
Improving the Practicality of
Model-Based Reinforcement

Learning
An Investigation into Scaling up Model-Based

Methods in Online Settings

Ronnie James Stafford

Supervisor: Prof. John Shawe-Taylor

Department of Computer Science
University College London

This dissertation is submitted for the degree of
Doctor of Philosophy

January 2020

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the
outcome of work done in collaboration with others, except as specified in the text and
acknowledgements.

Ronnie James Stafford
January 2020

Abstract

This thesis is a response to the current scarcity of practical model-based control algo-
rithms in the reinforcement learning (RL) framework. As of yet there is no consensus
on how best to integrate imperfect transition models into RL whilst mitigating policy
improvement instabilities in online settings. Current state-of-the-art policy learning
algorithms that surpass human performance often rely on model-free approaches that
enjoy unmitigated sampling of transition data. Model-based RL (MBRL) instead
attempts to distil experience into transition models that allow agents to plan new
policies without needing to return to the environment and sample more data.

The initial focus of this investigation is on kernel conditional mean embeddings
(CMEs) (Song et al., 2009) deployed in an approximate policy iteration (API) algorithm
(Grünewälder et al., 2012a). This existing MBRL algorithm boasts theoretically stable
policy updates in continuous state and discrete action spaces. The Bellman operator’s
value function and (transition) conditional expectation are modelled and embedded
respectively as functions in a reproducing kernel Hilbert space (RKHS). The resulting
finite-induced approximate pseudo-MDP (Yao et al., 2014a) can be solved exactly in a
dynamic programming algorithm with policy improvement suboptimality guarantees.
However model construction and policy planning scale cubically and quadratically
respectively with the training set size, rendering the CME impractical for sample-
abundant tasks in online settings.

Three variants of CME API are investigated to strike a balance between stable
policy updates and reduced computational complexity. The first variant models the
value function and state-action representation explicitly in a parametric CME (PCME)
algorithm with favourable computational complexity. However a soft conservative
policy update technique is developed to mitigate policy learning oscillations in the
planning process. The second variant returns to the non-parametric embedding and
contributes (along with external work) to the compressed CME (CCME); a sparse
and computationally more favourable CME. The final variant is a fully end-to-end
differentiable embedding trained with stochastic gradient updates. The value function
remains modelled in an RKHS such that backprop is driven by a non-parametric
RKHS loss function. Actively compressed CME (ACCME) satisfies the pseudo-MDP
contraction constraint using a sparse softmax activation function. The size of the

vi

pseudo-MDP (i.e. the size of the embedding’s last layer) is controlled by sparsifying
the last layer weight matrix by extending the truncated gradient method (Langford
et al., 2009) with group lasso updates in a novel ‘use it or lose it’ neuron pruning
mechanism. Surprisingly this technique does not require extensive fine-tuning between
control tasks.

Impact Statement

This research contributes to the ongoing academic effort to explore, understand and
improve goal-based sequential decision-making optimisation algorithms. Humanity’s
quest to understand intelligence requires, to an extent, efforts both from the computer
science and biological disciplines to converge. In particular this investigation improves
the practicality of certain model-based reinforcement learning methods which belong
to a set of algorithms thought integral to behavioural planning in the animal kingdom.
Several avenues of future work are stated which will build upon this investigation and
contribute to the overall research effort to understand intelligence.

Any major improvement to reinforcement learning and artificial intelligence in
the research community has the potential to impact society in both positive and
negative ways. Deploying robust behavioural-learning algorithms will free humanity
from repetitive jobs in the labour force and provide efficient new services such as
automated assistants and self-driving cars. But in the same breath, making large
portions of the population unemployed will negatively impact society. The automation
industrial revolution is beginning to materialise. Although the work in this thesis
will not on its own lead to major disruptions in society, the entire body of artificial
intelligence research going forward will. Therefore as a species we must carefully
manage the introduction of this potentially disruptive technology to benefit society as
a whole.

Acknowledgements

I would like to acknowledge my supervisor for being a deep source of knowledge,
essential guide and collaborator throughout this process; my second supervisor Simon
Julier for his support; Guy Lever who advised and collaborated with me on work related
to the first three research chapters of this thesis; Csaba Szepesvári for contributions as
described in Appendix C.1 and additional discussion. I would also like to acknowledge
how writing a thesis can instigate a sparsification effect on close relationships.

Contents

List of Figures xv

List of Tables xviii

Nomenclature xxi

1 Introduction 1
1.1 Foreward . 1

1.1.1 Model-based vs model-free RL 2
1.1.2 Neuropsychological motivation for MBRL 4
1.1.3 Existing MBRL Approaches . 5

1.2 Rationale . 6
1.2.1 Approximate Value Prediction 6
1.2.2 CMEs and Pseudo MDPs . 8
1.2.3 Investigation Summary and Contributions 10

Contributions . 12

2 Literature Review 13
2.1 Reinforcement Learning . 13

2.1.1 Overview . 13
2.1.2 Bellman Equations . 16
2.1.3 The Control Problem . 18

2.2 Theory of Dynamic Programming in Known MDPs 18
2.2.1 Space of Value Functions . 18
2.2.2 Bellman Operators . 20

Bellman Operator & Policy Evaluation 20
Bellman Optimality Operator & Policy Improvement 20

2.3 Implementation of DP Algorithms . 23
2.3.1 Value Prediction: Policy Evaluation 23
2.3.2 Control: Value Iteration . 24
2.3.3 Control: Policy Iteration . 25
2.3.4 Summary . 26

Contents xi

2.4 Model-Free RL in Unknown Discrete MDPs 27
2.4.1 Value Prediction: TD Learning 27
2.4.2 Control: SARSA & Q-Learning 29

2.5 Model-Free Approximate Policy Iteration 30
2.5.1 Value Function Approximation (Supervised Learning) 31
2.5.2 Approximate Value Prediction 34

Dynamic Programming with Linear Value Function Approxi-
mation . 34

Bellman Residual (MSBE Objective) 35
Projected Bellman Residual (MSPBE Objective) 38
LSTD Link to Linear TD . 39
Value Prediction Stability and Motivation for the CME Ap-

proach . 41
Approximate Action-Value Prediction 43

2.5.3 Approximate Policy Improvement 43
Policy Improvement Stability and Chatter 44
Policy Improvement Stability and Motivation for the CME

Approach . 45
2.6 Model-based Approximate Policy Iteration 45

2.6.1 Hilbert Space Embeddings of Conditional Expectations 46
Conditional Mean Embeddings 46
Pseudo MDPs . 51

2.6.2 Additional Pseudo-MDPs . 53
Non-Parametric Finite-Induced MDPs 53
Parametric Linear Action Models 55

2.6.3 Research Preamble . 57

3 Benchmark Algorithms and Initial Improvements 61
3.1 Explorative PI . 62

3.1.1 Online Data Acquisition . 62
3.1.2 CME Improvements . 64
3.1.3 Experimental Method . 64

General Settings . 64
CME Settings . 65
FLAM-ADMM Settings . 65

3.1.4 Experiments . 66
Mountain Car . 66
Cart-Pole . 66
Quadrocopter MDPs . 67

xii Contents

3.1.5 Results . 68
3.1.6 Discussion . 71

3.2 Conclusion . 72

4 Parametric CME Policy Iteration 73
4.1 Function Approximation with Vector-Valued Matching Pursuit 74

4.1.1 Algorithm Details . 74
4.1.2 Backfitting . 77
4.1.3 Function Sparsification . 77
4.1.4 Algorithm Implementation . 78
4.1.5 Experiments . 78

4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection 80
4.2.1 Algorithm Details . 82

Data Acquisition . 82
Model Learning . 82
Greedy Feature Learning . 84
Approximate Policy Evaluation 88
Conservative Policy Improvement 88

4.3 Experiments . 94
4.4 Discussion . 94

4.4.1 Comparison with non-parametric pseudo MDPs 94
4.4.2 PCME with fixed state representation 94
4.4.3 PCME with learnt state representation 101

4.5 Conclusion and future work . 102
4.5.1 Deep PCME . 102
4.5.2 Is PCME a pseudo-MDP? . 103

5 Sparse Non-Parametric CME Policy Iteration 105
5.1 CCMEs: Non-Parametric Embeddings with Sparsification 106

5.1.1 Algorithm Details . 107
Solving for W in the Primal 107
Maintaining a Compact Basis B 109
Implementing a Sparse C . 111
Other Approaches to Embedding Sparsification 113
Contraction Constraint (External Work) 113

5.2 Experiments . 113
5.2.1 Holding Pattern Task . 116

5.3 Discussion . 121
5.3.1 Comparison with Other Algorithms 121

Contents xiii

5.3.2 Learning B . 121
5.3.3 Contraction Constraint . 121
5.3.4 Controlling C . 122

5.4 Conclusion . 123

6 Differentiable Sparse CME Policy Iteration 125
6.1 Differentiable CMEs: Deep Embeddings 126

6.1.1 DCCME . 126
Online Dynamics Model . 126
Architecture . 127
Contraction Constraint . 128
Compression Set C . 129

6.1.2 Pruning C During SGD . 129
Contraction Constraint . 130
Compression Set . 130

6.1.3 ACCME . 133
6.1.4 ACCME-R: Learning the Reward Function 135

6.2 Experiments . 135
6.3 Discussion . 136

6.3.1 DCCME . 138
6.3.2 ACCME . 139

6.4 Conclusion . 139

7 Conclusion 145
7.1 Algorithm Comparison . 145

7.1.1 Overview . 145
7.2 Future Work . 148

7.2.1 Immediate Extensions . 148
7.2.2 Long Term Extensions . 149

Bibliography 151

Appendix A Supplemental 165
A.1 Matching Pursuit Variants . 165

A.1.1 Notation . 165
A.1.2 Matching Pursuit for RKHS-Valued Regression 166
A.1.3 Other Variants . 168

Maintaining B . 168
Maintaining C . 170

A.1.4 Sparsification in the vvRKHS Norm 172

xiv Contents

A.1.5 Sparsifying Embeddings in the RKHS norm 175
Approximate Matching Pursuit in the RKHS Norm for Main-

taining B . 176
A.2 DQN Experiments . 177

Appendix B Literature Review Supplemental 181
B.1 Bellman Sup-Norm Contractions . 181
B.2 Block Matrix Inversion . 183
B.3 Some Mathematical Definitions . 184

B.3.1 Some Measure Theory . 184
B.3.2 Some Functional Analysis . 185

B.4 Function Approximation Review . 186
B.4.1 Learning Prediction Functions from Data 186

Empirical Risk Minimisation 186
Mean Squared Error . 187
Linear OLS Regression . 188
Unique Solution . 189
Bias-Variance Decomposition of the Expected Loss 191
Bias-Variance Trade-Off and Overfitting 192
Penalised Empirical Risk Minimisation 193

B.4.2 Reproducing Kernel Hilbert Spaces of Functions 196
Primal and Dual Representation 196
Reproducing Kernel Hilbert Spaces 197
Choosing Kernels . 202
Gaussian Kernels and Infinite Dimensional Feature Space . . 203
Kernel Matrix Decompositions 203

B.4.3 Penalised Empirical Risk Revisited 205
Representer Theorem . 205
Tension in Complexity . 206

B.4.4 Vector-Valued Primal Regression 206
Vector-Valued Primal Ridge Regression 207
Group Lasso Penalisation . 207

B.4.5 Sparse Projections . 210
B.4.6 Vector-Valued RKHS Regression 211

Vector-Valued RKHS . 211
vvRKHS Penalised Empirical Risk 212
Kernel Choice . 212
vvRKHS Inner Product . 213

B.5 Artificial Neural Networks . 213

B.5.1 Gradient-based Empirical Risk Minimisation 214
Batch Gradient Descent . 214
Stochastic Gradient Descent 215

B.5.2 Training Neural Networks . 216
A Brief History of Artificial Neural Networks 216
Backprop . 217
Activation Functions . 218

B.5.3 Weight Sparsity in the Stochastic Setting 219
Truncated Gradient for Online Lasso Regression 219

B.6 Matrix Identities . 221
B.6.1 Cook Book . 221

Appendix C External Work 223
C.1 CCME Supplemental . 223

C.1.1 Compression Set . 223
Implementation . 225

C.1.2 Contraction Constraint . 226
Implementation . 226

List of Figures

1.1 Basic value-based RL Architecture (adapted from Sutton and Barto
(1998)). At the kth iteration, a policy is used to gather more experience
such that it can be improved by either direct model-free updates or by
planning using a transition model. New experience of nnew transitions
is added to past experience with a total of nk transitions available for
training. 3

2.1 Visual representation of distribution of states (blue) generated by pπ for
a 1-D state space. Both a suboptimal and optimal policy for collecting
immediate reward (red) are shown. 18

2.2 Directly fitting vπ∈Rm by orthogonal projection onto span(Φ)⊂Rm. . 33

xvi List of Figures

2.3 Approximate value prediction by applying T π to value functions in a
linear function approximation scheme. Mitigating this is achieved either
by i) minimising the magnitude of the Bellman residual vector known as
Bellman residual minimisation (BRM), or ii) minimising the magnitude
of the projected Bellman residual vector such as in TD fixed point
methods. 35

2.4 Illustrating the upper bound of ||v̂λ − vπ||Dπ varying with bootstrapping. 42

3.1 Mountain car: Benchmarks algorithms and *improvements. 69
3.2 Cart Pole: Benchmarks algorithms and *improvements. 69
3.3 Empirical discounted return with varied exploration ϵ for data acqui-

sition. Explorative data acquisition (blue) consistently outperforms
non-explorative data acquisition (red). 70

4.1 Kernel regression and matching pursuit regression for a vector-valued
function. Test errors are also shown for limiting the basis size to 10, 50,
100, 200 and 1000 (full batch regression on all training points). Centres
for of the kernel regression full basis (of size 1000 and coloured red) and
matching pursuit sparse basis (of size 200 and coloured green) are also
plotted against t. 79

4.2 Kernel regression and Matching Pursuit regression for various scalar-
valued functions. Test errors are also shown for limiting the basis size to
10, 50, 100, 200 and 1000 (full batch regression on all training points).
Centres for of the kernel regression full basis (of size 1000 and coloured
red) and matching pursuit sparse basis (of size 200 and coloured green)
are also plotted along the x-axis. 81

4.3 PCME empirical return (mountain car) experiments for fixed features
ϕ(s) or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom), con-
servative update proportion ω. 95

4.4 PCME empirical return (cart-pole) experiments for fixed features ϕ(s)
or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom), conservative
update proportion ω. 96

4.5 PCME empirical return (mountain car) experiments for learnt fea-
tures ϕ(s) or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom),
conservative update proportion ω. 97

4.6 PCME empirical return (cart-pole) experiments for learnt features ϕ(s)
or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom), conservative
update proportion ω. 98

List of Figures xvii

4.7 PCME empirical return (quadrocopter navigation) experiments for
learnt features ϕ(s) or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to
bottom), conservative update proportion ω. 99

5.1 Mountain car: Comparison of contraction constraints 117
5.2 Cart-pole: Comparison of contraction constraints 117
5.3 Quadrocopter navigation: Comparison of contraction constraints 118
5.4 Quadrocopter holding pattern: Comparison of contraction constraints . 118
5.5 Mountain car: varying δlossy . 119
5.6 Cart-pole: varying δlossy . 119
5.7 Quadrocopter navigation: varying δlossy 120
5.8 Quadrocopter holding pattern: varying δlossy 120

6.1 Last layers of the DCCME’s vanilla feedforward architecture, hθ(s, a) = Wψϑ(s, a)
and αθ(s, a) = σ(hθ(s, a)) with σ as a softmax layer. 128

6.2 Group Shrinkage weight multiplier: ηλ= 0.2 and ω= 0.4 132
6.3 Adapting σ(·) = TopNmax(·) (Shazeer et al., 2017) as the last layer

activation function in a deep embedding with vanilla Adam weight
updates, where hθ(si, ai) = Wψϑ(si, ai) and αθ(si, ai) = σ(hθ(si, ai)):
i) Sparse inference only activates output nodes {αj(si, ai)}j={1,4}. ii)
The sparse backprop pass updates only Wi := {wj:}j={1,4} in the last
layer where wj: is the jth row in W. Note that {wj:}j={2,3,5} ̸∈ Wi. . . . 133

6.4 Tmod-g-trunc modified truncated gradient: i) W̃D̂ defines the set of weight
groups (without bias terms) that were updated by Adam in minibatch D̂.
Group-shrinkage is applied to all inactive weight groups i.e. ∀wj: ̸∈ W̃D̂.
ii) At the end of the shrinkage backprop phase, ∀wj: ∈W whose length
(excluding bias terms) ||wj:||2 == 0 (dashed/grey) are removed. 134

6.5 ACCME architecture: yellow and green are weighted sum layers with
ReLU activations, red is weighted sum with TopNMax, blue is scalar-
valued weighted sum only. DCCME’s red layer is a dense softmax. . . . 135

6.6 Mountain car: DCCME activation functions 140
6.7 Cart pole: DCCME activation functions 140
6.8 Quadrocopter navigation: DCCME activation functions 141
6.9 Quadrocopter holding pattern: DCCME activation functions 141
6.10 ACCME-Top40Max (mountain car) last layer weight group sparsity

during model training: for policy iterations k = {1, 2, 3} (top to bottom),
every plot contains ||wj:||2 for each wj ∈W. The plots on the left are
at the end of the initial phase (fig. 6.3) and those on the right are at
the end of the weight shrinkage phase (fig. 6.4a) just before pruning. . 142

6.11 DCCME: compression set size |C| . 143

7.1 Mountain car: Algorithm comparison 146
7.2 Cart-pole: Algorithm comparison . 146
7.3 Quadrocopter navigation: Algorithm comparison 147
7.4 Quadrocopter holding pattern: Algorithm comparison 147

A.1 Approximate regression matching pursuit (Regression MP) vs. approxi-
mate RKHS norm matching pursuit (RKHS Norm MP) for sparsifying
B in an embedding. Each method was run 10 independent times from
existing trajectory data for both mountain car and cart-pole. 177

A.2 DQN: Varying the number of minibatches per transition affects sample
efficiency. Empirical discounted return is presented for each MDP. . . . 178

B.1 Geometric interpretation of regression and Π. 189
B.2 L1 (LASSO) and L2 (ridge regression) regularisation for β ∈R2. . . . 195
B.3 Equivalent concepts in RKHS theory. 198
B.4 Euclidean projections onto the L1-ball for β ∈R2. 210
B.5 Feedforward neural architecture at the ℓth layer, with bold lines illus-

trating information flow. 218
B.6 Individual weight shrinkage . 221

List of Tables

2.1 Notation inherited from Song et al. (2010) 47
2.2 Approximate policy iteration schemes; |D|= |S ′|=n. Cubic complex-

ities are due to matrix inversion and therefore ripe for more efficient
inversion techniques. †LSTD or BRM complexities. ‡ Pseudo MDPs
have policy improvement suboptimality guarantees, however KS and
CME also have explicit consistency results such that their approximate
MDPs converge to the actual MDP in the limit of infinite data; LAM
parametric lacks this quality because its feature representation is not
augmented with new data. ⋆KS cross-validation scheme is quadratic,
however if hyperparameters are known then this is linear. 58

4.1 MDP-specific parameters for PCME . 89

5.1 MDP-specific a priori parameters for CCME 121

List of Tables xix

6.1 DCCME architecture hyperparameters (all MDPs) 129
6.2 ACCME architecture hyperparameters (in addition to table 6.1) 134

7.1 Computational complexity of algorithms developed in this thesis at the
kth policy iteration, which should be compared to table 2.2. †Although
ACCME has convergence guarantees to the optimal policy defined by
its pseudo-MDP, its neural network embedding does not enjoy the
consistency guarantees that a kernel-based embedding has i.e. kernel-
based embeddings will tend to the real MDP in the limit of infinite data.
‡PCME batch model construction. N is ACCME’s last layer sparse
activation count. See table 7.2 for more terminology. 145

7.2 Computational complexity of algorithm components at the kth pol-
icy iteration. CCME Lasso components have complexity l=m2

chol +
flasso(|Ck|,mchol) e.g flasso=mchol|Ck|2 (Friedman et al., 2010) or flasso=mchol|Ck|
(Efron et al., 2004). N∗

lasso and N∗
L1-Proj are the size of the sparsified

α(s, a) which varies for each embedding evaluation. 148

B.1 Least-squares computational complexity (scalar-valued f̂) for training
and function evaluation where n is the size of the training set. 206

Nomenclature

Symbols

X Vector space
x Element x = [x1, .., xdim(X)]⊤ ∈X
xj Member of x

dim(X) Vector space dimensionality
|X | Vector space cardinality (element count)
X Random variable whose instance is an x

X Matrix of n vectors, [x1, ...,xn]⊤ ∈ Rn×dim(X) where xi ∈ X

S, s, S, S State nomenclature
s′, S ′ Successor state to an s or S, also st+1 is a successor to st
A, a, A, A Action nomenclature
Z, z, Z, Z State-action nomenclature where Z = S×A
r Reward function r :S×A→ [0, rmax], rmax ∈R+

P Markov transition distribution S ′ ∼ P (·|S = s, A = a)
P1 Start state distribution St= 1∼P1(·)
γ Returns discount factor ∈ [0, 1)
M MDP tuple ⟨S,A, P, P1, r, γ⟩

π Stochastic policy a ∼ π(·|s) or deterministic a = π(s)
vπ(s) Value function at s ∈ S, vπ ∈ RS

vπ Vector of state-value function evaluations [vπ(s1), ..., vπ(s|S|)]⊤

qπ(s, a) Action-value function at (s, a) ∈ S×A, qπ ∈ RS×A

D Dataset whose ith element is (s, a, r, s′)i
ψ, Ψ State-action features ψ :S×A→Fψ, Ψ = [ψ((s, a)1), ...,ψ((s, a)n)]⊤

ϕ, Φ State features ϕ :S →Fϕ, Φ = [ϕ(s1), ...,ϕ(sn)]⊤

H Hypothesis space or a Hilbert space
K Kernel function K : (S×A)×(S×A)→ R

xxii Nomenclature

K Kernel matrix with element Kij = K((s, a)i, (s, a)j)
HK RKHS of scalar-valued functions RS×A, with kernel K
K((s, a), ·) Implicit state-action feature map φ(s, a)∈HK

L Kernel function L :S×S → R

L Kernel matrix with element Lij = L(si, sj)
HL RKHS of scalar-valued functions, RS with kernel L
L(s, ·) Implicit state feature map ϕ(s)∈HL

Acronyms / Abbreviations

MDP Markov decision process
MBRL Model-based reinforcement learning
RL Reinforcement learning
DP Dynamic programming
PI Policy iteration
RKHS Reproducing kernel Hilbert space
CME Conditional mean embedding
PCME Parametric conditional mean embedding
CCME Compressed conditional mean embedding
ACCME Actively compressed conditional mean embedding
LAM Linear action model
FLAM Factored linear action model
ERM Empirical risk minimisation
PERM Penalised empirical risk minimisation
OLS Ordinary least squares

Chapter 1

Introduction

1.1 Foreward

Artificial intelligence (AI) is an ubiquitous term that now pervades the layman’s
vernacular and is usually accompanied with misunderstanding and hype about the
imminent existential threat that the research community may unleash on humanity. In
computer science it is an umbrella term used to describe a range of data-driven machine
learning algorithms such as supervised, unsupervised and sequential decision-based
learning. This investigation focusses on reinforcement learning (RL) (Sutton and Barto,
1998); a set of reward-based value-prediction and sequential decision optimisation
control algorithms.

It is still uncertain if in the future we will be able to build super-intelligent machines.
But as biological human computer scientists in the present, we are developing algorithms
that can learn increasingly sophisticated behaviour that may eventually equal or surpass
human abilities in domains that are as general as possible. There exists several niche
domains where state-of-the-art sequential decision-making algorithms have surpassed
the performance of their biological counterparts. These algorithms are either entirely
based around a principled RL approach or have a subset of components that are
RL-related. Thus they offer clues about which algorithmic components have been
successful in unlocking super-human decision-making, but more importantly they offer
clues about what components are lacking in the current offerings.

In the realm of competitive games, AlphaGo’s 2015 victory (Silver et al., 2016) over
European champion Fan Hui at the game of Go, shortly followed by world champion Lee
Sedol’s defeat in 2016 demonstrate the progress AI research has made. Such watershed
moments in competitive play come after a long line of human-beating algorithms that
stretch back to Tesauro (1994) in the game of Backgammon. Given also the publicised
development of the deep Q-network (DQN) (Mnih et al., 2015) and its subsequent
variants, achieving human-level performance playing a subset of Atari games in the

2 Introduction

arcade learning environment (ALE) (Bellemare et al., 2015), the general public can be
forgiven for thinking that the rise of superintelligence (Bostrom, 2014) is imminent.
But contrary to popular belief, these algorithms remain confined to specialised domains.
Although AI algorithm development does pose a risk that will instigate significant
disruption to society as the automation revolution approaches, the ‘AI apocalypse’
remains firmly in the distant future. Both algorithms assume unfettered access to
their environments such that transition data is cheap and abundant. DQN assumes
unbridled access to the ALE and has no dynamics model. Alpha-Go is programmed
with the deterministic rules of Go and therefore has both a simple and perfect model of
its environment to optimise its policies with. This thesis focusses on a more real-world
practical goal; learning imperfect transition models in unknown environments with
non-linear stochastic dynamics and deploying them in policy optimisation. Intimately
tied to this is the question of learning rich feature representations and this thesis
develops three algorithms to explore how the choice of function approximation can
affect the stability of policy learning.

1.1.1 Model-based vs model-free RL

A formal introduction to RL is deferred until Chapter 2, however a high-level summary
of value-based RL behavioural learning is described below. Referring to fig. 1.1, an
environment is defined to be a Markov decision process (MDP) (Bellman, 1957) with
states s∈S and actions a∈A. At the kth learning iteration an agent’s behaviour is
defined by its stationary policy πk, such that at time step t with the agent in state
st, an action is drawn at∼ πk(·|st) and the environment transitions by emitting a
successor state st+1 ∈S and immediate scalar reward rt+1 ∈R from the MDP’s hidden
stationary distribution (st+1, rt+1)∼P (·|st, at). By repeating this process over many
time steps, each transition {s, a, r, s′}1 is collected into a repository Dk.

At each k, value-based RL aims to estimate either state-value functions vπk :S →R
or action-value functions qπk :S×A→R, both of which estimate the utility of following
πk from initial states or state-actions respectively. Utility is defined as how well πk
can cumulatively collect reward r∈R under the hidden stationary distribution. How
well an agent’s policy can collect reward determines how well it is performing in the
specified task that the MDP defines. Policy improvement or ‘control’ uses the updated
value function to extract an improved policy for use in the next (k+1)th learning
iteration. The aim is to find an optimal policy which no other policy can outperform
in collecting reward.

Given data Dk, model-free control updates value functions using scalar targets in
data pairs {(s, a), r} whereas model-based control updates value functions by first

1Shorthand notation used to represent {st, at, rt+1, st+1} when dropping the time index.

1.1 Foreward 3

Figure 1.1 Basic value-based RL Architecture (adapted from Sutton and Barto (1998)).
At the kth iteration, a policy is used to gather more experience such that it can be
improved by either direct model-free updates or by planning using a transition model.
New experience of nnew transitions is added to past experience with a total of nk
transitions available for training.

k++; (vπk−1 , qπk−1)→ πk

experience
Dk=Dk−1

⋃{(s, a, r, s′)i}nnew
i=1

model
P̂ (·|s, a)

model-free
(scalar targets r)

model construction
(vector targets s′)

planning

at∼πk(·|st)

t+
+

(s,r)
t+1 ∼ P (·|

s t
,a
t
)

acting

constructing a model P̂ (·|s, a) using data pairs {(s, a), (r, s′)}. Atkeson and Santamaria
(1997); Deisenroth and Rasmussen (2011) provide strong evidence that maintaining a
model can reduce task sample complexity. Henaff et al. (2017) identify the reason for
this sample efficiency as due to rich high-dimensional targets (e.g. in a supervised loss)
used in model construction which extract more information from the transition data.

Sutton (1990) defines RL planning as the process by which an agent takes a model
of the environment and outputs an improved policy πk+1, a process which is known as
model-based RL (MBRL). There are many approaches that define how the model is
created and used in planning. As implied by the diagram, the joint distribution itself
may be explicitly estimated such that samples can be drawn to estimate utility, but
other approaches may only estimate this distribution implicitly and further examples
will be summarised below.

Other RL flavours exist such as actor-critic algorithms (Peters and Schaal, 2007),
(Szepesvári, 2010, sec. 4.4) or the related direct policy search (Peters and Schaal, 2008;
Sutton et al., 1999a; Williams, 1992) where a policy is represented as a function in
its own right whose range usually resides in a continuous action space. However this
investigation focusses on value-based policy optimisation.

4 Introduction

1.1.2 Neuropsychological motivation for MBRL

Informally from human experience we can validate for ourselves that a certain amount
of our behavioural-planning occurs in our heads; thinking about certain tasks (such as
navigating a metropolis, refining a tennis backhand or making a chess move) before
executing a set of actions is commonplace. It is said that we possess models of the
environment in our heads to plan future behaviour. Our internal models are also not
precise reproductions of the complex dynamics of our real world, instead they contain
enough information to plan adequate behaviour.

Pavlov (1927) first investigated canine behaviour made malleable by a reinforcement
stimulus in temporal proximity to another neutral stimulus. He famously showed that
dogs could be conditioned to salivate (a manifestation of behaviour) prompted by the
ringing of a bell (as the neutral stimulus). If the bell was rung during ‘training’ in the
temporal vicinity of food being presented, then bell-induced salivation was successfully
conditioned to occur in ‘post-training’ regardless if food was presented or not. No
behavioural conditioning was observed if during training the bell was rung outside
the temporal vicinity of food presentation. Evidence for this Pavlovian learning has
provided partial justification for computational value-based RL which conditions agent
behaviour with reward signals. Related to this is the temporal credit assignment
problem i.e. what actions taken in a sequence of decisions should be attributed to
the reward collected. Temporal difference (TD) (Sutton, 1988) methods (a class of
which DQN is a member) solve this problem by nudging value functions by an error -
with a stronger nudge if a reward is unexpected. Schultz et al. (1997) claim tentative
evidence that such model-free updates possess similarities to the observed outputs of
dopaminergic neurons in the mammalian brain.

Pavlov’s dogs did not actively plan to salivate upon the ringing of a bell. Rather
they were passive participants to conditioning that became instinctive behaviour.
Model-free RL updates are characterised by updating the the long-term estimate of
expected reward with passive value function updates. There is no active planing to
modify agent behaviour. It is widely accepted (Doll et al., 2012) that a more active
model-based animal learning mechanism exists. Dayan and Berridge (2014) argue that
in laboratory investigations, the passive model-free mechanism is not enough to explain
all observed animal decision making phenomena. The detail of how model-based and
model-free mechanisms coexist is still under debate. Dayan and Niv (2008) show
that model-based mechanisms take a more active role in updating estimates of long
term expected reward. Maintaining a forward model enables an agent to re-plan
its behaviour at will, rendering it more adaptive and responsive to its environment,
liberating it from being a passive laboratory learner.

1.1 Foreward 5

1.1.3 Existing MBRL Approaches

There is as yet no consensus about how best a transition model should feature in MBRL
algorithms. The Dyna architecture (Sutton, 1991) builds models from experience
that can predict reward and successor states {r, s′} conditioned on current states and
actions {s, a}. Either one-step or entire trajectories are imagined to form successive
simulated scalar TD targets, such that value function updates consist of a mixture of
real and simulated targets. Recent variants include DQN integration (Gu et al., 2016)
and a model that explicitly separates transient and permanent memories (Silver et al.,
2008). Yet this approach has not yet been inducted into the accepted DQN benchmark
suite (Hessel et al., 2018) and value function updates still rely on model-free updates.
Kaiser et al. (2019) demonstrate sample efficiency but ultimately final policies are not
as good as model-free counterparts. A question that is not currently answered is that
if a model exists that can be efficiently updated online and model-based planning is
also computationally efficient, then do we need model-free updates at all?

Classical optimal control (OC) (Boyd and Vandenberghe, 2009, chapters 4,10)
is another approach to model-based sequential decision-making. Both OC and RL
operate in an environment seeking to optimise a cost function by finding an optimal
policy. Characteristically however, in the convex optimisation literature classic OC
assumes various structural assumptions where the transition model is usually provided
a-priori. Classical optimal control techniques (e.g. Linear-Quadratic Regulation
(LQR)) assume explicit access to exact transition models, ensuring strong policy
optimisation guarantees (Kober et al., 2013, sec 1.2). However these assumptions
break down when approximate models are used. This is in contrast with MBRL
that estimates statistical models directly from noisy experience. However there have
been attempts to fuse sample-based models with OC. Embed to control (Watter
et al., 2015) learns to generate image trajectories from a latent space in which the
dynamics are constrained to be locally linear, with an OC algorithm deployed for
policy optimisation. Applying OC to learnt lower dimensional state representations
is common e.g. Wahlström et al. (2015) learn a space within which model predictive
control can be applied.

Kroemer and Peters (2011) present a non-parametric dynamic programming algo-
rithm where kernel density estimates are used to model the system dynamics. In a
related approach (Ormoneit and Sen, 2002) present a non-parametric method that
represents continuous state MDPs on a discrete set of states over which the evaluation
of the value function is maintained. Other non-parametric approaches have been pro-
posed such as maintaining a GP for the transition dynamics such as Gaussian process
dynamic programming (Deisenroth et al., 2009) and PILCO for direct policy search
(Deisenroth and Rasmussen, 2011). However under certain non-Gaussian assumptions

6 Introduction

GP methods require expensive numerical integration for inference (Rasmussen and
Ghahramani, 2002).

Related to extracting lower dimensional state representations is the use of autoen-
coders as an unsupervised learning technique in the deep neural network literature
(Gregor et al., 2014; Vincent et al., 2008), examples of which have been used to optimise
end-to-end ‘visuomotor’ policies (Levine et al., 2016). State-temporal representation
models (Ha and Schmidhuber, 2018) and imagination augmented policy learning
(Weber et al., 2017) all require separate model, policy and memory modules. Common
to these methods is the learning of a separate transition model and a policy module,
used to fit good policies by trajectory optimisation using model-imagined roll-outs.
This approach is popular in the deep-learning community and best summarised by
Henaff et al. (2017).

1.2 Rationale

Policy performance guarantees are rarely forthcoming for model-based approaches that
insist on separating transition model, policies and value functions into independent
components. Therefore this investigation begins with the recently developed conditional
mean embedding (CME) (Grünewälder et al., 2012a) approach whose transition model
is an integral part of the value function. Consequently CME policy improvement
guarantees are a function of model accuracy. The following briefly describes the
focus on environment models that are integral components of value function estimates
themselves as described by the Bellman operator (Bellman, 1957). This will be
elaborated on in Chapter 2 but a brief introduction is required to fully describe the
goals of this investigation.

1.2.1 Approximate Value Prediction

If B(S) is the set of real-valued functions v :S →R, then the Bellman operator is a
map T π :B(S)→B(S) defined as

(T πv)(s) = EA∼π(·|s)

[
r(s, A) + γES′ ∼P (·|s,A)

[
v(S ′)

]]
, ∀s∈S,

= r(s, π(s)) + γES′ ∼P (·|s,π(s))
[
v(S ′)

]
, (1.1)

where the successor state’s conditional expectation is known as the transition dynamics.
Assumptions throughout this thesis include a deterministic policy (second line) and
known immediate average reward function, although a demonstration of learning the
reward function will be presented. If the reward function and transition dynamics
are known, both of which represent the environment, then T π can be shown to be

1.2 Rationale 7

a contraction (i.e. non-expansive) w.r.t the sup-norm (over S) with a fixed point
v∗ = vπ. Exact dynamic programming (DP) exploits this property by iterating the
application of T π from an initial guess v= v0 for guaranteed convergence to vπ. This
value prediction method is used in exact policy iteration (Howard, 1960) for policy
optimisation and is related to value iteration (Bellman, 1957).

If S is large or continuous, then maintaining value estimates over the entire
state space quickly becomes intractable. As an example, although a Go board looks
disarmingly discrete, the number of legal game states for a 19×19 board is ∼ 10170

(Tromp and Farnebäck, 2006), far greater than the number of atoms in the universe
which is ∼ 1080 (usually estimated from density measurements of the universe such as
in Ade et al. (2016)). Even a ‘simple’ MDP whose state space is defined on an interval
in R has an infinite number of states, therefore maintaining value estimates for each
state is impossible. The solution is to make a linear value function approximation

vπ(s) ≈ v̂π(s) := ⟨vπ,ϕ(s)⟩F , (1.2)

where s∈S, vπ,ϕ(s)∈F with state-feature representation ϕ :S →F and the Hilbert
space F is considered a feature space. Taking the conditional expectation of this linear
form leads to

ES′ ∼P (·|s,a)
[
v̂π(S ′)

]
= ⟨vπ, µS′|s,a⟩F , (1.3)

where the actual embedding µS′|s,a :=ES′ ∼P (·|s,a)
[
ϕ(S ′)

]
is the expected next feature

map. If a parametric feature space is chosen F = Fϕ, substituting the approximation
scheme (1.2) and (1.3) into equation (1.1) leads to the following approximate relation-
ship which is no longer a contraction for any given explicit ϕ (Bertsekas, 2012) (see
also section 2.5.2),

⟨wπ,ϕ(s)⟩Fϕ
≈ r(s, π(s)) + γ⟨wπ, µS′|s,π(s)⟩Fϕ

=:T πv̂π, s∈S. (1.4)

Methods such as least squares temporal difference learning (LSTD) and Bellman
residual minimisation (BRM) are required (see also section 2.5.2) to fit the value
function i.e. find an appropriate approximate solution ŵπ ∈Fϕ to equation (1.4)
using sampled transition data. Value function approximation coupled with policy
improvement is known as approximate policy iteration (API).

