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Abstract
In variational inference (VI), coordinate-ascent and gradient-based approaches are two major types of algorithms for approx-
imating difficult-to-compute probability densities. In real-world implementations of complex models, Monte Carlo methods
are widely used to estimate expectations in coordinate-ascent approaches and gradients in derivative-driven ones. We discuss
a Monte Carlo co-ordinate ascent VI (MC-CAVI) algorithm that makes use of Markov chain Monte Carlo (MCMC) methods
in the calculation of expectations required within co-ordinate ascent VI (CAVI). We show that, under regularity conditions,
an MC-CAVI recursion will get arbitrarily close to a maximiser of the evidence lower bound with any given high probability.
In numerical examples, the performance of MC-CAVI algorithm is compared with that of MCMC and—as a representative of
derivative-based VI methods—of Black Box VI (BBVI). We discuss and demonstrate MC-CAVI’s suitability for models with
hard constraints in simulated and real examples. We compare MC-CAVI’s performance with that of MCMC in an important
complex model used in nuclear magnetic resonance spectroscopy data analysis—BBVI is nearly impossible to be employed
in this setting due to the hard constraints involved in the model.

Keywords Variational inference · Markov chain Monte Carlo · Coordinate-ascent · Gradient-based optimisation · Bayesian
inference · Nuclear magnetic resonance

1 Introduction

Variational inference (VI) (Jordan et al. 1999; Wainwright
et al. 2008) is a powerful method to approximate intractable
integrals. As an alternative strategy to Markov chain Monte
Carlo (MCMC) sampling, VI is fast, relatively straightfor-
ward for monitoring convergence and typically easier to
scale to large data (Blei et al. 2017) than MCMC. The key
idea of VI is to approximate difficult-to-compute conditional
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densities of latent variables, given observations, via use of
optimization. A family of distributions is assumed for the
latent variables, as an approximation to the exact conditional
distribution. VI aims at finding the member, amongst the
selected family, that minimizes the Kullback–Leibler (KL)
divergence from the conditional law of interest.

Let x and z denote, respectively, the observed data and
latent variables. The goal of the inference problem is to iden-
tify the conditional density (assuming a relevant reference
measure, e.g. Lebesgue) of latent variables given observa-
tions, i.e. p(z|x). Let L denote a family of densities defined
over the space of latent variables—we denote members of
this family as q = q(z) below. The goal of VI is to find the
element of the family closest in KL divergence to the true
p(z|x). Thus, the original inference problem can be rewrit-
ten as an optimization one: identify q∗ such that

q∗ = argmin
q∈L

KL(q | p(·|x)) (1)

for the KL-divergence defined as

KL(q | p(·|x)) = Eq [log q(z)] − Eq [log p(z|x)]
= Eq [log q(z)]−Eq [log p(z, x)]+ log p(x),
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with log p(x) being constant w.r.t. z. Notation Eq refers to
expectation taken over z ∼ q. Thus, minimizing the KL
divergence is equivalent to maximising the evidence lower
bound, ELBO(q), given by

ELBO(q) = Eq [log p(z, x)] − Eq [log q(z)]. (2)

Let Sp ⊆ Rm ,m ≥ 1, denote the support of the target p(z|x),
and Sq ⊆ Rm the support of a variational density q ∈ L—
assumed to be common over allmembers q ∈ L. Necessarily,
Sp ⊆ Sq , otherwise the KL-divergence will diverge to +∞.

Many VI algorithms focus on the mean-field variational
family, where variational densities in L are assumed to fac-
torise over blocks of z. That is,

q(z) =
b∏

i=1

qi (zi ), Sq = Sq1 × · · · × Sqb ,

z = (z1, . . . , zb) ∈ Sq , zi ∈ Sqi , (3)

for individual supports Sqi ⊆ Rmi , mi ≥ 1, 1 ≤ i ≤ b, for
some b ≥ 1, and

∑
i mi = m. It is advisable that highly

correlated latent variables are placed in the same block to
improve the performance of the VI method.

There are, in general, two types of approaches tomaximise
ELBO in VI: a co-ordinate ascent approach and a gradient-
based one. Co-ordinate ascent VI (CAVI) (Bishop 2006) is
amongst the most commonly used algorithms in this context.
To obtain a local maximiser for ELBO, CAVI sequentially
optimizes each factor of the mean-field variational den-
sity, while holding the others fixed. Analytical calculations
on function space—involving variational derivatives—imply
that, for given fixed q1, . . . , qi−1, qi+1, . . . , qb, ELBO(q) is
maximised for

qi (zi ) ∝ exp
{
E−i [log p(zi− , zi , zi+ , x)]}, (4)

where z−i := (zi− , zi+) denotes vector z having removed
component zi , with i− (resp. i+) denoting the ordered indices
that are smaller (resp. larger) than i ; E−i is the expecta-
tion taken under z−i following its variational distribution,
denoted q−i . The above suggest immediately an iterative
algorithm, guaranteed to provide values for ELBO(q) that
cannot decrease as the updates are carried out.

The expected value E−i [log p(zi− , zi , zi+ , x)] can be dif-
ficult to derive analytically. Also, CAVI typically requires
traversing the entire dataset at each iteration, which can
be overly computationally expensive for large datasets.
Gradient-based approaches, which can potentially scale up to
large data—alluding here to recent Stochastic-Gradient-type
methods—can be an effective alternative for ELBO optimi-
sation. However, such algorithms have their own challenges,
e.g. in the case of reparameterization Variational Bayes (VB)

analytical derivation of gradients of the log-likelihood can
often be problematic, while in the case of score-function VB
the requirement of the gradient of log q restricts the range of
the family L we can choose from.

In real-world applications, hybrid methods combining
Monte Carlo with recursive algorithms are common, e.g.,
Auto-Encoding Variational Bayes, Doubly-Stochastic Varia-
tional Bayes for non-conjugate inference, Stochastic
Expectation-Maximization (EM) (Beaumont et al. 2002; Sis-
son et al. 2007; Wei and Tanner 1990). In VI, Monte Carlo
is often used to estimate the expectation within CAVI or the
gradient within derivative-driven methods. This is the case,
e.g., for Stochastic VI (Hoffman et al. 2013) and Black-Box
VI (BBVI) (Ranganath et al. 2014).

BBVI is used in this work as a representative of gradient-
based VI algorithms. It allows carrying out VI over a wide
range of complex models. The variational density q is typi-
cally chosen within a parametric family, so finding q∗ in (1)
is equivalent to determining an optimal set of parameters
that characterize qi = qi (·|λi ), λi ∈ �i ⊆ Rdi , 1 ≤ di ,
1 ≤ i ≤ b, with

∑b
i=1 di = d. The gradient of ELBO

w.r.t. the variational parameters λ = (λ1, . . . , λb) equals

∇λELBO(q) := Eq
[∇λ log q(z|λ){log p(z, x)

− log q(z|λ)}] (5)

and can be approximated by black-box Monte Carlo estima-
tors as, e.g.,

̂∇λELBO(q) := 1
N

N∑

n=1

[∇λ log q(z(n)|λ){log p(z(n), x)

− log q(z(n)|λ)}], (6)

with z(n) i id∼ q(z|λ), 1 ≤ n ≤ N , N ≥ 1. The approximated
gradient of ELBO can then be used within a stochastic opti-
mization procedure to update λ at the kth iteration with

λk+1 ← λk + ρk ̂∇λkELBO(q), (7)

where {ρk}k≥0 is a Robbins-Monro-type step-size sequence
(Robbins and Monro 1951). As we will see in later sections,
BBVI is accompanied by generic variance reduction meth-
ods, as the variability of (6) for complex models can be large.

Remark 1 (Hard Constraints) Though gradient-based VI
methods are some times more straightforward to apply than
co-ordinate ascent ones,—e.g. combined with the use of
modern approaches for automatic differentiation (Kucukelbir
et al. 2017)—co-ordinate ascent methods can still be impor-
tant for models with hard constraints, where gradient-based
algorithms are laborious to apply. (We adopt the viewpoint
here that one chooses variational densities that respect the
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constraints of the target, for improved accuracy.) Indeed,
notice in the brief description we have given above for CAVI
and BBVI, the two methodologies are structurally differ-
ent, as CAVI does not necessarily require to be be built via
the introduction of an exogenous variational parameter λ.
Thus, in the context of a support for the target p(z|x) that
involves complex constraints, a CAVI approach overcomes
this issue naturally by blocking together the zi ’s responsible
for the constraints. In contrast, introduction of the variational
parameter λ creates sometimes severe complications in the
development of the derivative-driven algorithm, as normal-
ising constants that depend on λ are extremely difficult to
calculate analytically and obtain their derivatives. Thus, a
main argument spanning this work—and illustrated within
it—is that co-ordinate-ascent-based VI methods have a criti-
cal role to play amongst VI approaches for important classes
of statistical models.

