learning techniques. The method was applied on a national level in six cities in Germany, and also,9
on an international level in three cities in Europe and North America. The results suggest that the10
models’ performance did not depend on clustering cities by size but by the relative daily distri-11
bution of the rentals. Selected statistically significant factors were identified to vary temporally12
(e.g. nightclubs were significant during the night). The most influencing variables were related13
to the city population, distance to city center, leisure-related establishments and transport related14
infrastructure. This data–driven method can help as a support decision-making tool to implement15
or expand bike sharing systems.16

17
Keywords: bike sharing, built environment, open-source, multiple cities comparison18
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INTRODUCTION1
Bike sharing is defined as the shared use of a bicycle, where a user accesses a fleet of bicycles2
offered on public space (1). It is part of the shared economy social–economic phenomenon, where3
individuals or organizations prioritize use over ownership of items (2). Bike sharing systems have4
a long history, with the very first system launched in 1965. Its deployment was in Amsterdam5
with fifty free and unlocked bicycles. Theft and vandalism led to a coin–deposit system, also6
not successful, mainly due to the user’s anonymity. Nowadays, information and communications7
technology (ICT) enables wireless pick–up, drop–off, and a real–time GPS tracking of bicycles8
(3), which lead to the widespread of bike sharing to more than 1,600 cities around the world (4).9
(4). Europe and Asia are the continents with the majority of bike sharing systems worldwide. In10
2015, China presented the biggest fleet in the world with 753,508 bicycles, followed by France11
with 42,930, and Spain with 25,084 (4). Categorization of bike sharing systems can be defined by12
the use of stations or not: (a) station-based (SBBS), b) free-floating (FFBS) and c) a mix of the13
two (5).14

The wide deployment and observed growing trends of bike sharing can be attributed, among15
others, to its associated social, economic and environmental benefits. These are related to creat-16
ing a larger cycling population, cost savings, increasing transit use, reducing greenhouse gases,17
decreasing congestion, creating environmental awareness, improving public health, among others18 (
a comprehensive review of benefits attributed to bike sharing can be found in (3), (6) and (7)

)
.19

However, not all systems were deployed successfully. Some were perceived as a public nuisance or20
were misused and vandalized (8). Possible reasons for a system failure were bicycles’ poor qual-21
ity, lack of funding, oversaturated market, delayed expansion, inconvenient system design, unfair22
fares, low political support (8, 9).23

The identified benefits strongly suggest the necessity to further increase the use of bike24
sharing systems and to enable their deployment in more cities. At the same time, the unsuccessful25
deployment of some projects makes the examination of the factors that affect ridership and system26
reliability rather imperative. These two needs have been the driving force for a high number of27
studies on the influencing factors that affect the bike sharing usage (e.g., built environment, socio-28
demographic characteristics, system settings). Most studies analyze the influencing factors in a)29
multiple cities, with each city considered as one observation (10, 11) or b) single city at a local30
(station) level, where one city is analyzed and observations are based on an area of influence, e.g.31
near stations (12–15).32

The multiple–cities approach suffers an exclusion of varying characteristics within a city,33
which provides an indication of how the system should be structured to enable a successful de-34
ployment. Conversely, the station level approach is performed in a single city and is bounded by35
the urban settings examined. The main issue with this approach is that it does not examine the36
system’s transferability but the ridership within a city.37

Aiming at overcoming the above–discussed drawbacks of existing approaches, this paper38
contributes to the related literature, by focusing on the investigation of bike sharing systems as39
one entity regardless of the city they belong to. We present a multiple cities data-driven approach40
focusing on the comparison of general built environment characteristics on a station–level influ-41
encing bike sharing systems beyond geographic boundaries. As such, the data used for each city42
is pooled in one complete data-set, where each observation refers to one station’s area of influence43
(as defined in the Method Section). The influencing factors chosen to be investigated describe44
the characteristics of the built environment (guided by the high influence found in the majority of45
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previous studies).1
The second main contribution of this study lies upon the modeling techniques used for the2

most influencing factors selection. As discussed in the Related Work Section, in most cases a3
predetermined set of factors is used. This set is hypothesized to contribute to a successful deploy-4
ment of bike sharing, and thus, could omit possible patterns revealed by an alternative selection5
approach. In this study, a data–driven approach is followed to allow the discovery of factors that6
might not be commonly addressed. This is done by using different linear and non–linear model-7
ing techniques which are evaluated upon modeling performance criteria such as goodness–of–fit,8
information criteria, and (cross–)validation.9