Most API literature is based on model-free algorithms where µS′|s,a is not explicitly
estimated and instead sample successor states are used to fit ŵπ. API is notori-
ous for being difficult and prone to policy instability, even in linear value function
approximation schemes as described by definition 1.

8 Introduction

Definition 1 (Deadly Triad (Sutton and Barto, 2018, Section 11.3)). Three desirable
algorithmic characteristics that when used together, conspire to induce instability in
value-based RL;

1. Bootstrapping - Reusing existing approximate value function estimates for value
function updates is efficient. However bootstrapped approximate value function
update targets are both constantly changing and biased.

2. Function approximation - Required to generalise to large or continuous state
spaces. However Bellman operators acting on fitted value functions may no
longer be contractions.

3. Off-policy learning - Using all collected data to make value-function updates
minimises data wastage. Collecting data from a behaviour policy in order to learn
a different target policy aids exploration. However this may lead to instabilities
due to the data distribution induced by the behaviour policy being different to the
data distribution of the intended target policy.

1.2.2 CMEs and Pseudo MDPs

The CME approach offers a way to avoid these instabilities and, counter-intuitively,
does so by the introduction of an approximation to µS′|s,a. It is sufficient to learn the
function µ :S×A→F by minimising the ideal loss

µ̂= arg min
µ∈ H

[
E(S,A) ∼D,S′ ∼P (·|S,A)||µ(S,A)− ϕ(S ′)||2F

]
, (1.5)

where D is a distribution over S×A and H is the hypothesis space in which to search
for the embedding function. Importantly the CME chooses F =HL as a reproducing
kernel Hilbert space (RKHS) (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini,
2004, p 63) (see section B.4.2 for a summary) of scalar-valued functions v : S →R.
State features ϕ are implicit and are associated with kernel L :S×S→R. The batch
solution to the penalised version of equation (1.5) (see also section B.4.3) using data
set D is the approximate embedding µ̂S′|s,a. This defines the approximate conditional
expectation,

Ê µ
(s,a)[v] := ⟨v, µ̂S′|s,a⟩HL

= ⟨v,
|S′|∑
j=1

αj(s, a)ϕ(s′
j)⟩HL

, s′
j ∈S ′

=
|S′|∑
j=1

αj(s, a)v(s′
j), (1.6)

where S ′ := {s′
i}
n
i=1 are the successor states in data set D and the conditional weights

αj(s, a)∈R are specified by the minimiser of equation (1.5). Most importantly equation

1.2 Rationale 9

(1.6) is due to the reproducing property (Aronszajn, 1950) which means that the
embedding approximation can be constructed as a finite weighted sum of value function
estimates over training data S ′ without explicitly representing ϕ. By forming an
approximate optimal Bellman operator and only considering value estimates over S ′,

(T̂ ∗v)(s′) := arg sup
a ∈ A

[
r(s′, a) + γÊ µ

(s′,a)[v]
]
, ∀s′ ∈S ′, (1.7)

then if T̂ ∗ is a contraction, it has a fixed point v∗ = v∗
µ which is the optimal value

function for the embedding. Once v∗
µ is found then an action-value function is formed

such that a greedy policy can be defined for policy optimisation.
The CME belongs to a larger class of MDP abstractions known as finite-induced

pseudo-MDPs (Yao et al., 2014a). The premise is that the real MDP defined by
the actual hidden expectation and reward function, which may be defined over large
discrete (either finite or countably infinite) or even continuous state spaces S, can be
approximated by an approximate pseudo-MDP. The approximate MDP can be solved
exactly using a DP algorithm so long as the constraint

||α(s′, a)||1≤ 1, ∀(s′, a)∈S ′×A,

is satisfied where α(·) := [α1(·), ..., α|S′|(·)]⊤ ∈R|S′|. Algorithm computational complex-
ities are decoupled from the size of the state space |S| and instead depend on training
set size |D|.

Unlike model-based control efforts popular in the deep learning community (Ha
and Schmidhuber, 2018; Henaff et al., 2017), CME API is equipped with policy
improvement sub-optimality guarantees as a function of the underlying model accuracy
(Grünewälder et al., 2012a, theorem 3.2). The CME enjoys the strong theoretical
framework of RKHS theory (Christmann and Steinwart, 2007), including consistency
results (Grünewälder et al., 2012a, lemma 2.2) of the embedding such that in the limit
of infinite data |D|→∞, the trained pseudo-MDP converges to the real MDP.

CME API avoids the pitfalls of the ‘deadly triad’ of algorithm instability (definition
1). Constructing an approximate MDP and solving it exactly means that convergence
to its value function is guaranteed. Biased sample value function updates (such as in
TD algorithms) are avoided as full backups are available in the approximate MDP.
Off-policy data is also used to build an approximate MDP and therefore doesn’t affect
value function convergence. It remains to be seen however if CME-API is stable if D is
not given a priori and this question is the subject of the first part of this investigation.

CME policy iteration presented in Grünewälder et al. (2012a) has several shortcom-
ings. Model construction is a batch regression problem with non-parametric function
approximation. Computational cost for model construction scales cubically and plan-
ning scales quadratically with the training set size |D|, rendering the algorithm useless

10 Introduction

for large MDPs where data is abundant. In addition, the current CME assumes
sufficient data a priori for learning good policies. It is not applied to online contexts
as described in fig. 1.1 where the agent starts with nothing and frequently returns to
the environment to gather more data.

Other kernel-based methods include probabilistic GP-regression for value-based
model-free RL (Engel et al., 2005, 2003), model-based direct policy search (Deisenroth
and Rasmussen, 2011) and model-based approximate RL (Deisenroth et al., 2009). The
advantage with the CME method is that it has strong policy improvement guarantees,
makes no distribution assumptions and requires no sampling during value prediction
and policy improvement - samples are only used to estimate the CME transition model.

1.2.3 Investigation Summary and Contributions

Focus is made on improving the practicality of the non-parametric batch CME al-
gorithm by developing techniques that reduce computational complexity of model
construction and policy planning. To solve this problem requires an investigation in
parametric and non-parametric linear value function approximation; how does the
choice of F and H affect policy learning stability? Is it possible to introduce deep
non-linear function approximators in order to learn rich data-driven representations
without compromising policy learning stability? Is it possible to learn a transition
model in online settings (fig. 1.1) without compromising policy learning stability?

Chapter 2 (Literature Review): Basic RL, known finite MDPs with dynamic
programming and model-free methods in unknown finite MDPs are summarised.
Function approximation (where penalised risk minimisation, regularisation, RKHS
theory and neural networks are reviewed in appendix B.4) fused with conventional value-
based RL is also reviewed. Focus is on the instability of approximate policy iteration
(API) when function approximation, off-policy learning and bootstrapping are used,
motivating the use of different approaches. Finally, existing benchmark model-based
pseudo MDPs including CMEs are summarised as components of a policy iteration
algorithm with emphasis on strong theoretical guarantees that mitigate instability.
This motivates further development of CMEs and pseudo-MDP architectures.

Chapter 3 (Benchmark Algorithms and Initial Improvements) Are pseudo-
MDP algorithms really that stable? Benchmark Pseudo-MDPs are implemented and
compared with a focus on i) task performance and ii) timings for model construction and
planning. CME improvements are made to i) improve model construction complexity
with a fast matrix inverse and ii) use of a post hoc fast L1-projection (Duchi et al.,
2008) of the embedding weights to satisfy the pseudo-MDP contraction constraint.

1.2 Rationale 11

In addition, data is no longer assumed given a-priori such that an explorative policy
iteration (explorative-PI) is developed in order to instigate exploration. Experimental
evidence is provided for algorithm comparisons which also suggests that explorative-PI
better explores the MDP. All Pseudo-MDP algorithms are shown to be stable but they
suffer high computational costs in both planning and model construction, motivating
us to seek modifications that make the algorithms more practical.

Chapter 4 (Parametric CME and Conservative Policy Updates) Is a para-
metric CME (PCME) policy iteration algorithm really that unstable? Both H and F
are chosen as parametric in order to develop a PCME with the hope that computational
complexity is reduced in model construction and planning. Both explicit state-action
ψ :S×A→Fψ and state ϕ :S →Fϕ feature representations are learnt using a modified
kernel matching pursuit (Vincent and Bengio, 2002) algorithm that maintains compact
representations in a data driven process. Unlike the non-parametric CME, the PCME
algorithm requires least squares temporal difference (LSTD) (Bradtke and Barto,
1996) or Bellman residual minimisation (BRM) (Baird, 1995) to fit the value function.
Both fitting methods are adapted to the model-based embedding setting and are
compared empirically. Policy learning instability is demonstrated to exist as discussed
in the literature review. Stability is restored using conservative greedy policy updates
inspired by Kakade and Langford (2002). A deep PCME is proposed as future work.

Chapter 5 (Non-Parametric Sparsified CME) Given the instabilities induced
by a parametric value function, we return to the non-parametric CME with the aim
to sparsify the embedding for more computationally efficient model-construction and
planning. Rewriting the embedding’s penalised RKHS empirical loss function allows
the derivation of a more efficient model construction process when combined with
a sparse state-action representation and sparse successor state set C ⊆ S ′. Group
lasso was used to try and maintain C by sparsifying the embedding’s weight matrix,
however this ultimately failed. The final practical solution to this problem is provided
externally from this thesis and is a lasso algorithm summarised in the appendix section
C.1. The external work also includes a lasso component to maintain the post hoc
pseudo-MDP contraction constraint. The final algorithm known as the compressed
CME (CCME) with all sparsified components is implemented in explorative-PI and
compared to its predecessors.

Chapter 6 (Differentiable CME) Dissatisfied with the computational complexity
of batch model training, an actively compressed CME (ACCME) is developed as a fully
end-to-end differentiable CME. Embedding weights α(·) are implemented as a neural
network where each output neuron αj(·) has a one-to-one relationship with a member

12 Introduction

of C. Unlike the post hoc contraction constraint of the CME and CCME, ACCME
maintains the constraint on α(·) during both training and inference by a sparse softmax
activation function (Shazeer et al., 2017). The value function remains non-parametric
in order to maintain a pseudo-MDP with contraction guarantees; model training is
therefore driven by a non-parametric RKHS loss function. It was found that applying
the CCME method for controlling C was insufficient for the hardest MDP. Instead
groups of last layer weights wj each leading to each jth output neuron were degraded
using a group lasso version of the truncated gradient update (Langford et al., 2009)
during SGD. Zeroed groups of weights (and therefore corresponding output neurons)
are removed along with members of C. The novelty is that group lasso truncated
gradient updates are only applied to inactive weight groups (induced by the sparse
softmax function) for each backprop pass. Frequently inactive output neurons ‘wither
away’ in a ‘use-it-or-lose-it’-inspired neuron pruning process. Surprisingly ACCME’s
architecture and pruning mechanism works with little adjustment between control
tasks.

Contributions

The work contained in this thesis is spread between two conference and two workshop
publications.

• Lever, G., Stafford, R., and Shawe-Taylor, J. (2014). Learning Transition Dy-
namics in MDPs with Online Regression and Greedy Feature Selection. In
Autonomously Learning Robots Workshop (ALR NIPS Workshop), Chapters 4
and 5).

• Lever, G. and Stafford, R. (2015). Modelling Policies in MDPs in Reproducing
Kernel Hilbert Space. In AIStats, pages 590–598, Chapters 4 and 5).

• Lever, G., Shawe-Taylor, J., Stafford, R., and Szepesvári, C. (2016). Compressed
Conditional Mean Embeddings for Model-Based Reinforcement Learning. In
Association for the Advancement of Artificial Intelligence (AAAI), pages 1779–
1787, Phoenix, Arizona, Chapters 3 and 5).

• Stafford, R. and Shawe-Taylor, J. (2018). ACCME : Actively Compressed
Conditional Mean Embeddings for Model-Based Reinforcement Learning. In
European Workshop on Reinforcement Learning (EWRL), Lille, France, Chapter
6).

Chapter 2

Literature Review

2.1 Reinforcement Learning

2.1.1 Overview

Bellman (1957) framed the discrete-time stochastic learning problem as solving a
Markov Decision Process (MDP). RL algorithms rely on the assumption that an agent’s
environment is modelled as an MDP within which sequential decision optimisation is
formalised.

Definition 2 (MDP). Given sets S and A, known as the state and action spaces,
stationary transition kernel P , start-state distribution P1, immediate reward function
r :S×A→ [0, rmax] and discount factor γ ∈ [0, 1) then an MDP is defined as the 6-tuple
M := ⟨S,A, P, P1, r, γ⟩.

The stationary transition kernel P assigns a probability distribution P (·|s, a) over S
for each (s, a)∈S×A. If the state space is discrete (either finite or countably infinite)
then the probability distribution assigns a transition probability P (s′|s, a)∈ [0, 1] for
the transition (s, a) 7→ s′ i.e. P : S×A×S→ [0, 1]. If the state space is continuous (or
uncountable e.g. when states are in R) then S is assumed to be a measurable space
(Ω,Σ) where for example Ω =R and Σ is a collection of all open subsets (intervals) in
R (Grimmett and Stirzaker, 2001, p 91). The probability distribution (or measure -
see appendix B.3.1) assigns probabilities to the elements in Σ i.e. P : S×A×Σ→ [0, 1]
(Ferns et al., 2012). Solving a continuous MDP using classic policy iteration techniques
that concern this thesis is intractable. The majority1 of this thesis is concerned with
approximate MDPs whose state and action sets are discrete. A formal description of
continuous MDPs can also be found in Yao et al. (2014a).

1Continuous MDPs are briefly revisited during the review of pseudo-MDPs. Note that all
simulated MDPs expressed in floating point arithmetic are in fact very large but finite MDPs.

14 Literature Review

An agent interacts with an MDP using a stochastic stationary control policy which
assigns to each state s∈S a probability distribution π(·|s) over A. If the action
space is finite then the probability of drawing action a in state s is π(a|s). Beginning
with an initial state drawn from an initial state distribution St= 1∼P1(·), an agent
interacts with an MDP such that at time t∈N i) an action is drawn At∼ π(·|St), ii)
the environment transitions to a successor state St+1∼P (·|St, At) and iii) the MDP
returns to the agent an immediate scalar reward signal Rt+1 = r(St, At). A sampled
transition at time t is defined as the 4-tuple {s, a, r, s′} of the random variables
{St, At, Rt+1, St+1}. An agent is said to act continuously until it reaches an absorbing
state or episodically if it generates many trajectories each with H transitions, the
latter being typical for the experimental settings explored in this investigation.

An MDP’s stationary transition dynamics depend only on the current state and
action i.e. St+1∼P (·|Si, Ai ∀i < t) :P (·|St, At). This ‘memoryless’ characteristic is
known as a Markov property which assumes all information used to define a transition
is contained in the conditioning state-action pair. Similarly a stationary policy is
defined independently of past states, extracting all required information from the
current state when drawing new actions. Real world environments are frequently
non-Markovian, however the cost of the Markov assumption is outweighed by the
simplifications made to RL theory.

An agent’s ‘trajectory’ (or ‘rollout’) is the realised values of the collection of
random variables Ξt:H := (St, At, St+1, At+1, ..., St+H , At+H), where t is the start index
(usually t= 1) and trajectory length H ∈N. Notation Ξt is used to define a trajectory
of length H =∞. Trajectories are drawn from a joint distribution2 denoted by
Ξt:H ∼ p(·) := p(St, At, St+1, At+1, ..., St+H , At+H). By fixing the policy π, an agent’s
behaviour is ranked by how much discounted cumulative reward it can collect in
expectation under the joint trajectory distribution.

Definition 3 (Return). By following a stationary policy π, the random process of dis-
counted return is Rγ(Ξt:H) := ∑H

τ=1 γ
τ−1Rt+τ = ∑H

τ=1 γ
τ−1r(St+τ , At+τ) then an agent’s

expected discounted cumulative reward is

J(π) :=EΞt:H∼p(·)
[
Rγ(Ξt:H)

]
,

= lim
H→∞

EΞt:H∼p(·)

[
H∑
τ=1

γτ−1Rt+τ

]
.

2Distribution notation is abused here only to distinguish what random variable belongs to each
component distribution in the upcoming factorisation.

2.1 Reinforcement Learning 15

By factorising the joint distribution using the chain rule for conditional probabilities
and removing conditional dependencies made redundant by a Markov property, then

p(Ξt:H) = p(St, At, St+1, ..., St+H , At+H),

= P1(St)π(At+H |St+H)
H∏
τ=1

π(At+τ−1|St+τ−1)P (St+τ |St+τ−1, At+τ−1),

=⇒ p(Ξt:H |St) = π(At+H |St+H)
H∏
τ=1

π(At+τ−1|St+τ−1)P (St+τ |St+τ−1, At+τ−1),

= π(At|St)P (St+1|St, At)p(Ξt+1:H |St+1), (2.1)

where P1 is the start-state distribution.

Definition 4 (State-value function (Sutton and Barto, 1998)). By fixing π, a state-
value function vπ :S →R is the expected cumulative discounted reward collected by an
agent with respect to the trajectory distribution p(·|St) whose conditioning variable is
fixed at St = s (i.e. start-state is deterministic),

vπ(s) = EΞt:H∼p(·|St=s)
[
Rγ(Ξt:H)

]
, s∈S,

= lim
H→∞

EΞt:H∼p(·|St=s)

[
H∑
τ=1

γτ−1Rt+τ

]
. (2.2)

If ξt:H := {St, St+1, ..., St+H}, then by fixing the stationary policy π and marginalising
out At+τ (for all τ), then

pπ(ξt:H |St) :=
∑
A
π(At|St)P (St+1|St, At)pπ(ξt+1:H |St+1),

=P π(St+1|St)pπ(ξt+1:H |St+1),

effectively turning an MDP into a Markov reward process (MRP) ⟨S, P π, P1, r, γ⟩
where P π is the state-transition kernel. This thesis assumes deterministic stationary
policies such that At =π(St) and consequently an MDP’s state-transition dynamics∑

A π(At|St)P (St+1|St, At) =P (St+1|St, π(St)) =P π(St+1|St).

Definition 5 (Optimal state-value function and optimal policy (Sutton and Barto,
1998)). An optimal state-value function is the state-value function induced by the
optimal policy, of which no other policy in the space of stationary policies Π can
improve upon, such that

v∗(s) := sup
π∈Π

[
vπ(s)

]
, ∀s∈S. (2.3)

In simple domains whose MDPs have small finite state spaces, it is possible to visit each
state such that this definition holds. However when |S| is large, infinitely countable
or continuous then function approximation techniques are required to generalise over
states. All recent RL algorithms deploy function approximators in varying degrees

16 Literature Review

within their algorithmic components such as in state-value function approximation,
policy functions and transition models. A more detailed discussion on function
approximation and its implications for RL algorithmic convergence and stability is
deferred until later.

The action-value function is related to the state-value function and is critical in
the control domain because policies can be extracted from it which will be described
in detail later. Conditioning the trajectory distribution on the first state and action
gives,

p(Ξt:H |St, At) = P (St+1|St, At)π(At+H |St+H)
H∏
τ=2

π(At+τ−1|St+τ−1)P (St+τ |St+τ−1, At+τ−1),

= P (St+1|St, At)π(At+1|St+1)p(Ξt+1:H |St+1, At+1), (2.4)

Definition 6 (Action-value function (Sutton and Barto, 1998)). By fixing π, an action-
value function qπ :S×A→R is the expected cumulative discounted reward, collected
by an agent with respect to the trajectory distribution p(·|St, At) fixing conditioning
variables on St = s and At = a,

qπ(s, a) = EΞt:H∼p(·|St=s,At=a)
[
Rγ
t (Ξt:H)

]
, (s, a)∈S×A,

= lim
H→∞

EΞt:H∼p(·|St=s,At=a)

[
H∑
τ=1

γτ−1Rt+τ

]
. (2.5)

Definition 7 (Stationary Distribution (Sutton et al., 1999a)). An ergodic Markov
process (where states are visited an infinite number of times without any systematic
state-visitation periodicity) has a unique limiting stationary distribution. By fixing
a policy π, then an Ergodic MDP with state-transition distribution P π has a unique
stationary distribution Dπ such that

Dπ(s′) =
∑
s ∈ S

Dπ(s)P π(s′, s).

The stationary distribution Dπ(s) can be interpreted as the fraction of time spent
in s′ ∈S under the policy π (Sutton et al., 1999a). The joint distribution for future
state-actions is Dπ(S,A) :=π(A|S)Dπ(S).

2.1.2 Bellman Equations

The Bellman equations (Bellman, 1957) describe the recursive nature of value func-
tions and are the progenitors of all value-based RL. By unravelling the summa-
tion of the cumulative discounted reward (which is a random variable) by one step,
Rγ(Ξt:H) =Rt+1 + γRγ(Ξt+1:H), then the value function expectation decomposed3 by

3Notation is simplified such that the conditional distributions under which expectations are made
should be obvious from context.

2.1 Reinforcement Learning 17

equation (2.1) is

vπ(s) = lim
H→∞

EΞt:H |St=s
[
Rt+1 + γ

H∑
τ=1

γτ−1Rt+τ+1
]
, s∈S,

= EAt,St+1|St=s
[
Rt+1 + γ lim

H→∞
EΞt+1:H |St+1 [Rγ(Ξt+1:H)]

]
,

= EAt|St=s
[
r(s, At) + γESt+1|St=s,At [vπ(St+1)]

]
,

= r(s, π(s)) + γESt+1|s,π(s)[vπ(St+1)], (2.6)

where in the last line π : S →A is a deterministic function. A similar unravelling of
the action-value function using equation (2.4) gives

qπ(s, a) = lim
H→∞

EΞt:H |St=s,At=a
[
Rt+1 + γ

H∑
τ=1

γτ−1Rt+τ+1
]
, (s, a)∈S×A,

= ESt+1,At+1|St=s,At=a
[
Rt+1 + γ lim

H→∞
EΞt+1:H |St+1,At+1 [Rγ(Ξt+1:H)]

]
,

= ESt+1,At+1|St=s,At=a
[
Rt+1 + γqπ(St+1, At+1)

]
,

= r(s, a) + γEAt+1|St=s

[
ESt+1|St=s,At=a

[
qπ(St+1, At+1)

]]
,

= r(s, a) + γESt+1|St=s,At=a
[
qπ(St+1, π(St+1))

]
,

= r(s, a) + γESt+1|St=s,At=a
[
vπ(St+1)

]
. (2.7)

where in the fifth line the policy is assumed deterministic. An MDP can be re-
defined for a stochastic reward signal such that it is drawn from the distribution
(St+1, R

stoch
t+1)∼P (·|St, At) which features in the trajectory distribution p(Ξt:H). The

deterministic reward function that is used throughout this thesis is therefore equivalent
to the average immediate stochastic reward r(St, At) :=ERstoch

t+1 |St,At [Rstoch
t+1] (Szepesvári,

2010, p 8).
There are four sources of stochasticity for episodic learning in fully observable

MDPs; initial start state, policy, reward and transition dynamics distributions. We
initially restrict stochasticity to the start state distribution and transition dynamics
by assuming a deterministic immediate reward function and policy function. Learning
the immediate reward function is deferred until the final stages of this investigation.
The discount factor γ controls how important future returns are and typically γ= 0.99.
Extensions to MDPs such as partially observable Markov decision processes (POMDPs)
(Monahan, 1982) where the agent only has a partial view of the environment’s state
vector for any one state sample are not considered. POMDPs along with non-stationary
dynamics/policies are viewed as possible future extensions.

18 Literature Review

2.1.3 The Control Problem

Value-prediction refers to estimating the state-value function for a particular policy.
RL control is an umbrella term for algorithms that find optimal policies, usually
incorporating value-prediction as a subcomponent. One way of visualising the control
problem is in fig. 2.1.

Figure 2.1 Visual representation of distribution of states (blue) generated by pπ for
a 1-D state space. Both a suboptimal and optimal policy for collecting immediate
reward (red) are shown.

(a) Sub-optimal policy from some kth itera-
tion of a policy learning algorithm (b) Optimal policy

2.2 Theory of Dynamic Programming in Known
MDPs

The following summarises the theory of Dynamic programming (DP) algorithms.
Basic value prediction and control algorithms in an MDP are summarised below on
the assumption that immediate reward function r(s, a) and the transition dynamics
P (·|s, a) are known. DP for value prediction relies on iterating the Bellman operator T π

(based on the Bellman equation) that creates a converging sequence of value functions.
Similarly DP for control requires iterating what is known as the optimal Bellman
operator T ∗ until convergence to the optimal value function. In both cases contraction
properties of these operators must be adhered to and therefore it is important to
leverage some functional analysis machinery to fully describe both DP algorithms.

2.2.1 Space of Value Functions

Basic functional analysis machinery is used to show contraction guarantees w.r.t the
sup-norm for i) the Bellman operator whose fixed point is the value function and ii)
the Bellman optimality operator whose fixed point is the optimal value function.

2.2 Theory of Dynamic Programming in Known MDPs 19

Definition 8 (Space of uniformly bounded functions). A Banach space (see definition
B.8) of uniformly bounded functions is defined as B(S) := {v :S →R, ||v||∞<+∞},
where ||v||∞ := sups ∈ S

[
|v(s)|

]
.

This definition uses function notation to describe the space of value functions RS .
However a Banach space is a normed vector space (V , || · ||) and therefore equally
valid notation for an element is v := [v(s1), ..., v(sn)]⊤ ∈B(S). It is therefore easy to
see that i) the dimensionality of B(S) is equal to the number of states n= |S| and ii)
norms act along the length of the vector v. Vector notation will be used to visualise
function approximation in the latter sections. The bounded norm is made possible
by setting the absolute of the maximum immediate reward to rmax≥ 0. If γ ∈ [0, 1)
then the return objective (definition 3) is bounded |J(π)| ≤ 1

1−γ rmax and therefore the
value function norm is bounded such that ||v||∞ = sups∈S |vπ(s)| ≤ 1

1−γ rmax.
The following results are integral to the dynamic programming algorithms used for

value prediction/control.

Definition 9 (Contraction). Given a Banach space B(S) of uniformly bounded func-
tions then a mapping T :B(S)→B(S) is Lipschitz with constant L≥ 0 if

||Tu− Tv||∞ ≤ L||u− v||∞, u, v ∈B(S). (2.8)

In addition if L<1 then T is a sup-norm contraction such that the distance between
functions u and v w.r.t || · ||∞ is reduced.

Theorem 1 (Banach fixed point theorem (Kreyszig, 1978, Thm 5.1-2, p.300)). Given a
Banach space of uniformly bounded functions B(S), let T :B(S)→B(S) be a Lipschitz
contraction mapping, then T has precisely one fixed point v∗ ∈B(S) such that Tv∗ = v∗.

Proof. Szepesvári (2010, p.77) shows that the Cauchy sequence (c.f. equation (B.8))
(vn)n≥ 0 converges after applying vn+1 =Tvn an infinite number of times. More precisely
it is shown that limj→ ∞ supτ ≥ 0 ||vj+τ − vj||∞ = 0.

To show that this limit is the fixed point v∗ of T , iteratively apply T and use
definition 9,

||vj − v∗||∞ = ||Tvj−1 − Tv∗||∞,

≤L||vj−1 − v∗||∞,

=L||Tvj−2 − Tv∗||∞
≤L2||vj−2 − v∗||∞,

· · · ,

≤Lj||v0 − v∗||∞,

=⇒ lim
j→ ∞

||vj+1 − v∗||∞ = 0 as lim
j→ ∞

Lj = 0.

20 Literature Review

2.2.2 Bellman Operators

Convergence of the Bellman operators is summarised below, noting that the stationary
policy is deterministic.

Bellman Operator & Policy Evaluation

Definition 10 (State-value Bellman operator). For an arbitrary state-value function
v ∈B(S), the Bellman operator T π :B(S)→B(S) induced by a deterministic policy π
is defined as the application of the one step Bellman equation (2.6)

(T πv)(·) = r(·, π(·)) + γESt+1|·,π(·)
[
v(St+1)

]
. (2.9)

The notation (T πv)(·) designates precedence of operator T π over a value function’s
point evaluation. If γ ∈ [0, 1) then T π is a sup-norm contraction mapping (as proven
in lemma B.1; appendix B.1) and therefore it has a fixed point v∗, whose rate of
convergence is independent of s (Szepesvári, 2010, p.78). By construction the value
function is vπ =T πvπ (see Bellman equation (2.6)) and therefore the fixed point must
be the value function v∗ = vπ. This forms the basis of a value-prediction algorithm
known as policy evaluation and whose practical implementation is summarised in the
next section.

The action-value Bellman operator, although not directly utilised in this thesis,
does serve the broad discussion on the derivation of model-free RL algorithms and is
included in below.

Definition 11 (Action-value Bellman operator). For an arbitrary action-value function
q ∈B(S×A), the action-value Bellman operator T π :B(S×A)→B(S×A) is defined as

(T πq)(·, ·) = r(·, ·) + γESt+1|·,·
[
q(St+1, π(St+1))

]
, (2.10)

and by the same contraction arguments this operator has a fixed point q∗ = qπ.

Bellman Optimality Operator & Policy Improvement

Recall equation (2.3), then an optimal policy π∗ is one that generates a state-value
function that cannot be exceeded anywhere in S by any other policy.

2.2 Theory of Dynamic Programming in Known MDPs 21

Definition 12 (State-value Bellman optimality operator). For an arbitrary v ∈B(S)
the Bellman optimality operator T ∗ :B(S)→B(S) is defined as

(T ∗v)(·) :=, sup
a∈A

[
r(·, a) + γES′|·,a[v(S ′)]

]
,

= sup
a∈A

[
q(·, a)

]
, (2.11)

where in the second line q(·, a) = r(·, a) + γES′|·,a[v(S ′)]. T ∗ is indeed a sup-norm
contraction as proven in lemma B.3; appendix B.1 and therefore it has a unique fixed
point v∗. But what is the fixed point? The answer requires the policy improvement
theorem and the definition of a greedy policy.

Theorem 2 (Policy improvement theorem, adapted from Sutton and Barto (1998,
Ch4, sec. 4.2)). For two arbitrary stationary and deterministic policies π̂ and π′, their
two Bellman operators T π̂ and T π′ whose fixed points are vπ̂, vπ′ ∈B(S) respectively,
then; if for each s∈S vπ̂(s) ≤ qπ̂(s, π′(s)) it follows that vπ̂(s) ≤ vπ

′(s).

Proof. Beginning with the Bellman equation then for all s∈S

vπ̂(s) = (T π̂vπ̂)(s),
= qπ̂(s, π̂(s)),
≤ qπ̂(s, π′(s)), (2.12)
= (T π′

vπ̂)(s),
≤ lim

τ→∞
((T π′)τvπ̂)(s),

= vπ
′(s).

Corollary 2.1. vπ̂(s) ≤ vπ
′(s) defines the ranking π̂ ≤ π′. The strict inequality

vπ̂(s) < vπ
′(s) holds if π′ is identical to π̂ over all s∈S apart from choosing a better

action (which receives a higher immediate reward) for at least one state. This is the
criteria for a strictly improving policy and assumes S is discrete. If vπ̂(s) = vπ

′(s)
over all states, then the policies are identical and no further improvement can be made.
Further elaboration is discussed in Szepesvári (2010, Thm A.11)

Definition 13 (Greedy policy distribution). Given an arbitrary policy π̂ and related
action-value function qπ̂, a discrete greedy policy distribution is defined as

πgreedy(a|s) =


1, a==arg sup

a′∈A
[qπ̂(s, a′)]

0, otherwise,
(2.13)

22 Literature Review

Definition 14 (Greedy policy). For discrete action spaces A and an arbitrary π̂, then
a deterministic greedy policy relative to π̂ is defined as

πgreedy(s) := arg sup
a∈A

[
qπ̂(s, a)

]
, ∀s∈S,

= arg sup
a∈A

[
r(s, a) + γESt+1|s,a[vπ̂(St+1)]

]
=:πvπ̂(s) = πqπ̂(s),

where notation in the last line makes explicit that the greedy policy is improving a
different policy π̂ associated with an existing state-action qπ̂ or state value vπ̂ function.
A greedy policy meets the requirements of a strictly improving policy (corollary 2.1).
It is assumed that there always exists a greedy policy in discrete action spaces but
additional policy smoothness assumptions need to be made (Szepesvári, 2010) for
continuous action spaces.

Lemma 1 (Equivalence of T ∗ and acting greedily). Given an arbitrary value function
v ∈B(S), q(s, a) := r(s, a) + γESt+1|s,a[v(St+1)], πgreedy(s) := arg supa∈A

[
q(s, a)

]
, then

T ∗v is equivalent to extracting πgreedy and applying T πgreedyv.

Proof.

T πgreedyv= q(s, πgreedy(s)),
= r(s, πgreedy(s)) + γESt+1|s,πgreedy(s)[v(St+1)],
= sup

a ∈ A

[
r(s, a) + γESt+1|s,a[v(St+1)]

]
,

= sup
a ∈ A

[
q(s, a)

]
,

=T ∗v.

Combining the idea of policy improvement through acting greedily, then the identity
of the fixed point of T ∗ can now be verified.

Theorem 3 (The fixed point of T ∗ is v∗, adapted from Szepesvári (2010, Thm A.10)).
If v∗ is a fixed point of T ∗, and applying T ∗ to a state-value function is equivalent to
acting greedily T πgreedyv∗ =T ∗v∗, then v∗ = v∗ is the optimal value function and πv∗ is
an optimal policy.

Proof. Applying T ∗ once to an arbitrary v ∈B(S) is equivalent to acting greedily over
a one-step lookahead (see equation (2.11)). Then by the policy improvement theorem,
the fixed point limk→∞(T ∗)kv0 = v∗ gives a new value function such that v≤ v∗. If
T ∗v∗ = v∗, then this is equivalent to acting greedily with no improvement to the value
function. When a value function cannot be improved as stated in equation (2.3),

2.3 Implementation of DP Algorithms 23

then the fixed point v∗ = v∗ is the optimal value function. Acting greedily against the
optimal value function, T ∗v∗ = v∗ is equivalent to acting as the optimal policy π∗.

For completeness, an equivalent Bellman optimality operator can also be derived from
the action-value Bellman equation (2.10).

Definition 15 (Action-value Bellman optimality operator). The Action-value Bellman
optimality operator acting on an arbitrary q ∈B(S×A), T ∗ :B(S×A)→B(S×A) is
defined as

(T ∗q)(·, ·) = r(·, ·) + γESt+1|·,·
[

sup
at+1∈A

[q(St+1, at+1)]
]
,

where the fixed point is the optimal action-value function q∗.

2.3 Implementation of DP Algorithms

The following summarises implementation of value prediction and control DP algo-
rithms using theory developed in the previous section. Assumptions are that i) policies
are deterministic and ii) the MDP is known (i.e. the reward function and transition
kernel are known) and iii) discrete (i.e. both S and A).

2.3.1 Value Prediction: Policy Evaluation

Given a finite MDP then the expectations in the Bellman operator (definition 10) are
replaced with summations,

T πv(s) := r(s, π(s)) + γ
∑
s′∈S

P (s′|s, π(s))v(s′) s∈S, (2.14)

lending itself to vector form,

T πv := rπ + γPπv, (2.15)

where

v := [v(s1), ..., v(sn)]⊤,
rπ := [r(s1, π(s1)), ..., r(sn, π(sn))]⊤,

(Pπ)ij :=P (s′
j|si, π(si)), Pπ ∈Rn×n.

As T π is a sup-norm contraction with unique fixed point vπ then the sequence,

v0 → (v1 =T πv0)→ (v2 =T πv1)→ · · · → vπ,

24 Literature Review

converges geometrically to vπ at a rate of γ. This algorithm is known as policy
evaluation (Sutton and Barto, 1998, Ch. 4, sec. 4.1) and is tractable for small
discrete S and A. Full knowledge of Pπ and rπ are assumptions and the algorithm
can either be carried out iteratively (see algorithm 1) at a computational cost O(n2)
or by inverting the vector equation (see algorithm 2) at a cost O(n3). If fast matrix
inversion algorithms are available, it might be quicker to invert equation (2.15) (after
rearranging for vπ) when |S| is low, rather than waiting for contractions to get small
enough. However the iterative method fairs better as |S| gets large where convergence
is γ-geometric which is fast.

Algorithm 1 Exact Policy Evaluation (Iterative T π)
1: procedure PolicyEvaluation(π, r(·, ·), P (·|·, ·), γ, v, δ) ▷ O(|S|2)
2: Input: T π components π, r(·, ·), P (·|·, ·), γ, arbitrary value function v, toler-

ance δ.
3: Initialise: (rπ)i:=r(si, π(si)), (Pπ)ij:=P (sj|si, π(si)).
4: Output: v≈vπ.
5: do
6: vprev←v
7: v← rπ + γPπv ▷ O(|S|2)
8: while ||v− vprev||∞ >δ ▷ Stop contractions if oscillations are small
9: return v

10: end procedure

Algorithm 2 Exact Policy Evaluation (Invert T π)
1: procedure PolicyEvaluationInversion(π, r(·, ·), P (·|·, ·), γ) ▷ O(|S|3)
2: Input: T π components π, r(·, ·), P (·|·, ·), γ.
3: Initialise: (rπ)i:=r(si, π(si)), (Pπ)ij:=P (sj|si, π(si)).
4: Output: vπ

5: vπ←
(
I|S| − γPπ)

)−1
rπ ▷ O(|S|3)

6: return vπ
7: end procedure

2.3.2 Control: Value Iteration

For the same discrete MDP the Bellman optimality operator (definition 12) is

T ∗v(s) := sup
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)v(s′)
]

s∈S. (2.16)

As T ∗ a sup-norm contraction with unique fixed point v∗, then the sequence,

v0 → (v1 =T ∗v0)→ (v2 =T ∗v1)→ · · · → v∗,

2.3 Implementation of DP Algorithms 25

converges geometrically to v∗ at a rate of γ. This is known as value iteration (VI), but
there is no inverse solution to the Bellman optimality equations due to the non-linear
sup operator and it must be performed iteratively (see algorithm 3).

