
GRAPH INPUT REPRESENTATIONS FOR MACHINE LEARNING
APPLICATIONS IN URBAN NETWORK ANALYSIS

A PREPRINT

Alessio Pagani
The Alan Turing Institute, UK

apagani@turing.ac.uk

Abhinav Mehrotra
University College London, UK

a.mehrotra@ucl.ac.uk

Mirco Musolesi
University College London, UK
The Alan Turing Institute, UK
University of Bologna, Italy

m.musolesi@ucl.ac.uk

ABSTRACT

Understanding and learning the characteristics of network paths has been of particular interest for
decades and has led to several successful applications. Such analysis becomes challenging for urban
networks as their size and complexity are significantly higher compared to other networks. The state-
of-the-art machine learning (ML) techniques allow us to detect hidden patterns and, thus, infer the
features associated with them. However, very little is known about the impact on the performance
of such predictive models by the use of different input representations.
In this paper, we design and evaluate six different graph input representations (i.e., representations
of the network paths), by considering the network’s topological and temporal characteristics, for
being used as inputs for machine learning models to learn the behavior of urban networks paths.
The representations are validated and then tested with a real-world taxi journeys dataset predicting
the tips using a road network of New York. Our results demonstrate that the input representations
that use temporal information help the model to achieve the highest accuracy (RMSE of 1.42$).

Keywords Urban Networks, Graph Learning, Path Representation

1 Introduction

Numerous important problems can be studied using the conceptual and theoretical framework of network science.
Several structure and topological properties of networks have been widely studied in the recent years ([12, 14, 5, 9]).
One of the most basic concepts in network science is the definition of network path ([3, 2]), i.e., a sequence of edges
that joins a sequence of edges. In the case of a finite path, it is possible to identify the origin and the destination of a path
as the starting and ending node of the sequence. This concept is widely used to study public infrastructures and utilities,
such as trajectories and traffic flows ([20, 41]), social networks ([38, 24]), ecological networks ([8]), just to name a
few. More recently, researchers have been focusing on the problem of classifying paths ([34, 31, 1, 18]). For example,
in the field of urban networks, classifying the paths (e.g., detecting the mean of transport) and predicting related
characteristics (e.g., cost of a journey) could be useful from different prospectives. Fields of interest concern travel
planning or environmental and social analysis, such as classification of urban areas, for example for understanding
their wealth and wellbeing level.

Recently, machine learning (ML) techniques ([28, 27, 23]) have been applied to the analysis of urban networks ([11,
17, 25]). However, due to memory and computational limitations, performing analysis on the networks remains
challenging as their dimension increases (such as in the case of the road or transport networks of large cities). This
is also due to the fact that, unlike other types of data that are easily transformed for example into time series or grids
(e.g., an image can be represented as a matrix of pixels), there is no standard way of representing the network paths
for using them as input to ML models. When the training dataset is large in size, ML algorithms such as Random
Decision Forests or Deep Neural Networks, require a significative amount of memory and computational power to
train their models ([21, 19]). For this reason, the traditional path representations (such as adjacency matrix) could be
used only when the networks are small (their size increase exponentially with the size of the networks).

ar
X

iv
:1

91
2.

07
66

2v
1

 [
cs

.L
G

]
 1

1
D

ec
 2

01
9

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

In this paper, we investigate the impact of different network path representations that can be exploited as inputs to
effectively train ML models. More specifically, we designed and evaluated 6 different network path representations,
by considering their topological and temporal characteristics, for performing ML-based classification and regression
to predict characteristics associated to the paths, i.e., the value of a linked features (e.g., travel time, cost of a ride).
As a proof of concept and for evaluating the proposed approach, in this paper we compute the tip of the taxi journeys
using only network related features (excluding ride related information, such as cost of the ride, number of people).
In particular, we consider the problem of predicting the tip of a trip by considering a real-world case study, namely
the analysis of the prediction of trips contained in the New York Taxi dataset ([40]). More specifically, the prediction
task that we consider is the estimation of the amount of the tip of each ride by using in input only characteristics of the
road network. In particular we compare two popular algorithms for this task, i.e., Random Decision Forest ([16]) and
Deep Neural Networks ([4, 37]).

The key contributions of this paper can be summarized as follows:

• We propose 6 methods, suitable for large-scale urban networks, to efficiently represent large-network paths
to be used as inputs for machine learning algorithms. Each method is characterized by a different level of
path compression and type of feature selection (e.g., preserving time and topological features).

• We demonstrate that the input representations, used as input to train Random Decision Forests and Deep
Neural Networks, are effective in classifying paths according to some shared properties (e.g., paths with
similar cost or tip value). We evaluate the effectiveness of these representations by considering a real-world
taxi trip data set.

