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Abstract. The performance of multi-task learning hinges on the design of fea-
ture sharing between tasks; a process which is combinatorial in the network depth
and task count. Hand-crafting an architecture based on human intuitions of task
relationships is therefore suboptimal. In this paper, we present a probabilistic
approach to learning task-specific and shared representations in Convolutional
Neural Networks (CNNs) for multi-task learning of semantic tasks. We introduce
Stochastic Filter Groups; which is a mechanism that groups convolutional kernels
into task-specific and shared groups to learn an optimal kernel allocation. They
facilitate learning optimal shared and task specific representations. We employ
variational inference to learn the posterior distribution over the possible group-
ing of kernels and CNN weights. Experiments on MRI-based prostate radiother-
apy organ segmentation and CT synthesis demonstrate that the proposed method
learns optimal task allocations that are inline with human-optimised networks
whilst improving performance over competing baselines.

1 Introduction

The performance of predictive models is tied to the quality of the learned represen-
tations. This is important in medical image computing; where the learned low-dimensional
embeddings [1] or features representing the spectrum of disease phenotypes [2] influ-
ence the utility of automated clinical tools. Multi-task learning (MTL) has been suc-
cessful in medical image analysis [3, 4] as it can enhance learning efficiency and model
performance by leveraging the inductive bias when jointly solving related tasks. [5]

A key factor for successful MTL models is the ability to determine when to share
features within a network. A mechanism is needed to understand the commonalities and
differences between tasks to effectively transfer information while optimising weights
for individual tasks. The quality of this process is determined by the architectural de-
sign, where features or weights are either shared or task specific [6,7]. However, the
space of possible architectures is combinatorially large whilst manual exploration of
this space is inefficient and subject to bias on prior beliefs of task relationships. The
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Fig. 1: Left) Illustration of filter assignment in a SFG module. Right) Possible grouping patterns
learnable with the proposed method. The pink, green and blue blocks represent the ratio of filter
groups G1 (pink), G5 (green) and G2 (blue), where (i) is the case a uniform kernel split, (ii) &
(iii) where the networks becomes increasingly task-specific (iv) and an heterogeneous task split.

number of kernels to allocate to each task or to a joint representation depends on the
difficulty of individual tasks and the relationship between them [8]; neither of which
are a priori known in most cases.

In an MTL setting, one would like to learn where to share network components
across tasks to maximise performance. The main challenge lies in designing a mecha-
nism that determines how and where to share CNN weights. There are broadly two cat-
egories for weight sharing in MTL networks. The first directly optimises weight sharing
to maximise task-wise performance by learning a set a vectors that control which fea-
tures are shared within a layer and how these are distributed across [6, 7, 9]. The second
group of MTL methods focuses on weight clustering based on task-similarity, which
can be performed by iteratively growing a tree-like deep architecture that clusters sim-
ilar tasks hierarchically [10] or through maximising task’s statistical dependency [11].

In this paper, we propose Stochastic Filter Groups (SFGs); a probabilistic mech-
anism that learns how to allocate kernels to task-specific and shared groups in each
layer of MTL architectures (Fig. 1-Right). Specifically, the SFGs learn to allocate ker-
nels in each convolutional layer into either “specialist” groups or a “shared” trunk,
which are respectively specific to or shared across different tasks. The SFG equips the
network with a mechanism to learn inter-layer connectivity and thus the structure of
task-specific and shared representations. We evaluate the efficacy of SFGs on a joint
semantic regression (i.e. image synthesis) and semantic segmentation (i.e. organ seg-
mentation) problem applied to prostate data. Experiments show the proposed method
achieves higher prediction accuracy than baselines with no mechanism to learn connec-
tivity structures. Importantly, we also demonstrate that the learned representations are
meaningful and specific towards each task.

