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Abstract

Instrumental variable (IV) regression is a strategy for learning causal relationships
in observational data. If measurements of input X and output Y are confounded,
the causal relationship can nonetheless be identified if an instrumental variable
Z is available that influences X directly, but is conditionally independent of Y
given X and the unmeasured confounder. The classic two-stage least squares al-
gorithm (2SLS) simplifies the estimation problem by modeling all relationships
as linear functions. We propose kernel instrumental variable regression (KIV), a
nonparametric generalization of 2SLS, modeling relations amongX , Y , and Z as
nonlinear functions in reproducing kernel Hilbert spaces (RKHSs). We prove the
consistency of KIV under mild assumptions, and derive conditions under which
convergence occurs at the minimax optimal rate for unconfounded, single-stage
RKHS regression. In doing so, we obtain an efficient ratio between training sam-
ple sizes used in the algorithm’s first and second stages. In experiments, KIV
outperforms state of the art alternatives for nonparametric IV regression.

1 Introduction

Instrumental variable regression is a method in causal statistics for estimating the counterfactual
effect of input X on output Y using observational data [60]. If measurements of (X,Y ) are con-
founded, the causal relationship–also called the structural relationship–can nonetheless be identified
if an instrumental variable Z is available, which is independent of Y conditional on X and the
unmeasured confounder. Intuitively, Z only influences Y via X , identifying the counterfactual rela-
tionship of interest.

Economists and epidemiologists use instrumental variables to overcome issues of strategic inter-
action, imperfect compliance, and selection bias. The original application is demand estimation:
supply cost shifters (Z) only influence sales (Y ) via price (X), thereby identifying counterfactual
demand even though prices reflect both supply and demand market forces [68, 11]. Randomized
assignment of a drug (Z) only influences patient health (Y ) via actual consumption of the drug (X),
identifying the counterfactual effect of the drug even in the scenario of imperfect compliance [3].
Draft lottery number (Z) only influences lifetime earnings (Y ) via military service (X), identifying
the counterfactual effect of military service on earnings despite selection bias in enlistment [2].

The two-stage least squares algorithm (2SLS), widely used in economics, simplifies the IV estima-
tion problem by assuming linear relationships: in stage 1, perform linear regression to obtain the
conditional means x̄(z) := EX|Z=z(X); in stage 2, linearly regress outputs Y on these conditional
means. 2SLS works well when the underlying assumptions hold. In practice, the relation between
Y and X may not be linear, nor may be the relation between X and Z .

In the present work, we introduce kernel instrumental variable regression (KIV), an easily imple-
mented nonlinear generalization of 2SLS (Sections 3 and 4).1 In stage 1 we learn a conditional

1Code: https://github.com/r4hu1-5in9h/KIV
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mean embedding, which is the conditional expectation µ(z) := EX|Z=zψ(X) of features ψ which
map X to a reproducing kernel Hilbert space (RKHS) [56]. For a sufficiently rich RKHS, called a
characteristic RKHS, the mean embedding of a random variable is injective [57]. It follows that the
conditional mean embedding characterizes the full distribution of X conditioned on Z , and not just
the conditional mean. We then implement stage 2 via kernel ridge regression of outputs Y on these
conditional mean embeddings, following the two-stage distribution regression approach described
by [64, 65]. As in our work, the inputs for [64, 65] are distribution embeddings. Unlike our case,
the earlier work uses unconditional embeddings computed from independent samples.

As a key contribution of our work, we provide consistency guarantees for the KIV algorithm for an
increasing number of training samples in stages 1 and 2 (Section 5). To establish stage 1 convergence,
we note that the conditional mean embedding [56] is the solution to a regression problem [34, 35, 33],
and thus equivalent to kernel dependency estimation [20, 21]. We prove that the kernel estimator
of the conditional mean embedding (equivalently, the conditional expectation operator) converges
in RKHS-norm, generalizing classic results by [53, 54]. We allow the conditional mean embedding
RKHS to be infinite-dimensional, which presents specific challenges that we carefully address in our
analysis. We also discuss previous approaches to establishing consistency in both finite-dimensional
[35] and infinite-dimensional [56, 55, 31, 37, 20] settings.

We embed the stage 1 rates into stage 2 to get end-to-end guarantees for the two-stage procedure,
adapting [14, 64, 65]. In particular, we provide a ratio of stage 1 to stage 2 samples required for
minimax optimal rates in the second stage, where the ratio depends on the difficulty of each stage.
We anticipate that these proof strategies will apply generally in two-stage regression settings.

2 Related work

Several approaches have been proposed to generalize 2SLS to the nonlinear setting, which we will
compare in our experiments (Section 6). A first generalization is via basis function approximation
[48], an approach called sieve IV, with uniform convergence rates in [17]. The challenge in [17]
is how to define an appropriate finite dictionary of basis functions. In a second approach, [16, 23]
implement stage 1 by computing the conditional distribution of the input X given the instrument Z
using a ratio of Nadaraya-Watson density estimates. Stage 2 is then ridge regression in the space
of square integrable functions. The overall algorithm has a finite sample consistency guarantee,
assuming smoothness of the (X,Z) joint density in stage 1 and the regression in stage 2 [23]. Unlike
our bound, [23] make no claim about the optimality of the result. Importantly, stage 1 requires the
solution of a statistically challenging problem: conditional density estimation. Moreover, analysis
assumes the same number of training samples used in both stages. We will discuss this bound in
more detail in Appendix A.2.1 (we suggest that the reader first cover Section 5).

Our work also relates to kernel and IV approaches to learning dynamical systems, known in machine
learning as predictive state representation models (PSRs) [12, 37, 26] and in econometrics as panel
data models [1, 6]. In this setting, predictive states (expected future features given history) are
updated in light of new observations. The calculation of the predictive states corresponds to stage
1 regression, and the states are updated via stage 2 regression. In the kernel case, the predictive
states are expressed as conditional mean embeddings [12], as in our setting. Performance of the
kernel PSR method is guaranteed by a finite sample bound [37, Theorem 2], however this bound is
not minimax optimal. Whereas [37] assume an equal number of training samples in stages 1 and 2,
we find that unequal numbers of training samples matter for minimax optimality. More importantly,
the bound makes strong smoothness assumptions on the inputs to the stage 1 and stage 2 regression
functions, rather than assuming smoothness of the regression functions as we do. We show that
the smoothness assumptions on the inputs made in [37] do not hold in our setting, and we obtain
stronger end-to-end bounds under more realistic conditions. We discuss the PSR bound in more
detail in Appendix A.2.2.

Yet another recent approach is deep IV, which uses neural networks in both stages and permits
learning even for complex high-dimensional data such as images [36]. Like [23], [36] implement
stage 1 by estimating a conditional density. Unlike [23], [36] use a mixture density network [9,
Section 5.6], i.e. a mixture model parametrized by a neural network on the instrument Z . Stage
2 is neural network regression, trained using stochastic gradient descent (SGD). This presents a
challenge: each step of SGD requires expectations using the stage 1 model, which are computed
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by drawing samples and averaging. An unbiased gradient estimate requires two independent sets
of samples from the stage 1 model [36, eq. 10], though a single set of samples may be used if an
upper bound on the loss is optimized [36, eq. 11]. By contrast, our stage 1 outputs–conditional
mean embeddings–have a closed form solution and exhibit lower variance than sample averaging
from a conditional density model. No theoretical guarantee on the consistency of the neural network
approach has been provided.

In the econometrics literature, a few key assumptions make learning a nonparametric IV model
tractable. These include the completeness condition [48]: the structural relationship betweenX and
Y can be identified only if the stage 1 conditional expectation is injective. Subsequent works impose
additional stability and link assumptions [10, 19, 17]: the conditional expectation of a function of
X given Z is a smooth function of Z . We adapt these assumptions to our setting, replacing the
completeness condition with the characteristic property [57], and replacing the stability and link
assumptions with the concept of prior [54, 14]. We describe the characteristic and prior assumptions
in more detail below.

Extensive use of IV estimation in applied economic research has revealed a common pitfall: weak
instrumental variables. A weak instrument satisfies Hypothesis 1 below, but the relationship between
a weak instrumentZ and inputX is negligible;Z is essentially irrelevant. In this case, IV estimation
becomes highly erratic [13]. In [58], the authors formalize this phenomenon with local analysis. See
[44, 61] for practical and theoretical overviews, respectively. We recommend that practitioners resist
the temptation to use many weak instruments, and instead use few strong instruments such as those
described in the introduction.

Finally, our analysis connects early work on the RKHS with recent developments in the RKHS
literature. In [46], the authors introduce the RKHS to solve known, ill-posed functional equations.
In the present work, we introduce the RKHS to estimate the solution to an uncertain, ill-posed
functional equation. In this sense, casting the IV problem in an RKHS framework is not only natural;
it is in the original spirit of RKHS methods. For a comprehensive review of existing work and recent
advances in kernel mean embedding research, we recommend [43, 32].

3 Problem setting and definitions

Instrumental variable: We begin by introducing our causal assumption about the instrument. This
prior knowledge, described informally in the introduction, allows us to recover the counterfactual
effect of X on Y . Let (X ,BX ), (Y,BY), and (Z,BZ) be measurable spaces. Let (X,Y, Z) be a
random variable on X × Y × Z with distribution ρ.

Hypothesis 1. Assume

1. Y = h(X) + e and E[e|Z] = 0

2. ρ(x|z) is not constant in z

We call h the structural function of interest. The error term e is unmeasured, confounding noise.
Hypothesis 1.1, known as the exclusion restriction, was introduced by [48] to the nonparametric
IV literature for its tractability. Other hypotheses are possible, although a very different approach
is then needed [40]. Hypothesis 1.2, known as the relevance condition, ensures that Z is actually
informative. In Appendix A.1.1, we compare Hypothesis 1 with alternative formulations of the IV
assumption.

We make three observations. First, if X = Z then Hypothesis 1 reduces to the standard regression
assumption of unconfounded inputs, and h(X) = E[Y |X ]; if X = Z then prediction and counter-
factual prediction coincide. The IV model is a framework that allows for causal inference in a more
general variety of contexts, namely when h(X) 6= E[Y |X ] so that prediction and counterfactual pre-
diction are different learning problems. Second, Hypothesis 1 will permit identification of h even

if inputs are confounded, i.e. X��|= e. Third, this model includes the scenario in which the analyst
has a combination of confounded and unconfounded inputs. For example, in demand estimation
there may be confounded price P , unconfounded characteristics W , and supply cost shifter C that
instruments for price. Then X = (P,W ), Z = (C,W ), and the analysis remains the same.

Hypothesis 1 provides the operator equation E[Y |Z] = EX|Zh(X) [48]. In the language of 2SLS,
the LHS is the reduced form, while the RHS is a composition of stage 1 linear compact operator
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EX|Z and stage 2 structural function h. In the language of functional analysis, the operator equation
is a Fredholm integral equation of the first kind [46, 41, 48, 29]. Solving this operator equation for
h involves inverting a linear compact operator with infinite-dimensional domain; it is an ill-posed
problem [41]. To recover a well-posed problem, we impose smoothness and Tikhonov regulariza-
tion.

Z HZ

X HX

Y

µ ∈ HΞ

φ

h ∈ HX

ψ

E∗ ∈ HΓ∗

H ∈ HΩ

Figure 1: The RKHSs

RKHS model: We next introduce our RKHS model. Let kX : X ×
X → R and kZ : Z × Z → R be measurable positive definite kernels
corresponding to scalar-valued RKHSs HX and HZ . Denote the feature
maps

ψ : X → HX , x 7→ kX (x, ·) φ : Z → HZ , z 7→ kZ(z, ·)

Define the conditional expectation operator E : HX → HZ such that
[Eh](z) = EX|Z=zh(X). E is the natural object of interest for stage
1. We define and analyze an estimator for E directly. The conditional
expectation operatorE conveys exactly the same information as another
object popular in the kernel methods literature, the conditional mean em-
bedding µ : Z → HX defined by µ(z) = EX|Z=zψ(X) [56]. Indeed,

µ(z) = E∗φ(z) where E∗ : HZ → HX is the adjoint of E. Analo-
gously, in 2SLS x̄(z) = π′z for stage 1 linear regression parameter π.

The structural function h : X → Y in Hypothesis 1 is the natural object of interest for stage 2.
For theoretical purposes, it is convenient to estimate h indirectly. The structural function h conveys
exactly the same information as an object we call the structural operator H : HX → Y . Indeed,
h(x) = Hψ(x). Analogously, in 2SLS h(x) = β′x for structural parameter β. We define and
analyze an estimator for H , which in turn implies an estimator for h. Figure 1 summarizes the
relationships among equivalent stage 1 objects (E, µ) and equivalent stage 2 objects (H,h).