Our results show that the ML model’s performance exploiting different input representations vary according to the
characteristics of the paths, such as the part of the network (i.e., neighborhoods) they cross or the importance of the
origin and destination points (e.g., a node close to an airport is generally more important). For example, when the path
characteristic we want to predict is simple (e.g., the distance of two points in a path), even a basic representation (e.g., a
list of nodes) performs well. On the other hand, in more complex scenarios, considering the specific information about
origin and destination nodes and the network topology (e.g., neighbor nodes) is fundamental to achieve high prediction
accuracy. Moreover, the results of the experiments with the New York Taxi dataset demonstrate that the value of tips
could be predicted with high accuracy (RMSE 1.42$). We also observe that, for this analysis, the input representations
that exploit the network topology are more effective compared to the representations that use the temporal information.

2 Designing Graph Input Representations

2.1 Representation of a Path

In this section we discuss the design of the path representations I (i.e., journeys in the city, public transport lines,
traffic flows) that, associated to a variable y (e.g., price, time), can be used for training ML models. The ML models
can then be used to predict the output variable y of new paths.

All the proposed input designs rely on a basic representation of the nodes’ position: the node vectors. A node vector
in a network of N nodes is defined as an ordered list of size N , where each position in the vector corresponds to
a specific node in the graph. To represent a path in a node vector, we set elements of this vector corresponding to
nodes in the path as 1 (i.e., activated nodes), the rest of the vector elements are set as 0 (i.e., not activated nodes).
Consequently, for any input representation of a network path, a node vector will have at least two nodes set to 1 (i.e.,
origin and destination nodes in the case of a path of length 2). In urban networks, paths can represent journeys in the
city, public transport lines, traffic flows and so on.

The simplest representation of a network path is with only one node vector containing all the nodes of the path.
Overall, we focus on designing graph input representations that are capable of compressing the size of paths while
preserving the temporal, geographic and semantics information. In order to further reduce the dimensionality of the
input we design representations that take into consideration only the most informative parts of a path (e.g., in paths
where origin and destination points are semantically relevant places, the rest of the path may be discarded without
information loss) and the topology of the network.

As shown in Figure 1, different representations can compress the paths in different ways, preserving different types of
relevant information. For example, the origin and destination representation uses only origin and destination points,
highlighting possible relationships between the paths and the semantics of the places; the static path representation
compresses all the information in a single vector, but it does not contain any other specific information; the temporal
sub-paths representation divides the static path in an ordered sequence of sub-paths; the three-steps path representation
is focused on the semantic of the places and on the temporal sequence of the nodes; the k-neighbors representations

2

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

Figure 1: Urban network path representations for ML, each representation has different properties and advantages.

(1-neighbor and 2-neighbors in Figure 1) consider mainly the geographic information, extending the representation
to the surrounding area of the origin and destination of the paths. Finally, the three-steps k-neighbors representation
merges the three-steps path and the k-neighbors representations.

To improve the information available, combination of those representations are also analyzed in the following sections.

2.2 Static Path Representation

In the static path representation, the path representation consists of a single node vector in which each element corre-
sponds to a node in the network. The element is set to 1 if the node belongs to the path, 0 otherwise (Figure 1 (c)).
More formally, given a graph G = [V,E] with V as:

V = [v0, . . . , vN−1] (1)

and a path P of length T (i.e., a sequence of T vertices) defined as:

3

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

P = [v′0, . . . , v
′
j , . . . , v

′
T−1] (2)

then, the resulting representation is the node vector Istatic, which is defined as:

Istatic = [iv0 , . . . , ivN−1
] (3)

where:

∀j ∈ [0, N), ivj = 1 if vj ∈ P, ivj = 0 otherwise.

For example, given a network G with 5 nodes and a path P = [v2, v3, v5] composed of 3 nodes, the static path
representation is:

Istatic = [0, 1, 1, 0, 1].

2.3 Temporal Sub-paths Representation

Temporality, the order of the nodes in the paths, is often an important path feature. In predictive tasks where this
is important, we propose this technique to include temporality. The temporal sub-paths representation embeds the
temporal information of network paths by dividing each path into temporally ordered sub-paths. A sub-path is a
subsequence of the original path, created by splitting it in ordered sub-sequences (i.e., the first i nodes in the path are
assigned to the first sub-path, the second i nodes to the second one and so on). Since a sub-path contains a subsequence
of the original path, using the same logic of the static path representation, we convert each sub-path in a node vector
by setting to 1 only the path nodes that belong to that sub-path. The final result is a list of node vectors, each one
representing a part of the original path.

The lower is the number of nodes in each sub-path, the higher is the number of sub-paths required to represent a full
path and thus the accuracy of the temporal information: in the extreme case of sub-paths with one element, all the
temporal information is preserved. However, the higher is the number of sub-paths and the bigger is the size of the
representation, consequentially increasing the training cost of the ML models (in terms of computational resources
and time).

More formally, given a path P (see Eq. 2), this input representation is the concatenation of S sub-paths (ps), where
s ∈ [0, . . . , S − 1] and a sub-path ps is an ordered sub-sequence of the original path P containing NS nodes. More
specifically, a sub-path is defined as:

ps = [v′NS∗s, v
′
NS∗s+1, . . . , v

′
NS∗s+(NS−1)] (4)

where:

NS is the number of path nodes in each sub-path.

