EUROPEAN RESPIRATORY journal

OFFICIAL SCIENTIFIC JOURNAL OF THE ERS

Does treatment guided by fractional exhaled nitric oxide improve outcomes in subgroups of children with asthma?

Journal:	European Respiratory Journal
Manuscript ID	ERJ-01879-2019.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Fielding, Shona; University of Aberdeen, Medical Statistics Pijnenburg, Mariëlle; Erasmus Medical Centre- Sophia Children's Hospital, Pediatrics/ Pediatric Respiratory Medicine de Jongste, Johan; Erasmus MC - Sophia Childrens' Hospital, Dept. of Pediatrics/ Respiratory Medicine Pike, Katharine; UCL Institute of Child Health, Roberts, Graham Petsky, Helen; Queensland University of Technology Chang, Anne; Royal Children's Hospital, Respiratory Medicine Fritsch, Maria; University Children's Hospital, Vienna Frischer, Thomas; University Children's Hospital, Vienna Gergen, Peter; National Institute of Allergy and Infectious Diseases Szefler, Stanley; Children's Hospital Colorado, Pediatrics Vermeulen, Françoise; Hôpital Erasme, Université Libre de Bruxelles, Department of paediatrics Vael, Robin; Antwerp University Hospital Turner, Steve; University of Aberdeen, Child Health
Key Words:	nitric oxide (children), Asthma; child, Asthma (clinical aspects), Leukotriene receptor antagonists, obesity
Abstract:	Introduction. Fractional exhaled nitric oxide (FENO), a biomarker of eosinophilic airway inflammation, may be useful to guide asthma treatment. FENO guided treatment may be more effective in certain subgroups for improving asthma outcomes compared to standard treatment. Methods. An individual patient data analysis was performed using data from seven randomised clinical trials (RCT) which used FENO to guide asthma treatment. The incidence of an asthma exacerbation and loss of control, and the time to first exacerbation and loss of control were described between five subgroups of RCT participants. Results. Data were available in 1112 RCT participants. Among those not treated with LTRA (but not among those who were treated with LTRA), FENO guided treatment was associated with reduced exacerbation risk (odds ratio (OR) 0.68 [95% CI 0.49, 0.94]), longer time to first exacerbation (hazard ratio (HR) 0.76 [0.57, 0.99]) and borderline reduced risk for loss of control (OR 0.70 [0.49, 1.00]). Non-obese children, compared to obese children, were less likely to lose asthma control when treatment was guided by FENO (OR 0.69 [0.48, 0.99]) and

SCHOLARONE[™] Manuscripts

time to loss of control was longer (HR 0.77 [0.61, 0.99]). Conclusions. Asthma treatment guided by FENO may be more effective in achieving better asthma outcomes for patients who are not treated with LTRA and who are not obese compared to standard practice.

1 2	
3 4 5	
7	
8 9	
10	
11	
13	
14	
16 17	
18	
19 20	
21	
22 23	
24	
25 26	
27 28	
28 29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41 42	
43	
44 45	
46	
47 48	
49 50	
50 51	
52 53	
54	
55 56	
57	
58 59	

European Respiratory Journal

Page 2 of 67

1
2
3
4
5
5
0
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
25
22
30
37
38
39
40
41
42
43
44
77 15
45
40
4/
48
49
50
51
52
53
54
55
55
50
5/
58
59

1	Does treatment guided by fractional exhaled nitric oxide improve outcomes in subgroups of children
י ז	with acthma?
Z	
3	Fielding S ¹ , Pijnenburg M ² , de Jongste JC ² , Pike KC ^{3,4} , Roberts G ³ , Petsky H ⁵ , Chang AB ⁶ , Fritsch M ⁷ ,
4	Frischer T ⁷ , Szefler SJ ⁸ , Gergen P ⁹ , Vermeulen F ¹⁰ , Vael R ¹¹ , Turner S ¹² .
5	¹ Medical Statistics Team, Institute of Applied Health Sciences, University of Aberdeen, UK
6	² Department of Paediatric Respiratory Medicine and Allergology, Erasmus MC – Sophia Children's
7	Hospital, Rotterdam, Netherlands
8	³ Clinical and Experimental Science Academic Unit, University of Southampton, Southampton, UK
9	⁴ Respiratory Critical Care and Anaesthesia group, Institute of Child Health, University College
10	London, UK
11	⁵ School of Nursing and Midwifery, Griffith University; Menzies Health Institute Queensland,
12	Brisbane, Australia
13	⁶ Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Queensland
14	University of Technology, Brisbane; Child Health Division, Menzies School of Health Research,
15	Charles Darwin University, Darwin, Australia
16	⁷ University Children's Hospital, Vienna, Austria
17	⁸ Breathing Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado
18	School of Medicine, Aurora, Colorado, USA
19	⁹ National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
20	¹⁰ Pediatric Department, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
21 22	¹¹ Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
23	¹² Child Health, University of Aberdeen, UK

2		
3	24	Corresponding author: Professor Steve Turner, Child Health, Royal Aberdeen Children's Hospital,
4		
5	25	Aberdeen, UK, AB25 27G, Tel +44 1224 438470, s.w.turner@abdn.ac.uk
6	20	Aberacelly on yndeo eller yn 122 i 166 mer <u>ennemer e doanadaa</u>
7		
8	26	Word count: 2611
9		
10		
11		
12		
15		
15		
15		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30 21		
37		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 45		
45 46		
40 17		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
00		

-3 4

27 ABSTRACT

28	Introduction. Fractional exhaled nitric oxide (F_ENO), a biomarker of eosinophilic airway
29	inflammation, may be useful to guide asthma treatment. F_ENO guided treatment may be more
30	effective in certain subgroups for improving asthma outcomes compared to standard treatment.
31	Methods. An individual patient data analysis was performed using data from seven randomised
32	clinical trials (RCT) which used $F_{\mbox{\tiny E}}NO$ to guide asthma treatment. The incidence of an asthma
33	exacerbation and loss of control, and the time to first exacerbation and loss of control were
34	described between five subgroups of RCT participants.
35	Results. Data were available in 1112 RCT participants. Among those not treated with LTRA (but not
36	among those who were treated with LTRA), F_ENO guided treatment was associated with reduced
37	exacerbation risk (odds ratio (OR) 0.68 [95% CI 0.49, 0.94]), longer time to first exacerbation (hazard
38	ratio (HR) 0.76 [0.57, 0.99]) and borderline reduced risk for loss of control (OR 0.70 [0.49, 1.00]).
39	Non-obese children, compared to obese children, were less likely to lose asthma control when
40	treatment was guided by F_ENO (OR 0.69 [0.48, 0.99]) and time to loss of control was longer (HR 0.77
41	[0.61, 0.99]).
42	Conclusions. Asthma treatment guided by F_ENO may be more effective in achieving better asthma
43	outcomes for patients who are not treated with LTRA and who are not obese compared to standard
44	practice.

45 Keywords: Asthma, Child, Monitoring, Nitric oxide

50 INTRODUCTION

Asthma is a common chronic condition which affects one million children in the UK [1], six million in the US[2] and 235 million children and adults around the world [3]. There is effective treatment to control asthma symptoms and guidelines recommend that treatment should be titrated to asthma symptoms[4-6]. There remains a widely accepted recognition that an objective measurement to guide asthma treatment is required [7].

Fractional exhaled nitric oxide (F_ENO) in exhaled breath has many of the characteristics required of an objective tool to measure asthma symptoms. For example, F_ENO rises before symptoms occur [8,9], falls when asthma treatment is administered [10,11], can be measured with minimal discomfort to the patient and results are available within a few minutes using commercially available apparatus [12]. A meta-analysis including eight clinical trials in children and young adults found that addition of F_ENO measurements to symptom-guided treatment did not reduce asthma symptoms [13], but that F_ENO guided treatment reduced asthma exacerbations [13].

Asthma is a heterogeneous condition and what we do not know is whether there are patient subgroups in whom using F_ENO to guide asthma treatment may be beneficial [7]. In one randomised
controlled trial (RCT), the intervention was more effective in participants who had more positive skin
tests and who were obese, but age, sex, asthma severity and initial F_ENO concentration were not
associated with a different outcome from the intervention [14]. In a second RCT there was no
evidence of improved outcomes between individuals who were concordant or discordant for FENO
and symptoms [15].

70Our group has pooled the data collected from seven of the eight published RCTs where the efficacy71of F_ENO used to guide asthma treatment was examined, compared to standard management [16].72Here we use data from 1112 participants to test the hypothesis that there are particular subgroups73of patients where F_ENO guided treatment is more effective in improving asthma outcomes97474compared to standard treatment.

75	
76	METHODS
77	Study design
78	Authors of all published RCTs where measurements of F_ENO were used to guide asthma treatment in
79	children [17] were contacted and asked to provide data as previously described [16]. The children
80	who took part in the studies were recruited from hospital clinics and were followed up for between
81	six and 12 months. The primary outcome was the presence of any asthma exacerbation during
82	follow up [13]. Secondary outcomes were loss of control among those who were initially controlled
83	and time to first exacerbation and time to first loss of control. Institutional ethical approval was
84	provided for each trial which contributed data.
85	Details of each population (also see table one)
86	Fritsch et al [18] undertook a study of 47 children with asthma attending a hospital asthma clinic in
87	Vienna, Austria and collected data (including F_ENO , asthma symptom score and history of recent
88	exacerbations) at six-week intervals over six months. Peirsman et al [19] recruited 99 participants
89	with persistent asthma attending hospital asthma clinics across Belgium and collected data at three-
90	month intervals over twelve months. Petsky et al [20] recruited 63 children from hospital clinics in
91	Australia and Hong Kong, and data were collected on eight occasions over twelve months (one, two,
92	three, four, six, eight, ten and twelve months). Pijnenburg et al [21] included 86 participants
93	attending a single hospital clinic in the Netherlands and data were collected at baseline, three, six,
94	nine and twelve months. Pike et al [22] recruited 90 participants clinics in four UK hospitals and
95	collected data at two-month intervals over a year. Szefler et al [14] recruited 546 participants from
96	the community in the USA and collected post-randomisation information over 46 weeks including at
97	three months, six months, eight months and ten months. Voorend-van Bergen et al [23] undertook
98	a study of 181 participants attending hospital clinics the Netherlands and collected data at four-

1 2		
2 3 4	99	month intervals over a year. The treatment algorithms in F_ENO -guided and standard practice arms in
5 6	100	each RCT was different to other RCTs.
7		
8 9		
10		
11 12		
13 14		
14		
16 17		
18		
19 20		
21 22		
23		
24 25		
26		
27 28		
29 30		
31		
32 33		
34 35		
36		
37 38		
39		
40 41		
42 43		
44		
45 46		
47 48		
49		
50 51		
52		
53 54		
55 56		
57		
58 59		
60		

	Mean age (SD), y	Inclusion criteria (in addition to child diagnosed with asthma)	Methodology for asthma control	Treatment strategy for intervention group	Treatment strategy for control group group	Treatment options (same for both groups in all studies)	What did the trial find? (F _E NO treatment compared to standard care)
Fritsch <i>et al</i> 2006 ¹ Austria	11.5 (3.1)	Age 6-18 years. Sensitised to inhaled allergens. No systemic corticosteroids one month before recruitment.	Unvalidated symptom diary	Combination of symptom score, FEV ₁ <80% and F _E NO>20ppb	Combination of symptom score and FEV ₁ <80%	Four treatments steps	Higher mid expiratory flow, higher dose of ICS
Peirsman <i>et al</i> 2014 ² Belgium	10.7 (2.1)	Sensitised to inhaled allergens. No exacerbation or systemic corticosteroids three month before recruitment	First four (of seven) questions on ACT*	Combination of symptom >score, exacerbation in previous two weeks, FEV ₁ <80% and F _E NO>20ppb	Combination of symptom score, exacerbation in previous two weeks and FEV ₁ <80%	Step up and down options if on the following preventers: ICS alone; LTRA alone; ICS+LABA; ICS+LTRA	Reduced exacerbations increased LTRA and ICS dose. No difference in primary outcome
Petsky <i>et al</i> 2015 ³ Australia	10.0 (3.2)	Aged >4 years. Prescribed asthma preventer. Adherent to treatment	Validated symptom diary†	Combination of symptom score plus $F_ENO> 10$ for non atopic, >12 with one positive skin test, >20 for >1 positive skin test	Symptom score alone	Seven steps (none including LTRA)	Reduced exacerbation, increased ICS dose
Pijnenburg <i>et</i> al 2005⁴ Netherlands	12.3 (2.8)	Aged 6-18 years. Sensitised to inhaled allergens. ICS dose unchanged for ≥3 months at recruitment	Validated symptom diary‡	Treatment stepped up if F _E NO>30ppb. Treatment stepped down if symptoms	Symptom score alone	Nine steps (none including LABA or LTRA)	Reduced F _E NO and bronchial hyperresponsiveness No increase in ICS dose

				controlled and $F_ENO \le 30ppb$			
Pike <i>et al</i> 2013 ⁵	11.9 (2.6)	Aged 6-17 years.	Modified	Combination of	Combination of	Eight treatment	No differences in
UK		Prescribed ≥400 microg	validated	symptoms, recent	symptoms, recent	steps	outcomes
		ICS daily (budesonide	symptom	reliever	reliever		
		equivalent). Adherent to	diary¥	medication use,	medication use,		
		treatment. No history of		FEV ₁ >90%, 80-	and FEV ₁ >90%,		
		life-threatening asthma		90% or <80% and	80-90% or <80%		
		or requiring maintenance		F _E NO≤15, 15-25 or			
		oral corticosteroids.		≥25ppb			
Szefler <i>et al</i>	14.4 (2.1)	Aged 12-20 years. Living	ACT*	Combination of	Combination of	Seven treatment	Reduced exacerbations,
2008 ⁶		in community where		symptoms, FEV ₁	symptoms and	steps (including	increased ICS dose. No
USA		≥20% households were		≥80, 70-79% or	FEV ₁ ≥80, 70-79%	low dose	difference in primary
		below poverty threshold.		>70% and $F_ENO 0$ -	or >70%	theophylline)	outcome.
		Persistent or		20, 20.1-30, 30.1-			
		uncontrolled asthma if		40 or >40ppb			
		on long term preventer.					
		Non-smoker.					
Voorend-van	10.2 (3.0)	Aged 4-18 years.	ACT*	Combination of	Symptom score	Seven treatment	Increased asthma contro
Bergen <i>et al</i>		Sensitised to inhaled		symptom score	alone	steps	but not the primary
2010 ⁸		allergens. >9%		and F _E NO <20, 20-			outcome
Netherlands		bronchodilator response.		50 or >50ppb			
		Prescribed ICS for ≥3					
		months. Non-smoker.					
		No history of multiple					
		ITU admissions for					
		asthma.					