Our RKHS model for the IV problem is of the same form as the model in [45, 46, 47] for general
operator equations. We begin by choosing RKHSs for the structural function h and the reduced
form E[Y |Z], then construct a tensor-product RKHS for the conditional expectation operator E.
Our model differs from the RKHS model proposed by [16, 23], which directly learns the conditional
expectation operator E via Nadaraya-Watson density estimation. The RKHSs of [28, 16, 23] for
the structural function h and the reduced form E[Y |Z] are defined from the right and left singular
functions of E, respectively. They appear in the consistency argument, but not in the ridge penalty.

4 Learning problem and algorithm

2SLS consists of two stages that can be estimated separately. Sample splitting in this context means
estimating stage 1 with n randomly chosen observations and estimating stage 2 with the remainingm
observations. Sample splitting alleviates the finite sample bias of 2SLS when instrument Z weakly
influences input X [4]. It is the natural approach when an analyst does not have access to a single
data set with n +m observations of (X,Y, Z) but rather two data sets: n observations of (X,Z),
and m observations of (Y, Z). We employ sample splitting in KIV, with an efficient ratio of (n,m)
given in Theorem 4. In our presentation of the general two-stage learning problem, we denote stage
1 observations by (xi, zi) and stage 2 observations by (ỹi, z̃i).

4.1 Stage 1

We transform the problem of learning E into a vector-valued kernel ridge regression following
[34, 33, 20], where the hypothesis space is the vector-valued RKHS HΓ of operators mapping HX

to HZ . In Appendix A.3, we review the theory of vector-valued RKHSs as it relates to scalar-valued
RKHSs and tensor product spaces. The key result is that the tensor product space of HX and HZ is
isomorphic to L2(HX ,HZ), the space of Hilbert-Schmidt operators from HX to HZ . If we choose
the vector-valued kernel Γ with feature map (x, z) 7→ [φ(z) ⊗ ψ(x)](·) = φ(z)〈ψ(x), ·〉HX

, then
HΓ = L2(HX ,HZ) and it shares the same norm.

We now state the objective for optimizing E ∈ HΓ. The optimal E minimizes the expected discrep-
ancy

Eρ = argmin E1(E), E1(E) = E(X,Z)‖ψ(X)− E∗φ(Z)‖2HX
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Both [33] and [20] refer to E1 as the surrogate risk. As shown in [34, Section 3.1] and [33], the
surrogate risk upper bounds the natural risk for the conditional expectation, where the bound be-
comes tight when EX|Z=(·)f(X) ∈ HZ , ∀f ∈ HX . Formally, the target operator is the constrained

solution EHΓ = argminE∈HΓ
E1(E). We will assume Eρ ∈ HΓ so that Eρ = EHΓ .

Next we impose Tikhonov regularization. The regularized target operator and its empirical analogue
are given by

Eλ = argmin
E∈HΓ

Eλ(E), Eλ(E) = E1(E) + λ‖E‖2L2(HX ,HZ)

En
λ = argmin

E∈HΓ

En
λ (E), En

λ (E) =
1

n

n
∑

i=1

‖ψ(xi)− E∗φ(zi)‖2HX
+ λ‖E‖2L2(HX ,HZ)

Our construction of a vector-valued RKHS HΓ for the conditional expectation operator E permits
us to estimate stage 1 by kernel ridge regression. The stage 1 estimator of KIV is at once novel in
the nonparametric IV literature and fundamentally similar to 2SLS. Basis function approximation
[48, 17] is perhaps the closest prior IV approach, but we use infinite dictionaries of basis functions
ψ and φ. Compared to density estimation [16, 23, 36], kernel ridge regression is an easier problem.

Alternative stage 1 estimators in the literature estimate the singular system of E to ensure that
the adjoint of the estimator equals the estimator of the adjoint. These estimators differ in how they
estimate the singular system: empirical distribution [23], Nadaraya-Watson density [24], or B-spline
wavelets [18]. The KIV stage 1 estimator has the desired property by construction; (En

λ )
∗ = (E∗)nλ .

See Appendix A.3 for details.

4.2 Stage 2

Next, we transform the problem of learning h into a scalar-valued kernel ridge regression that re-
spects the IV problem structure. In Proposition 12 of Appendix A.3, we show that under Hypothesis
3 below,

EX|Z=zh(X) = [Eh](z) = 〈h, µ(z)〉HX
= Hµ(z)

where h ∈ HX , a scalar-valued RKHS;E ∈ HΓ, the vector-valued RKHS described above; µ ∈ HΞ,
a vector-valued RKHS isometrically isomorphic to HΓ; andH ∈ HΩ, a scalar-valued RKHS isomet-
rically isomorphic to HX . It is helpful to think of µ(z) as the embedding into HX of a distribution
on X indexed by the conditioned value z. When kX is characteristic, µ(z) uniquely embeds the
conditional distribution, and H is identified. The kernel Ω satisfies kX (x, x′) = Ω(ψ(x), ψ(x′)).
This expression establishes the formal connection between our model and [64, 65]. The choice of Ω
may be more general; for nonlinear examples see [65, Table 1].

We now state the objective for optimizing H ∈ HΩ. Hypothesis 1 provides the operator equation,
which may be rewritten as the regression equation

Y = EX|Zh(X) + eZ = Hµ(Z) + eZ , E[eZ |Z] = 0

The unconstrained solution is

Hρ = argmin E(H), E(H) = E(Y,Z)‖Y −Hµ(Z)‖2Y
The target operator is the constrained solution HHΩ = argminH∈HΩ

E(H). We will assume Hρ ∈
HΩ so that Hρ = HHΩ . With regularization,

Hξ = argmin
H∈HΩ

Eξ(H), Eξ(H) = E(H) + ξ‖H‖2HΩ

Hm
ξ = argmin

H∈HΩ

Em
ξ (H), Em

ξ (H) =
1

m

m
∑

i=1

‖ỹi −Hµ(z̃i)‖2Y + ξ‖H‖2HΩ

The essence of the IV problem is this: we do not directly observe the conditional expectation op-
erator E (or equivalently the conditional mean embedding µ) that appears in the stage 2 objective.

Rather, we approximate it using the estimate from stage 1. Thus our KIV estimator is ĥmξ = Ĥm
ξ ψ

where

Ĥm
ξ = argmin

H∈HΩ

Êm
ξ (H), Êm

ξ (H) =
1

m

m
∑

i=1

‖ỹi −Hµn
λ(z̃i)‖2Y + ξ‖H‖2HΩ
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and µn
λ = (En

λ )
∗φ. The transition from Hρ to Hm

ξ represents the fact that we only have m samples.

The transition fromHm
ξ to Ĥm

ξ represents the fact that we must learn not only the structural operator

H but also the conditional expectation operator E. In this sense, the IV problem is more complex
than the estimation problem considered by [45, 47] in which E is known.

4.3 Algorithm

We obtain a closed form expression for the KIV estimator. The apparatus introduced above is re-
quired for analysis of consistency and convergence rate. More subtly, our RKHS construction allows
us to write kernel ridge regression estimators for both stage 1 and stage 2, unlike previous work. Be-
cause KIV consists of repeated kernel ridge regressions, it benefits from repeated applications of the
representer theorem [66, 51]. Consequently, we have a shortcut for obtaining KIV’s closed form;
see Appendix A.5.1 for the full derivation.

Algorithm 1. Let X and Z be matrices of n observations. Let ỹ and Z̃ be a vector and matrix of m
observations.

W = KXX(KZZ + nλI)−1KZZ̃ , α̂ = (WW ′ +mξKXX)−1Wỹ, ĥmξ (x) = (α̂)′KXx

where KXX and KZZ are the empirical kernel matrices.

Theorems 2 and 4 below theoretically determine efficient rates for the stage 1 regularization pa-
rameter λ and stage 2 regularization parameter ξ, respectively. In Appendix A.5.2, we provide a
validation procedure to empirically determine values for (λ, ξ).

5 Consistency

5.1 Stage 1

Integral operators: We use integral operator notation from the kernel methods literature, adapted
to the conditional expectation operator learning problem. We denote by L2(Z, ρZ) the space of
square integrable functions from Z to Y with respect to measure ρZ , where ρZ is the restriction of
ρ to Z .

Definition 1. The stage 1 (population) operators are

S∗
1 : HZ →֒ L2(Z, ρZ), ℓ 7→ 〈ℓ, φ(·)〉HZ

S1 : L2(Z, ρZ) → HZ , ℓ̃ 7→
∫

φ(z)ℓ̃(z)dρZ(z)

T1 = S1 ◦ S∗
1 is the uncentered covariance operator of [30, Theorem 1]. In Appendix A.4.2, we

prove that T1 exists and has finite trace even when HX and HZ are infinite-dimensional. In Ap-
pendix A.4.4, we compare T1 with other covariance operators in the kernel methods literature.

Assumptions: We place assumptions on the original spaces X and Z , the scalar-valued RKHSs
HX and HZ , and the probability distribution ρ(x, z). We maintain these assumptions throughout
the paper. Importantly, we assume that the vector-valued RKHS regression is correctly specified: the
true conditional expectation operator Eρ lives in the vector-valued RKHS HΓ. In further research,
we will relax this assumption.

Hypothesis 2. Suppose that X and Z are Polish spaces, i.e. separable and completely metrizable
topological spaces

Hypothesis 3. Suppose that

1. kX and kZ are continuous and bounded: supx∈X ‖ψ(x)‖HX
≤ Q, supz∈Z ‖φ(z)‖HZ

≤ κ

2. ψ and φ are measurable

3. kX is characteristic [57]

Hypothesis 4. Suppose that Eρ ∈ HΓ. Then E1(Eρ) = infE∈HΓ E1(E)

Hypothesis 3.3 specializes the completeness condition of [48]. Hypotheses 2-4 are sufficient to
bound the sampling error of the regularized estimator En

λ . Bounding the approximation error re-
quires a further assumption on the smoothness of the distribution ρ(x, z). We assume ρ(x, z) be-
longs to a class of distributions parametrized by (ζ1, c1), as generalized from [54, Theorem 2] to the
space HΓ.
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Hypothesis 5. Fix ζ1 <∞. For given c1 ∈ (1, 2], define the prior P(ζ1, c1) as the set of probability
distributions ρ on X × Z such that a range space assumption is satisfied: ∃G1 ∈ HΓ s.t. Eρ =

T
c1−1

2
1 ◦G1 and ‖G1‖2HΓ

≤ ζ1

We use composition symbol ◦ to emphasize that G1 : HX → HZ and T1 : HZ → HZ . We define
the power of operator T1 with respect to its eigendecomposition; see Appendix A.4.2 for formal jus-
tification. Larger c1 corresponds to a smoother conditional expectation operatorEρ. Proposition 24
in Appendix A.6.2 shows E∗

ρφ(z) = µ(z), so Hypothesis 5 is an indirect smoothness condition on
the conditional mean embedding µ.

Estimation and convergence: The estimator has a closed form solution, as noted in [34, Section
3.1] and [35, Appendix D]; [20] use it in the first stage of the structured prediction problem. We
present the closed form solution in notation similar to [14] in order to elucidate how the estimator
simply generalizes linear regression. This connection foreshadows our proof technique.

Theorem 1. ∀λ > 0, the solution En
λ of the regularized empirical objective En

λ exists, is unique,
and

En
λ = (T1 + λ)−1 ◦ g1, T1 =

1

n

n
∑

i=1

φ(zi)⊗ φ(zi), g1 =
1

n

n
∑

i=1

φ(zi)⊗ ψ(xi)

We prove an original, finite sample bound on the RKHS-norm distance of the estimator En
λ from its

target Eρ. The proof is in Appendix A.7.

Theorem 2. Assume Hypotheses 2-5. ∀δ ∈ (0, 1), the following holds w.p. 1− δ:

‖En
λ − Eρ‖HΓ ≤ rE(δ, n, c1) :=

√
ζ1(c1 + 1)

4
1

c1+1

(

4κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√
nζ1(c1 − 1)

)

c1−1
c1+1

λ =

(

8κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√
nζ1(c1 − 1)

)
2

c1+1

The efficient rate of λ is n
−1

c1+1 . Note that the convergence rate of En
λ is calibrated by c1, which

measures the smoothness of the conditional expectation operatorEρ.

5.2 Stage 2

Integral operators: We use integral operator notation from the kernel methods literature, adapted to
the structural operator learning problem. We denote by L2(HX , ρHX

) the space of square integrable
functions from HX to Y with respect to measure ρHX

, where ρHX
is the extension of ρ to HX [59,

Lemma A.3.16]. Note that we present stage 2 analysis for general output space Y as in [64, 65],
though in practice we only consider Y ⊂ R to simplify our two-stage RKHS model.