2 Methods

We introduce a new approach for learning learn task-specific and shared representations
in multi-task CNN architectures applied to medical imaging tasks i.e. modality trans-
fer and organ segmentation. We propose stochastic filter groups (SFG), a probabilistic
mechanism to partition kernels in each CNN layer into “specialist” groups or a “shared”



group, which are specific to or shared across different tasks, respectively. We use vari-
ational inference to learn the distributions over the possible grouping of kernels and
network weights that determines connectivity between layers and the shared and task-
specific features. This naturally results in a learning algorithm that optimally allocates
representation capacity across multi-tasks via gradient-based stochastic optimization.
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Fig. 2: Multi-task architecture based on SFG modules, where at each layer, kernels are
stochastically assigned to task-specific and shared groups.

We consider the synthesis of a CT scan from MRI whilst simultaneously segment-
ing organs (Fig. 2). This is a significant challenge in MR-only radiotherapy treatment
planning, which is attempting to eliminate CT acquisition for treatment planning. This
is a complex task that can benefit from multi-task learning and disentangling anatomi-
cal rep)resentations since CT synthesis can exploit context from the segmentation whilst
there are features specific to CT synthesis not necessarily useful for organ segmentation.

2.1 Stochastic Filter Groups

SFGs introduce a sparse connection structure into the architecture of CNN for multi-
task learning to separate features into task-specific and shared components. Ioannou
et al. [12] introduced filter groups to partition kernels in each convolution layer into
groups, each of which acts only on a subset of the preceding features demonstrating that
such sparsity reduces computational cost without compromising accuracy. We adapt the
concept of filter groups to MTL and propose a mechanism for learning an optimal kernel
grouping rather than pre-specifying them.

For simplicity, we describe SFGs for the case of two semantic tasks; image regres-
sion and object segmentation. At the /™ convolution layer in a CNN architecture with
K kernels {w(l)vk}ﬁl, the associated SFG performs two operations:

1 - Filter Assignment: each kernel w,(cl) is stochastically assigned to either: i) the “re-

gression spemﬁc group’ G,«eg, ii) “shared group” G(l or iii) “segmentation specific

group” G\, with respective probabilities p()-* = [p{2:F, p* pU:F € [0, 1)

. Con-
volving with the respective filter groups yields distinct sets of features Fﬁé)g, Fs(l), Fs(i)g

Fig. 1-Left illustrates this operation and Fig. 1-Right shows different learnable patterns.



2 - Feature Routing: the features F,gé?q, F S(l), F. S(é)g are routed to the filter groups G&l;,;”,

Gglﬂ), Ggl;,;” in the subsequent (I + 1) layer to respect the task-specificity and shar-
ing of filter groups in the /™ layer. Specifically, we perform the following routing for
1> 0 where F{5 Y = n+0 (R FO) « ¢EY), FOFD = p0+0 (BD 4 I,
and Fitg Y = nOD (R PO GEEY) and each h(+D defines the non-linear func-
tion, * denotes convolution operation and | denotes a merging operation of arrays (e.g.
concatenation). At [ = 0, input image x is simply convolved with the first set of filter
groups to yield F{) = p(1) (x * Ggl)),i € {reg, seg, s}.

Fig. 2 provides a schematic of our architecture, in which each SFG module stochas-
tically generates filter groups in each layer and the resultant features are sparsely routed
as described above. The merging modules, denoted as black circles, combine the task-
specific and shared features appropriately, i.e. [Fl-(l) |Fs(l)],i = reg, seg and pass them
to the filter groups in the next layer. Each white circle denotes the presence of additional
transformations (e.g. convolutions or fully connected layers) in each A(*+1), performed
on top of the standard non-linearity (e.g. ReL.U).

The proposed sparse connectivity is integral to ensure task performance and struc-
tured representations. In particular, one might argue that routing of “shared” features
Fs(l) to the respective “task-specific” filter groups GQ:;” and Ggl;g_l) is not necessary
to ensure the separation of gradients across the task losses. However, this connection
allows for learning more complex task-specific features at deeper layers in the network.