105 ¥Wasserfallen JB, et al. J Allergy Clin Immunol 1997;100: 16–22.

106 Data collected

Covariates collected at baseline in all trials included: age, gender, height, weight, treatment arm, dose of inhaled corticosteroid (ICS, as daily budesonide equivalent dose, BUD), prescribed long acting beta agonist (LABA) or not, prescribed leukotriene receptor agonist (LTRA) or not, and an asthma control score. Ethnicity was available in four cohorts[14,21-23]. Body Mass Index (BMI) was derived and International Obesity Task Force weight categories created [24]. Percentage of predicted (%) Forced Expired Volume in one second (FEV₁) was calculated according to the Global Lung Initiative standard [25] apart from participants in two trials [21,22] where only % FEV₁ standardised to other references was available. F_FNO was measured in all studies in accordance with the 2005 guideline [26]. At each follow up visit an assessment of asthma control was made (see table 1) and history of any asthma attack since the previous assessment was recorded (defined as receipt of oral corticosteroids for an asthma exacerbation [16]). The trials used different symptom score methodology and loss of control was defined as per trial protocol by reaching a pre-agreed symptom score.

6 120

121 Analysis

Asthma outcomes were compared between participants in the F_ENO guided and standard treatment arms of RCTs for the following five subgroups defined at baseline and previously associated with differences in F_ENO . The five subgroups were stratified by: dose of ICS (\leq 400 microg budesonide equivalent or >400 microg)[10], use of LTRA [27], obesity [14], ethnicity (white versus other)[28] and atopic (i.e. positive skin prick test or positive type-specific IgE) [14]. Any exacerbation during follow up and time to first exacerbation and any loss of control and time to loss of control were calculated (the latter restricted to those who were controlled at baseline). Time to first exacerbation or to loss of control was determined using data collected at the scheduled study assessments, and table one in the supplement describes the time in weeks between baseline and each follow up assessment in

1 ว		
2 3 4	131	each RCT. For example, if a participant experienced an exacerbation after their three-month
5 6	132	assessment but before the six month assessment, time was censored at six months. Logistic
7 8	133	regression was used to relate any exacerbation or any loss of control to an interaction term between
9 10 11	134	each baseline characteristic and treatment arm; a significant interaction term (p< 0.05) would
12 13	135	indicate that outcomes were different between $F_{\text{E}}\text{NO}$ guided and standard treatment for a sub
14 15	136	group. Cox proportional hazards models were used to investigate time to first exacerbation or time
16 17	137	to first loss of control. Each subgroup was considered separately and all models included
18 19 20	138	adjustment for covariates associated with the outcome including: age, a variable for each RCT and
20 21 22	139	ICS dose at baseline (this was not included in the ICS dose subgroup model). Standard statistical
23 24	140	software was used (STATA version 14) and significance was assumed at 5%. All analyses were
25 26	141	exploratory, so no adjustment was made for multiple comparisons.
27 28 29 30	142	
31 32 33	143	RESULTS
34 35	144	Study subjects
36 37	145	Data from seven RCTs were analysed [14,18-23], totalling 1112 participants. Characteristics of
38 39 40	146	participants at baseline have previously been described [16] and are presented in table 2. The
40 41 42	147	majority of participants (58%) were male and the mean age was 12.6 (standard deviation, SD 3.1)
43 44	148	years. Characteristics of participants in the five subgroups are presented in supplemental table 2,
45 46	149	i.e. LTRA treatment (yes/no), ICS dose ≤400 microg/>400 microg), obese (yes/no), atopic (yes/no)
47 48 40	150	and white versus other ethnic group.
49 50 51 52 53 54 55	151	

- 56 57 58 59
- 60

152 Table 2. Characteristic of study participants at the baselin	e visit in each study.
--	------------------------

5 6 7			Fritsch[18]	Peirsman[19]	Petsky[20]	Pijnenburg[21]	Pike[22]	Szefler[14]	Voorend-van Bergen[23]	All populations combined
/ 8	Number of par	ticipants	47	99	63	86	90	546	181	1112
9	%(number) ma	ale	60% (28)	67% (66)	49% (31)	65% (56)	57% (51)	53% (288)	68% (123)	58% (643)
10 11	Mean age (SD)		11.5(3.1)	10.7 (2.1)	10.0 (3.2)	12.3 (2.8)	10.9 (2.6)	14.4 (2.1)	10.2 (3.0)	12.6 (3.1)
12	Median F _E NO (IQR), ppb	34 (18.6, 58.6)	31 (14, 69)	26 (12.2, 47.5)	32 (16.6, 52.5)	26 (10, 48)	20 (11.2, 40.6)	18 (10.2, 30.4)	22 (11.6, 43.0)
13			n=46	n=49	n=61	n=86	n=90	n=546	n=179	n=1057
14	Mean % predic	cted FEV ₁ (SD)	93.5 (15.7)	91.4 (15.7)	90.7 (15.6)	97.5 (17.5)	89.2 (14.3)	90.9 (16.6)	93.8 (13.0)	93.5 (18.1)
15			n=47	n=98	n=54	n=86	n=90	n=546	n=157	n=1078
17 18	% atopic		100%	100%	38% (24/63)	100%	76% (68/90)	88% (467/531)	100%	89% (972/1097)
19 20	% (number) ob	bese	8% (4/47)	1% (1/99)	2% (1/58)	4% (4/85)	8% (7/89)	31% (165/526)	3% (5/181)	17% (187/1085)
22	% (number) pr	% (number) prescribed LTRA		60% (59/99)	10% (6/58)	0% (0/86)	51% (46/90)	15% (80/546)	13% (23/181)	21% (227/1107)
23 24 25	% (number) pr	escribed LABA	38% (18/47)	32% (32/99)	67% (39/58)	38% (33/86)	76% (68/90)	66% (360/546)	46% (84/181)	57% (634/1107)
26	Median dose o	of inhaled	400	320	400	800	800	1000	400	400
27	corticosteroids	s (IQR)	(0, 800)	(200, 400)	(250, 500)	(400,1000)	(400, 1000)	(400, 2000)	(400, 800)	(400, 1000)
28	% (number) > 4	400ug BUD	30% (14/47)	15% (15/99)	49% (31/63)	66% (57/86)	59% (53/90)	53% (287/546)	33% (59/181)	46% (516/1112)
29 30 31	% White ethnic	c group	Not stated	82% (69/84)	Not stated	Not stated	92% (83/90)	0% (0/526)	89% (160/179)	35% (312/901)
32	Control	Controlled	49% (23/47)	75% (49/65)	72% (41/57)	57% (44/77)	97% (87/90)	80% (421/528)	67% (122/181)	75% (787/1045)
33 34	sidius	Not Controlled	51% (24/47)	25% (16/65)	28% (16/57)	43% (33/77)	3% (3/90)	20% (107/528)	33% (59/181)	24% (258/1045)
153 SD=standard deviation, IQR=interquartile range, LTRA=leukotriene receptor antagonist, LABA=long acting beta agonist, BUD = budesonide equivalent ICS							5			

Page 13 of 67

1		
2 3 4	155	$F_{E}NO$ intervention and asthma exacerbation outcomes
5 6	156	Any exacerbation. Of the 1047 participants for whom exacerbation data were available, 296 (28%)
7 8 9	157	had at least one exacerbation with the first occurring after a median (interquartile range IQR) 22 (14,
) 10 11	158	38) weeks. Table 3 shows the effect of treatment group was different for the two LTRA subgroups
12 13	159	(interaction p-value = 0.039). Those not treated with LTRA, had lower odds for \geq 1 exacerbation in
14 15	160	the F _E NO guided group compared to standard care (OR=0.68, 95%CI 0.49-0.94) but there was no
16 17 18	161	difference observed between F_ENO guided and control groups for those on LTRA, table 3. The
19 20	162	number needed to treat with $F_{E}NO$ guided management to prevent one exacerbation among those
21 22	163	not treated with LTRA was 15. Interactions between treatment arm and other baseline
23 24	164	characteristics (ICS dose, obese, atopy and white ethnicity) were not significant when predicting
25 26 27	165	exacerbation, table 3.
28 29	166	
30 31	167	Time to first exacerbation. Overall in the two treatment groups, the median time to first
32 33	168	exacerbation was 22 (IQR 14, 38) weeks in the standard arm and 22 (IQR 13, 34) in the F_ENO guided
34 35 36	169	arm. The interaction term between treatment arm and LTRA was of borderline significance for time
37 38	170	for first exacerbation (p=0.049), and among those not treated with LTRA at baseline, the time to first
39 40	171	as thma exacerbation was slightly longer for participants receiving $F_{\mbox{\scriptsize E}}NO$ guided treatment compared
41 42	172	to standard care (HR=0.76, 0.57-0.99, p=0.048), table 4 and figure 1. Time to first exacerbation was
43 44 45	173	no different between treatment groups for those treated with LTRA. The interaction terms with
46 47	174	treatment arm were not significant for ICS dose, atopy, obesity or ethnicity, table 4.
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
59		
60		

- 175 Table 3. Proportion of individuals with any asthma exacerbation in F_ENO -guided and standard
- 176 management arms of clinical trials with stratification for patient characteristics. ICS=inhaled
- 177 corticosteroids, presented as ≤400 or >400 micrograms budesonide equivalent. Obesity was defined

178 by International Obesity Task Force criteria.

Baseli	ne	% with ≥1 ex	F _E NO vs		p value for	
characte	eristic	each trea	standard		interaction*	
		F _E NO guided	Standard	OR	95%	
		management	management		CI	
LTRA	Yes	49/109 (45%)	40/104 (38%)		(0.76,	0.039
treatment				1.46	2.79)	
	No	88/410 (21%)	119/419		(0.49,	
			(28%)	0.68	0.94)	
ICS dose	≤400	48/289 (17%)	58/279 (21%)		(0.46,	0.493
	microg			0.72	1.11)	
	>400	89/232(38%)	101/247		(0.60,	
	microg		(41%)	0.88	1.28)	
Obese	Yes	30/88 (34%)	36/81 (44%)		(0.33,	0.342
				0.63	1.21)	
	No	107/425	119/433		(0.65,	
		(25%)	(27%)	0.90	1.24)	
Atopic	Yes	113/458	138/481		(0.61,	0.391
		(25%)	(29%)	0.83	1.13)	
	No	14/47 (30%)	13/31 (42%)		(0.20,	
				0.53	1.41)	
Ethnic	White	34/148 (23%)	31/164 (17%)		(0.70,	0.177
group				1.28	2.33)	
	Non-	86/270 (32%)	97/254 (38%)		(0.54,	
	white			0.78	1.14)	

*adjusted for RCT population, age and (except the analysis for higher versus lower ICS dose) dose of
inhaled corticosteroid (budesonide equivalent).

183 Table 4. Results from Cox regression models analysing time to first exacerbation for subgroups of

184 participants.

		Hazard Ratio for time to first exacerbation for	
Sub group		participants where treatment was guided by F_ENO	Interaction
		compared to standard care (95% CI)	p-value
LTRA	No	0.76 (0.57, 0.99) p= 0.048	0.049
	Yes	1.26 (0.82, 1.90) p= 0.292	
ICS	<=400 microg	0.76 (0.52, 1.12) p=0.166	0.393
	>400 microg	0.94 (0.71, 1.25) p=0.667	
Atopic	No	0.61 (0.29, 1.31) p=0.207	0.347
•	Yes	0.90 (0.70, 1.16) p=0.412	
Obese	No	0.96 (0.74, 1.25) p=0.787	0.456
	Yes	0.78 (0.48, 1.27) p=0.321	
Ethnic group	White	1.24 (0.76, 2.02) p=0.391	0.268
5 1	Non-White	0.90 (0.67, 1.20) p=0.469	

 # These models are fitted as time = Subgroup+Treatment group + Subgroup*treatment+ Age +
StudyID + baseline ICS. Baseline ICS was not included in the model where outcomes between ICS
subgroups were analysed.

191 FeNO intervention and asthma control outcomes

Any loss of asthma control. There were 787 participants who were controlled at baseline; 336 (43%) remaining controlled until completion of the trial, 344 (44%) lost control and 107 (14%) were lost to follow up for this outcome. The median (IQR) time to loss of control in these 344 patients was 22 (13, 30) weeks. There was no difference in mean age between those who did and did not lose control (12.8 (SD 3.0) and 12.6 (SD 2.9) years respectively) and no difference in baseline ICS dose (median (IQR) 400 (400, 1000) for both those who did and did not lose control). The interaction terms between treatment arm and the five baseline participant characteristics for loss of asthma control were non-significant, supplemental table 3. However, there was an indication of reduced odds of loss of control in the F_ENO arm versus standard arm in those subgroups of participants who were not on LTRA at baseline, and in those who were not obese at baseline (supplemental table 3). The number of controlled participants needed to treat with F_ENO guided management to prevent one losing control among those not treated with LTRA was 11.

Time to loss of control. Within the subgroup who lost control (n=344) the median (IQR) time to loss of control was 17 (13, 30) weeks with standard treatment and 22 (13, 34) weeks with F_ENO guided treatment. The interaction terms with treatment arm were not significant for ICS dose ≤400 microg versus >400 microg, atopy, LTRA treatment, white versus other race or obese (yes or no), table 5. There was borderline evidence of a longer time to first loss of control for FENO guided compared to standard treatment within subgroups who were not treated with LTRA (HR 0.77 [0.60, 0.99] figure 2), non-obese (HR 0.77 [95% CI 0.61, 0.99] figure 3) and atopic (HR 0.80 [95% CI 0.63, 1.00] supplemental figure 1), table 5.

European Respiratory Journal

1					
2					
3	213				
4	215				
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
20					
21					
22					
23					
25					
25					
20					
27					
20					
30					
31					
32					
32					
31					
35					
36					
27					
20					
20					
39					
40 41					
41					
4Z					
43					
44					
45					

2	1	4

 Table 5. Results from cox regression models analysing time to first loss of control for subgroups ofparticipants all of whom were controlled at baseline.