Two applications of the methods discussed are included: a) a national application in six10
cities in Germany, Europe and b) an international application in three cities from Europe and11
North America with similar urban characteristics. The first application intends to illustrate the per-12
formance of different modeling techniques, while the second intends to illustrate the applicability13
of the methods in an international setting, while taking into account seasonality. In both cases,14
different validation techniques are exercised with very positive results. All the factors are defined15
using open–source data and by the derivation and deployment of an automated feature creation16
methodology.17

RELATED WORK18
The spatial-temporal factors influencing historical rentals of SBBS systems have been studied19
in cities all over the world with different sizes. The resulting factors have been compared be-20
tween cities with factors within a city scale (10, 11) or in a single city on a station scale (12–19).21
The modeling approach followed in most of the cases above can be summarized as a) the model22
estimation method used is mainly a linear regression using ordinary least squares (13, 15, 17–23
19); b) the dependent variable is the logarithm of the number or rates of arrivals and departures24
(12, 13, 15, 17, 19); c) the model assessment is usually performed using the indexes: log-likelihood25
(LL), R2 and AIC-BIC.26

Regarding the multiple cities approach, De Chardon et al. (10) studied the trips per day per27
bicycle (TDB) in 75 SBBS systems in Europe, Israel, United States, Canada, Brazil and Australia.28
They used a robust regression to build the model with the logarithm of the TBD as the depen-29
dent variable. The resulting influencing variables were the operator’s attributes, the compactness,30
the weather, the transportation infrastructure, as well as system–related characteristics, such as31
helmet requirement and the number of docks at stations. Faghih-Imani et al. (15) aggregated to32
an hourly value arrivals and departures in Barcelona and Seville into a Sub-City District level.33
They correlated both cities separately the of the logarithm of the dependent variable linearly to so-34
ciodemographic and socioeconomic variables and Points Of Interest (POI). Barcelona and Seville35
presented a similar pattern where the common influencing POIs were related to business, leisure,36
and restaurants.37

On the other hand, considering a single city approach, Dung Tran et al. (14) developed38
models for bike sharing in Lyon using rain stations, restaurant, cinema and embankment roads,39
altitude, among others. They also found that the population density showed a positive effect in40
the morning and the number of jobs with a positive impact in the afternoon. Faghih-Imani and41
Eluru (12) correlated the hourly arrivals and departures for one month in the SBBS "CitiBike" in42
New York with temporal, spatial and weather variables. They concluded that the fit of the model43
improved significantly by adding temporally and spatially lagged dependent variables. The length44
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of bicycle routes, the presence of subway stations, the area of parks on weekends, and the number1
of restaurants increased the usage of the system, while the length of railways decreased it.2

Activities that are associated with bike sharing are commuting and leisure (20). These3
activities are vastly related to the built environment. Thus, many studies have examined its rela-4
tionship to bike sharing upon the transport infrastructure, Points Of Interest (POI) and the land use5
categories (Table 1).6

TABLE 1: Built environment factors most influencing bike sharing historical data

CATEGORY VARIABLE REFERENCES
(10) (12) (16) (17) (13) (18) (14) (15) (19)

Transport

Cycling infrastructure X X
Railways length X
Subway stations X X X X X

Rail stations X

POIs

Universities X X X
Student residence X
Restaurants X X X X

Cinema X
CBD X X

Number of business X X X

Land use

Parks X
Residential land use X
Parking land use X

Bodies of water X

To the best of the authors’ knowledge, there is no data-driven method to measure built en-7
vironment variables by assigning them automatically different types of indicators as quantity in the8
area of influence of the stations or proximity to the stations. Contrary to De Chardon et al. (10), we9
analyzed multiple cities, but on a station scale. Also, instead of comparing the influencing factors10
of multiple cities (15), we model the cities together. Finally, in the literature review, there was not11
a comparison of different linear and non–linear modeling techniques to define which technique fits12
better the bicycle usage and the influencing built environment.13