Definition 2. The stage 2 (population) operators are

S∗ : HΩ →֒ L2(HX , ρHX
), H 7→ Ω∗

(·)H

S : L2(HX , ρHX
) → HΩ, H̃ 7→

∫

Ωµ(z) ◦ H̃µ(z)dρHX
(µ(z))

where Ωµ(z) : Y → HΩ defined by y 7→ Ω(·, µ(z))y is the point evaluator of [42, 15]. Finally define
Tµ(z) = Ωµ(z) ◦ Ω∗

µ(z) and covariance operator T = S ◦ S∗.

Assumptions: We place assumptions on the original space Y , the scalar-valued RKHS HΩ, and
the probability distribution ρ. Importantly, we assume that the scalar-valued RKHS regression is
correctly specified: the true structural operator Hρ lives in the scalar-valued RKHS HΩ.

Hypothesis 6. Suppose that Y is a Polish space

Hypothesis 7. Suppose that

1. The {Ωµ(z)} operator family is uniformly bounded in Hilbert-Schmidt norm: ∃B s.t. ∀µ(z),
‖Ωµ(z)‖2L2(Y,HΩ) = Tr(Ω∗

µ(z) ◦ Ωµ(z)) ≤ B

7



2. The {Ωµ(z)} operator family is Hölder continuous in operator norm: ∃L > 0, ι ∈ (0, 1]
s.t. ∀µ(z), µ(z′), ‖Ωµ(z) − Ωµ(z′)‖L(Y,HΩ) ≤ L‖µ(z)− µ(z′)‖ιHX

Larger ι is interpretable as smoother kernel Ω.

Hypothesis 8. Suppose that

1. Hρ ∈ HΩ. Then E(Hρ) = infH∈HΩ E(H)

2. Y is bounded, i.e. ∃C <∞ s.t. ‖Y ‖Y ≤ C almost surely

The convergence rate from stage 1 together with Hypotheses 6-8 are sufficient to bound the excess

error of the regularized estimator Ĥm
ξ in terms of familiar objects in the kernel methods literature,

namely the residual, reconstruction error, and effective dimension. We further assume ρ belongs to a
stage 2 prior to simplify these bounds. In particular, we assume ρ belongs to a class of distributions
parametrized by (ζ, b, c) as defined originally in [14, Definition 1], restated below.

Hypothesis 9. Fix ζ <∞. For given b ∈ (1,∞] and c ∈ (1, 2], define the prior P(ζ, b, c) as the set
of probability distributions ρ on HX × Y such that

1. A range space assumption is satisfied: ∃G ∈ HΩ s.t. Hρ = T
c−1
2 G and ‖G‖2HΩ

≤ ζ

2. In the spectral decomposition T =
∑∞

k=1 λkek〈·, ek〉HΩ , where {ek}∞k=1 is a basis of

Ker(T )⊥, the eigenvalues satisfy α ≤ kbλk ≤ β for some α, β > 0

We define the power of operator T with respect to its eigendecomposition; see Appendix A.4.2
for formal justification. The latter condition is interpretable as polynomial decay of eigenvalues:
λk = Θ(k−b). Larger b means faster decay of eigenvalues of the covariance operator T and hence
smaller effective input dimension. Larger c corresponds to a smoother structural operatorHρ [65].

Estimation and convergence: The estimator has a closed form solution, as shown by [64, 65] in
the second stage of the distribution regression problem. We present the solution in notation similar
to [14] to elucidate how the stage 1 and stage 2 estimators have the same structure.

Theorem 3. ∀ξ > 0, the solution Hm
ξ to Em

ξ and the solution Ĥm
ξ to Êm

ξ exist, are unique, and

Hm
ξ = (T+ ξ)−1g, T =

1

m

m
∑

i=1

Tµ(z̃i), g =
1

m

m
∑

i=1

Ωµ(z̃i)ỹi

Ĥm
ξ = (T̂+ ξ)−1ĝ, T̂ =

1

m

m
∑

i=1

Tµn
λ(z̃i)

, ĝ =
1

m

m
∑

i=1

Ωµn
λ(z̃i)

ỹi

We now present this paper’s main theorem. In Appendix A.10, we provide a finite sample bound on

the excess error of the estimator Ĥm
ξ with respect to its target Hρ. Adapting arguments by [65], we

demonstrate that KIV is able to achieve the minimax optimal single-stage rate derived by [14]. In
other words, our two-stage estimator is able to learn the causal relationship with confounded data
equally well as single-stage RKHS regression is able to learn the causal relationship with uncon-
founded data.

Theorem 4. Assume Hypotheses 1-9. Choose λ = n
− 1

c1+1 and n = m
a(c1+1)

ι(c1−1) where a > 0.

1. If a ≤ b(c+1)
bc+1 then E(Ĥm

ξ )− E(Hρ) = Op(m
− ac

c+1 ) with ξ = m− a
c+1

2. If a ≥ b(c+1)
bc+1 then E(Ĥm

ξ )− E(Hρ) = Op(m
− bc

bc+1 ) with ξ = m− b
bc+1

At a = b(c+1)
bc+1 < 2, the convergence rate m− bc

bc+1 is minimax optimal while requiring the fewest

observations [65]. This statistically efficient rate is calibrated by b, the effective input dimension,
as well as c, the smoothness of structural operator Hρ [14]. The efficient ratio between stage 1 and

stage 2 samples is n = m
b(c+1)
bc+1 ·

(c1+1)

ι(c1−1) , implying n > m. As far as we know, asymmetric sample
splitting is a novel prescription in the IV literature; previous analyses assume n = m [4, 37].
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6 Experiments

We compare the empirical performance of KIV (KernelIV) to four leading competitors: standard
kernel ridge regression (KernelReg) [50], Nadaraya-Watson IV (SmoothIV) [16, 23], sieve IV
(SieveIV) [48, 17], and deep IV (DeepIV) [36]. To improve the performance of sieve IV, we impose
Tikhonov regularization in both stages with KIV’s tuning procedure. This adaptation exceeds the
theoretical justification provided by [17]. However, it is justified by our analysis insofar as sieve IV
is a special case of KIV: set feature maps ψ, φ equal to the sieve bases.

Sigmoid
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Figure 2: Sigmoid design

We implement each estimator on three designs. The linear
design [17] involves learning counterfactual function h(x) =
4x − 2, given confounded observations of continuous variables
(X,Y ) as well as continuous instrument Z . The sigmoid design
[17] involves learning counterfactual function h(x) = ln(|16x−
8|+ 1) · sgn(x− 0.5) under the same regime. The demand de-
sign [36] involves learning demand function h(p, t, s) = 100 +
(10 + p) · s · ψ(t) − 2p where ψ(t) is the complex nonlinear
function in Figure 6. An observation consists of (Y, P, T, S, C)
where Y is sales, P is price, T is time of year, S is customer sen-
timent (a discrete variable), and C is a supply cost shifter. The
parameter ρ ∈ {0.9, 0.75, 0.5, 0.25, 0.1} calibrates the extent to
which price P is confounded by supply-side market forces. In
KIV notation, inputs are X = (P, T, S) and instruments are
Z = (C, T, S).

For each algorithm, design, and sample size, we implement 40 simulations and calculate MSE with
respect to the true structural function h. Figures 2, 3, and 10 visualize results. In the sigmoid design,
KernelIV performs best across sample sizes. In the demand design, KernelIV performs best for
sample size n+m = 1000 and rivals DeepIV for sample size n+m = 5000. KernelReg ignores
the instrumentZ , and it is biased away from the structural function due to confounding noise e. This
phenomenon can have counterintuitive consequences. Figure 3 shows that in the highly nonlinear
demand design, KernelReg deviates further from the structural function as sample size increases
because the algorithm is further misled by confounded data. Figure 2 of [36] documents the same
effect when a feedforward neural network is applied to the same data. The remaining algorithms
make use of the instrument Z to overcome this issue.

KernelIV improves on SieveIV in the same way that kernel ridge regression improves on ridge
regression: by using an infinite dictionary of implicit basis functions rather than a finite dictionary
of explicit basis functions. KernelIV improves on SmoothIV by using kernel ridge regression in
not only stage 2 but also stage 1, avoiding costly density estimation. Finally, it improves on DeepIV

by directly learning stage 1 mean embeddings, rather than performing costly density estimation and
sampling from the estimated density. Remarkably, with training sample size of only n + m =
1000, KernelIV has essentially learned as much as it can learn from the demand design. See
Appendix A.11 for representative plots, implementation details, and a robustness study.
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Figure 3: Demand design

7 Conclusion

We introduce KIV, an algorithm for learning a nonlinear, causal relationship from confounded ob-
servational data. KIV is easily implemented and minimax optimal. As a contribution to the IV lit-
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erature, we show how to estimate the stage 1 conditional expectation operator–an infinite by infinite
dimensional object–by kernel ridge regression. As a contribution to the kernel methods literature,
we show how the RKHS is well-suited to causal inference and ill-posed inverse problems. In simu-
lations, KIV outperforms state of the art algorithms for nonparametric IV regression. The success
of KIV suggests RKHS methods may be an effective bridge between econometrics and machine
learning.
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A.1 Instrumental variable

A.1.1 Comparison of IV assumptions

Here, we compare Hypothesis 1 with two alternative formulations of the IV assumption.

Z X Y

e

Figure 4: IV DAG

We refer to the first formulation in the introduction: conditional
independence. This formulation consists of the following as-
sumptions: exclusion Z |= Y |(X, e); unconfounded instrument
Z |= e; and relevance, i.e. ρ(x|z) is not constant in z. The di-
rected acyclic graph (DAG) in Figure 4 encodes these assump-
tions. Definition 7.4.1 of [49] provides a formal graphical crite-
rion.

The second formulation is via potential outcomes [3]. Though
it is beyond the scope of this work, see [38, Chapter 7] for the
relation between DAGs and potential outcomes.

We use a third formulation, which belongs in the moment restriction framework for causal inference.
In the moment restriction approach, we encode causal assumptions via functional form restrictions
and conditional expectations set to zero. Hypothesis 1, introduced by [48], involves such statements.
In particular, it imposes additive separability of confounding noise e, and E[e|Z] = 0. Be imposing
the former, we can relax the independencesZ |= Y |(X, e) andZ |= e to mean independenceE[e|Z] =
0.

We recommend [52] for a comparison of the DAG, potential outcome, and moment restriction frame-
works for causal inference.

A.1.2 Linear vignette

To build intuition for the IV model, we walk through a classic vignette about the linear case. We
show how least squares (LS) has a different estimand than two-stage least squares (2SLS) when
observations are confounded, i.e. with confounding noise. We will see that the estimand of 2SLS is
the structural parameter of interest.

Consider the model

Y = β′X + e, E[Xe] 6= 0, E[e|Z] = 0

where Y, e ∈ R, X ∈ R
dx , Z ∈ R

dz , and dz ≥ dx. Data (X,Y ) are confounded but we have access
to instrument Z . We aim to recover structural parameter β. Denote the estimands of LS and 2SLS
by βLS and β2SLS , respectively. For clarity, we write the variables to which expectations refer.

Proposition 1. βLS 6= β = β2SLS

Proof. βLS is the projection of Y onto X .

βLS = EX [XX ′]−1
EX,Y [XY ] = β + EX [XX ′]−1

EX,e[Xe] 6= β

where the second equality substitutes Y = X ′β + e.

Define X̄(Z) := E[X |Z] and Ȳ (Z) := E[Y |Z]. β2SLS is the projection of Y onto X̄(Z).

β2SLS = EZ [X̄(Z)X̄(Z)′]−1
EZ,Y [X̄(Z)Y ]

Finally we confirm that β2SLS = β. Taking E[·|Z] of the model LHS and RHS

Ȳ (Z) = X̄(Z)′β =⇒ X̄(Z)Ȳ (Z) = X̄(Z)X̄(Z)′β =⇒ EZ [X̄(Z)Ȳ (Z)] = EZ [X̄(Z)X̄(Z)′]β

Appealing to the definition of conditional expectation,

β = EZ [X̄(Z)X̄(Z)′]−1
EZ [X̄(Z)Ȳ (Z)] = EZ [X̄(Z)X̄(Z)′]−1

EZ,Y [X̄(Z)Y ]

The final equality in the proof makes an important point: in 2SLS, one may use projected outputs
Ȳ (Z) or original outputs Y in stage 2. Choice of the latter simplifies estimation and analysis.
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In the present work, we extend this basic model and approach. We consider inputs ψ(X) instead of
X and instruments φ(Z) instead of Z . Matching symbols, the model becomes

Y = h(X) + e = Hψ(X) + e

where the structural operator H generalizes the structural parameter β. Whereas 2SLS regresses Y
on X̄(Z) = E[X |Z], KIV regresses Y on µ(Z) = E[ψ(X)|Z].