Finally, each sub-path (ps) is converted to a node vector (Is) as:

Is = [iv0 , . . . , ivN−1
] (5)

where:

∀j ∈ [0, N), ivj = 1 if vj ∈ ps, ivj = 0 otherwise.

It is worth noting that if NS is not a divisor of T , the last sub-path would not contain exactly NS nodes, instead it
would comprise of the remainder ones (i.e., T%NS nodes).

Since one of our aims is to limit the size of the input, we set a limit on the maximum number of sub-paths. For
simplicity, if a path exceeds the maximum number of sub-paths, the central ones are removed. The ratio behind this
choice is that we hypothesize that the parts of the journeys with less information are the ones in the center, as opposed
to the origin and destination parts that contain more semantic and geographic information.

Moreover, as also discussed earlier, we assume that the origin and destination nodes may be more relevant than other
nodes, and, therefore, indicating them might be helpful for the network. For this reason the first and last node vectors
in the final input representation contains origin and destination nodes respectively, and then followed by all the other
node vectors in temporal order.

4

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

The resulting input representation is the following:

ITC = I0 t IS−1 t I1 t . . . t IS−2 (6)

where:

S is the maximum number of sub-paths.

This input representation has always be of size S ∗N (i.e., the number of sub-paths multiplied with the total element
in a node vector). Therefore, if a shorter path can only be grouped into less sub-paths than S, all the following node
vectors are all set to 0. On the other hand, if a path has more sub-paths the central ones are removed as we need to
preserve the information about origin and destination.

For example, given a network G with 5 nodes and a path P = [v2, v3, v5] composed of 3 nodes, the temporal sub-path
representation with S = 3 and NS = 1 is:

I0 = [0, 1, 0, 0, 0].

I1 = [0, 0, 1, 0, 0].

I2 = [0, 0, 0, 0, 1].

ITC = I0 t I2 t I1 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0].

2.4 Origin and Destination Representation

This input representation is a variant of the static path representation used when the full path is not available (e.g., enter
and exit points of passengers in the underground network) and the shortest path (or any other technique to reconstruct
the path) does not accurately reflect the condition of the actual path.

This representation is composed of two node vectors, one for the origin and one for the destination node of a network
path (Figure - 1 (g)). Compared to the temporal sub-paths representation, this representation has a significantly smaller
size (it is always 2∗N , one node vector for the origin and one node vector for the destination) and it can thus be used to
represent in a compact manner also those paths whose origin and destination points are considerably more important
than the others (semantic information). Given a path P (see Eq. 2), the resulting input representation is:

IOD = Istart t Iend (7)

where:

Istart is the node vector that includes only the node v0 (all nodes set to 0 except the origin node, set to 1).

Iend is the node vector that includes only the node vT−1 (all nodes set to 0 except the destination node, set to 1).

For example, given a network G with 5 nodes and a path P = [v2, v3, v5] composed of 3 nodes, the origin and
destination representation is:

Istart = [0, 1, 0, 0, 0].

Iend = [0, 0, 0, 0, 1].

IOD = Istart t Iend = [0, 1, 0, 0, 0, 0, 0, 0, 0, 1].

2.5 Three-Steps Path Representation

This technique is an extension of the origin and destination representation that, like that one, discriminates origin and
destination of the journeys (temporal information) but, in addition, it includes the full path sequence of nodes (Figure
- 1 (b)). It is generally less accurate than the temporal sub-paths representation, but it has a significantly smaller size
and it is thus suitable for huge networks (big cities or big areas).

This representation is the concatenation of the origin and destination representation and the non-temporal representa-
tion. The resulting representation has size 3 ∗N and it is defined as follow:

I3steps = IOD t Istatic (8)

In the first node vector there is only the origin node set to 1 while in the second node vector only the destination node
set to 1. Finally, in the third node vector, all the elements of the path are set to 1.

5

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

For example, given a network G with 5 nodes and a path P = [v2, v3, v5] composed of 3 nodes, the three-steps path
representation is:

I3steps = IOD t Istatic = [0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1].

2.6 K-Neighbors Representation

For some classification and regression problems it is important to exploit the network topology and to consider areas
of the network instead of single nodes (e.g., in a road network, two points on the same road are generally more similar
than two points at different boundaries of the city, even if their structural properties are similar). The k-Neighbors
representation is an enriched version of the origin and destination representation, with focus on the neighborhood of
the the origin and destination (geographic information) (Figure 1 - (d) and (f)): given a node vector with one node
activated (hereafter called ’base’ node), the k-neighbors nodes of this base node are also activated (set to 1) in the same
vector. The k-neighbors nodes of a node are its neighbors (nodes linked to it) until grade k. For example, with k = 1
only the nodes directly connected to the ’base’ node are included, with k = 2 also the neighbors of the neighbors of
the base node are taken into account, and so on. As one of the goals of this work is to handle large urban networks and
the geographic information is related to the semantic information, in this input representation the only ’base’ nodes
selected are the origin and destination nodes (the final representation has size 2 ∗N).