METHOD14
The proposed method aims at building models automatically in different temporal scales to identify15
the built environment variables that influence the historical rentals of SBBS systems in multiple16
cities. The method goes through three main components: 1) automated data collection, 2) auto-17
mated data analysis and processing, and 3) automated model building and selection of the modeling18
technique with the better fitting results, and automated selection of the most influencing variables19
(Figure 1).20
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FIGURE 1: Methodological framework

Data collection, analysis, and processing1
Data collection is performed on historical arrivals and departures from bike sharing systems (de-2
pendent variables) and the built environment (independent variables) in multiple cities. The inde-3
pendent variables are points, lines, and polygons of the built environment: e.g., points of interest,4
public transport stations, railways, roadways, waterways, land use, and natural features.5

Ridership Data6
The historical ridership data (in terms of arrivals and departures to and from a station) are explored7
to define time intervals to build models independent of time. This is performed to allow homogene-8
ity in terms of dependent variables and to correct the effects of the time of the day. A clustering9
analysis is carried out to determine which days of the week illustrate significantly different rider-10
ship patterns. In each cluster, different periods are identified based on the hourly distribution of11
the rentals based on peak and off–peak times. The cumulative ridership variable (dependent) and12
built environment variables are aggregated on a spatial scale, based on zones of influence. These13
zones are defined as the maximum area of influence that an individual is willing to walk to reach a14
bike-sharing station. Their boundaries are defined as the intersection of the Thiessen polygons of15
the stations, human-made and natural barriers and a buffer circumference from the stations repre-16
senting the maximum walking distance [200 to 400 meters (10, 13, 14, 16–18, 21)] that a station17
can attract or produce.18

Built environment Data19
Built environment data is downloaded from an open–source database on a city level. Each built20
environment variable is assigned two indicators in each zone of influence: 1) proximity-based21
indicators (minimum distance from a station to the examined spatial feature inside the zone of22
influence, and 2) quantity or presence of the variable in a zone of influence. The selection of the23
appropriate type of indicator is decided based on some basic hypotheses. Let v be a random (inde-24
pendent) variable used to describe a particular built environment distribution across observations.25
Also, let σv represent its standard deviation. A variable is defined as static if the standard deviation26
is smaller than a threshold t (σv < t). Under the above hypotheses, indicators will be introduced27
in the model as dummy variables indicating "presence" rather than quantity. A sensitivity analysis28
is carried out to determine the value of the threshold of the standard deviation. Only the variables29
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that are present in all the cities of the study are considered. These variables are explored to exclude1
those presenting inconsistencies or irrelevant to the influence of bike sharing ridership.2

Finally, Pearson and Spearman correlation tests are carried out to determine the variables3
that are collinear. If two variables are collinear, the variable that influences more the rentals is4
considered (multiple regression models are estimated).5

Model building and selection6
Model building and selection is based on a sequential model definition and model validation pro-7
cess. The aim pursued is to build linear and non-linear models to identify the models that better8
fit the dataset, while a) being parsimonious without a substantial loss of their fitting performance,9
b) avoiding over-fitting and c) including variable selection or variable categorization for compu-10
tational efficiency, given a large number of independent variables. Mathematical transformations11
of the variables are considered to handle heteroscedasticity or non–linearity issues and to improve12
the models. Most common transformations are the square root, logarithmic, inverse, exponential,13
arcsine (22), or Box-Cox transformation (23).14

Model Structures15
The model building techniques to be examined are stepwise Ordinary Least Square regression16
(stepwise OLS) (24), Generalized Linear Models (GLM) with a lasso selection technique (25), and17
Gradient Boosting Machine (GBM) (26).18