Algorithm 3 Exact Value Iteration (Iterative T ∗)
1: procedure ValueIteration(S, r(·, ·), P (·|·, ·), γ, v, δ) ▷ O(|A||S|2)
2: Input: A set of states S, T ∗ components r(·, ·), P (·|·, ·), γ, arbitrary value

function v, tolerance δ.
3: Output: v≈v∗.
4: do
5: vprev←v
6: for each s∈S do ▷ O(|S|)
7: v(s)← supa∈A

[
r(s, a)+γ∑s′ P (s′|s, a)v(s′)

]
▷ O(|A||S|)

8: end for
9: while ||v− vprev||∞ >δ ▷ Stop contractions if oscillations are small

10: return v
11: end procedure

2.3.3 Control: Policy Iteration

Policy iteration (PI) (Howard, 1960); (Sutton and Barto, 1998, Ch. 4, sec. 4.3), is the
generalisation of value iteration. Recall that by lemma 1 then a single application of
T ∗v is the same as i) extracting a deterministic greedy policy πv and then ii) making
a single Jeval = 1 application of the state-value Bellman operator T πv . Thus value
iteration creates a sequence of greedy policy extraction and evaluation steps, which
has already been proved to converge to v∗,

v0 →extract
πv0 →

(Tπv0)v0
v1 →extract

... →
extract

πvi →
(Tπvi)vi

vi+1 →extract
... v∗.

For policy iteration, the policy evaluation operator is applied more than once over
Jeval > 1 times (or until convergence within a tolerance) of the value function at each
ith greedy policy extraction,

v0 →extract
πv0 →

(Tπv0)Jeval v0

v1 := vπv0 →
extract

... →
extract

πvi →
(Tπvm)Jeval vi

vi+1 : = vπvi

→
extract

... v∗.

The same contraction arguments apply for the policy improvement step and
therefore policy iteration converges to the optimal value function, see Szepesvári (2010,
Thm A.11) for a formal proof. In the finite MDP setting there are a finite number of
policies and states where convergence is guaranteed. If i≤ Jimp is fixed, then value
iteration incurs a total cost O(Jimp|A||S|2) whereas if Jeval is also fixed then policy
iteration incurs a total cost O(Jimp(Jeval|S|2 + |A||S|2)). Superficially it would seem

26 Literature Review

that value iteration has lower complexity. However as each policy improvement is
made on a converged value function, PI converges to the optimal policy quicker than
VI (Geramifard et al., 2013; Sutton and Barto, 1998) i.e. J (PI)

imp <<J
(VI)
imp , which has

been confirmed experimentally during this investigation.

Algorithm 4 Exact Greedy Policy Improvement
1: procedure PolicyImprovement(S, r(·, ·), P (·|·, ·), γ, v) ▷ O(|A||S|2)
2: Input: A set of states S, T ∗ components r(·, ·), P (·|·, ·), γ, value function v
3: Output: πq(·):=πgreedy(·)
4: for each s∈S do ▷ O(|S|)
5: πv(s)← arg supa∈A[r(s, a)+γ∑s′ P (s′|s, a)v(s′)] ▷ O(|A||S|)
6: end for
7: return πv(·)
8: end procedure

Algorithm 5 Exact Policy Iteration
1: procedure PolicyIteration(S, A, r(·, ·),P (·|·, ·), γ, δ) ▷ O(|A||S|2)
2: Input: S, A, r(·, ·), P (·|·, ·), γ, δ tolerance.
3: Output: π∗(·)
4: Initialise: v, π(·)← PolicyImprovement(r(·, ·), P(· |·, ·), γ,v, δ)
5: do
6: πprev(·)← π(·)
7: v← PolicyEvaluation(π, r(·, ·), P (·|·, ·), γ,v, δ) ▷ O(|S|2)
8: π(·)← PolicyImprovement(r(·, ·), P (·|·, ·), γ,v, δ) ▷ O(|A||S|2)
9: while ||π − πprev||∞ > 0 ▷ Stop if policy stable

10: return π∗(S)
11: end procedure

2.3.4 Summary

The policy improvement theorem ensures there are no local optima for learning optimal
policies if the following conditions are met; i) S is fully observable and discrete, ii)
A is discrete, iii) the average reward function and transition dynamics are known
and iv) Bellman operators use full backups, meaning that all states and actions are
searched/updated over. DP control is therefore guaranteed to converge to the optimal
policy. Loosely, there are a discrete number of actions to take at each discrete spatial
point such that there exists a discrete number of policies π ∈Π. As greedy policies
are better or equal to the previous policy at collecting reward, then generalised policy
iteration will converge in a finite number of steps.

Puterman and Shin (1978) develop modified policy iteration (MPI), describing
the spectrum between value iteration and policy iteration with a full description of
convergence guarantees. Common to all DP methods described here is bootstrapping,

2.4 Model-Free RL in Unknown Discrete MDPs 27

meaning that in any iteration, value functions over states are calculated using the
current estimate of the value function over successor states. DP sequentially executes
two interacting, full-backup processes of i) making the value function consistent
with the current policy and ii) acting greedily against the current value function.
Generalised policy iteration (GPI) (Sutton and Barto, 1998, Ch. 4, sec. 4.8) relaxes the
synchronous, full-backup update requirement e.g. Bertsekas and Yu (2010) develop an
asynchronous GPI. GPI describes the general description of updating value estimates
and improving policies in value-based RL.

In real world settings it would seem that DP algorithms are useless as the reward
function and transition dynamics must be known. In their exact form, DP method
computational complexity scales as O(|A||S|2) which is clearly not sustainable for
large MDPs and intractable for continuous state spaces. DP algorithms are usually
abandoned in favour of model-free algorithms in unknown MDPs.

2.4 Model-Free RL in Unknown Discrete MDPs

Model-free policy learning methods are an important part of the discussion because their
stability has been extensively studied w.r.t. bootstrapping, function approximation
and off-policy learning which are all relevant issue for model-based methods. It is also
vital that the shortcomings of model-free methods are reviewed which motivates the
development of the model-based algorithms in this investigation.

2.4.1 Value Prediction: TD Learning

Assuming a discrete MDP, the policy evaluation DP method (section 2.3.1) adjusts
the current value function estimate by

v(s) 7→ (T πv)(s) :=ERt+1,St+1|s,π(s)
[
Rt+1 + γv(St+1)

]
, ∀s∈S. (2.17)

This is known as a full backup which is enabled by having full access to the MDP (i.e.
reward function and transition dynamics are known), allowing T π to be iterated until
value function convergence. Value-based model-free algorithms do not have access
to the MDP and instead typically update value functions using sequential sample
state-value Bellman updates,

v(st) 7→ (T̂ πv)(st) := rt+1 + γv(st+1), at = π(st), (rt+1, st+1)∼P (·|st, at). (2.18)

A value function vπ specifies an average of the cumulative discounted return when
following a policy π. Lemma B.5 shows that an empirical average quantity can be
maintained by an online average as each new sample is experienced. The revered
TD(λ= 0) algorithm (Sutton, 1988) incorporates a single n= 1 step lookahead target

28 Literature Review

(equation (2.18)) into an online average such that

δ(st)← (T̂ πv)(st)− v(st),
v(st)← v(st) + αtδ(st),

where δ(St) is the TD error and αt is a learning rate. TD(λ) (Sutton, 1988) targets
generalise over a mixture of n-step returns which is controlled by picking λ∈ [0, 1].

Definition 16 (TD-λ Bellman operator). Given the multi-step Bellman operator
induced by π,

(T π[n]v)(st) = EΞt:n∼p(·|St=st), St+n∼P (·|St+n−1,π(St+n−1))
[
Rγ(Ξt:n) + γnv(St+n)

]
, st ∈S,

then the TD-λ Bellman operator is

(T λv)(st) = (1−λ)
∞∑
n=1

λn−1T π[n]v(st), st ∈S, (2.19)

= v(st) + (I − γλP π)−1
(
(T πv)(st)− v(st)

)
,

where by inspection vπ is a fixed point (see lemma B.4 for derivation).

This leads to the forward-view TD(λ) sample targets defined as

(T̂ π[n]v)(st) :=
n∑
τ=1

γτ−1rt+τ + γnv(st+n),

where λ∈[0, 1], which defines the original Bellman operator as T̂ π := T̂ λ=0. If a terminal
state is reached at t=H, then the series is truncated to

(T̂ λv)(st) := (1−λ)
H−1∑
n=1

λn−1(T̂ π[n]v)(st) + λH−1rMC
t+H ,

where rMC
t+H is the Monte Carlo return. TD(λ) unifies the n-step return, from single

step targets (λ=0), all the way to Monte Carlo (λ=1) targets, with a mixture in
between. Forward TD(λ) is the theoretical variant that sets the TD target as (T̂ λv)(st).
When λ>0 then backwards TD(λ) is a practical implementation of the update that
uses eligibility traces that don’t require the sampling and storing of entire n-step
trajectory returns. Eligibility traces assign credit to recently frequented states and are
mathematically equivalent to using the forward (T̂ λv)(st) target. The following λ>0
backwards update is

δ(st)← (T̂ πv)(st)− v(st),
e(st)← 1 + γλe(st),
v(st)← v(st) + αtδ(st)e(st),

2.4 Model-Free RL in Unknown Discrete MDPs 29

where e(st) is the eligibility trace at st. For episodic tasks, online forward and
backwards value function updates (after each sample) are slightly different to a single
batch update (occurring at the end of an episode). Seijen and Sutton (2014) eliminate
this difference by modifying the eligibility trace mechanism.

Algorithm convergence is dependent upon αt satisfying the Robbins-Monro (RM)
conditions (Szepesvári, 2010, p. 13) (see also equation (B.71)). For a given MDP and
stationary policy, tabular TD algorithms asymptotically converge to the value function,
but do so at different rates depending on λ. The reason being is that the value of λ
specifies a particular trade-off between bias and variance of the target. For low λ bias
is high and variance is low. To illustrate, each TD(0) (equation (2.18)) target has low
variance because they only need one sample of immediate reward and therefore their
exposure to the MDP’s stochasticity is limited. However the target also bootstraps the
current estimate of the value function. The constant movement of the bootstrapped
target introduces bias into the update. On the other hand TD(1) (or Monte Carlo)
estimate has high variance because it consists entirely of many reward samples from
the environment, but low bias because no estimate of the value function is required
(Sutton and Barto, 1998, Ch 4.8). For more detailed discussions see Szepesvári (2010,
sec 2.1.2-3), Sutton and Barto (1998, sec 6.2-3) and references therein. Sutton and
Barto (1998, figure 7.9) and Sutton (1996) include empirical analysis of this λ-specified
trade-off on a random walk and puddle world respectively.

2.4.2 Control: SARSA & Q-Learning

Assuming a discrete MDP is known, then the model-based value iteration DP method
(section 2.3.2) adjusts the current value function estimate towards the optimal value
function,

v(s) 7→ (T ∗v)(s) = sup
a ∈ A

[
ERt+1,St+1|s,a[Rt+1 + γv(St+1)]

]
, ∀s∈S, (2.20)

which is also a full backup. Value-based model-free control algorithms use sample
action-value Bellman operator (equation (2.10)) backups,

q(st, at) 7→ (T̂ πq)(st, at) := rt+1 + γq(st+1, at+1), (rt+1, st+1)∼P (·|st, at), (2.21)

where at+1 =π(st+1) is known as the target policy because it is used to decide what
bootstrapped estimate is used to form T̂ π. The TD(0) online update for the action-value
function is

q(st, at)← q(st, at) + αt
(
(T̂ πq)(st, at)− q(st, at)

)
. (2.22)

An agent draws actions from a behaviour policy At∼ ν(St) which conditions any
transition. Similarly the TD-target is formed from actions sampled from the target

30 Literature Review

policy At+1∼ π(St+1). Such an arrangement allows the learning of the target policy
while following the behaviour policy. The SARSA (Rummery and Niranjan, 1994)
control algorithm specifies an ϵ-greedy policy for both its target and behaviour policies,
which means that it is an on-policy control algorithm because π= ν. By decaying ϵ
to zero over an infinite number of updates (e.g. ϵ= 1

t
), also known as greedy in the

limit of infinite exploration (GLIE), then along with the RM conditions this ensures
SARSA converges to the optimal policy.

Definition 17 (ϵ-greedy policy distribution (Sutton and Barto, 1998, Ch 5.4)). An
ϵ-greedy policy is defined by taking the greedy action w.p. 1− ϵ and any action w.p. ϵ.

π(a|s) =

1− ϵ+ ϵ/|A|, a== arg supa [q(s, a)]

ϵ/|A|, otherwise.
(2.23)

Q-learning (Watkins, 1989; Watkins and Dayan, 1992) specifies the target policy as
the greedy policy π= πgreedy. The TD target is therefore

(T̂ πgreedyq)(st) := (T̂ ∗q)(st) = rt+1 + γ sup
at+1 ∈ A

[q(st+1, at+1)],

which is equivalent to making a sample backup of the action-value Bellman optimality
operator (equation (15)). This is an off-policy algorithm because it draws behavioural
actions (and therefore generates a data distribution) from an annealed ϵ-greedy policy
(w.r.t to the current q estimate) while learning the greedy policy (specified in its
targets) such that ν ̸=π. The advantage of an off-policy algorithm is that historical
data or data gathered from an additional exploration policy can be used to learn
the optimal policy. Recent work has shown that convergence is still possible with
a relaxation of GLIE (Harutyunyan et al., 2016) for the off-policy case. Equivalent
SARSA(λ) (Sutton and Barto, 1998, sec. 7.5) and Q(λ) (Peng and Williams, 1996;
Watkins, 1989) exist but are out of the scope of this investigation.

2.5 Model-Free Approximate Policy Iteration

Now that tabular model-free methods have been introduced, it is now possible to
discuss the notoriety of approximate RL and eventually how the algorithms studied
in this investigation (based on DP) mitigate policy learning instabilities. Even for
small discrete state spaces, Bellman’s curse of dimensionality tells us that the number
of states grows exponentially in the dimensionality of the state space. Tabular DP
planning scales quadratically with the size of the state space and therefore rapidly
becomes impractical. Tabular model-free updates rapidly become ineffective because
the probability of returning to a state more than once in order to assign temporal

2.5 Model-Free Approximate Policy Iteration 31

credit assignment diminishes to zero. It is infeasible to update tabular value functions
over continuous state spaces.

Function approximation is a solution that enables approximate value functions
vπ≈ v̂π ∈F to generalises over states where function class F is to be picked. Linear
parametric, non-parametric and intrinsically non-linear function classes are all candi-
dates. However function approximation in RL, both in the model-based and mode-free
contexts is notoriously difficult. The purpose of this review is to navigate these issues
before the development of the algorithms in this thesis. Approximate policy iteration
(API) describes control algorithms whose structure consists of value prediction and
policy improvement as described by fig. 1.1, however state-value functions and/or
action-value functions are estimated with function approximators. This review focusses
on linear function approximation and compares supervised learning with iterative
approximate TD methods.

2.5.1 Value Function Approximation (Supervised Learning)

An extensive review of function approximation, empirical risk minimisation (ERM),
penalised ERM (PERM) and training different function classes can be found in section
B.4. In order to obtain the machinery for contraction mappings and DP algorithms,
value functions were assumed to reside in a Banach space (see definition 8). Extending
this perspective to accommodate function approximation, value functions are assumed
to reside in a Hilbert space H(S) whose elements are vectors with dimensionality equal
to the number of states m= |S| in the MDP.

Definition 18 (Value function space). Value functions are assumed to exist in a
Hilbert space H(S) := {v :S →R | ||v||D =

√∑
s ∈ S D(s)v2(s) <+∞}, where D(·) is

some density over states.

Clearly if the state space is continuous then the norm would be defined by integration
over a measurable space, however for ease of exposition we will assume S is discrete.
It is more intuitive to adopt vector notation such that the value function space
is H(S) := {v∈Rm | ||v||D =

√
v⊤Dv <+∞} where || · ||D is the D-weighted norm

whose matrix D is positive definite and weights the ith state by D(si) along its diagonal
(D = I if states are equally weighted). A natural choice for the distribution over states
is D=Dπ, the (time-invariant) stationary distribution (definition 7) of the MDP. For
any stationary policy π, a natural performance objective of a function approximator v

32 Literature Review

is the mean squared error (MSE),

LMSE(v) := ||v− ṽπ||2D (2.24)

=
(
v− ṽπ

)⊤
D
(
v− ṽπ

)
,

=ES∼D(·)
[(
v(S)− ṽπ(S)

)2]
,

=
∑
s ∈ S

D(s)
(
v(s)− ṽπ(s)

)2
,

where v := [v(s1), ..., v(sm)] and ṽπ is the target function value that v is being measured
against. If available the targets would be set as the real value functions ṽπ = vπ.

Linear Approximation Scheme A linear function approximation scheme is defined
as v(s) = ⟨w,ϕ(s)⟩F . Choosing F =Fϕ specifies a class of linear parametric function
approximators that require an explicit state representation function which maps states
to a feature space ϕ :S →Fϕ. The ideal loss and solution (for actual value function
targets) is therefore

LMSE(w) := ||Φw− vπ||2D, (2.25)
=⇒ wπ

MSE = arg min
w∈Rd

[
LMSE(w)

]
.

where v = Φw, w := [w1, ..., wd]⊤ ∈Rd, d= dim(Fϕ) and Φ := [ϕ(s1), ..,ϕ(sm)]⊤ ∈Rm×d

is the design matrix. If Φ is full rank where n≥ d and all columns are linearly indepen-
dent then a minimiser exists and is the MSE solution wπ

MSE = (Φ⊤DΦ)−1Φ⊤Dvπ (see
section B.4.1). If m is very large and D is unknown, empirical risk minimisation (ERM)
samples data Dn := {(s, vπ(s))i}

n
i=1 to form empirical loss L̂ whose sample estimate of

the minimiser is ŵπ
MSE = (Φ̂⊤DΦ̂)−1Φ̂⊤Dvπ where Φ̂ := [ϕ(s1), ..,ϕ(sn)]⊤ ∈Rn×d and

each sample is equally weighted D := I/n.
The geometry of the least squares solution is the key to understanding the effect

of applying the Bellman operator and therefore algorithm convergence. Consider the
MSE solution vπMSE as a linear combination of the basis elements (defined by the

2.5 Model-Free Approximate Policy Iteration 33

columns in the design matrix),

vπMSE = Φwπ
MSE, (2.26)

=


ϕ⊤(s1)

...
ϕ⊤(sm)



wπ1
...
wπd

 ,

=

φ1 · · · φd



wπ1
...
wπd

 ,

=
d∑
i=1

wπi φi .

Substituting the least squares solution wπ
MSE into equation (2.26),

vπMSE = Φwπ
MSE

= Φ(Φ⊤DΦ)−1Φ⊤Dvπ

= ΠDvπ, (2.27)

Figure 2.2 Directly fitting vπ∈Rm by orthogonal projection onto span(Φ)⊂Rm.

vπ∈Rm

ΠDvπ−vπ

v̂πMSE=ΠDvπ

wπdφd
wπ1φ1

φ1 φd

span(Φ)

where vπ = (I−Pπ)−1rπ if the MDP is known. The operator ΠD projects (w.r.t. the
weighted norm || · ||D) the target vector vπ ∈H(S) onto a lower dimensional subspace,
whose basis is the column space of Φ i.e. span(Φ):={Φw |w∈Rd}⊂H(S) (fig. 2.2).

An explicit feature map ϕ(s) := [1(s = s1), ..., 1(s = sd)]⊤ will recover the tabular
representation such that for the ith state, wπi = vπ(si). However for large state spaces
such a tabular representation becomes an unusable infinite dimensional matrix. Instead
a feature map ϕ :S →Fϕ defining a lower-dimensional rich state-representation is
sought for d<<m which can either be specified a priori or learnt using a feature
selection scheme. The choice of ϕ is a compromise between expressiveness (or how

34 Literature Review

rich the representation is in order to generalise over states) and compactness (where
d<<m is purposefully chosen to minimise computational costs). Tsitsiklis and Van
Roy (1996) summarise ways of integrating feature selection into linear RL, Sutton and
Barto (1998, sec. 8.3); Bertsekas (2012, Section 6.1.1) list feature representation types
for linear methods such as coarse coding, tile coding, radial basis functions and high
degree polynomial representations (Yao and Szepesvári, 2012).

2.5.2 Approximate Value Prediction

Actual value function target vectors ṽπ = vπ are not available from an oracle in the RL
problem setting, thus rendering vπ estimation more difficult than regular supervised
learning techniques. Instead value prediction must proceed with careful analysis of
the Bellman operator on linear value function approximators.

It quickly becomes apparent that contraction guarantees are not forthcoming for
linear function approximation schemes. Instead the solution to approximate value
prediction is to either minimise the mean squared Bellman error/residual (MSBE) or
projected Bellman error/residual (MSPBE). Both approaches can be considered as
minimising the original supervised MSE whose targets are proxies formed by apply-
ing the Bellman operator to the function approximator; ṽπ =T πv and ṽπ = ΠDT

πv
respectively which have closed form least squares solutions utilised in this investigation.

Dynamic Programming with Linear Value Function Approximation

Considering the geometry of how the application of T πv changes v in feature space is
the key to understanding value prediction convergence and why certain approximate
RL objective functions are used. Consider a linear parametric approximator then the
Bellman equation applied is

⟨wπ,ϕ(s)⟩Fϕ
≈ r(s, π(s)) + γES′∼P (·|s,π(s))

[
⟨wπ,ϕ(S ′)⟩Fϕ

]
, (2.28)

= r(s, π(s)) + γ
〈
wπ,ES′∼P (·|s,π(s))[ϕ(S ′)]

〉
Fϕ
.

Unfortunately the relationship (2.28) is approximate because no fixed point solution wπ

can be found to preserve equality when any explicit ϕ is provided a priori (Bertsekas,
2012). The reason is better illustrated using vector notation as follows,

T π(Φw) := rπ + γPπΦw, (2.29)
= rπ + γΦ′w,

where Φ′:=[ES′∼P (·|s1,π(s1))[ϕ(S ′)], ...,ES′∼P (·|sn,π(sn))[ϕ(S ′)]]⊤. The application of T π

takes the value function approximation into a new basis (or column space of) Φ′

induced by Pπ, as illustrated in fig. 2.3. Therefore the Bellman operator, which is

2.5 Model-Free Approximate Policy Iteration 35

non-expansive under the norm || · ||∞, is expansive in the norm || · ||D if (as reviewed
below) the distribution of states D is not carefully selected. Two major objective
functions are used to mitigate this divergence effect. Vector or function notation is
used where appropriate.

Figure 2.3 Approximate value prediction by applying T π to value functions in a linear
function approximation scheme. Mitigating this is achieved either by i) minimising
the magnitude of the Bellman residual vector known as Bellman residual minimisation
(BRM), or ii) minimising the magnitude of the projected Bellman residual vector
such as in TD fixed point methods.

v̂=Φw

wdφd

w1φ1

φ1
φd

T
π v̂−

v̂
ΠT πv̂− T πv̂

T πv̂ ̸∈ span(Φ)

ΠT πv̂− v̂

span(Φ)

Bellman Residual (MSBE Objective)

The Bellman residual (BR) is formed (see fig. 2.3) by choosing the target in equation
(2.24) as ṽπ =T πvπ. However as vπ is not available, the proxy target T πv is chosen
instead to find the fixed point vBRM of v =T πv. The mean squared Bellman error
(MSBE) objective (Baird, 1995) is

LMSBE(v) = ||v− T πv||2D,

= ES∼D

[(
v(S)− T πv

)2]
,

= ES∼D

[(
v(S)− ER,S′|S,π(S)

[
R + γv(S ′)

])2]
, (2.30)

= ES∼D

[(
v(S)− Ȳ

)2]
, (2.31)

= ES∼D

[(
ER,S′|S,π(S)

[
δ(S,R, S ′)

])2]
, (2.32)

where Y (R, S ′) :=R + γv(S ′), Ȳ :=ER,S′|S,π(S)
[
Y (R, S ′)

]
and the TD(0) error for

function approximator v̂ is δ(S,R, S ′) :=Y (R, S ′)− v(S). BRM objective functions
suffer the problem of having the successor state expectation inside the squared loss
term (2.32) whose consequences are described as follows. Further manipulation under

36 Literature Review

the assumption of linear value function approximation gives

LMSBE(w) = ||Φw− T πΦw||2D, (2.33)

= ES∼D

[((
ϕ⊤(S)− ES′|S,π(S)

[
γϕ⊤(S ′)

])
w− ER|S,π(S)

[
R
])2]

,

= ES∼D

[(
Cπ⊤(S)w−Rπ(S)

)2]
. (2.34)

Equation (2.34) looks like a regular supervised loss problem that learns linear function
weights using inputs Cπ⊤(S) and target outputs Rπ(S), naively estimated from sample
pairs (ϕ(s) − γϕ(s′), r) taken from trajectory data (Dann et al., 2014). However
empirical risk minimisation assumes only noise in the target variables (see section
B.4.1) and does not consider noise in the input samples generated from the MDP’s
stationary transition distribution. This adds bias to the estimator (Bradtke and Barto,
1996, p. 40) which is known as the error-in-variables problem and can be explored by
considering the following.

Instead of the objective equation (2.31), it is preferable to specify the ERM problem
with the transition expectation outside the squared loss, labelling this new objective
the mean squared TD error (MSTDE) i.e.

LMSTDE(v) :=ES∼DER,S′|S,π(S)
[
δ2(S,R, S ′)

]
, (2.35)

=ES∼DER,S′|S,π(S)
[(
v(S)− Y (R, S ′)

)2]
,

where trajectory data D := {(s, a, r, s′)i}ni=1 is used to form the empirical loss

L̂MSTDE(v) = 1
2n

n∑
i=1

(
v(si)− ri − γv(s′

i)
)2
. (2.36)

However limn→ ∞[L̂MSTDE(v)] ̸=LMSBE(v) because of the aforementioned bias (Antos
et al., 2008; Farahmand et al., 2008) and is demonstrated by applying a bias-variance
analysis (section B.4.1) to the inner expectation of the MSTDE (2.35);

ER,S′|S,π(S)
[(
v(S)− Y (R, S ′)

)2]
= ER,S′|S,π(S)

[(
v(S)− Ȳ + Ȳ − Y (R, S ′)

)2]
,

= ER,S′|S,π(S)
[(
v(S)− Ȳ

)2
+
(
Ȳ − Y (R, S ′)

)2]
,

=
(
v(S)− Ȳ

)2
+ ER,S′|S,π(S)

[(
Ȳ − Y (R, S ′)

)2]
,

=
(
v(S)− T πv

)2
+ varR,S′|S,π(S)

[
Y (R, S ′)

]
.

Minimising objective (2.36) minimises both (2.32) and variance term induced by the
MDP’s stochastic transition dynamics. To remedy this, Baird (1995); Sutton and Barto
(1998) double-sample the pair (R, S ′) iid to create an unbiased loss. The empirical loss

2.5 Model-Free Approximate Policy Iteration 37

is therefore

L̂BR(v) := 1
2n

n∑
i=1

(
v(si)− ri − γv(s′

i)
)(
v(si)− ri − γv(s′′

i)
)
,

where for simplicity the reward is assumed independent of the successor state, con-
firming limn→ ∞[L̂BR(v)] =LBR(v). In conclusion the single successor state sampling
BRM solution is v̂TDE and v̂BR with double sampling. However double sampling is not
practical when only trajectory data is available as only one transition is experienced
from each state, rendering this technique impossible unless access to a generative
model of the MDP is available (Sutton and Barto, 1998, p 220). Antos et al. (2008)
suggest a solution by introducing an auxiliary function to directly cancel the variance
term and (as described below) TD learning methods Mnih et al. (2015) fix target
function approximator weights such that they are not involved in the optimisation.

If double sampling is available via a model, Baird (1995) solves the BRM problem
using stochastic gradient descent by differentiating equation (2.30),

∇wLBR = ES∼D

[(
v(S)− ER,S′|S,π(S)

[
R + γv(S ′)

])(
γES′′|S,π(S)

[
∇wv(S)−∇wv(S ′′)

])]
,

≈
((
ϕ⊤(s)− γϕ⊤(s′)

)
w− r

)(
ϕ(s)− γϕ(s′′)

)
,

= δ(s, r, s′)
(
γϕ(s′′)− ϕ(s)

)
.

This gives the full gradient of the Bellman residual and in the last line an unbiased
sample gradient is made using data (s, π(s), r, s′, s′′). By performing stochastic gradient
descent with sample weight updates formed by drawing samples from an experience
replay memory D := {(s, π(s), r, s′, s′′)i}ni=1 until convergence is one approach to solve
for the value function. Equivalently the least squares solution of equation (2.34) is
calculated by

0 = ∇w

(
1

2n
(
Cπ′w− rπ

)⊤
D
(
Cπ′′w− rπ

))
,

⇒ ŵπ
BRM = 1

2
(
Ĉπ′ ⊤DĈπ′′)−1(

Ĉπ′ + Ĉπ′′)⊤
Dr̂π, (2.37)

where sample matrices formed fromDn can be defined as Ĉπ′ = Φ̂−γΦ̂′, Ĉπ′′ = Φ̂−γΦ̂′′,
Φ̂ = [ϕ(s1), ...,ϕ(sn)]⊤, sample successor design matrices (because the transition model
is not known) as Φ̂′ = [ϕ(s′

1), ...,ϕ(s′
n)]⊤, Φ̂′′ = [ϕ(s′′

1), ...,ϕ(s′′
n)]⊤ and the inverse is

assumed to exist. Convergence results and error bounds exist for the sup-norm
(Williams and Baird, 1993, Prop 3.1), quadratically weighted norms (Guestrin et al.,
2001) and general user-defined state distributions (Geist et al., 2017) such that data
can be collected off-policy.

38 Literature Review

Projected Bellman Residual (MSPBE Objective)

It is unfortunate that BRM is impractical as it represents the ‘correct’ error that must
be minimised. An alternative is to minimise the projected Bellman residual (see fig.
2.3) which is equivalent to finding the fixed point v̂λ=0 of the composition ΠDT

π in the
projected Bellman equation v = ΠDT

πv. The MSPBE objective is derived by taking
the Bellman residual (2.33), and fixing the target weights so that they are not involved
in the optimisation (Kolter and Ng, 2009),

u∗ = arg min
u∈Rd

[
||Φu− T πΦw||2D

]
, (2.38)

= (Φ⊤DΦ)−1Φ⊤DT πΦw,

= f(w).

Finally we seek the solution to Φw = Φf(w) which is the fixed point and is equivalent
to finding the minimiser of the mean squared projected Bellman error (MSPBE),

LMSPBE(w) := ||ΠDT
πΦw−Φw||2D,

= ||ΠD(T πv− v)||2D,

where the second line exploits the idempotent projection ΠDΦw = Φw. The MSPBE
only considers the error as represented by features ϕ and does not consider the
orthogonal component measuring distance to the actual value function targets. However
this is the key advantage to minimising the MSPBE because the projected distance
||ΠD

(
T πv− v

)
||
D

can be made zero (if features are linearly independent). This leads
to the following manipulation (see e.g. Geramifard et al. (2013)) which is known as the
least squares temporal difference or the LSTD(0) (Bradtke and Barto, 1996) solution,

0 = Φ(Φ⊤DΦ)−1Φ⊤D(rπ + γΦ′w)−Φw,

= (Φ⊤DΦ)−1Φ⊤D(rπ + γΦ′w)−w,

= Φ⊤D(rπ + γΦ′w)−Φ⊤DΦw,

= Φ⊤D(γΦ′ −Φ)w + Φ⊤Drπ,

=⇒ wπ
λ=0 =

(
−Φ⊤D(γΦ′ −Φ)

)−1
Φ⊤Drπ, (2.39)

= (−A)−1b, (2.40)

=
(
− ES∼DES′|S,π(S)

[
ϕ(S)

(
γϕ(S ′)− ϕ(S)

)⊤])−1
ES∼DER|S,π(S)

[
ϕ(S)R

]
where sample estimates are Â = Φ̂⊤D(γΦ̂′ − Φ̂) and b̂ = Φ̂⊤Dr̂π.

The model-free sample estimates of A and b are formed from trajectory data
D := {(s, a, r, s′)i}ni=1 whose behavioural policy determines the state distribution.
LSTD minimisation of the MSPBE using trajectory data avoids the double-sampling

2.5 Model-Free Approximate Policy Iteration 39

problem of BRM. Incremental approximations to A and b can also be updated online,

Â1:n =
n∑
t=1

D(st)ϕ(st)
(
γϕ(s′

t)− ϕ(st)
)⊤
,

= Â1:n−1 +D(sn)ϕ(sn)
(
γϕ(s′

n)− ϕ(sn)
)⊤
,

b̂1:n =
n∑
t=1

D(st)ϕ(st)rt,

= b̂1:n−1 +D(sn)ϕ(sn)rn,

which converge to A and b as n→∞ (Nedic and Bertsekas, 2003, section 5). Each
update incurs O(d3) complexity but this can be reduced to O(d2) using the Sherman-
Morrison formula to efficiently make incremental updates to the inverse calculation
in equation (2.40). Such least squares solutions do not require the existence and
tuning of learning rates as featured in stochastic gradient methods. LSTD also has the
advantage in that D(·) does not have to be the on-policy distribution Dπ (Bradtke
and Barto, 1996, section 9), therefore trajectory data can be gathered off-policy.

LSTD Link to Linear TD

Sutton et al. (2009) and Dann et al. (2014, p 818) show that minimising the MSPBE
is still equivalent to minimising the MSBE, but under a norm weighted by the
metric U = DΦ

(
Φ⊤DΦ

)−1
Φ⊤D (which is positive definite under the assumption of

independent features),

LMSPBE(v) = ||T πv− v||2U,

= ||Φ⊤D
(
T πv− v

)
||

2

(Φ⊤DΦ)−1 .

Under the same assumption that the columns of Φ are linearly independent, then the
solution to the MSPBE (with fixed point v̂λ=0) is reached iff (Dann et al., 2014, p 819)

0 = Φ⊤D
(
T πv− v

)
= Aw + b, (2.41)

=ES∼DER,S′|S,π(S)
[
ϕ(S)δ(S,R, S ′)

]
. (2.42)

Further analysis on the convergence of LSTD(λ= 0) and comparisons to BRM can be
found in Schoknecht (2003) and Scherrer (2010).

In addition to least squares methods, several fixed-point stochastic gradient descent
approaches exist that attempt to minimise the MSPBE. The celebrated linear TD(λ=0)
algorithm (Sutton, 1988)4 makes stochastic gradient updates to the fixed weight
Bellman residual (2.38). At each tth update, the target weights are set to the current
function approximator weights wt i.e ṽ(s) =T πϕ⊤(s)wt. The gradient therefore ignores

4Also known as TD learning (TDL) to distinguish from other TD gradient methods.

40 Literature Review

wt associated with the transition dynamics, characterising the approach as a semi-
gradient method, derived from the mean squared temporal difference learning (TDL)
error,

LTDL(w) := ||T πΦwt −Φw||2D,

=ES∼D

[(
ER,S′|S,π(S)

[
γϕ⊤(S ′)wt − ϕ⊤(S)w +R

])2]
,

=⇒ ∇wLTDL(w) = − ES∼DER,S′|S,π(S)
[
ϕ(S)

(
γϕ⊤(S ′)wt − ϕ⊤(S)w +R

)]
,

= −ES∼DER,S′|S,π(S)
[
ϕ(S)δ(S,R, S ′)

]
The tth SGD update uses the sample gradient formed at the tth transition (s, a, r, s′)t,

wt+1 = wt − ηt∇wL̂TDL(w)|wt,(s,a,r,s′)t ,

= wt + ηtϕ(st)δt(st, rt, s′
t),

=
(
Id + ηtÂt

)
wt + ηtb̂t, (2.43)

with TD error δt(st, rt, s′
t) :=

(
γϕ(s′

t)− ϕ(st)
)⊤

wt + rt, Ât :=ϕ(st)
(
γϕ(s′

t)−ϕ(st)
)⊤

and b̂t :=ϕ(st)rt. More efficient use of data sees all samples experienced being
accumulated into an experience replay (Lin, 1992) memory D := {(s, a, r, s′)i}ni=1 such
that at time t the sample gradient is formed from a minibatch B∼Dn. This is
demonstrated in the DQN algorithm (albeit for the optimal action-value function)
where gradient updates are continuously made by drawing mini-batches uniformly
from replay memory until function approximator improvements stop.