Remark 2 The discussion in Remark 1 is also relevant when
VB is applied with constraints imposed on the variational
parameters. E.g. the latter can involve covariance matrices,
whence optimisation has to be carried out on the space of
symmetric positive definite matrices. Recent attempts in the
VB field to overcome this issue involves updates carried out
on manifolds, see e.g. Tran et al. (2019).

The main contributions of the paper are:

(i) We discuss, and then apply a Monte Carlo CAVI (MC-
CAVI) algorithm in a sequence of problems of increas-
ing complexity, and study its performance. As the name
suggests, MC-CAVI uses the Monte Carlo principle for
the approximation of the difficult-to-compute condi-
tional expectations, E−i [log p(zi− , zi , zi+ , x)], within
CAVI.

(ii) We provide a justification for the algorithm by showing
analytically that, under suitable regularity conditions,
MC-CAVI will get arbitrarily close to a maximiser of
the ELBO with high probability.

(iii) We contrast MC-CAVI with MCMC and BBVI through
simulated and real examples, some of which involve
hard constraints; we demonstrateMC-CAVI’s effective-
ness in an important application imposing such hard
constraints,with real data in the context ofNuclearMag-
netic Resonance (NMR) spectroscopy.

Remark 3 Inserting Monte Carlo steps within a VI approach
(that might use a mean field or another approximation) is not
uncommon in the VI literature. E.g., Forbes and Fort (2007)
employ an MCMC procedure in the context of a Variational
EM (VEM), to obtain estimates of the normalizing constant
forMarkovRandomFields—they provide asymptotic results
for the correctness of the complete algorithm; Tran et al.

(2016) apply Mean-Field Variational Bayes (VB) for Gen-
eralised Linear Mixed Models, and use Monte Carlo for the
approximation of analytically intractable required expecta-
tions under the variational densities; several references for
relatedworks are given in the above papers.Ourwork focuses
on MC-CAVI, and develops theory that is appropriate for
this VI method. This algorithm has not been studied analyti-
cally in the literature, thus the development of its theoretical
justification—even if it borrows elements from Monte Carlo
EM—is new.

The rest of the paper is organised as follows. Section 2
presents briefly theMC-CAVI algorithm. It also provides—in
a specified setting—an analytical result illustrating non-
accumulation of Monte Carlo errors in the execution of
the recursions of the algorithm. That is, with a probabil-
ity arbitrarily close to 1, the variational solution provided
by MC-CAVI can be as close as required to the one of
CAVI, for a big enough Monte Carlo sample size, regard-
less of the number of algorithmic iterations. Section 3 shows
two numerical examples, contrasting MC-CAVI with alter-
native algorithms. Section 4 presents an implementation of
MC-CAVI in a real, complex, challenging posterior distribu-
tion arising in metabolomics. This is a practical application,
involving hard constraints, chosen to illustrate the potential
of MC-CAVI in this context. We finish with some conclu-
sions in Sect. 5.

2 MC-CAVI algorithm

2.1 Description of the algorithm

We begin with a description of the basic CAVI algorithm.
A double subscript will be used to identify block variational
densities: qi,k(zi ) (resp. q−i,k(z−i )) will refer to the density
of the i th block (resp. all blocks but the i th), after k updates
have been carried out on that block density (resp. k updates
have been carried out on the blocks preceding the i th, and
k − 1 updates on the blocks following the i th).

• Step 0: Initialize probability density functions qi,0(zi ),
i = 1, . . . , b.

• Step k: For k ≥ 1, given qi,k−1(zi ), i = 1, . . . , b, exe-
cute:

– For i = 1, . . . , b, update:

log qi,k(zi ) = const . + E−i,k[log p(z, x)],

with E−i,k taken w.r.t. z−i ∼ q−i,k .

• Iterate until convergence.
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Assume that the expectations E−i [log p(z, x)], {i : i ∈
I}, for an index set I ⊆ {1, . . . , b}, can be obtained analyt-
ically, over all updates of the variational density q(z); and
that this is not the case for i /∈ I. Intractable integrals can
be approximated via a Monte Carlo method. (As we will see
in the applications in the sequel, such a Monte Carlo device
typically uses samples from an appropriate MCMC algo-
rithm.) In particular, for i /∈ I, one obtains N ≥ 1 samples
from the current q−i (z−i ) and uses the standardMonte Carlo
estimate

Ê−i [log p(zi− , zi , zi+ , x)] =
∑N

n=1 log p(z(n)
i− , zi , z

(n)
i+ , x)

N
.

Implementation of such an approach gives rise to MC-
CAVI, described in Algorithm 1.

Algorithm 1: MC-CAVI

Require: Number of iterations T .

Require: Number of Monte Carlo samples N .

Require: E−i [log p(zi− , zi , zi+ , x)] in closed form, for i ∈ I.
1 Initialize qi,0(zi ), i = 1, . . . , b.

2 for k = 1 : T do

3 for i = 1 : b do

4 If i ∈ I, set qi,k(zi ) ∝ exp
{
E−i,k [log p(zi− , zi , zi+ , x)]}

;

5 If i /∈ I:
6 Obtain N samples, (z(n)

i−,k , z
(n)
i+,k−1), 1 ≤ n ≤ N , from

q−i,k(z−i ).
7 Set

qi,k(zi ) ∝ exp
{∑N

n=1 log p(z(n)
i−,k ,zi ,z

(n)
i+,k−1,x)

N

}
.

8 end
9 end

2.2 Applicability of MC-CAVI

We discuss here the class of problems for which MC-
CAVI can be applied. It is desirable to avoid settings where
the order of samples or statistics to be stored in memory
increases with the iterations of the algorithm. To set-up
the ideas we begin with CAVI itself. Motivated by the
standard exponential class of distributions, we work as fol-
lows.

Consider the case when the target density p(z, x) ≡
f (z)—we omit reference to the data x in what follows, as x
is fixed and irrelevant for our purposes (notice that f is not
required to integrate to 1)—is assumed to have the structure,

f (z) = h(z) exp
{〈η, T (z)〉 − A(η)

}
, z ∈ Sp, (8)

for s-dimensional constant vector η = (η1, . . . , ηs), vec-
tor function T (z) = (T1(z), . . . , Ts(z)), with some s ≥ 1,
and relevant scalar functions h > 0, A; 〈·, ·〉 is the standard
inner product in Rs . Also, we are given the choice of block-
variational densities q1(z1), . . . , qb(zb) in (3). Following the
definition of CAVI from Sect. 2.1—assuming that the algo-
rithm can be applied, i.e. all required expectations can be
obtained analytically—the number of ‘sufficient’ statistics,
say Ti,k giving rise to the definition of qi,k will always be
upper bounded by s. Thus, in our working scenario, CAVI
will be applicable with a computational cost that is upper
bounded by a constant within the class of target distributions
in (8)—assuming relevant costs for calculating expectations
remain bounded over the algorithmic iterations.

Moving on toMC-CAVI, following the definition of index
set I in Sect. 2.1, recall that a Monte Carlo approach is
required when updating qi (zi ) for i /∈ I, 1 ≤ i ≤ b. In
such a scenario, controlling computational costs amounts to
having a target (8) admitting the factorisations,

h(z) ≡ hi (zi )h−i (z−i ), Tl(z) ≡ Tl,i (zi )Tl,−i (z−i ),

1 ≤ l ≤ s, for all i /∈ I. (9)

Once (9) is satisfied, we do not need to store all N samples
from q−i (z−i ), but simply some relevant averages keeping
the cost per iteration for the algorithmbounded.We stress that
the combinationof characterisations in (8)–(9) is very general
and will typically be satisfied for most practical statistical
models.

2.3 Theoretical justification of MC-CAVI

An advantageous feature of MC-CAVI versus derivative-
driven VI methods is its structural similarity with Monte
Carlo Expectation-Maximization (MCEM). Thus, one can
build on results in theMCEM literature to prove asymptotical
properties of MC-CAVI; see e.g. Chan and Ledolter (1995),
Booth and Hobert (1999), Levine and Casella (2001), Fort
and Moulines (2003). To avoid technicalities related with
working on general spaces of probability density functions,
we begin by assuming a parameterised setting for the vari-
ational densities—as in the BBVI case—with the family of
variational densities being closed under CAVI or (more gen-
erally) MC-CAVI updates.