A.2 Comparison of nonparametric IV bounds

In this section, we compare KIV with alternative nonparametric IV methods that have statistical
guarantees. Readers may find it helpful to familiarize themselves with our results in Section 5
before reading this section.

A.2.1 Nadaraya-Watson IV

We first give a detailed account of the bound for nonparametric two-stage IV regression in [23],
which provides an explicit end-to-end rate for the combined stages 1 and 2. In this work, stage 1
requires estimates of the conditional density of the input X and output Y given the instrument Z .
Stage 2 is a ridge regression performed in the relevant space of square integrable functions; the ridge
penalty is not directly on RKHS norm, unlike the present work. Still, [23, Assumption A.2] requires
that the structural function h is an element of an RKHS defined from the right singular values of the
conditional expectation operator E in order to prove consistency. To facilitate comparison between
[23] and the present work, we present the operator equation in both notations

E[Y |Z] = Eh, r = Tϕ

The stage 1 rate of [23, Assumption 3] directly follows from the convergence rate for the Nadaraya-
Watson conditional density estimate, expressed as a ratio of unconditional estimates. Definition 4.1
of [23] describes the density estimation kernels, which should not be confused with RKHS kernels.
The rate depends on the smoothness of the density (specifically, the number of derivatives that
exist), the dimension of the random variables, and the smoothness of the density estimation kernel
used. The combined stage 1 and 2 result in [23, Theorem 4.1, Corollary 4.2] requires a further
smoothness assumption on the stage 2 regression function h, as outlined in [23, Proposition 3.2].
Our smoothness assumption in Hypothesis 9 plays an analogous role, though it takes a different
form.

There are a number of significant differences between [23] and KIV. Consider stage 1 of the learning
problem. Density estimation is a more general task than computing conditional mean embeddings
µ(z) = EX|Z=zψ(X), which are all that stage 2 regression requires. In particular, density es-
timation rapidly becomes more difficult with increasing dimension [67, Section 6.5], whereas the
difficulty of learning µ(z) depends solely on the smoothness of the regression function to HX ; recall
Hypothesis 5. Thus, when the input X and instrumental variable Z are in moderate to high dimen-
sions, we expect conditional density estimation in stage 1 of [23] to suffer a drop in performance
unlike kernel ridge regression in stage 1 of KIV. (As an aside, the approach to conditional density
estimation that involves a ratio of Nadaraya-Watson estimates is suboptimal; better direct estimates
of conditional densities exist [62, 5, 27].)

Finally, there is no discussion of whether the overall rate obtained in [23] is optimal under the
smoothess assumptions made. Relatedly, there is no discussion of what an efficient ratio of stage 1
to stage 2 training samples might be. By contrast, our stage 2 result has a minimax optimal guarantee
accompanied by a recommended ratio of training sample sizes.

A.2.2 Kernel PSR

Next we describe a bound for two-stage IV regression derived in the context of predictive state
representations (PSRs) [37]. PSRs are a means of performing filtering and smoothing for a time
series of observations o1, . . . , ot. In this setting, future observations are summarized as a feature
vector ϕt := ϕ(ot:t+k−1), and past observations as a feature vector ht := h(o1:t−1). The predictive
state is the expectation of future features given the history: qt := E[ϕt|ht]. Features can be RKHS
feature maps [12]. In this case, the predictive state is a conditional mean embedding.
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Given history qt, the goal of filtering is to predict the extended future state pt := E[ξt|ht], where
ξt := ξ(ot:t+k) [37, eq. 2]. The relation with IV regression is apparent: both qt and pt are the result
of stage 1 regression, and the mapping between them is the result of stage 2 regression. Theorem
2 of [37] gives a finite sample bound for the final stage 2 result, which incorporates convergence
results for stage 1 from [56, Theorem 6].

There are several key differences between the [37] bound and the KIV bound. First, the [37] bound
does not make full use of the structure of the conditional mean embedding regression problem [34].
Rather, [37] apply matrix concentration results from [39] to the operators used in constructing the
regression function. As a consequence, the stage 2 rate is slower than the minimax optimal rate
proposed in [14].

Another consequence is that the analysis in [37] requires strong assumptions about the smoothness
of the input to stage 2 regression. By contrast, our regression-specific analysis requires assumptions
on the smoothness of the regression function; see [54, Theorem 2] and [14, Definition 1]. The
proof of [37] additionally assumes that the stage 2 regression is a Hilbert-Schmidt operator, which
amounts to a smoothness assumption, however this is insufficient for their bound.

We now show that the input smoothness assumptions from [37] make the bound inapplicable in our
case. Suppose we wish to make a counterfactual prediction ytest = Hγtest for some γtest ∈ HX .
From [37, Theorem 2], the required assumption is that ∃ftest : X → HX such that

γtest =

∫ (∫

ψ(x′)dρ(x′|z)
)(∫

ftest(x)dρ(x|z)
)

dρ(z)

Our final goal of counterfactual prediction at a single point requires γtest = ψ(xtest), which will
only hold in the trivial case when ρ(x′|z)ρ(z) represents a single point mass. In the PSR setting, the
assumption is not vacuous since γtest will not be the kernel at a single test point; see [37, Lemma 3].
An identical issue arises in the stage 1 bound of [37, Proposition C.2], since it uses a result from [56,
Theorem 6] which makes an analogous input smoothness assumption. In summary, neither bound
applies in our setting.

Finally, [37, Theorem 2] does not explicitly determine an efficient ratio of stage 1 and stage 2 training
samples. Instead, analysis assumes an equal number of training samples in each stage. By contrast,
we give an efficient ratio between training sample sizes required to obtain the minimax optimal rate
in stage 2.

Despite the difference in setting, we believe our approach may be used to improve the results in [37].

A.3 Vector-valued RKHS

We briefly review the theory of vector-valued RKHS as it relates to the IV regression problem. The
primary reference is the appendix of [33].

Proposition 2 (Lemma 4.33 of [59]). Under Hypotheses 2-3, HX and HZ are separable.

Proposition 3 (Theorem A.2 of [33]). Let IHZ
: HZ → HZ be the identity operator. Γ(h, h′) =

〈h, h′〉HX
IHZ

is a kernel of positive type.

Proposition 4 (Proposition 2.3 of [15]). Consider a kernel of positive type Γ : HX ×HX → L(HZ),
where L(HZ ) is the space of bounded linear operators from HZ to HZ . It corresponds to a unique
RKHS HΓ with reproducing kernel Γ.

Proposition 5 (Theorem B.1 of [33]). Each E ∈ HΓ is a bounded linear operator E : HX → HZ .

Proposition 6. HΓ = L2(HX ,HZ) and the inner products are equal.

Proof. [8, Theorem 13] and [34, eq. 12].

Proposition 7 (Theorem B.2 of [33].). If ∃E,G ∈ HΓ s.t. ∀x ∈ X , Eψ(x) = Gψ(x) then E = G.
Furthermore, if ψ(x) is continuous in x then it is sufficient that Eψ(x) = Gψ(x) on a dense subset
of X .

Proposition 8 (Theorem B.3 of [33]). ∀E ∈ HΓ, ∃E∗ ∈ HΓ∗ where HΓ∗ is the vector-valued
RKHS with reproducing kernel Γ∗(l, l′) = 〈l, l′〉HZ

IHX
. ∀h ∈ HX and ∀ℓ ∈ HZ ,

〈Eh, ℓ〉HZ
= 〈h,E∗ℓ〉HX

17



The operatorA ◦E = E∗ is an isometric isomorphism from HΓ to HΓ∗ ; HΓ
∼= HΓ∗ and ‖E‖HΓ =

‖E∗‖HΓ∗ .

Proposition 9 (Theorem B.4 of [33].). The set of self-adjoint operators in HΓ is a closed linear
subspace.

Proposition 10 (Lemma 15 of [20]). HΓ∗ is isometrically isomorphic to HΞ, the vector-valued
RKHS with reproducing kernel Ξ(z, z′) = kZ(z, z

′)IHX
. ∀µ ∈ HΞ, ∃!E∗ ∈ HΓ∗ s.t.

µ(z) = E∗φ(z), ∀z ∈ Z

Proposition 11. HX is isometrically isomorphic to HΩ, the scalar-valued RKHS with reproducing
kernel Ω defined s.t.

Ω(ψ(x), ψ(x′)) = kX (x, x′)

Proof. [65, eq. 7] and Figure 1.

Proposition 12. Under Hypothesis 3,

EX|Z=zh(X) = [Eh](z) = 〈h, µ(z)〉HX
= Hµ(z)

Proof. Hypothesis 3 implies that the feature map is Bochner integrable [59, Definition A.5.20] for
the conditional distributions considered: ∀z ∈ Z , EX|Z=z‖ψ(X)‖ <∞.

The first equality holds by definition of the conditional expectation operatorE. The second equality
follows from Bochner integrability of the feature map, since it allows us to exchange the order of
expectation and dot product.

EX|Z=zh(X) = EX|Z=z〈h, ψ(X)〉HX

= 〈h,EX|Z=zψ(X)〉HX

= 〈h, µ(z)〉HX

To see the third equality, note that Riesz representation theorem implies that the inner product with
a given element h ∈ HX is uniquely represented by a bounded linear functional H on HX .

Proposition 13. Our RKHS construction implies that

[Eρh](·) = EX|Z=(·)[h(X)] ∈ HZ , ∀h ∈ HX

Proof. After defining HX and HZ , we define the conditional expectation operator E : HX → HZ

such that [Eh](z) = EX|Z=zh(X). By construction, EX|Z=(·)f(X) ∈ HZ , ∀f ∈ HX . This is
precisely the condition required for the surrogate risk E1 to coincide with the natural risk for the
conditional expectation operator [34, 33]. As such, Eρ = argmin E1(E) is the true conditional
expectation operator.

A.4 Covariance operator

A.4.1 Definitions

Definition 3. µ− : Z → HX is the function that satisfies

µ−(z) = EX|Z=zψ(X), ∀z ∈ Dρ|Z

where Dρ|Z ⊂ Z is the support of Z , and µ−(z) = 0 otherwise.

Proposition 14 (Lemma 8 of [20]). Assume Hypotheses 2-3. µ− ∈ L2(Z,HX , ρZ), where
L2(Z,HX , ρZ) is the space of square integrable functions from Z to HX with respect to measure
ρZ .
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Definition 4. Additional stage 1 population operators are

T̃1 = S∗
1 ◦ S1

R∗
1 : HX → L2(Z, ρZ)
: h 7→ 〈h, µ−(·)〉HX

R1 : L2(Z, ρZ) → HX

: ℓ̃ 7→
∫

µ−(z)ℓ̃(z)dρZ(z)

TZX = S1 ◦R∗
1

TZX is the uncentered cross-covariance operator of [30, Theorem 1]. The formulation as S1 ◦ R∗
1

relates this integral operator to the integral operators in [20].

Definition 5. The stage 1 empirical operators are

Ŝ∗
1 : HZ → R

n

: ℓ 7→ 1√
n
{〈ℓ, φ(zi)〉HZ

}ni=1

Ŝ1 : Rn → HZ

: {vi}ni=1 7→ 1√
n

n
∑

i=1

φ(zi)vi

T1 = Ŝ1 ◦ Ŝ∗
1

T̃1 = Ŝ∗
1 ◦ Ŝ1

R̂∗
1 : HX → R

n

: h 7→ 1√
n
{〈h, ψ(xi)〉HX

}ni=1

R̂1 : Rn → HX

: {vi}ni=1 7→ 1√
n

n
∑

i=1

ψ(xi)vi

TZX = Ŝ1 ◦ R̂∗
1

Ŝ∗
1 is the sampling operator of [54]. T1 is the scatter matrix, while KZZ = nT̃1 is the empirical

kernel matrix with respect to Z as in [20]. Note that TZX = g1 in Theorem 1.

A.4.2 Existence and eigendecomposition

We initially abstract from the problem at hand to state useful lemmas. Recall tensor product notation:
if a, b ∈ H1 and c ∈ H2 then [c ⊗ a]b = c〈a, b〉H1 . Denote by L2(H1,H2) the space of Hilbert-
Schmidt operators from H1 to H2.

Proposition 15 (eq. 3.6 of [32]). If H1 and H2 are separable RKHSs, then

‖c⊗ a‖L2(H1,H2) = ‖a‖H1‖c‖H2

and c⊗ a ∈ L2(H1,H2).