The stochastic update (2.43) re-written with actual A and b (see equation (2.40))
becomes the deterministic update,

wt+1 =
(
Id + ηtA

)
wt + ηtb, (2.44)

whose convergence determines whether the stochastic TDL converges. Schoknecht
(2003) shows that if ηt obeys the Robbins and Monro (1951) decay conditions (see
section B.71), then equation (2.44) converges if all eigenvalues of matrix A have
a negative real part and diverges for positive eigenvalues. A is negative definite
(hence convergence is guaranteed) if the state distribution is chosen as the stationary
distribution D=Dπ (definition 7) of the Markov chain (Bertsekas and Tsitsiklis, 1996,
Chapter 6). Exploitation of the stationary distribution (also known as on-policy
learning) is at the heart of TDL convergence proofs (Bertsekas, 2012, Chapter 6). At
convergence wt+ 1 = wt = wλ= 0 is the fixed point such that equation (2.44) becomes

0 = Awλ=0 + b,

thus solidifying TDL’s link to the LSTD solution (2.40) and in finding the fixed point
that minimises the MSPBE.

2.5 Model-Free Approximate Policy Iteration 41

Semi-gradient methods solve an objective whose targets are constantly changing for
each update because the targets are formed from snapshots of the function approximator
which is known as bootstrapping. This occurs because the TD(λ= 0) targets use only
the one step Bellman operator T π. By considering the exponentially λ-weighted
Bellman operator T λ (see equation (2.19)) then the generalised projected Bellman
equation is v̂λ = ΠDT

λv̂λ and the MSPBE is

LMSPBE(w) := ||ΠDT
λΦw−Φw||2D,

where v̂λ = Φwλ is the TD(λ) fixed point of the composite operator ΠDT
λ. Van Roy

(1998, section 4.7); Tsitsiklis and Van Roy (1997) derive the celebrated convergence
results for the TD(λ) algorithm again by relying heavily on setting D=Dπ as the
on-policy stationary state distribution. They show that the composition ΠDπT

λ is a
contraction w.r.t. the weighted norm || · ||Dπ . The final result (Tsitsiklis and Van Roy,
1997) is the asymptotic error between the fixed point v̂λ and the true value function
vπ is upper-bounded (as a function of λ) by

||v̂λ − vπ||Dπ ≤
1√

1− γλ
||ΠDπvπ − vπ||Dπ ,

⇒ ||v̂λ − vπ||2Dπ ≤
1− λγ
1− γ ||v

π
MSE − vπ||2Dπ , (2.45)

where γλ = γ(1 − λ)/(1 − λγ) is the effective contraction rate, such that γλ = γ for
TD(0) and γλ = 0 for TD(1). This bound is illustrated in fig. 2.4 and is a function
of the projection distance ||ΠDπvπ − vπ||Dπ where ΠDπvπ is the solution to the MSE
(see section 2.5.1). As λ→ 0, the TD target (and therefore function updates) acquires
more bias, thus the upper bound increases to a maximum of 1/(1− γ) multiple of the
projection distance. If λ= 1 then the targets are equivalent to Monte Carlo updates
with no bias thus the error is upper-bounded solely by the projection distance. In
the same way that TD(0) and LSTD(0) are related to the fixed point solution and
convergence results, the TD(λ) is related to the generalised LSTD(λ) (Boyan, 1998)
algorithm. Practical implementation of λ> 0 algorithms require the use of eligibility
traces but this is out of the scope of this investigation. Other TD algorithms exist
that perform SGD on alternative objectives such as gradient temporal difference
(GTD) (Sutton et al., 2008b), linear (Sutton et al., 2009) and non-linear (Bhatnagar
et al., 2009) GTD2/gradient correction (TDC), but are also outside the scope of this
investigation.

Value Prediction Stability and Motivation for the CME Approach

It is possible to motivate the development of CME-based algorithms by highlighting
the difficulties model-free approaches incur w.r.t. the ‘deadly triad’ characteristics

42 Literature Review

Figure 2.4 Illustrating the upper bound of ||v̂λ − vπ||Dπ varying with bootstrapping.

vπ∈H(S)

v̂
λ −v π

vπMSE=ΠDπvπ

φ1
φd

vλ

v
πM

SE −
v
π

(definition 1). All three characteristics are desirable; function approximation for
large state spaces, off-policy learning for efficient data reuse and bootstrapping for
efficient updates. But as just reviewed, linear function approximation convergence
relies on on-policy learning and bootstrapping clearly varies the convergence of TD(λ)
algorithms.

Early examples supporting the ‘deadly triad’ hypothesis include Baird (1995, table
1) which demonstrate value-prediction instability on an embarrassingly small MDP.
Divergence occurs when off-policy data is used and convergence is restored once an
on-policy distribution is used (Sutton and Barto, 1998, p 217). Tsitsiklis and Van
Roy (1996) also demonstrate divergence for value-prediction with bootstrapped least-
squares targets. Tsitsiklis and Van Roy (1997) show that function approximation w.r.t.
a quadratic norm may be expansive in the sup-norm of the Bellman operator (Gordon,
1995), where contractions can be restored if the function is fit with the quadratic
norm weighted by the on-policy distribution. Bertsekas and Tsitsiklis (1996) discuss
the even greater challenge of dealing with instabilities when using non-linear function
approximators.

It will become obvious that a CME-based value prediction does not suffer from the
deadly triad as approximate MDPs are built from off-policy data, offer full backup
bootstrapping and by their very definition define value function approximation. Part
of the reason for this is that a CME does make a non-parametric value function
approximation rather than parametric. Alternatively model-free non-parametric value
prediction algorithms have been developed with kernel and GP function approximation,
rendering explicit feature generation obsolete. GP temporal difference (GPTD) (Engel

2.5 Model-Free Approximate Policy Iteration 43

et al., 2003) model a distribution of functions to extract a posterior value function
distribution conditioned on observations. Xu et al. (2005) introduce Kernel LSTD
(KLSTD) and Taylor and Parr (2009) unify the approach by showing equivalence
between GPTD and KLSTD.

Approximate Action-Value Prediction

All approximate state-value prediction and convergence results in section 2.5.2 are di-
rectly applicable to approximate action-value prediction. A state action-value function
q :S×A→R has a linear approximation which takes the form q(s, a) = ⟨ψ(s, a),w⟩Fψ ,
where explicit feature representation over states and actions ψ :S×A→Fψ is required,
either given to the agent a priori or learnt. By applying the Bellman operator to q
then MSBE/MSPBE objectives are readily formed and can be solved in the same
way as for state-value functions. For the projected Bellman equation approach, linear
SARSA(λ) is directly comparable to TD(λ) and linear LSTDQ(λ) is an extension to
linear LSTD(λ). When API uses LSTDQ in its q-estimation stage the algorithm is
known as LSPI (Lagoudakis and Parr, 2003). As with linear TD(λ), linear SARSA(λ)
is on-policy and inherits similar convergence conditions and sensitivity to the deadly
triad. Kernel-based methods have also been developed for SARSA (Engel et al., 2005)
and SARSA(λ) (Robards et al., 2011).

2.5.3 Approximate Policy Improvement

Recalling section 2.3.3, exact policy iteration is guaranteed to find optimal policies
in discrete known MDPs. At the kth policy iteration; i) exact action-value function
qπk evaluation is carried out for the kth policy (known as policy evaluation) and
ii) a new improved policy πk+1 is found by acting greedily against qπk (known as
policy improvement). Approximate policy iteration (API) (Bertsekas and Tsitsiklis,
1996, Chapter 6) replaces the first step of exact policy evaluation with approximate
value-prediction to estimate an action-value function (or as an intermediate step, the
state-value function first). The policy improvement stage therefore acts greedily on
the approximate action-value function,

πk+1(s) = arg sup
a∈ A

[
q̂πk(s, a)

]
, s∈S, (2.46)

producing a policy whose performance has suboptimal improvement bounds as stated
in lemma 2.

Lemma 2 (Greedy policy suboptimality is bounded (Singh and Yee, 1994)). For any
approximate action-value function q̂ :S×A→R, actual optimal action-value function
q∗, then if ||q∗ − q̂||∞≤ ϵ, the suboptimality of acting greedily π̂ = arg sup

a ∈ A

[
q̂(s, a)

]
is

44 Literature Review

bounded,

||v∗ − vπq ||∞ ≤
2

1− γ ||q
∗ − q̂||∞, (2.47)

where v∗(s) = q∗(s, π∗(s)).

This result limits how suboptimal a greedy policy can be when acting against an existing
approximate value function. The closer q̂ is to the optimal q∗, the less suboptimal the
greedy policy will likely be. A similar bound in terms of just state-value functions is
found in (Bertsekas, 2012, Section 6.1.1). Although the sup-norm is seldom useful
for practical settings, other bounds expressed with more suitable weighted quadratic
norms have been developed and will be summarised below.

The convergence result for TD(λ) (2.45) is also directly applicable to SARSA(λ)
q-function approximation. Intuition suggests that it is preferable to not bootstrap by
selecting λ= 1, however Sutton and Barto (1998, section 8.6) provide experimental
results that compare the empirical performance of linear SARSA control policies vs. λ
suggest otherwise; if a moderate amount of bootstrapping is used, then not only is the
learnt policy’s performance superior, but also convergence to fixed points q̂λ is quicker.
This suggests that for approximate control, an MSE-type upper bound as in equation
(2.45) is not sufficient to gauge algorithm performance and more work is required to
understand the deeper mechanism at work.

Policy Improvement Stability and Chatter

Unfortunately lemma 2 specifies greedy policy suboptimality in terms of sup-norms
which are not practical in MDPs with large or continuous state space. Quadratic norms
weighted by a distribution over states which suits function approximation schemes
are more desirable. Munos (2003, 2005) provides such suboptimality bounds. During
this analysis, Munos (2003, Section 1) identifies a phenomenon called policy chatter
or policy oscillation (Wagner, 2011) which can induce a prolonged sequence of very
suboptimal improvements, eventually undoing the policy learning process. Given
an approximation v̂k of vπk during the kth iteration of API, the algorithm proceeds
rapidly at first because the approximation error ||v̂k − vπk || is small relative to the
error from the optimal policy ||vπk − v∗||. During this phase of learning, if v̂k is good,
then the greedy improvement πk+1 is good i.e. πk+1 ≥ πk. However this improvement
degrades as the distance to optimality reduces and the policy optimisation process
enters a stationary phase. This is because the state-value function approximation error
now dominates, preventing efficiency in the policy improvement step. This inhibits
any guaranteed convergence for API and the performance of successive improved
policies can oscillate wildly. Such oscillations have also been attributed to overshooting

2.6 Model-based Approximate Policy Iteration 45

(Wagner, 2014). A deeper understanding has yet to materialise and conservative policy
updates is one way of mitigating oscillations in order to smooth out policy learning.

Conservative Policy Iteration Scherrer (2014) introduces the following notation
to generalise greedy policy improvements in API algorithms. Given a state distribution
D, approximate value function v̂k and a small error ϵk then the greedy operator Gϵ
returns a policy πk+1 that is (ϵ,D)-approximately greedy w.r.t. v̂k which obeys

||T ∗v̂k − T πk+1 v̂k||D≤ ϵk+1.

The vanilla greedy update in equation (2.46) is therefore represented by

πk+1 ← Gϵk+1(D, v̂k),

where the state distribution is equally weighted D = I|S| and ϵk+1 = 0. Kakade and
Langford (2002) introduce conservative policy iteration (CPI) which uses a smoother
greedy update,

πk+1 ← (1− αk+1)πk + αk+1Gϵk+1(dπ,ν , v̂k),

where dπ,ν is the discounted cumulative occupancy measure for an initial state distri-
bution ν. The motivation is that gradual updates may mitigate policy oscillation. A
related approach is a ‘softer’ greedy policy improvement (Wagner, 2013, equation 4)
that makes similar αk+1-weighted updates on the policy parameters.

Policy Improvement Stability and Motivation for the CME Approach

In addition to value prediction stability, the CME approach theoretically enjoys policy
improvement sub-optimality bounds. These bounds are a function of the distance
between the finite approximate MDP and the actual MDP. Previously, the stability of
such an algorithm has not been explored experimentally. Does the CME approach suffer
from the same policy oscillations as conventional API when the policy approximation
error becomes large with respect to the error from the optimal policy? It is predicted
that the CME approach does not suffer from this ailment because i) CME approximate
MDPs are guaranteed to converge to the real MDP as more data is added to the
training set and therefore ii) policy suboptimality as a function of the error between
the approximate and real MDP will always reduced as more data is collected.

2.6 Model-based Approximate Policy Iteration

This investigation is concerned with avoiding the pitfalls of API w.r.t. value prediction
convergence, the deadly triad and policy improvement oscillations. Simply pursuing

46 Literature Review

a Dyna architecture (Sutton, 1991) would betray this goal because the underlying
approximate value prediction and policy improvement algorithms remain unchanged.
Using an already precarious API algorithm with data generated from inaccurate models
risks instigating a deadly approximate cauldron which may make policy learning stability
unreachable. The consumption of simulated data from imperfect models is poorly
understood but some theoretical work exists for linear TD with linear model-based
planning (Sutton et al., 2008a).

The weakness of conventional API algorithms lies in searching for value functions as
approximate solutions to the real MDP (as defined by the Bellman optimality equation
T ∗ with unknown transition expectation). An alternative approach is to sample data
from the real MDP, build an approximate finite MDP (with approximate dynamics5

Ê(s,a)[v] ≈ ES′|s,a[v(S ′)] which defines the approximate Bellman optimality operator
T̂ ∗) and solve it exactly. In this way the transition model is an integral component
to the value function estimate itself. Common approaches to estimating conditional
expectations require intermediate steps of density estimation and numerical integration.
However the following methods are based on estimating the operator v 7→ES′|s,a[v(S ′)]
as a regression function (section B.4.1).

2.6.1 Hilbert Space Embeddings of Conditional Expectations

Recall section 2.5.1 where value function approximations are assumed to reside in a
Hilbert space v ∈F whose evaluations are modelled as v(s) = ⟨v,ϕ(s)⟩F and where
ϕ :S →F is a feature mapping. Recall also section 2.5.2 where the Bellman operator
was applied to this linear function approximation scheme (2.28) such that the transition
dynamics conditional expectation is written as,

ES′|s,a[v(S ′)] = ⟨ES′|s,a[ϕ(S ′)], v⟩F
= ⟨µ(s, a), v⟩F
≈ ⟨µ̂(s, a), v⟩F
=: Ê(s,a)[v],

where µ :S×A→F is the expected next feature map. Choice of F determines whether
the approximate MDP is a finite MDP.

Conditional Mean Embeddings

The following is a summary of the non-parametric conditional mean embeddings
(CME) (Song et al., 2009) framework which embeds conditional distributions into an

5For brevity the immediate reward function is assumed to be known r(s, a) =E·|s,a[R], although
methods presented here and those developed later in this thesis do support learning the Ê(s,a)[R].

2.6 Model-based Approximate Policy Iteration 47

Table 2.1 Notation inherited from Song et al. (2010)

Domain X Y
Random Variable X Y
Observation x y
RKHS Function f ∈HK g ∈HL

Feature Map φ(x) =K(x, ·)∈HK ϕ(y) =L(y, ·)∈HL

Feature Matrix Υ := [φ(x1), ...,φ(xn)]⊤ Φ := [ϕ(y1), ...,ϕ(yn)]⊤
Kernel K(x,x′) L(y,y′)
Kernel Matrix (K := ΥΥ⊤)ij =K(xi,xj) (L := ΦΦ⊤)ij =L(yi,yj)

RKHS, providing a way to train conditional expectation models Ê(s,a)[v]. Grünewälder
et al. (2012a) formalise the training of a CME into a principled regularised regression
problem using vector-valued RKHS theory (Grünewälder et al., 2012b). The resulting
approximate Bellman operator T̂ can be solved exactly in a policy iteration algorithm
(section 2.3.3), formalised by the pseudo-MDP framework (Yao et al., 2014a) which
gives deeper insights into the conditions for contraction mappings (definition 9).

Reproducing Kernel Hilbert Spaces Given a non-empty set X , then a scalar-
valued function f :X →R belongs to a reproducing kernel Hilbert space (RKHS) HK

(Shawe-Taylor and Cristianini, 2004) if its evaluation takes the form

f(x) = ⟨f,φ(x)⟩HK
, x∈X , φ(x)∈HK ,

where φ(x) is a feature map (also written as K(x, ·)) and the reproducing kernel
K :X×X →R is defined as K(x,x′) := ⟨φ(x),φ(x′)⟩HK

; see section B.4.2 for a formal
review. The defining quality of an RKHS function is that its evaluation is bounded
by its norm || · ||HK

. Intuitively this means that if two functions f, g ∈HK are close
as measured by ||f − g||HK

, then the distance between their point-wise evaluations
|f(x)− g(x)| is also close. This is not the case for other Hilbert spaces of functions.
The RKHS norm encodes a sense of smoothness such that smoother functions have
lower norm (c.f. L2 regularisation for parametric function approximators). Typically
f = ∑n

j=1 αjφ(xj, ·) in a regression setting (where αj ∈R) with training data Dn such
that f(x) = ∑n

j=1 αjK(xj,x). The overwhelming advantage of an RKHS function is
that the feature map φ(x)∈HK is implicit and only a positive semi-definite kernel
needs to be defined.

Embedding Conditional Distributions The following summarises Song et al.
(2009) and uses notation as specified in table 2.1. The conditional distribution
P (Y |X = x) embedding is

µY |X = x :=EY |X = x[ϕ(Y)] =
∫

Y
ϕ(y)P (dy|x) ∈HL, (2.48)

48 Literature Review

such that

EY |X=x[g(Y)]= ⟨g, µY |X=x⟩HL
, ∀g ∈HL.

The embedding sweeps over a family of points in HL, each indexed by the value of
the conditioning variable. Thus by fixing the embedding to a specific value X = x, it
becomes a single element in HL. We therefore seek an operator that maps between
the two RKHSs CY |X :HK→HL, such that the conditional mean embedding is

µY |X=x = CY |Xφ(x),
= CY XC−1

XXφ(x).

The operators CXX :=EX [φ(X) ⊗ φ(X)], CY X :=EY X [φ(Y) ⊗ ϕ(X)] are variance
and cross covariances CXX :HK→HK and CY X :HK→HL respectively (drawing sim-
ilarities with the primal regression setting in equation (B.14)). Given a dataset
Dn = {(x,y)i}ni=1 drawn i.i.d from P (X, Y), then the sample estimates are used to
compute the empirical conditional embedding (see notation in table 2.1),

µ̂Y |X=x = ĈY X Ĉ−1
XXφ(x),

= Φ⊤Υ(Υ⊤Υ)−1φ(x),
= Φ⊤(ΥΥ⊤)−1Υφ(x),
= Φ⊤(K + λIn)−1Υφ(x),
= Φ⊤(K + λIn)−1ψ(x), (2.49)
= Φ⊤Wψ(x), (2.50)
= Φ⊤α(x),

=
n∑
j=1

αj(x)ϕ(yj), (2.51)

where the ridge term is added for numerical stability, ψ(x) := [K(x1,x), ..., K(xn,x)]⊤

and α(x) := [α1(x), ..., αn(x)]⊤ = Wψ(x)∈Rn. Finally the approximate expectation
operator is estimated by

Ê(x)[g] = ⟨g, µ̂Y |X=x⟩HL
,

= ⟨g,
n∑
j=1

αj(x)ϕ(yj)⟩HL
,

=
n∑
j=1

αj(x)g(yj). (2.52)

Embeddings as Regressors The following summarises that learning a CME can
be posed as a principled penalised empirical risk minimisation problem (Grünewälder
et al., 2012b); see section B.4.6 for a summary on vector-value RKHS (vvRKHS)

2.6 Model-based Approximate Policy Iteration 49

theory. Given Y ∼P (·|X), then the aim is to describe a suitable ideal loss for µ∈HL,
the true embedding of P (·|X). Supervised targets EY |X [g] cannot be sampled and are
not given from an oracle, therefore Grünewälder et al. (2012a, eqn 18) propose the
following loss,

L(µ) :=EX ∼D

[(
EY |X [g]− ⟨µ(X), g⟩HL

)2]
,

≤EX ∼D,·Y ∼P (·|X)
[
||ϕ(Y)− µ(X)||2HL

]
, (2.53)

where X ∼D for some distribution D. Equation (2.53) is a surrogate loss that is
more appropriate for supervised learning. The embedding can now be considered
as a vector-valued function µ :X →HL and will be modelled in a vvRKHS µ∈HΓ

associated with kernel Γ. An estimate of µ can then be made by collecting training
data D := {(x,ϕ(y))i}

n
i=1 and forming a vvRKHS penalised risk minimisation problem

(c.f. equation (B.65)),

µ̂ = arg min
µ∈HΓ

[
1

2n

n∑
i=1
||ϕ(yi)− µ(xi)||2HL

+ λ||µ||2Γ

]
. (2.54)

By specifying the special case Γ(x,x′) :=K(x,x′)I, where I :HL→HL then the solu-
tion is the mean embedding (2.51) (see section B.4.6). This approach formally confirms
that we can use the machinery of penalised risk minimisation and cross-validation in
order to find the regularised solution µ̂.

Solving Approximate MDPs as Embeddings Grünewälder et al. (2012a) show
that by assuming the value function resides in F =HL, then the approximation
ES′|s,a[v(S ′)]≈ Ê(s,a)[v] is modelled by embedding the conditional distribution in an
RKHS. Recall embedding (2.52), then given HK over X =S×A and HL over Y =S,
the transition dynamics approximate expectation is

Ê µ
(s,a)[v] = ⟨v, µ̂S|s,a⟩HL

,

=
n∑
j=1

αCME
j (s, a)v(s′

j).

The embedding µ : S×A→HL is estimated by solving (2.54) in a batch penalised
vvRKHS regression scheme using transition dataD := {(s, a,ϕ(s′))i}ni=1, whose solution
is αCME(s, a) = Wψ(s, a) and W = (K + λIn)−1. A cross validation scheme on kernel
bandwidth and λ costs O(n3) due to the kernel matrix inverse but the embedding
evaluation is only linear in n.

Grünewälder et al. (2012a, algorithm 1) assume transition data Dn is provided a
priori such that the learnt approximate expectation is used to form an approximate

50 Literature Review

optimal Bellman operator T̂ ∗
µ :B(S)→B(S),

(T̂ ∗
µv)(s) := sup

a ∈ A

[
r(s, a) + γ

n∑
j=1

αCME
j (s, a)v(s′

j)
]
, s∈S, s′ ∈S ′

n, (2.55)

where S ′
n := {s′

i}ni=1 are the successor states in training data. Applying the sup-norm
convergence proof in lemma B.3 to T̂ ∗

µ proves that a contraction exists if Ê(s,a)[v]
is w.r.t a valid probability distribution6 for all (s, a)∈S×A. The CME embedding
is defined over the discrete set of successor states in the training data, therefore
the value function only needs to be maintained over S ′

n. Adopting vector notation
v̂ := [v̂(s′

1), ..., v̂(s′
n)]⊤, then Grünewälder et al. (2012a, algorithm 3) execute exact value

iteration (section 2.3.2) by iterating v̂k+1 = T̂ ∗
µ v̂k. Convergence v̂k→ v̂∗

µ is guaranteed if
T ∗
µ is a contraction mapping where v̂∗

µ is the optimal value function of the approximate
MDP as defined by the approximate embedding.

Finally, a policy is extracted at iteration k=κ by forming a state action-value
function

q̂κ(s, a) := r(s, a) + γ
n∑
j=1

αCME
j (s, a)v̂κ(s′

j),

π̂κ(s) := arg sup
a ∈ A

[q̂κ(a, a)].

Unlike kernel density estimates, the rate of embedding convergence as described
by ϵ(Dn) is independent to the dimensionality of the underlying space X =S×A
(Grünewälder et al., 2012a; Song et al., 2013).

Theoretical Claims for Stability The quality of the value function vπκ in the
approximate MDP (defined by µ̂) w.r.t. the actual optimal value function is bounded
as follows.

Theorem 4 (CME Policy Suboptimality Bound (Grünewälder et al., 2012a, Theorem
3.2)). Given κ applications of an approximate optimal Bellman operator T̂ ∗

µ which
consists of an embedding µ̂ trained on Dn, then the quality of vπ̂κ is upper-bounded by,

||vπ̂κ − v∗||∞ ≤
2γ

(1− γ)2

(
ϵ(κ) + 2||v∗ − ṽ∗||∞ + ϵ(µ̂)||ṽ∗||HL

)
where ϵ(κ) := γκ||v̂1 − v̂0||∞, ϵ(µ̂) := sups,a∈ S×A ||µ(s, a)− µ̂(s, a)||HL

, v̂0 is an initial
guess and ṽ∗ ∈HL is an arbitrary optimal value function approximation.

The term ϵ(κ) derives from the error ||v̂κ − v̂∗||∞ where v̂∗ is the actual optimal value
function in the approximate MDP, which can be sent to zero by increasing κ. The
second term describes the distance between the actual optimal value function and

6Meaning that
∑

j αCME
j (s, a) = 1, however this condition is relaxed in the Pseudo-MDP architec-

ture and will be discussed in the next section.

2.6 Model-based Approximate Policy Iteration 51

an arbitrary approximation ṽ∗ ∈HL. This term captures how well the actual value
function v∗ can be modelled by a function in HL, therefore increasing the richness of
HL will drive this error towards zero. Finally the term ϵ(µ̂) describes the sup-norm
quality of the approximate MDP µ̂(s, a)∈HL w.r.t. to the population embedding
µ∈HL, measured in HL and weighted by the size of an arbitrary value function
approximation ṽ ∈HL.

Smooth RKHS functions have smaller norms and therefore if ṽ is non-smooth, this
final error term is reduced by increasing the quality of the embedding µ̂ by increasing
the number of training samples Dn. Grünewälder et al. (2012a, lemma 2.2) show
that under certain conditions then in the limit of large data, ϵ(κ)→ 0 and ϵ(µ̂)→ 0.
Theoretically this suggests that value function approximation can be improved by
the quality of the embedding (by training on more data). CMEs therefore offer
a mechanism to mitigate policy improvement oscillations by improving the value
estimates when in proximity to the optimal value function

Therefore CME policy improvements may exhibit more stability when value func-
tions are close to the optimal value function by simply training the embedding on more
data, rendering it immune to the policy oscillations seen in parametric API as reviewed
in section 2.5.3. By improving the quality of the embedding, then relatively large
value estimate errors will be thwarted and will be empirically tested in the upcoming
investigation.

Pseudo MDPs

As discussed with reference to definition 2, the actual optimal Bellman operator
(definition 12) is defined in part by the probability kernel P : (S×A)×S→ [0, 1] that
assigns the probability measure (i.e. distribution) P (·|s, a) :S → [0, 1] to (s, a)∈S×A,
which in turn assigns probability P (s′|s, a) for the transition to s′ ∈S. For continuous
state spaces, S is a measurable space with well-defined expectations over measurable
subsets of states (see Yao et al. (2014a) for details). The approximate optimal Bellman
operator (2.55) is only valid if the sup-norm contraction is conserved. Given that the
value function only needs to be represented over the successor states S ′

n in the training
data, then a contraction is clearly maintained if αj(s′, a)≥ 0 and ∑n

j=1 αj(s′, a) = 1
for all j and every (s′, a)∈S ′

n×A. Ê µ
(s,a)[v] is therefore an expectation w.r.t. a valid

probability distribution P (·|s, a),

P (s′
j|s, a) =

αj(s, a), s′
j ∈S ′

n,

0, otherwise.
(2.56)

Yao et al. (2014a) develop a pseudo-MDP abstraction framework which unifies
the description approximate MDPs like the CME. Most importantly a pseudo-MDP

52 Literature Review

relaxes the contraction constraint such that T̂ ∗
µ does not have to be made w.r.t. a

probability measure P (·|s, a). The following result is stated in their work, but the
simple contraction proof is provided here.

Lemma 3. The approximate optimal Bellman operator T̂ ∗
µ :B(S)→B(S) formed by

the pseudo-MDP is a contraction mapping if sup(s,a)∈S×A ||α(s, a)||1 ≤ 1.
Proof: The contraction argument lemma B.3 is applied to approximate dynamics,

||T ∗u− T ∗v||∞ ≤ γ sup
(s,a)∈S×A

[
|
n∑
j=1

αj(s, a)(u(s′
j)− v(s′

j))|
]

≤ γ sup
(s,a)∈S×A

[n∑
j=1
|αj(s, a)| |u(s′

j)− v(s′
j)|
]

≤ γ sup
(s,a)∈S×A

[n∑
j=1
|αj(s, a)| ||u− v||∞

]
= γ||u− v||∞ sup

(s,a)∈S×A

[
||α(s, a)||1

]
,

then given γ ∈ [0, 1), to preserve the contraction requires sup
(s,a)∈S×A

[
||α(s, a)||1

]
≤ 1.

Clearly αj values no longer assign transition probabilities and instead they assign a
weight which can be negative. A pseudo-MDP is defined as N := {S,A, P̂ , P1, r, γ}
where P̂ (·|s, a) does not necessarily have to be a probability distribution, elaborated as
follows. Loosely following Yao et al. (2014a, Part III) then if s′

j ∈S ′
n, the pseudo-MDP

produced by the CME method takes the form

P̂ (ds′|s, a) := ξ⊤(ds′)ψ(s, a),
=
[
m(ds′)f(s′)

]
ψ(s, a),

=
[(n∑

j=1
δs′
j
(ds′)

)
(1s′=s′

j
wj:)

]
ψ(s, a),

=
n∑
j=1

δs′
j
(ds′)αCME

j (s, a),

=⇒
∫

S′
P̂ (ds′|s, a) =

n∑
j:s′

j∈S′
n

αCME
j (s, a), (2.57)

where m(·) is a measure (see definition B.2) chosen to be a delta function concentrated
at s′

j ∈S ′
n is δs′

j
(·) (where

∫
S δs′

j
(ds′)ϕ(s′) =ϕ(s′

j)), wj: ∈R1×n is a row of W and
αj(s, a) = wj:ψ(s, a). In a pseudo-MDP αj(s, a) assigns a weight to each s′

j ∈S ′
n

whose sum (2.57) does not necessarily have to be 1, so long as contraction (lemma 3)
is maintained. A CME satisfying this constraint is known as a proper CME. The form
of the original CME can then be recovered by using the pseudo-MDP’s probability

2.6 Model-based Approximate Policy Iteration 53

kernel,

Ê µ
(s,a)[v] =

〈
v,
∫

S
P̂ (ds′|s, a)ϕ(s′)

〉
F
,

=
〈
v,
∫

S

n∑
j=1

δs′
j
(ds′)αCME

j (s, a)ϕ(s′)
〉

F
,

=
〈
v,

n∑
j=1

αCME
j (s, a)ϕ(s′

j)
〉

F
,

=
n∑
j=1

αCME
j (s, a)v(s′

j),

where the last line is due to the reproducing property (definition B.12). Grünewälder
et al. (2012a) maintain the contraction constraint for the CME by normalising the α
weights,

αCME
j (s, a)←

αCME
j (s, a)
||α(s, a)||1

, (s, a)∈S×A, (2.58)

which is enforced directly after every evaluation of the embedding. Unfortunately this
constraint is not part of the vvRKHS optimisation.

2.6.2 Additional Pseudo-MDPs

Two other non-parametric finite induced models are described by the pseudo-MDP
abstraction framework.

Non-Parametric Finite-Induced MDPs

KBRL Ormoneit and Sen (2002) approximate the conditional expectation with a
weighting kernel αj(s, a) centred at any s∈S in continuous space and formed from
transition data Dn := {(s, a, s′)i}ni=1,

Ê(s,a)[v] =
|S′

a|∑
j=1

αKBRL
j (s, a)v(s′

j), s′∈S ′
a⊂S ′

n

=
∑

s′∈S′
a

K(s, s′)∑
s′′∈S′

a
K(s, s′′)v(s′).

S ′
a is the subset of sampled successor states which were only reached by applying action

a∈A and K :S×S→R is a Gaussian kernel (see section B.4.2) with a bandwidth
parameter σ that controls the extent of local averaging.

Kernel Smoothing The weighting kernel approach can be generalised to kernel
smoothing (KS) as follows. Given transition data Dn, then the Nadaraya-Watson

54 Literature Review

(Nadaraya, 1963; Watson, 1964) estimator can be implemented as

Ê µ
(s,a)[v] =

n∑
j=1

αKS
j (s, a)v(s′

j), s′∈S ′
n

=
n∑
j=1

K((s, a)j, (s, a))∑n
i=1 K((s, a)i, (s, a))v(s′

j),

where K : (S×A)×(S×A) is a Gaussian kernel and S ′
n is the set of successor states

in training data Dn. A product kernel is also a kernel (Shawe-Taylor and Cristianini,
2004, proposition 3.22 iii)), therefore we decompose K into an action and state kernel,

K((s, a), (s′, a′)) :=Kσs(s, s′)Kσa(a, a′), (2.59)

where σs and σa are the state and action bandwidths respectively. As σa→ 0 then the
KRLS weighting kernel is recovered, such that the action Gaussian kernel behaves
like a delta function. This is under the assumption S ′

n := (⋃a∈A S ′
a) in MDPs whose S

is likely continuous and transition dynamics are stochastic. Increasing σa increases
the smoothing across actions if required. By choosing K as the Gaussian kernel, the
pseudo-MDP constraint over αKS is naturally maintained as the KS weights form a
probability distribution. Ormoneit and Sen (2002, Part 5) provide consistency results
for KBRL such that in the limit of infinite data, the pseudo-MDP converges to the
actual MDP.

Factored Linear Action Models Yao et al. (2014a, Part IV A.) propose estimating
the transition conditional expectation by solving the following ideal loss or Factored
Linear Action Model (FLAM),

L(b) :=E(S,A) ∼D,S′ ∼P (·|S,A)
[(
v(S ′)− b⊤ψ(S,A)

)2]
,

where feature representation ψ :S×A→Rd. Arranging data Dn := {(s, a, s′)i}
n
i=1 into

matrices Ψ := [ψ(s1, a1), ...,ψ(sn, an)]⊤ ∈Rn×d and v̄ := [v(s′
1), ..., v(s′

n)]⊤ ∈Rn, then
the solution is given by,

b̂ = arg min
b∈Rd

[
n∑
i=1

(
b⊤ψ(si, ai)− v(s′

i)
)2
]
,

= (Ψ⊤Ψ)−1Ψ⊤v̄,

= F⊤v̄,

where for simplicity the inverse is assumed to exist. The approximate expectation
operator can then be expressed in the same form as the CME in the pseudo-MDP

2.6 Model-based Approximate Policy Iteration 55

framework,

Ê µ
(s,a)[v] = b⊤ψ(s, a),

= v̄⊤Fψ(s, a),

=
∫

S

n∑
j=1

δs′
j
(ds′)fj:ψ(s, a)v(s′), s′

j ∈S ′
n,

=
n∑
j=1

αFLAM
j (s, a)v(s′

j),

where fj: ∈R1×d is the jth row of F∈Rn×d and αFLAM
j (s, a) := fj:ψ(s, a). Consequently

the following empirical loss for F should be small,

L̂(F) := 1
2n

n∑
i=1

(
v̄⊤Fψ(si, ai)− v(s′)

)2
,

= 1
2n ||v̄

⊤(FΨ⊤ − In)||22.

Under mild value function assumptions, Yao et al. (2014a, Part IV B.) then choose
the following objective for learning a FLAM pseudo-MDP,

minimise
F

1
2n ||FΨ⊤ − In||

2
Fr ,

subject to
n∑
j=1
|fj:ψ(s′

i, a)| ≤ 1, a∈A, 1≤ i≤n.

which is used to form a Lagrangian that is solved iteratively with steps based on the
alternative direction method of multipliers (ADMM) optimisation procedure (Boyd
et al., 2011). Each iteration consists of i) an L1-projection (Duchi et al., 2008), ii) F
weight update and finally iii) a Lagrangian multiplier update. Both ψ and Dn are
assumed to be provided at the beginning of the algorithm before model construction
and subsequent value iteration on the approximate MDP. This approach differs from the
CME approach in that the contraction constraint is maintained during the optimisation
procedure instead of as a post hoc procedure when the embedding is evaluated.

Parametric Linear Action Models

Recall the linear value function approximation scheme where v(s) ≈ ⟨w,ϕ(s)⟩F . By
assuming F is non-parametric then conditional expectations are modelled by finite
induced approximate MDPs such that the value prediction problem can be solved
exactly. In contrast if F is a Hilbert space Rd′ then this gives rise to parametric
conditional expectation models which do not suffer unfavourable memory and compu-
tational complexities with sample size n. However parametric MDP models cannot
be solved exactly and approximate value prediction methods (see section 2.5.2) are
required.

56 Literature Review

Parr et al. (2008) discuss learning policy-specific parametric linear dynamics models
with least squares, although their exposition does not explicitly state what targets
are to be used in the supervised learning procedure (c.f. Grünewälder et al. (2012a)’s
policy invariant models (2.53) which are learnt with a suitable supervised learning
scheme). Yao and Szepesvári (2012) develop policy-invariant parametric linear action
models (LAMs) and use them as components to an approximate policy iteration
(LAM-API) scheme as summarised below.

A LAM is learnt by defining explicit feature representation ϕ :S →Rd′ (not to
be confused with the implicit feature ϕ∈HL in the RKHS setting) and forming the
following loss for each a∈A,

L(Fa) :=ES∼D,S′ ∼P (·|S,a)
[
||ϕ(S ′)− Fa⊤ϕ(S)||22

]
.