Formally, given a path P (see Eq. 2), the k-neighbors representation is:

IKN = Ik−start t Ik−end (9)

where:

Ik−start is the node vector that includes v0 and its k-neighbors.

Ik−end is the node vector that includes vT−1 and its k-neighbors.

For example, given a network G with 5 nodes and a path P = [v2, v3, v5] composed of 3 nodes, node v2 connected to
nodes v1, v3, v4 and node v5 connected only to node v4. The k-neighbors representation is:

Ik−start = [1, 1, 1, 1, 0].

Ik−end = [0, 0, 0, 1, 1].

IKN = Ik−start t Ik−end = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1].

2.7 Three-Steps K-Neighbors Representation

Like the three-steps path representation, this representation is a combination of the k-neighbors representation and
the non-temporal representation. The aim of this representation is to consider the topology of the network (using
k-neighbor), the temporal information (discriminating origin and destination) and the full path, without a significant
memory consumption (the input representation has size 3 ∗N). The resulting representation is:

I3steps−KN = IKN t Istatic (10)

In this representation the first node vector indicates the origin node and its k-neighbors by setting them to 1. While
the second node vector indicates the destination node and its k-neighbors by setting them to 1. Finally, the third node
vector indicates all the nodes of the path by setting them to 1.

For example, given a network G with 5 nodes and a path P = [v2, v3, v5] composed of 3 nodes, node v2 connected to
nodes v1, v3, v4 and node v5 connected only to node v4. The three-steps k-neighbors representation is:

I3steps−KN = IKN t Istatic = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1].

3 Evaluation Setup

In this section we discuss our approach to evaluate the proposed input representations. We start with discussing
the dataset used, then the construction of prediction models and, finally, we introduce the baselines and metrics for
quantifying the performance of prediction models.

6

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

3.1 NYC Taxi Dataset

People use taxis to travel from one part of a city to another. Along with the bill there is a tip offered to the drivers that
reflects the willingness of users to pay some extra money for their trips. Although the tip depend on several factors,
we hypothesize that the network topology is key factor for determining it. Therefore, we use a dataset of taxi trips for
constructing a model that can predict the tip for each trip. The key motivation for using this dataset as a case study is
that it can be used to improve the pricing policy of the private companies, i.e. by detecting the areas of the city with
the highest willingness to pay at different times, setting the right fares or moving the cars in more profitable areas.

We use the yellow and green taxi trip dataset ([40]) containing the information about 1 million taxi trips during a
period of 12 months. The trip information included in the dataset is as follows: VendorID, pick-up date and time,
drop-off date and time, passenger count, trip distance, pick-up longitude, pick-up latitude, RatecodeID, store and
fwd flag, drop-off longitude, drop-off latitude, payment type, fare amount, extra, mta tax, tip amount, tolls amount,
improvement surcharge, total amount. However, we consider only the pick-up and drop-off locations of trips to model
our problem. In this work we used the dataset of the first 6 months of 2016, using 1 million of rides in the area of
Manhattan and Brooklyn. We selected these two areas in order to have a variety of business and residential areas,
shopping and touristic areas as well as an airport. The journeys used for training and validating the models are filtered
so as to obtain datasets with a uniform distribution of the tips. This assure that the models are general and able to
predict all possible tip values, avoiding overfitting around the most common tip values.

In this work the urban network is built using the New York City road data provided by OpenStreetMap (OSM) ([30]),
that is composed of 20,990 nodes. In order to create a network path for each trip, the pick-up and drop-off locations of
that trip are associated to the closest node in the road network and the route of the trip is then estimated by computing
the shortest path with the Dijkstra’s algorithm ([10, 26]).

3.2 Constructing Predictive Models

We construct models for predicting tips with each input representation by using two machine learning algorithms: (i)
Random Decision Forest ([16]) and (ii) Deep Neural Network ([4, 37]). The rationale behind using these two algo-
rithms is to test the proposed input representations with machine learning algorithms with different learning techniques
and peculiarities. We fine tune both models by optimizing their hyper-parameters as discussed below.

3.2.1 Tuning the Random Decision Forest Algorithm

We tune the Random Decision Forest algorithm by optimizing the following three hyper-parameters: (i) number of
trees, (ii) max depth of the trees, and (iii) minimum number of samples required to split an internal node or to be a leaf
node. This is performed through a standard tuning function of the Scikit-learn Python library ([32]).

3.2.2 Tuning the Deep Neural Network Algorithm

In order to tune the deep neural network models there are two key hyper-parameters to be optimized: (i) the number of
hidden layers, and (ii) the number of nodes in the hidden layers. However, the process of finding the optimal values for
these parameters is an intricate task, consequently, we optimized the value by exploring the number of hidden layers
between 1 and 5. Moreover, the number of nodes are set as follows:

ni = ILsize/(NDR ∗ i) (11)

Here, ni indicates the number of nodes in ith layer, ILsize refers to the size of input layer, and NDR refers to node
division ratio, which is optimized ∈ [4, 8, 16, 32, 64].