		Hazard Ratio for time to first	
		exacerbation for participants where	
		treatment was guided by F_ENO	Interaction
		compared to standard care (95% CI)	p value
LTRA	No	0.77 (0.60, 0.99) p=0.038	0.230
	Yes	1.05 (0.68, 1.64) p=0.822	
ICS	<=400	0.82 (0.62, 1.10) p=0.182	0.899
	>400	0.84 (0.62, 1.16) p=0.293	
Obese	No	0.77 (0.61, 0.99) p=0.042	0.130
	Yes	1.15 (0.73, 1.81) p=0.538	
	No	1.29 (0.54, 3.08) p=0.566	0.293
Atopy	Yes	0.80 (0.63, 1.00) p=0.050	
Ethnic group	White	0.85 (0.58, 1.24) p=0.396	0.970
5 1	Non-White	0.85 (0.64, 1.14) p=0.289	

217 # These models are fitted as time = Subgroup+Treatment group + Subgroup*treatment+ Age +

StudyID + baseline ICS . Baseline ICS was not included in the model where outcomes between ICSsubgroups were analysed.

DISCUSSION We analysed data collected in seven RCTs to test the hypothesis that there are subgroups of patients where F_ENO guided treatment is more effective in improving asthma outcomes compared to standard treatment. The main finding was that within these RCTs, the odds for exacerbation and loss of control for those not treated with LTRA were 32% and 30% lower in the F_E NO-guided arm compared to standard treatment. The significant interaction term for LTRA treatment and treatment for exacerbation indicated that FeNO driven management may have reduced exacerbations for those not treated with LTRA but not among those treated with LTRA. A second finding was that outcomes were no different between groups stratified by ICS dose, and ethnic group. Collectively these findings support the hypothesis that F_ENO is more useful for guiding treatment compared to standard practice in children with asthma not treated with LTRA. A further finding was that in non-obese participants (but not in obese participants), F_ENO-guided treatment was associated with a 31% reduction in odds for loss of control compared to standard treatment and when control was lost, time to loss of control was longer. Although the interaction term for obesity and treatment for loss of control was not significant, we believe that the improved outcomes for non-obese children merits further consideration. There was consistency in our results (i.e. an association with any loss of control and time to loss of control) and also there is biological plausibility whereby asthma associated with obesity may be a separate non-eosinophilic phenotype, especially in females [29]. A recent systematic review found no evidence of increased or reduced asthma control among children who were obese [30] and asthma guidelines do not recommend different treatment approaches for obese patients with asthma [4-6]. Further research is required to clarify whether F_ENO -guided treatment is equally effective in obese and non-obese children. Our observation that time to loss of control was longer among children who were atopic receiving

number of non-atopic participants included in our analysis was relatively small since atopy was an

 $F_{E}NO$ -guided treatment compared to standard treatment deserves careful consideration. The

inclusion criterion for four cohorts [18,19,21,23] and the atopic subgroup were no more or less likely to have an exacerbation or to lose control within the trials. Since F_ENO is considered to be a surrogate for allergic or eosinophilic airway inflammation [31] it is biologically plausible that F_ENO-guided treatment algorithms are more likely to suppress airway inflammation and improve asthma control. Further evidence of biological plausibility comes from an RCT whose data are included in our analysis [14] which found fewer days with maximal symptoms among those with elevated IgE and multiple positive skin prick tests. Although non-atopic asthma is less common than atopic asthma, e.g. present in 18% of participants in the three trials which did not include only atopic participants [14,20,22], asthma is a very common condition and there are approximately 150-200,000 non-atopic asthmatic children in the UK [1]. There is a need to establish whether treatment and monitoring for atopic and nonatopic children should be the same. The magnitude of significantly reduced risk for exacerbations and loss of control in the intervention compared to standard treatment was typically 25-30% and this difference is clinically meaningful since it is consistent with the benefit seen from commonly-used asthma treatments such as LTRA and ICS. Knorr et al [32] report a 23% reduced incidence of exacerbations in young children treated with montelukast compared to placebo. The review by Calpin et al[33] reports a 32% reduced risk for oral steroid treatment for exacerbations among children treated with ICS compared to placebo. The RCTs included in our study applied different inclusion criteria, F_ENO-guided treatment algorithms and asthma control scores, and these methodological differences will weaken any relationship between the intervention and asthma outcomes. The seven RCTs did apply a standard definition of exacerbation and apparatus for measuring F_ENO . Despite the differences between RCTs, we still observed differences in outcomes between some of the subgroups studied, and it is likely that the magnitude of difference that we report in outcomes between the subgroups stratified by LTRA treatment, obesity and atopy may be an underestimate of the true value.

Page 21 of 67

1

2		
3 4	270	Our study was not designed to determine why $F_{\mbox{\scriptsize E}}NO$ guided treatment was associated with improved
5 6	271	asthma outcomes among those not treated with LTRA compared to participants receiving LTRA
7 8	272	treatment. Treatment with LTRA is known to reduce F_ENO by approximately 25% in children with
9 10 11	273	atopic asthma [27] and may plausibly confound F_ENO -guided treatment, especially since the RCT
12 13	274	treatment algorithms did not consider the effect of LTRA on F_ENO . There is an alternative
14 15	275	explanation for the differences in exacerbation outcomes associated with LTRA treatment in
16 17	276	different RCT arms; those treated with LTRA were younger and had more severe asthma (including
18 19	277	higher ICS dose, needing LABA treatment and almost twice the exacerbation prevalence) and $F_{\epsilon}NO$ -
20 21 22	278	guided asthma treatment may be less effective in more severe asthma rather than in children
22 23 24	279	receiving LTRA treatment per se. Given that LTRA are commonly used in asthma treatment, there is
25 26	280	a need to study the impact of LTRA treatment on $F_{\scriptscriptstyle E}NO$ -guided asthma treatment.
27 28 29	281	We observed that when data from the RCTs were combined, F_ENO -guided asthma treatment was
30 31	282	associated with reduced risk for loss of control and time to loss of control among non-obese
32 33 34	283	children. This contrasts with the findings of an RCT whose data are included in the present analysis
35 36	284	[14] which reported fewer symptoms among obese participants (i.e. with BMI>30kg/m ²) receiving
37 38	285	F_ENO -guided treatment. This apparent inconsistency may be due to several factors. First the
39 40	286	outcome in the paper by Szefler <i>et al</i> [14] was days of maximal symptoms, but this variable was not
41 42	287	available in all the RCTs included in the present paper and therefore loss of control was the outcome
43 44 45	288	analysed here. Second, participants were all of African American or Hispanic ethnic origin, on higher
46 47	289	ICS dose and had a considerably higher obesity prevalence[14], and some or all of these difference
48 49	290	characteristics could explain different outcomes compared to the remaining six RCT participants. In
50 51	291	our study, the reduced odds for loss of control and time to loss of control for non-obese children
52 53 54	292	receiving $F_{E}NO$ -guided treatment compared to standard treatment is likely to be underestimated
54 55 56	293	due to inclusion of F_ENO and asthma control data from the RCT of Szefler <i>et al</i> [14].
57		

20

3 4	294
5 6	295
7 8	296
9 10 11	297
12 13	298
14 15	299
16 17	300
18 19 20	301
21 22	302
23 24	303
25 26 27	304
27 28 29	305
30 31 32	306
33 34	307
35 36 37	308
38 39	
40 41	
42 43	
44 45 46	
47 48	
49 50	
51 52 53	
53 54 55	
55 56 57	
58	

There are some limitations to our study. First, the time to loss of control or first exacerbation was restricted to the predetermined assessment periods and this lack of precision will weaken the reported differences in these outcomes between sub groups. Secondly, the RCTs had different study designs with different step-up/step-down criteria and management regimes. Third, ethnicity data was only available for four of the seven RCTs and was therefore not included as a covariate in the models, but ideally we would have included ethnicity in our model since ethnicity was associated with differences between the other subgroups analysed(supplemental table 2) . A final limitation is that self-reported ICS adherence was available in only three RCTs included in our study [14,22,23] we were not able to compare outcomes between treatment arms between adherent and nonadherent participants. Future research could test the hypothesis that asthma outcomes are improved by F_ENO-guided treatment in adherent compared to non-adherent patients.

In summary, we have used data from more than 1000 asthmatic children and report that F_ENO-

guided treatment lead to better asthma outcomes among those not treated with LTRA. These

308 findings support calls for individualised treatment for asthma [7].

1		
2 3 4	309	REFERENCES
5 6	310	1. Asthma UK. Asthma facts and FAQs. <u>http://www.asthma.org.uk/asthma-facts-and-statistics</u> . 2017.
7 8 9	311	Date last accessed: 08/31 2017.
10 11 12	312	2. Centers for Disease Control and Prevention. Asthma. Most recent data.
13 14 15	313	https://www.cdc.gov/asthma/most_recent_data.htm. 2016. Date last accessed: 08/31 2017.
16 17 18	314	3. World Health Organisation. Asthma. <u>https://www.who.int/respiratory/asthma/en/</u> . 2011. Date
19 20 21	315	last accessed: 12/07 2018.
22 23 24	316	4. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention.
24 25 26	317	https://ginasthma.org/gina-reports/. 2019. Date last accessed: 07/26 2019.
27 28 29	318	5. British Thoracic Society and Scottish Intercollegiate Guidelines Network. SIGN 158. The British
30 31	319	Guideline on the Management of Asthma. <u>https://www.brit-thoracic.org.uk/quality-</u>
32 33 34	320	improvement/guidelines/asthma/. 2019. Date last accessed: 07/27 2019.
35 36 37	321	6. National Institute for Health and Care Excellence. Asthma: diagnosis, monitoring and chronic
38 39	322	asthma management. <u>https://www.nice.org.uk/guidance/ng80</u> . 2017. Date last accessed: 01/28
40 41 42	323	2018.
43 44 45	324	7. Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme
46 47	325	FM, Fahy JV, Frey U, Gibson P, Heaney LG, Holt PG, Humbert M, Lloyd CM, Marks G, Martinez FD, Sly
48 49	326	PD, von Mutius E, Wenzel S, Zar HJ, Bush A. After asthma: redefining airways diseases. Lancet 2018;
50 51 52 53	327	391: 350-400.
54 55	328	8. Pijnenburg MW, Hofhuis W, Hop WC, De Jongste JC. Exhaled nitric oxide predicts asthma relapse
56 57 58 59 60	329	in children with clinical asthma remission. <i>Thorax</i> 2005; 60: 215-218.

2	
ך ע	
4 5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
34	
35	
36	
37	
20	
20	
40	
40	
41 42	
42	
43	
44 15	
45	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

9. Zacharasiewicz A, Wilson N, Lex C, Erin EM, Li AM, Hansel T, Khan M, Bush A. Clinical use of
noninvasive measurements of airway inflammation in steroid reduction in children. *American Journal of Respiratory & Critical Care Medicine* 2005; 171: 1077-1082.

333 10. Beck-Ripp J, Griese M, Arenz S, Koring C, Pasqualoni B, Bufler P. Changes of exhaled nitric oxide

during steroid treatment of childhood asthma. *European Respiratory Journal* 2002; 19: 1015-1019.

335 11. Baraldi E, Azzolin NM, Zanconato S, Dario C, Zacchello F. Corticosteroids decrease exhaled nitric
336 oxide in children with acute asthma. *J Pediatr* 1997; 131: 381-385.

337 12. Silkoff PE, Carlson M, Bourke T, Katial R, Ogren E, Szefler SJ. The Aerocrine exhaled nitric oxide
338 monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy
339 in asthma. *Journal of Allergy & Clinical Immunology* 2004; 114: 1241-1256.

340 13. Petsky HL, Kew KM, Chang AB. Exhaled nitric oxide levels to guide treatment for children with
341 asthma. *Cochrane Database of Systematic Reviews* 2016: Art. No.: CD011439. DOI:

342 10.1002/14651858.CD011439.pub2.

343 14. Szefler SJ, Mitchell H, Sorkness CA, Gergen PJ, O'Connor GT, Morgan WJ, Kattan M, Pongracic JA,
 344 Teach SJ, Bloomberg GR, Eggleston PA, Gruchalla RS, Kercsmar CM, Liu AH, Wildfire JJ, Curry MD,
 345 Busse WW. Management of asthma based on exhaled nitric oxide in addition to guideline-based
 346 treatment for inner-city adolescents and young adults: a randomised controlled trial. *Lancet* 2008;
 347 372: 1065-1072.

348 15. Voorend-van Bergen S, Vaessen-Verberne AA, Landstra AM, Brackel HJ, van den Berg NJ, Merkus
 349 PJ, de Jongste JC, Pijnenburg MW. Fractional Exhaled Nitric Oxide Monitoring Does Not Improve
 350 Asthma Management in Children with Concordant and Discordant Asthma Phenotypes. *American* 351 *Journal of Respiratory & Critical Care Medicine* 2015; 192: 1016-1018.

2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
ΔΔ	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	
111	

352	16. Fielding S, Pijnenburg M, de Jongste JC, Pike K, Roberts G, Petsky H, Chang AB, Fritsch M, Frischer
353	T, Szefler S, Gergen P, Vermeulen F, Vael R, Turner S. Change in FEV1 and FENO Measurements as
354	Predictors of Future Asthma Outcomes in Children. Chest 2019; 155: 331-341.
355	17. Turner S. Exhaled nitric oxide and the management of childhood asthma – yet another promising
356	biomarker "has been" or a misunderstood gem. Paediatr Respir Rev 2015; 16: 88-96.
357	18. Fritsch M, Uxa S, Horak FJ, Putschoegl B, Dehlink E, Szepfalusi Z, Frischer T. Exhaled nitric oxide in
358	the management of childhood asthma: a prospective 6-months study. Pediatr Pulmonol 2006; 41:
359	855-862.
360	19. Peirsman EJ, Carvelli TJ, Hage PY, Hanssens LS, Pattyn L, Raes MM, Sauer KA, Vermeulen F,
361	Desager KN. Exhaled nitric oxide in childhood allergic asthma management: a randomised controlled
362	trial. Pediatr Pulmonol 2014; 49: 624-631.
363	20. Petsky HL, Li AM, Au CT, Kynaston JA, Turner C, Chang AB. Management based on exhaled nitric
364	oxide levels adjusted for atopy reduces asthma exacerbations in children: A dual centre randomized
365	controlled trial. Pediatr Pulmonol 2015; 50: 535-543.
366	21. Pijnenburg MW, Bakker EM, Hop WC, De Jongste JC. Titrating steroids on exhaled nitric oxide in
367	children with asthma: a randomized controlled trial. American Journal of Respiratory & Critical Care
368	Medicine 2005; 172: 831-836.
369	22. Pike K, Selby A, Price S, Warner J, Connett G, Legg J, Lucas JSA, Peters S, Buckley H, Magier K,
370	Foote K, Drew K, Morris R, Lancaster N, Roberts G. Exhaled nitric oxide monitoring does not reduce
371	exacerbation frequency or inhaled corticosteroid dose in paediatric asthma: a randomised controlled
372	trial. The clinical respiratory journal 2013; 7: 204-213.