Assumption 1 (Closedness of Parameterised q(·) Under
Variational Update) For the CAVI or the MC-CAVI algo-
rithm, each qi,k(zi ) density obtained during the iterations of
the algorithm, 1 ≤ i ≤ b, k ≥ 0, is of the parametric form
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qi,k(zi ) = qi (zi |λki ),

for a unique λki ∈ �i ⊆ Rdi , for some di ≥ 1, for all 1 ≤
i ≤ b.

(
Let d =

b∑
i=1

di and � = �1 × · · · × �b.

)

Under Assumption 1, CAVI and MC-CAVI can be corre-
sponded to some well-defined maps M : � �→ �, MN :
� �→ � respectively, so that, given current variational
parameter λ, one step of the algorithms can be expressed in
terms of a new parameter λ′ (different for each case) obtained
via the updates

CAVI: λ′ = M(λ); MC-CAVI: λ′ = MN (λ).

For an analytical study of the convergence proper-
ties of CAVI itself and relevant regularity conditions, see
e.g. (Bertsekas 1999, Proposition 2.7.1 ), or numerous other
resources in numerical optimisation. Expressing the MC-
CAVI update—say, the (k + 1)th one—as

λk+1 = M(λk) + {MN (λk) − M(λk)}, (10)

it can be seen as a random perturbation of a CAVI step. In the
rest of this section we will explore the asymptotic properties
of MC-CAVI. We follow closely the approach in Chan and
Ledolter (1995)—as it provides a less technical procedure,
compared e.g. to Fort and Moulines (2003) or other works
about MCEM—making all appropriate adjustments to fit the
derivations into the setting of the MC-CAVI methodology
along the way. We denote by Mk ,Mk

N , the k-fold composi-
tion of M ,MN respectively, for k ≥ 0.

Assumption 2 � is an open subset of Rd , and the mappings
λ �→ ELBO(q(λ)), λ �→ M(λ) are continuous on �.

If M(λ) = λ for some λ ∈ �, then λ is a fixed point of M().
A given λ∗ ∈ � is called an isolated local maximiser of the
ELBO(q(·)) if there is a neighborhood of λ∗ over which λ∗
is the unique maximiser of the ELBO(q(·)).
Assumption 3 (Properties of M(·) Near a Local Maximum)
Let λ∗ ∈ � be an isolated local maximum of ELBO(q(·)).
Then,

(i) λ∗ is a fixed point of M(·);
(ii) there is a neighborhood V ⊆ � of λ∗ over which λ∗

is a unique maximum, such that ELBO(q(M(λ))) >

ELBO(q(λ)) for any λ ∈ V \{λ∗}.

Notice that the above assumption refers to the determinis-
tic update M(·), which performs co-ordinate ascent; thus
requirements (i), (ii) are fairly weak for such a recursion.
The critical technical assumption required for delivering the

convergence results in the rest of this section is the following
one.

Assumption 4 (UniformConvergence inProbability onCom-
pact Sets) For any compact set C ⊆ � the following holds:
for any �, �′ > 0, there exists a positive integer N0, such that
for all N ≥ N0 we have,

inf
λ∈C Prob

[ ∣∣MN (λ) − M(λ)
∣∣ < �

]
> 1 − �′.

It is beyond the context of this paper to examine Assumption
4 in more depth. We will only stress that Assumption 4 is the
sufficient structural condition that allows to extend closeness
betweenCAVI andMC-CAVI updates in a single algorithmic
step into one for arbitrary number of steps.

We continue with a definition.

Definition 1 A fixed point λ∗ of M(·) is said to be asymptot-
ically stable if,

(i) for any neighborhood V1 of λ∗, there is a neighborhood
V2 of λ∗ such that for all k ≥ 0 and all λ ∈ V2, Mk(λ) ∈
V1;

(ii) there exists a neighbourhood V of λ∗ such that limk→∞
Mk(λ) = λ∗ if λ ∈ V .

We will state the main asymptotic result for MC-CAVI in
Theorem 1 that follows; first we require Lemma 1.

Lemma 1 Let Assumptions 1–3 hold. Ifλ∗ is an isolated local
maximiser of ELBO(q(·)), thenλ∗ is an asymptotically stable
fixed point of M(·).

The main result of this section is as follows.

Theorem 1 Let Assumptions 1–4 hold and λ∗ be an isolated
local maximiser of ELBO(q(·)). Then there exists a neigh-
bourhood, say V1, of λ∗ such that for starting values λ ∈ V1
of MC-CAVI algorithm and for all ε1 > 0, there exists a k0
such that

lim
N→∞Prob

( |Mk
N − λ∗| < ε1 for some k ≤ k0

) = 1.

The proofs of Lemma 1 and Theorem 1 can be found in
“Appendices A and B”, respectively.

2.4 Stopping criterion and sample size

The method requires the specification of the Monte Carlo
size N and a stopping rule.
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Principled: but impractical—approach

As the algorithm approaches a local maximum, changes in
ELBO should be getting closer to zero. To evaluate the per-
formance of MC-CAVI, one could, in principle, attempt to
monitor the evolution of ELBO during the algorithmic iter-
ations. For current variational distribution q = (q1, . . . , qb),
assume that MC-CAVI is about to update qi with q ′

i = q ′
i,N ,

where the addition of the second subscript at this point
emphasizes the dependence of the new value for qi on the
Monte Carlo size N . Define,

�ELBO(q, N ) = ELBO(qi−, q ′
i,N , qi+) − ELBO(q).

If the algorithm is close to a local maximum,�ELBO(q, N )

should be close to zero, at least for sufficiently large
N . Given such a choice of N , an MC-CAVI recursion
should be terminated once �ELBO(q, N ) is smaller than
a user-specified tolerance threshold. Assume that the ran-
dom variable �ELBO(q, N ) has mean μ = μ(q, N ) and
variance σ 2 = σ 2(q, N ). Chebychev’s inequality implies
that, with probability greater than or equal to (1 − 1/K 2),
�ELBO(q, N ) lies within the interval (μ − Kσ,μ + Kσ),
for any real K > 0. Assume that one fixes a large enough K .
The choice of N and of a stopping criterion should be based
on the requirements:

(i) σ ≤ ν, with ν a predetermined level of tolerance;
(ii) the effective range (μ − Kσ,μ + Kσ) should include

zero, implying that �ELBO(q, N ) differs from zero by
less than 2Kσ .

Requirement (i) provides a rule for the choice of N—
assuming applied over all 1 ≤ i ≤ b, for q in areas
close to a maximiser,—and requirement (ii) a rule for
defining a stopping criterion. Unfortunately, the above
considerations—based on the proper term ELBO(q) that
VI aims to maximise—involve quantities that are typically
impossible to obtain analytically or via some reasonably
expensive approximation.

Practical considerations

Similarly toMCEM, it is recommended that N gets increased
as the algorithm becomes more stable. It is computationally
inefficient to start with a large value of N when the current
variational distribution can be far from the maximiser. In
practice, one may monitor the convergence of the algorithm
by plotting relevant statistics of the variational distribution
versus the number of iterations. We can declare that conver-
gence has been reached when such traceplots show relatively
small random fluctuations (due to the Monte Carlo variabil-
ity) around a fixed value. At this point, onemay terminate the

algorithm or continue with a larger value of N , which will
further decrease the traceplot variability. In the applications
we encounter in the sequel, we typically have N ≤ 100, so
calculating, for instance, Effective Sample Sizes to monitor
the mixing performance of the MCMC steps is not practical.

3 Numerical examples: simulation study

In this section we illustrate MC-CAVI with two simulated
examples. First, we apply MC-CAVI and CAVI on a sim-
ple model to highlight main features and implementation
strategies. Then, we contrast MC-CAVI, MCMC, BBVI in a
complex scenario with hard constraints.

3.1 Simulated example 1

We generate n = 103 data points from N(10, 100) and fit the
semi-conjugate Bayesian model

Example Model 1

x1, . . . , xn ∼ N(ϑ, τ−1),

ϑ ∼ N(0, τ−1),

τ ∼ Gamma(1, 1).

Let x̄ be the data sample mean. In each iteration, the CAVI
density function—see (4)—for τ is that of the Gamma dis-
tribution Gamma( n+3

2 , ζ ), with

ζ = 1 + (1+n)E(ϑ2)−2(nx̄)E(ϑ)+∑n
j=1 x

2
j

2 ,

whereas for ϑ that of the normal distribution N( nx̄
1+n ,

1
(1+n)E(τ )

).