Separating transitions D := {(s, a, s′)i}
n
i=1 for each action, Da := {(s, s′)i}

na
i=1, then

Φ := [ϕ(s1), ...,ϕ(sna)]⊤∈Rna×d′ , Φ′ := [ϕ(s′
1), ...,ϕ(s′

na)]⊤∈Rna×d′ and the transition
model for a∈A is (see section B.4.4)

F̂a = arg min
Fa∈Rd×d

[
1

2n

n∑
i=1
||ϕ(s′)− Fa⊤ϕ(s)||22 + λ||Fa||2Fr

]
,

= arg min
Fa∈Rd×d

[
1

2n ||Φ
′ −ΦFa||2Fr + λ||Fa||2Fr

]
,

= (Φ⊤Φ + λId′)−1Φ⊤Φ′, (2.61)
= Wa⊤Φ′,

where Wa ∈Rna×d. The embedding

µ̂S|s,a = F̂a⊤ϕ(s),
= Φ′⊤Waϕ(s),
= Φ′⊤α(s, a),

=
|Sna |∑
j=1

αLAM
j (s, a)ϕ(s′

j).

forms the parametric approximate expectation operator,

Ê µ
(s,a)[v] = ⟨w, µ̂S|s,a⟩2,

= w⊤Fa⊤ϕ(s),

noting that as the embedding is not a function of the successor training samples, then
the Bellman operator is inexact. As a consequence the LAM-API algorithm requires
LSTD or Bellman residual minimisation in order to fit (or find w∈Rd′ of) a value
function.

2.6 Model-based Approximate Policy Iteration 57

2.6.3 Research Preamble

Both non-parametric (KS, CME, FLAM) and parametric (LAM) MBRL policy iteration
are stated in algorithm 6 and algorithm 7 respectively. The immediate reward function
is assumed to be known in order to focus on the transition dynamics.

Algorithm 6 Existing Non-Parametric MBRL Policy Iteration (KS, CME, FLAM)
1: Input: Kernel L :S×S→R, implicit state representation ϕ(s′) :=L(s′, ·),

data D := {(s, a, s′)i}ni=1, S ′ := {s′
i}
n
i=1 ∈D extracted from an unknown MDP

M := {S,A, r, γ, P} with unknown probability kernel P : (S×A)× S→ [0, 1] and
known average reward function r :S×A→ [0, 1].

2: Output: πK(s)≈ π∗(s) ∀s∈S.
3: Model: µ̂S′|s,a:=∑n

j=1 αj(s, a)ϕ(s′
j)←BatchTrain

(
L,D

)
, v:=[v(s′

1), ., v(s′
n)]⊤,

Ê µ
(s,a)[v]:=∑n

j=1 αj(s, a)v(s′
j), (T̂ πkµ v)(·):=r(·, πk(·))+γα⊤(·, πk(·))v.

4: Initialise: q̂0(s, a)← r(s, a), π1(s)← greedya∈A[q̂0(s, a)],
5: Planning:
6: for k = 1, 2, ...K−1 do ▷ kth policy iteration master index
7: v←0
8: for j = 1 to Jeval do ▷ exact policy evaluation
9: v←T̂ πkµ v

10: end for
11: πk+1(·)← greedya∈A[r(·, a)+γα⊤(·, a)v] ▷ policy improvement
12: end for
13: return πK(·)

Algorithm 7 Existing Parametric MBRL Policy Iteration (LAM)
1: Input: Explicit state representation ϕ :S →Rd′ , data D := {(s, a, s′)i}ni=1,
S ′ := {s′

i}
n
i=1 ∈D extracted from an unknown MDP M := {S,A, r, γ, P} with un-

known probability kernel P : (S×A)×S→ [0, 1] and known average reward function
r :S×A→ [0, 1].

2: Output: πK(s)≈ π∗(s) ∀s∈S.
3: Model: {µ̂S′|s,a := Fa⊤ϕ(s)}a∈A←BatchTrain

(
ϕ,Dn

)
, Ê µ

(s,a)[v] := w⊤
πk

Fa⊤ϕ(s),
(T̂ πkµ v)(·):=r(·, πk(·))+γw⊤

πk
Fa⊤ϕ(·), for some wπk ∈Rd′ to be found.

4: Initialise: q̂0(s, a)← r(s, a), π1(s)← greedya∈A[q̂0(s, a)].
5: Planning:
6: for k = 1, 2, ...K−1 do ▷ kth policy iteration master index
7: wπk←FitValueFunction

(
{Fa⊤ϕ(s)}a∈A, r, πk,Dn

)
▷ LSTD or BRM

8: πk+1(s)← greedya∈A[r(s, a)+γw⊤
πk

Fa⊤ϕ(s)] ▷ policy improvement
9: end for

10: return πK(·)

Recall that KS, CME and FLAM build approximate expectations that are finite
weighted sums of value function evaluations over the training data Sn. Classical DP
algorithms such as policy iteration can then be deployed to solve an approximate

58 Literature Review

MDP by iterating T̂ ∗
µ exactly. A CME embedding is finite because it models the value

function in a rich non-parametric function class such as an RKHS F =HL. Policy
iteration computational complexity is therefore decoupled from the size of the original
MDP’s state space (which could be infinite). The advantage to this approach is
that function approximation procedures (such as supervised learning) are relegated
to fitting a model only (in function BatchTrain) and do not contaminate the
‘actual RL’ value prediction/policy evaluation process. The pseudo-MDP framework
provides policy improvement guarantees based on the accuracy of the model and
methods such as KS or CME boast consistency guarantees in the limit of infinite data.
Explicit feature representation is also not needed for KS or CME, instead kernels are
only needed whose parameters can be found with cross-validation during training.
However the disadvantage with such methods is that planning and model construction
computational complexities scale unfavourably with the training set size n.

Table 2.2 Approximate policy iteration schemes; |D|= |S ′|=n. Cubic complexities
are due to matrix inversion and therefore ripe for more efficient inversion techniques.
†LSTD or BRM complexities. ‡ Pseudo MDPs have policy improvement suboptimality
guarantees, however KS and CME also have explicit consistency results such that their
approximate MDPs converge to the actual MDP in the limit of infinite data; LAM
parametric lacks this quality because its feature representation is not augmented with
new data. ⋆KS cross-validation scheme is quadratic, however if hyperparameters are
known then this is linear.

Algorithm ‡Guarantees Planning Model Ê µ
(s,a)

π evaln π impvt build eval
DP ✓ |S|2 |A||S|2 - |S|
KS ✓ n2 |A|n2 ⋆n2 n
CME ✓ n2 |A|n2 n3 n
FLAM ✓ n2 |A|n2 |A|n dim(ψ)2 n dim(ψ)
LAM ✓ †dim(ϕ)3 |A|dim(ϕ)2 dim(ϕ)3 dim(ϕ)2

A direct contrast with this approach is LAM which approximates v in a parametric
function class F =Fϕ such that the approximate transition expectation is not a
finite sum of value function evaluations. Consequently the approximate Bellman
operator T̂ is inexact (as discussed in section 2.5.2) and value prediction constitutes
fitting the value function by searching for w∈Rd′ (in function FitValueFunction).
This approach inherits the same characteristics of model-free value-based RL under
parametric value function approximation and therefore may exhibit policy oscillations
under the ‘deadly triad’. This approach lacks consistency guarantees because the
expressiveness of ϕ is not improved by data. However LAM is a pseudo-MDP and
therefore it does have policy improvement guarantees. The primary advantage of the

2.6 Model-based Approximate Policy Iteration 59

parametric setting is that it scales favourably with n, but the primary disadvantage is
that it requires explicit feature representation.

This investigation treads a line between this apparent dichotomy of parametric
and non-parametric F , policy iteration stability and computational complexity. The
objective is to produce an algorithm that has favourable complexity with n, rich
data-driven feature representations (as opposed to them being given a priori) and
policy improvement stability. All existing algorithms assume adequate training data
a priori and therefore policy learning stability during exploration is not considered.
Model learning is also a batch process and it is desirable to find online solutions. An
empirical study that compares the parametric and non-parametric approaches has
not yet been done and it is desirable to compare policy learning stability for both
paradigms. The existing characteristics for both sets of algorithms are listed in table
2.2.

Chapter 3

Benchmark Algorithms and Initial
Improvements

The following work compares existing pseudo-MDP algorithms of which the most
successful are used in the rest of the investigation as benchmarks. This is achieved by
running CME, KS and FLAM pseudo-MDP embeddings in a policy iteration algorithm
as described in section 2.3.3. The assumption that training data is given a priori is
removed and instead the algorithm forces the agent to repeat the process of gathering
data, building a new model and planning for an improved policy as described in fig.
1.1. In anticipation of policy oscillations an exploration procedure is developed such
that the entire algorithm is known as explorative pseudo-PI. Although each task is a
continuing task, the learning algorithm developed here takes an episodic perspective
such that training data is collected in trajectories of finite length H, beginning from
states drawn from an initial state distribution P1. Empirical cumulative reward and
timings of algorithm components are compared at each kth policy iteration.

In the context of model-based approximate policy iteration, one goal of this thesis
is to empirically investigate policy learning stability with function approximation.
Therefore establishing the stability of the benchmark algorithms is important. Another
goals is to develop an online MBRL algorithm characterised by approximate MDP
embeddings that can be solved exactly. The CME model construction algorithm is
therefore modified by efficient block inversion of the kernel matrix which improves
model construction complexity from cubic in the training data to quadratic. In
addition a pseudo-MDP contraction constraint is implemented for the CME as a fast
L1-projection.

The parametric LAM algorithm is not compared as it was identified as an existing
pseudo-MDP algorithm only after experiments were carried out. It is however stated
in Yao et al. (2014a) that due to LAM embeddings keeping separate action models
rather that generalising over S×A, its performance may not be competitive. This issue

62 Benchmark Algorithms and Initial Improvements

will become relevant in chapter 4. An empirical investigation of LAM in explorative
pseudo-PI is left for future work.

3.1 Explorative PI

Throughout this analysis the average immediate reward function is assumed known in
order to concentrate on the task of learning good transition models.

3.1.1 Online Data Acquisition

The explorative pseudo-PI control algorithm is described by algorithm 8 and is an
umbrella learning algorithm for KS, CME and FLAM variants. Data acquisition is
made at the beginning of each kth policy iteration such that the existing data set
Dnk−1 is augmented by new data Dnew gathered from interactions with the real MDP.
At the beginning of each iteration a new approximate MDP is built in a batch learning
process over the entire augmented data set.

It is useful to reflect on how model-free control methods incorporate exploration
in section 2.4.2. On-policy or off-policy sample targets of the action-value Bellman
operator form SARSA or Q-learning respectively. When combined with TD learning
and function approximation then off-policy learning can elicit algorithm divergence as
discussed empirically in Dann et al. (2014, section 2.4.2)). Exploration of an MDP
usually proceeds by using an ϵ-greedy behaviour policy that injects stochasticity into
action selection in order to make the probability of exploring all actions in each state
non-zero.

In contrast for dynamic programming, each (full backup) policy iteration update
is towards the optimal value function (equation (2.20)). For explorative pseudo-PI,
then the value function point-evaluations on the training set successor states Sn are
nudged towards the optimal policy of the current pseudo-MDP defined by the current
embedding µ,

v(s′) 7→ (T̂ ∗
µv)(s′), ∀ s′ ∈S ′

n,

At each k=κ policy iteration, the transition data Dnκ used to train µ̂ was gathered
by all previous k < κ embedding optimal policies. Explorative pseudo-PI is therefore
inherently off-policy.

All behavioural policies generated by an embedding at the kth iteration is a function
of the embedding model. If an agent strays to regions of S ×A that are far from the
data distribution that the model is trained on, then control signals drawn from the
policy may quickly become inaccurate. Ross and Bagnell (2012) mitigate this problem
by developing an agnostic system identification method in online settings known as

3.1 Explorative PI 63

Algorithm 8 Explorative Pseudo-PI (KS, CME, FLAM)
1: Input: Kernel L :S×S→R, implicit state representation ϕ(s′) :=L(s′, ·), access

to unknown MDP M := {S,A, P, P1, r, γ} with continuous S, discrete A, but
known average reward function r :S×A→ [0, 1]. H = 100 transitions per trajectory,
Jimp := 10, Jeval := 4000, start-state distribution P1.

2: Output: πK(·)≈ π∗(·).
3: Initialise: q̂0(·, a)← r(·, a), π1(·)← greedya∈A[q̂(·, a)], exploration policy
νπ1(·)← ϵ-greedya∈A[q̂(·, a)], ϵ← 0.3, n0← 0, nnew← 2H, D0 = ∅.

4: for k = 1, 2, ..., K−1 do ▷ kth policy iteration master index
5: Data acquisition: Collect Dnew = {si, ai, ri, s′

i}
nk-1+nnew
i=nk-1+1 ; one trajectory from

each πk and νπk , beginning from start state s∼P1,
Dk←Dk−1∪Dnew, nk←nk-1+nnew. ▷ aggregate data

6: Model: ∑nk
j=1 αj(·, ·)ϕ(s′

j)←BatchTrain
(
L,Dk

)
, v:=[v(s′

1), ., v(s′
nk

)]⊤,
(T̂ πµ v)(·):=r(·, π(·))+γα⊤(·, π(·))v.

7: Planning:
8: for i = 1 to Jimp do ▷ policy improvement index
9: v←0, π← πk

10: for j = 1 to Jeval do ▷ exact policy evaluation
11: v←T̂ πµ v
12: end for
13: v̂π ← v
14: q̂π(s, a) := r(s, a) + γα⊤(s, a)v̂π, (s, a)∈S×A
15: π(·)← greedya∈A[q̂π(·, a)] ▷ greedy policy improvement
16: end for
17: πk+1 ← π
18: end for
19: return πK(·)

DAgger. This approach specifies that if new model training data Dnew comprises of
i) on-policy data and ii) data taken from a suitable exploration distribution, then
optimal policy convergence guarantees exist. Their premise is that if a model’s training
data is drawn from an on-policy distribution bathed in an envelope of data drawn
from an exploration distribution, then controller performance is robust at test-time to
trajectories perturbed away from those generated by the current policy. Therefore at
the kth policy iteration, explorative pseudo-PI collects data Dnew drawn from both i) the
current policy πk and ii) an ϵ-greedy exploration policy νπk based on πk with a constant
ϵ= 0.3 i.e. 15% of all actions are random during new data acquisition. Both policies
combined can be considered as the behaviour policy, however in practice training data
consists of a single trajectory from both the current and exploration policies. The
envelope of exploratory data protects controller performance when operating at test
time and provides enough exploration for approximate MDP convergence to the real
MDP.

64 Benchmark Algorithms and Initial Improvements

3.1.2 CME Improvements

At the kth policy iteration the training data comprises of Dk =Dk−1
⋃Dnew of size nk.

Training the CME embedding over Dk requires the computation (Knknk+λInk)−1 (see
equation (2.49)) and naively costs ∼O(n3

k). However by only using this regularised
inverse with cross-validation on iterations k= {1, 2, 5} for a full model relearn, then
for all other iterations an efficient block inverse can be used instead,

Knknk + λInk =
A B

C D

 =
Knk−1nk−1 + λInk−1 Knk−1nnew

Knnewnk−1 Knnewnnew + λInnew

 ,
(Knknk + λInk)−1 =

A−1 + A−1B(W/A)−1CA−1 −A−1B(W/A)−1

(W/A)−1CA−1 (W/A)−1

 ,
where the Schur compliment is (W/A)−1 := (D−CA−1B), Knknk ∈Rnk×nk and(
Knknk

)
ij

=K((s, a)i, (s, a)j). The block inverse is therefore reduced to matrix multi-
plication which costs O(n2

k) whose efficiency is realised by the reuse of the previous
iteration’s inverted kernel matrix A−1 = (Knk−1nk−1 + λInk−1)−1. For these quick par-
tial re-learns, kernel/cross-validation hyper-parameters are not tuned and instead
the previous iteration’s parameters are used, therefore the cost of cross validation is
avoided.

The final modification is to apply Duchi et al. (2008)’s efficient ∼O(nk) L1-
projection of αCME(s, a) whenever the embedding is evaluated for any (s, a) during
planning or the evaluation of a greedy policy. The vector is normalised if it already
exists in the interior of the L1-ball. The L1-projection satisfies the pseudo-MDP
contraction constraint as specified in Yao et al. (2014a). Sparsity is induced when
projecting onto the L1-ball’s geometry as described in section B.4.5.

3.1.3 Experimental Method

Each variant; kernel smoothing (KS), conditional mean embedding (CME) and factored
linear action model (FLAM-ADMM), are implemented in explorative pseudo-PI over
three MDPs. Where possible the original model construction method is true to the
existing algorithm.

General Settings

At the kth policy iteration the dataset Dk is decomposed into initial state-actions
Zk := {(s, a)}nki=1 and successor states S ′

k := {s′
i}
nk
i=1. CME and KS algorithms are

batch trained with 5-fold cross validation for 20 regularisation hyperparameters
λ∈ 2{log2(10−8):log2(1000)} and 10 state-action kernel K : (S×A)×(S×A)→R bandwidth
hyperparameters σS×A ∈ 2{log2(0.01):log2(5)}. K is a product kernel as described by equa-

3.1 Explorative PI 65

tion (2.59). It was found that adding an additional a priori scaling (unique to each
MDP) MS×A of each state-action’s elements garnered better results such that

K((s, a), (s′, a′)) = exp
(
− 1

2σ2
S×A

([s⊤, a⊤]− [s′⊤, a′⊤])MS×A([s⊤, a⊤]− [s′⊤, a′⊤])⊤
)
.

The sample mean r̂γ of the cumulative discounted reward was calculated at each
iteration k by averaging empirical cumulative reward over 20 trajectories (each with
a horizon of H = 100 starting from s∼P1) by acting on-policy with πk. Error bars
were estimated with 95% confidence bounds by repeating pseudo-PI 20 times for each
MDP. Care was made to randomize the random number generator seed at the start of
each experiment.

CME Settings

The state kernel bandwidth σS was provided a priori for each MDP after an informal
search but could in the future be cross-cross validated such as in van Hoof et al. (2015).
Each element of a state was also scaled a priori (unique to each MDP) such that

L(s, s′) = exp
(
− 1

2σ2
S

(s− s′)⊤MS(s− s′)
)
.

FLAM-ADMM Settings

The FLAM-ADMM implementation was kept as close to that in Yao et al. (2014a) as
possible, but it proved problematic and several assumptions were required for it to
demonstrate good performance.

Feature representation ψ ∈Rnk was implemented at the kth policy iteration as
ψ(s, a) := [K(b1, (s, a)), ..., K(bnk , (s, a))]⊤ where bi ∈Zk. This was based on data
collected from each trajectory and different to the approach in the original paper that
required discretizing the state-space a priori. ψ therefore grows with nk and is directly
comparable to the equivalent embedding component for the CME. However it was not
possible to cross validate any ADMM hyper-parameter. The loss 1

2n ||FΨ⊤ − In||
2
Fr was

not able to pick out a validation signal that would reliably select the product kernel’s
bandwidth σS×A. As an alternative, the CME loss was used in order to try and detect
a validation signal but to no avail. Instead the bandwidth was selected a priori with
the value that the CME discovers through its own cross validation procedure.

Referring to Yao et al. (2014a, part IV, B) then the following modifications were
made to get the algorithm to learn; i) the optimisation constant was set to µ= 0.5
that controls the strength of the L1 contraction constraint and ii) an additional small
ridge term λ= 1×10−8 was added to the inverse term in ADMM step 3, without which
the optimisation was unsuccessful.

66 Benchmark Algorithms and Initial Improvements

3.1.4 Experiments

Both mountain car and cart-pole MDPs were used to implement explorative pseudo-
PI and calibrate the existing algorithms. Larger quadrocopter MDPs with high
dimensional state space and large action spaces are used in the later chapters.

Mountain Car

The agent controls a car whose goal is to drive out of a steep valley. However the car
is underpowered such that it must climb a smaller hill in the opposite direction to
the goal before accelerating back towards the goal and out of the valley (Singh and
Sutton, 1996, appendix B).

States are defined as s = [x, v]⊤ ∈R2 where x is displacement and v is velocity. State
space is S = (−1.2,−0.7)×(−0.07, 0.07) and the action space is discrete one dimensional
A= {−1, 0, 1}. Dynamics are xt+1 =xt+vt+ϵ1, vt+1 = 0.001a−0.0025 cos(3xt)+ϵ2/10
where ϵ1, ϵ2 are Gaussian random variables with standard deviation of 0.02. If xt+1 > 0.6
then the state is reset to st+1 ← [0.6, 0]⊤. The immediate reward function is defined
as r(s, a) = exp (−8(x− 0.6)2) which concentrates reward at the top of the main hill.
Discount factor is γ= 0.99, trajectory horizon H = 100 and the car begins at the
bottom of the valley whose mean is s1 = [−0.5, 0]⊤. The Gaussian kernels are scaled
with MS = diag(1, 100) (whose bandwidth is given as σS = 0.5 which was chosen from
an informal search) and MS×A = diag(1, 100, 1/25).

Near-optimal policies collect discounted cumulative reward of 40 or over which is
equivalent to the car climbing the hill in the opposite direction to the goal and then
accelerating towards the goal to climb out of the valley. Slightly less collected reward
indicates that the car intermittently drops back down into the valley.

Cart-Pole

This problem simulates a pole attached at a pivot to a cart, and by applying force to
the cart the pole must be swung to the vertical position and balanced. The problem
is under-actuated in the sense that insufficient power is available to drive the pole
directly to the vertical position, hence the problem captures the notion of trading-off
immediate reward for long term gain. The same simulator as Lagoudakis and Parr
(2003) was used in this investigation, except here a continuous reward signal is used.

The state space is two dimensional, s = [θ, θ̇]⊤ ∈R2 representing the angle (θ= 0
when the pole is pointing vertically upwards) and angular velocity of the pole. The
action set is A= {−50, 0, 50} representing the horizontal force in Newtons applied to
the cart. Uniform noise in [−10, 10] is added to each action. The system dynamics are

3.1 Explorative PI 67

θt+1 = θt + ∆tθ̇t, θ̇t+1 = θ̇t + ∆tθ̈t where

θ̈= g sin(θ)− αmℓ(θ̇)2 sin(2θ)/2− α cos θu
4ℓ/3− αmℓ cos2(θ) ,

g= 9.8ms−2 is the acceleration due to gravity, m= 2kg is the mass of the pole, M = 8kg
is the mass of the cart, ℓ= 0.5m is the length of the pole, α= 1/(m+M) and ∆t = 0.1s.
The immediate reward function is r(s, a) = (1 + cos(θ))/2 which concentrates reward
at the inverted position. Discount factor is γ= 0.99, trajectory horizon H = 100 and
the pole begins in the downward rest position whose mean is s1 = [π, 0]⊤ (c.f. Yao
et al. (2014a, part V, A) where it seems the pendulum start distribution is centred on
the inverted balancing state). The Gaussian kernels are scaled with MS = diag(1, 1/4)
(whose bandwidth is given as σS = 0.5 which was chosen from an informal search) and
MS×A = diag(1, 1/4, 1/10000).

Near-optimal policies collect discounted cumulative reward of 50 or over which is
equivalent to the pole being swung backwards slightly and then quickly swung up
to the inverted position such that it is balanced for an entire episode. Slightly less
collected reward indicates that the controller intermittently drops the pole or it isn’t
balanced in the right position.

Quadrocopter MDPs

A quadrocopter simulator with aerodynamic turbulence models known as QRSim
(Denardi, 2012) was used to create more complex MDPs beyond the usual benchmarks.
Control problems specified in this simulator are sufficient to stretch the capabilities
of all algorithms developed in this thesis and is a good differentiator for deciding on
what methods are successful in scaling up to even more complex MDPs. Typically an
agent sends control signals a∈A to a simulated PID controller (such that maximum
power signals and sudden changes to control signals being issued between any two
time steps is regulated) which in turn sends the raw control signals to the simulated
quadrocopter. In future experiments it would be interesting to experiment with RL
agents issuing commands directly to the quadrocopter, bypassing any intermediate
PID control system. But as it stands, the PID controller is absorbed into the system
dynamics, of which the agent has no prior knowledge.

The state kernel scaling is MS = diag(1/5,1/105,1,1/105, 0) where 1 = (1, 1, 1)
and the state-action scaling is MS×A = diag(1/5,1/105,1,1/105, 0,1/100). Both
scaling matrices impose the assumption that the variation in each dimension is
independent. The scaling is also used to artificially focus the relevant information of
the state space for each MDP. Future work would be to relax this focussing mechanism
(or add a focussing mechanism that can be learnt) and it would be interesting to see
the performance of such models.

68 Benchmark Algorithms and Initial Improvements

The implicit output feature map ϕ(s) =L(s, ·) for the CME has a bandwidth set
to σS = 1 (chosen by informal search). Two MDPs are set up for this investigation;
one is a navigation task where the reward function is based on the proximity of the
agent to a location in space, the second task is a holding pattern (introduced in a
later chapter) such that reward encourages an agent to assume an orbital holding
pattern around a fixed point. Both have challenging state spaces S ∈R13 where trivial
discretisation is not practical due to the curse of dimensionality. A state is typically
described by s := [x, y, z, ẋ, ẏ, ż, θ, ϕ, ω, θ̇, ϕ̇, ω̇, Fpower]⊤ containing the quadrocopter’s
position (x, y, z), its rates of change (ẋ, ẏ, ż), angular orientation (θ, ϕ, ω), its rates of
change (θ̇, ϕ̇, ω̇) and finally the power issued to the controls, Fpower.

Navigation Task MDP The action set is of size |A| = 81 where A∈R3 which
are uniformly spaced directions in 3D space (corresponding to the orientation of the
quadrocopter) which can be interpreted as desired direction. The aim of the task is
to fly from an initial location drawn from a small initial state distribution centred
at the origin and hover as close to a target location 5m away. As usual, the agent
has no knowledge of the transition dynamics. The immediate reward function is
defined as a three dimensional Gaussian ‘blob’ centred at the target location starg,
r(s, a) = exp(− 1

σ2
r
||s− starg||22) where σr = 5 is the reward bandwidth. Discounted

cumulative reward of 40 or over is collected for good policies, 45 for near optimal
policies.

Code Implementation All experiments were written in MATLAB due to it being
ideal for algorithm prototyping and due to its optimised linear algebra routines. Code
was written from scratch with the exception of a minimal set of speed-optimised
libraries such as pairwise distance calculation (Lin, 2007), lasso algorithms (Qian et al.,
2013; Schmidt, 2005) and array sorting (Li, 2013). All benchmark algorithms were
coded from scratch and a custom neural network implementation was created for the
final chapter. MDP implementations were also coded from scratch apart from the
core quadrocopter dynamics engine QRSim (Denardi, 2012). No effort was made to
parallelise any algorithm as it was thought that comparing sequential implementations
was more fair. Future work however will move away from MATLAB’s prototyping
environment in order to exploit state-of-the-art large-scale libraries.

3.1.5 Results

Empirical cumulative discounted reward r̂γ and timings for model construction, plan-
ning and iteration duration are presented in fig. 3.1 and fig. 3.2 for both mountain
car and cart-pole tasks respectively. Full iteration durations include data acquisition,

3.1 Explorative PI 69

Figure 3.1 Mountain car: Benchmarks algorithms and *improvements.
(a) Empirical discounted return (b) Iteration time

(c) Model construction time (d) Planning time

Figure 3.2 Cart Pole: Benchmarks algorithms and *improvements.
(a) Empirical discounted return (b) Iteration time

(c) Model construction time (d) Planning time

70 Benchmark Algorithms and Initial Improvements

Figure 3.3 Empirical discounted return with varied exploration ϵ for data acquisition.
Explorative data acquisition (blue) consistently outperforms non-explorative data
acquisition (red).

(a) CME: Mountain car, (b) CME-L1ProjSparse: Mountain car

(c) CME: Cart-pole (d) CME-L1ProjSparse: Cart-pole

(e) CME: Quad navigation (f) CME-L1ProjSparse: Quad navigation

3.1 Explorative PI 71

model construction and planning. The complexities of the existing algorithms as
detailed in table 2.2 can be modified for explorative pseudo-PI at each kth policy
iteration by making the substitution n=nk. For the ADMM implementation then
dim(ψ) =nk. Algorithm component complexities of the modified CME are shown in
table 7.1.

A second set of experiments are presented in fig. 3.3 to investigate if the exploration
data acquisition approach developed for explorative-API helps build robust transition
models. Experiments are carried out for both mountain car, cart-pole and quadrocopter
navigation. The exploration parameter ϵ of the behavioural policy νπ is adjusted for
different experiments in the range ϵ∈{0, 0.15, 0.3, 0.5}. If ϵ= 0 then no random actions
are taken, if ϵ= 1 then all actions are chosen randomly. Recall that data acquisition is
performed using a trajectory from the current policy π and a trajectory from νπ.

3.1.6 Discussion

Surprisingly KS, CME and FLAM-ADMM all readily demonstrate smooth policy
improvement in explorative Pseudo-PI. Given that nnew = 200 for each policy iteration
k, all methods learn near-optimal policies with a total of 2000 and 4000 samples
for mountain car and cart-pole MDPs respectively. The CME-Schur modification
drastically reduces model construction times and adding the L1-projection constraint
for CME-Schur-L1ProjSparse demonstrates better policy learning than the original
CME algorithm. αCME sparsity induced by the ℓ1-Projection gives slightly improved
planning times. All other existing algorithms possess poor model construction durations
that scale unfavourably with nk. Note that directly comparing the FLAM-ADMM
algorithm to the others is unfair because some of its hyperparameters are not searched
for in a cross-validation scheme. Investigation of the FLAM-ADMM algorithm is
therefore not pursued for the rest of this investigation due to the difficulty in choosing
its a priori parameters that the other methods do not suffer from. The planning
components of all pseudo-PI variants presented here scale unfavourably with nk.

The exploration experiment results in fig. 3.3 support the hypothesis that including
additional noisy exploratory data acquisition aids robust system identification. An
optimal value of ϵ= 0.3 consistently improves policy learning throughout the entire
set of experiments when compared to ϵ= 0. However the improvement is quite small
which suggests that there is enough stochasticity in the transition dynamics to explore
the MDP. It would be interesting test explorative pseudo-PI with larger MDPs where
exploration is far more important.

72 Benchmark Algorithms and Initial Improvements

3.2 Conclusion

Successful integration and modification of existing pseudo-MDP methods into a
policy iteration scheme has been achieved where data is not assumed available at the
start. Evidence is provided which demonstrates smooth policy improvement without
catastrophic policy instabilities. Several algorithms in the literature claim that data
can be collected once at the beginning of a learning process with a random policy.
However, attempting to explore an entire MDP with a random policy at the beginning
of the algorithm will quickly become intractable for large action spaces. Exploring
an MDP is preferred with the DAgger-inspired ϵ-greedy data acquisition approach
for system identification and is supported with empirical evidence. The optimal
exploration parameter for data acquisition is approximately ϵ= 0.3 which implies
taking 15% of all actions as random. Performance variance is reduced and learning
is shown to occur quicker. It is predicted that for larger MDPs this component will
become more important and is open for further investigation.

Explorative pseudo-PI model learning is still effectively a batch model-learning
algorithm where batch regression/cross-validation is used over the entire dataset at
each policy iteration k to create a transition model. This batch approach may be one
of the reasons why policy learning is so stable. However one goal of this investigation is
to maintain models with online updates without compromising policy learning stability
and will be addressed in later chapters. In an attempt to reduce nk computational
complexities in both model learning and planning, parametric methods are investigated
in the next chapter.

Grünewälder et al. (2012a)’s original study assumed batch data was available
at the beginning of the experiment to build a one-time embedding. To compare to
explorative-PI, this investigation did attempt to create batch data sets at the start
only, gathered using random policies in order to build the embedding. This however
proved fruitless for the suite of MDPs investigated here as the state space could not
be explored adequately before the size of the training set made the experiments too
computationally expensive. Discretizing the state space and sampling a transition at
each point for the batch data set is unrealistic and quickly becomes intractable for
high dimensional and large state-action spaces. Initial experiments showed that the
approximate MDPs were not able to catch enough of the dynamics in ‘interesting’
areas of the state-action space to learn good policies.

Going forward, the exploration parameter is set at ϵ= 0.3. Due to its hyperpa-
rameter selection difficulties, the FLAM-ADMM algorithm will not be pursued here
and instead is left for future work. The main benchmarks for the remainder of the
investigation will therefore be KS and CME-Schur-L1ProjSparse.

Chapter 4

Parametric CME Policy Iteration

Chapter 3 began the investigation by making exploration improvements to existing
non-parametric pseudo-MDP algorithms, ensuring robust system identification that
mitigates policy improvement instabilities and controller suboptimality at test time.
Additionally the CME algorithm was modified to improve model construction and
was shown to learn better policies with the addition of the L1-projection contraction
constraint. Although the non-parametric value function approach gives rise to exact
value prediction during planning, it is tethered to unfavourable complexities to the
size of the training set both in model construction and planning.

As a response to the non-parametric embeddings scaling poorly with training data,
a parametric CME (PCME) variant is developed such that vπ(s) ≈ ⟨wπ,ϕ(s)⟩F where
F =Fϕ defines a parametric state-feature representation. However as discussed in
the literature review, parametric value function approximation no longer preserves
a contraction in the Bellman operator, even if the transition dynamics are known.
Approximate value prediction therefore requires solving the projected Bellman equation
(section 2.5.2) using LSTD or BRM. Similarly approximate policy improvement has
been claimed to induce instabilities (see section 2.5.3). The PCME deploys explorative
parametric-PI to investigate whether policy learning is unstable with linear parametric
value function approximation.

Empirical evidence is provided for poor policy stability and a solution inspired by
conservative policy iteration (Kakade and Langford, 2002) is proposed that mitigates
this instability. A major issue with the parametric approach is that explicit feature
representations ψ :S ×A→Fψ and ϕ :S →Fϕ must be learnt, in comparison to the
CME where both representations are implicitly defined by kernels. This chapter
develops a vector-valued matching pursuit algorithm that is used to maintain compact
parametric feature representations that approximate their kernel-based counterparts.

It is concluded that the investigation goes no further with the pure parametric
approach due to the difficulties in learning explicit features and mitigating policy
instabilities. However future work is proposed where a deep architecture may be

74 Parametric CME Policy Iteration

a more suitable parametric function approximation regime for conservative policy
updates. This investigation returns to modifying the non-parametric CME approach
in Chapter 5 and Chapter 6.

4.1 Function Approximation with Vector-Valued
Matching Pursuit

To facilitate the development of the parametric CME, data-driven representation
learning is required. Below is a vector-valued version of the matching pursuit algorithm
(Mallat and Zhang, 1993), developed as a method to incrementally build loss-minimising
vector-valued function approximators in online environments. In the dual setting, this
method can be used to maintain sparse kernel-based function approximators thus
mitigating the computational costs of batch kernel regression. In the primal setting
it can be used to build regressors whose feature representations are maintained in a
data driven way. The matching pursuit algorithm can also be viewed as a method to
sparsify existing function approximators to maintain compact representations.

An obvious disadvantage to explicit representations in RL control is that feature
engineering may turn out to be task-specific (Peters et al., 2010; Sherstov and Stone,
2005), although sophisticated feature selection techniques have been developed (Painter-
Wakefield and Parr, 2012; Parr et al., 2008). A review of the types of explicit
representation such as coarse coding, tile coding and radial basis functions can be
found in Sutton and Barto (1998, p 202) and Geramifard et al. (2013, chapter 3). The
motivation for developing vector-valued matching pursuit is that feature learning is
data-driven by minimising a loss function, rendering it task-agnostic.

4.1.1 Algorithm Details

The regression setting (see section B.4.1) is assumed where data Dn = {xi,yi}ni=1 is
collected and modelled as Y = f(X)+ϵ where ϵ∼N (0,Σ), with a vector-valued target
function f :X →Y . A vector-valued estimator takes the form,

f̂(·) = WψB(·),

=
|B|∑
ℓ=1

wℓgℓ(·), (4.1)

where W := [w1, ...,w|B|], wℓ ∈Y and ψB(·) := [g1(·), ..., g|B|(·)]⊤ is a feature mapping
ψB :X →FψB which is a vector of |B| scalar-valued basis functions g :=X →R. The
“basis” of the feature mapping is the collection B := {gℓ(·)}|B|

ℓ=1.

4.1 Function Approximation with Vector-Valued Matching Pursuit 75

In the vvRKHS regression setting (equation (B.68)), the function approximator
takes the form of equation (4.1) where gℓ(·) :=φℓ(·) =K(xℓ, ·) and K(xℓ, ·) :X →R.
The computational cost of batch vvRKHS regression scales O(n3) in order to fit
W and is not suitable for online learning environments. In fact |B|=n such that
the ψB representation size scales linearly with the training data size. Vector-valued
matching pursuit can instead incrementally build W and B rather than using batch
regression such that B<n, decoupling the basis from the size of the training set. More
importantly matching pursuit can also take the approximator in equation (4.1) as
input and sparsify it by finding a compact basis of size d< |B|. Matching pursuit
can therefore be understood as a tool for online regression, feature learning and/or
function sparsification.