European Respiratory Journal

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

1 2

373 23. Voorend-van Bergen S, Vaessen-Verberne AA, Brackel HJ, Landstra AM, van den Berg NJ, Hop
374 WC, de Jongste JC, Merkus PJ, Pijnenburg MW. Monitoring strategies in children with asthma: a
375 randomised controlled trial. *Thorax* 2015; 70: 543-550.

24. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight
and obesity worldwide: international survey. *BMJ* 2000; 320: 1240-1243.

25. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MSM,
Zheng J, Stocks J, ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry
for the 3-95-yr age range: the global lung function 2012 equations. *European Respiratory Journal*2012; 40: 1324-1343.

382 26. American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for
383 standardized procedures for the online and offline measurement of exhaled lower respiratory nitric
384 oxide and nasal nitric oxide, 2005. *American Journal of Respiratory & Critical Care Medicine* 2005;
385 171: 912-930.

386 27. Montuschi P, Mondino C, Koch P, Barnes PJ, Ciabattoni G. Effects of a leukotriene receptor
387 antagonist on exhaled leukotriene E4 and prostanoids in children with asthma. *Journal of Allergy &*388 *Clinical Immunology* 2006; 118: 347-353.

389 28. Koo S, Gupta A, Fainardi V, Bossley C, Bush A, Saglani S, Fleming L. Ethnic Variation in Response
 390 to IM Triamcinolone in Children With Severe Therapy-Resistant Asthma. *Chest* 2016; 149: 98-105.

391 29. Jensen ME, Gibson PG, Collins CE, Wood LG. Airway and systemic inflammation in obese children
392 with asthma. *European Respiratory Journal* 2013; 42: 1012-1019.

2	
3	3
4	
5	Э
6 7	
8	Э
9	
10	
11	3
12	-
13	3
14	-
15	3
16 17	
18	3
19	-
20	
21	
22	
23	
24	
25	
26	-
27	
20	
30	2
31	
32	2
33	
34	2
35	
36	,
3/ 20	2
30	2
40	
41	
42	
43	
44	
45	
46	
47 78	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59 60	
00	

393	30. Ahmadizar F, Vijverberg SJH, Arets HGM, de Boer A, Lang JE, Kattan M, Palmer CNA,
394	Mukhopadhyay S, Turner S, Maitland-van der Zee AH. Childhood obesity in relation to poor asthma
395	control and exacerbation: a meta-analysis. European Respiratory Journal 2016; 48: 1063-1073.
396	31. Payne DN, Adcock IM, Wilson NM, Oates T, Scallan M, Bush A. Relationship between exhaled
397	nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment
398	with oral prednisolone. American Journal of Respiratory & Critical Care Medicine 2001; 164: 1376-
399	1381.
400	32. Knorr B, Franchi LM, Bisgaard H, Vermeulen JH, LeSouef P, Santanello N, Michele TM, Reiss TF,
401	Nguyen HH, Bratton DL. Montelukast, a leukotriene receptor antagonist, for the treatment of
402	persistent asthma in children aged 2 to 5 years. <i>Pediatrics</i> 2001; 108: E48.
403	33. Calpin C, Macarthur C, Stephens D, Feldman W, Parkin PC. Effectiveness of prophylactic inhaled
404	steroids in childhood asthma: a systemic review of the literature. Journal of Allergy & Clinical
405	Immunology 1997; 100: 452-457.
406	
407	

2		
3	408	FIGURE LEGEND
4		
5	409	Figure 1. Kaplan Meier curves showing time to first exacerbation for patients whose asthma
6	410	treatment was guided by either fractional exhaled nitric oxide ("FENO") or by symptoms only
7	411	("standard") and stratified by leukotriene receptor antagonist (LTRA) treatment. The difference
8	/12	between treatment arms was significant for those not treated with LTRA ($n=0.018$) but not for the
9	412	between treatment arms was significant for those not treated with ETRA ($p=0.046$) but not for the
10	413	patients treated with LTRA (p=0.292).
17	414	
12	717	
12	415	Figure 2. Kaplan Meier curves showing time to loss of control for patients who were initially
15	416	controlled and whose asthma treatment was guided by either fractional exhaled nitric oxide
16	117	("EENO") or by symptoms only ("standard") and stratified by leukotrione recentor antagonist (LTPA)
17	417	(FENO) of by symptoms only (standard) and stratined by redkothene receptor antagonist (ETKA)
18	418	treatment. The difference between treatment arms was significant for those not treated with LTRA
19	419	(p=0.038) but not for the patients treated with LTRA (p=0.822).
20	420	
21	420	
22	421	Figure 3 Kanlan Meier curves showing time to loss of control for natients who were initially
23	122	controlled and where actime treatment was guided by either fractional exhaled nitric evide
24	422	
25	423	("FENO") or by symptoms only ("standard") and stratified by obese status. The difference between
26	424	treatment arms was significant for those who were not obese (p=0.042) but not for the patients who
27	425	were obese (p=0.538).
28		
29	426	
30		
31	427	
2∠ 22	427	
27	128	
35	420	
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
50		
52		
53		
54		
55		
56		
57		
58		
59		
60		

Figure 1. Kaplan Meier curves showing time to first exacerbation for patients whose asthma treatment was guided by either fractional exhaled nitric oxide ("FENO") or by symptoms only ("standard") and stratified by leukotriene receptor antagonist (LTRA) treatment. The difference between treatment arms was significant for those not treated with LTRA (p=0.048) but not for the patients treated with LTRA (p=0.292).

338x190mm (96 x 96 DPI)

Figure 2. Kaplan Meier curves showing time to loss of control for patients who were initially controlled and whose asthma treatment was guided by either fractional exhaled nitric oxide ("FENO") or by symptoms only ("standard") and stratified by leukotriene receptor antagonist (LTRA) treatment. The difference between treatment arms was significant for those not treated with LTRA (p=0.038) but not for the patients treated with LTRA (p=0.822).

338x190mm (96 x 96 DPI)

Figure 3. Kaplan Meier curves showing time to loss of control for patients who were initially controlled and whose asthma treatment was guided by either fractional exhaled nitric oxide ("FENO") or by symptoms only ("standard") and stratified by obese status. The difference between treatment arms was significant for those who were not obese (p=0.042) but not for the patients who were obese (p=0.538).

338x190mm (96 x 96 DPI)

SUPPLEMENT

Supplemental table 1. The interval in weeks between the baseline visit (when randomisation occurred) and subsequent follow up assessments in the seven randomised clinical trials whose data are included in the present analysis.

	Follow up							
	visit 1	visit 2	visit 3	visit 4	visit 5	visit 6	visit 7	visit 8
Fritsch[1]	6	13	18	26				
Peirsman[2]	13	26	39	52				
Petsky[3]	4	9	13	17	26	32	40	52
Pijnenburg[4]	13	26	39	52				
Pike[5]	9	17	26	34	40	52		
Szefler[6]	6	14	22	30	38	46		
Voorend-van Bergen[7]	17	34	52					

Supplemental table 2. Characteristics of participants in the five subgroups where outcomes are compared between those in the standard treatment and F_E NO guided treatment arms.

	ICS d	ose	Ato	ру	LTRA treatment		Obese		White	
	≤400 microg	>400 microg	Yes	No	Yes	No	Yes	No	Yes	No
Male gender	359/596 (60%)	284/516	588/991	36/86	127/227	515/880	97/187	535/898	209/312	311/587
		(55%)	(59%)	(42%)‡	(56%)	(58%)	(52%)	(60%)	(66%)	(53%)‡
Mean age (SD), y	12.1 (3.3)	13.2 (2.8) ‡	12.6 (3.1)	12.8 (3.3)	12.0 (3.1)	12.7 (3.1) ‡	13.9 (2.5)	12.2 (3.0) ‡	10.5 (2.8)	14.0 (2.4) ‡
Any exacerbation	106/568 (19%)	190/479	251/939	27/78	89/213	207/829	66/169	226/857	65/312	183/524
		(40%)‡	(27%)	(35%)	(42%)	(25%)‡	(39%)	(26%)‡	(21%)	(31%)‡
Loss of control*	186/378 (49%)	158/302	305/607	23/50	80/149	264/531	76/127	261/538	107/221	185/375
		(52%)	(50%)	(44%)	(54%)	(50%)	(60%)	(49%)‡	(48%)	(49%)
LTRA treatment	77/595 (13%)	150/512	204/986	11/86	n/a	n/a	40/187	185/894	106/312	96/583
		(30%)‡	(21%)	(13%)			(21%)	(21%)	(34%)	(16%)‡
LABA treatment	185/595 (31%)	449/512	553/986	53/86	168/227	466/880	130/187	491/894	161/312	374/583
		(88%)‡	(56%)	(62%)	(74%)	(53%)‡	(70%)	(55%)‡	(52%)	(64%)‡
Baseline FENO	21 (11.4, 40.2)	23.6 (12,	23.6 (12.6,	10 (7.8,	22.5 (11.2,	21.8 (11.6,	16.8 (10,	23 (12,	19.9	20.7 (11.2,
median (IQR)		47.8) ‡	46.1)	16.2)	42.3)	43.0)	31.6)	46.3) ‡	(10.2,	41.3)
									38.4)	
Median (IQR) ICS dose ⁺	n/a	n/a	400	400	1000	400	1000	400 (400,	400 (400,	800 (400,
			(400,1000)	(400,1000)	(400,2000)	(400,1000)	(400,	1000) ‡	800)	2000) ‡
						‡	2000)			
Proportion white	204/483 (42%)	108/416	286/790	9/75	106/202	206/693	10/172	301/707	n/a	n/a
		(26%)‡	(36%)	(12%)‡	(53%)	(30%)‡	(6%)	(43%)‡		
Proportion obese	81/583(14%)	106/502	165/967	18/83	40/225(18%)	147/856	n/a	n/a	10/311	162/568
		(21%)‡	(17%)	(22%)		(17%)			(3%)	(29%)‡
Proportion atopic	527/879 (91%)	464/498	n/a	n/a	204/215	782/857	165/183	802/867	286/295	504/570
		(93%)			(95%)	(91%)	(90%)	(92.5%)	(97%)	(88%)‡

*After being controlled at baseline. †microg budesonide or equivalent. ‡ p<0.05.

Supplemental table 3. Proportion of individuals who were initially controlled who lost control in F_ENO -guided and standard management arms of clinical trials with stratification for patient characteristics. ICS=inhaled corticosteroids, presented as ≤ 400 or >400 micrograms budesonide equivalent. Obesity was defined by International Obesity Task Force criteria.

Baseline cha	racteristic	% with loss of control during follow-up [#] in each treatment arm) vs standard	p value for interaction*	
		F _E NO guided	Standard	OR	95% CI		
		management	management				
LTRA treatment	Yes	39/74 (53%)	41/75 (55%)	0.94	(0.48, 1.87)	0.453	
	No	118/261/(45%)	146/270 (54%)	0.70	(0.49, 1.00)		
ICS dose	≤400 microg	88/191 (46%)	98/187 (52%)	0.80	(0.52, 1.22)	0.652	
	>400 microg	69/144 (48%)	89/158 (56%)	0.69	(0.43, 1.99)		
Obese	Yes	40/66 (61%)	36/61 (59%)	1.08	(0.53, 2.22)	0.274	
	No	116/264 (44%)	145/274 (53%)	0.69	(0.48, 0.99)		
Atopic	Yes	133/291 (46%)	172/316 (54%)	0.73	(0.52, 1.02)	0.457	
	No	14/30 (47%)	8/20 (40%)	1.15	(0.36, 3.69)		
Ethnic group	White	48/106 (45%)	59/115 (51%)	0.76	(0.42, 1.37)	0.946	
	Non-white	89/191 (47%)	96/184 (52%)	0.78	(0.52, 1.18)		

*adjusted for age, ICS at baseline (except ICS dose model) and RCT population; # from those controlled at baseline

Supplemental figure 1. Kaplan Meier curves showing time to loss of control for patients who were initially controlled and whose asthma treatment was guided by either fractional exhaled nitric oxide ("FENO") or by symptoms only ("standard") and stratified by atopy. The difference between treatment arms was significant for those who were atopic (p=0.050) but not for the non-atopic patients (p=0.566).

REFERENCES

1. Fritsch M, Uxa S, Horak FJ, Putschoegl B, Dehlink E, Szepfalusi Z, Frischer T. Exhaled nitric oxide in the management of childhood asthma: a prospective 6months study. *Pediatr Pulmonol* 2006; 41: 855-862.

2. Peirsman EJ, Carvelli TJ, Hage PY, Hanssens LS, Pattyn L, Raes MM, Sauer KA, Vermeulen F, Desager KN. Exhaled nitric oxide in childhood allergic asthma management: a randomised controlled trial. *Pediatr Pulmonol* 2014; 49: 624-631.

3. Petsky HL, Li AM, Au CT, Kynaston JA, Turner C, Chang AB. Management based on exhaled nitric oxide levels adjusted for atopy reduces asthma exacerbations in children: A dual centre randomized controlled trial. *Pediatr Pulmonol* 2015; 50: 535-543.

4. Pijnenburg MW, Bakker EM, Hop WC, De Jongste JC. Titrating steroids on exhaled nitric oxide in children with asthma: a randomized controlled trial. *American Journal of Respiratory & Critical Care Medicine* 2005; 172: 831-836.

5. Pike K, Selby A, Price S, Warner J, Connett G, Legg J, Lucas JSA, Peters S, Buckley H, Magier K, Foote K, Drew K, Morris R, Lancaster N, Roberts G. Exhaled nitric oxide monitoring does not reduce exacerbation frequency or inhaled corticosteroid dose in paediatric asthma: a randomised controlled trial. *The clinical respiratory journal* 2013; 7: 204-213.