Stepwise OLS for variables selection is chosen based on its wide use in the pertinent liter-19
ature for similar types of problems (11, 13, 15, 17–19). The core of stepwise OLS is the multiple20
linear regression, which is iteratively used to build a model using an observations vector Y that is21
linearly related to a matrix X (independent variables) and ε residuals [Y = X ·β +ε (24)]. Stepwise22
regression addresses the subset selection of a large number of k parameters. There are three types23
of stepwise selection procedures: 1) forward selection, 2) backward selection 3) both directions24
(27). The forward selection initiates with only the constant term (i.e., no parameters) and adds25
variables based on a comparison criterion. The backward elimination process, in contrast, starts26
with a full equation and excludes the uncorrelated parameters. The stepwise method in both direc-27
tions sequentially adds or deletes parameters. It starts with a forward selection, but at each step, it28
can remove a parameter. Its advantage is if a non-significant parameter is included in the process,29
it might be eliminated later.30

The selection of the parameters is based on criteria to compare the regression in each step.
Commonly used criteria are the Akaike Information Criterion (AIC) and Bayes Information Crite-
rion (BIC) (24). AIC (28) is defined as:

AIC = n∗ ln(MSE)+2 · k (1)

where n denotes the number of observations, MSE the mean squared error and k the number
of parameters. A direct implication of using AIC is that for two models with the same error, AIC
would penalize the one with more parameters. However, the use of AIC tends to improve with
a larger number of k parameters, thus it is commonly accused of being prone to overfit models
selection. BIC (29) tends to control the overfitting of AIC. It is proportional to AIC but it uses a
logarithmic factor for the effect that the number of variables has:

BIC = n∗ ln(MSE)+ ln(n) · k (2)
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Generalized linear models (GLM) are an extension of OLS. Usually, this family of models1
is based on the maximum likelihood estimation. GLM assume that the error ε presents a distri-2
bution from the exponential family, such as binomial, Poisson, Gaussian. Also, they consider the3
mean function µi as a function of the linear observations [h(µi) = β0 +β1xi1 +β1xi1 + ...+β1xik4
where, h(µi) is a function that links µi with the observation Yi] (24). The least absolute shrinkage5
and selection operator (lasso) technique (25) shrinks the coefficients β increasing stability while6
retaining the best variables. Lasso assumes that Xi j are standardized with a mean of zero and a stan-7
dard deviation of 1. Then, it minimizes the sum of the squared differences between the observation8
and the linear regression [β̂lasso = argminβ (∑

n
i=1(Yi−β0−∑

k
j=1 Xi jβ j)

2 +λ ∑
k
j=1 |β j|)]. Models9

generated with lasso are easy to interpret. The selection of λ is calculated after a cross-validation10
test to select the λ that presents the smallest error (27).11

Gradient Boosting Machine (GBM) is a machine learning algorithm that performs regres-12
sion, classification, and ranking (26). It is a mix of boosting and gradient steepest descent. Boost-13
ing is a procedure to reduce the variance of a model. It involves the creation of multiple B training14
sets. Then, it builds a prediction for each training set f̂ 1(x), f̂ 2(x), ..., f̂ B(x) and it fits different15
decision trees to each copy. Each tree is a modified version of the original data set, and they grow16
sequentially by using the information of the previously grown tree. The residuals are fit to the de-17
cision tree, rather than a single decision tree to the data. We choose the sample data that modeled18
poorly in the system before, i.e., in areas where the system is not performing well. Then, the resid-19
uals are updated after adding the new decision tree into the fit function. Finally, it combines all the20
trees to create a single model. A faster approximation to find the model is to consider a differen-21
tiable loss criterion that can be derived by numerical optimization. Regarding the loss function, a22
Gaussian function is used for numerical efficiency to minimize the squared error and the Laplace23
for minimizing the absolute error.24

GBM is considered in the study because the dataset might fit better in a nonlinear model.25
It uses the input arguments: loss function, number of iterations, terminal nodes of each tree and26
shrinkage factor (30). A sensitivity analysis has to be carried out to determine these values. In27
addition to the resulting model, GBM provides a ranking list of the variables with their relative28
influence normalized to sum one hundred. To carry out a variable selection from the ranking list,29
mean square errors (MSEs) are calculated starting from highest ranked variable and then adding a30
subsequent variable until a non–significant difference of the MSE is present. GLM and GBM have31
shown high fitting performance in similar applications in the literature, e.g., (31).32