The varying dimensionality of feature maps is noteworthy. Specifically, the number

of kernels in the respective filter groups anle)g, Ggl), G&Qg can vary at each iteration of

training, which influences the depth of the resultant feature maps Fr(é)g, Fs(l), Fs(é)g To
work with features maps of varying size, we implement the proposed architecture by
defining Fr(é)g, Fs(l)7 Fs(é)g as sparse tensors. At each SFG module, we first convolve the
input features with all kernels, and generate the output features from each filter group
by zeroing out the channels that root from the kernels in the other groups, resulting in
Fﬁé?q, Fs(l), Fg(i)g that are sparse at non-overlapping channel indices. In the simplest form
with no additional transformation (i.e. the grey circles in Fig. 2 are identity functions),
. . OISO . . .
we define the merging operation [F;"|Fs’]|,i = reg, seg as pixel-wise summation.
In the presence of more complex transforms (e.g. residual blocks), we concatenate the
output features in the channel-axis and perform a 1x1 convolution to ensure the number
of channels in [Fi(l) |Fs(l)] is the same as in F").

2.2 T+1 Way “Drop-Out”

The CNN weights and grouping probabilities are simultaneously optimised by extend-
ing the variational interpretation of binary dropout [13] to the (T + 1)-way assignment
of each convolution kernel to the filter groups where 7' is the number of tasks. We
consider the case T' = 2 for CT synthesis and organ segmentation.

Suppose that the architecture consists of L SFG modules, each with K; kernels
where [ is the index. As the posterior distribution over the convolution kernels in SFG
modules p(W|X, Y (7¢9) Y (5¢9)) is intractable, we approximate it with a simpler dis-
tribution g4(VV) where W = {W(l%k}k:l,A..,Kl,l:l,...,L' Assuming that the posterior



distribution factorizes over layers and kernels up to group assignment, we defined the
variational distribution as:

L K, L K,
= H H Qi (W( H H Qgu (W fle)gk’ g) 7W£le)ék)
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where {wreg ,ng) ok wseg } denotes the k' kernel in [ layer after routmg into task-

specific Greg, Gble)g and shared G groups. Each ¢4, (wﬁQg ,wﬁi?g’i wgl) ) is defined

as w(l) * Z@ FowDk fori e {reg, s, seg}, where 2k — =[z 'Slc)gka gle)gk, z(l) k]
Cat(p(l)’ ) Here, z()/* is the sample one-hot encoding from the Categorical distri-
bution over filter group assignments. The variational parameters ¢;;, consists of pre-
grouping convolution kernels w(Y-* and grouping probabilities p()¥ = [pSQg’“ , pgl) ’k, ngék].
We minimize the KL divergence between the approximate posterior g4()V) and

p(W|X, Y (me9) Y (s¢9)) Assuming likelihood factorisation over the two tasks, we have

the following objective Lyic(¢) = — % M [log " x5, W) +log p(y*?|xi, Wy) |+
Zlel Zszll KL(gg,, (w*)||p(w:k)), where M is the size of the mini-batch, N is

the total number of training data points, and W; denotes a set of model parameters
sampled from g4()V). The last KL term regularizes the deviation of the approximate
posterior from the prior p(w(:¥) = N(0,1/1?) where | > 0. Adapting the approxima-

tion presented in [13] to our scenario, we obtain:

3 - H(PD*) (1)

12
KL(g5,, (W) [p(w*)) oc o [[w®*

where H(pF) = — Zle{r(,g seg,s} pgl) 'log pgl)’k is the entropy of grouping prob-

abilities. The first term performs the L2-weight norm and the second term pulls the
grouping probabilities towards the uniform distribution. The overall loss is defined as:

M
EMC %Z{logp< )|X“ )+10gp( 1(2)|XZ7WZ):|
i=1 i L K
M IR de e 33 1 @
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where A1 > 0, Ao > 0 are regularization coefficients.