Proposition 16 (eq. 3.7 of [32]). Assume H1 and H2 are separable RKHSs. If C ∈ L2(H1,H2)
then

〈C, c⊗ a〉L2(H1,H2) = 〈c, Ca〉H2

In Hypothesis 2, we assume that input space X and instrument space Z are separable. In Hypothesis
3, we assume RKHSs HX and HZ have continuous, bounded kernels kX and kZ with feature maps
ψ and φ, respectively. By Proposition 2, it follows that HX and HZ are separable, i.e. they have
countable orthonormal bases that we now denote {eXi }∞i=1 and {eZi }∞i=1.
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Denote by L2(HX ,HZ) the space of Hilbert-Schmidt operators E : HX → HZ with inner product
〈E,G〉L2(HX ,HZ) =

∑∞
i=1〈EeXi , GeXi 〉HZ

. Denote by L2(HZ ,HZ) the space of Hilbert-Schmidt

operators A : HZ → HZ with inner product 〈A,B〉L2(HZ ,HZ) =
∑∞

i=1〈AeZi , BeZi 〉HZ
. When it

is contextually clear, we abbreviate both spaces as L2.

Proposition 17. Assume Hypotheses 2-3. ∃TZX ∈ L2(HX ,HZ) and ∃T1 ∈ L2(HZ ,HZ) s.t.

〈TZX , E〉L2 = E〈φ(Z)⊗ ψ(X), E〉L2

〈T1, A〉L2 = E〈φ(Z)⊗ φ(Z), A〉L2

Proof. By Riesz representation theorem, TZX and T1 exist if the RHSs are bounded linear operators.
Linearity follows by definition. Boundedness follows since

|E〈φ(Z) ⊗ ψ(X), E〉L2 | ≤ E|〈φ(Z) ⊗ ψ(X), E〉L2 | ≤ ‖E‖L2E‖φ(Z)⊗ ψ(X)‖L2 ≤ κQ‖E‖L2

|E〈φ(Z) ⊗ φ(Z), A〉L2 | ≤ E|〈φ(Z) ⊗ φ(Z), A〉L2 | ≤ ‖A‖L2E‖φ(Z)⊗ φ(Z)‖L2 ≤ κ2‖A‖L2

by Jensen, Cauchy-Schwarz, Proposition 15, and boundedness of the kernels.

Proposition 18. Assume Hypotheses 2-3.

〈ℓ, TZXh〉HZ
= E[ℓ(Z)h(X)], ∀ℓ ∈ HZ , h ∈ HX

〈ℓ, T1ℓ′〉HZ
= E[ℓ(Z)ℓ′(Z)], ∀ℓ, ℓ′ ∈ HZ

Proof.

〈ℓ, TZXh〉HZ
= 〈TZX , ℓ⊗ h〉L2 = E〈φ(Z)⊗ ψ(X), ℓ⊗ h〉L2 = E〈ℓ, φ(Z)〉HZ

〈h, ψ(X)〉HX

〈ℓ, T1ℓ′〉HZ
= 〈T1, ℓ⊗ ℓ′〉L2 = E〈φ(Z) ⊗ φ(Z), ℓ ⊗ ℓ′〉L2 = E〈ℓ, φ(Z)〉HZ

〈ℓ′, φ(Z)〉HZ

by Proposition 16, Proposition 17, and Proposition 16, respectively.

Proposition 19. Assume Hypotheses 2-3.

tr(TZX) ≤ κQ

tr(T1) ≤ κ2

Proof.

tr(TZX) =

∞
∑

i=1

〈eZi , TZXe
X
i 〉HZ

=

∞
∑

i=1

E〈eZi , φ(Z)〉HZ
〈eXi , ψ(X)〉HX

= E

∞
∑

i=1

〈eZi , φ(Z)〉HZ
〈eXi , ψ(X)〉HX

= E‖φ(Z)‖HZ
‖ψ(X)‖HX

≤ κQ

tr(T1) =
∞
∑

i=1

〈eZi , T1eZi 〉HZ

=

∞
∑

i=1

E〈eZi , φ(Z)〉2HZ

= E

∞
∑

i=1

〈eZi , φ(Z)〉2HZ

= E‖φ(Z)‖2HZ

≤ κ2

by definition of trace, the proof of Proposition 18, monotone convergence theorem [59, Theorem
A.3.5] with upper bounds κQ and κ2, Parseval’s identity, and boundedness of the kernels.
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Since stage 1 covariance operator T1 has finite trace, its eigendecomposition is well-defined. Re-
call that the stage 2 covariance operator T consists of functions from HX to Y = R. Since these
functions have finite-dimensional output, it is immediate that T has finite trace and its eigendecom-
position is well-defined [14, Remark 1].

Definition 6. The powers of operators T1 and T are defined as

T a
1 =

∞
∑

k=1

νake
Z
k 〈·, eZk 〉HZ

T a =

∞
∑

k=1

λakek〈·, ek〉HΩ

where ({νk}, {eZk }) is the spectrum of T1 and ({λk}, {ek}) is the spectrum of T .

A.4.3 Properties

Proposition 20. In this operator notation,

T1 =

∫

Z

φ(z)⊗ φ(z)dρZ(z)

T ∗
ZX =

∫

X×Z

ψ(x) ⊗ φ(z)dρ(x, z)

TZX =

∫

X×Z

φ(z)⊗ ψ(x)dρ(x, z)

Proof. [30, Appendix A.1] or [20, Proposition 13]. Note that

φ(z)〈ψ(x), ·〉HX
= [φ(z)⊗ ψ(x)](·)

Proposition 21. Under Hypotheses 2-3

TZX = T1 ◦ Eρ

Proof. [30, Theorem 2], appealing to Proposition 13.

Finally we state a property that will be useful for compositions involving covariance operators, gen-
eralizing [7, Theorem 15].

Proposition 22. If G ∈ L2(HX ,HZ) and B ∈ L(HZ ,HZ) then

‖B ◦G‖L2 ≤ ‖B‖L‖G‖L2

Proof.

‖B ◦G‖2L2
=

∞
∑

i=1

‖B ◦GeXi ‖2HZ
≤

∞
∑

i=1

(

‖B‖L‖GeXi ‖HZ

)2
= ‖B‖2L‖G‖2L2

where L is the operator norm and L2 is the Hilbert-Schmidt norm, and the proof makes use of the
operator norm definition.

A.4.4 Related work

Our approach allows both HX and HZ to be infinite-dimensional spaces. Prior work on conditional
mean embeddings and RKHS regression has considered both finite [34, 33] and infinite [56, 55, 31,
37, 20] dimensional RKHS HX . In this section, we briefly review this literature (besides the PSR
case, which we covered in Section A.2.2).

First, we recall results from Appendix A.3. HΓ is a vector-valued RKHS consisting of operators
E : HX → HZ with kernel Γ(h, h′) = 〈h, h′〉HX

IHZ
. HΞ is a vector-valued RKHS consisting of
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mappings µ : Z → HX with kernel Ξ(z, z′) = kZ(z, z
′)IHX

. By Propositions 8 and 10, HΓ and
HΞ are isometrically isomorphic. There is a fundamental equivalence between E and µ, illustrated
in Figure 1: µ(z) = E∗φ(z).

Next, we present additional notation for vector-valued RKHS HΞ.

Ξz : HX → HΞ

: h 7→ Ξ(·, z)h = kZ(·, z)h

Ξz is the point evaluator of [42, 15]. From this definition,

Ξ(z, z′) = Ξ∗
z ◦ Ξz′

TΞ
z = Ξz ◦ Ξ∗

z

TΞ
1 = ETΞ

z

and so TΞ
1 : HΞ → HΞ.

With this notation, we can communicate the constructions and assumptions of [14, 34]. In [14,
Hypothesis 1], the authors assume Ξz is a Hilbert-Schmidt operator. Definition 1 of [14] goes on to
define the prior with respect to operator TΞ

1 . The analysis of [34] inherits this framework. Section 6
of [34] further points out that Ξz is not Hilbert-Schmidt if HX is infinite-dimensional since

‖Ξz‖L2 = kZ(z, z)

∞
∑

i=1

〈eXi , IHX
eXi 〉HX

= ∞

Therefore the ‘main assumption’ [34, Table 1] is that HX is finite dimensional. The authors write,
‘It is likely that this assumption can be weakened, but this requires a deeper analysis’.

In the present work, we differ in our constructions and assumptions at this juncture. We instead
focus on the covariance operator T1 : HZ → HZ as defined in [30, Theorem 1], previously applied
to regression with an infinite-dimensional output space in [56, 55, 31, 37, 20]. Proposition 19 shows
tr(T1) ≤ κ2 under the mild assumptions in Hypotheses 2-3, so its eigendecomposition is well-
defined. We place a prior with respect to T1, and provide analysis inspired by [53, 54] rather than
[14].

Specifically, in Hypothesis 4 we require that the stage 1 problem is well-specified: Eρ ∈ HΓ. This
requirement is stronger than the property articulated in Proposition 13. Moreover, in Hypothesis 5
we assume

Eρ = T
c1−1

2
1 ◦G1

whereG1 : HX → HZ , T
c1−1

2
1 : HZ → HZ , andEρ : HX → HZ . By recognizing the equivalence

of E and µ, we provide a general theory of conditional mean embedding regression in which HX is
infinite. A question for further research is how to relax Hypothesis 4.

A number of previous works have studied consistency of the conditional expectation operator E
in the infinite-dimensional setting. Theorem 1 of [55] establishes consistency in Hilbert-Schmidt

norm. However, the proof requires a strong smoothness assumption: that T
−3/2
1 ◦ TZX is Hilbert-

Schmidt. Theorem 8 of [31] establishes consistency ofE∗ applied to embeddings of particular prior
distributions, as needed to calculate a posterior by kernel Bayes’ rule. The consistency results of [20,
Theorem 4, Theorem 5] for structured prediction are more relevant to our setting, and we discuss
them in Appendix A.8.2 after establishing additional notation.

Finally, we remark that previous work has considered infinite-dimensional feature space in a broad
variety of settings, beyond conditional mean embedding. In the setting of conditional density esti-
mation, [5] propose an infinite-dimensional natural parameter for a conditional exponential family
model, with a loss function derived from the Fisher score. See [5, Lemma 1] for analysis specific to
this particular loss.
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A.5 Algorithm

A.5.1 Derivation

Proof of Algorithm 1. Rewrite the stage 1 regularized empirical objective as

En
λ = argmin

E∈HΓ

En
λ (E)

En
λ (E) =

1

n

n
∑

i=1

‖ψ(xi)− E∗φ(zi)‖2HX
+ λ‖E‖2L2(HX ,HZ)

=
1

n
‖ΨX − E∗ΦZ‖22 + λ‖E‖2L2(HX ,HZ)

where the ith column of ΨX is ψ(xi) and the ith column of ΦZ is φ(zi). Hence by the standard
regression formula

(En
λ )

∗ = ΨX(KZZ + nλI)−1Φ′
Z

µn
λ(z) = (En

λ )
∗φ(z)

= ΨX(KZZ + nλI)−1Φ′
Zφ(z)

= ΨXγ(z)

=

n
∑

i=1

γi(z)ψ(xi)

where

γ(z) := (KZZ + nλI)−1Φ′
Zφ(z) = (KZZ + nλI)−1KZz

Note that this expression coincides with the expression in Theorem 1 after appealing to the proof of
[21, Proposition 2.1].

By the representer theorem, we know that the first stage estimator µn
λ ∈ span({ψ(xi)}) because we

are effectively regressing {φ(zi)} on {ψ(xi)} to learn the conditional expectation operator [66, 51].
Indeed we have already shown

µn
λ(·) =

n
∑

j=1

γj(·)ψ(xj)

In the second stage, we are effectively regressing on {ỹi} on µn
λ(z̃i) to learn the structural function.