Model building is carried out with a training set and the model validation with a testing set33
for each time unit and for the linear and non–linear regression models. After the models are built,34
two types of criteria are used to assess them: a) Indirect methods: lowest number of predictors,35
lowest Mean Square Error (MSE), lowest BIC, and greatest goodness of fit measures (R2 and36
adjusted R2 - R2

ad j); and b) Best validation results: selection of the model that adequately predicts37
the arrivals and departures on a validation dataset.38

APPLICATION39
The data–driven method was applied in two cases: 1) national level in six German cities and 2)40
international level with three cities in three countries in Europe and North America. The national41
level application provides evidence on the applicability and performance of the different model42
structures and estimation techniques, allowing for a more comprehensive evaluation of the impact43
that different techniques have to the identification of the factors affecting ridership. Germany has44
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been used as the national case, due to the bike sharing fleet (fifth largest fleet in the world; approx.1
12,000 shared bicycles) (4) and data availability. The international level application builds on the2
first application and focuses on the extraction of conclusions for the application of the methods in3
an international comparison.4

Multiple National Cities approach5
This approach includes six German cities for the SBBS system "Call a bike" (32): Hamburg, Frank-6
furt am Main, Stuttgart, Kassel, Darmstadt, and Marburg. Arrivals and departures of the bicycles7
were downloaded from the Open–Data–Portal offered by the German train company (Deutsche8
Bahn) under the link: http://data.deutschebahn.com/dataset/data-call-a-bike on June9
2017. The dataset included the rentals in fifty cities in Germany for approximately 3.5 years. The10
majority of the data, however, referred to the six selected cities, because of their high usage of bike11
sharing (>250,000 rentals in total, around 3.5 GB). In total, 10.5 million rentals were included12
in the dataset referring to the period between 01.01.2014 and 15.05.2017 (1232 days). Around13
73% of the rentals referred to the city of Hamburg, followed by Frankfurt with 12%. Peaks were14
identified in the summertime (May to July). It is worth mentioning that Wednesdays and Thurs-15
days showed the highest ridership, which was found to decrease during the weekends. Regarding16
the hourly distribution, there was a different trend between workdays and weekends (Figure 3). In17
workdays, there were two peak periods at 8:00 and at 17:00 (based on the median values). Figure 218
shows the spatial distribution of the intensity of the rentals. Each area represents the frequency of19
a station with the help of Voronoi Diagrams for better visualization.20

Data analysis and processing21
The rentals were clustered into days of the week using Pearson correlation analysis. The three re-22
sulting clusters were workdays, Saturdays, and Sundays. Arrivals and departures were aggregated23
into time intervals representing peak and off–peak periods in the morning, afternoon and night24
(Figure 3). The built environment variables were downloaded from the collaborative open–source25
dataset OpenStreetMaps (33). Unclassified roads and a selection of variables, which were found26
to be inaccurately positioned or irrelevant, were excluded (e.g., vending machines, wastebaskets).27
The distance to the city center was also considered as a built environment variable since it was28
present in the literature review. For the zones of influence, a 300 meters buffer ratio was used29
as being the most common value used in the literature. Four indicators were assigned to around30
200 types of spatial features (around 800 spatial variables). A threshold value selected of SD = 531
was selected after a sensitivity analysis to determine if the indicator of a variable is related to the32
quantity or presence. A total of 194 variables were examined with 144 non–collinear variables to33
be selected after Pearson and Spearman correlation tests. A threshold value of 0.7 was considered34
as explained in Zhao et al (11).35

Model building, diagnosis and validation36
Aiming at examining applicability and performance of the different model structures and estima-37
tion techniques, all methods discussed in the Methods section were used (OLS, GLM with lasso38
and GBM). In all cases, the relationship between arrivals and departures to 144 non–collinear built39
environment variables was examined. The city population was used to weight ridership (for dif-40
ferent cities’ sizes) (34). Apart from model fitting and model diagnostics, model validation was41
performed by dividing ridership data into a training set including the zone of influence of 5 cities42

http://data.deutschebahn.com/dataset/data-call-a-bike
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FIGURE 2: Hourly distribution and definition of times intervals

and a testing set of one city’s zone. Validation was performed on a city level (and not using a ran-1
dom sample of zones) in order to examine how well the models would perform in a German city2
without a bike-sharing system. The city of Kassel was chosen for validation due to its high rider-3
ship and the fact that Hamburg and Frankfurt were not considered because they involved together4
around 76% of the zones of influence.5