(E(ϑ),E(ϑ2)) and E(τ ) denote the relevant expectations
under the currentCAVI distributions forϑ and τ respectively;
the former are initialized at 0—there is no need to initialise
E(τ ) in this case. Convergence of CAVI can be monitored,
e.g., via the sequence of values of θ := (1 + n)E(τ ) and ζ .
If the change in values of these two parameters is smaller
than, say, 0.01%, we declare convergence. Figure 1 shows
the traceplots of θ , ζ .

Convergence is reached within 0.0017 s,1 after precisely
two iterations, due to the simplicity of the model. The
resulted CAVI distribution for ϑ is N(9.6, 0.1), and for τ

it is Gamma(501.5, 50130.3) so that E(τ ) ≈ 0.01.
Assume now that q(τ ) was intractable. Since E(τ )

is required to update the approximate distribution of ϑ ,
an MCMC step can be employed to sample τ1, . . . , τN

1 A Dell Latitude E5470 with Intel(R) Core(TM) i5-6300U
CPU@2.40GHz is used for all experiments in this paper.
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Fig. 1 Tracplots of ζ (left), θ (right) from application of CAVI on Simulated Example 1

Fig. 2 Traceplot of Ê(τ ) generated by MC-CAVI for Simulated Exam-
ple 1, using N = 10 for the first 10 iterations of the algorithm, and
N = 103 for the rest. The y-axis gives the values of Ê(τ ) across itera-
tions

from q(τ ) to produce the Monte Carlo estimator Ê(τ ) =∑N
j=1 τ j/N .Within thisMC-CAVI setting, Ê(τ )will replace

the exactE(τ )during the algorithmic iterations. (E(ϑ),E(ϑ2))

are initialised as in CAVI. For the first 10 iterations we set
N = 10, and for the remaining ones, N = 103 to reduce
variability. We monitor the values of Ê(τ ) shown in Fig. 2.
The figure shows thatMC-CAVI has stabilized after about 15
iterations; algorithmic time was 0.0114 s. To remove some
Monte Carlo variability, the final estimator of E(τ ) is pro-
duced by averaging the last 10 values of its traceplot, which
gives Ê(τ ) = 0.01, i.e. a value very close to the one obtained
by CAVI. The estimated distribution of ϑ is N(9.6, 0.1), the
same as with CAVI.

The performance of MC-CAVI depends critically on the
choice N . Let A be the value of N in the burn-in period, B
the number of burn-in iterations and C the value of N after
burn-in. Figure 3 shows trace plots of Ê(τ ) under different
settings of the triplet A–B–C.

As withMCEM, N should typically be set to a small num-
ber at the beginning of the iterations so that the algorithm can
reach fast a region of relatively high probability. N should
then be increased to reduce algorithmic variability close to
the convergence region. Figure 4 shows plots of convergence
time versus variance of Ê(τ ) (left panel) and versus N (right
panel). In VI, iterations are typically terminated when the
(absolute) change in the monitored estimate is less than a
small threshold. In MC-CAVI the estimate fluctuates around
the limiting value after convergence (Table 1). In the simula-
tion in Fig. 4, we terminate the iterations when the difference
between the estimatedmean (disregarding the first half of the
chain) and the true value (0.01) is less than 10−5. Figure 4
shows that: (i) convergence time decreases when the vari-
ance of Ê(τ ) decreases, as anticipated; (ii) convergence time
decreases when N increases. In (ii), the decrease is most evi-
dent when N is still relatively small After N exceeds 200,
convergence time remains almost fixed, as the benefit brought
by decrease of variance is offset by the cost of extra samples.
(This is also in agreement with the policy of N set to a small
value at the initial iterations of the algorithm.)

3.2 Variance reduction for BBVI

In non-trivial applications, the variability of the initial estima-
tor∇λ

̂ELBO(q)within BBVI in (6) will typically be large, so
variance reduction approaches such as Rao-Blackwellization
and control variates (Ranganath et al. 2014) are also used.
Rao-Blackwellization (Casella and Robert 1996) reduces
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Fig. 3 Traceplot of Ê(τ ) under different settings of A–B–C (respectively, the value of N in the burn-in period, the number of burn-in iterations and
the value of N after burn-in) for Simulated Example 1

Fig. 4 Plot of convergence time versus variance of Ê(τ ) (left panel) and versus Monte Carlo sample size N (right panel)

Table 1 Results of MC-CAVI for Simulated Example 1

A–B–C 10–10–105 103–10–105 105–10–105 10–30–105 10–50–105

Time (s) 0.4640 0.4772 0.5152 0.3573 0.2722

Ê(τ ) 0.01 0.01 0.01 0.01 0.01

variances by analytically calculating conditional expecta-
tions. In BBVI, within the factorization framework of (3),
whereλ = (λ1, . . . , λb), and recalling identity (5) for the gra-
dient, a Monte Carlo estimator for the gradient with respect
to λi , i ∈ {1, . . . , b}, can be simplified as

∇λi
̂ELBO(qi ) = 1

N

N∑

n=1

[∇λi log qi (z
(n)
i |λi ){log ci (z(n)

i , x)

− log qi (z
(n)
i |λi )}

]
, (11)

with z(n)
i

i id∼ qi (zi |λi ), 1 ≤ n ≤ N , and,

ci (zi , x) := exp
{
E−i [log p(zi− , zi , zi+ , x)]}.

Depending on the model at hand, term ci (zi , x) can be
obtained analytically or via a double Monte Carlo procedure
(for estimating ci (z

(n)
i , x), over all 1 ≤ n ≤ N )—or a com-

bination of thereof. In BBVI, control variates (Ross 2002)
can be defined on a per-component basis and be applied to
the Rao-Blackwellized noisy gradients of ELBO in (11) to
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provide the estimator,

∇λi
̂ELBO(qi ) = 1

N

N∑

n=1

[∇λi log qi (z
(n)
i |λi ){log ci (z(n)

i , x)

− log qi (z
(n)
i |λi ) − â∗

i }
]
, (12)

for the control,

â∗
i :=

∑di
j=1

̂Cov( fi, j , gi, j )
∑di

j=1 V̂ar(gi, j )
,

where fi, j , gi, j denote the j th co-ordinate of the vector-
valued functions fi , gi respectively, given below,

gi (zi ) := ∇λi log qi (zi |λi ),
fi (zi ) := ∇λi log qi (zi |λi ){log ci (zi , x) − log qi (zi |λi )}.

3.3 Simulated example 2: model with hard
constraints

In this section, we discuss the performance and challenges
of MC-CAVI, MCMC, BBVI for models where the support
of the posterior—thus, also the variational distribution—
involves hard constraints.

Here, we provide an example which offers a simplified
version of the NMR problem discussed in Sect. 4 but allows
for the implementation of BBVI, as the involved normalising
constants can be easily computed. Moreover, as with other
gradient-based methods, BBVI requires to tune the step-size
sequence {ρk} in (7), which might be a laborious task, in
particular for increasing dimension. Although there are sev-
eral proposals aimed to optimise the choice of {ρk} (Bottou
2012; Kucukelbir et al. 2017), MC-CAVI does not face such
a tuning requirement.

We simulate data according to the following scheme:
observations {y j } are generated from N(ϑ + κ j , θ

−1), j =
1, . . . , n, with ϑ = 6, κ j = 1.5 · sin(−2π + 4π( j − 1)/n),
θ = 3, n = 100. We fit the following model:

Example Model 2

y j | ϑ, κ j , θ ∼ N(ϑ + κ j , θ
−1),

ϑ ∼ N(0, 10),

κ j | ψ j ∼ TN(0, 10,−ψ j , ψ j ),

ψ j
i .i .d.∼ TN(0.05, 10, 0, 2), j = 1, . . . , n,

θ ∼ Gamma(1, 1).

MCMC

We use a standard Metropolis-within-Gibbs. We set y =
(y1, . . . , yn), κ = (κ1, . . . , κn) and ψ = (ψ1, . . . , ψn).

Notice that we have the full conditional distributions,

p(ϑ |y, θ, κ, ψ) = N

(∑n
j=1(y j−κ j )θ

1
10+nθ

, 1
1
10+nθ

)
,

p(κ j |y, θ, ϑ,ψ) = TN

(
(y j−ϑ)θ

1
10+θ

, 1
1
10+θ

,−ψ j , ψ j

)
,

p(θ |y, ϑ, κ, ψ) = Gamma

(
1 + n

2 , 1 +
∑n

j=1(y j−ϑ−κ j )
2

2

)
.