The discrete sampling operation during filter group assignment creates discontinu-
ities, giving the first term in the objective function (eq. 2) zero gradient with respect to
the grouping probabilities {p("-*}. We approximate each of the categorical variables
Cat(p()-*) by the Gumbel-Softmax distribution, GSM(p()*  7) [14], a continuous re-
laxation which allows for sampling, differentiable with respect to the parameters p(V-*.
The temperature term 7 adjusts the bias-variance tradeoff of gradient approximation; as
the value of 7 approaches 0, samples from the GSM distribution become one-hot. while
the variance of the gradients increases. We start at a high 7 and anneal to a small but
non-zero value as in [13].



3 Experiments

We tested stochastic filter groups (SFG) on the problem of simultaneous semantic image
regression (synthesis) and segmentation on a prostate radiotherapy dataset. In radiother-
apy treatment planning, a CT scan is necessary to allow dose propagation whilst an MRI
is required for segmenting organs at risk of ionisation. Instead of acquiring both an MRI
and a CT, algorithms can be used to synthesise a CT scan (task 1) and segment organs
(task 2) given a single input MRI scan. We acquired 15 3D prostate cancer scans with
respective CT and T2-weighted MRI scans with semantic 3D labels for organs (prostate,
bladder, rectum and left/right femur heads) obtained from a trained radiologist. We cre-
ated a training set of 10 patients, with the remaining 5 used for testing. We trained our
networks on 2D slices; reconstructing the 3D volumes through patch aggregation.

Baselines: We compared our model against four baselines. They are: 1) single-task
networks, 2) hard-parameter sharing multi-task network (MT-hard sharing), 3) SFG-
networks with constant 1/3 allocated grouping (MT-constant mask) as per Fig. 1-Right,
and 4) SFG-networks with constant grouping probabilities (MT-constant p). We note
that all four baselines can be considered special cases of the proposed SFG-network:
single task networks have SFG shared grouping probability of kernels set to zero; hard-
parameter sharing networks exists when all shared grouping probabilities are set to
‘shared’ up until the task-specific layers; and MT-constant p represents the situation
where the grouping is non-informative and each kernel has equal probability of being
specific or shared with probability p():F = [1/3,1/3,1/3]. We used HighResNet [15] as
the baseline for CT synthesis and organ segmentation. In our model, we replace each
convolutional layer with an SFG module. After the first SFG layer, three distinct re-
peated residual blocks are applied to Fr(éjo), Fs(éjo), Fs(l:O). These are then merged
according to the feature routing methodology followed by a new SFG-layer and subse-
quent residual layers. Our model concludes with 2 successive SFG-layers followed by
1x1 convolutional layers applied to the merged features FT(SL) and Fs(é;L). Additional
information on training details and dynamics can be found in the supplementary.

Results on CT synthesis and organ segmentation are detailed in Tab. 1. Our method
performed best overall in organ segmentation. Our method also obtained best synthe-
sis performance across most anatomical regions; especially in the bone regions when
compared against all the baselines. The bone voxel intensities are the most difficult to
synthesise from an input MR scan as task uncertainty in the MR to CT mapping at the
bone is often highest [3]. Our model was able to disentangle features specific to the
bone intensity mapping (Fig. 3-Right) without supervision of the pelvic location, which
allowed it to learn a more accurate mapping of an intrinsically difficult task.

3.1 Learned architectures

Analysis of the grouping probabilities allows visualisation of network connectivity and
the learned MTL architecture. To analyse the group allocation of kernels at each layer,
we computed the sum of class-wise probabilities per layer. Learned grouping alloca-
tions are presented in presented in Fig. 3-Left. This illustrates increasing task special-
isation in the kernels with network depth. At the first layer, all kernels are classified as



(a) CT Synthesis (PSNR)