European Respiratory Journal

1
2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
29
30
31
27
JZ 22
22
34
35
36
37
38
39
40
41
42
43
44
45
· -

46

6. Szefler SJ, Mitchell H, Sorkness CA, Gergen PJ, O'Connor GT, Morgan WJ, Kattan M, Pongracic JA, Teach SJ, Bloomberg GR, Eggleston PA, Gruchalla RS, Kercsmar CM, Liu AH, Wildfire JJ, Curry MD, Busse WW. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for

inner-city adolescents and young adults: a randomised controlled trial. *Lancet* 2008; 372: 1065-1072.

7. Voorend-van Bergen S, Vaessen-Verberne AA, Brackel HJ, Landstra AM, van den Berg NJ, Hop WC, de Jongste JC, Merkus PJ, Pijnenburg MW. Monitoring

strategies in children with asthma: a randomised controlled trial. *Thorax* 2015; 70: 543-550.

European Respiratory Journal

Page 38 of 67

1	Does treatment guided by fractional exhaled nitric oxide improve outcomes in subgroups of children
2	with asthma?
3	Fielding S ¹ , Pijnenburg M ² , de Jongste JC ² , Pike KC ^{3,4} , Roberts G ³ , Petsky H ⁵ , Chang AB ⁶ , Fritsch M ⁷ ,
4	Frischer T ⁷ , Szefler SJ ⁸ , Gergen P ⁹ , Vermeulen F ¹⁰ , Vael R ¹¹ , Turner S ¹² .
5	¹ Medical Statistics Team, Institute of Applied Health Sciences, University of Aberdeen, UK
6	² Department of Paediatric Respiratory Medicine and Allergology, Erasmus MC – Sophia Children's
7	Hospital, Rotterdam, Netherlands
8	³ Clinical and Experimental Science Academic Unit, University of Southampton, Southampton, UK
9	⁴ Respiratory Critical Care and Anaesthesia group, Institute of Child Health, University College
10	London, UK
11	⁵ School of Nursing and Midwifery, Griffith University; Menzies Health Institute Queensland,
12	Brisbane, Australia
13	⁶ Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Queensland
14	University of Technology, Brisbane; Child Health Division, Menzies School of Health Research,
15	Charles Darwin University, Darwin, Australia
16	⁷ University Children's Hospital, Vienna, Austria
17	⁸ Breathing Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado
18	School of Medicine, Aurora, Colorado, USA
19	⁹ National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
20	¹⁰ Pediatric Department, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
21 22	¹¹ Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
23	¹² Child Health, University of Aberdeen, UK

2		
3	24	Corresponding author: Professor Steve Turner, Child Health, Royal Aberdeen Children's Hospital,
4		
5	25	Aberdeen, UK, AB25 2ZG. Tel +44 1224 438470. <u>s.w.turner@abdn.ac.uk</u>
7		
8	20	Wand south 2011
9	20	
10		
11		
12		
15 14		
15		
16		
17		
18		
19		
20		
21		
23		
24		
25		
26		
27		
20 29		
30		
31		
32		
33		
34		
35 36		
37		
38		
39		
40		
41 42		
42 43		
44		
45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55 56		
56 57		
57		
59		
60		

27 ABSTRACT

> Introduction. Fractional exhaled nitric oxide (F_ENO), a biomarker of eosinophilic airway inflammation, may be useful to guide asthma treatment. F_FNO guided treatment may be more effective in certain subgroups for improving asthma outcomes compared to standard treatment. Methods. An individual patient data analysis was performed using data from seven randomised clinical trials (RCT) which used F_FNO to guide asthma treatment. The incidence of an asthma exacerbation and loss of control, and the time to first exacerbation and loss of control were described between five plausible subgroups of RCT participants. Results. Data were available in 1112 RCT participants. Among those not treated with LTRA (but not among those who were treated with LTRA), F_FNO guided treatment was associated with reduced exacerbation risk (odds ratio (OR) 0.68 [95% CI 0.49, 0.94]), longer time to first exacerbation (hazard ratio (HR) 0.76 [0.57, 0.99]) and borderline reduced risk for loss of control (OR 0.70 [0.49, 1.00]). Non-obese children, compared to obese children, were less likely to lose asthma control when treatment was guided by $F_{E}NO$ (OR 0.69 [0.48, 0.99]) and time to loss of control was longer (HR 0.77 [0.61, 0.99]). In atopic children, F_ENO guided treatment had no effect on the risk of loss of control per se, but increased the time to loss of control, compared to nonatopic children. Conclusions. Asthma treatment guided by F_ENO may be more effective in achieving better asthma outcomes for patients who are not treated with LTRA and who are , not obese or who are atopic compared to standard practice. Keywords: Asthma, Child, Monitoring, Nitric oxide

1		
2 3 4	50	
5 6 7	51	INTRODUCTION
8 9 10	52	Asthma is a common chronic condition which affects one million children in the UK [1], six million in
11 12	53	the US[2] and 235 million children and adults around the world [3]. There is effective treatment to
13 14	54	control asthma symptoms and whilst guidelines recommend that treatment should be titrated to
15 16	55	asthma symptoms[4-6]there remains ais widely accepted recognition that an objective
17 18 19	56	measurement to guide asthma treatment is required [7].
20 21 22	57	Fractional exhaled nitric oxide (F_ENO) in exhaled breath has many of the characteristics required of
23 24	58	an objective tool to measure asthma symptoms. For example, F _E NO-since it rises before symptoms
25 26	59	occur [8,9], falls when asthma treatment is administered [10,11], can be measured with minimal
27 28	60	discomfort to the patient and results are available within a few minutes using commercially available
29 30	61	apparatus [12]. A meta-analysis including eight clinical trials in children and young adults found that
31 32 33	62	addition of F_ENO measurements to symptom-guided treatment did not reduce asthma symptoms
34 35 36	63	[13], but that F_ENO guided treatment reduced asthma exacerbations [13].
30 37 38	64	Asthma is a heterogeneous condition and what is we do not know is whether there are patient sub-
39 40	65	groups in whom using F_ENO to guide asthma treatment may be beneficial [7]. In one randomised
41 42	66	controlled trial (RCT), the intervention was more effective in participants who had more positive skin
43 44 45	67	tests and who were obese, but age, sex, asthma severity and initial F_ENO concentration were not
43 46 47	68	associated with a different outcome from the intervention [14]. In a second RCT there was no
48 49	69	evidence of improved outcomes between individuals who were concordant or discordant for FENO
50 51 52	70	and symptoms [15].
53 54	71	Our group has pooled the data collected from seven of the eight published RCTs where the efficacy

of F_ENO used to guide asthma treatment was examined, compared to standard management [16].

Here we use data from 1112 participants to test the hypothesis that there are particular subgroups

3		
4		
5		
6		
7		
, 0		
ð		
9		
1	0	
1	1	
1	2	
1	3	
1	Δ	
1	5	
1	2	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
2	2	
้ ว	<u>~</u>	
2 2	ر ۸	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
2	1	
ט ר	י ר	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
- २	8	
2	0	
ر ۸	ر م	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
4	6	
۵	7	
т Л	, Q	
+	0	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	5	
с Г	0 7	
5	/	
~	ο	

of patients where F_ENO guided treatment is more effective in improving asthma outcomes

75 compared to standard treatment.

76

1 2

77 METHODS

78 Study design

Authors of all published RCTs where measurements of F_ENO were used to guide asthma treatment in
children [17] were contacted and asked to provide data as previously described [16]. The children
who took part in the studies were recruited from hospital clinics and were followed up for between
six and 12 months. The primary outcome was the presence of any asthma exacerbation during
follow up [13]. Secondary outcomes were loss of control among those who were initially controlled

84 and time to first exacerbation and time to first loss of control. Institutional ethical approval was

85 provided for each trial which contributed data.

86 Details of each population (also see table one)

87 Fritsch et al [18] undertook a study of 47 children with asthma attending a hospital asthma clinic in 88 Vienna, Austria and collected data (including F_ENO, asthma symptom score and history of recent 89 exacerbations) at six-week intervals over six months. Peirsman et al [19] recruited 99 participants 90 with persistent asthma attending hospital asthma clinics across Belgium and collected data at three-91 month intervals over twelve months. Petsky et al [20] recruited 63 children from hospital clinics in 92 Australia and Hong Kong, and data were collected on eight occasions over twelve months (one, two, 93 three, four, six, eight, ten and twelve months). Pijnenburg et al [21] included 86 participants 94 attending a single hospital clinic in the Netherlands and data were collected at baseline, three, six, 95 nine and twelve months. Pike et al [22] recruited 90 participants clinics in fourthe UK hospitals and 96 collected data at two-month intervals over a year. Szefler et al [14] recruited 546 participants from 97 the community in the USA and collected post-randomisation information over 46 weeks including at

1 2		
- 3 4	98	three months, six months, eight months and ten months. Voorend-van Bergen et al [23] undertook
5 6	99	a study of 181 participants attending hospital clinics in the Netherlands and collected data at four-
7 8	100	month intervals over a year. The treatment algorithms in F_ENO -guided and standard practice arms in
9 10 11	101	each RCT was different to other RCTs.
12		
13 14		
15 16		
17		
18 10		
20		
21 22		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41 42		
42 43		
44 45		
46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		

European Respiratory Journal

	<u>Mean age</u>	Inclusion criteria (in	<u>Methodology</u>	<u>Treatment</u>	<u>Treatment</u>	<u>Treatment</u>	What did the trial find?
	<u>(SD), y</u>	addition to child	<u>for asthma</u>	strategy for	strategy for	options (same for	<u>(F_ENO treatment</u>
		diagnosed with asthma)	<u>control</u>	<u>intervention</u>	<u>control group</u>	both groups in all	compared to standard
				group	group	<u>studies)</u>	<u>care)</u>
ritsch <i>et al</i>	<u>11.5 (3.1)</u>	Age 6-18 years.	<u>Unvalidated</u>	Combination of	Combination of	Four treatments	Higher mid expiratory
<u>20061</u>		Sensitised to inhaled	<u>symptom</u>	<u>symptom score,</u>	symptom score	<u>steps</u>	flow, higher dose of ICS
<u>Austria</u>		allergens. No systemic	<u>diary</u>	<u>FEV₁ <80% and</u>	<u>and FEV₁ <80%</u>		
		corticosteroids one		<u>F_ENO>20ppb</u>			
		month before					
		<u>recruitment.</u>					
Peirsman <i>et al</i>	<u>10.7 (2.1)</u>	Sensitised to inhaled	<u>First four (of</u>	Combination of	Combination of	Step up and down	Reduced exacerbations
<u>2014²</u>		allergens. No	<u>seven)</u>	<u>symptom >score,</u>	<u>symptom score,</u>	options if on the	increased LTRA and ICS
<u> Belgium</u>		exacerbation or systemic	<u>questions on</u>	exacerbation in	exacerbation in	following	dose. No difference in
		corticosteroids three	<u>ACT*</u>	<u>previous two</u>	<u>previous two</u>	preventers: ICS	primary outcome
		month before		<u>weeks, FEV₁ <80%</u>	weeks and FEV ₁	alone; LTRA	
		<u>recruitment</u>		and F _E NO>20ppb	<u><80%</u>	alone; ICS+LABA;	
						ICS+LTRA	
Petsky <i>et al</i>	<u>10.0 (3.2)</u>	Aged >4 years.	<u>Validated</u>	Combination of	Symptom score	Seven steps (none	Reduced exacerbation,
2015 ³ Australia		Prescribed asthma	<u>symptom</u>	symptom score	<u>alone</u>	including LTRA)	increased ICS dose
		preventer. Adherent to	<u>diary†</u>	<u>plus F_ENO> 10 for</u>			
		<u>treatment</u>		<u>non atopic, >12</u>			
				with one positive			
				<u>skin test, >20 for</u>			
				>1 positive skin			
				<u>test</u>			
Pijnenburg <u>et</u>	<u>12.3 (2.8)</u>	Aged 6-18 years.	<u>Validated</u>	<u>Treatment</u>	Symptom score	Nine steps (none	Reduced F _E NO and
al 2005 ⁴		Sensitised to inhaled	<u>symptom</u>	stepped up if	<u>alone</u>	including LABA or	<u>bronchial</u>
<u>Netherlands</u>		allergens. ICS dose	<u>diary‡</u>	<u>F_ENO>30ppb.</u>		<u>LTRA)</u>	hyperresponsiveness
		unchanged for ≥ 3		<u>Treatment</u>			No increase in ICS dose
		months at recruitment		stepped down if			
				symptoms			

Page	45	of 67	
		•. •.	

		1	1				
				controlled and			
				<u>F_ENO≤30ppb</u>			
Pike <i>et al</i> 201	<u>11.9 (2.6)</u>	Aged 6-17 years.	<u>Modified</u>	Combination of	Combination of	Eight treatment	No differences in
<u>UK</u>		Prescribed ≥400 microg	<u>validated</u>	<u>symptoms, recent</u>	<u>symptoms, recent</u>	<u>steps</u>	outcomes
		ICS daily (budesonide	<u>symptom</u>	<u>reliever</u>	<u>reliever</u>		
		equivalent). Adherent to	<u>diary¥</u>	medication use,	medication use,		
		treatment. No history of		<u>FEV₁ >90%, 80-</u>	<u>and FEV₁ >90%,</u>		
		life-threatening asthma		<u>90% or <80% and</u>	<u>80-90% or <80%</u>		
		or requiring maintenance		<u>F_ENO≤15, 15-25 or</u>			
		oral corticosteroids.		<u>≥25ppb</u>			
Szefler et al	<u>14.4 (2.1)</u>	Aged 12-20 years. Living	<u>ACT*</u>	Combination of	Combination of	Seven treatment	Reduced exacerbations,
<u>2008</u> ⁶		in community where		<u>symptoms, FEV₁</u>	symptoms and	steps (including	increased ICS dose. No
<u>USA</u>		≥20% households were		<u>≥80, 70-79% or</u>	<u>FEV₁≥80, 70-79%</u>	low dose	difference in primary
		below poverty threshold.		<u>>70% and F_ENO 0-</u>	<u>or >70%</u>	<u>theophylline</u>)	outcome.
		Persistent or		<u>20, 20.1-30, 30.1-</u>			
		uncontrolled asthma if		<u>40 or >40ppb</u>			
		on long term preventer.					
		Non-smoker.					
Voorend-van	<u>10.2 (3.0)</u>	Aged 4-18 years.	<u>ACT*</u>	Combination of	Symptom score	Seven treatment	Increased asthma control
Bergen et al		Sensitised to inhaled		symptom score	alone	<u>steps</u>	but not the primary
<u>2010</u> ⁸		allergens. >9%		and F _E NO <20, 20-			outcome
Netherlands		bronchodilator response.		<u>50 or >50ppb</u>			
		Prescribed ICS for ≥ 3					
		months. Non-smoker.					
		No history of multiple					
		ITU admissions for					
		asthma.					
103 <u>ICS=inha</u>	aled corticostero	oids. LTRA=leukotriene recep	itor antagonist. L	ABA=long acting beta	agonist. ppb=parts p	er billion. ITU=intens	ive care unit
104 <u>*ACT=A</u>	sthma Control To	est, Schatz M, et al J Allergy	<u>Clin Immunol 200</u>	<u>)6;117:549–556.</u>			
105 <u>+Santan</u>	iello NC, et al. Eu	<u>Ir Respir J 1997;10:646–651.</u>	<u> </u>	<u>t al Am J Respir Crit C</u>	are Med 1997;156:68	<u>88–695.</u>	
106 <u>¥Wasse</u>	rfallen JB, et al. J	I Allergy Clin Immunol 1997;	100: 16-22.				