(Above, and in similar expressions written in the sequel,
equality is meant to be properly understood as stating that
‘the density on the left is equal to the density of the dis-
tribution on the right’.) For each ψ j , 1 ≤ j ≤ n, the full
conditional is,

p(ψ j |y, θ, ϑ, κ) ∝
φ(

ψ j− 1
20√

10
)

�(
ψ j√
10

) − �(
−ψ j√
10

)
I [ |κ j | < ψ j < 2 ],

j = 1, . . . , n,

where φ(·) is the density of N(0, 1) and �(·) its cdf. The
Metropolis–Hastings proposal for ψ j is a uniform variate
from U(0, 2).

MC-CAVI

ForMC-CAVI, the logarithm of the joint distribution is given
by,

log p(y, ϑ, κ, ψ, θ) = const . + n
2 log θ − θ

∑n
j=1(y j−ϑ−κ j )

2

2

− ϑ2

2·10 − θ −
n∑

j=1

κ2j +(ψ j− 1
20 )2

2·10

−
n∑

j=1

log(�(
ψ j√
10

) − �(
−ψ j√
10

)),

under the constraints,

|κ j | < ψ j < 2, j = 1, . . . , n.

To comply with the above constraints, we factorise the vari-
ational distribution as,

q(ϑ, θ, κ, ψ) = q(ϑ)q(θ)

n∏

j=1

q(κ j , ψ j ). (13)

Here, for the relevant iteration k, we have,

qk(ϑ) = N

(∑n
j=1(y j−Ek−1(κ j ))Ek−1(θ)

1
10+nEk−1(θ)

, 1
1
10+nEk−1(θ)

)
,

qk(θ) = Gamma
(
1 + n

2 , 1 +
∑n

j=1 Ek,k−1((y j−ϑ−κ j )
2)

2 )
)
,

qk(κ j , ψ j ) ∝ exp
{ − Ek (θ)(κ j−(y j−Ek (ϑ)))2

2
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− κ2j +(ψ j− 1
20 )2

2·10
}/(

�(
ψ j√
10

) − �(
−ψ j√
10

)
)

· I [ |κ j | < ψ j < 2 ], 1 ≤ j ≤ n.

The quantity Ek,k−1((y j − ϑ − κ j )
2) used in the second

line above means that the expectation is considered under
ϑ ∼ qk(ϑ) and (independently) κ j ∼ qk−1(κ j , ψ j ).

Then, MC-CAVI develops as follows:

• Step 0: For k = 0, initialize E0(θ) = 1, E0(ϑ) = 4,
E0(ϑ

2) = 17.
• Step k: For k ≥ 1, given Ek−1(θ), Ek−1(ϑ), execute:

– For j = 1, . . . , n, apply an MCMC algorithm—with
invariant law qk−1(κ j , ψ j )—consisted of a number,
N , of Metropolis-within-Gibbs iterations carried out
over the relevant full conditionals,

qk−1(ψ j |κ j ) ∝
φ(

ψ j− 1
20√

10
)

�(
ψ j√
10

) − �(
−ψ j√
10

)
I [ |κ j | < ψ j < 2 ],

qk−1(κ j |ψ j ) = TN
( (y j−Ek−1(ϑ))Ek−1(θ)

1
10+Ek−1(θ)

, 1
1
10+Ek−1(θ)

,

− ψ j , ψ j
)
.

As with the full conditional p(ψ j |y, θ, ϑ, κ) within
the MCMC sampler, we use a uniform proposal
U(0, 2) at the Metropolis–Hastings step applied for
qk−1(ψ j |κ j ). For each k, the N iterations begin from
the (κ j , ψ j )-values obtained at the end of the corre-
sponding MCMC iterations at step k − 1, with very
first initial values being κ,ψ j ) = (0, 1). Use the N
samples to obtain Ek−1(κ j ) and Ek−1(κ

2
j ).

– Update the variational distribution for ϑ ,

qk(ϑ) = N

(∑n
j=i (y j−Ek−1(κ j ))Ek−1(θ)

1
10+nEk−1(θ)

, 1
1
10+nEk−1(θ)

)

and evaluate Ek(ϑ), Ek(ϑ
2).

– Update the variational distribution for θ ,

qk(θ) = Gamma
(
1+ n

2 , 1 +
∑n

j=1 Ek,k−1((y j−ϑ−κ j )
2)

2

)

and evaluate Ek(θ).

• Iterate until convergence.

BBVI

For BBVI we assume a variational distribution
q(θ, ϑ, κ, ψ | α, γ ) that factorises as in the case of CAVI in
(13), where

α = (αϑ, αθ , ακ1 , . . . , ακn , αψ1 , . . . , αψn ) ,

γ = (γϑ , γθ , γκ1 , . . . , γκn , γψ1 , . . . , γψn )

to be the variational parameters. Individual marginal distri-
butions are chosen to agree—in type—with themodel priors.
In particular, we set,

q(ϑ) = N(αϑ , exp(γϑ )),

q(θ) = Gamma(exp(αθ ), exp(γθ )),

q(κ j , ψ j ) = TN(ακ j , exp(2γκ j ),

− ψ j , ψ j ) ⊗ TN(αψ j , exp(2γψ j ), 0, 2), 1 ≤ j ≤ n.

It is straightforward to derive the required gradients (see
“Appendix C” for the analytical expressions). BBVI is
applied using Rao-Blackwellization and control variates for
variance reduction. The algorithm is as follows,

• Step 0: Set η = 0.5; initialise α0 = 0, γ 0 = 0 with the
exception α0

ϑ = 4.
• Step k: For k ≥ 1, given αk−1 and γ k−1 execute:

– Draw (ϑ i , θ i , κ i , ψ i ), for 1 ≤ i ≤ N , from qk−1(ϑ),
qk−1(θ), qk−1(κ, ψ).

– With the samples, use (12) to evaluate:

∇k
αϑ

̂ELBO(q(ϑ)), ∇k
γϑ

̂ELBO(q(ϑ)),

∇k
αθ

̂ELBO(q(θ)), ∇k
γθ

̂ELBO(q(θ)),

∇k
ακ j

̂ELBO(q(κ j , ψ j )), ∇k
γκ j

̂ELBO(q(κ j , ψ j )),

1 ≤ j ≤ n,

∇k
αψ j

̂ELBO(q(κ j , ψ j )), ∇k
γψ j

̂ELBO(q(κ j , ψ j )),

1 ≤ j ≤ n.

(Here, superscript k at the gradient symbol ∇ speci-
fies the BBVI iteration.)

– Evaluate αk and γ k :

(α, γ )k = (α, γ )k−1 + ρk∇k
(α,γ )

̂ELBO(q),

where q = (q(ϑ), q(θ), q(κ1, ψ1), . . . , q(κn, ψn)).
For the learning rate,we employed theAdaGrad algo-
rithm (Duchi et al. 2011) and setρk =η diag(Gk)

−1/2,
where Gk is a matrix equal to the sum of the first k
iterations of the outer products of the gradient, and
diag(·) maps a matrix to its diagonal version.

• Iterate until convergence.

Results

The three algorithms have different stopping criteria. We run
each for 100 s for parity. A summary of results is given in
Table 2. Model fitting plots and algorithmic traceplots are
shown in Fig. 5.
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Table 2 Summary of results: last two rows show the average for the corresponding parameter (in horizontal direction) and algorithm (in vertical
direction), after burn-in (the number in brackets is the corresponding standard deviation)

MCMC MC-CAVI BBVI

Iterations No. iterations = 2500 Burn-in = 1250 No. iterations = 300 N = 10 Burn-in = 150 No. iterations = 100 N = 10

ϑ 5.927 (0.117) 5.951 (0.009) 6.083 (0.476)

θ 1.248 (0.272) 8.880 (0.515) 0.442 (0.172)

All algorithms were executed for 102 s. The first row gives some algorithmic details

Fig. 5 Model fit (left panel), traceplots of ϑ (middle panel) and tra-
ceplots of θ (right panel) for the three algorithms: MCMC (first row),
MC-CAVI (second row) and BBVI (third row)—for Example Model
2—when allowed 100 s of execution. In the plots showing model fit,

the green line represents the data without noise, the orange line the
data with noise; the blue line shows the corresponding posterior means
and the grey area the pointwise 95% posterior credible intervals. (Color
figure online)

Table 2 indicates that all three algorithms approximate the
posterior mean of ϑ effectively; the estimate fromMC-CAVI
has smaller variability than the one of BBVI; the opposite
holds for the variability in the estimates for θ . Figure 5 shows
that the traceplots forBBVI are unstable, a sign that the gradi-
ent estimates have high variability. In contrast, MCMC and
MC-CAVI perform rather well. Figure 6 shows the ‘true’
posterior density of ϑ (obtained from an expensive MCMC
with 10,000 iterations—5000 burn-in) and the correspond-

ing approximation obtained via MC-CAVI. In this case, the
variational approximation is quite accurate at the estimation
of the mean but underestimates the posterior variance (rather
typically for a VI method). We mention that for BBVI we
also tried to use normal laws as variational distributions—as
this is mainly the standard choice in the literature—however,
in this case, the performance of BBVI deteriorated even
further.
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Fig. 6 Density plots for the true posterior ofϑ (blue line)—obtained via
an expensiveMCMC—and the corresponding approximate distribution
provided by MC-CAVI. (Color figure online)