Lemma 4 (Vector-Valued Matching Pursuit for Regression). Assuming Y is a Hilbert
space, suppose we are given a dictionary G= {g̃1, g̃2, ...} of candidate real-valued func-
tions g̃ :X → R (which can be any class of scalar-valued functions or function approxi-
mators), then matching pursuit aims to find estimators of the form

f̂d :=
d∑
ℓ=1

wℓgℓ, wℓ ∈Y ,

where B := {gℓ}dℓ=1⊆G is called the basis and {wℓ}dℓ=1 are the basis weights. If matching
pursuit greedily adds a new basis element gd+1 to optimize the supervised loss objective
evaluated over n data samples,

gd+1 = arg min
g∈G

min
w∈Y

n∑
i=1
||yi − (f̂d + wg)(xi)||

2
Y ,

then the following closed form results hold:
i) If the residue for the dth estimator is defined as

rdi = yi − f̂d(xi) ∈ Y , (4.2)

then the weight of the new d+1 basis element gd+1 is

wd+1 =
(

n∑
i=1

gd+1(xi)rdi
)
/

(
n∑
i=1

gd+1(xi)2
)
∈ Y , (4.3)

and ii) the new basis element is identified as the solution to

gd+1 = arg sup
g∈G

[
||∑n

i=1 g(xi)rdi ||
2
Y∑n

i=1 g(xi)2

]
. (4.4)

76 Parametric CME Policy Iteration

Proof. i) Beginning with the optimisation problem,

gd+1 = arg min
g∈G

min
w∈Y

n∑
i=1
||yi − (f̂d + wg)(xi)||

2
Y ,

= arg min
g∈G

min
w∈Y

n∑
i=1
||rdi −wg(xi)||

2
Y , (4.5)

then since ∇w
∑n
i=1 ||rdi −wg(xi)||

2
Y = 0 at the minimum we have,

0 =
n∑
i=1
∇w

(
⟨g(xi)w, g(xi)w⟩Y − 2⟨g(xi)w, rdi ⟩Y

)
=

n∑
i=1

2wg(xi)2 − 2g(xi)rdi

⇒ wd+1 =
(

n∑
i=1

g(xi)rdi
)
/

(
n∑
i=1

g(xi)2
)
,

= Rd⊤g
g⊤g

∈Y , (4.6)

where g := [g(x1), ..., g(xn)]⊤ for any one candidate g(·)∈G, Rd := [rd1, ..., rdn]⊤ ∈Rn×dim(Y)

and the last line costs ∼O(n dim(Y)). When Y is an RKHS will be discussed in the
proceeding chapter.
ii) Substituting the value of the new weight into the objective,

n∑
i=1
||rdi −wd+1g(xi)||

2
Y

=
n∑
i=1
||rdi ||

2
Y − 2

n∑
i=1

g(xi)⟨rdi ,wmin⟩Y + ||wmin||2Y
n∑
i=1

g(xi)2

=
n∑
i=1
||rdi ||

2
Y −

2∑n
i=1 g(xi)⟨rdi ,

∑n
k=1 g(xk)rdk⟩Y∑n

k=1 g(xk)2

+ ||
∑n
k=1 g(xk)rdk||2Y∑n
i=1 g(xi)2

=
n∑
i=1
||rdi ||

2
Y −
||∑n

i=1 g(xi)rdi ||
2
Y∑n

i=1 g(xi)2 .

The next basis that maximally minimises the loss is

⇒ gd+1 = arg sup
g∈G

[
||∑n

i=1 g(xi)rdi ||
2
Y∑n

i=1 g(xi)2

]
,

= arg sup
g∈G

[
⟨∑n

i=1 g(xi)rdi ,
∑n
k=1 g(xk)rdk⟩Y∑n

i=1 g(xi)2

]
,

= arg sup
g∈G

[∑n
i=1

∑n
k=1 g(xi)g(xk)⟨rdi , rdk⟩Y∑n

i=1 g(xi)2

]
,

= arg sup
g ∈Rn

[
g⊤RdRd⊤g

g⊤g

]
. (4.7)

4.1 Function Approximation with Vector-Valued Matching Pursuit 77

where the last line costs ∼O(n dim(Y)).

In its simplest form at each iteration we must evaluate equation (4.7) for a selection of
|G| dictionary elements (but not necessarily all) such that the cost of building d-sized
basis B is ∼O(dim(Y) |G|nd). The case when Y is an RKHS will be discussed in the
following chapter.

4.1.2 Backfitting

In order to maintain the accuracy of the minimiser of the regression problem, it is
good practice to periodically ‘backfit’ all the weights {wℓ}dℓ=1 after adding the final
dth base by replacing them with the least squares solution as follows. Given a function
approximator (4.1) after d matching pursuit iterations then backfit optimisation is
specified as a regularised vector-valued regression problem (section B.4.4) with training
data Dn = {xi,yi}ni=1 such that in the primal, W has closed form solution

W⊤ = (Ψ⊤
B ΨB + λId)−1Ψ⊤

B Rd=0, (4.8)

where ΨB := [ψB(x1), ...,ψB(xn)]⊤ and Rd=0 = Y = [y1, ...,yn]⊤. Backfitting can be
applied during the matching pursuit process or at the end. Backfitting in this way
relegates the original matching pursuit process (as outlined in lemma 4) to that of a
basis B learner only. The weights are then updated using equation (4.8) after the basis
has been learnt. The greedy matching pursuit process does not include a regulariser
and therefore it may be vulnerable to overfitting. Empirical evidence presented in
figures 4.2 and 4.1 demonstrates backfitting reduces out-of-sample error which suggests
matching pursuit without backfitting is prone to overfitting. Matching pursuit can
also find a compact representation by adaptively setting a tolerance δ such that the
algorithm terminates when it fails to reduce the residue by more than δ. Thus the
method will only add features if they significantly enrich the representation.

4.1.3 Function Sparsification

So far vector-valued matching pursuit had been used to greedily find a regressor
f :X →Y, but it can also be deployed to sparsify a target function. Sparsification
can be made in the same way as in the regression setting; i) the first residue is set as
the target function, ii) a dictionary of candidate basis functions is created from the
target function’s existing basis, iii) an evaluation set Deval is drawn from the unseen
joint distribution and finally iv) both equation (4.3) and equation (4.4) can be used
to greedily find the next weight and basis function. This is still posed as a regression
problem.

78 Parametric CME Policy Iteration

However vector-value matching pursuit is more powerful if the target function
resides in a vector-valued RKHS, f ∈HΓ. Any two RKHS functions which are close
in || · ||Γ have evaluations which are also close in || · ||Y (see section B.4.2 and section
B.4.6 for more details). By exploiting the RKHS norm in this way, it is possible to
execute function sparsification without needing Deval. In Lever and Stafford (2015)
we use matching pursuit to maintain a compact representation of a vector-valued
RKHS function in this way. The modified matching pursuit derivation is provided in
Appendix A.1.4.

4.1.4 Algorithm Implementation

The following implementation demonstrates the vector-valued matching pursuit compo-
nents. Algorithm 9 (vvMultipleMatchingPursuit) takes as an argument multiple
dictionaries of basis elements and cross validates over them to find the best suited
dictionary to the data. The difference between each dictionary may be the kernel
bandwidth. Its dependencies are algorithm 10 (vvMatchingPursuit) which is the
regular matching pursuit algorithm and the backfitting component is algorithm 25
(vvRegression-Primal) found in Appendix B.4.4.

4.1.5 Experiments

The performance of the algorithm is demonstrated in the supervised-learning setting
before being applied to learning the PCME in the next section. Results for both scalar
and vector-valued target functions are shown in fig. 4.2 and fig. 4.1 respectively. An
average out of sample performance (over 20 experiments) is compared for max basis
counts of {10, 50, 100, 200} with full batch kernel regression (equivalent to a basis
of 1000 samples). The higher the sparsification, the higher the out-of-sample error.
Backfitting the weights after the basis has been learnt provides significantly lower
out-of-sample error and therefore improved generalisation. It is hypothesised that
in some cases it could be possible that because greedy updates in lemma 4 do not
include regularisation, then matching pursuit function approximators may be prone to
overfitting. However cross validating over a regularisation parameter may make the
matching pursuit algorithm too costly for online settings and instead backfitting is
more efficient. Future work can explore this hypothesis, but going forward, matching
pursuit is used to learn a basis and backfitting the weights afterwards maintains good
out of sample performance.

4.1 Function Approximation with Vector-Valued Matching Pursuit 79

Algorithm 9 vvMultipleMatchingPursuit(D, {G}, δtol, dmax, ℓbackfit)

1: Input: Data D := {X,Y}, X := [x1, ...,xn]⊤, Y := [y1, ...,yn]⊤, x∈X , y∈Y, a
collection of child basis dictionaries {G} := {G1,G2, ...}, mp loss tolerance δtol, mp
maximum basis count dmax, backfit weights after every ℓbackfit bases have been
added.

2: Output: Regularised regressor W, new feature basis B⊂G∗ from the best child
dictionary G∗ ∈{G} selected from all child dictionaries {G}.

3: Initialise: ϵbestTest←∞, ntest←n/nfolds, nfolds←5, {D1, ...,Dnfolds}←D.
4: for each G ∈{G} do
5: ϵsumTest ← 0.
6: for j = 1 to nfolds do
7: Dtrain ← (⋃̇nfolds

i=1 Di)i ̸=j ▷ Dtrain := {Xtrain,Ytrain}
8: Dtest ← Dj ▷ Dtest := {Xtest,Ytest}
9: Btrain,Wtrain ←vvMatchingPursuit(Dtrain, δtol, dmax, G, ℓbackfit)

▷ algorithm 10
10: ϵsumTest ← ϵsumTest + 1

2ntest

∑ntest
i=1 ||

∑|Btrain|
ℓ=1 wℓgℓ(xi)− yi||2Fr

11: end for
12: ϵavTest ← ϵsumTest/nfolds
13: if ϵavTest <ϵbestTest then ▷ compare estimate of out-of-sample error
14: G∗ ← G, ϵbestTest ← ϵavTest.
15: end if
16: end for
17: B,W←vvMatchingPursuit({X, Y}, δtol, dmax, G∗, ℓbackfit) ▷ algorithm 10
18: return B, W

Figure 4.1 Kernel regression and matching pursuit regression for a vector-valued
function. Test errors are also shown for limiting the basis size to 10, 50, 100, 200 and
1000 (full batch regression on all training points). Centres for of the kernel regression
full basis (of size 1000 and coloured red) and matching pursuit sparse basis (of size
200 and coloured green) are also plotted against t.

(a) [x, y, z] = [sin(t), cos(t), t] (b) vector-valued test errors

80 Parametric CME Policy Iteration

Algorithm 10 vvMatchingPursuit(D, δtol, dmax, G, ℓbackfit)

1: Input: Data D := {X,Y}, X := [x1, ...,xn]⊤, Y := [y1, ...,yn]⊤, x∈X , y∈Y , loss
tolerance δtol, maximum basis count dmax, dictionary G := {g1, ..., gm}, backfit
weights after every ℓbackfit bases have been added.

2: Output: Basis B := {gℓ}dℓ=1⊂G, basis weights W := [w1, ...,wd], d≤ dmax.
3: Initialise: B←∅, W←∅, ℓ←0 , δ←∞, R←Y, ΨB←∅, G←{gi}mi=1 where

gi := [gi(x1), ..., gi(xn)]⊤ ∈Rn.

4: while ℓ< dmax or δ > δtol do
5: M←RR⊤, ϵmin←∞, gnext←∅, gnext←∅. ▷ R := [r1, ..., rn]⊤∈Rn×dim(Y)

6: for each g∈G do
7: ϵ←g⊤Mg

g⊤g ▷ equation (4.4)
8: if ϵ< ϵmin then
9: gnext←g ▷ basis element g is associated with vector g

10: gnext←g, ϵmin←ϵ.
11: end if
12: end for
13: B←B ∪ gnext, G←G\gnext, ΨB ← ΨB ∪ gnext. ▷ ΨB := [g1,g2, ...]∈Rn×|B|

14: wnext← R⊤gnext
g⊤

nextgnext
, W←W ∪wnext ▷ equation (4.3)

15: R←R − gnextw⊤
next ▷ update residues

16: δ← 1
2n
∑n
i=1 ||ri||

2
Y ▷ update error i.e. 1

2n ||R||
2
Fr

17: ℓ←ℓ+ 1
18: if mod(ℓ, ℓbackfit) = 0 then
19: D := {ΨB,Y}
20: W⊤←vvRegression-Primal(D) ▷ backfit weights
21: end if
22: end while
23: return B, W

4.2 PCMEs: Parametric Embeddings with Greedy
Feature Selection

A parametric conditional mean embedding (PCME) is developed below and is con-
sidered a primal variant of the CME non-parametric embedding. PCME maintains
explicit feature representations in order to avoid scaling cubically with the training
set while simultaneously attempting to recover the RKHS embedding performance.
The PCME is then deployed in an explorative parametric-PI algorithm which can be
directly compared to explorative pseudo-PI. This approach can also be considered as
a variant of the LAM algorithm as detailed in section 2.6.2. However LAMs are based
only on state feature representations and LAM models are maintained separately for
each a∈A which may scale unfavourably for large A. In addition they were only
shown to work when training data is made available at the beginning of the algorithm

4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection 81

Figure 4.2 Kernel regression and Matching Pursuit regression for various scalar-valued
functions. Test errors are also shown for limiting the basis size to 10, 50, 100, 200 and
1000 (full batch regression on all training points). Centres for of the kernel regression
full basis (of size 1000 and coloured red) and matching pursuit sparse basis (of size
200 and coloured green) are also plotted along the x-axis.

(a) y = 0.001(x2 − 1)(0.7x + 3)(0.8x− 4) (b) Polynomial test errors

(c) y = sin(x) (d) sin test errors

(e) y = sinc(x) (f) sinc test errors

and feature learning was not explored. Instead a PCME attempts to learn both state
and state-action features for the model-fitting procedure. A direct comparison with
LAM and PCME is left for future investigation.

82 Parametric CME Policy Iteration

Parametric value functions require solving the projected Bellman equation using
LSTD or BRM (see section 2.5.2) as opposed to the CME. The explicit state feature
representation ϕ :S →Fϕ is first given a priori such that transition model construc-
tion can be developed. Particular attention is made to learning the state-action
representation ψ :S×A→Fψ using vector-valued matching pursuit developed in the
previous section. It is hypothesised that sharing a feature representation over S×A
exploits more information from the training set than if separate action models are
maintained such as for LAMs. Empirical evidence is provided for i) policy instabilities
hypothesised due to parametric value function approximation and ii) their mitigation
with conservative policy updates. In the final section of this chapter, an attempt is
made to apply matching pursuit to learn the state features of the parametric value
function with limited success.

4.2.1 Algorithm Details

Described below are all the components of PCME as described in algorithm 11. Access
to the reward function is assumed in order to concentrate developing the transition
model learner.

Data Acquisition

Data acquisition is identical to pseudo-PI using a mixture of on-policy data and
exploration data (which is a noisy version of the current policy). Trajectory data Dnew

from both policies consist of multiple state-action-successor state triples (s, a, s′). At
each kth iteration all data is aggregated to form Dk =Dk−1 ∪ Dnew.

Model Learning

PCME model learning1 is a direct response to the cubic complexity of the original
CME’s model construction method. Recall that the conditional expectation

ES′|s,a[v(S ′)] = ⟨v, µS′|s,a⟩F ,

is estimated by a non-parametric CME if F is chosen as an RKHSHL of value functions
v :S →R and the embedding µ :S×A→HL is modelled in a vvRKHS µ∈HΓ. PCME’s
embedding µ :S×A→Fϕ is a composition µ(·) = Wψ(·) where ψ :S×A→Fψ and
linear map W :Fψ→Fϕ. Explicit feature representations Fϕ =Rm and Fψ =Rd are
chosen such that W∈ =Rm×d. The model construction procedure assumes both
feature representations are known, such that the loss (c.f. CME loss (2.53) and

1Note that the feature representation component is executed before model learning at each kth

policy iteration.

4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection 83

regression between feature spaces in Grünewälder et al. (2012a, equation 19)) is

L(µ) :=E(S,A) ∼D,S′ ∼P (·|S,A)
[
||ϕ(S ′)− µ(S,A)||2Fϕ

]
,

=E(S,A) ∼D,S′ ∼P (·|S,A)
[
||ϕ(S ′)−Wψ(S,A)||2Fϕ

]
, (4.9)

where W is to be found and D is some state-action data distribution. Given ψk and
ϕk at the kth policy iteration2, the empirical penalised risk minimisation problem is
therefore

Ŵk = arg min
W ∈Rm×d

[
1

2nk

nk∑
i=1
||ϕk(s′

i)−Wψk(si, ai)||
2
2 + λ

2 ||W||
2
Fr

]
,

= arg min
W ∈Rm×d

[
1

2nk
||Φk −ΨkW⊤||2Fr + λ

2 ||W||
2
Fr

]
,

= Φk⊤Ψk(Ψk⊤Ψk + λId)−1,

whose batch solution in the last line is for the vector-valued regression problem (see
section B.4.4, equation (B.54)). Feature learning is considered a separate compo-
nent to model learning therefore the training data is viewed as a function of the
features evaluated over samples Dk := {ψk(si, ai),ϕk(s′

i)}
nk
i=1. The training data is ar-

ranged into a state-action feature matrix Ψk := [ψk(s1, a1), ...,ψk(snk , ank)]⊤ ∈Rnk×d

and state feature matrix Φk := [ϕk(s′
1), ...,ϕk(s′

nk)]⊤ ∈Rnk×m. Regularisation constant
λ∈ 2{log2(10−8):log2(1000)} was cross-validated using 20 log-linearly spaced values.

If ψk is made from a set of basis functions B then the computational cost
of model construction is ∼O(d3). An alternative SGD approach on the empiri-
cal loss L̂ was investigated. The derivative of the loss evaluated over minibatch
D̂ := {ψk(si, ai),ϕk(s′

i)}
|D̂|
i=1 is

∇WL̂
∣∣∣
D̂

= 1
|D̂|

|D̂|∑
i=1

(
Wkψ

k(si, ai)− ϕk(s′
i)
)
ψk⊤(si, ai) + λWk,

which can be used in an SGD minimisation scheme (see section B.70),

W←W− η∇WL̂
∣∣∣
D̂
,

where the learning rate η obeys the Robbins-Monro conditions (B.71) and minibatches
are drawn i.i.d. from the entire dataset D̂ ∼Dk. The complexity of each online sweep
over |D̂| samples scales ∼O(md|D̂|).

A second model type is explored that learns the ‘delta’ dynamics (Deisenroth and
Rasmussen, 2011) such that

µS′|s,a =ϕ(s) + µ∗(s, a),

2The dimensionality of each feature representation m = dim(ϕk) and d = dim(ψk) are subject to
change throughout exploration of an MDP.

84 Parametric CME Policy Iteration

where µ∗(s, a) :=ES′|s,a
[
δ(s, S ′)

]
and δ(s, S ′) :=ϕ(S ′)− ϕ(s). As before by assuming

(S,A)∼D and S ′∼P (·|S,A) then the ideal vector-valued loss is

L(µ∗) :=E(S,A) ∼D,S′ ∼P (·|S,A)
[
||δ(S, S ′)− µ∗(S,A)||22

]
,

=E(S,A) ∼D,S′ ∼P (·|S,A)
[
||δ(S, S ′)−Wψ(S,A)||22

]
,

A vector-valued regression approach with dataset Dk := {ψk(si, ai), δk(si, s′
i)}

nk
i=1 is

Ŵk = arg min
W ∈Rm×d

[
1

2nk
||∆k −ΨkW⊤||2Fr + λ

2 ||W||
2
Fr

]
,

= ∆k⊤Ψk(Ψk⊤Ψk + λID′)−1,

where ∆k := [δk(s1, s′
1), ..., δk(snk , s′

nk
)]⊤. The final expectation estimate at the kth

policy iteration is

µ̂S′|s,a =ϕk(s) + Ŵkψ
k(s, a).

Greedy Feature Learning

The feature learning component uses the vector-valued matching pursuit algorithm
developed in section 4.1 to not only build but also maintain features in a data-driven
way throughout exploration of an MDP. The following explanations do not assume
a delta transition model, however it is trivial to adapt them for this case if required.
Both lemma 4 and its parent algorithm 9 form the core feature learning process.

ψ Features The following is a description of algorithm 16 which seeks to find ψk

in the kth policy iteration. The existing feature mapping ψk−1(·) is made from a
basis of kernels Bk−1 = {Kσk−1(b̃ℓ, ·)}

|Bk−1|
ℓ=1 where b̃∈S×A. In the general case each

kernel basis function Kσ : (S×A)×(S×A)→R could have different hyperparameters
σ, but in this case all hyperparameters are restricted to be identical throughout each
basis for any policy iteration. Hyperparameters may change between each policy
iteration. Clearly B0 is an empty set at the beginning of the algorithm, otherwise the
ℓth basis element is defined as ψk−1

ℓ (·) :=Kσk−1(b̃ℓ, ·) such that a feature mapping over
state-actions is defined as ψk−1(·) = [ψk−1

1 (·), ...ψk−1
|Bk−1|(·)]

⊤.
Feature learning proceeds by augmenting the previous state-action basis with

newly acquired data {bi}nnew
i=1 := {(s, a)i}

nnew
i=1 such that G ← Bk−1

⋃ {Kσk−1(bi, ·)}nnew
i=1 .

A new dictionary of candidate features Gσ ← {Kσ(b̂i, ·)}
|G|
i=1 are created for each

σ ∈{0.01, .., 5} and collected in {G} := {Gσ1 ,Gσ2 , ...} that will be cross-validated over.
For quick updates (specified for certain policy iterations a priori), only one dictionary
with the previous bandwidth is used {G} := {Gσprev} such that cross-validation is not
needed.

4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection 85

For any one dictionary Gσ ∈{G}, then the usual matching pursuit procedure is
carried out as described by lemma 4. After the dth basis function ψℓ(·) =K(bℓ, ·)
has been added, the vector-valued model residue (c.f. equation (4.2)) evaluated at a
transition sample (s, a, s′) is

rd(s, a, s′) :=ϕk−1(s′)−
d∑
ℓ=1

wℓψℓ(s, a) ∈Fϕk−1 .

By drawing a subset of sample transitions Deval∼Dk then the empirical loss (c.f.
equation (4.5)) for enriching the feature representation by one more feature basis
function, taken without replacement from the dictionary ψd+1(·)∈Gσ is

L(rd+1) :=
|Deval|∑
i=1
||rd+1

i ||
2
F

ϕk−1
,

=
|Deval|∑
i=1
||rdi −wd+1ψd+1(si, ai)||

2
F

ϕk−1
, wd+1 ∈Fϕk−1 , (4.10)

where rdi := rd(si, ai, s′
i). A closed form solution exists for wd+1 (equation (4.3)) and

equation (4.4) is the condition for greedily selecting ψd+1 from Gσ. The loss is reduced
at each step L(rd+1)≤L(rd) by sequentially enriching the ψ-representation, repeating
this process ℓnew := dmax−d more times (where dmax is the upper limit on the total
number of basis functions allowed for the compact representation). The new basis
Bk := {ψℓ(·) =K(xℓ, ·)}dmax

ℓ=1 ⊆ Gσ and weights {wℓ ∈Fϕk−1}dmax
ℓ=1 selected by matching

pursuit defines the PCME

µ̂kS′|· = Wkψ
k(·) :=

dmax∑
ℓ=1

wℓψℓ(·),

where W := [w1, ..,wdmax], ψk = [ψ1(·), .., ψdmax(·)]⊤, wi ∈Fϕk−1 , dim(Fψk) = dmax. In
this way dmax added features costs ∼O(dmax |Gσ|m |Deval|), where m= dim(Fϕk−1).

It is entirely possible to over-fit the regressor if the number of features begin to
exceed the number of evaluation samples. Back-fitting with regularised vector-valued
regression (algorithm 25) is used to recalculate the matrix Wk after ψk has been
learnt. In effect the weights learnt during matching pursuit are discarded in favour of
the final regularised weights. If over-fitting is a concern during matching pursuit, then
the frequency of back-fitting is increased, up to a maximum of backfitting immediately
after every new basis function has been added. In practice this is not needed and only
one backfitting procedure is required after dmax basis functions have been added.

Experiments were carried out by populating only one child dictionary with a range
of randomly allocated bandwidths, motivated by the idea that a representation could
be learnt at various scales throughout the state-action space. However it was found
that cross-validating to choose only one kernel bandwidth for the whole regressor was

86 Parametric CME Policy Iteration

entirely adequate and is consistent with the theoretical underpinnings if the regressor is
viewed as a sparsified single-kernel RKHS function as in equation (B.67). Future work
could compare the out-of-sample performance of the regressor when features are learnt
with dictionaries of one bandwidth or many. One avenue for future investigation could
be to test whether multiple-bandwidth dictionaries induce overfitting and constraining
them to one bandwidth induces better generalisation?

The approach is general and the dictionary could include arbitrary real-valued
functions. This method is therefore adaptive in two senses: firstly, by selecting new
features only if the loss (4.10) is reduced so that the complexity of the representation
adapts to the problem; secondly the feature representation is in terms of kernel
functions defined at state-actions that have been discovered. This can be an advantage
in RL since a good feature representation can be difficult to choose a priori.

ϕ Features The following is a description of algorithm 17 which seeks to find
the state representation ϕk in the kth policy iteration. Perhaps one of the defining
challenges of parametric approximate policy iteration is learning a good state feature
representation. Note that state feature representation is implicit in non-parametric
CMEs and is enriched by additional training data. In comparison, the PCME approach
must maintain a compact representation. Many parametric value prediction and control
algorithms assume ϕ is given a priori, e.g. for LAM policy iteration algorithm (Yao,
2011). On the contrary, this investigation is interested in maintaining the state
representation online as is done for ψ.

The existing feature mapping ϕk−1(·) is formed from a basis Ck−1 = {Lσk−1(c̃j, ·)}Ck−1
j=1

where c̃∈S. In the general case each kernel basis function Lσ :S×S→R could have
different hyperparameters σ, but in this case all hyperparameters are restricted to be
identical throughout each basis for any policy iteration. Hyperparameters may change
between each policy iteration. Clearly C0 is an empty set at the beginning of the
algorithm, otherwise the jth basis element is defined as ϕk−1(cj) :=Lσk−1(cj, ·) such
that a feature mapping over states is defined as ϕk−1(·) = [ϕk−1(c1), ...ϕk−1(c|Ck−1|)]⊤.

Feature learning proceeds by the augmenting the previous state-action basis with
newly acquired data {ci}nnew

i=1 := {s′
i}nnew
i=1 such that G ← Ck−1

⋃ {Lσk−1(ci, ·)}nnew
i=1 . A new

dictionary of candidate features Gσ ← {Lσ(ĉi, ·)}|G|
i=1 is created for each σ ∈{0.01, .., 5}

and collected in {G} := {Gσ1 ,Gσ2 , ...} that will be cross-validated over. For a quick
update, only one dictionary with the previous bandwidth is used {G} := {Gσprev} such
that cross-validation is not needed.

Experimental results presented in the following section provide evidence that
constant tampering of the successor representation can cause policy improvement
instabilities. Therefore in the first set of experiments, the basis Ck is made constant
throughout all iterations and given a priori in order to focus on embedding construction.

4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection 87

This is practical for small MDPs such as the cart-pole and mountain car where
S ⊂R2. In these cases the static basis is Ck := {L(cj, ·)}225

j=1, created by a grid of 15×15
linearly spaced points in R2. For mountain car the grid is generated in the range
[−1.2, 0.7]×[−0.07, 0.07] and for cart-pole the discretisation is in [−π, π]×[−4π, 4π].

However the curse of dimensionality inhibits the use of the same discretisation
technique in large MDPs. In order to cover the state space of large MDPs, the basis
size is exponential in the dimensionality of the state space and other approaches
must be developed. The second set of experiments therefore use a matching pursuit
procedure to maintain a data-driven compact state representation. This is the same
approach as for the state-action representation but with a objective function that
defines a scalar residue. The quadrocopter navigation task MDP is introduced where
S ⊂R13 which is clearly impractical for a discretised grid and requires the matching
pursuit procedure.

At the kth policy iteration, the residue after the mth base has been added is
the (scalar-valued) model-based Bellman residual, evaluated at a transition sample
(s, a, s′),

Rm(s, πk(s)) := r(s, πk(s)) + γ
(
Wk−1ψ

k(s, πk(s))
)⊤

wπk−1 −
m∑
j=1

ϕj(s)wj ∈R,

where Rd(s, πk(s))∈R and wπk−1 ∈Fϕk−1 are the fitted value function weights from
the previous iteration (see below for value function fitting). By drawing a data subset
Deval∼Dk then the empirical loss for enriching the feature representation by one more
feature basis function, taken without replacement from the dictionary ϕm+1 ∈Gσ is

L(Rd+1) :=
|Deval|∑
i=1
||Rd+1

i ||
2
2,

=
|Deval|∑
i=1
||Rd

i − ϕd+1(si)wd+1||
2
2, wd+1 ∈R, (4.11)

where Rd
i :=Rd(si, πk(si)). A closed form solution exists for wd+1 (equation (4.3)) and

equation (4.4) is the condition for greedily selecting ϕkd+1 ∈Gσ without replacement.
The loss is reduced at each step L(Rd+1)≤L(Rd) by sequentially enriching the ϕ-
representation, repeating this process jnew :=mmax−m more times (where mmax is the
upper limit on the total number of bases). The set of features {ϕj(·)}mmax

j= 1 ⊆ G
σ and

weights {wj ∈R}mmax
j=1 selected by matching pursuit augments the value function which

takes a final form
mmax∑
j=1

wjϕj(·) = ϕk(·)⊤wk,

88 Parametric CME Policy Iteration

where wk ∈Fϕk . In this way all new features are added in time ∼O(mmax |Gk| |Deval|).
In practice wk is discarded such that matching pursuit is only used as a feature learner.
Instead regularised approximate policy evaluation (LSTD or BRM) is used to backfit
wπk as described below.

Approximate Policy Evaluation

By assuming parametric value function approximation, the PCME model is not
a weighted sum of value function evaluations over states as enjoyed by the CME.
Therefore policy evaluation is not exact and the value weights must be fitted by solving
the Bellman residual or projected Bellman residual as summarised in section 2.5.2.
During a policy iteration, once features and transition model have been estimated
then the model-based Bellman operator is (T̂ πv)(·) := r(·, π(·))+γ(Wkψ

k(·, π(·)))⊤wπ

which is used to form the model-based counterparts of the Bellman residual (c.f. BRM
equation (2.37))

ŵπ =
(
Cπ⊤Cπ + λId

)−1
Cπ⊤rπ, (4.12)

where Cπ := (Φ− γvfitΨπW⊤) and projected Bellman residual (c.f. LSTD equation
(2.40))

ŵπ =
(
Aπ + λId

)−1
Φ⊤rπ, (4.13)

where Aπ := Φ⊤(Φ − γvfitΨπW⊤
k). Given n samples at policy iteration k, then

Φ := [ϕk(s1), ...,ϕk(sn)]⊤, Ψπ := [ψk(s1, π(s1)), ...,ψk(sn, π(sn))]⊤ and reward vector
rπ := [r(s1, π(s1)), ..., r(sn, π(sn))]⊤. The advantage of using the model-based Bellman
residual is that it does not suffer from the double successor state sampling problem
suffered by the model-free residual (section 2.5.2).

If n< dim(ϕk), then Cπ⊤Cπ and Aπ are not full rank (see section B.4.1 for a
discussion conditions for solutions to regression problems) e.g. this may occur early
in policy iteration when there is little data available. A regulariser was therefore
introduced to mitigate this problem both for LSTD (Kolter and Ng, 2009) and BRM.
The regularisation parameter λ was selected using nfold cross-validation algorithm 12.
The discount factor was specifically chosen a priori from values γvfit ∈{0.96, 0.98, 0.99}
for each experiment, which may not be the same as the discount factor defined in the
MDP. This was a key factor in getting the algorithm to work and is elaborated upon
in the results discussion below.

Conservative Policy Improvement

Policy improvement for non-parametric pseudo-MDP algorithms (such as for the
CME) is shown to be very stable in Chapter 3 and needs no other consideration

4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection 89

other than taking a greedy policy. However it was found that this was not the case
for PCME and instead with reference to the discussion in section 2.5.3, a softer or
conservative greedy policy improvement is shown to improve algorithm performance.
PCME develops a version of conservative policy iteration (Kakade and Langford, 2002)
and is fundamental for algorithm stability as discussed in the results below. The
following description refers to the planning section in algorithm 11.

For the ith policy improvement during policy iteration k, a pure greedy update for
the PCME is

q̂πi,k(s, a) := r(s, a) + γ(Wkψ
k(s, a))⊤ŵπi,k , (s, a)∈S×A,

πi+1,k(s) := arg sup
a∈A

[q̂πi,k(s, a)].

A smoother conservative update redefines the action-value function estimate as a
weighted sum of the previous and current action-value functions,

q̂(s, a) := q̂πi−1,k(s, a) + ω
(
q̂πi,k(s, a)− q̂πi−1,k(s, a)

)
,

= r(s, a) + γ(Wkψ
k(s, a))⊤

(
ŵπi−1,k + ω(ŵπi,k − ŵπi−1,k)

)
,

πi+1,k(s) := arg sup
a∈A

[q̂(s, a)], s∈S,

where ω ∈ [0, 1] controls how smooth the greedy update should be, recovering a vanilla
greedy policy when ω= 1.

It is important to understand that the first i= 1 conservative policy improvement
in a kth policy iteration depends not only on the previous iteration’s embedding
Wk−1ψ

k−1(·) but also its fitted value weights wπk−1 and state features ϕk−1(·). This
is problematic when state features are maintained with matching pursuit because
the vector ϕk−1(·) will almost certainly be different from ϕk(·) both in the order of
basis functions and feature dimensionality. Conservative updates on the value weights
between policy iterations is therefore nonsensical because their elements refer to
different feature basis functions. Note that this is not an issue for policy improvements
i > 1. The solution is to limit ϕ-learning ‘full updates’ to k ∈{1, 3, 5} and impose
non-conservative policy improvements (ω= 1) when i = 1 and k ∈{1, 3, 5} (see from
line 15 in algorithm 11). Further comments on this procedure are made in the results
discussion. When ϕ(·) is provided a priori, this problem is not an issue and therefore
conservative policy improvement can be used in every iteration regardless.

Table 4.1 MDP-specific parameters for PCME

Mountain car Cart-pole Quadrocopter Navigation
dim(ψ(·))≤ dmax 200 500 200
dim(ϕ(·))≤mmax 225 225 225
state σS (if a priori) 0.5 0.5 1.25

90 Parametric CME Policy Iteration

Algorithm 11 Explorative Parametric-PI with Conservative π Updates

1: Input: Access to unknown MDP M := {S,A, P, P1, r, γ} with continuous S, dis-
crete A, known average reward function r :S×A→ [0, 1], H = 100 transitions
per trajectory, Jimp = 10, start-state distribution P1, state-action Gaussian ker-
nel Kσ : (S×A)×(S×A)→R, state Gaussian kernel Lσ :S×S→R (both with
unspecified bandwidths σ). For value function fitting choose discount factor
γvfit ∈{0.96, 0.98, 0.99} and conservative update ω ∈{0.1, 0.4, 1}.

2: Output: Deterministic and discrete policy πκ(·)≈ π∗(·).
3: Initialise: q̂0(·, a)← r(·, a), π1(·)← greedya∈A[q̂0(·, a)], exploration policy
π̃1(·)← ϵ-greedya∈A[q̂0(·, a)], ϵ← 0.3, n0← 0, nnew← 2H, D0 ← ∅, model W0 ← ∅,
ψ0(·)← ∅, ϕ0(·)← ∅, fullUpdates := {1, 2, 5}, ŵπ0 ← ∅.

4: for k = 1, 2, ..., κ−1 do ▷ kth policy iteration master index
5: isFullUpdate← false ▷ partial updates possible for some components
6: if k ∈ fullUpdates then
7: isFullUpdate← true
8: end if
9: Data acquisition: nk←nk-1+nnew, collect Dnew = {si, ai, ri, s′

i}
nk
i=nk-1+1; one

trajectory from each πk and νπk , beginning from start state s∼P1,
Dk←Dk−1∪Dnew, S ′

new ← {s′
i}
nk
i=nk-1+1, Znew ← {(s, a)i}

nk
i=nk-1+1. ▷ aggregate

data

10: ψ-Features:
(ψk,Wk−1) ▷ algorithm 16
←LearnPsi

(
ϕk−1,ψk−1,Wk−1, r,Dk,ZnewK, isFullUpdate

)
11: ϕ-Features:

(ϕk,Wk−1) ▷ algorithm 17
←LearnPhi

(
ϕk−1,ψk,Wk−1, r,Dk,S ′

new, L, isFullUpdate, πk, ŵπk−1
)

12: Model: Wk←BatchTrain
(
ϕk,ψk,Dk

)
. ▷ algorithm 15

13: Planning:
14: π ← πk, ŵπ

i=0← ŵπk−1

15: for i = 1 to Jimp do ▷ policy improvement index
16: ŵπ

i ← FitValueFunc
(
γvfit, r, π,ϕ

k,ψk,Wk,Dk
)

▷ algorithm 13 or 14
17: ŵπ

i ← ŵπ
i−1 + ω(ŵπ

i − ŵπ
i−1) ▷ conservative update

18: q̂π(s, a) := r(s, a) + γ
(
Wkψ

k(s, a)
)⊤

ŵπ
i , ∀(s, a)∈S×A

19: π(·)← greedya∈A[q̂π(·, a)] ▷ conservative policy improvement
20: end for
21: πk+1 ← π, ŵπk← ŵπ

i=Jimp

22: end for
23: return πκ(·)

4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection 91

Algorithm 12 FitValueFunc(γvfit, r, π,ϕ,ψ,W,D)

1: Input: Previous policy π, state representation ϕ(·), state-action representation
ψ(·), regressor W, data D.