By the representer theorem, then, ĥmξ ∈ span({µn
λ(z̃i)}). But µn

λ(z̃i) ∈ span({ψ(xi)}), so ĥmξ ∈
span({ψ(xi)}). Thus the solution will take the form

ĥmξ (·) =
n
∑

i=1

αiψ(xi)

Substituting in this functional form as well as the solution for µn
λ permits us to rewrite

[En
λ ĥ

m
ξ ](z) = 〈ĥmξ , µn

λ(z)〉HX

=

〈 n
∑

i=1

αiψ(xi),

n
∑

j=1

γj(z)ψ(xj)

〉

HX

=

n
∑

i=1

n
∑

j=1

αiγj(z)kX (xi, xj)

= α′KXXγ(z)

= α′w(z)

where

w(z) := KXXγ(z) = KXX(KZZ + nλI)−1KZz
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Note that w depends on stage 1 sample matrices X and Z while z is a test value supplied by the
stage 2 sample. The regularized empirical error written in terms of dual parameter α is

Êm
ξ (α) =

1

m

m
∑

i=1

(ỹi − α′w(z̃i))
2 + ξα′KXXα

=
1

m
‖ỹ −W ′α‖22 + ξα′KXXα

where the ith column of W is w(z̃i). Note that W = KXX(KZZ + nλI)−1KZZ̃ . In this notation,

ỹ and Z̃ are stage 2 sample vector and matrix. Hence

α̂ = (WW ′ +mξKXX)−1Wỹ

W = KXX(KZZ + nλI)−1KZZ̃

A.5.2 Validation

Algorithm 1 takes as given the values of stage 1 and stage 2 regularization parameters (λ, ξ). The-

orems 2 and 4 theoretically determine optimal rates λ = n
−1

c1+1 and ξ = m− b
bc+1 , respectively. For

practical use, we provide a validation procedure to empirically determine values of (λ, ξ). In some
sense, the procedure implicitly estimates stage 1 prior parameter c1 and stage 2 prior parameters
(b, c).

The procedure is as follows. Train stage 1 estimator µn
λ on stage 1 observations (xi, zi) then select

stage 1 regularization parameter value λ∗ to minimize out-of-sample loss, calculated from stage

2 observations (x̃i, z̃i). Train stage 2 estimator ĥmξ on stage 2 observations (ỹi, z̃i) then select

stage 2 regularization parameter value ξ∗ to minimize out-of-sample loss, calculated from stage 1
observations (yi, xi). Our approach assimilates the causal validation procedure of [36] with the
sample splitting inherent in KIV.

Algorithm 2. Let (xi, yi, zi) be n observations. Let (x̃i, ỹi, z̃i) be m observations.

γZ̃(λ) = (KZZ + nλI)−1KZZ̃

L1(λ) =
1

m
tr[KX̃X̃ − 2KX̃XγZ̃(λ) + (γZ̃(λ))

′KXXγZ̃(λ)]

λ∗ = argminL1(λ)

L(λ, ξ) =
1

n

n
∑

i=1

‖yi − ĥmξ (xi)‖2Y

ξ∗ = argminL(λ∗, ξ)

where ĥmξ is calculated by Algorithm 1 with λ = λ∗.

Proof of Algorithm 2. From first principles, the stage 1 out-of-sample loss is

L1(λ) =
1

m

m
∑

i=1

‖ψ(x̃i)− µn
λ(z̃i)‖2HX

Recall from the proof of Algorithm 1

µn
λ(z) = ΨXγ(z)

γ(z) = (KZZ + nλI)−1KZz

Therefore

‖ψ(x̃i)− µn
λ(z̃i)‖2HX

= ‖ψ(x̃i)−ΨXγ(z̃i)‖2HX

= 〈ψ(x̃i)−ΨXγ(z̃i), ψ(x̃i)−ΨXγ(z̃i)〉HX

= kX (x̃i, x̃i)− 2Kx̃iXγ(z̃i) + (γ(z̃i))
′KXXγ(z̃i)
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A.6 Stage 1: Lemmas

A.6.1 Probability

Proposition 23 (Lemma 2 of [54]). Let ξ be a random variable taking values in a real separable

Hilbert space K. Suppose ∃M̃ s.t.

‖ξ‖K ≤ M̃ <∞ a.s.

σ2(ξ) := E‖ξ‖2K
Then ∀n ∈ N, ∀η ∈ (0, 1),

P

[∥

∥

∥

∥

1

n

n
∑

i=1

ξi − Eξ

∥

∥

∥

∥

K

≤ 2M̃ ln(2/η)

n
+

√

2σ2(ξ) ln(2/η)

n

]

≥ 1− η

A.6.2 Regression

Proposition 24. Under Hypothesis 3

E∗
ρφ(z) = µ(z)

Proof. For h ∈ HX ,

〈E∗
ρφ(z), h〉HX

= 〈φ(z), Eρh〉HZ
= 〈φ(z),EX|Z=(·)h(X)〉HZ

= EX|Z=zh(X) = 〈µ(z), h〉HX

The first equality is the definition of adjoint. The second holds by Proposition 13. The final equality
is by Proposition 12.

Proposition 25. Under Hypothesis 3

E‖(E∗ − E∗
ρ)φ(Z)‖2HX

= E1(E)− E1(Eρ)

Proof.

E1(E) = E‖ψ(X)− E∗φ(Z)‖2HX
= E‖ψ(X)− E∗

ρφ(Z) + E∗
ρφ(Z)− E∗φ(Z)‖2HX

Expanding the square we see that the cross terms are 0 by law of iterated expectation and Proposi-
tion 24.

Proposition 26. Under Hypotheses 3-4

Eλ = argmin
E∈HΓ

E‖(E∗ − E∗
ρ)φ(Z)‖2HX

+ λ‖E‖2HΓ

Proof. Corollary of Proposition 25.

A.7 Stage 1: Theorems

Proof of Theorem 1. [35, Appendix D.1], substituting the empirical covariance operators; or [20,
Lemma 17].

To quantify the convergence rate of ‖En
λ − Eρ‖HΓ , we decompose it into two terms: the sampling

error ‖En
λ − Eλ‖HΓ , and the approximation error ‖Eλ − Eρ‖HΓ . To bound the sampling error, we

generalize [54, Theorem 1].

Theorem 5. Assume Hypotheses 2-4. ∀δ ∈ (0, 1), the following holds w.p. 1− δ:

‖En
λ − Eλ‖HΓ ≤ 4κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√

nλ
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Proof. Write

En
λ − Eλ =

(

T1 + λI

)−1

◦
(

TZX −T1 ◦ Eλ − λEλ

)

Observe that

TZX −T1 ◦ Eλ =
1

n

n
∑

i=1

φ(zi)⊗ ψ(xi)−
1

n

n
∑

i=1

[φ(zi)⊗ φ(zi)] ◦ Eλ

λEλ = TZX − T1 ◦ Eλ =

∫

φ(z)⊗ ψ(x)dρ−
∫

φ(z)⊗ φ(z)dρ ◦ Eλ

where the second line holds since Eλ = (T1 + λI)−1 ◦ TZX and by appealing to Proposition 20.

Write
ξi = φ(zi)⊗ ψ(xi)− [φ(zi)⊗ φ(zi)] ◦ Eλ = φ(zi)⊗ [ψ(xi)− E∗

λφ(zi)]

where the second equality holds since

φ(zi)⊗ ψ(xi)− [φ(zi)⊗ φ(zi)] ◦ Eλ = φ(zi)〈ψ(xi), ·〉HX
− φ(zi)〈φ(zi), Eλ·〉HZ

and by the definition of the adjoint operator.

Thus the error bound can be rewritten as

En
λ − Eλ =

(

T1 + λI

)−1

◦
(

1

n

n
∑

i=1

ξi − Eξ

)

Observe that
(

T1 + λI

)−1

∈ L(HZ ,HZ)

(

1

n

n
∑

i=1

ξi − Eξ

)

∈ L2(HX ,HZ)

where the latter is by Proposition 15. Therefore by Propositions 22 and 6,

‖En
λ − Eλ‖HΓ ≤ 1

λ
∆

∆ =

∥

∥

∥

∥

1

n

n
∑

i=1

ξi − Eξ

∥

∥

∥

∥

HΓ

Note that

‖ξi‖HΓ ≤ κQ+ κ2‖E∗
λ‖L2(HZ ,HX )

σ2(ξi) = E‖ξi‖2HΓ
≤ κ2E‖ψ(X)− E∗

λφ(Z)‖2HX
= κ2E1(Eλ)

By Proposition 26 with E = 0

E‖(E∗
λ − E∗

ρ)φ(Z)‖2HX
+ λ‖Eλ‖2HΓ

≤ E‖E∗
ρφ(Z)‖2HX

≤ ‖E∗
ρ‖2L2(HZ ,HX )E‖φ(Z)‖2HZ

≤ κ2‖Eρ‖2HΓ

Hence

E‖(E∗
λ − E∗

ρ)φ(Z)‖2HX
≤ κ2‖Eρ‖2HΓ

‖E∗
λ‖L2(HZ ,HX ) = ‖Eλ‖HΓ ≤ κ‖Eρ‖HΓ√

λ

Moreover by the definition of Eρ as the minimizer of E1,

E1(Eρ) ≤ E1(0) = E‖ψ(X)‖2HX
≤ Q2
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so by Proposition 25

E1(Eλ) = E1(Eρ) + E‖(E∗
λ − E∗

ρ)φ(Z)‖2HX
≤ Q2 + κ2‖Eρ‖2HΓ

In summary,

‖ξi‖HΓ ≤ κQ+ κ2
κ‖Eρ‖HΓ√

λ
= κ(Q+ κ2‖Eρ‖HΓ/

√
λ)

σ2(ξi) ≤ κ2(Q2 + κ2‖Eρ‖2HΓ
)

We then apply Proposition 23. With probability 1− δ,

∆ ≤ κ(Q+ κ2‖Eρ‖HΓ/
√
λ)

2 ln(2/δ)

n
+

√

κ2(Q2 + κ2‖Eρ‖2HΓ
)
2 ln(2/δ)

n

There are two cases.

1.
κ√
nλ

≤ 1

4 ln(2/δ)
< 1.

Because a2 + b2 ≤ (a+ b)2 for a, b ≥ 0,

∆ <
2κQ ln(2/δ)

n
+

2κ3‖Eρ‖HΓ ln(2/δ)

n
√
λ

+ κ(Q+ κ‖Eρ‖HΓ)

√

2 ln(2/δ)

n

=
2κQ ln(2/δ)

n
+

2κ2‖Eρ‖HΓ ln(2/δ)√
n

κ√
nλ

+
κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√

n

√

2

ln(2/δ)

≤ 2κQ ln(2/δ)√
n

+
2κ2‖Eρ‖HΓ ln(2/δ)√

n
+

2κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√
n

=
4κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√

n

Then recall

‖En
λ − Eλ‖HΓ ≤ 1

λ
∆

2.
κ√
nλ

>
1

4 ln(2/δ)
.

Observe that by the definition of En
λ

1

n

n
∑

i=1

‖ψ(xi)− (En
λ )

∗φ(zi)‖2HX
+ λ‖En

λ‖2HΓ
= En

λ (E
n
λ )

≤ En
λ (0)

=
1

n

n
∑

i=1

‖ψ(xi)‖2HX

≤ Q2

Hence

‖En
λ‖HΓ ≤ Q√

λ

and

‖En
λ − Eλ‖HΓ ≤ Q√

λ
+
κ‖Eρ‖HΓ√

λ
=
Q+ κ‖Eρ‖HΓ√

λ
Finally observe that

1

4 ln(2/δ)
<

κ√
nλ

⇐⇒ Q+ κ‖Eρ‖HΓ√
λ

<
4κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√

nλ
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To bound the approximation error, we generalize [53, Theorem 4].

Theorem 6. Assume Hypotheses 2-5.

‖Eλ − Eρ‖HΓ ≤ λ
c1−1

2

√

ζ1

Proof. First observe that

eZk 〈eZk , Eρ·〉HZ
= eZk 〈E∗

ρe
Z
k , ·〉HX

= [eZk ⊗ E∗
ρe

Z
k ](·)

By the definition of the prior, there exists a G1 s.t.

G1 = T
1−c1

2
1 ◦ Eρ =

∑

k

ν
1−c1

2

k eZk 〈eZk , Eρ·〉HZ
=
∑

k

ν
1−c1

2

k eZk ⊗ [E∗
ρe

Z
k ]

Hence by Proposition 6

‖G1‖2Γ =
∑

k

ν1−c1
k ‖E∗

ρe
Z
k ‖2HX

By Proposition 21, write

Eλ − Eρ = [(T1 + λI)−1 ◦ T1 − I] ◦ Eρ

=
∑

k

(

νk
νk + λ

− 1

)

eZk 〈eZk , Eρ·〉HZ

=
∑

k

(

νk
νk + λ

− 1

)

eZk ⊗ [E∗
ρe

Z
k ]

Hence by Proposition 6

‖Eλ − Eρ‖2HΓ
=
∑

k

(

νk
νk + λ

− 1

)2

‖E∗
ρe

Z
k ‖2HX

=
∑

k

(

λ

νk + λ

)2

‖E∗
ρe

Z
k ‖2HX

=
∑

k

(

λ

νk + λ

)2

‖E∗
ρe

Z
k ‖2HX

(

λ

λ
· νk
νk

· νk + λ

νk + λ

)c1−1

= λc1−1
∑

k

ν1−c1
k ‖E∗

ρe
Z
k ‖2HX

(

λ

νk + λ

)3−c1( νk
νk + λ

)c1−1

≤ λc1−1
∑

k

ν1−c1
k ‖E∗

ρe
Z
k ‖2HX

= λc1−1‖G1‖2Γ
≤ λc1−1ζ1

Theorems 5 and 6 deliver the main stage 1 result, Theorem 2, as a consequence of triangle inequality
and optimizing the regularization parameter λ.