Stepwise OLS was considered in both directions, while BIC was chosen as a selection cri-6
terion. For GLM with lasso models, a Gaussian distribution was considered because it fit better7
the training data. A k–folds cross–validation (35) was implemented to calculate the shrinkage fac-8
tor that helped the models to fit better the data. Concerning GBM, K–fold cross–validation was9
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FIGURE 3: Spatial rentals distribution in cities of the study

realized to find the better number of trees or iterations with an input of 5 folds, a shrinkage factor1
of 0.0001, and an interaction depth of 6. The presence of heteroscedasticity and nonnormality2
in stepwise OLS and GLM led to the selection of logarithmic and Box-Cox transformations. Al-3
though these properties were not identified using GBM, the transformations were also carried out4
for matters of completeness. Outliers analysis was performed that indicated that zones with zero5
arrivals and departures should be removed.6

In total 324 models were built, considering arrivals and departures for three cases (workday,7
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Saturday, Sunday), 6 time intervals (morning, afternoon and night at peak and off–peak periods),1
3 regression modeling techniques (stepwise OLS, GLM, GBM) and 3 transformation techniques2
(no transformation, logarithmic and Box-Cox).3

Regarding the parsimony the models, stepwise OLS selected the fewest number of variables4
with an average in all temporal scales of 15.55 variables, followed by GLM with 26.13 and finally,5
GBM with 39.90. According to the fitting results in the training cities (Figure 4a), R2ad j in the6
three regression methods trend together over different time periods. This indicates a rather indif-7
ference to time goodness-of-fit. Between the regression techniques, GBM usually presented higher8
R2ad j values. According to the validation performed with the city of Kassel, (Figure 4b) shows a9
slight difference between the R2 values of different regression techniques, but there was a signif-10
icant difference according to the time. Afternoons and nights showed the highest performances,11
especially during the weekends. Finally, in all cases, a logarithmic and a Box-Cox transformation12
illustrated a better goodness-of-fit with the logarithmic transformation to be slightly better.13
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FIGURE 4: Comparison of the R2 adjusted from the fit values of different models

Based on the above results, we also performed cross-validation, by dividing ridership data14
in a training set of 5 cities’ zones and a test set of one city’s zone, for the case of GBM with a15
logarithmic transformation. Hamburg and Frankfurt were excluded from this analysis since they16
represent the majority of the zones of influence. The results presented in Figure 5 illustrate a rather17
high performance in most cases, with workdays to have less variation of the validation scores18
than on weekends. The city of Stuttgart, as a testing set, was the only case that showed a better19
performance than the city of Kassel.20

Factors Affecting Bike Sharing21
Aiming at constructing an overview of the factors found to affect ridership, the occurrence of22
parameters in all model structures were used. Figure 6 presents the most often selected variables23
by the regression techniques per time interval. Darker blue indicates higher selection frequency.24
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FIGURE 5: R2 from validation by testing other cities (GBM with log transformation)

The most repetitive variables are the city population, the distance to the city center, bakeries,1
bicycle parking, memorials, residential areas and car sharing stations.2

Multiple international cities approach3
The international application focused on the SBBS systems “Call a Bike” in Hamburg (www.4
callabike-interaktiv.de/de/staedte/hamburg), “Divvy” in Chicago5
(www.divvybikes.com) and “Bixi” in Montreal (montreal.bixi.com). The main objectives of6
this application were the exploration of model transferability and the extraction of conclusions7
for the application of the methods for different city structures on an international level. These8
three cities where chosen since they share common characteristics as representative cities in their9
countries with border limited by a body of water. However, in terms of population, Montreal and10
Hamburg have relatively same inhabitants, but Chicago has around one million more inhabitants.11
Thus, we are referring to mainly large cities, with a rather high population that could have different12
travel characteristics and ridership patterns. As a consequence, the analysis was performed from13
the beginning guiding a somewhat different modeling and validation approach. Bixi-Montreal14
data (36) were collected from April 2014 until November 2017 with a data size of 734 MB and15
545 stations. Divvy system works with 585 stations, where 1.75 GB data (37) was collected from16
June 2013 until December 2017. Finally, 2.5 GB of Call a bike rentals were collected in Hamburg17
from April 2014 until May 2017 in 207 stations (38).18