5		
6 7	108	Covariates collected at baseline in all trials included: age, gender, height, weight, treatment arm,
8 9	109	dose of inhaled corticosteroid (ICS, as daily budesonide equivalent dose, BUD), prescribed long
10 11	110	acting beta agonist (LABA) or not, prescribed leukotriene receptor agonist (LTRA) or not, and an
12 13	111	asthma control score. Ethnicity was available in four cohorts[14,21-23]. Body Mass Index (BMI) was
14 15 16	112	derived and International Obesity Task Force weight categories created [24]. Percentage of
17 18	113	predicted (%) Forced Expired Volume in one second (FEV ₁ -) was calculated according to the Global
19 20	114	Lung Initiative standard [25] apart from participants in two trials [21,22] where only % FEV $_{ m 1}$
21 22 23	115	standardised to other references was available. F_ENO was measured in all studies in accordance with
23 24 25	116	the 2005 guideline [26]. At each follow up visit , the following variables were collected: an
26 27	117	assessment of asthma control was made (see table 1) and history of any asthma attack since the
28 29	118	previous assessment was recorded (defined as receipt of oral corticosteroids for an asthma
30 31 32	119	exacerbation [16]). The trials used different symptom score methodology and loss of control was
32 33 34	120	defined as per trial protocol by reaching a pre-agreed symptom score.
35 36 37	121	
38 39 40	122	Analysis
41 42 42	123	As thma outcomes were compared between participants in the $F_{\ensuremath{\text{E}}}NO$ guided and standard treatment
43 44 45	124	arms of RCTs for the following five subgroups defined at baseline and previously associated with
46 47	125	differences in F _E NO <u>. The five subgroups were stratified by:</u> # dose of inhaled corticosteroid (ICS_(₇
48 49	126	≤400 microg budesonide equivalent or >400 microg)[10], use of LTRA [27], obesity [14], ethnicity
50 51	127	(white versus other)[28] and skin prick positivity atopic (i.e. positive skin prick test or positive type-
52 53 54	128	specific IgE) [14]. Any exacerbation during follow up and time to first exacerbation and any loss of
55 56	129	control and time to loss of control were calculated (the latter restricted to those who were
57 58	130	controlled at baseline). Time to first exacerbation or to loss of control was determined using data
59 60	131	collected at the scheduled study assessments, and table one in the supplement describes the time in

1 2		
2 3 4	132	weeks between baseline and each follow up assessment in each RCT. For example, if a participant
5 6	133	experienced an exacerbation after their three-month assessment but before the six month
7 8	134	assessment, time was censored at six months. Logistic regression was used to relate any
9 10 11	135	exacerbation or any loss of control to an interaction term between each baseline characteristic and
12 13	136	treatment arm; a significant interaction term (p<0.05) would indicate that outcomes were different
14 15	137	between F_ENO guided and standard treatment for a sub group. Cox proportional hazards models
16 17	138	were used to investigate time to first exacerbation or time to first loss of control. Each subgroup
18 19 20	139	was considered separately and all models included adjustment for covariates associated with the
21 22	140	outcome including: age, a variable for each RCT and ICS dose at baseline (this was not included in the
23 24	141	ICS doese subgroup model). Standard statistical software was used (STATA version 14) and
25 26 27	142	significance was assumed at 5%. All analyses were exploratory, so no adjustment was made for
27 28 29	143	multiple comparisons.
30 31	144	
33 34	145	RESULTS
35 36 37	146	Study subjects
38 39 40	147	Data from seven RCTs were analysed [14,18-23], totalling 1112 participants. Characteristics of
40 41 42	148	participants at baseline have previously been described [16] and are presented in table $\frac{24}{2}$. The
43 44	149	majority of participants (58%) were male and the mean age was 12.6 (<u>standard deviation, SD 3.1</u>)
45 46	150	years. Characteristics of participants in the five subgroups are presented in supplemental table 2,
47 48 40	151	i.e. LTRA treatment (yes/no), ICS dose ≤400 microg/>400 microg), obese (yes/no), skin prick
49 50 51	152	positiveatopic (yes/no) and white versus other ethnic group.
52 53	153	
54 55		
56 57		
58		
59 60		

154	Table $\underline{24}$. Characteristic of study participants at the baseline visit in each study.

5 6			Fritsch[18]	Peirsman[19]	Petsky[20]	Pijnenburg[21]	Pike[22]	Szefler[14]	Voorend-van Bergen[23]	All populations combined
/ 8	Number of par	ticipants	47	99	63	86	90	546	181	1112
9	%(number) ma	ale	60% (28)	67% (66)	49% (31)	65% (56)	57% (51)	53% (288)	68% (123)	58% (643)
10 11	Mean age (SD)		11.5(3.1)	10.7 (2.1)	10.0 (3.2)	12.3 (2.8)	10.9 (2.6)	14.4 (2.1)	10.2 (3.0)	12.6 (3.1)
12 13	Median F _E NO (IQR), ppb		34 (18.6, 58.6) n=46	31 (14, 69) n=49	26 (12.2, 47.5) n=61	32 (16.6, 52.5) n=86	26 (10, 48) n=90	20 (11.2, 40.6) n=546	18 (10.2, 30.4) n=179	22 (11.6, 43.0) n=1057
14 15	Mean % predicted FEV ₁ (SD)		93.5 (15.7) n=47	91.4 (15.7) n=98	90.7 (15.6) n=54	97.5 (17.5) n=86	89.2 (14.3) n=90	90.9 (16.6) n=546	93.8 (13.0) n=157	93.5 (18.1) n=1078
16 17 18 19	% with positive skin prick test or positive aeroallergen sensitisationatopic		100%	100%	38% (24/63)	100%	76% (68/90)	88% (467/531)	100%	89% (972/1097)
20 21 22 23 24 25 26	% (number) obese 8% (4		8% (4/47)	1% (1/99)	2% (1/58)	4% (4/85)	8% (7/89)	31% (165/526)	3% (5/181)	17% (187/1085)
	% (number) prescribed LTRA 28% (13/4		28% (13/47)	60% (59/99)	10% (6/58)	0% (0/86)	51% (46/90)	15% (80/546)	13% (23/181)	21% (227/1107)
	% (number) prescribed LABA 38% (1		38% (18/47)	32% (32/99)	67% (39/58)	38% (33/86)	76% (68/90)	66% (360/546)	46% (84/181)	57% (634/1107)
27	Median dose o	of inhaled	400	320	400	800	800	1000	400	400
28 29 30 31 32	corticosteroids	corticosteroids (IQR)		(200, 400)	(250, 500)	(400,1000)	(400, 1000)	(400, 2000)	(400, 800)	(400, 1000)
	% (number) > 4	% (number) > 400ug BUD 30		15% (15/99)	49% (31/63)	66% (57/86)	59% (53/90)	53% (287/546)	33% (59/181)	46% (516/1112)
	% White ethnic group		Not stated	82% (69/84)	Not stated	Not stated	92% (83/90)	0% (0/526)	89% (160/179)	35% (312/ <u>901</u> 889)
33 3⊿	Control	Controlled	49% (23/47)	75% (49/65)	72% (41/57)	57% (44/77)	97% (87/90)	80% (421/528)	67% (122/181)	75% (787/1045)
35	SIGIUS	Not Controlled	51% (24/47)	25% (16/65)	28% (16/57)	43% (33/77)	3% (3/90)	20% (107/528)	33% (59/181)	24% (258/1045)
36	155 SD=s	standard deviation, IQR	=interquartile range	, LTRA=leukotrier	ne receptor antago	onist, LABA=long a	acting beta agonis	st, BUD = budesor	ide equivalent ICS	5

SD=standard deviation, IQR=interquartile range, LTRA=leukotriene receptor antagonist, LABA=long acting beta agonist, BUD = budesonide equivalent ICS

Page 49 of 67

	157	$F_{E}NO$ intervention and asthma exacerbation outcomes
	158	Any exacerbation. Of the 1047 participants for whom exacerbation data were available, 296 (28%)
	159	had at least one exacerbation with the first occurring after a median (interquartile range $IQRT$) 22
)	160	(14, 38) weeks. Table $\frac{32}{2}$ shows the effect of treatment group was different for the two LTRA
1 2 3	161	subgroups (interaction p-value = 0.0-39). Those not treated with LTRA, had lower odds for \geq 1
4 5	162	exacerbation in the F_ENO guided group compared to standard care (OR=0.68, 95%CI 0.49-0.94) but
5 7	163	there was no difference observed between F_ENO guided and control groups for those on LTRA, table
3	164	<u>32. The number needed to treat with $F_{E}NO$ guided management to prevent one exacerbation</u>
))	165	among those not treated with LTRA was 15. Interactions between treatment arm and other baseline
- 3 1	166	characteristics (ICS dose, obese, skin prick positiveatopy and white ethnicity) were not significant
5	167	when predicting exacerbation, table 32 .
7 3	168	
)]	169	Time to first exacerbation. Overall in the two treatment groups, the median time to first
' 2 3	170	exacerbation was 22 (IQR 14, 38) weeks in the standard arm and 22 (IQR 13, 34) in the F_ENO guided
4 5	171	arm. The interaction term between treatment arm and LTRA was of borderline significance for time
5 7	172	for first exacerbation (p=0.049), and among those not treated with LTRA at baseline, the time to first
3 9 1	173	asthma exacerbation was slightly longershorter for participants receiving F _E NO guided treatment
) 2	174	compared to standard care (HR=0.76, 0.57-0.99, p=0.048), table <u>4</u> 3 and figure 1. Time to first
3 4	175	exacerbation was no different between treatment groups for those treated with LTRA. The
5	176	interaction terms with treatment arm were not significant for ICS dose, skin prick test resultsatopy,
/ 3 2	177	obesity or ethnicity, table <u>4</u> 3.
)	I	

178Table 32. Proportion of individuals with any asthma exacerbation in F_ENO -guided and standard179management arms of clinical trials with stratification for patient characteristics. ICS=inhaled180corticosteroids, presented as ≤400 or >400 micrograms budesonide equivalent. Obesity was defined

181 by International Obesity Task Force criteria.

Baseline chara	cteristic	% with ≥1 ex	F _E NO vs		p value for	
		each treat	standard		interaction*	
		F _E NO guided	Standard	OR	95%	
		management	management		CI	
LTRA	Yes	49/109 (45%)	40/104 (38%)		(0.76,	0.039
treatment				1.46	2.79)	
	No	88/410 (21%)	119/419		(0.49,	
			(28%)	0.68	0.94)	
ICS dose	≤400	48/289 (17%)	58/279 (21%)		(0.46,	0.493
	microg			0.72	1.11)	
	>400	89/232(38%)	101/247		(0.60,	
	microg		(41%)	0.88	1.28)	
Obese	Yes	30/88 (34%)	36/81 (44%)		(0.33,	0.342
				0.63	1.21)	
	No	107/425	119/433		(0.65 <i>,</i>	
		(25%)	(27%)	0.90	1.24)	
Skin prick	Yes	113/458	138/481		(0.61,	0.391
positiveAtopic		(25%)	(29%)	0.83	1.13)	
	No	14/47 (30%)	13/31 (42%)		(0.20,	
				0.53	1.41)	
Ethnic group	White	34/148 (23%)	31/164 (17%)		(0.70,	0.177
				1.28	2.33)	
	Non-	86/270 (32%)	97/254 (38%)		(0.54,	
	white			0.78	1.14)	

*adjusted for RCT population, age and (except the analysis for higher versus lower ICS dose) dose of
inhaled corticosteroid (budesonide equivalent).

186 Table <u>43</u>. Results from Cox regression models analysing time to first exacerbation for subgroups of

187 participants.

Sub group		Hazard Ratio for time to first exacerbation for participants where treatment was guided by F _E NO compared to standard care (95% CI)	Interaction p-value
LTRA	No	0.76 (0.57, 0.99) p= 0.048	0.049
	Yes	1.26 (0.82, 1.90) p= 0.292	
ICS	<=400 microg	0.76 (0.52, 1.12) p=0.166	0.393
	>400 microg	0.94 (0.71 <i>,</i> 1.25) p=0.667	
Skin prick	No	0.61 (0.29, 1.31) p=0.207	
positive <u>Atopic</u>	Yes	0.90 (0.70, 1.16) p=0.412	0.347
Obese	No	0.96 (0.74, 1.25) p=0.787	0.456
	Yes	0.78 (0.48, 1.27) p=0.321	
Ethnic group	White	1.24 (0.76, 2.02) p=0.391	0.268
. .	Non-White	0.90 (0.67, 1.20) p=0.469	

These models are fitted as time = Subgroup+Treatment group + Subgroup*treatment+ Age +
StudyID + baseline ICS. Baseline ICS was not included in the model where outcomes between ICS
subgroups were analysed.