Proof of Theorem 2. By triangle inequality,

‖En
λ − Eρ‖HΓ ≤ ‖En

λ − Eλ‖HΓ + ‖Eλ − Eρ‖HΓ ≤ 4κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√
nλ

+ λ
c1−1

2

√

ζ1
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Minimize the RHS w.r.t. λ. Rewrite the objective as

Aλ−1 +Bλ
c1−1

2

then the FOC yields

λ =

(

2A

B(c1 − 1)

)
2

c1+1

=

(

8κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√
nζ1(c1 − 1)

)
2

c1+1

= O(n
−1

c1+1 )

Substituting this value of λ, the RHS becomes

A

(

2A

B(c1 − 1)

)− 2
c1+1

+ B

(

2A

B(c1 − 1)

)

c1−1

c1+1

=
B(c1 + 1)

4
1

c1+1

(

A

B(c1 − 1)

)

c1−1
c1+1

=

√
ζ1(c1 + 1)

4
1

c1+1

(

4κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√
nζ1(c1 − 1)

)

c1−1
c1+1

A.8 Stage 1: Corollary

We present a corollary necessary to link stage 1 with stage 2. In doing so, we relate our work to
conditional mean embedding regression.

A.8.1 Bound

Proposition 27. Assume the loss EΞ
1 (µ) := E(X,Z)‖ψ(X) − µ(Z)‖2HX

attains a minimum on HΞ.

Then the minimizer with minimal norm ‖ · ‖HΞ is

µ−(z) = E∗
ρφ(z)

E∗
ρ = T ∗

ZX ◦ T †
1

Eρ = T †
1 ◦ TZX

where µ−(z) is given in Definition 3 and T †
1 is the pseudo-inverse of T1.

Proof. [20, Lemma 16]. Note that the first equation recovers Proposition 24. The third equation
recovers Proposition 21, which we know from [30, Theorem 2].

Proposition 28 (Lemma 17 of [20]). ∀λ > 0, the solution µn
λ ∈ HΞ of the regularized empirical

objective
1

n

∑n
i=1 ‖ψ(xi)− µ(zi)‖2HX

+ λ‖µ‖2HΞ
exists, is unique, and satisfies

µn
λ(z) = (En

λ )
∗φ(z)

Corollary 1. ∀δ ∈ (0, 1), the following holds w.p. 1− δ: ∀z ∈ Z ,

‖µn
λ(z)− µ−(z)‖HX

≤ rµ(δ, n, c1) := κ · rE(δ, n, c1)

Proof. By Propositions 21 and 27

µ−(z) = (T †
1 ◦ TZX)∗φ(z) = (T †

1 ◦ T1 ◦Eρ)
∗φ(z) = E∗

ρφ(z)

so by Proposition 28

‖µn
λ(z)− µ−(z)‖HX

= ‖[En
λ − Eρ]

∗φ(z)‖HX
≤ ‖En

λ − Eρ‖HΓ‖φ(z)‖HX
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A.8.2 Related work

We relate µ to E directly–an insight from [33]. In Theorem 2, we generalize work by [53, 54] to
obtain a regression bound for E. In Corollary 1, we arrive at an RKHS-norm (and hence uniform)
bound for conditional mean embedding µ that adapts to the smoothness of conditional expectation
operator E, making use of Theorem 2. The uniform bound on µ is precisely what we will need in
Theorem 7.

Our strategy affords weaker input assumptions and tighter bounds than the stage 1 approach of [37],
which uses [56, Theorem 6]. See Section A.2.2 for a detailed comparison. We also make weaker
assumptions than [55, Theorem 1], as detailed in Section A.4.4.

Whereas Corollary 1 is a bound on RKHS-norm difference ‖µn
λ−µ−‖HΞ , [20, Lemma 18] contains

a bound on excess risk EΞ
1 (µ

n
λ) − EΞ

1 (µ
−). To facilitate comparison, we translate the latter to our

notation. ∀λ ≤ κ2 and δ > 0, the following holds w.p. 1− δ:

EΞ
1 (µ

n
λ)− EΞ

1 (µ
−) = ‖(En

λ )
∗ ◦ S1 −R1‖L2(L2(Z,ρZ),HX )

≤ 4
Q+AΞ

2 (λ)√
λn

(

1 +

√

4κ2

λ
√
n

)

ln2 8

δ
+AΞ

1 (λ)

where

AΞ
1 (λ) := λ‖R1 ◦ (T̃1 + λ)−1‖L2(L2(Z,ρZ),HX )

AΞ
2 (λ) := κ‖T ∗

ZX ◦ (T1 + λ)−1‖L2(HZ ,HX )

Interestingly, the proof of [20, Lemma 18] does not require Hypothesis 5, and it uses different tech-
niques. In future work, we will leverage this result in the KIV setting and compare the consequent
rates.

A.9 Stage 2: Lemmas

A.9.1 Probability

Proposition 29 (Proposition 4 of [25]). Let ξ be a random variable taking values in a real separable
Hilbert space K. Suppose ∃L, σ > 0 s.t.

‖ξ‖K ≤ L/2 a.s

E‖ξ‖2K ≤ σ2

Then ∀m ∈ N, ∀η ∈ (0, 1),

P

[∥

∥

∥

∥

1

m

m
∑

i=1

ξi − Eξ

∥

∥

∥

∥

K

≤ 2

(

L

m
+

σ√
m

)

ln(2/η)

]

≥ 1− η

A.9.2 Regression

Proposition 30 (Lemma A.3.16 of [59]). The solution to the unconstrained structural operator
regression problem is well-defined and satisfies

Hρµ(z) =

∫

Y

ydρ(y|µ(z))

A.9.3 Bounds

Definition 7. The residual A(ξ), reconstruction error B(ξ), and effective dimension N (ξ) are

A(ξ) = ‖
√
T (Hξ −Hρ)‖2HΩ

B(ξ) = ‖Hξ −Hρ‖2HΩ

N (ξ) = Tr[(T + ξ)−1 ◦ T ]
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Proposition 31. If ρ ∈ P(ζ, b, c) then

A(ξ) ≤ ζξc

B(ξ) ≤ ζξc−1

N (ξ) ≤ β1/b π/b

sin(π/b)
ξ−1/b

Proof. The bounds for A(ξ) and B(ξ) follow from [14, Proposition 3] and the definition of a prior.
The bound for N (ξ) is from [63].

Proposition 32 (Theorem 2 of [65]). The excess error of the stage 2 estimator can be bounded by 5
terms.

E(Ĥm
ξ )− E(Hρ) ≤ 5[S−1 + S0 +A(ξ) + S1 + S2]

where

S−1 = ‖
√
T ◦ (T̂+ ξ)−1(ĝ− g)‖2HΩ

S0 = ‖
√
T ◦ (T̂+ ξ)−1 ◦ (T− T̂)Hm

ξ ‖2HΩ

S1 = ‖
√
T ◦ (T+ ξ)−1(g−THρ)‖2HΩ

S2 = ‖
√
T ◦ (T+ ξ)−1 ◦ (T −T)(Hξ −Hρ)‖2HΩ

Definition 8. Fix η ∈ (0, 1) and define the following constants

Cη = 96 ln2(6/η)

M = 2(C + ‖Hρ‖HΩ

√
B)

Σ =
M

2

The choice of Cη reflects a correction by [63] to [14]. The choices of (M,Σ) are as in [65, Theorem
2].

Proposition 33. If m ≥ 2CηBN (ξ)

ξ
and ξ ≤ ‖T ‖L(HΩ) then w.p. 1− η/3

Θ(ξ) := ‖(T −T) ◦ (T + ξ)−1‖L(HΩ) ≤ 1/2

Proof. Step 2.1 of [14, Theorem 4].

Proposition 34. If m ≥ 2CηBN (ξ)

ξ
, ξ ≤ ‖T ‖L(HΩ), and Hypotheses 7-8 hold then w.p. 1− 2η/3

S1 ≤ 32 ln2(6/η)

[

BM2

m2ξ
+

Σ2N (ξ)

m

]

S2 ≤ 8 ln2(6/η)

[

4B2B(ξ)
m2ξ

+
BA(ξ)

mξ

]

Proof. Steps 2 and 3 of [14, Theorem 4], appealing to Propositions 29 and 33.

Proposition 35. S−1 and S0 may be bounded by

S−1 ≤ ‖
√
T ◦ (T̂ + ξ)−1‖2L(HΩ)‖ĝ− g‖2HΩ

S0 ≤ ‖
√
T ◦ (T̂ + ξ)−1‖2L(HΩ)‖T− T̂‖2L(HΩ)‖Hm

ξ ‖2HΩ

Proof. Definition of ‖ · ‖L(HΩ).
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Proposition 36 (Supplement 9.1 of [65]). Suppose Hypotheses 7-8 hold. If m ≥ 2CηBN (ξ)

ξ
and

ξ ≤ ‖T ‖L(HΩ), then

‖Hm
ξ ‖2HΩ

≤ 6

(

16

ξ
ln2(6/η)

[

M2B

m2ξ
+

Σ2N (ξ)

m

]

+
4

ξ2
ln2(6/η)

[

4B2B(ξ)
m2

+
BA(ξ)

m

]

+ B(ξ) + ‖Hρ‖2HΩ

)

Proposition 37 (Supplement 7.1.1 and 7.1.2 of [65]). If ‖µn
λ(z) − µ−(z)‖HX

≤ rµ = κ · rE w.p.
1− δ and Hypotheses 7-8 hold then w.p. 1− δ

‖ĝ− g‖2HΩ
≤ L2C2r2ιµ

‖T− T̂‖2L(HΩ) ≤ 4BL2r2ιµ

Proposition 38.

‖
√
T ◦ (T + ξ)−1‖L(HΩ) ≤

1

2
√
ξ

Proof. [14, Step 2.1] and [64, Supplement A.1.11] use this spectral result, which we provide for
completeness. Observe that

‖
√
T ◦ (T + ξ)−1‖L(HΩ) = sup

λ′∈{λk}

√
λ′

λ′ + ξ

where {λ}k are the eigenvalues of T . By arithmetic-geometric mean inequality,

√

λ′ξ ≤ λ′ + ξ

2
⇐⇒

√
λ′

λ′ + ξ
≤ 1

2
√
ξ

Proposition 39. If ‖µn
λ(z) − µ−(z)‖HX

≤ rµ w.p. 1 − δ, m ≥ max

{

2CηBN (ξ)

ξ
, m̄(δ, c1)

}

,

ξ ≤ ‖T ‖L(HΩ), and Hypotheses 7-8 hold then w.p. 1− η/3− δ

‖
√
T ◦ (T̂+ ξ)−1‖L(HΩ) ≤

2√
ξ

Proof. [64, Supplement A.1.11] provides the following bound.

‖
√
T ◦ (T̂ + ξ)−1‖L(HΩ) ≤ ‖

√
T ◦ (T + ξ)−1‖L(HΩ)

∞
∑

k=0

‖(T − T̂) ◦ (T + ξ)−1‖kL(HΩ)

Examine the RHS. By Proposition 38

‖
√
T ◦ (T + ξ)−1‖L(HΩ) ≤

1

2
√
ξ

By a telescoping argument in [64, Supplement A.1.11]

‖(T − T̂) ◦ (T + ξ)−1‖L(HΩ) ≤ Θ(ξ) + ‖(T− T̂) ◦ (T + ξ)−1‖L(HΩ)

Proposition 33 bounds the first term w.p. 1− η/3. Examine the second term.

‖(T− T̂) ◦ (T + ξ)−1‖L(HΩ) ≤ ‖T− T̂‖L(HΩ)‖(T + ξ)−1‖L(HΩ)

≤ 2
√
BLrιµ · 1

ξ

≤ 1/4

where the second inequality is by Proposition 37 and the third inequality reflects a choice of m
sufficiently large. In particular, by Corollary 1 it is sufficient that

m ≥ m̄(δ, c1) :=

[√
ζ1(c1 + 1)

4
1

c1+1

κ

(

8
√
BL

ξ

)1/ι]2
c1+1
c1−1

[

4κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√
ζ1(c1 − 1)

]2
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Then

‖(T − T̂) ◦ (T + ξ)−1‖L(HΩ) ≤ 1/2 + 1/4 = 3/4

and hence

‖
√
T ◦ (T̂+ ξ)−1‖L(HΩ) ≤

1

2
√
ξ
· 1

1− 3/4
=

2√
ξ

A.10 Stage 2: Theorems

Proof of Theorem 3. [65, eq. 13, 14] provide the closed form solution. Existence and uniqueness
follow from [22, Proposition 8].