Data analysis, and processing19
The approach followed for the data analysis and processing was the same as the one for the national20
case, with the exception that the rentals data were aggregated at an additional seasonal level. The21
seasonality was added to analyze its effect on the resulting models. Chicago presented 9.93 rentals22

www.callabike-interaktiv.de/de/staedte/hamburg
www.callabike-interaktiv.de/de/staedte/hamburg
www.callabike-interaktiv.de/de/staedte/hamburg
www.divvybikes.com
montreal.bixi.com
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per day interval per station, while Hamburg 24.59 and Montreal 16.47. Figure 7 shows the distri-1
bution of rentals per day interval in Chicago, Hamburg, and Montreal. These three cities present a2
relatively similar distribution with an exception on the day interval "Morning I" on weekends. Fig-3
ure 8 illustrates some examples of the spatial distribution of the rentals per time interval. It shows4
higher ridership close to bodies of water. Concerning independent variables, 154 built environ-5
ment variables were present in the three examined cities following the procedure as in the national6
approach, where finally 113 non-collinear variables were considered for the modeling procedure.7

Model building, validation and variables selection8
Stepwise OLS with a logarithmic transformation was used for the model building. The choice9
of using only one method was based on the computational time required to estimate all models10
and because in the national application it was the most parsimonious method while preserving11
relatively good fitting results. 72 models were built (one for each of four seasons, six day intervals,12
and workdays, Saturdays, and Sundays). On validation, we considered an alternative approach of13
the national case study by training 70% of the stations, and 30% for validation, without taking into14
account the cities boundaries.15

Model fitting and validation scores for Hamburg, Chicago an Montreal are shown in Fig-16
ure 9. R2ad j resulted of 0.68 as an average in the 72 models, and 0.63 as a R2 score in the testing17
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FIGURE 7: Distribution of rentals per day interval in Chicago, Hamburg and Montreal

process. We run five times the model building as a cross-validation process, where the R2 from the1
validation varied on average around the third decimal. The lower validation results were during2
mornings on the weekends during all seasons, while higher values were associated with summer3
and winter.4

As an example of the resulting influencing factors in summer and winter on workdays,5
Figure 10 presents the t-scores of the resulting models. On average 18.5 variables where selected6
per model. The most common selected variables were the population and the proximity to colleges7
and marina (area serving of leisure boats and yachts), bus stations, and restaurants and cafes.8
Mainly in summer, several variables of high significance which have a negative influence during9
morning and afternoon have a positive influence during the night. Land use influencing ridership10
was mainly residential and parks.11

DISCUSSION12
A data-driven method using exclusively open-source data was applied in two case studies con-13
sidering multiple cities in a national and an international level. From around 800 possible built14
environment variables, the 144 most relevant and non-collinear variables were selected for the15
model building for the national approach, while 113 were selected for the international approach.16

Concerning model applicability, linear and non-linear modeling techniques were tested17
in the national approach. GBM was the regression method that best fit the data, followed by18
GLM. GLM and GBM required cross–validation tests to select the input arguments that helped19
to build models. However, stepwise OLS was parsimonious with fewer input arguments, and20
its results were easier to interpret. The three modeling techniques presented similar validation21
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FIGURE 8: Spatial distribution of rentals per day interval in Chicago, Hamburg and Montreal

results. Logarithmic and Box-Cox transformations helped the models to predict better the arrivals1
and departures and to select logical variables that would influence the shared bicycles ridership.2
Generally, for the three regression methods, the logarithmic transformation performed a higher R23
in the validation phase.4