4 Application to 1H NMR spectroscopy

Wedemonstrate the utility ofMC-CAVI in a statistical model
proposed in the field of metabolomics by Astle et al. (2012),
and used in NMR (Nuclear Magnetic Resonance) data anal-
ysis. Proton nuclear magnetic resonance (1H NMR) is an
extensively used technique for measuring abundance (con-
centration) of a number of metabolites in complex biofluids.
NMR spectra are widely used in metabolomics to obtain pro-
files of metabolites present in biofluids. The NMR spectrum
can contain information for a few hundreds of compounds.
Resonance peaks generated by each compound must be
identified in the spectrum after deconvolution. The spectral
signature of a compound is given by a combination of peaks
not necessarily close to each other. Such compounds can gen-
erate hundreds of resonance peaks, many of which overlap.
This causes difficulty in peak identification and deconvolu-
tion. The analysis of NMR spectrum is further complicated
by fluctuations in peak positions among spectra induced by
uncontrollable variations in experimental conditions and the
chemical properties of the biological samples, e.g. by the
pH. Nevertheless, extensive information on the patterns of
spectral resonance generated by human metabolites is now
available in online databases. By incorporating this infor-
mation into a Bayesian model, we can deconvolve resonance
peaks from a spectrum and obtain explicit concentration esti-
mates for the correspondingmetabolites. Spectral resonances
that cannot be deconvolved in this way may also be of scien-
tific interest; these are modelled in Astle et al. (2012) using
wavelet basis functions.More specifically, anNMRspectrum
is a collection of peaks convoluted with various horizontal
translations and vertical scalings, with each peak having the
form of a Lorentzian curve. A number ofmetabolites of inter-
est have known NMR spectrum shape, with the height of the
peaks or their width in a particular experiment providing
information about the abundance of each metabolite.

Fig. 7 An Example of 1H NMR spectrun

The zero-centred, standardized Lorentzian function is
defined as:

�γ (x) = 2

π

γ

4x2 + γ 2 (14)

where γ is the peak width at half height. An example of 1H
NMR spectrum is shown in Fig. 7. The x-axis of the spec-
trum measures chemical shift in parts per million (ppm) and
corresponds to the resonance frequency. The y-axismeasures
relative resonance intensity. Each spectrumpeak corresponds
to magnetic nuclei resonating at a particular frequency in
the biological mixture, with every metabolite having a char-
acteristic molecular 1H NMR ‘signature’; the result is a
convolution of Lorentzian peaks that appear in specific posi-
tions in 1H NMR spectra. Each metabolite in the experiment
usually gives rise tomore than a ‘multiplet’ in the spectrum—
i.e. linear combination of Lorentzian functions, symmetric
around a central point. Spectral signature (i.e. pattern mul-
tiplets) of many metabolites are stored in public databases.
The aim of the analysis is: (i) to deconvolve resonance peak
in the spectrum and assign them to a particular metabolite;
(ii) estimate the abundance of the catalogued metabolites;
(iii) model the component of a spectrum that cannot be
assigned to known compounds. Astle et al. (2012) propose
a two-component joint model for a spectrum, in which the
metabolites whose peaks we wish to assign explicitly are
modelled parametrically, using information from the online
databases, while the unassigned spectrum is modelled using
wavelets.

4.1 Themodel

We now describe the model of Astle et al. (2012). The avail-
able data are represented by the pair (x, y), where x is a vector
of n ordered points (of the order 103 − 104) on the chemical
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shift axis—often regularly spaced—and y is the vector of the
corresponding resonance intensity measurements (scaled, so
that they sum up to 1). The conditional law of y|x is mod-
elled under the assumption that yi |x are independent normal
variables and,

E [ yi | x ] = φ(xi ) + ξ(xi ), 1 ≤ i ≤ n. (15)

Here, the φ component of the model represents signatures
that we wish to assign to target metabolites. The ξ compo-
nent models signatures of remaining metabolites present in
the spectrum, but not explicitly modelled. We refer to this
latter as residual spectrum and we highlight the fact that
it is important to account for it as it can unveil important
information not captured by φ(·). Function φ is constructed
parametrically using results from the physical theory ofNMR
and information available online databases or expert knowl-
edge, while ξ is modelled semiparametrically with wavelets
generated by a mother wavelet (symlet 6) that resembles the
Lorentzian curve.

More analytically,

φ(xi ) =
M∑

m=1

tm(xi )βm

where M is the number of metabolites modelled explicitly
and β = (β1, . . . , βM )� is a parameter vector correspond-
ing to metabolite concentrations. Function tm(·) represents a
continuous template function that specifies the NMR signa-
ture of metabolite m and it is defined as,

tm(δ) =
∑

u

Vm,u∑

v=1

zm,u ωm,u,v �γ (δ − δ∗
m,u − cm,u,v), δ > 0,

(16)

where u is an index running over all multiplets assigned to
metabolitem, v is an index representing a peak in a multiplet
and Vm,u is the number of peaks in multiplet u of metabolite
m. In addition, δ∗

m,u specifies the theoretical position on the
chemical shift axis of the centre of mass of the uth multiplet
of the mth metabolite; zm,u is a positive quantity, usually
equal to the number of protons in a molecule of metabolite
m that contributes to the resonance signal of multiplet u;
ωm,u,v is the weight determining the relative heights of the
peaks of the multiplet; cm,u,v is the translation determining
the horizontal offsets of the peaks from the centre of mass
of the multiplet. Both ωm,u,v and cm,u,v can be computed by
empirical estimates of the so-called J -coupling constants;
see Hore (2015) for more details. The zm,u’s and J -coupling
constants information can be found in online databases or
from expert knowledge.

The residual spectrum is modelled through wavelets,

ξ(xi ) =
∑

j,k

ϕ j,k(xi )ϑ j,k

where ϕ j,k(·) denote the orthogonal wavelet functions gen-
erated by the symlet-6 mother wavelet, see Astle et al. (2012)
for full details; here, ϑ = (ϑ1,1, . . . , ϑ j,k, . . .)

� is the vec-
tor of wavelet coefficients. Indices j, k correspond to the kth
wavelet in the j th scaling level.

Finally, overall, the model for an NMR spectrum can be
re-written in matrix form as:

W(y − Tβ) = In1ϑ + ε, ε ∼ N(0, In1/θ), (17)

whereW ∈ Rn×n1 is the inverse wavelet transform, M is the
total number of knownmetabolites,T is an n×M matrixwith
its (i,m)th entry equal to tm(xi ) and θ is a scalar precision
parameter.

4.2 Prior specification

Astle et al. (2012) assign the following prior distribution to
the parameters in the Bayesian model. For the concentration
parameters, we assume

βm ∼ TN(em, 1/sm, 0,∞),

where em = 0 and sm = 10−3, for all m = 1, . . . , M .
Moreover,

γ ∼ LN(0, 1);
δ∗
m,u ∼ TN(δ̂∗

m,u, 10
−4, δ̂∗

m,u − 0.03, δ̂∗
m,u + 0.03),

where LN denotes a log-normal distribution and δ̂∗
m,u is the

estimate for δ∗
m,u obtained from the online database HMDB

(see Wishart et al. 2007, 2008, 2012, 2017). In the regions
of the spectrum where both parametric (i.e. φ) and semipara-
metric (i.e. ξ ) components need to be fitted, the likelihood is
unidentifiable. To tackle this problem, Astle et al. (2012) opt
for shrinkage priors for the wavelet coefficients and include
a vector of hyperparameters ψ—each component ψ j,k of
which corresponds to a wavelet coefficient—to penalize the
semiparametric component. To reflect prior knowledge that
NMR spectra are usually restricted to the half plane above
the chemical shift axis, Astle et al. (2012) introduce a vector
of hyperparameters τ , each component of which, τi , corre-
sponds to a spectral data point, to further penalize spectral
reconstructions in which some components of W−1ϑ are
less than a small negative threshold. In conclusion, Astle
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Fig. 8 Traceplots of parameter value against number of iterations after
the burn-in period for β3 (upper left panel), β4 (upper right panel), β9
(lower left panel) and δ4,1 (lower right panel). The y-axis corresponds
to the obtained parameter values (the mean of the distribution q for