To quantity the convergence rate of E(Ĥm
ξ )−E(Hρ), we modify the central results of [65], replacing

their first stage convergence argument with our own derived above.

Theorem 7. Assume Hypotheses 1-9. If m is large enough and ξ ≤ ‖T ‖L(HΩ) then ∀δ ∈ (0, 1) and

∀η ∈ (0, 1), the following holds w.p. 1− η − δ:

E(Ĥm
ξ )− E(Hρ) ≤ rH(δ, n, c1; η,m, b, c) := 5

{

4

ξ
· L2C2(κ · rE)2ι +

4

ξ
· 4BL2(κ · rE)2ι

· 6
(

16

ξ
ln2(6/η)

[

M2B

m2ξ
+

Σ2

m
β1/b π/b

sin(π/b)
ξ−1/b

]

+
4

ξ2
ln2(6/η)

[

4B2ζξc−1

m2
+
Bζξc

m

]

+ ζξc−1 + ‖Hρ‖2HΩ

)

+ ζξc + 32 ln2(6/η)

[

BM2

m2ξ
+

Σ2

m
β1/b π/b

sin(π/b)
ξ−1/b

]

+ 8 ln2(6/η)

[

4B2ζξc−1

m2ξ
+
Bζξc

mξ

]}

Note that the convergence rate is calibrated by c1, the smoothness of the conditional expectation
operatorEρ; c, the smoothness of the structural operator Hρ; and b, the effective input dimension.

Proof. By Propositions 31 to 39,

E(Ĥm
ξ )− E(Hρ) ≤ 5[S−1 + S0 +A(ξ) + S1 + S2]

S−1 ≤ 4

ξ
· L2C2r2ιµ

S0 ≤ 4

ξ
· 4BL2r2ιµ · ‖Hm

ξ ‖2HΩ

‖Hm
ξ ‖2HΩ

≤ 6

(

16

ξ
ln2(6/η)

[

M2B

m2ξ
+

Σ2

m
β1/b π/b

sin(π/b)
ξ−1/b

]

+
4

ξ2
ln2(6/η)

[

4B2ζξc−1

m2
+
Bζξc

m

]

+ ζξc−1 + ‖Hρ‖2HΩ

)

A(ξ) ≤ ζξc

S1 ≤ 32 ln2(6/η)

[

BM2

m2ξ
+

Σ2

m
β1/b π/b

sin(π/b)
ξ−1/b

]

S2 ≤ 8 ln2(6/η)

[

4B2ζξc−1

m2ξ
+
Bζξc

mξ

]

Finally use Corollary 1 to write rµ = κ · rE .
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Proof of Theorem 4. Ignoring constants in Theorem 7 yields

S−1 = O

(

r2ιµ
ξ

)

S0 = O

(

r2ιµ
ξ

· ‖Hm
ξ ‖2HΩ

)

‖Hm
ξ ‖2HΩ

= O

(

1

m2ξ2
+

1

mξ1+1/b
+

1

m2ξ3−c
+

1

mξ2−c
+ ξc−1 + 1

)

A(ξ) = O(ξc)

S1 = O

(

1

m2ξ
+

1

mξ1/b

)

S2 = O

(

1

m2ξ2−c
+
ξc−1

m

)

The last term in the bound on ‖Hm
ξ ‖2HΩ

implies that the bounding terms of S0 dominate those of S−1.

Within the terms bounding ‖Hm
ξ ‖2HΩ

, observe that 1
m2ξ2 dominates 1

m2ξ3−c ; 1
mξ1+1/b dominates

1
mξ2−c ; and 1 dominates ξc−1. These statements follow from the restrictions b > 1 and c ∈ (1, 2]

in the definition of a prior as well as ξ → 0. Likewise, the terms bounding S1 dominate the terms
bounding S2. In summary, we arrive at a statement analogous to [65, eq. 19].

E(Ĥm
ξ )− E(Hρ) = O

(

r2ιµ
ξ

·
[

1

m2ξ2
+

1

mξ1+1/b
+ 1

]

+ ξc +
1

m2ξ
+

1

mξ1/b

)

s.t. mξ1+1/b ≥ 1, r2ιµ ≤ ξ2

By Corollary 1, Theorem 2, and the choices of λ and n in the statement of Theorem 4

r2ιµ = O

(

[(n− 1
2 )

c1−1
c1+1 ]2ι

)

= O(m−a)

With this substitution, we arrive at a statement analogous to [65, eq. 20].

E(Ĥm
ξ )− E(Hρ) = O

(

1

m2+aξ3
+

1

m1+aξ2+1/b
+

1

maξ
+ ξc +

1

m2ξ
+

1

mξ1/b

)

s.t. mξ1+1/b ≥ 1,maξ2 ≥ 1

The final result is [65, Theorem 5].

A.11 Experiments

A.11.1 Designs
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Figure 5: Linear and sigmoid data generating processes. Training sample size is n+m = 1000
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The linear and sigmoid simulation designs are from [17], adapted from [48]. One simulation consists
of a sample of n+m ∈ {1000, 5000, 10000} observations. A given observation is generated from
the IV model

Y = h(X) + e, E[e|Z] = 0

where Y is the output,X is the input, Z is the instrument, and e is confounding noise. In particular,
for the linear design

h(x) = 4x− 2

while for the sigmoid design

h(x) = ln(|16x− 8|+ 1) · sgn(x− 0.5)

Data are sampled as

(

e
V
W

)

i.i.d.∼ N





(

0
0
0

)

,





1 1
2 0

1
2 1 0
0 0 1









X = Φ

(

W + V√
2

)

Z = Φ(W )

We visualize 1 simulation, consisting of n +m = 1000 observations, in Figure 5. The blue curve
illustrates the structural function h. Grey dots depict noisy observations. The noise e has positively

sloped bias relative to the structural function h. From observations of (Y,X,Z), we estimate ĥ by

several methods. For each estimated ĥ, we measure out-of-sample error as the mean square error of

ĥ versus true h applied to 1000 evenly spaced values x ∈ [0, 1]. We report log10(MSE).

The demand simulation design is from [36]. One simulation consists of a sample of n + m ∈
{1000, 5000, 10000} observations. A given observation is generated from the IV model

Y = h(X) + e, E[e|Z] = 0

where Y is the output, X = (P, T, S) are inputs, and Z = (C, T, S) are instruments. Recall that Y
is sales, P is the endogenous input instrumented by supply cost-shifterC, and (T, S) are exogenous
inputs interpretable as time of year and customer sentiment. While (P, T, C) are continuous random
variables, S is discrete–a novel feature of this design. e is confounding noise.

h(p, t, s) = 100 + (10 + p)sψ(t)− 2p

ψ(t) = 2

[

(t− 5)4

600
+ exp

(

−4(t− 5)2
)

+
t

10
− 2

]

0 1 2 3 4 5 6 7 8 9 10
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Figure 6: Demand non-
linearity ψ(t)

Data are sampled as

S
i.i.d.∼ Unif{1, ..., 7}

T
i.i.d.∼ Unif [0, 10]

(

C
V

)

i.i.d.∼ N

((

0
0

)

,

(

1 0
0 1

))

e
i.i.d.∼ N(ρV, 1− ρ2)

P = 25 + (C + 3)ψ(T ) + V

From observations of (Y, P, T, S, C), we estimate ĥ by several methods. For each estimated ĥ, we

measure out-of-sample error as the mean square error of ĥ versus true h applied to 2800 values
of (p, t, s). Specifically, we consider 20 evenly spaced values of p ∈ [2.5, 14.5], 20 evenly spaced
values of t ∈ [0, 10], and all 7 values s ∈ {1, ..., 7}. We report log10(MSE).
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A.11.2 Algorithms
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Figure 7: KernelReg on the sigmoid design

KernelReg. We implement kernel ridge regres-
sion using Gaussian kernel kX . We set the ker-
nel hyperparameter–the lengthscale–equal to
the median interpoint distance of inputs, a stan-
dard practice. When inputs are multidimen-
sional as in the demand design, we use the
kernel obtained as the product of scalar ker-
nels for each input dimension. Each length-
scale is set according to the median interpoint
distance for that input dimension. We tune
the Tikhonov regularization parameter by cross-
validation with two folds. Figure 7 visualizes
the performance of KernelReg on the sigmoid
design with n + m = 1000. Kernel ridge re-
gression ignores the instrument Z , and it is bi-
ased away from the structural function due to
confounding noise. The remaining algorithms
make use of instrument Z to overcome this is-
sue.

SieveIV. We implement sieve IV with sample splitting using B-spline basis. We set the basis
hyperparameters according to the preferred specification of [17]: 4th order polynomial with 1 in-
terior knot. We implement sieve IV without Tikhonov regularization (as originally formulated),
and with Tikhonov regularization. We tune Tikhonov regularization parameters (λ, ξ) according
to Algorithm 2. Figure 8a visualizes the performance of SieveIV on the sigmoid design with
n + m = 1000. Tikhonov regularization dramatically improves performance in both the sigmoid
and demand designs. There is still room for improvement, however, since SieveIV is constrained
to finite dictionaries of basis functions.

SmoothIV. We implement Nadaraya-Watson IV using the R command npregiv. We set the regu-
larization option to Tikhonov, in order to implement the estimator of [23]. Otherwise we maintain
default options. As in [36], we only apply this estimator to training samples of size n+m = 1000
due to its lengthy running time. Figure 8b visualizes the performance of SmoothIV on the sigmoid
design with n +m = 1000. SmoothIV is clearly an improvement on its predecessor, the original
SieveIV. By imposing Tikhonov regularization in stage 2, the algorithm greatly reduces variance.
The Nadaraya-Watson style stage 1 estimator appears to be the reason why SmoothIV fails to learn
the structural function’s sigmoid shape. Overfitting in stage 1 could explain why the final estimate
has more inflection points than the true structural function.
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Figure 8: SieveIV and SmoothIV on the sigmoid design

DeepIV. We implement deep IV with sample splitting using the python software accompanying the
paper by [36]. We implement deep IV with and without biased gradients in the training optimization.
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Figure 9a visualizes the performance of DeepIV on the sigmoid design with n+m = 1000. In both
the sigmoid and demand designs, unbiased gradients lead to better performance. Biased gradients
improve performance in a high-dimensional MNIST design that we do not implement here. Like
other neural network models, DeepIV requires a relatively large training sample size to achieve
reliable performance on simple tasks like learning a smooth curve.

KernelIV. We implement KIV with sample splitting using Gaussian kernels kX and kZ . We set
lengthscales according to median interpoint distance as described for KernelReg. When inputs are
multimensional, we use the product of scalar kernels as described for KernelReg. We tune Tikhonov
regularization parameters (λ, ξ) according to Algorithm 2. Figure 9b visualizes the performance of
KernelIV on the sigmoid design with n+m = 1000.
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Figure 9: DeepIV and KernelIV on the sigmoid design

A.11.3 Results
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Figure 10: Linear and sigmoid designs

For each algorithm, design, and sample size, we implement 40 simulations and calculate MSE with
respect to the true structural function h. Figures 3 and 10 visualize results. In the linear design,
KernelIV performs about as well as SieveIV improved with Tikhonov regularization. Intuitively,
in the linear design the true structural function h is finite-dimensional, and the method that uses
a finite dictionary of basis functions (SieveIV) displays less variability across simulations when
training sample sizes are small. Insofar as SieveIV is a special case of KernelIV, one could
interpret this outcome as reflecting a more appropriate choice of kernel. In the sigmoid design,
KernelIV performs best across sample sizes. In the demand design, KernelIV performs best for
sample size n+m = 1000 and rivals DeepIV for sample size n+m = 5000.
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Figure 11: Robustness study

Finally, we conduct a robustness study to evalu-
ate the sensitivity of KernelIV to hyperparam-
eter tuning. We apply KernelIV to the sigmoid
design with n+m = 1000, varying the length-
scale for Guassian kernel kX . For each length-
scale value in {0.2, 0.4, 0.6, 0.8, 1.0}, we im-
plement 40 simulations and calculate MSE with
respect to the true structural function h. For
comparison, the median interpoint distance rule
sets lengthscale to 0.3. Figure 11 visualizes re-
sults: alternative lengthscale values depreciate
performance of KernelIV, but KernelIV still
outperforms its competitors in Figure 10b. We
recommend that practitioners use the median in-
terpoint distance rule.
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