The advantage of stepwise OLS and GLM was that a variable selection process was implicit5
in the methods, but for GBM a variable selection process had to be developed to select those with6
more influence from the ranking list. The most influencing variables in all of the built models and7
through all time intervals were the population of the city and the distance from the city center (old8
town) to the stations. The population of the city helped to weight the models to have a common9
scale that was not biased if the city was large like Hamburg or small like Marburg. The distance to10
the city center played a significant role for ridership as seen in Figure 2. The third most influencing11
variable is the distance to bakeries. If a station is close to a bakery, this increases the probability of12
higher ridership at that station.13
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FIGURE 9: Model fitting and validation scores for Hamburg, Chicago and Montreal (70% of the
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In all developed models, several selected variables were logically correlated to bike shar-1
ing ridership, were similar to literature review findings (Table 1), and they were coherent on the2
authors’ expectations in influencing the arrivals and departures of bike sharing. For instance, the3
most influencing variables are related to leisure activities, parks, green areas, and bodies of water4
on the weekends, banks in the morning, gas stations, pubs, cinemas, clubs at night, shops on Satur-5
days, and memorials outside of working hours. Just a few transport–related variables significantly6
influenced the models. Distance to a car sharing station was significant for all time intervals as7
well as bicycle parking. The only public transport variable displayed was railways during workday8
mornings. It is worth mentioning that the tram and metro variables were not considered, because9
they were not present in most of the studied cities.10

According to the international approach, stepwise OLS with a logarithmic transformation11
was chosen after the benefits identified in the national approach. On average, 18.5 variables were12
selected per model. Urban structure was found to play an important role based on the distance13
from all stations to the marina and colleges and also land use represented by residential area and14
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parks. Summer and winter presented different factors, for example, bakeries, bus stations, and1
restaurants are more significant in summer and not in winter. Logical variables were present as the2
influence of bar and railway station in summer night or colleges influencing negatively at night.3
An important observation is a correlation with car sharing stations during the night representing a4
possible correlation between car and bike sharing.5

Both approaches showed that the modeling validation results were correlated to the hourly6
ridership distribution. Similar relative ridership hourly distribution was associated with higher7
scores. For example, in the international approach in morning on weekends showed the most8
different distribution between the cities (Figure 7), presenting the worst modeling performance.9
On the other hand, in the national approach, the models that fit better the data were in the afternoon10
and at night where the different cities showed a less variance in the bike sharing usage (Figure 3).11
At these times, models presented better results from the validation and illustrated a more logical12
selection of variables that influenced ridership. Also, on weekends the rate of ridership distribution13
was more similar between the cities than on the workdays (Figure 3) showing higher validation14
results. Finally, it was found that the modeling results did not depend on the size of the cities but15
on the similarity of the distribution of the rate of rentals.16

CONCLUSION17
To the best of the authors’ knowledge, this is the first study that analyzes factors affecting bike18
sharing systems ridership on a local level in multiple cities. The resulting influencing factors are19
not only based on one city but beyond the geographic boundaries, which will help to use the20
resulting models to forecast the bike sharing usage in a different city. A data–driven method was21
developed to analyze the influence of the built environment in the rentals of station–based bike22
sharing systems in multiple cities. An original approach was considered by modeling different23
cities with different sizes in two case studies 1) on a national level and 2) on an international level.24

GBM with a logarithmic transformation of the dependent variables were found to vali-25



Duran-Rodas, Chaniotakis, and Antoniou 19

date slightly better the dataset. Stepwise OLS and a logarithmic transformation of the dependent1
variables was found to select fewer variables than other models without decreasing the validation2
results significantly. In Germany, the most influencing variables selected were the city popula-3
tion, the distance from the stations to the city center, bakeries, memorials, car sharing stations,4
among others. Logical relationships between the variables with the historical bike sharing rentals5
over time intervals were displayed, such as higher arrivals on nights close to pubs, cinemas, and6
nightclubs; or the presence of bodies of water, parks or green areas on Sundays. On an interna-7
tional level, the distance to the marina and colleges played an important role. Different influencing8
factors were present between different seasons.9

The data–driven method will help as a decision-making support tool to implement or ex-10
pand bike sharing systems. Transport planners will have in a relatively brief time an idea of hot11
and cold spots of arrivals and departures of bike sharing systems to help them set coverage areas12
and place stations. This method can also show the validity and increase the reliability of measures,13
policies, and shared mobility projects. Further research and implementation can be developed as14
improvements and expansion of the case of study ( including more variables, such as topography15
or population density) or correlations between factors influencing car and bike sharing.16
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