MC-CAVI and traceplots for MCMC). The red line shows the results
from MC-CAVI and the blue line from MCMC. Both algorithms are
executed for the same (approximately) amount of time. (Color figure
online)

et al. (2012) specify the following joint prior density for
(ϑ,ψ, τ, θ),

p(ϑ, ψ, τ, θ) ∝ θ
a+ n+n1

2 −1

⎧
⎨

⎩
∏

j,k

ψ
c j−0.5
j,k exp

( − ψ j,kd j
2

)
⎫
⎬

⎭

× exp

⎧
⎨

⎩− θ
2

⎛

⎝e +
∑

j,k

ψ j,k ϑ2
j,k + r

n∑

i=1

(τi − h)2

⎞

⎠

⎫
⎬

⎭

× 1
{W−1ϑ ≥ τ, h1n ≥ τ

}
,

where ψ introduces local shrinkage for the marginal prior
of ϑ and τ is a vector of n truncation limits, which bounds
W−1ϑ from below. The truncation imposes an identifiability
constraint: without it, when the signature template does not
match the shape of the spectral data, the mismatch will be
compensated by negative wavelet coefficients, such that an
ideal overall model fit is achieved even though the signature
template is erroneously assigned and the concentration of
metabolites is overestimated. Finally we set c j = 0.05, d j =
10−8, h = −0.002, r = 105, a = 10−9, e = 10−6; see Astle
et al. (2012) for more details.

4.3 Results

BATMAN is an R package for estimating metabolite concen-
trations fromNMRspectral data using a specifically designed
MCMC algorithm (Hao et al. 2012) to perform posterior
inference from the Bayesian model described above. We
implement a MC-CAVI version of BATMAN and compare
its performance with the original MCMC algorithm. Details
of the implementation of MC-CAVI are given in “Appendix
D”. Due to the complexity of the model and the data size, it is
challenging for both algorithms to reach convergence.We run
the two methods, MC-CAVI and MCMC, for approximately
an equal amount of time, to analyse a full spectrum with
1530 data points and modelling parametrically 10 metabo-
lites. We fix the number of iterations for MC-CAVI to 1000,
with a burn-in of 500 iterations; we set the Monte Carlo size
to N = 10 for all iterations. The execution time for this MC-
CAVI algorithms is 2048 s. For the MCMC algorithm, we
fix the number of iterations to 2000, with a burn-in of 1000
iterations. This MCMC algorithm has an execution time of
2098 s.
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Fig. 9 Comparison of MC-CAVI and MCMC in terms of spectral fit. The upper panel shows the Spectral Fit from MC-CAVI algorithm. The lower
panel shows the Spectral Fit fromMCMC algorithm. The x-axis corresponds to chemical shift measure in ppm. The y-axis corresponds to standard
density

Table 3 Estimation of β

obtained with MC-CAVI and
MCMC

β1 β2 β3 β4 β5

MC-CAVI

Mean 6.0e−6 7.8e−5 1.4e−3 4.2e−4 2.6e−5

SD 1.8e−11 4.0e−11 1.3e−11 1.0e−11 6.2e−11

MCMC

Mean 1.2e−5 4.0e−5 1.5e−3 2.1e−5 3.4e−5

SD 1.1e−10 5.0e−10 1.6e-9 6.4e−10 3.9e−10

β6 β7 β8 β9 β10

MC-CAVI

Mean 6.1e−4 3.0e−5 1.9e−4 2.7e−3 1.0e−3

SD 1.5e−11 1.6e−11 3.9e−11 1.6e−11 3.6e−11

MCMC

Mean 6.0e−4 3.0e−5 1.8e−4 2.5e−3 1.0e−3

SD 2.3e−10 7.5e−11 3.7e−10 5.1e-9 7.9e−10

The coefficients of β for which the posterior means obtained with the two algorithms differ by more than
1.0e−4 are shown in bold
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Fig. 10 Comparison of metabolites fit obtained with MC-CAVI and
MCMC. The x-axis corresponds to chemical shift measure in ppm. The
y-axis corresponds to standard density. The upper left panel shows areas
around ppm value 2.14 (β4 and β9). The upper right panel shows areas

around ppm 2.66 (β6). The lower left panel shows areas around ppm
value 3.78 (β3 and β9). The lower right panel shows areas around ppm
7.53 (β10)

In 1H NMR analysis, β (the concentration of metabolites
in the biofluid) and δ∗

m,u (the peak positions) are the most
important parameters from a scientific point of view. Trace-
plots of four examples (β3, β4, β9 and δ4,1) are shown in
Fig. 8. These four parameters are chosen due to the different
performance of the two methods, which are closely exam-
ined in Fig. 10. For β3 and β9, traceplots are still far from
convergence forMCMC, while they move toward the correct
direction (see Fig. 8) when usingMC-CAVI. For β4 and δ4,1,
both parameters reach a stable regime very quickly in MC-
CAVI, whereas the same parameters only make local moves
when implementing MCMC. For the remaining parameters
in the model, both algorithms present similar results.

Figure 9 shows the fit obtained from both the algorithms,
while Table 3 reports posterior estimates for β. From Fig. 9,
it is evident that the overall performance ofMC-CAVI is sim-
ilar as that of MCMC since in most areas, the metabolites fit
(orange line) captures the shape of the original spectrumquite
well. Table 3 shows that, similar to standard VI behaviour,
MC-CAVI underestimates the variance of the posterior den-
sity. We examine in more detail the posterior distribution of
the β coefficients for which the posterior means obtained

with the two algorithms differ more than 1.0e−4. Figure 10
shows that MC-CAVI manages to capture the shapes of the
peaks while MCMC does not, around ppm values of 2.14
and 3.78, which correspond to spectral regions where many
peaks overlap making peak deconvolution challenging. This
is probably due to the faster convergence of MC-CAVI. Fig-
ure 10 shows that for areas with no overlapping (e.g. around
ppm values of 2.66 and 7.53), MC-CAVI and MCMC pro-
duce similar results.

Comparing MC-CAVI and MCMC’s performance in the
case of the NMR model, we can draw the following conclu-
sions:

• In NMR analysis, if many peaks overlap (see Fig. 10),
MC-CAVI can provide better results than MCMC.

• In high-dimensionalmodels,where the number of param-
eters growswith the size of data,MC-CAVI can converge
faster than MCMC.

• Choice of N is important for optimising the performance
ofMC-CAVI.Building on results derived for otherMonte
Carlo methods (e.g. MCEM), it is reasonable to choose a
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relatively small number of Monte Carlo iterations at the
beginning when the algorithm can be far from regions
of parameter space of high posterior probability, and
gradually increase the number of Monte Carlo iterations,
with the maximum number taken once the algorithm has
reached a mode.

5 Discussion

As a combination of VI and MCMC, MC-CAVI provides
a powerful inferential tool particularly in high dimensional
settings when full posterior inference is computationally
demanding and the application of optimization and of
noisy-gradient-based approaches, e.g. BBVI, is hindered
by the presence of hard constraints. The MCMC step of
MC-CAVI is necessary to deal with parameters for which
VI approximation distributions are difficult or impossible
to derive, for example due to the impossibility to derive
closed-form expression for the normalising constant. Gen-
eral Monte Carlo algorithms such as sequential Monte Carlo
and Hamiltonian Monte Carlo can be incorporated within
MC-CAVI. Compared with MCMC, the VI step of MC-
CAVI speeds up convergence and provides reliable estimates
in a shorter time. Moreover, MC-CAVI scales better in
high-dimensional settings. As an optimization algorithm,
MC-CAVI’s convergence monitoring is easier than MCMC.
Moreover, MC-CAVI offers a flexible alternative to BBVI.
This latter algorithm, although very general and suitable for
a large range of complex models, depends crucially on the
quality of the approximation to the true target provided by
the variational distribution, which in high dimensional set-
ting (in particular with hard constraints) is very difficult to
assess.
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A Proof of Lemma 1