2: Initialise: Regularisation parameters {λ}←{1×10−7, ..., 1}, nfolds←5,
{D1, ...,Dnfolds}←D, ϵbestTest ←∞.

3: Cross-validate regulariser:
4: for each λ∈{λ} do
5: ϵsumTest ← 0
6: for k = 1 to nfolds do
7: Dtrain ← (⋃̇nfolds

i=1 Di)i ̸=k
8: Dtest ← Dk
9: ŵπ ← BRM

(
Φtrain,Ψπ

train,W, rπtrain, λ, γvfit
)
. ▷ algorithm 13 or 14

10: ϵsumTest ← ϵsumTest + 1
2ntest
||rπtest + γvfitΨπ

testW⊤ŵπ −Φtestŵπ||22
11: end for
12: ϵavTest ← ϵsumTest/nfolds
13: if ϵavTest <ϵbestTest then ▷ compare estimate of out-of-sample error
14: λ∗ ← λ, ϵbestTest ← ϵavTest.
15: end if
16: end for
17: ŵπ ← BRM

(
Φ,Ψπ,W, rπ, λ, γvfit

)
. ▷ algorithm 13 or 14

18: return πκ(·)

Algorithm 13 BRM(Φ, Ψπ, W, rπ, λ, γvfit)

1: Input: Φ := [ϕ(s1), ...,ϕ(sn)]⊤, Ψπ := [ψ(s1, π(s1)), ...,ψ(sn, π(sn))]⊤,
rπ := [r(s1, π(s1)), ..., r(sn, π(sn))]⊤

2: Initialise: d← dim(ϕ), Cπ← (Φ− γvfitΨπW⊤).
3: ŵπ←

(
Cπ⊤Cπ + λId

)−1
Cπ⊤rπ ▷ equation (4.12)

4: return wπ

Algorithm 14 LSTD(Φ, Ψπ, W, rπ, λ γvfit)

1: Input: Φ := [ϕ(s1), ...,ϕ(sn)]⊤, Ψπ := [ψ(s1, π(s1)), ...,ψ(sn, π(sn))]⊤.
2: Initialise: d← dim(ϕ).
3: ŵπ ←

(
Φ⊤(Φ− γvfitΨπW⊤) + λId

)−1
Φ⊤rπ ▷ equation (4.13)

4: return wπ

92 Parametric CME Policy Iteration

Algorithm 15 BatchTrain(ϕ,ψ,D)

1: Input: State feature representation ϕ(·), state-action feature representation ψ(·),
data D.

2: Output: Regularised regressor W.
3: Initialise: Ψ← [ψ(s1, a1), ...,ψ(sn, an)]⊤, Φ′← [ϕ(s′

1), ...,ϕ(s′
n)]⊤, redefine data

as DΨ,Φ := {Ψ,Φ′}. If delta transition model then DΨ,Φ := {Ψ,∆}.
4: W←vvRegression-Primal(DΨ,Φ). ▷ algorithm 25
5: return W.

Algorithm 16 LearnPsi(ϕ,ψ,W, r,D,Znew, K, isFullUpdate)

1: Input: Previous ϕ(·) and ψ(·) representations, previous transition model regressor
W, average immediate reward function r :S×A→R, transition data D, newly
acquired state-actions Znew, state-action Gaussian kernel K : (S×A)×(S×A)→R,
a boolean isFullUpdate specifying quick or full updates.

2: Output: New state-action feature representation ψ(·), new regressor W.
3: Initialise: Bandwidth collection {σ} := {0.01, .., 5}, collection of basis dictionaries
{G} ← ∅, δtol ← 0, ℓbackfit ←∞, dmax ← 500 (MDP-specific).

4: Prepare dictionaries:
5: Bprev := {Kσprev(b̃ℓ, ·)}dprev

ℓ=1 ← ψ(·) ▷ extract basis where b̃ℓ ∈S×A
6: G ← Bprev

⋃ {Kσprev(bi, ·)}nnew
i=1 ▷ augment candidate functions where bi ∈Znew

7: if isFullUpdate then ▷ full updates cross-validate over all bandwidths
8: for each σ ∈{σ} do
9: Gσ ← {Kσ(b̂i, ·)}

|G|
i=1 ▷ ∃Kσprev(b̂i, ·)∈G

10: {G} ← {G}⋃Gσ
11: end for
12: else
13: Gσprev ← {Kσprev(b̂i, ·)}

|G|
i=1 ▷ a single child dictionary with σprev

14: {G} ← {G}⋃Gσprev .
15: end if
16: Prepare residues:
17: Deval := {(s, a, r, s′)i}

n
i=1∼D, n= |Deval| ▷ draw evaluation dataset

18: if W==∅ then
19: R ← [r(s1, a1), ..., r(sn, an)]⊤ ▷ a proxy residue for the first policy iteration.
20: else
21: Φ′ ← [ϕ(s′

1), ...,ϕ(s′
n)]⊤,

R ← Φ′ ▷ model residue target
22: end if
23: Z← [z1, ..., zn]⊤, zi := [s⊤

i , a⊤
i]⊤, Dres := {Z,R} ▷ define the residue dataset.

24: (ψ(·),W)←vvMultipleMatchingPursuit(Dres, {G}, δtol, dmax, ℓbackfit)
25: return ψ(·), W.

4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection 93

Algorithm 17 LearnPhi(ϕ,ψ,W, r,D,S ′
new, L, isFullUpdate, π,wπ)

1: Input: Previous ϕ(·) and current ψ(·) feature representations, current transition
model regressor W, average immediate reward function r : S×A→R, transition
data D, newly acquired successor states S ′

new, state Gaussian kernel L :S×S→R, a
boolean isFullUpdate specifying quick or full updates, previous policy π, previous
fitted weights wπ.

2: Output: New state feature representation ϕ(·), new regressor W.
3: Initialise: Bandwidth collection {σ} := {0.01, .., 5}, collection of basis dictionaries
{G} ← ∅, δtol ← 0, jbackfit ←∞, mmax ← 225 (MDP-specific).

4: Prepare dictionaries:
5: Cprev := {Lσprev(c̃j, ·)}mprev

j=1 ← ϕ(·) ▷ extract basis where c̃∈S
6: G ← Cprev

⋃ {Lσprev(ci, ·)}nnew
i=1 ▷ augment candidate functions where ci ∈S ′

new
7: if isFullUpdate then ▷ full updates cross-validate over all bandwidths.
8: for each σ ∈{σ} do
9: Gσ ← {Lσ(ĉi, ·)}|G|

i=1 ▷ ∃Lσprev(ĉi, ·)∈G.
10: {G} ← {G}⋃ G̃σ
11: end for
12: else
13: Gσprev ← {Lσprev(ĉi, ·)}|G|

i=1 ▷ a single child dictionary with σprev.
14: {G} ← {G}⋃Gσprev

15: end if
16: Prepare residue:
17: Deval := {(s, a, r, s′)i}

n
i=1∼D, n= |Deval| ▷ draw evaluation dataset

18: rπ← [r(s1, π(s1)), ..., r(sn, π(sn))]⊤
19: if W==∅ then
20: R ← rπ ▷ proxy residue for first policy iteration.
21: else
22: Ψπ← [ψ(s1, π(s1)), ...,ψ(sn, π(sn))]⊤,

R← rπ − γΨπW⊤wπ ▷ model-based Bellman residual.
23: end if
24: S← [s1, ..., sn]⊤, Dres := {S,R} ▷ define the residue dataset.
25: (ϕ(·),W)←vvMultipleMatchingPursuit(Dres, {G}, δtol, mmax, jbackfit)
26: return ϕ(·), W.

94 Parametric CME Policy Iteration

4.3 Experiments

The parametric-CME experiments include the mountain car, cart-pole and quadro-
copter navigation task MDPs as discussed in the previous chapter . Experiments
are split into two sets regarding the nature of ϕ(·) where i) C is given a priori with
a picked bandwidth (see table 4.1) and ii) both C and σ are learnt using matching
pursuit with cross validation during policy iterations k ∈{1, 3, 5}. Mountain car (fig.
4.3) and cart-pole (fig. 4.4) are presented for fixed ϕ. Quadrocopter navigation is
not presented as the curse of dimensionality inhibits any state space discretisation.
Mountain car (fig. 4.5), Cart-pole (fig. 4.6) and Quadrocopter Navigation (fig. 4.7)
are presented for the case when ϕ is learnt.

In all experiments the following algorithm characteristics are investigated for their
effects on policy learning performance; i) delta/vanilla transition models, ii) the
strength of greedy policy improvements (the lower ω the more conservative the update)
and iii) the variation of γvfit during the fitting of value weights.

4.4 Discussion

4.4.1 Comparison with non-parametric pseudo MDPs

See section 7.1 for algorithm component timings with comparison of surviving bench-
marks from chapter 3 and other algorithms developed in this thesis. PCME clearly
achieves an improvement in computational complexity during model construction and
planning without losing performance. Creating a viable parametric alternative with
explicit feature representations that do not scale with the training set was one of the
goals of this investigation. In fact for both mountain car and cart-pole PCME is at
least as good at learning policies as the non-parametric algorithms for the benchmark
tasks. However there are caveats that mostly relate to learning a state representation
and is discussed below.

4.4.2 PCME with fixed state representation

One source of instability to PCME is updating the state representation ϕ. Therefore in
the first batch of experiments both σ (table 4.1) and C (state kernels on a uniform grid
over S) are given a priori. The empirical cumulative discounted reward for mountain
car and cart-pole are presented in fig. 4.3 and fig. 4.4 respectively. The stability of the
PCME algorithm is analysed empirically by altering experiment variables associated
with the following choices,

1. LSTD or BRM for fitting the value function.

4.4 Discussion 95

Figure 4.3 PCME empirical return (mountain car) experiments for fixed features
ϕ(s) or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom), conservative update
proportion ω.

(a) BRM, γvfit = 0.96 (b) LSTD, γvfit = 0.96

(c) BRM, γvfit = 0.98 (d) LSTD, γvfit = 0.98

(e) BRM, γvfit = 0.99 (f) LSTD, γvfit = 0.99

96 Parametric CME Policy Iteration

Figure 4.4 PCME empirical return (cart-pole) experiments for fixed features ϕ(s)
or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom), conservative update
proportion ω.

(a) BRM, γvfit = 0.96 (b) LSTD, γvfit = 0.96

(c) BRM, γvfit = 0.98 (d) LSTD, γvfit = 0.98

(e) BRM, γvfit = 0.99 (f) LSTD, γvfit = 0.99

4.4 Discussion 97

Figure 4.5 PCME empirical return (mountain car) experiments for learnt features
ϕ(s) or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom), conservative update
proportion ω.

(a) BRM, γvfit = 0.96 (b) LSTD, γvfit = 0.96

(c) BRM, γvfit = 0.98 (d) LSTD, γvfit = 0.98

(e) BRM, γvfit = 0.99 (f) LSTD, γvfit = 0.99

98 Parametric CME Policy Iteration

Figure 4.6 PCME empirical return (cart-pole) experiments for learnt features ϕ(s)
or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom), conservative update
proportion ω.

(a) BRM, γvfit = 0.96 (b) LSTD, γvfit = 0.96

(c) BRM, γvfit = 0.98 (d) LSTD, γvfit = 0.98

(e) BRM, γvfit = 0.99 (f) LSTD, γvfit = 0.99

4.4 Discussion 99

Figure 4.7 PCME empirical return (quadrocopter navigation) experiments for learnt
features ϕ(s) or ∆ϕ(s): BRM (left), LSTD (right), γvfit (top to bottom), conservative
update proportion ω.

(a) BRM, γvfit = 0.96 (b) LSTD, γvfit = 0.96

(c) BRM, γvfit = 0.98 (d) LSTD, γvfit = 0.98

(e) BRM, γvfit = 0.99 (f) LSTD, γvfit = 0.99

100 Parametric CME Policy Iteration

2. Delta ∆ϕ(s) or vanilla ϕ(s) transition model targets.

3. Conservative policy update proportion ω used in policy improvement.

4. Discount rate γvfit used in fitting the value function.

The quality of the learning algorithm can be inferred from empirical results by i) the
rate at which the return series converges over the course of the experiment, ii) how
high this convergent value is and iii) the variance of the returns series. Good learning
algorithms generate returns series that converge at high rates to high values with
low variance. A returns series with high variance is evidence for policy improvement
instability, policy oscillations or in extreme cases catastrophic forgetting.

The most notable observation is that model-based LSTD is more effective than
model-based BRM when fitting the value function for all experimental variable combi-
nations. Mountain car is a very simple MDP and therefore differentiating performance
between the different combinations of experiment variables is difficult. Cart-pole is
a harder MDP, clearly differentiating between good and poor experimental variable
settings. LSTD appears to be more agnostic to some experimental settings that can
be detrimental to the BRM fitting procedure. The best parameter settings learn
good policies in 1000 and 2000 transition samples for the mountain car and cart-pole
respectively. LSTD value function fitting not only demonstrates faster learning, but
performance variance is also smaller, implying the learning algorithm experiences less
policy oscillation.

The delta model consistently out-performs the vanilla model in both MDPs for all
combinations of experimental variables. This suggests that models are more effective
in generalising over delta transitions (in feature space) rather than over full transitions.
Not only is learning faster for the delta models, but performance variance is also lower.

Conservative policy updates are an integral parameter to the success of the PCME
approach. In all fixed state representation experiments, conservative updates (by
setting ω= 0.1) outperform vanilla greedy updates. The evidence provided here
supports what the literature states about unstable policy improvement in approximate
policy iteration, and in addition it supports the claim that soft policy improvements
mitigate policy oscillations.

The final parameter whose choice is fundamental to the success of the learning
algorithm is the discount factor γvfit used during LSTD or BRM and is the most
perplexing. In all experiments the unknown MDP sets γ= 0.99, however only when
γvfit = 0.96 then learning is quick and stable. Nowhere else in the algorithm is the
discount factor changed and therefore this phenomena is inextricably linked to fitting
the value function. It was investigated to see if γvfit could be chosen (along with λ)
during the cross validation procedure in algorithm 12. However this proved to be

4.4 Discussion 101

unsuccessful such that the algorithm could not learn good policies. Using γ= 0.99 in
the test error (line 9, algorithm 12) also proved unsuccessful. It was concluded that a
validation signal was not detectable in the value fitting procedure in order to select a
good γvfit and instead it was provided a priori. Given that LSTD and BRM are both
affected, it would suggest that this parameter requires a deeper explanation that is
agnostic to the value function fitting procedure. The approximate Bellman operator
used in both cases takes the form

(T̂ πv)(s) := r(s, π(s)) + γvfit(Wψ(s, π(s)))⊤ŵπ,

where γvfit affects the magnitude of the transition dynamics term. Although T̂ π is not
a contraction, a low γvfit may be enforcing a similar property that enables a better
value function fit when a model-based Bellman operator is used. Further investigation
is required to understand this phenomenon and it may be linked to reformulating
PCME into the pseudo-MDP framework. This would require assuming ϕ (either given
a priori or learnt) being viewed as the state space as assumed in the LAM algorithm.
Then by re-expressing ψ as a function of ϕ, a contraction constraint could be enforced
for the transition dynamics. A naive application of the contraction constraint to the
existing PCME was unsuccessful.

4.4.3 PCME with learnt state representation

Learning ϕ using matching pursuit means that the state representation will be in
constant flux between policy iterations. Therefore as discussed, the conservative update
technique developed for the static ϕ representation is not always applicable. Executing
the correct conservative update when i= 1, requires tracking the basis functions of
the ϕ representation such that ω can be applied to the correct weights. Matching
pursuit will greedily select basis functions for ϕ and therefore ordering may change,
old bases may be discarded and new bases may be added. Basis tracking was not
implemented and instead the results presented in figures 4.5, 4.6 and 4.7 use a greedy
update whenever a conservative update is nonsensical. Contrary to algorithm 17, ϕ
was only updated during each k ∈ fullUpdates and therefore limits the number of
non-conservative updates.

Unfortunately using adaptive state representation leads to a considerable perfor-
mance degradation. However the same observations remain; such as delta models are
more effective, in some cases soft conservative updates lead to better performance,
LSTD is superior to BRM and γvfit = 0.96 is more effective than using the MDP’s
γvfit = 0.99.

102 Parametric CME Policy Iteration

4.5 Conclusion and future work

For cart-pole and mountain car, PCME successfully matches the performance of
the non-parametric CME without the unfavourable computational complexity with
training sample size. However the parametric algorithm is less parsimonious and
requires additional methods to mitigate instabilities and policy oscillations. The
larger quadrocopter MDP exposes PCME’s difficulty in learning a good state-feature
representation while making conservative weight updates. In order for conservative
updates to make sense at the beginning of each policy iteration, basis functions need
to be tracked properly such that the correct conservative update can be applied to the
correct value weight elements.

4.5.1 Deep PCME

One proposition to resolve this problem is to replace matching pursuit entirely as a
feature learning technique. If the dimensionality of the feature representation can
be made constant and independent of its ‘richness’, then conservative policy updates
make more sense. Artificial neural networks (see section B.5) are candidate function
classes for this property. Beginning with model-based Bellman residual loss for a
minibatch drawn from the data D̂ ∼D,

L̂(E , v, π)
∣∣∣
D̂

:= 1
2|D̂|

|D̂|∑
i=1

(
r(si, π(si)) + γvfitÊ(si,π(si))[v]− v̂(si)

)2
,

then the conditional expectation and value functions can be approximated by neural
networks µθ :S×A→Fϕ and ϕϑ :S →Fϕ (parametrised by θ and ϑ respectively)
whose last layers share the same weight vector w,

Ê(s,a)[v] :=µ⊤
θ (si, a)w,

v̂(s) :=ϕ⊤
ϑ (s)w.

Note that the penultimate layer in µθ can be interpreted as the state-action feature rep-
resentationψ. Given the risk function V (si, π) :=

(
r(si, π(si)) + γvfitÊ(si,π(si))[v]− v̂(si)

)2

can be evaluated by a forward pass of the function approximators, then by differenti-
ating the loss, the shared last layer can be updated using the gradient signal

∇wL̂(w,ϑ, π)
∣∣∣
D̂

= 1
|D̂|

|D̂|∑
i=1

V ′(si, π)
(
γvfit∇wÊ(si,π(si))[v]−∇wv̂(si)

)
,

= 1
|D̂|

|D̂|∑
i=1

V ′(si, π)
(
γvfitµθ(si, π(si))− ϕϑ(si)

)
, (4.14)

4.5 Conclusion and future work 103

where V ′(si, π) := r(si, π(si)) + γvfitÊ(si,π(si))[v]− v̂(si). Given that µ and ϕ are deep
networks themselves, the gradient signal can be propagated into their layers, although
it is probably prudent to only propagate into ϕϑ to update ϑ∈ϑ rather than the
model µθ. After an epoch of minibatches a state-feature representation will have been
estimated such that it can be used as targets to drive the training of the parametric
transition model. By adapting the existing PCME model loss, then any weight
parameter θ∈θ can be updated using,

∂L̂(θ)
∂θ

∣∣∣∣∣
D̂

= 1
|D̂|

|D̂|∑
i=1

(
µθ(si, ai)− ϕϑ(s′

i)
)⊤ ∂µθ(si, ai)

∂θ
. (4.15)

The immediate reward function could also be learnt by assuming a function ap-
proximator r̂ is a function of µθ’s penultimate layer (interpreted as the state-action
representation), trained using sample rewards in D̂. By alternating between the model
and Bellman residual update, it might be possible to simultaneously learn a model and
fit a value function at each kth policy iteration. The dimensionality of ϕ will remain
constant and its richness is achieved using the successive deep non-linear hidden layers.
Conservative policy updates are therefore more sensible as the number of output
nodes of the ϕϑ network remains constant. A possible implementation of deep PCME
(DPCME) is described in algorithm 18 and what differentiates it from existing approxi-
mate policy iteration algorithms is i) that there is a model building process intertwined
with value prediction, ii) both state-action and state representations are learnt and iii)
conservative policy improvements will mitigate policy oscillations. Preliminary results
look promising and will be explored further as future work, including incorporating
LSTD in the loss function in order to compare to BRM.

The next chapter moves away from the parametric model due to the discussed
policy instabilities and instead investigates sparsifying the CME algorithm. Neural
networks are extensively used in the last chapter but with non-parametric value
function approximation.

4.5.2 Is PCME a pseudo-MDP?

Yao and Szepesvári (2012) develop the parametric LAM as a pseudo-MDP. This is
made possible because state representation ϕ and transition data are given a priori to
form the discrete MDP that can then be solved using parametric methods. PCME
is therefore not a pseudo-MDP because the embedding receives raw states in S as
inputs and not ϕ. It might be possible to re-express PCME’s ψ representation
(over state-actions) as a function of the state representation ϕ. Learning a state
representation could be achieved using an auto-encoder (as already demonstrated in
many RL algorithms) which would integrate well with the DPCME neural embedding.

104 Parametric CME Policy Iteration

Algorithm 18 Deep Parametric CME (DPCME)

1: Input: Access to unknown MDP M := {S,A, P, P1, r, γ} with continuous S, dis-
crete A, known average reward function r :S×A→ [0, 1]. H = 100 transitions per
trajectory, Jimp := 10, Jeval := 4000, start-state distribution P1. Neural networks
µθ :S×A→Fϕ, ϕϑ :S →Fϕ, and shared last layer weight vector w∈Rdim(Fϕ), all
whose parameters are initialised by drawing from N (0, 0.01).

2: Output: πκ(·)≈ π∗(·).

3: Initialise: q̂0(·, a)← r(·, a), π1(·)← greedya∈A[q̂(·, a)], exploration policy
νπ1(·)← ϵ-greedya∈A[q̂(·, a)], ϵ← 0.3, n0← 0, nnew← 2H, D0 = ∅, learning rates
η.

4: for k = 1, 2, ..., κ−1 do ▷ kth policy iteration master index
5: Data acquisition: nk←nk-1+nnew, collect Dnew = {si, ai, ri, s′

i}
nk
i=nk-1+1; one

trajectory using πk and another using π̃k, beginning from start state s∼P1(·).
Dk←Dk−1∪Dnew = {si, ai, ri, s′

i}
nk
i=1, . ▷ aggregate data

6: Model:
7: for ℓ = 1, 2, .. do ▷ ℓth minibatch index
8: D̂ ∼Dk
9: θ← θ − η ∂L̂(θ)

∂θ

∣∣∣
D̂

▷ model update ∀θ∈θ, eqn (4.15)
10: end for
11: Planning:
12: π ← πk, wi=0←w
13: for i = 1 to Jimp do ▷ policy improvement index
14: for ℓ = 1, 2, .. do ▷ ℓth minibatch index
15: D̂ ∼Dk
16: w←w− η∇wL̂(w,ϑ, π)

∣∣∣
D̂
▷ BRM update for shared w∈Fϕ, eqn (4.14)

17: ϑ←ϑ− η ∂L̂(w,ϑ,π)
∂ϑ

∣∣∣
D̂

▷ BRM update ∀ϑ∈ϑ
18: end for
19: w←wi−1 + ω(w−wi−1) ▷ conservative update of shared layer
20: q̂π(s, a) := r(s, a) + γµ⊤

θ (s, a)w, (s, a)∈S×A
21: π(·)← greedya∈A[q̂π(·, a)] ▷ conservative policy improvement
22: end for
23: πk+1 ← π
24: end for
25: return πκ(·)

This would mean that the DPCME could be treated as a pseudo-MDP such that a
contraction constraint (lemma 3) could be applied to the embedding. This may be a
solution to the γvfit phenomenon that was observed in the experiments.

Chapter 5

Sparse Non-Parametric CME
Policy Iteration

The investigation returns to the non-parametric approximate value function setting
which has already been demonstrated to yield a stable and consistent policy iteration
performance. However the CME model remains computationally unsuitable for online
environments. This chapter identifies key components of the CME transition model
and decouples them from the size of the training set. The focus is on policy stability
and computational sustainability both in model updates and planning as new training
data is gathered during exploration.

By reformulating the original RKHS penalised loss equation (2.54), it is possible
to solve for W in the primal while retaining the vvRKHS regulariser. Coupled with
the experience of using matching pursuit from the PCME, it is possible to maintain a
sparse basis B and therefore compact feature representation over S×A. An extensive
investigation into decoupling the basis C (which defines the set of successor states the
value function is evaluated on) from the training set was also made such as adding
structural sparsity during W optimisation, but all efforts failed. The solution is
instead provided by colleagues in Lever et al. (2016) whose work external to this
thesis is summarised in Appendix C.1. Included in this external work is a Lasso
(Hastie et al., 2015) projection for maintaining the pseudo-MDP contraction constraint
which is shown to instigate superior performance to the previously used L1-Projection.
However empirical results show that this contraction constraint creates a computational
bottleneck whose solution will be considered in Chapter 6.

It is important to understand where CCME planning places itself w.r.t. existing
dynamic programming algorithms. Referring to section 2.3, then the computational
complexity of classic DP planning scales quadratically with the number of states |S|2,
clearly becoming intractable for large state spaces. The existing vanilla CME decouples
this cost to a quadratic cost on the size of training set |S ′|2, which quickly becomes

106 Sparse Non-Parametric CME Policy Iteration

impractical for large MDPs. The CCME decouples planning even further to a set of
successor states |C|2 where C−S ′. The goal is to develop an algorithm whose CME
components B and C do not grow uncontrollably with a training set that grows as an
agent explores its environment.

5.1 CCMEs: Non-Parametric Embeddings with Spar-
sification

Recall the original CME regressor in (2.50) decomposed into

µ̂CCME(s, a) =
m∑
j=1

L(cj, ·)
d∑
ℓ=1

wjℓK(bℓ, (s, a))∈HL, (s, a)∈S×A,

= Φ⊤
C WψB(s, a), (5.1)

=

L(c1, ·) · · · L(cm, ·)


w1 · · · wd



K(b1, (s, a))

...
K(bd, (s, a))

 ,

where W∈Rm×d, L and K are kernels associated with RKHSs HL and HK re-
spectively. If Dk := {(s, a, s′)i}nki=1 is the training set at the kth policy iteration,
then S ′

k := {s′
i}
nk
i=1⊆S and Zk := {(s, a)i}nki=1⊆S×A. Recalling PCME notation, then

B := {K(bℓ, ·)}dℓ=1 and C := {L(cj, ·)}mj=1. Each b is a state-action vector and each c
is a successor state. The vanilla (and Schur-modified) CME set d=m=nk where nk
is the number of transitions in the dataset at policy iteration k, such that B and C
will grow uncontrollably with Dk. Recalling the algorithm computational complexities
listed table 2.2, then CME planning scales quadratically with m, which motivates
decoupling C from Dk. In addition, model construction computational complexity can
be controlled by decoupling B from Dk. Once C and B are updated at each kth policy
iteration, the non-square matrix W is fitted using a closed form solution to the RKHS
norm-penalised empirical risk minimisation problem.

Existing Work Grünewälder et al. (2012b) first learn a full µ̂CME on the entire
dataset D provided a priori, then deploy sparsification techniques to the full vanilla
embedding. However Grünewälder et al. (2012a) do not present policy learning
performance results of the sparsified embedding; only out-of-sample supervised loss
errors are presented. Sparsification focusses on driving elements in a CME’s weight
matrix W to zero (and thus reducing the size of C and B) using a structured sparsity
inducing norm and FISTA (Beck and Teboulle, 2009) optimisation.

This chapter focusses on developing practical CME sparsification techniques when
data isn’t provided a priori and analyses how a sparse CME affects policy learning.

5.1 CCMEs: Non-Parametric Embeddings with Sparsification 107

This approach seeks to mitigate ever having to calculate the full CME and instead
maintains a compact embedding for the entirety of exploring an MDP. As part of
the investigation an attempt was made to adapt the sparsification techniques in
Grünewälder et al. (2012b, section 5) and will be described below.

5.1.1 Algorithm Details

Solving for W in the Primal

The following analysis assumes B and C have already been found. Substituting (5.1)
into the regularised loss (2.54) gives

Ŵ = arg min
W∈R|C|×|B|

[1
2nk

nk∑
i=1
||Φ⊤

C WψB(si, ai)− L(s′
i, ·)||

2
F + λ

2 ||Φ
⊤
C WψB(·)||2Γ

]
. (5.2)

As before, the non-parametric value function is modelled in an RKHS F =HL and
the embedding function resides in a vvRKHS µ(·)∈HΓ as discussed in section B.4.6.
The sets C and B are sizes m and d respectively which are not necessarily as large as
the number of samples nk in Dk. The following notation is defined and builds upon
that found in table 2.1,

ψB(s, a) := [K(b1, (s, a)), ..., K(bd, (s, a))]⊤ ∈ Rd,

ΥB := [K(b1, ·), ..., K(bd, ·)]⊤ =:ψB(·),
ΥZB := [ψB(s1, a1), ...,ψB(snk , ank)]⊤ ∈ Rn×d,(

KBB
)
jk

:=
(
ΥBΥ⊤

B

)
jk

= ⟨K(bj, ·), K(bk, ·)⟩HK
, KBB ∈ Rd×d,

ΦC := [L(c1, ·), ..., L(cm, ·)]⊤,
ΦS′ := [L(s′

1, ·), ..., L(s′
nk
, ·)]⊤,(

LCC
)
jk

:=
(
ΦCΦ⊤

C

)
jk

= ⟨L(cj, ·), L(ck, ·)⟩HL
, LCC ∈ Rm×m.

Lemma 5. Given sparse B and C, then by choosing Γ((s, a)i, (s, a)j) :=K((s, a)i, (s, a)j)I
as the operator-valued kernel in the vvRKHS setting where I :HL→HL, then the regu-
larisation term in equation 5.2 is ||µ(·)||2Γ = Tr(W⊤LCCWKBB).

Proof.

||µ(·)||2Γ =
〈
Φ⊤

C WψB(·),Φ⊤
C WψB(·)

〉
Γ
,

=
〈 m∑
j=1

L(cj, ·)
d∑
ℓ=1

wjℓK(bℓ, ·),
m∑
j′=1

L(cj′ , ·)
d∑

ℓ′=1
wj′ℓ′ K(bℓ′ , ·)

〉
Γ
,

=
d∑
ℓ=1

m∑
j′=1

m∑
j=1

d∑
ℓ′=1

〈
L(cj, ·)wjℓK(bℓ, ·), L(cj′ , ·)wj′ℓ′ K(bℓ′ , ·)

〉
Γ
,

108 Sparse Non-Parametric CME Policy Iteration

=
d∑
ℓ=1

m∑
j′=1

m∑
j=1

d∑
ℓ′=1

wjℓ ⟨L(cj, ·), L(cj′ , ·)⟩Lwj′ℓ′ ⟨K(bℓ, ·), K(bℓ′ , ·)⟩K ,

=
d∑
ℓ=1

m∑
j′=1

m∑
j=1

d∑
ℓ′=1

wjℓL(cj, cj′)wj′ℓ′ K(bℓ,bℓ′),

=
d∑
ℓ=1

m∑
j′=1

m∑
j=1

wjℓL(cj, cj′)
d∑

ℓ′=1
wj′ℓ′ K(bℓ,bℓ′),

=
d∑
ℓ=1

m∑
j′=1

(W⊤LCC)ℓj′(WK⊤
BB)j′ℓ,

=
d∑
ℓ=1

(W⊤LCCWKBB)ℓℓ,

= Tr(W⊤LCCWKBB),

where the linearity of the inner product is invoked on line three. In line four the
inner product associated with the choice of kernel for the vvRKHS HΓ - see equation
(B.69).

Lemma 6 (Sparse CME Regressor). While holding both B and C constant, the solution
in the primal to the optimisation problem 5.2 has the closed form

W = (LCC)−1LCS′ΥZB(Υ⊤
ZBΥZB + nλKBB)−1.

Proof. Substituting the result of lemma 5 into equation (5.2) then differentiating w.r.t
W,

0 = ∇W
[1
2nTr

(
(Φ⊤

C WΥ⊤
ZB −Φ⊤

S′)⊤(Φ⊤
C WΥ⊤

ZB −Φ⊤
S′)
)

+ λ

2 Tr(W⊤LCCWKBB)
]
,

= 1
n

ΦC(Φ⊤
C WΥ⊤

ZB −Φ⊤
S′)ΥZB + λLCCWKBB

= 1
n

(LCCWΥ⊤
ZBΥZB − LCS′ΥZB) + λLCCWKBB

= LCCW(Υ⊤
ZBΥZB + nλKBB)− LCS′ΥZB

⇒W = (LCC)−1LCS′ΥZB(Υ⊤
ZBΥZB + nλKBB)−1 .

In the second line the derivatives of the trace are given by identities (B.82) and (B.81)
are used. The complexity of this operation is O(d3 + n(d2 +m2) +m3) which is linear
in the training set size n. A constant ridge term λ= 10−8 was added to the inverse
(LCC + λ)−1 to prevent the possibility of ill-conditioned matrices.

5.1 CCMEs: Non-Parametric Embeddings with Sparsification 109

Corollary 6.1. The sparse regressor can be specialised to either i) decouple only B
from n such that

W = (LCC)−1LCS′ΥZB(Υ⊤
ZBΥZB + nλKBB)−1,

= (LS′S′)−1LS′S′ΥZB(Υ⊤
ZBΥZB + nλKBB)−1,

= ΥZB(Υ⊤
ZBΥZB + nλKBB)−1,

or ii) recover the original fully data-coupled CME regressor,

W = ΥZB(Υ⊤
ZBΥZB + nλKBB)−1,

= ΥZZ(Υ⊤
ZZΥZZ + nλKZZ)−1,

= K(KK + nλK)−1,

= (K + nλIn)−1,

where in the second line B=Z and ΥZZ = Υ⊤
ZZ = K∈Rnk×nk . Both regulariser λ and

kernel σ hyper-parameters can be found by an appropriate cross validation scheme.

The task remains to implement methods that maintain both B and C.

Maintaining a Compact Basis B

Experience of learning compact parametric representations in the PCME (see lemma
4) is exploited here. Vector-valued matching pursuit is considered not as a parametric
feature learner, but instead as a method to learn a compact basis B used to represent
the ψB(·) component of an RKHS embedding as described in equation (5.2). The
difference is that the PCME embedding µ :X →Y assumes Y to be a vanilla Hilbert
space Fϕ such that the matching pursuit model residue also resided in Y. In the
non-parametric CME setting Y is an RKHSHL, therefore an approximation is made for
the HL components in order to efficiently apply lemma 4 in an approximate matching
pursuit algorithm.

Approximate Matching Pursuit Regression By explicitly reordering the sum-
mation, then the embedding can be written as equation (A.2),

(•)µd(z) :=
d∑
ℓ=1

w̃ℓK(bℓ, z), w̃ℓ ∈HL, z∈S×A,

where wℓ is the ℓth column of the embedding’s weight matrix W. Following lemma 4,
then the model residual for the embedding is

(•)rdi :=L(s′
i, •)− (•)µd(zi), (z, s′)i ∈Dk,

=L(s′
i, •)−

d∑
ℓ=1

w̃ℓK(bℓ, zi)∈HL. (5.3)

110 Sparse Non-Parametric CME Policy Iteration

Lemma A.1 describes how the B basis of embedding (A.2) can be maintained by
applying lemma 4. As the embedding maps µ :=S×A→Y where Y =HL, then
model residues also lie in HL and by corollary A.1.1 such an approach detrimentally
increases the size of C. Given that one of our goals will be to control the size of C an
another approach for maintaining B is required. We are motivated to keep C fixed
while enriching B. One approach is described in lemma A.2 however this was not
implemented in the CCME algorithm and remains available for future experiments.

Maintaining model residues that lie in an RKHS are also problematic because
additional overhead is required to evaluate and keep track of residue basis functions.
Updating residues after each new basis is added also requires additional overhead.
Matching pursuit is more efficient when Y is a regular Hilbert space and therefore an
approximate matching pursuit regression algorithm is developed for the embedding. An
approximation of the original RKHS model residual equation (5.3) is made, using an
incomplete Cholesky decomposition (see section B.4.2) of the kernel matrix associated
with C is made such that

P⊤
C PC ≈ ΦCΦ⊤

C = LCC, (5.4)

where PC := [p1, ...,p|C|]∈Rmchol×|C| and pj ∈Rmchol . The incomplete Cholesky decom-
position effectively builds an implicit orthonormal basis of maximum size mchol<|C|
that best describes the data points in C. In all experiments a maximum mchol = 200
was set. The RKHS residue equation (5.3) can now be approximated,

p′
i −

m∑
j=1

pj
d∑
ℓ=1

wjℓK(bℓ, zi)∈Rmchol ≈ L(s′
i, •)−

m∑
j=1

L(cj, •)
d∑
ℓ=1

wjℓK(bℓ, zi)∈HL.

Note that p′
i is derived from the incomplete Cholesky decomposition of the Deval data

in the following way. An incomplete Cholesky decomposition on the entire training
data’s successor states S ′ = {s′

i}
nk
i=1 is first made,

P⊤
S′PS′ ≈ Φ⊤

S′ΦS′ = LS′S′ ,

which costs ∼O(nkm2
chol) and of course can be a subset of states when the dataset gets

very large. Then an evaluation set Deval for the matching pursuit regression problem is
drawn Deval∼Dnk whose indexes in the parent set can be used to extract PS′

eval
from

PS′ such that P⊤
S′

eval
PS′

eval
≈ LS′

evalS
′
eval

where PS′
eval

:= [p′
1, ...,p′

|Deval|]∈R
mchol×|Deval|.