Another parameter we consider for optimization is the dropout ratio ([39]), which is used to prevent overfitting the
models. During training, random nodes are dropped, along with their connections, from the neural network generating
different thinned networks. During test phase, an unthinned neural network (without dropout) is used. We performed
the evaluation by using values of dropout ratio between 0% to 50% with a step of 10%.

3.3 Evaluation Criteria

In order to quantify the performance of models, we compute the root mean-squared error (RMSE) for the test predic-
tions. Moreover, we use the k-fold cross validation technique for validating the models because it significantly reduces
bias as most of the data is used for fitting, and also significantly reduces variance as most of the data is also being used
in validation set. The folds are constructed by dividing the dataset in k folds, using k− 1 folds to train the models and

7

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

the remaining one for validation. The experiments are repeated k times, in order to use each possible combination of
training and validation folds, and the average of the outcomes is used as final result.

In order to examine a model’s performance we compare it with two baselines: overall average tip and area average
tip. The overall average tip baseline is the simplest case in which the average of the overall tips in the dataset is used
as a prediction output. The area average tip baseline takes the average of tips for all rides with similar departure and
destination areas and uses it as prediction output. Here, an area is defined as a circle with radius r and center in the
origin or destination of the considered ride. For the taxi dataset we selected the optimal radius r by testing different
values from 0.1 km to 5 km (optimal r is 1 km).

4 A Case Study: Predicting the Tip for Taxi Rides

In this section we present the results for the tip predicting task for given taxi trips, using the NY Taxi Journeys dataset1.
In a taxi ride, the quantity of tip left depends on several factors, the main ones are the travel time and distance. In
this case study we argue that there are other latent factors that influence the amount of tips. In order to investigate
this, we try to predict the tips left in New York City (Manhattan and Brooklyn) using exclusively the urban network
graph and representing the journey path (from the origin to the destination) through the input representations defined
above. We did not include the geographic distance of a journey (i.e., the sum of the length of the edges between all
traversed nodes) because this would bias the results by possibly training models that compute the total length of a path
to predict the tip, which is already known to be a factor that determines it. The objective is to extract information
without calculating any secondary metrics calculated from the graph (e.g., distance between origin and destination).
We use this approach to design general and scalable models. As a result, the input representations can be adopted in a
wide range of applications where graph learning is required.

We examine the effectiveness of these input representations for training two types of ML algorithms: Random Forest
and Deep Neural Network. We chose these two algorithms because they are among the most widely used for this kind
of regression problems. Moreover their comparison represents an interesting case of study: both models tend to be
very powerful - yet surprisingly uncorrelated. As such, analyzing the two approaches proves the general effectiveness
of the proposed input representations. Finally, both algorithms are used to construct models by using each input
representation as the input, which enables us to compare the effectiveness of individual representations for enabling
a model to predicting the tip for journeys. Moreover, it is worth noting that we fine-tuned models for both ML
algorithms by using the grid search approach. Furthermore, we use the k-fold cross validation approach (with k = 20)
to statistically validate of our results.

In Figure 2 we compare the performance of models trained using the different input representations with both Random
Forest and Deep Neural Network. We use the overall average tip (RMSE 2.54$) and area average tip (RMSE 2.21$)
as baselines for prediction performance. The results demonstrate that the full path itself (i.e., non-temporal represen-
tation) achieves RMSE 1.55$. However, adding temporality to the input representation (i.e., using (i) the temporal
sub-paths representation and (ii) the 3-steps representation) the performance of models do not improve (i.e., RMSE of
1.61$ and 1.52$ respectively). This could be due to the fact that people going from place A to place B leave a similar
tip as people going from place B to place A.

On the other hand, when we use only origin and destination nodes of a path (i.e., origin and destination representa-
tion) the trained models do not perform better than the baselines (RMSE 2.10$). This depicts that this representation
does not contain enough information for effectively learning the path behavior of huge graphs. However, we observe
that by considering the network topology along with origin and destination nodes (i.e., using the k-neighbours rep-
resentation) the performance of models can be improved compared to using only information about the origin and
destination nodes. More specifically, our models using the k-neighbours representation with k as 10 and 15 achieve
the RMSE of 1.66$ and 1.57$ respectively, which is comparable to the performance of models using the non-temporal
representation. Overall, we observe that the best performance (RMSE 1.42$) is achieved by using 3-steps k-neighbor
representation (i.e., when we concatenate the k-neighbor representation and the non-temporal representation) for con-
structing the models.

For completeness, we compared our results also with models that use the distance feature, a parameter already known
to be correlated to the value of a tip: these models reach an accuracy comparable to the models trained using our
best input representation (RMSE approximately equal to 1.51$). It is worth noting that the main difference is that our
approach is not based on engineered features.

1We firstly performed an extensive analysis to measure the robustness of the proposed input representations using synthetic
networks. Our results show that all the representations lead to accurate predictions even in presence of noise. The analysis can be
found in the Supplementary Material.

8

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

Figure 2: Tip prediction: comparison of the input representations, Random Forest and Deep Neural Network models
are trained with all the representations and their performance are compared.