Proof Part (i): For a neighborhood of λ∗, we can chose
a sub-neighborhood V as described in Assumption 3. For
some small ε > 0, the set V0 = {λ : ELBO(q(λ)) ≥
ELBO(q(λ∗)) − ε} has a connected component, say V ′, so
that λ∗ ∈ V ′ and V ′ ⊆ V ; we can assume that V ′ is com-
pact. Assumption 3 implies that M(V ′) ⊆ V0; in fact, since
M(V ′) is connected and contains λ∗, we have M(V ′) ⊆ V ′.
This completes the proof of part (i) of Definition 1.
Part (ii): Let λ ∈ V ′. Consider the sequence {Mk(λ)}k
with a convergent subsequence, Mak (λ) → λ1 ∈ V ′, for
increasing integers {ak}. Thus, we have that the following
holds, ELBO(q(Mak+1(λ))) ≥ ELBO(q(M(Mak (λ)))) →
ELBO(q(M(λ1))), whereas we also have that
ELBO(q(Mak+1(λ))) → ELBO(q(λ1)). These two last lim-
its give the implication that ELBO(q(M(λ1))) =
ELBO(q(λ1)), so that λ1 = λ∗. We have shown that any
convergent subsequence of {Mk(λ)}k has limit λ∗; the com-
pactness of V ′ gives that also Mk(λ) → λ∗. This completes
the proof of part (ii) of Definition 1. ��

B Proof of Theorem 1

Proof Let V1 be as V ′ within the proof of Lemma 1. Define
V2 = {λ ∈ V1 : |λ − λ∗| ≥ ε}, for an ε > 0 small enough
so that V1 �= ∅. For λ ∈ V2, we have M(λ) �= λ, thus
there are ν, ν1 > 0 such that for all λ ∈ V2 and for all
λ′ with |λ′ − M(λ)| < ν, we obtain that ELBO(q(λ′)) −
ELBO(q(λ)) > ν1. Also, due to continuity and compact-
ness, there is ν2 > 0 such that for all λ ∈ V1 and for all
λ′ such that |λ′ − M(λ)| < ν2, we have λ′ ∈ V1. Let R =
supλ,λ′∈V1{ELBO(q(λ)) − ELBO(q(λ′))} and k0 = [R/ν1]
where [·] denotes integer part. Notice that given λkN :=
Mk

N (λ), we have that {|Mk+1
N − M(λkN )| < ν2} ⊆ {λk+1

N ∈
V1}. Consider the event FN = {λkN ∈ V1 ; k = 0, . . . , k0}.
Under Assumption 4, we have that Prob[FN ] ≥ pk0 for p
arbitrarily close to 1. Within FN , we have that |λkN −λ∗| < ε

for some k ≤ k0, or else λkN ∈ V2 for all k ≤ k0, giving
that ELBO(q(λkN )) − ELBO(q(λ)) > ν1 · k0 > R, which is
impossible. ��

C Gradient expressions for BBVI

∇αϑ log q(ϑ) = (ϑ − αϑ) · exp(−γϑ),

∇γϑ log q(ϑ) = − 1
2 + (ϑ−αϑ )2

2 · exp(−γϑ),

∇αθ log q(θ) = (
γθ − �′(exp(αθ ))

�(exp(αθ ))
+ log(θ)

) · exp(αθ ),

∇γθ log q(θ) = exp(αθ ) − θ · exp(γθ ),
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∇ακ j
log q(κ j , ψ j ) = κ j−ακ j

exp(2γκ j )
+

φ(
ψ j−ακ j
exp(γκ j )

)−φ(
−ψ j−ακ j
exp(γκ j )

)

exp(γκ j )(�(
ψ j−ακ j
exp(γκ j )

)−�(
−ψ j−ακ j
exp(γκ j )

))

,

1 ≤ j ≤ n

∇αψ j
log q(κ j , ψ j ) = ψ j−αψ j

exp(2γψ j )
+

φ(
2−αψ j
exp(γψ j

)
)−φ(

−αψ j
exp(γψ j

)
)

exp(γψ j )(�(
2−αψ j
exp(γψ j

)
)−�(

−αψ j
exp(γψ j

)
))

,

1 ≤ j ≤ n

∇γκ j
log q(κ j , ψ j ) = (κ j−ακ j )

2

exp(2γκ j )
− 1

+
(ψ j−ακ j )φ(

ψ j−ακ j
exp(γκ j )

)+(ψ j+ακ j )φ(
−ψ j−ακ j
exp(γκ j )

)

exp(γκ j )(�(
ψ j−ακ j
exp(γκ j )

)−�(
−ψ j−ακ j
exp(γκ j )

))

,

1 ≤ j ≤ n

∇γψ j
log q(κ j , ψ j ) = (ψ j−αψ j )

2

exp(2γψ j )
− 1

+
(2 − αψ j )φ(

2−αψ j
exp(γψ j )

)+(αψ j )φ(
−αψ j

exp(γψ j )
)

exp(γψ j )(�(
2−αψ j
exp(γψ j )

)−�(
−αψ j

exp(γψ j )
))

,

1 ≤ j ≤ n.

DMC-CAVI implementation of BATMAN

In the MC-CAVI implementation of BATMAN, taking both
computation efficiency and model structure into considera-
tion, we assume that the variational distribution factorises
over four partitions of the parameter vectors, q(β, δ∗, γ ),
q(ϑ, τ ), q(ψ), q(θ). This factorization is motivated by the
original Metropolis–Hastings block updates in Astle et al.
(2012). Let B denote the wavelet basis matrix defined by the
transformW , soW(B) = In1 . We use v−i to represent vec-
tor v without the i th component and analogous notation for
matrices (resp., without the i th column).
Set E(θ) = 2a/e, E(ϑ2

j,k) = 0, E(ϑ) = 0, E(τ ) = 0,

E(Tβ) = y, E
(
(Tβ)�(Tβ)

) = y�y.
For each iteration:

1. Set q(ψ j,k) = Gamma
(
c j + 1

2 ,
E(θ)E(ϑ2

j,k )+d j

2

)
; calcu-

late E(ψ j,k).
2. Set q(θ) = Gamma(c, c′), where we have defined,

c = a1 + n1 + n
2 ,

c′ = 1
2

⎧
⎨

⎩
∑

j,k

E(ψ j,k)E(ϑ2
j,k)

+ E
(
(Wy − WTβ − ϑ)�(Wy − WTβ − ϑ)

)

+r(E(τ ) − h1n) + e

⎫
⎬

⎭ ;

calculate E(θ).
3. UseMonte Carlo to draw N samples from q(β, δ∗

m,u, γ ),
which is derived via (4) as,

q(β, δ∗, γ ) ∝ exp
{

− E(θ)
2

(
(WTβ)�WTβ

− 2WTβ(Wy − E(ϑ))
)}

× p(β)p(δ∗)p(γ ),

where p(β), p(δ∗), p(γ ) are the prior distributions spec-
ified in Sect. 4.2.

• Use a Gibbs sampler update to draw samples from
q(β|δ∗

m,u, γ ). Draw each component of β = (βm)

from a univariate normal, truncated below at zero,
with precision and mean parameters given, respec-
tively, by

P := sm + E(θ)(WT i )
�(WT i ),

(WT i )
�(Wy − WT−iβ−i − E(ϑ))E(θ)/P.

• Use Metropolis–Hastings to update γ . Propose
log(γ ′) ∼ N(log(γ ), V 2

γ ). Perform accept/reject.
Adapt V 2

γ to obtain average acceptance rate of
approximately 0.45.

• Use Metropolis–Hastings to update δ∗
m,u . Propose,

(δ∗
m,u)

′ ∼TN(δ∗
m,u, V

2
δ∗
m,u

, δ̂∗
m,u − 0.03, δ̂∗

m,u+0.03).

Perform accept/reject. Adapt V 2
δ∗
m,u

to target accep-
tance rate 0.45.

Calculate E(Tβ) and E
(
(Tβ)�(Tβ)

)
.

4. UseMonteCarlo to draw N samples fromq(ϑ, τ ),which
is derived via (4) as,

q(ϑ, τ ) ∝
exp

{
− E(θ)

2

( ∑

j,k

ϑ j,k
(
(ψ j,k + 1) ϑ j,k − 2

(Wy

− WE(Tβ)
)
j,k

) + r
n∑

i=1

(τi − h)2
)}

× I
{W−1ϑ ≥ τ, h1n ≥ τ

}

• Use Gibbs sampler to draw from q(ϑ |τ). Draw ϑ j,k

from:

TN
( 1
1+E(ψ j,k)

(Wy − WE(Tβ)
)
j,k,

1
E(θ)(1+E(ψ j,k))

, L,U
)
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where we have set,

L = max
i :Bi{ j,k}>0

τi − Bi−{ j,k}ϑ−{ j,k}
Bi{ j,k}

U = min
i :Bi{ j,k}<0

τi − Bi−{ j,k}ϑ−{ j,k}
Bi{ j,k}

and Bi{ j,k} is the ( j, k)th element of the i th column
of B.

• Use Gibbs sampler to update τi . Draw,

τi ∼ TN
(
h, 1/(E(θ)r),−∞,min

{
h, (W−1ϑ)i

})
.

Calculate E(ϑ2
j,k), E(ϑ), E(τ ).
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