Method ‘ Overall ‘ Bones Organs Prostate Bladder Rectum

One-task (HighResNet) [15]| 25.76 (0.80) | 30.35(0.58) 38.04 (0.94) 51.38(0.79) 33.34(0.83) 34.19(0.31)
MT-hard sharing 26.31(0.76) | 31.25(0.61) 39.19(0.98) 52.93(0.95) 34.12(0.82) 34.15(0.30)
MT-constant mask 24.43(0.57) | 29.10(0.46)  37.24(0.86) 50.48(0.73) 32.29(1.01) 33.44(2.88)
MT-constant p=[1/3,1/3,1/3] | 26.64(0.54) | 31.05(0.55) 39.11(1.00) 53.20 (0.86) 34.34(1.35) 35.61 (0.35)
MT-SFG (ours) 27.74 (0.96) | 32.29 (0.59) 39.93(1.09) 53.01(1.06) 35.65(0.44) 35.65 (0.37)

(b) Segmentation (DICE)

Method ‘ Overall ‘Left Femur Head Right Femur Head ~ Prostate Bladder Rectum

One-task (HighResNet) [15]] 0.848(0.024) | 0.931 (0.012) 0.917 (0.013)  0.913 (0.013) 0.739 (0.060) 0.741 (0.011)
MT-hard sharing 0.829(0.023) | 0.933 (0.009) 0.889 (0.044)  0.904 (0.016) 0.685 (0.036) 0.732 (0.014)
MT-constant mask 0.774(0.065) | 0.908 (0.012) 0.911 (0.015)  0.806 (0.0541) 0.583 (0.178) 0.662 (0.019)
MT-constant p=[/3,1/3,/3] | 0.752(0.056) | 0.917 (0.004) 0.917 (0.01)  0.729 (0.086) 0.560 (0.180) 0.639 (0.012)
MT-SFG (ours) 0.852 (0.047)| 0.935 (0.007) 0.912(0.013)  0.923 (0.016) 0.750 (0.062) 0.758 (0.011)

Table 1: Model performance with best results in bold blue, and the second best results in red.
Standard deviations are computed over the test subject cohort and shown in brackets.

shared (p= [0, 1, 0]) as low-order features such as edge or contrast descriptors are gen-
erally learned earlier layers. In deeper layers, higher-order representations are learned,
which describe various salient features specific to the tasks. This coincides with our
network allocating kernels as task specific, as illustrated in Fig. 3. Notably, the learned
connectivity of both models shows striking similarities to hard-parameter sharing archi-
tectures commonly used in MTL, where there is a set of shared layers aiming to learn a
feature set common to both tasks. Task-specific branches then learn a mapping from this
feature space for task-specific predictions. Our model learns this structure whilst allow-
ing asymmetric allocation of task-specific kernels with no priors on network structure.

4 Discussion

We have proposed stochastic filter groups (SFGs) to disentangle task-specific and gen-
eralist features. SFGs define the grouping of kernels and the connectivity of features in a
CNN. We used variational inference to estimate the distribution over connectivity given
training data and sample over possible architectures during training. Our method can
be considered as a probabilistic form of multi-task architecture search, as the learned
posterior embodies the desired MTL architecture given the data.

The concept of disentangling features is important within medical image analysis
where the goal is to develop automated tools of clinical utility. There is significant vari-
ability in human anatomy whilst many disease phenotypes are prevalent across multiple
diseases. Our method offers the possibility to learn shared anatomical and pathological
features common across the spectrum of health and disease whilst learning phenotype-
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Fig. 3: Left) Learned kernel grouping with ‘CT synthesis’, shared and ‘organ segmenta-
tion’ task allocations shown in blue, green and pink; Right) Activation maps from low
entropy (high “confidence”) kernels in the learned task-specific and shared filter groups.

specific features. Given a problem where one task consists of tumour segmentation and
the second is subtype classification, the shared representation would represent anatom-
ical information important across tasks whilst the subtype latent space may encode in-
formation specific across subtypes that can be investigated further for clinical research.
Our method can be exploited for transfer learning. Data scarcity is an issue in med-
ical imaging where labelled data is expensive to acquire. Shared and task-specific rep-
resentations can be learned on larger datasets and transferred to a new MTL problem
with asymmetry in labelled data across tasks. This will be investigated in future work.
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