It is worth noting that the observations regarding the performance of the input representations could be specific to this
prediction task. We believe that all proposed input representations should be examined in other types of prediction
tasks to validate their performance for those cases. In fact, depending on the task, the relevant information could
be different and thus also the best input representation. For example, predicting the fare of trips might require more
temporal information, while detecting areas where people go during leisure time might require topological information.

The impact of the DNN hyper-parameters configuration is discussed in Appendix 1 (see Supplementary Material).

4.1 Trip Fare Prediction

Tip prediction has been chosen as the main case study because this is a complex task that depends on many factors
and it represents an exemplar application for the proposed input representations. As a comparison, in this section we
discuss the input representations performance with another regression task. Using the same path representations, we
trained different ML models to predict trip fares using only the road network and the trip paths. This task is usually
accomplished using approaches computationally less expensive, as trip fares are mainly a combination of distance and
time. However, we performed this analysis to prove that our approach is general and that it can be applied to different
types of regression tasks, with the advantage that it can also be used for in-depth graph-based socio-economic analysis
of cities.

Our results show that, similarly to the main case study, Neural Networks and Random Forests models have similar
performance. As expected, the length of the path influences the final cost of a journey and representations that include
the full path perform better that the baselines (overall average cost RMSE 74$, area average cost RMSE 63$): static
path, temporal sub-paths and three-steps representations obtain RMSE values between 40$ and 50$. The models
trained with k-neighbors representations (RMSE around 20$), surprisingly, obtain a significant improvement compared
to the full path ones. These results suggest that k-neighbors representations, having the ability to detect specific areas,
identify specific places (e.g., places that can be reached only using toll roads, like airports). The best results, as in the
main case study, are obtained using the models trained with three-steps k-neighbors representations (RMSE 18.5$). A
summary of the results is shown in Figure 3.

4.2 Performance Analysis

In this section we compare the performance of the different path representations in terms of time required to train a
single model and memory used. We are interested in the most computationally-expensive model, i.e., Deep Neural
Networks. The graph is composed of 20,990 nodes and the models are trained on a machine with the following setup:
Ubuntu 16.04, Intel Xeon CPU E5-2690 v3 2.60GHz, 56GB RAM, GPU Tesla K80 24 GB GDDR5.

9

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

Figure 3: Fare prediction: comparison of the input representations, Random Forest and Deep Neural Network models
are trained with all the representations and their performance are compared.

Our analysis (Table 1) shows that the fastest representation is the static path representation (that uses only one node
vector): it requires around 40 minutes to train a Deep Neural Network model. Using two node vectors (origin and
destination and k-neighbors representations) doubles the training time, while the three-steps path and three-steps k-
neighbors representations (3 node vectors) require, on average, 135 minutes. The most computationally intensive
representations are the temporal sub-paths that, depending on the number of sub-paths, use up to 850 minutes for
training a single model. From a memory usage perspective, the resource requirement has a pattern similar to time:
generally, a smaller number of vector nodes require less memory (2.4GB for the static path representation). However,
it is worth noting that, thank to software optimizations, even when the number of node vectors is the same, sparser
matrices require less memory. For example, considering the k-neighbors representation, the memory required for
the case of 5 neighbors is 4.1 GB. This raises to 5GB for 10 neighbors and it reaches 9GB when 15 neighbors are
considered.

Path representation Time (min) Memory (GB)
Static path 40 2.4

Temporal sub-paths (c=5) 850 53
Temporal sub-paths (c=10) 420 28

Origin and destination 80 2.4
Three-steps path 135 3.7

K-neighbors (k=5) 80 4.1
K-neighbors (k=10) 80 5
K-neighbors (k=15) 80 9.1

Three-steps k-neighbors (k=5) 135 5.7
Three-steps k-neighbors (k=10) 135 6.6
Three-steps k-neighbors (k=15) 135 10.8

Table 1: Performance comparison: time and memory required to train a single deep neural network. System used:
Ubuntu 16.04, Intel Xeon CPU E5-2690 v3 2.60GHz, 56GB RAM, GPU Tesla K80 24 GB GDDR5.

5 Related Work

In this section we review the related work in two key areas, namely the studies about design of ML techniques based
on graph inputs and some examples of ML approaches already used in urban network analysis.

10

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

5.1 Graph Input Representations

Several graph embedding algorithms have been proposed in the past to generate vector representations for prediction
tasks ([6, 7, 33, 15]). Ideally, adequate embeddings should not suffer a loss of information compared to the original
graph. One of the most commonly used techniques is to obtain the decomposition of a network through clustering
algorithms. For instance, one-vs-rest logistic regression([7]) (i.e, training N different classifiers, each one designed
for recognizing only a specific class) was used in relevant works such as DeepWalk ([33]) and Node2Vec ([15]).
DeepWalk ([33]) uses local information obtained from truncated random walks to learn latent representations by
treating walks as the equivalent of sentences. In Node2Vec [15] continuous feature representations are learnt for nodes
in networks to map them to a low-dimensional space preserving nodes neighborhoods.

