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The optical power of a thick spherical lens and its Coddington shape factor are essential 
magnitudes that characterize its image quality. We propose an experimental procedure 
and apparatus that allow accurate determination of those magnitudes for any spherical 
lens from geometrical measurements. It overcomes the drawbacks of other devices that 
need of the refractive index or may damage the lens surfaces, like spherometers, and 
provides similar results to commercial lensmeters. 
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1. Introduction 
The optical power and the shape factor are essential magnitudes that characterize the image quality 
of any lens, including ophthalmic, contact or intraocular lenses. In fact, optical aberrations are 
highly dependent on the shape and the index of refraction of the lens [1]. Despite the determination 
of the effective focal length (EFL) of a lens is an old topic in optical metrology, new works are still 
published [2]. Some methods provide very accurate measurements of EFL [3]; however, they need 
of sophisticated material with complex experimental setups. Spherical lenses are the most common 
ones since they are simpler and cheaper to manufacture. The optical power and the shape factor are 
usually computed from the measurement of the curvature radii of its surfaces through a spherometer 
[4]. However, this procedure cannot be translated to delicate lenses since the spherometer may 
produce scratches on the optical surface and damage the treatment layers. We present a simple 
method to obtain the EFL and shape of a lens just through measuring the location of some points on 
its surfaces.  

2. Methods 
A spherical surface centred at ( ), ,c c cC x y z=  and curvature radii r can be represented by: 

           (1) 

Let us consider n points located on a spherical shell at the Cartesian coordinates , 

with ; and let us suppose that the origin of the spatial reference system is set on 

one of these points, . The remaining  points with respect to  can be expressed as: 

     (2) 
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and get a system of ( 1)n−  equations with three unknowns . A system of equations has 

solution if it is compatible and determinate, i.e. it should have, at least, 3 equations. So, the 
minimum number of points must be n =4. Therefore, we get, in matrix form: 
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   (3) 

We just must solve  and finally obtain the curvature radius of the sphere as:  

       (4) 

Although the presented method is clear, we notice that equation system in (3) is very sensitive to 
small changes, even within the experimental error. This happens because the matrix A is often ill-
conditioned, i.e. the system of equations is highly unstable. In order to avoid the ill-conditioning of 
A, it is necessary to increase the number of sampled points in the spherical shell and, accordingly, to 
obtain a new system of equations. Now, instead of expression (3), the system is an overdetermined 
linear system of m equations with 3 unknowns 3 0 1'× ×=m mA X B . If 3mA ×  is full rank, the approximate 

and unique solution will be the vector X '0 ∈ !
m  that minimizes the value ( )23 0 1 2

'× ×−m mA X B , i. e. 

the Euclidean norm. This approach leads to the following system of normal equations: 

[ ]0 3 1' +

× ×= m mX A B  where [ ]3
+

×mA  is the Moore-Penrose pseudo-inverse matrix of 3×mA . 

Therefore, if we manage to measure three points over a shell with respect to a fourth one, we can 
determine the curvature radius of the lens. We select points on one surface of a spherical lens, just 
by marking them with black ink. Then, we place the lens on a microscope plate, with the marks 
oriented towards the objective. We have used a microscope (Alphaphot-2 microscope from Nikon 
with a 10x objective and NA=0.25) with a plate that can be moved in X and Y directions and 
vertically (Z axis). Two gauges of 0.1 mm sensitivity provide the position in the XY plane, while a 
0.0022 mm sensitivity micrometer measure vertical movements. To increase the sensitivity in the 
XY plane, an optical mouse is mounted attached to the vertical displacement. The mouse shows the 
horizontal movement on a computer screen (1280x1024 px). The cursor location is related to the 
horizontal movement through a factor of 0.021 mm/px, so the sensitivity is improved in 5 times. 