194	FeNO intervention and asthma control outcomes
-----	---

Any loss of asthma control. There were 787 participants who were controlled at baseline; 336 (43%) remaining controlled until completion of the trial, 344 (44%) lost control and 107 (14%) were lost to follow up for this outcome. The median (IQR) time to loss of control in these 344 patients was 22 (13, 30) weeks. There was no difference in mean age between those who did and did not lose control (12.8 (SD 3.0) and 12.6 (SD 2.9) years respectively) and no difference in baseline ICS dose (median (IRQR) 400 (400, 1000) for both those who did and did not lose control). The interaction terms between treatment arm and the five baseline participant characteristics for loss of asthma control were non-significant, supplemental table 34. However, there was an indication of reduced odds of loss of control in the F_ENO arm versus standard arm in those subgroups of participants who were not on LTRA at baseline, and in those who were not obese at baseline (supplemental tTable <u>34). The number of controlled participants needed to treat with $F_{\rm F}$ NO guided management to</u> prevent one losing control among those not treated with LTRA was 11.

Time to loss of control. Within the subgroup who lost control (n=344) the median (IQR) time to loss of control was 17 (13, 30) weeks with standard treatment and 22 (13, 34) weeks with F_ENO guided treatment. The interaction terms with treatment arm were not significant for ICS dose ≤400 microg versus >400 microg, positive skin prick testatopy, LTRA treatment, white versus other race or obese (yes or no), table 5. There was borderline evidence of a longer time to first loss of control for F_ENO guided compared to standard treatment within subgroups who were not treated with LTRA (HR 0.77 [0.60, 0.99] figure 2), non-obese (HR 0.77 [95% CI 0.61, 0.99] figure 3) and atopic (HR 0.80 [95% CI 0.63, 1.00] supplemental figure 1), table 5-and supplemental figure 2, non-obese (HR 0.77 [95% CI 0.61, 0.99]) table 5 and supplemental figure 3.

 Table 4. Proportion of individuals who were initially controlled who lost control in F_€NO -guided and standard management arms of clinical trials with
 stratification for patient characteristics. ICS=inhaled corticosteroids, presented as ≤400 or >400 micrograms budesonide equivalent. Obesity was defined by
 International Obesity Task Force criteria.

Baseline characteristic		% with loss of control during follow-up* in each		F _€ NO vs standard		p value for
		treatment arm				interaction*
		F _€ NO guided	Standard	OR	95% Cl	
		management	management			
LTRA treatment	Yes	39/74 (53%)	41/75 (55%)	0.94	(0.48, 1.87)	0.453
	No	118/261/(45%)	146/270 (54%)	0.70	(0.49, 1.00)	
ICS dose	≤400 microg	88/191 (46%)	98/187 (52%)	0.80	(0.52, 1.22)	0.652
	>400 microg	69/144 (48%)	89/158 (56%)	0.69	(0.43, 1.99)	
Obese	Yes	40/66 (61%)	36/61 (59%)	1.08	(0.53, 2.22)	0.274
	No	116/264 (44%)	145/274 (53%)	0.69	(0.48, 0.99)	
Skin prick positive	Yes	133/291 (46%)	172/316 (54%)	0.73	(0.52, 1.02)	0.457
	No	14/30 (47%)	8/20 (40%)	1.15	(0.36, 3.69)	
Ethnic group	White	48/106 (45%)	59/115 (51%)	0.76	(0.42, 1.37)	0.946
	Non-white	89/191 (47%)	96/184 (52%)	0.78	(0.52, 1.18)	

*adjusted for age, ICS at baseline (except ICS dose model) and RCT population; # from those controlled at baseline

222	

Table 5. Results from cox regression models analysing time to first loss of control for subgroups ofparticipants all of whom were controlled at baseline.

		Hazard Ratio for time to first	
		exacerbation for participants where	
		treatment was guided by F_ENO	Interaction
		compared to standard care (95% CI)	p value
LTRA	No	0.77 (0.60, 0.99) p=0.038	0.230
	Yes	1.05 (0.68, 1.64) p=0.822	
ICS	<=400	0.82 (0.62, 1.10) p=0.182	0.899
	>400	0.84 (0.62, 1.16) p=0.293	
Obese	No	0.77 (0.61, 0.99) p=0.042	0.130
	Yes	1.15 (0.73, 1.81) p=0.538	
Skin prick	No	1.29 (0.54, 3.08) p=0.566	0.293
positive Atopy	Yes	0.80 (0.63, 1.00) p=0.050	
Ethnic group	White	0.85 (0.58, 1.24) p=0.396	0.970
5 1	Non-White	0.85 (0.64, 1.14) p=0.289	

225 # These models are fitted as time = Subgroup+Treatment group + Subgroup*treatment+ Age +

StudyID + baseline ICS . Baseline ICS was not included in the model where outcomes between ICSsubgroups were analysed.

2
3
4
5
2
6
7
8
0
9
10
11
12
12
1.3
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
27
27
28
29
30
31
22
32
33
34
35
36
50
37
38
39
40
41
41
42
43
44
45
15
40
47
48
49
50
50
51
52
53
54
22
56
57
58
50
72

229	DISCUSSION
230	The role of F _E NO in guiding asthma treatment in children is unclear, and one potential explanation
231	for this could be that F _E NO is more effective in improving asthma outcomes for some subgroups of
232	the population. We analysed data collected in seven RCTs to test the hypothesis that there are
233	subgroups of patients where F_ENO guided treatment is more effective in improving asthma
234	outcomes compared to standard treatment. The main finding was that within these RCTs, the odds
235	for exacerbation and loss of control for those not treated with LTRA were 32% and 30% lower in the
236	F _E NO-guided arm compared to standard treatment. The significant interaction term for LTRA
237	treatment and treatment for exacerbation indicated that FeNO driven management may have
238	reduced exacerbations for those not treated with LTRA but not among those treated with LTRA. A
239	second finding was that oQutcomes were no different between groups stratified by LABA treatment,
240	ICS dose, and ethnic group. Collectively these findings support the hypothesis that F _E NO is more
241	useful for guiding treatment compared to standard practice in some subgroups of children with
242	asthma not treated with LTRA.
243	A <u>further second</u> finding was that in non-obese participants (but not in obese participants), F _E NO-
244	guided treatment was associated with a 31% reduc <u>tion in ed</u> odds for loss of control compared to
245	standard treatment and when control was lost, time to loss of control was longer. Although the
246	interaction term for obesity and treatment for loss of control was not significant, we believe that the
247	improved outcomes for non-obese children merits further consideration. There was consistency in
248	our results (i.e. an association with any loss of control and time to loss of control) and also there is
249	biological plausibility whereby aAsthma associated with obesity may be a separate non-eosinophilic
250	phenotype, especially in females, [29]. and this may explain why F _E NO -guided treatment was more
251	effective among non-obese children in our study. A recent systematic review found no evidence of
252	increased or reduced asthma control among children who were obese [30] and asthma guidelines do
253	not recommend different treatment approaches for obese patients with asthma [4-6]. Further

European Respiratory Journal

Page 56 of 67

254 research is required to clarify whether F_ENO-guided treatment is equally effective in obese and non 255 obese children.

Our observation that time to loss of control was longer among children who were atopic receiving F_FNO-guided treatment compared to standard treatment deserves careful consideration. A third finding was that among children who were atopic, the time to loss of control was longer for those receiving F_ENO guided treatment compared to standard treatment. Outcomes were no different between groups stratified by LABA treatment, ICS dose, and ethnic group. Collectively these findings support the hypothesis that F_ENO is more useful for guiding treatment compared to standard practice in some subgroups of children with asthma. The number of non-atopic participants included in our analysis was relatively small since atopy was an inclusion criterion for four cohorts [18,19,21,23] and the atopic subgroup were no more or less likely to have an exacerbation or to lose control within the trials. Since F_ENO is considered to be a surrogate for allergic or eosinophilic airway inflammation [31] it is biologically plausible that F_ENO-guided treatment algorithms are more likely to suppress airway inflammation and improve asthma control. Further evidence of biological plausibility comes from an RCT whose data are included in our analysis [14] which found fewer days with maximal symptoms among those with elevated IgE and multiple positive skin prick tests. Although non-atopic asthma is less common than atopic asthma, e.g. present in 18% of participants in the three trials which did not include only atopic participants [14,20,22], asthma is a very common condition and there are approximately 150-200,000 non-atopic asthmatic children in the UK [1]. There is a need to establish whether treatment and monitoring for atopic and nonatopic children should be the same. The magnitude of significantly reduced risk for exacerbations and loss of control in the intervention compared to standard treatment was typically 25-30% and this difference is clinically meaningful since it is consistent with the benefit seen from commonly-used asthma treatments such as LTRA and ICS. Knorr et al [32] report a 23% reduced incidence of exacerbations in young children treated

with montelukast compared to placebo. The review by Calpin et al[33] reports a 32% reduced risk for

oral steroid treatment for exacerbations among children treated with ICS compared to placebo. The RCTs included in our study applied different inclusion criteria, F_ENO-guided treatment algorithms and asthma control scores, and these methodological differences will weaken any relationship between the intervention and asthma outcomes. The seven RCTs did apply a standard definition of exacerbation and apparatus for measuring F_ENO. Despite the differences between RCTs, we still observed differences in outcomes between some of the subgroups studied, and it is likely that the magnitude of difference that we report in outcomes between the subgroups stratified by LTRA treatment, obesity and atopy may be an underestimate of the true value. Our study was not designed to determine why F_ENO guided treatment was associated with improved asthma outcomes among those not treated with LTRA compared to participants receiving LTRA treatment. Treatment with LTRA is known to reduce $F_{E}NO$ by approximately 25% in children with atopic asthma [27] and may plausibly confound F_ENO -guided treatment, especially since the RCT treatment algorithms did not consider the effect of LTRA on F_FNO . There is an alternative explanation for the differences in exacerbation outcomes associated with LTRA treatment in different RCT arms; those treated with LTRA were younger and had more severe asthma (including higher ICS dose, needing LABA treatment and almost twice the exacerbation prevalence) and F_ENO-guided asthma treatment may be less effective in more severe asthma rather than in children receiving LTRA treatment per se. Given that LTRA are commonly used in asthma treatment, there is a need to study the impact of LTRA treatment on F_FNO-guided asthma treatment. We observed that when data from the RCTs were combined, F_ENO -guided asthma treatment was associated with reduced risk for loss of control and time to loss of control among non-obese children. T, and this contrasts with the findings of an RCT whose data are included in the present

analysis [14] which reported fewer symptoms among obese participants (i.e. with BMI>30kg/m²)

2
3
4
5
5
0
/
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32
33
24
24
35
36
37
38
39
40
41
42
43
43
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59

1

304	receiving F_ENO -guided treatment. This apparent inconsistency may be due to several factors. First
305	the outcome in the paper by Szefler et al [14] was days of maximal symptoms, but this variable was
306	not available in all the RCTs included in the present paper and therefore loss of control was the
307	outcome analysed here. Second, participants were all of African American or Hispanic ethnic origin,
308	on higher ICS dose and had a considerably higher obesity prevalence[14], and some or all of these
309	difference characteristics could explain different outcomes compared to the remaining six RCT
310	participants. In our study, the reduced odds for loss of control and time to loss of control for non-
311	obese children receiving F_ENO -guided treatment compared to standard treatment is likely to be
312	underestimated due to inclusion of F _E NO and asthma control data from the RCT of Szefler <i>et al</i> [14].
313	Asthma associated with obesity may be a separate non-eosinophilic phenotype, especially in
314	females, [29] and this may explain why F _E NO -guided treatment was more effective among non-
315	obese children in our study. A recent systematic review found no evidence of increased or reduced
316	asthma control among children who were obese [30] and asthma guidelines do not recommend
317	different treatment approaches for obese patients with asthma [4-6]. Further research is required
318	to clarify whether $F_{e}NO$ -guided treatment is equally effective in obese and non-obese children.
319	We found evidence of borderline significance that F _E NO-guided treatment was associated with
320	longer time to loss of control compared to standard treatment among atopic children. This is
321	consistent with an RCT whose data are included in our analysis [14] which found fewer days with
322	maximal symptoms among those with elevated IgE and multiple positive skin prick tests. F _E NO is a
323	biomarker of eosinophilic airway inflammation [31] and likely to be more effective in patients with
324	atopy. The number of non-atopic participants included in our analysis was relatively small since
325	atopy was an inclusion criterion for four cohorts [18,19,21,23]. Although non-atopic asthma is less
326	common than atopic asthma, e.g. present in 18% of participants in the three trials which did not
327	include only atopic participants [14,20,22], asthma is a very common condition and there are
1	

Page 59 of 67

2		
3 4	328	approximately 150-200,000 non-atopic asthmatic children in the UK [1] There is a need to establish
5 6 7	329	whether treatment and monitoring for atopic and nonatopic children should be the same.
8 9	330	There are some limitations to our study. First, the time to loss of control or first exacerbation was
10 11	331	restricted to the predetermined assessment periods and this lack of precision will weaken the
12 13 14	332	reported differences in these outcomes between sub groups. Secondly, the RCTs had different study
15 16	333	designs with different step-up/step-down criteria and management regimes. Third, ethnicity data
17 18	334	was only available for four of the seven RCTs and was therefore not included as a covariate in the
19 20	335	models, but ideally we would have included ethnicity in our model since ethnicity was associated
21 22 23	336	with differences between the other subgroups analysed(supplemental table 2). A final limitation is
24 25	337	that Thirdly, since self-reported ICS adherence was available in only three RCTs included in our study
26 27	338	[14,22,23] we were not able to compare outcomes between treatment arms between adherent and
28 29	339	non-adherent participants. Future research could test the hypothesis that asthma outcomes are
30 31 32	340	improved by F_ENO -guided treatment in adherent compared to non-adherent patients.
33 34 35	341	
36 37	342	In summary, we have used data from more than 1000 asthmatic children and report that $F_{E}NO\text{-}$
38 39 40	343	guided treatment lead to better asthma outcomes among those not treated with LTRA , who were
41 42	344	not obese and who were atopic. These findings support calls for individualised treatment for asthma
43 44	345	[7].
45 46		
47		
48		
49 50		
50 51		
52		
53		
54 55		
55		

2 3 4	346	REFERENCES
5 6	347	1. Asthma UK. Asthma facts and FAQs. <u>http://www.asthma.org.uk/asthma-facts-and-statistics</u> . 2017.
7 8 9	348	Date last accessed: 08/31 2017.
10 11 12	349	2. Centers for Disease Control and Prevention. Asthma. Most recent data.
13 14	350	https://www.cdc.gov/asthma/most_recent_data.htm. 2016. Date last accessed: 08/31 2017.
15 16 17 18	351	3. World Health Organisation. Asthma. <u>https://www.who.int/respiratory/asthma/en/</u> . 2011. Date
19 20	352	last accessed: 12/07 2018.
21 22 23 24	353	4. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention.
25 26	354	https://ginasthma.org/gina-reports/. 2019. Date last accessed: 07/26 2019.
27 28 29	355	5. British Thoracic Society and Scottish Intercollegiate Guidelines Network. SIGN 158. The British
30 31	356	Guideline on the Management of Asthma. <u>https://www.brit-thoracic.org.uk/quality-</u>
32 33 34	357	improvement/guidelines/asthma/. 2019. Date last accessed: 07/27 2019.
35 36 37	358	6. National Institute for Health and Care Excellence. Asthma: diagnosis, monitoring and chronic
38 39	359	asthma management. <u>https://www.nice.org.uk/guidance/ng80</u> . 2017. Date last accessed: 01/28
40 41 42	360	2018.
43 44 45	361	7. Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme
46 47	362	FM, Fahy JV, Frey U, Gibson P, Heaney LG, Holt PG, Humbert M, Lloyd CM, Marks G, Martinez FD, Sly
48 49	363	PD, von Mutius E, Wenzel S, Zar HJ, Bush A. After asthma: redefining airways diseases. Lancet 2018;
50 51 52	364	391: 350-400.
53 54 55	365	8. Pijnenburg MW, Hofhuis W, Hop WC, De Jongste JC. Exhaled nitric oxide predicts asthma relapse
56 57 58 59 60	366	in children with clinical asthma remission. <i>Thorax</i> 2005; 60: 215-218.