Graphs inputs in neural networks have been studied by [13] and by [36] as a form of recurrent neural networks. The
authors use repeated application of contraction maps as propagation functions until node representations reach a stable
fixed point.

A propagation rule that uses convolution-like operations on graphs and methods for graph-level classification has
been proposed by [11], which requires to learn node degree-specific weight matrices which does not scale to large
graphs with wide node degree distributions. This limitation has been overcome by [22], they propose a model that
uses a single weight matrix per layer and deals with varying node degrees through an appropriate normalization of the
adjacency matrix. In contrast to these studies that focus on identifying general network features, in this study we focus
on network paths by designing input representations that enable ML algorithms to classify them or predict values that
are associated to them (i.e., cost, time).

5.2 Machine Learning and Urban Networks

Previous works in the area of urban network networks are focused on spatio-temporal modeling ([43, 42]): [43] pro-
posed a deep learning framework for traffic prediction, integrating graph convolution and gated temporal convolution
through convolutional blocks. Their framework captures comprehensive spatio-temporal correlations through model-
ing multi-scale traffic networks. [42] designed a generic DNN framework, used for traffic analysis and forecasting,
with focus on data that is sparse in both space and time. They proposed a feed forward multilayer perceptron with
each node and each edge associated with LSTM cascades instead of weights and activation functions. The estimation
of fares is indeed of great interest for efficient trip planning [29]. The problem of taxi fare prediction using Deep
Learning approaches is studied in [35]. Compared to this body of work, our focus is on the representation of the paths
for training a wide range of ML models, instead of on the design of s specific framework. Moreover, we compress
the information before the training of the models. This allows researchers to deal with larger networks that could not
otherwise analyzed.

6 Conclusions

In this paper we proposed six novel path input representations of urban network paths that can be used as inputs of ML
algorithms for classification and regression problems. Since urban networks are usually very large in size, we designed
input representations that could compress the size of the paths while aiming at preserving as much information as
possible.

We examined the effectiveness of the designed input representations considering a real world case-study. More specif-
ically, we used these representations as inputs for random decision forest and deep neural network models to predict
tips for taxi journeys in New York City using a publicly available dataset as groundtruth. Our results demonstrated
that the best performance (i.e., RMSE of 1.42$) are obtained exploiting the full path enriched with the origin and
destination points of the trips and their neighborhoods (3-steps k-neighbors representation). Our analysis also shows
that the proposed input representations are effective for classifying urban networks paths. We observe that the 3-steps
k-neighbors is the best representation for predicting tips of taxi rides. However, we are also aware that, depending on
the path characteristics and the size of the network, the best representations for other prediction tasks may be different.

Finally, is worth noting that the innovation of this work is not only in the application itself, but it is mainly method-
ological. The proposed input representations can be applied not only to urban networks, but to a variety of regression
and classification problems based on paths in large-scale networks.

Comments

Accepted for Publication in Environment and Planning B: Urban Analytics and City Science. To Appear.

11

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

References

[1] Charu C. Aggarwal and Haixun Wang. Managing and Mining Graph Data. Springer US, 2010.
[2] Ravindra K. Ahuja. Network Flows: Theory, Algorithms, and Applications. Pearson Education, 2017.
[3] K. Arun and R. Rejimoan. A survey on network path identification using bio inspired algorithms. In Proceedings

of 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-
Informatics (AEEICB’16), pages 387–389, Chennai, India, 2016.

[4] Yoshua Bengio, Aaron Courville, and Vincent Pascal. Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:1798–1828, 2013.

[5] John Adrian Bondy. Graph Theory With Applications. Elsevier Science Ltd., 1976.
[6] Paul Compagnon and Killian Olliver. Graph embeddings for social network analysis, state of the art. Master’s

thesis, INSA Lyon, 2016.
[7] D. R. Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B

(Methodological), 20(2):215–242, 1958.
[8] Mark R.T. Dale. Applying Graph Theory in Ecological Research. Cambridge University Press, 2017.
[9] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, August 2005.

[10] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–271, Decem-
ber 1959.

[11] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-
Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 2224–2232. Curran Associates, Inc., 2015.

[12] Khidir Ali Ferozuddin Riaz. Applications of graph theory in computer science. In International Conference on
3D Digital Imaging and Modeling, pages 142–145, Bali, Indonesia, 2011. IEEE Computer Society.

[13] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In Pro-
ceedings of IEEE International Joint Conference on Neural Networks. Montreal, Que., Canada: IEEE, pages
729–734, 2005.

[14] Jonathan L. Gross and Jay Yellen. Graph Theory and Its Applications, Second Edition (Discrete Mathematics
and Its Applications). Chapman & Hall/CRC, 2005.

[15] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16), pages 855–864,
San Francisco, CA, USA, 2016.

[16] Tin Kam Ho. Random decision forests. In Proceedings of the Third International Conference on Document
Analysis and Recognition (ICDAR’95), pages 278–282, Washington, DC, USA, 1995. IEEE Computer Society.

[17] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-RNN: Deep learning on spatio-
temporal graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las
Vegas, NV, USA: IEEE, pages 5308–5317, 2016.