 

Fig. 1 (a) Biconvex lens. (b) Meniscus. (c) Biconcave lens (d) Location of  on a spherical surface  

The measuring process begins by setting the origin . So, we first simply focus one of the marks 

on and, then, focus the 3 remaining points on and measure the displacements  with 

respect to the origin point. Hence, we can obtain the curvature radius (4) for each surface. Curvature 
radii help us to obtain the central thickness of the lens. In the scheme in Fig. 1 (d), we start focusing 
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 on and then we look for focusing ( )0,0,V r  on, just by moving the plate of the microscope. It 

consists of a horizontal displacement,  and y '0  from (3), and a vertical shift until the vertex.  
Once reached V1, the determination of the central thickness is different depending on the shape of 
the lens. In cases Fig. 1(a) and Fig 1(b), central thickness is obtained just by looking for the point 

, which is directly marked on the supporting plate. The lens is removed from the microscope and 
the plate is focused. The vertical movement of the microscope is directly the central thickness of the 
lens. The process is more complex in the case Fig. 1(c). If we look at Fig. 2, from , we can 
horizontally displace the plate and look for the point A, just in the border of the lens. That 
displacement corresponds to e. Then, we go back to  and remove the lens to focus on the plate. 

The distance from  to the base is g. Then, central thickness is d = g + r2
2 − e2 − r2 . The last 

magnitude that we need is the refractive index. Following Fig. 2, we start focusing  on. Without 
removing the lens, we focus the opposite vertex on, by displacing the plate |s’2|. Since we are 
looking at V2 through the lens, what we see is the image V’2. This image is given by the upper 
surface, with radius r1, that separates a medium of refractive index n from air. 

 

Fig. 2. Scheme that shows distances needed to obtain the central thickness and the refractive index. 

From Geometrical Optics, and taking into account the sign convention for the curvature radii 
(biconvex: r1>0, r2<0; meniscus: r1>0, r2>0, biconcave: r1<0, r2>0) and for distances (s’2<0 in all 
cases), we can deduce that the refractive index and the optical power of a thick lens.  
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Geometrical Optics determines the back vertex power of a thick lens as Pb = P 1− d n−1
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3. Results 
We apply the technique to measure the shape factor and power of an ophthalmic meniscus contact 
lens. First, the measured back vertex power of the lens through a lensmeter (Nidek LM-770) results 

4.00 0.12 bP D= ± . Next, we have sampled points at the two surfaces of the lens and have 
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computed the coordinates of the origins for both surfaces. In Fig. 3, we show the variation of the 
condition number with the number of sampled points for both surfaces. As can be seen, the system 
tends to stabilize after around 15 samples.  

 
Fig. 3: Variation of the condition number with the number of sampled points for both surfaces 

Obtained parameters in Table 1 lead us to conclude that the curvature radii are 68.09±0.08 mm and 
151.9±0.1 mm, for convex and the concave sides of the lens, respectively. Finally, we measured 

22.49 0.03e mm= ± , 6.982 0.003g mm= ±  and 2' 3.693 0.007s mm= − ± , so the optical power and 
the shape factor are 3.92 0.06= ±P D  and 2.625 0.005= ±q , respectively. Back vertex power 

results Pb = 4.02±0.06D , which implies a relative deviation below 0.5% compared to the value 
measured using the commercial lensmeter. 

Table 1. Parameters obtained for each radius and its error 

 x '0 mm( )  

 

y '0 mm( )  z '0 mm( )  

Convex surface -14.001±0.004 -14.96±0.02 64.94±0.08 
Concave surface -10.08±0.01 -8.28±0.01 151.4±0.1 

4. Conclusions 
We have proposed a method for measuring the geometry and optical power of a spherical lens. It 
does not need of contact devices and it is able to provide the curvature radii and power of lenses of 
any size. Applying spherometers is not always possible if the lens is too small. We just have to 
accurately measure the location of different points on the surfaces. In principle, this can be achieved 
simply by changing the microscope. At last, but not least, the method does not need of the refractive 
index, whereas other instruments used to measuring optical power or curvature radii do. 
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