, von Mutius E, Wenzel S, Zar HJ, Bush A. After asthma: redefining airways diseases. Lancet 2018;
1: 350-400.
Pijnenburg MW, Hofhuis W, Hop WC, De Jongste JC. Exhaled nitric oxide predicts asthma relapse
children with clinical asthma remission. <i>Thorax</i> 2005; 60: 215-218.

4
5
6
7
8
9
10
11
11 12
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20
29
50 21
31
32
33
34
35
36
37
38
39
40
41
42
43
44
15
-TJ //6
40
+/ 10
48 40
49
50
51
52
53
54
55
56
57
58
-

367 9. Zacharasiewicz A, Wilson N, Lex C, Erin EM, Li AM, Hansel T, Khan M, Bush A. Clinical use of
368 noninvasive measurements of airway inflammation in steroid reduction in children. *American*369 *Journal of Respiratory & Critical Care Medicine* 2005; 171: 1077-1082.

370 10. Beck-Ripp J, Griese M, Arenz S, Koring C, Pasqualoni B, Bufler P. Changes of exhaled nitric oxide

during steroid treatment of childhood asthma. *European Respiratory Journal* 2002; 19: 1015-1019.

372 11. Baraldi E, Azzolin NM, Zanconato S, Dario C, Zacchello F. Corticosteroids decrease exhaled nitric
373 oxide in children with acute asthma. *J Pediatr* 1997; 131: 381-385.

374 12. Silkoff PE, Carlson M, Bourke T, Katial R, Ogren E, Szefler SJ. The Aerocrine exhaled nitric oxide
375 monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy
376 in asthma. *Journal of Allergy & Clinical Immunology* 2004; 114: 1241-1256.

377 13. Petsky HL, Kew KM, Chang AB. Exhaled nitric oxide levels to guide treatment for children with
378 asthma. *Cochrane Database of Systematic Reviews* 2016: Art. No.: CD011439. DOI:

; 379 10.1002/14651858.CD011439.pub2.

380 14. Szefler SJ, Mitchell H, Sorkness CA, Gergen PJ, O'Connor GT, Morgan WJ, Kattan M, Pongracic JA,
381 Teach SJ, Bloomberg GR, Eggleston PA, Gruchalla RS, Kercsmar CM, Liu AH, Wildfire JJ, Curry MD,
382 Busse WW. Management of asthma based on exhaled nitric oxide in addition to guideline-based
383 treatment for inner-city adolescents and young adults: a randomised controlled trial. *Lancet* 2008;
384 372: 1065-1072.

385 15. Voorend-van Bergen S, Vaessen-Verberne AA, Landstra AM, Brackel HJ, van den Berg NJ, Merkus
 386 PJ, de Jongste JC, Pijnenburg MW. Fractional Exhaled Nitric Oxide Monitoring Does Not Improve
 387 Asthma Management in Children with Concordant and Discordant Asthma Phenotypes. American
 388 Journal of Respiratory & Critical Care Medicine 2015; 192: 1016-1018.

59 60

European Respiratory Journal

16. Fielding S, Pijnenburg M, de Jongste JC, Pike K, Roberts G, Petsky H, Chang AB, Fritsch M, Frischer T, Szefler S, Gergen P, Vermeulen F, Vael R, Turner S. Change in FEV1 and FENO Measurements as Predictors of Future Asthma Outcomes in Children. Chest 2019; 155: 331-341. 17. Turner S. Exhaled nitric oxide and the management of childhood asthma – yet another promising biomarker "has been" or a misunderstood gem. Paediatr Respir Rev 2015; 16: 88-96. 18. Fritsch M, Uxa S, Horak FJ, Putschoegl B, Dehlink E, Szepfalusi Z, Frischer T. Exhaled nitric oxide in the management of childhood asthma: a prospective 6-months study. Pediatr Pulmonol 2006; 41: 855-862. 19. Peirsman EJ, Carvelli TJ, Hage PY, Hanssens LS, Pattyn L, Raes MM, Sauer KA, Vermeulen F, Desager KN. Exhaled nitric oxide in childhood allergic asthma management: a randomised controlled trial. Pediatr Pulmonol 2014; 49: 624-631. 20. Petsky HL, Li AM, Au CT, Kynaston JA, Turner C, Chang AB. Management based on exhaled nitric oxide levels adjusted for atopy reduces asthma exacerbations in children: A dual centre randomized controlled trial. Pediatr Pulmonol 2015; 50: 535-543. 21. Pijnenburg MW, Bakker EM, Hop WC, De Jongste JC. Titrating steroids on exhaled nitric oxide in children with asthma: a randomized controlled trial. American Journal of Respiratory & Critical Care Medicine 2005; 172: 831-836. 22. Pike K, Selby A, Price S, Warner J, Connett G, Legg J, Lucas JSA, Peters S, Buckley H, Magier K, Foote K, Drew K, Morris R, Lancaster N, Roberts G. Exhaled nitric oxide monitoring does not reduce exacerbation frequency or inhaled corticosteroid dose in paediatric asthma: a randomised controlled trial. The clinical respiratory journal 2013; 7: 204-213.

European Respiratory Journal

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
24
24
25
26
27
28
29
30
31
32
33
31
24 25
30
36
37
38
39
40
41
42
/2
11
44
45
46
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59
60

410 23. Voorend-van Bergen S, Vaessen-Verberne AA, Brackel HJ, Landstra AM, van den Berg NJ, Hop
411 WC, de Jongste JC, Merkus PJ, Pijnenburg MW. Monitoring strategies in children with asthma: a
412 randomised controlled trial. *Thorax* 2015; 70: 543-550.

413 24. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight
414 and obesity worldwide: international survey. *BMJ* 2000; 320: 1240-1243.

415 25. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MSM,
 416 Zheng J, Stocks J, ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry
 417 for the 3-95-yr age range: the global lung function 2012 equations. *European Respiratory Journal* 418 2012; 40: 1324-1343.

419 26. American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for
 420 standardized procedures for the online and offline measurement of exhaled lower respiratory nitric
 421 oxide and nasal nitric oxide, 2005. American Journal of Respiratory & Critical Care Medicine 2005;
 422 171: 912-930.

423 27. Montuschi P, Mondino C, Koch P, Barnes PJ, Ciabattoni G. Effects of a leukotriene receptor
424 antagonist on exhaled leukotriene E4 and prostanoids in children with asthma. *Journal of Allergy &*425 *Clinical Immunology* 2006; 118: 347-353.

426 28. Koo S, Gupta A, Fainardi V, Bossley C, Bush A, Saglani S, Fleming L. Ethnic Variation in Response
 7 427 to IM Triamcinolone in Children With Severe Therapy-Resistant Asthma. *Chest* 2016; 149: 98-105.

428 29. Jensen ME, Gibson PG, Collins CE, Wood LG. Airway and systemic inflammation in obese children
429 with asthma. *European Respiratory Journal* 2013; 42: 1012-1019.

2	
2	
5	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
1/	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
27	
27	
38	
39	
40	
41	
42	
12	
45	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
51	
54 57	
55	
56	
57	
58	
59	

430	30. Ahmadizar F, Vijverberg SJH, Arets HGM, de Boer A, Lang JE, Kattan M, Palmer CNA,
431	Mukhopadhyay S, Turner S, Maitland-van der Zee AH. Childhood obesity in relation to poor asthma
432	control and exacerbation: a meta-analysis. European Respiratory Journal 2016; 48: 1063-1073.
433	31. Payne DN, Adcock IM, Wilson NM, Oates T, Scallan M, Bush A. Relationship between exhaled
434	nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment
435	with oral prednisolone. American Journal of Respiratory & Critical Care Medicine 2001; 164: 1376-
436	1381.
437	32. Knorr B, Franchi LM, Bisgaard H, Vermeulen JH, LeSouef P, Santanello N, Michele TM, Reiss TF,
438	Nguyen HH, Bratton DL. Montelukast, a leukotriene receptor antagonist, for the treatment of
439	persistent asthma in children aged 2 to 5 years. <i>Pediatrics</i> 2001; 108: E48.
440	33. Calpin C. Macarthur C. Stephens D. Feldman W. Parkin PC. Effectiveness of prophylactic inhaled
4.4.4	
441	steroids in childhood asthma: a systemic review of the literature. Journal of Allergy & Clinical
442	Immunology 1997; 100: 452-457.
113	
445	
444	

2		
3 ⊿	445	FIGURE LEGEND
5	446	Figure 1.: Kaplan Meier curves showing time to first exacerbation for patients whose asthma
6	447	treatment was guided by either fractional exhaled nitric oxide ("FENO") or by symptoms only
7	448	("standard") and stratified by leukotriene receptor antagonist (ITRA) treatment. The difference
8	449	hetween treatment arms was significant for those not treated with LTRA (n=0.048) but not for the
9 10	450	nations treated with LTRA ($n=0.292$)
11	450	patients treated with ETTA (p=0.252).
12	451	
13	450	Figure 2. Kaplan Meier surves showing time to less of control for patients who were initially
14	452	Figure 2. Replan where curves showing time to loss of control for patients who were initially
15 16	455	<u>controlled and whose astrina treatment was guided by either fractional exhated hitric oxide</u>
17	454	(FENO) or by symptoms only ("standard") and stratified by leukotriene receptor antagonist (LTRA)
18	455	treatment. The difference between treatment arms was significant for those not treated with LTRA
19	456	(p=0.038) but not for the patients treated with LTRA (p=0.822).
20	457	
21	_	
22	458	Figure 3. Kaplan Meier curves showing time to loss of control for patients who were initially
24	459	controlled and whose asthma treatment was guided by either fractional exhaled nitric oxide
25	460	("FENO") or by symptoms only ("standard") and stratified by obese status. The difference between
26	461	treatment arms was significant for those who were not obese (p=0.042) but not for the patients who
27	462	were obese (p=0.538).
28	462	
29 30	463	
31		
32	464	
33		
34	465	
35 36		
37		
38		
39		
40		
41		
42 43		
44		
45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a)Indicate the study's design with a commonly used term in the title or the abstract.
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found PAGE 3
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Buonground futionale	2	PAGE 4
Objectives	3	State specific objectives, including any prespecified hypotheses PAGE 4
Methods		
Study design	4	Present key elements of study design early in the paper PAGE 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection PAGES 5-6
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up. PAGES 5-6
		Case-control study—Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of
		selection of participants
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed NOT APPLICABLE
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
Variablas	7	Clearly define all outcomes avecaures predictors notantial confounders and affect
variables	/	modifiers. Give diagnostic criteria, if applicable PAGES 5.7
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement	0	assessment (measurement) Describe comparability of assessment methods if there
		is more than one group PAGES 5-7
Bias	9	Describe any efforts to address potential sources of bias NOT APPLICABLE (NO
		COMPARABLE "WHOLE POPULATION")
Study size	10	Explain how the study size was arrived at PAGE 5 (THIS IS A SECONDARY
		ANALYSIS OF RCT DATA)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why. PAGES 5-7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		PAGES 6-7
		(b) Describe any methods used to examine subgroups and interactions PAGES 6-7
		(c) Explain how missing data were addressed NOT APPLICABLE
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was addressed PAGES 6-7
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was addressed
		Cross-sectional study-If applicable, describe analytical methods taking account of

		sampling strategy
		(e) Describe any sensitivity analyses NOT APPLICABLE
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible examined for eligibility, confirmed eligible, included in the study, completing follow-up analysed PAGE 7
		(b) Give reasons for non-participation at each stage NOT APPLICABLE (SECONDAR' ANALYSIS OF RCT DATA)
		(c) Consider use of a flow diagram A CONSORT DIAGRAM WOULD NOT ADD TO PAPER
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders PAGES 7, TABLE 1 AND SUPPLEMENTAL TABLE 2
		(b) Indicate number of participants with missing data for each variable of interest NOT APPLICABLE
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount) NOT APPLICABLE
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures exposure PAGE 6-7 AND TABLE 1
		Cross-sectional study-Report numbers of outcome events or summary measures
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for
		and why they were included. PAGES 7-9 AND TABLES 2-5
		(b) Report category boundaries when continuous variables were categorized CONFIDED INTERVALS PRESENTED THROUGHOUT
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period NOT DONE
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses THIS IS AN ANALYSIS OF SUBGROUPS WITH INTERACTIONS
Discussion		
Key results	18	Summarise key results with reference to study objectives PAGES 9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecise Discuss both direction and magnitude of any potential bias PAGES 10-12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence PAGE 12
Generalisability	21	Discuss the generalisability (external validity) of the study results PAGE 12
Other informatio	n	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applied for the original study on which the present article is based NO FUNDING WAS OBTAIN
*Give information unexposed groups	n separa s in coh	ately for cases and controls in case-control studies and, if applicable, for exposed and ort and cross-sectional studies.
Note: An Explana published example	ation an es of tra	d Elaboration article discusses each checklist item and gives methodological background a ansparent reporting. The STROBE checklist is best used in conjunction with this article (fi

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at

http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.