[18] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Catching synchronized behaviors
in large networks: A graph mining approach. ACM Trans. Knowl. Discov. Data, 10(4):35, 2016.

[19] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 349(6245):255–
260, 2015.

[20] E. Kanoulas, Yang Du, Tian Xia, and Donghui Zhang. Finding fastest paths on a road network with speed
patterns. In 22nd International Conference on Data Engineering (ICDE’06). Atlanta, GA, USA: IEEE, pages
10–20, 2006.

[21] M. J. Kearns. The Computational Complexity of Machine Learning. PhD thesis, Harvard University, Cambridge,
MA, USA, 1989. UMI Order No: GAX89-26128.

[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In Pro-
ceedings of the 5th International Conference on Learning Representations (ICLR’17), 2017.

[23] Sotiris B. Kotsiantis. Supervised machine learning: A review of classification techniques. In Proceedings of
the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI
Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, pages 249–268,
2007.

12

Graph Input Representations for Machine Learning Applications in Urban Network Analysis A PREPRINT

[24] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a Social Network or a News
Media? In Proceedings of the 19th International Conference on World Wide Web (WWW’10), pages 591–600,
2010.

[25] Wei-Hsun Lee, Shian-Shyong Tseng, and Sheng-Han Tsai. A knowledge based real-time travel time prediction
system for urban network. Expert Syst. Appl., 36(3):4239–4247, April 2009.

[26] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer Publishing
Company, 2008.

[27] S. Ryszard Michalski, G. Jaime Carbonell, and M. Tom Mitchell, editors. Machine Learning an Artificial Intel-
ligence Approach Volume II. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1986.

[28] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
[29] Anastasios Noulas, Vsevolod Salnikov, Renaud Lambiotte, and Cecilia Mascolo. Mining open datasets for

transparency in taxi transport in metropolitan environments. EPJ Data Science, 4(1):23, 2015.
[30] OpenStreetMap, 2018. Available at https://www.openstreetmap.org/relation/175905 (accessed 20

August 2019).
[31] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki. Supervised pattern classification based on optimum-path forest.

Int. J. Imaging Syst. Technol., 19(2):120–131, 2009.
[32] Fabian Pedregosa, Gal Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Math-

ieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cour-
napeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[33] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD’14. New York, NY, USA: ACM, pages 701–710, 2014.

[34] Mallinali Ramrez-Corona, L. Enrique Sucar, and Eduardo F. Morales. Hierarchical multilabel classification
based on path evaluation. International Journal of Approximate Reasoning, 68:179–193, 2016.

[35] Alberto Rossi, Gianni Barlacchi, Monica Bianchini, and Bruno Lepri. Modelling taxi drivers’ behaviour for the
next destination prediction. IEEE Transactions on Intelligent Transportation Systems, pages 1–10, 2019.

[36] Franco Scarselli, Marco Gori, Ah Chung Tsoi, and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, pages 61–80, 2009.

[37] Juergen Schmidhuber. Deep learning in neural networks: An overview. In Neural Networks, volume 61, pages
85 – 117, 2015.

[38] Balaji Vasan Srinivasan, Akshay Kumar, Shubham Gupta, and Khushi Gupta. Stemming the Flow of Information
in a Social Network. Springer, 2014.

[39] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958,
2014.

[40] TLC Trip Record Data, NYC Taxi & Limousine Commission, 2018. Available at http://www.nyc.gov/html/
tlc/html/about/trip_record_data.shtml (accessed 20 August 2019).

[41] Tom Van Woensel and Nico Vandaele. Modeling traffic flows with queueing models: A review. Asia-Pacific
Journal of Operational Research (APJOR), 24(4):435–461, 2007.

[42] Bao Wang, Xiyang Luo, Fangbo Zhang, Baichuan Yuan, Andrea L. Bertozzi, and P. Jeffrey Brantingham. Graph-
based deep modeling and real time forecasting of sparse spatio-temporal data. In Proceedings of KDD’18, 2018.

[43] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting. In Proceedings of JCAI’18, pages 3634–3640, Stockholm, Sweden, 2018.

13

https://www.openstreetmap.org/relation/175905
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

	1 Introduction
	2 Designing Graph Input Representations
	2.1 Representation of a Path
	2.2 Static Path Representation
	2.3 Temporal Sub-paths Representation
	2.4 Origin and Destination Representation
	2.5 Three-Steps Path Representation
	2.6 K-Neighbors Representation
	2.7 Three-Steps K-Neighbors Representation

	3 Evaluation Setup
	3.1 NYC Taxi Dataset
	3.2 Constructing Predictive Models
	3.2.1 Tuning the Random Decision Forest Algorithm
	3.2.2 Tuning the Deep Neural Network Algorithm

	3.3 Evaluation Criteria

	4 A Case Study: Predicting the Tip for Taxi Rides
	4.1 Trip Fare Prediction
	4.2 Performance Analysis

	5 Related Work
	5.1 Graph Input Representations
	5.2 Machine Learning and Urban Networks

	6 Conclusions