5.1 CCMEs: Non-Parametric Embeddings with Sparsification 111

The loss of the approximate dth residue over Deval is therefore,
|Deval|∑
i=1
||rdi ||

2
HL
≈

|Deval|∑
i=1
||p′

i −
m∑
j=1

pj
d∑
ℓ=1

wjℓK(bℓ, zi)||22,

=
|Deval|∑
i=1
||p′

i −
d∑
ℓ=1

qℓK(bℓ, zi)||22,

= ||PS′
eval
−QΥBS′

eval
||2Fr,

= ||Rd||2Fr,

where qℓ := ∑m
j=1 pjwjℓ, Q∈Rmchol×|B| and Rd is the residue matrix.

By arranging data matrices X = Zeval and Y = PS′
eval

, then the matching pursuit
regression algorithm described by lemma 4 can be initiated to find a compact basis B.
The d+1 weight vector is calculated and basis function is chosen using equations (4.6)
and (4.7) respectively. This approximate procedure is only used to find a good B such
that Q is discarded and replaced by backfitting with the primal weights calculation
(lemma 6) after B has been found. Q is only required and maintained during the
matching pursuit procedure itself - no incomplete Cholesky decomposition of LCC

is executed, only the successor targets LS′S′ are required for the matching pursuit
procedure. Approximate matching pursuit turns the RKHS-valued problem into one
that is of similar operation to the parametric setting in Chapter 4. The residuals are
easily updated upon each d+1 basis being added because they are not RKHS functions
themselves. Most importantly C is not enriched during this procedure. The cost of
calculating a new weight vector and its new basis function is ∼O(|Deval|mchol).

Implementing a Sparse C

Maintaining the set of successor states C is considered a harder problem because it
defines what states the value function is maintained over, rendering the choice of C
critical to the success of the policy iteration algorithm.

Group Lasso Penalty The first approach investigated was to adapt the structured
sparsity technique in Grünewälder et al. (2012b, section 5) to the primal weight
optimisation procedure. An additional penalty term is added to the loss equation
(5.2) that induces sparsity in the rows of an embedding’s weight matrix W. Inducing
sparsity at this group level offers a mechanism to remove L(cj, ·) elements from C,
which can easily be seen in

µ(z) = Φ⊤
C [w⊤

1: , ...,w⊤
m:]⊤ψB(z),

=
m∑
j=1

L(cj, ·)wj:ψ(z)

112 Sparse Non-Parametric CME Policy Iteration

where wj: ∈R1×d is the jth group of weights in W. The following objective was
investigated (with the aim of reintroducing the RKHS regulariser in a future algorithm)

L̂(W) = 1
2nk

nk∑
i=1
||Φ⊤

C WψB(si, ai)− L(s′
i, ·)||

2
HL

+ λ21||W||21,

= 1
2nk

Tr
(
(Φ⊤

C WΥ⊤
ZB −Φ⊤

S′)⊤(Φ⊤
C WΥ⊤

ZB −Φ⊤
S′)
)

+ λ21||W||21. (5.5)

This is a variant of the group lasso objective and does not have a closed form solution
because the regulariser is non-differentiable. Solving problems like this is described
in section B.4.4 and in the spirit of equation (B.57), then the embedding objective
equation (5.5) solved by projected gradient descent is

W(t+1) = proxλ21||·||21

[
W(t) − η 1

n
(LCCW(t)Υ⊤

ZBΥZB − LCS′ΥZB)
]
.

Given that λ21||W||21 :=λ21
∑d
j=1 ||wj:||2, then the prox operator1 can be applied

independently to each row wj: in W. The actual algorithm used to carry out the
optimisation was FISTA (Beck and Teboulle, 2009).

In the context of explorative-PI, it was intended that the set C be augmented
by new successor states at the beginning of the kth iteration; C ← C+{L(s′

j, ·)}
nnew
j=1 .

Group lasso optimisation would then proceed in place of the original closed form
solution in lemma 6 to prune C by driving group weights to zero. Cross validation was
used to select state-action kernel parameter and the group lasso regulariser strength
λ21.

However this approach proved unsuccessful. The iterative FISTA algorithm em-
bedded in a cross validation scheme for hyperparameter selection was very slow and
unsuitable to make quick updates to the embedding. It wasn’t possible to incorporate
this approach into a practical policy iteration algorithm to learn good policies because
the sparsification component became the primary source of computational cost. This
approach was therefore abandoned in order to pursue techniques more suitable to the
online setting.

Lossy Compression (External Work) The actual implementation for maintain-
ing C was provided externally from this thesis as described in section C.1. When
operating with this algorithm, the embedding is referred to as a compressed CME
(CCME). The advantage to this approach is that computation costs are low (which
can be linear in |C|) and the operation retains policy improvement guarantees.

1It was also intended to consider the mixed norm
∑d

j=1 ||L(cj)wj:||HL
instead of just rows in the

weight matrix W.

5.2 Experiments 113

Other Approaches to Embedding Sparsification

Matching Pursuit Regression for C In the same way that matching pursuit
regression was used for B, conceivably it could be used for maintaining C as hypothesised
in lemma A.3. This has not been tested experimentally but could form part of a future
investigation.

Sparsification in the RKHS Norm By the properties of an RKHS function (see
Appendix B.4.2), if any two functions are close in their RKHS norm then their point-
wise function evaluations will also be close. Given a target function h∈HΓ then
lemma A.4 describes a matching pursuit procedure of incrementally building a sparse
approximation of a general vector valued function f̂ ∈HΓ by minimising ||h− f̂ ||Γ. A
general implementation is described in algorithm 24. If the residues are in a vanilla
Hilbert space then they are easily maintained.

This approach is adapted in an attempt to sparsify an embedding’s basis B or C
as described in lemma A.6. The advantage with this approach is that no regression
data is required, only the existing basis functions. However in both cases the residues
are in an RKHS, therefore maintaining them during the matching pursuit procedure
requires tracking each basis function which is not as simple as when the residues lie
in a vanilla Hilbert space. Preliminary tests for maintaining B in section A.1.5 were
carried out using an approximate matching pursuit variant. Future work is required
to fully integrate this approach into policy iteration.

Contraction Constraint (External Work)

A post hoc contraction constraint is imposed on the embedding using a sparse pro-
jection implemented using lasso as described in section C.1.2 and implemented as
LassoSparse. It uses the same incomplete Cholesky kernel approximation method as
used in the approximate matching pursuit procedure. The lasso contraction constraint
is compared to the fast L1-projection (that was used to modify the CME in section
3.1.2) in the following experiments. The α values were also normalised (see equation
(2.58)) after each constraint was enforced.

5.2 Experiments

The final CCME policy iteration (algorithm 19) blends i) learning W in the primal,
ii) maintaining state-action basis B with approximate matching pursuit regression,
iii) maintaining successor state basis C using the lossy algorithm and iv) the lasso
projection with normalisation was used to maintain the contraction constraint. The
previous L1-projection contraction constraint is compared.

114 Sparse Non-Parametric CME Policy Iteration

Algorithm 19 Explorative CCME-PI
1: Input: Kernel L :S×S→R, implicit state representation ϕ(s′) :=L(s′, ·), access

to unknown MDP M := {S,A, P, P1, r, γ} with continuous S, discrete A, but
known average reward function r :S×A→ [0, 1]. H = 100 transitions per trajectory,
Jimp := 10, Jeval := 4000, start-state distribution P1, lossy δ.

2: Output: πκ(·)≈ π∗(·).

3: Initialise: q̂0(·, a)← r(·, a), π1(·)← greedya∈A[q̂(·, a)], exploration policy
νπ1(·)← ϵ-greedya∈A[q̂(·, a)], ϵ← 0.3, n0← 0, nnew← 2H, D0 = ∅, C0 ← ∅, B0 ← ∅,
W0 ← ∅.

4: for k = 1, 2, ..., κ−1 do ▷ kth policy iteration master index
5: isFullUpdate← false ▷ partial updates possible for some components
6: if k ∈ fullUpdates then
7: isFullUpdate← true
8: end if
9: Data acquisition: nk←nk-1+nnew, collect Dnew = {si, ai, ri, s′

i}
nk
i=nk-1+1; one

trajectory from each πk and νπk , beginning from start state s∼P1,
Dk←Dk−1∪Dnew, S ′

new ← {s′
i}
nk
i=nk-1+1, Znew ← {(s, a)i}

nk
i=nk-1+1. ▷ aggregate

data

10: Update C:
Ck ←AugmentCompressionSet(L, Ck−1,S ′

new, δ) ▷ algorithm 26

11: Update B (ψ-Features):
12: (ψk,Wk) ▷ algorithm 20

←LearnPsiCCME
(
Ck, L,ψk,Wk−1, r,Dk,Znew, K, isFullUpdate

)
13: Model:
14: Wk←PrimalWeights

(
ψk, Ck, L,K,Dk

)
,

v:=[v(s′
1), ., v(s′

|Ck|)]⊤, (T̂ πµ v)(·):=r(·, π(·))+γLassoSparse
(
ψ⊤

B (·, π(·))W
)
v.

▷ see equation (C.5)

15: Planning:
16: for i = 1 to Jimp do ▷ policy improvement index
17: v←0, π← πk
18: for j = 1 to Jeval do ▷ exact policy evaluation
19: v←T̂ πµ v
20: end for
21: v̂π ← v
22: q̂π(s, a) := r(s, a) + γLassoSparse

(
ψ⊤

B (s, a)W
)
v̂π, (s, a)∈S×A

▷ see equation (C.5)
23: π(·)← greedya∈A[q̂π(·, a)] ▷ greedy policy improvement
24: end for
25: πk+1 ← π
26: end for
27: return πκ(·)

5.2 Experiments 115

Algorithm 20 LearnPsiCCME(C, L,ψ,W, r,D,Znew, K, isFullUpdate)

1: Input: Compression set C, state Gaussian kernel L :S×S→R and ψ(·) represen-
tation, previous transition model weights W, average immediate reward function
r :S×A→R, transition data D, newly acquired state-actions Znew, state-action
Gaussian kernel K : (S×A)×(S×A)→R, a boolean isFullUpdate specifying quick
or full updates.

2: Output: New state-action feature representation ψ(·), new regressor W.
3: Initialise: Bandwidth collection {σ} := {0.01, .., 5}, collection of basis dictionaries
{G} ← ∅, δtol ← 0, ℓbackfit ←∞, dmax ← 500, ξ ← 10−8, mchol ← 200.

4: Prepare dictionaries:
5: Bprev := {Kσprev(b̂ℓ, ·)}dprev

ℓ=1 ← ψ(·) ▷ extract basis where b̂ℓ ∈S×A
6: B̃ ← Bprev

⋃ {Kσprev(bi, ·)}nnew
i=1 ▷ augment candidate functions where bi ∈Znew

7: if isFullUpdate then ▷ full updates cross-validate over all bandwidths
8: for each σ ∈{σ} do
9: G̃σ ← {Kσ(b̃i, ·)}

|B̃|
i=1 ▷ b̃i ∈ B̃

10: {G} ← {G}⋃ G̃σ
11: end for
12: else
13: G̃σprev ← {Kσprev(b̃i, ·)}|B̃|

i=1 ▷ a single child dictionary with σprev
14: {G} ← {G}⋃ G̃σprev .
15: end if
16: Prepare Residues:
17: PD ← IncompleteCholesky(KDD,mchol, ξ) ▷ P⊤

DPD ≈ KDD
▷ see section B.4.2

18: Deval := {(s, a, r, s′)i}
n
i=1∼D, n= |Deval| ▷ draw evaluation dataset

19: Peval∼PD ▷ draw the same evaluation dataset
20: if W==∅ then
21: R ← [r(s1, a1), ..., r(sn, an)]⊤ ▷ a proxy residual for the first policy iteration.
22: else
23: R ← Peval ▷ model residual target
24: end if
25: Z← [z1, ..., zn]⊤, zi := [s⊤

i , a⊤
i]⊤, Dres := {Z,R} ▷ define the residual dataset.

26: (ψ(·),W)←vvMultipleMatchingPursuit(Dres, {G}, δtol, dmax, ℓbackfit)
27: return ψ(·), W.

116 Sparse Non-Parametric CME Policy Iteration

Algorithm 21 PrimalWeights(ψB, C, L,K,D)

1: Input: State-action features ψB(·) = [K(b1, ·), ..., K(bd, ·)]⊤, successor state basis
C := {L(cj, ·)}mj=1, state-action kernel K : (S×A)×(S×A)→R, L :S×S→R

2: Output: Regularised embedding weights W∈Rm×d

3: Initialise: Φ⊤
C := [L(c1, ·), ..., L(cm, ·)]⊤←C, ΥB :=ψ(·), KBB :=ψ(·)ψ⊤(·),

LCC←ΦCΦ⊤
C , regularisation parameters {λ}←{1×10−7, ..., 1}, nfolds←5,

{D1, ...,Dnfolds}←D, ϵbestTest ←∞.
4: Cross-validate regulariser:
5: for each λ∈{λ} do
6: ϵsumTest ← 0
7: for k = 1 to nfolds do
8: Dtrain ← (⋃̇nfolds

i=1 Di)i ̸=k
9: Dtest ← Dk

10: W = (LCC)−1LCS′
train

ΥZtrainB(Υ⊤
ZtrainBΥZtrainB + λKBB)−1

11: ϵsumTest ← ϵsumTest + 1
2ntest
||Φ⊤

S′
test
−Φ⊤

C WΥBZtest||
2
HL

12: end for
13: ϵavTest ← ϵsumTest/nfolds
14: if ϵavTest <ϵbestTest then ▷ compare estimate of out-of-sample error
15: λ∗ ← λ, ϵbestTest ← ϵavTest.
16: end if
17: end for
18: W = (LCC)−1LCS′ΥZB(Υ⊤

ZBΥZB + nλKBB)−1

19: return W.

5.2.1 Holding Pattern Task

An additional more challenging holding pattern task was created to stress test the
learning algorithms. This is similar to the quadrocopter navigation task in the previous
chapter with two major differences; the action set is of size |A| = 169 where A ∈ R2

and the aim of the task is to assume a holding (orbital) pattern, or an orbit of radius 5m.
The reward function is defined as r(s, a) = exp(− 1

σ2
r̃
(r̃(x, y)− r̃targ)2) exp(− 1

σ2
c
(c(u, v)−

ctarg)2), where r̃(x, y) =
√
x2 + y2 is the distance of the quadrocopter from the centre

of the holding pattern with a target of r̃targ = 5m and c(u, v) =
√
u2 + v2 is the speed in

the (x, y) plane with ctarg = 1.5ms−1 is a target speed to assume in the holding pattern.
The reward bandwidths were set at σc = 1 and σr̃ = 2m. Discounted cumulative reward
of 60 or over is collected for near optimal policies which corresponds to an orbit that
is roughly a circle with constant speed.

5.2 Experiments 117

Figure 5.1 Mountain car: Comparison of contraction constraints
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Compression set C size (d) Planning time

Figure 5.2 Cart-pole: Comparison of contraction constraints
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Compression set C size (d) Planning time

118 Sparse Non-Parametric CME Policy Iteration

Figure 5.3 Quadrocopter navigation: Comparison of contraction constraints
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Compression set C size (d) Planning time

Figure 5.4 Quadrocopter holding pattern: Comparison of contraction constraints
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Compression set C size (d) Planning time

5.2 Experiments 119

Figure 5.5 Mountain car: varying δlossy

(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Compression set C size (d) Planning time

Figure 5.6 Cart-pole: varying δlossy

(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Compression set C size (d) Planning time

120 Sparse Non-Parametric CME Policy Iteration

Figure 5.7 Quadrocopter navigation: varying δlossy

(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Compression set C size (d) Planning time

Figure 5.8 Quadrocopter holding pattern: varying δlossy

(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Compression set C size (d) Planning time

5.3 Discussion 121

Table 5.1 MDP-specific a priori parameters for CCME

Mountain car Cart-pole Quad nav Quad holding pat
δlossy 0.01 0.1 0.1 0.4
L bandwidth σS 0.5 0.5 1.25 1.25
|B|≤ dmax 200 500 200 500

5.3 Discussion

5.3.1 Comparison with Other Algorithms

See section 7.1 for algorithm component timings with comparison to surviving bench-
marks from chapter 3 and other algorithms developed in this thesis. CCME clearly
achieves an improvement in computational complexity during model construction and
planning when compared to the CME algorithm. The sparse embedding is therefore
able to reasonably solve the quadrocopter holding pattern MDP without incurring
too much computation cost. The CCME outperforms the PCME in learning better
policies however it incurs higher planning costs due to the lasso contraction constraint
imposed either during planning or whenever the embedding is evaluated, such as when
an action is drawn from a policy.

5.3.2 Learning B

As presented in fig. 7.1 to fig. 7.4, it can be seen that the CCME suffers from the same
cost spikes as the PCME when learning feature basis B during model construction.
These spikes are due to the full cross validation over multiple dictionaries Gσ w.r.t
kernel bandwidth σ.

5.3.3 Contraction Constraint

Empirical results in fig. 5.1 to fig. 5.4 consistently demonstrate that the lasso projection
contraction constraint on α(s, a) outperforms the previously used fast L1-projection.
The difference in performance is significant even as a tolerance parameter of the fast
L1-projection is set to zero. The lasso algorithm cost however is significant and scales
depending on the solver used i.e. mchol|Ck|2 (Friedman et al., 2010) or mchol|Ck| (Efron
et al., 2004). The GLM method described by Friedman et al. (2010) and implemented
by Qian et al. (2013) was the only approach that worked. Specific parameters to the
optimiser were tried to see if the computational cost could be reduced, however this
was unsuccessful and the results presented are the best achieved using default settings.
The cost of the contraction constraint is not only seen in the planning cost, but also
in the iteration time. Referring to fig. 7.4b for the quadrocopter holding pattern, the

122 Sparse Non-Parametric CME Policy Iteration

iteration cost is significantly high because the lasso cost is multiplied by |A|= 169 due
to the policy greedily searching over all actions at each state.

Most revealing is that evidence in figures 5.1 to 5.4 suggests that most CCME
performance is attributed to the use of the LassoSparse contraction constraint as
opposed to the L1-projection. This may be explained because the L1-projection is a
‘blind’ projection to the L1-ball as opposed to the lasso optimisation that projects
the unconstrained embedding by minimising a loss constrained by an L1 penalty.
The latter method may preserve the accuracy of the embedding by having a softer
constraint. Further investigation should compare out-of-sample error of the embedding
under both constraints to see if LassoSparse provides superior performance.

5.3.4 Controlling C

Results presented in fig. 5.5 to fig. 5.8 present performance and computational costs
as the size of C is controlled. The lossy algorithm as described in Appendix C.1.1
works by using lasso to project new candidate compression states onto a sparse basis
formed from the existing compression set C. If the error is greater than the δlossy

tolerance then the candidate state is added to C. Therefore the smaller δlossy tolerance,
the larger the compression set C such that a richer sparse basis can be formed. The
empirical results for all MDPs are consistent with this. Referring to the previous
discussion about how cost of the contraction constraint, then controlling the size of C
has a direct effect on the cost of planning as demonstrated in the empirical results.

Engel et al. (2004, 2003) develop a similar online sparsification method for kernel
and Gaussian process (GP) function approximators that is superficially similar to
the compressed embedding approach in theorem C.1.1. Engel et al. (2003) develop a
model-free Gaussian process temporal difference (GPTD) algorithm that maintains
the value function as a GP over a sparse set of states C ′ = {ϕ(cj)}mj=1 projected in
feature space F , where cj ∈S. At any tth time step a new state s is added to C ′ if

||
m∑
j=1

αjϕ(cj)− ϕ(s)||2F >δ,

where δ is a given threshold. The sparse set of states prevents the computational cost
of each GPTD value function update from growing uncontrollably with the number of
samples seen. The difference with the CCME approach (see section C.1.1) is that it is
a model-based RL algorithm such that α is a function of the state-action conditioning
variable for a conditional mean embedding. Furthermore the CCME sparsification not
only i) constrains α with the L1-norm due to the contraction constraint, but it also ii)
directly relates δ with policy improvement suboptimality guarantees. For future work
it would interesting to compare sparsification C ′ and compression C sets of the GPTD
and CCME respectively.

5.4 Conclusion 123

5.4 Conclusion

Referring section 7.1, the CCME algorithm generally outperforms the CME (modified
with the Schur kernel inverse and fast L1-projection contraction constraint). However
the following issues motivate further development of embeddings-based policy iteration.

1. Lasso contraction constraint - Not only is this constraint (and all others used thus
far) post hoc (i.e. it is not enforced during model training), but its computational
cost is too high for a greedy policy-based algorithm which is linear in |A|.

2. The cost of a full model relearn which includes cross validating the bandwidth
for basis B is too high for online updates.

In the same way that the DPCME (see section 4.5.1) was motivated by the
requirement that feature richness is not a function of feature dimensionality, improving
the CCME would also benefit from this type of function approximator. The next
chapter therefore fuses non-parametric value function approximation with a deep
neural representation over state-actions.

Chapter 6

Differentiable Sparse CME Policy
Iteration

Both the PCME in Chapter 4 and CCME in Chapter 5 are polar opposites. The
PCME approximates the value function parametrically thus the model-based projected
Bellman operator must be solved using LSTD or minimising the Bellman residual.
Evidence has been provided that demonstrates approximate policy iteration instability
and its mitigation with conservative policy improvement. However its computational
complexity is suitably decoupled from the size of the training set such that model
construction and planning is practical in data abundant settings. The CCME approxi-
mates the value function non-parametrically such that an approximate model-based
Bellman operator can be solved exactly. The resulting policy iteration algorithm is
stable and sparsification techniques are used to decouple the algorithm’s computational
complexity from the size of the training set. However both state-action feature learning
and maintaining a post hoc contraction constraint are computationally expensive.

The work in this chapter can be considered a hybrid of both approaches where i)
value functions remain modelled non-parametrically in order to retain exact policy
evaluation and ii) the state-action feature representation is replaced with a neural
network such that the embedding can be learnt using stochastic gradient descent
(SGD) (see Appendix B.5 for a review). This hybrid approach models the embedding
weights α(s, a) as a neural network and the contraction constraint is maintained
by a softmax-derived activation function on the last layer. This architecture avoids
expensive proper CME evaluation costs (therefore planning is also cheap) and model
updates require only minibatch SGD. Explorative pseudo-PI with the deep embedding
is shown to learn good policies for all test MDPs. Particular focus is on maintaining
the compression set C and more importantly it is found that pruning basis functions is
required in order for policy iteration to work. The final algorithm presented is known

126 Differentiable Sparse CME Policy Iteration

as actively compressed conditional mean embeddings (ACCME) and uses a biologically
inspired neuron pruning mechanism to maintain C.

6.1 Differentiable CMEs: Deep Embeddings

The deep CME (DCCME) is the first variant that directly modifies the CCME
embedding and retains the δ-lossy compression algorithm. The contraction constraint
is maintained by architecture construction and therefore it is present during model
learning and model evaluation as opposed to a post hoc operation. The actively
compressed CME (ACCME) absorbs the final outstanding δ-lossy component into the
model’s stochastic update itself.

6.1.1 DCCME

Online Dynamics Model

Notation is adopted from the CCME. Given C, the batch CME penalised ERM problem
(see equation (2.54)) is modified by replacing the kernel conditional weights with a
vector-valued neural network αθ :S×A→R|C|,

θ̂ = arg min
θ

[1
2nk

nk∑
i=1
||µθ(si, ai)− ϕ(s′

i)||
2
F + Ω(θ)

]
, (6.1)

where µθ(s, a) = Φ⊤
Cαθ(s, a), αθ(·) := [α1(·), .., α|C|(·)]⊤, ΦC := [ϕ(s′

1), .., ϕ(s′
|C|)]⊤, net-

work weights θ, value function space F =HL which is an RKHS of functions over
states with kernel L :S×S→R such that ϕ(s′) =L(s′, ·), and a real-valued function
Ω. Due to the class of the α function approximator, it is no longer possible to select
a normed hypothesis class defined by the vector-valued RKHS norm. Instead an
appropriate regulariser function such as the L2 norm Ω(θ) = ||θ||22 used in penalised
ERM (Appendix B.4.1) can be used to prevent both overfitting to noise and network
weights growing uncontrollably. This approach is useful when there is a training data
budget such that a restriction of the function class is required to inhibit overfitting (see
discussion in Appendix B.4.1). However deep learning practitioners usually assume
data abundance as a form of regularisation and forgo implementing a regularised loss.
For the initial implementation the discussion regarding Ω is deferred until ACCME’s
description.

6.1 Differentiable CMEs: Deep Embeddings 127

As described in section B.5, to train the network requires implementation of the
chain rule. Multiplying out the squared loss

1
2nk

nk∑
i=1
||µθ(si, ai)− ϕ(s′

i)||
2
HL

= 1
2nk

nk∑
i=1

〈
µθ(si, ai)− ϕ(s′

i), µθ(si, ai)− ϕ(s′
i)
〉

HL

= 1
2nk

nk∑
i=1
α⊤
θ (si, ai)LCCαθ(si, ai)− 2α⊤

θ LCs′
i
+ L(s′

i, s′
i),

where LCs′
i
:= [L(c1, si), ..., L(c|C|, si)]⊤ and (LCC)ij =L(ci, cj). In the batch setting the

derivative of equation (6.1) is taken wrt a single scalar weight θ∈θ somewhere in
the network and batch gradient descent is used to minimise the loss by updating all
weights in θ. However the common approach is to sample the gradient by drawing a
minibatch from the training data D̂ ∼Dnk ,

∂L̂α
∂θ

∣∣∣∣∣
D̂

= 1
|D̂|

|D̂|∑
i=1

∂L̂
∂αθ

∂αθ
∂θ

∣∣∣∣∣
αθ(si,ai)

+ ∂θΩ(θ), (6.2)

= 1
|D̂|

|D̂|∑
i=1

(
α⊤
θ (si, ai)LCC − Ls′

iC
)∂αθ
∂θ

∣∣∣∣∣
αθ(si,ai)

+ ∂θΩ(θ), (6.3)

which is then used in one of many SGD minimisation algorithm variants (see Appendix
B.5.2) to minimise equation (6.1). The last term is a subgradient which generalises the
derivative of functions that are not continuous whose description is deferred until the
next section. The derivative ∂αθ(si,ai)

∂θ
is unravelled by applying the chain rule to the

deep network as described by backpropagation in Appendix B.5.2. The novelty here
is that a deep parametric function approximator is trained using a non-parametric
RKHS loss. The requirement for maintaining a proper CME such that explorative
pseudo-PI can be used for policy optimisation forces us to use this non-parametric
value function class and therefore the adoption of the hybrid neural-kernel approach.

Architecture

As discussed in Chapter 5, a proper CME decomposes its conditional weights into
α(·) = Proj||α||1 ≤ 1(Wψ(·)) where ψ(·) = [K(b1, ·), ..., K(b|B|, ·)]⊤ is non-parametric
representation over S×A whose size grows linearly with training data and W is a
weight matrix. The CCME (Chapter 5) maintains a compact basis B that limits this
representation from growing as new training data is gathered during the exploration of
an MDP. The projection operation is performed only when the embedding is evaluated
and is not involved during the calculation of W in the primal.

DCCME naturally adopts this decomposition into a neural architecture (see fig.
6.1) such that αθ(·) =σ(Wψϑ(·)) where ψϑ(·) is the penultimate layer (and is the
last layer of the remaining part of the network), W is the final weight layer that maps
Rdim(ψ)→R|C|, σ is an activation function that enforces the contraction constraint

128 Differentiable Sparse CME Policy Iteration

Figure 6.1 Last layers of the DCCME’s vanilla feedforward architecture,
hθ(s, a) = Wψϑ(s, a) and αθ(s, a) = σ(hθ(s, a)) with σ as a softmax layer.

1

W

∂L̂
∂ψϑ

∣∣∣
ψϑ(s,a)ψϑ(s, a)

hθ(s, a)

αθ(s, a)

ii) Forward inference.

1

∂L̂
∂W

∂L̂
∂ψϑ

∣∣∣
ψϑ(s,a)

∂L̂
∂hθ

∣∣∣
hθ(s,a)

∂L̂
∂αθ

∣∣∣
αθ(s,a)

ii) Backpropagate error signal.

and θ = ϑ ∪W. Enriching the ψ representation no longer requires an increase in
its dimensionality (equivalent to the number of nodes). The deep representation’s
expressiveness instead depends on the network architecture and most importantly the
abundance of training data. All hidden layers are ReLUs and weights are trained using
the Adam SGD variant (see Appendix B.5.2 for details). Weight initialisation and
Adam optimisation parameters are specified in table 6.1. To maintain speed but also
an expressive representation (as inspired by Shi et al. (2016)), the hidden layers below
ψθ were arranged in a narrow but deep configuration as described by fig. 6.5. The ψϑ
was purposefully larger than its predecessors to induce a rich feature representation.
It was found that good performance was achieved when dim(ψϑ(·)) was at least twice
the size of |C|. Many different architectures were experimented with and none were as
successful as this topology, which remains constant between all control tasks without
requiring cross-validation.

Contraction Constraint

In the initial development of DCCME, the post hoc contraction constraints used
in the CME-L1ProjSparse and CCME-LassoSparse were experimented with. How-
ever post hoc constraints of this class are not differentiable and have to remain
as separate operations to model learning. Instead a softmax activation function
σ(hθ(·)) = softmax(hθ(·)) was used to fulfil the pseudo-MDP contraction constraint
||α(s, a)||1≤ 1 ∀(s, a)∈S×A, whose cost during a single inference pass of the network

6.1 Differentiable CMEs: Deep Embeddings 129

Table 6.1 DCCME architecture hyperparameters (all MDPs)

Param Value
δlossy See table 5.1
L bandwidth See table 5.1
Hidden ReLU layers {100, 200, 200, 200, 200, 200, 1000}, see fig. 6.5
ϑ weights init. (µ, σ2) (0, 0.01)
W weights init. (µ, σ2) (0, 1×10−4)
Adam initial rate α 4×10−4 (mountain car/cart-pole), 1×10−4 quads
Adam (β1, β2) (0.9, 0.99)
Minibatch size |D̂| 20 samples
Minibatch count 3000 per kth policy iteration

is ∼O(|Ck|). The backprop pass is also linear in |Ck| as described in Martins and
Astudillo (2016, equation 13).

Compression Set C

Managing C was first implemented using the δ-lossy algorithm such that at the kth

iteration Ck ← Ck−1 ∪ Cnew. Incrementing C requires an adjustment to the network
topology such that α is likewise increased. This corresponds to adding new rows of
weights W← [W⊤,w1, ...,w|Cnew|]⊤ where each new weight wj ∈Rdim(ψθ) corresponds
to each new basis function in Cnew.

Note that the initialisation of these final layer weights W is treated slightly
differently to the rest of the network, notably with a smaller variance than the rest of
the network, whose reasoning is described as follows. At the moment new weights are
added such that dim(αθ) is increased, it is desirable to minimise their contribution
to the the existing function approximator’s output such that its accuracy is not
diminished. However it is also desirable in an SGD algorithm to non-deterministically
initialise weights rather than set them to zero such that any two new neurons will
output differently. The compromise is therefore to initialise them stochastically but
closer to zero. Note also that the initial learning rate for Adam optimisation is different
for the quadrocopter MDPs for maximum performance and is probably due to the
difference in state-action space dimensionality.

6.1.2 Pruning C During SGD

The δ-lossy algorithm only adds new basis functions to C which may be problematic for
large MDPs. Empirical evidence presented below suggests that for the hardest MDP,
C keeps on growing which stifles further policy learning. There is also a quadratic
dependency on Ck during explorative PI (see table 7.1 for more details) because the

130 Differentiable Sparse CME Policy Iteration

softmax activation function is not sparse in Ck (cf. the CCME’s lasso projection and
fast L1-projection which are both sparse in Ck).

Contraction Constraint

Setting σ(·) = TopNmax(·):=Softmax
(
KeepTopN(·)

)
(Shazeer et al., 2017) as

the final layer’s activation function, then the pseudo-MDP contraction constraint is
still satisfied ∀(s, a)∈S×A. The network output α(s, a)∈RN is fixed N -sparse where
N is chosen a priori. The KeepTopN(·) function sorts the raw output of the layer
hθ(·) which costs ∼O(N |Ck|) for every inference pass of the network per state-action
pair. The sparse activations are then either used to evaluate the embedding, or they
activate only a subset of kernel matrix elements in equation (6.2) during training.
During backprop the sparse gradient signal is passed back along the activated elements
of αθ and into the network as described by (Shazeer et al., 2017) and implemented
in the embedding as shown in fig. 6.3. By gradient signal is only sparse in the last
weight layer and by the time it reaches the layer ψϑ, it is dense once more.

Compression Set

An alternative mechanism to maintain C is described below and is built into the actual
model learning process that adaptively removes successor states during SGD-based
training and can either be used on its own or in conjunction with the δ-lossy algorithm.

Described in Appendix B.5.3 are several existing weight shrinkage methods such
as rounding and soft-thresholding. Described also is the online truncated gradient
(Langford et al., 2009) which solves the lasso (Tibshirani, 1996) optimisation problem
in the stochastic setting by applying soft-thresholding with strength ηλ, only if the
weight is within a specified range around the origin i.e. |w| ≤ω. This is a mixture of
soft-thresholding and weight rounding and is claimed to provide reliable sparse solutions
in the stochastic setting. Although features are assumed linearly independent and
the loss function is assumed smooth-convex, in the following work this sparsification
technique is adapted to the structural sparsity setting in a neural network, labelled
as truncated group shrinkage. In the sequel a biologically inspired modification is
developed known as modified truncated group shrinkage which is found to require less
fine-tuning between control tasks.

Truncated Gradient Method We focus on how the last layer weights of a deep
embedding are updated. If W := [w1, ...,wm]⊤ ∈Rm×d then the jth row of this matrix
is wj: = w⊤

j ∈R1×d. The sparsification strategy is to develop a mechanism whereby
group sparsity is induced in W where each row is a group. There is a one-to-one
mapping between the jth row wj: and the jth member of C such that if a row is driven

6.1 Differentiable CMEs: Deep Embeddings 131

to zero then its corresponding member ϕ(cj) can be removed from C. During backprop
the vanilla Adam updates are modified by the truncated gradient approach where
first a vanilla Adam update is made and then the mapping T :Rd→Rd is applied (as
summarised in Appendix B.5.3),

wj: ← T
(
wj: − η∇wj:L̂

∣∣∣
D̂
,ω
)
, ∀wj: ∈W, (6.4)

where ω is a set of hyperparameters. The existing truncated gradient approach develops
a mapping T = Ttrunc that combines the well known soft-thresholding operation Tsoft

(related to lasso) and a rounding operation Tround as described in Appendix B.5.3. The
motivation is that shrinkage is limited to a small range centred at the origin which
promotes less aggressive sparsification.

However, when this approach is specialised to the embedding’s sparsification
requirements, then equation (6.4) must use a mapping T = Tg-trunc based on group-level
shrinkage related to group lasso (Yuan and Lin, 2006). We therefore first develop
Tg-trunc. However it is found that the hyperparameters of this method require fine
tuning for each control task. Modified truncated gradient is developed in response to
this where a group shrinkage operation Tmod-g-trunc are applied not when weight groups
wj: are within ||wj:||2≤ω but instead for weight groups not updated by the sparse
backprop signal. ‘Inactive’ weight groups are therefore diminished at any one backprop
pass. If over the course of a training epoch (limited to a set number of minibatches)
weight groups have remained at zero then they and their corresponding members in C
are removed. This approach is novel and is inspired by a biological ‘use-it-or-lose-it’
neuronal strategy, empirically shown to work surprisingly well in controlling the output
size of the embedding while facilitating learning good policies.

Truncated Group Shrinkage for Softmax Embeddings The final activation
function (contraction constraint) is assumed to be σ(·) = Softmax(·). Just as the
lasso’s soft-thresholding operator (equation (B.59)) was adapted to the truncated
shrinkage operator as described by equation (B.78), then the group lasso’s soft-
thresholding operator (equation (B.58)) is adapted to the truncated shrinkage operator,

[
Tg-trunc(wj:, ηλ, ω)

]
ℓ
=


[
1− ηγ

||wj:||2

]
+
wjℓ ||wj:||2≤ω,

wjℓ otherwise,
(6.5)

where each group of weights wj: is a row in W and wjℓ is the ℓth weight in the wj:

group. The group truncated shrinkage diminishes all weights in a group if the L2-norm
of the group is within [0, ω], otherwise no shrinkage occurs. Note that as ω→∞ then
Tg-trunc→Tg-soft. All T variants are visualised in fig. 6.2 (cf. fig. B.6).

132 Differentiable Sparse CME Policy Iteration

Figure 6.2 Group Shrinkage weight multiplier: ηλ= 0.2 and ω= 0.4
(a) Previous Group Shrinkage Methods (b) Truncated Group Shrinkage

Modified Truncated Group Shrinkage for TopNMaxSparse Embeddings It
was found that (ω, λ) pairs needed to be fine-tuned for each task when using group
truncated gradient with softmax embeddings. In response to this, a novel modification
of the truncated group shrinkage is proposed for embeddings whose last activation
is σ(·) = TopNmax(·). Referring to fig. 6.3, a sparsity mechanism is pursued that
exploits the sparse backprop gradient signal when updating W. For the ith data sample
(si, ai, s′

i) in a minibatch D̂ ∼D, then during feed forward inference the embedding’s
last layer is sparse-activated. Likewise during backprop’s backwards pass the gradient
signal is only propagated back through these activated neurons (Shazeer et al., 2017).
Consequently only a subsetWi of rows in W will be updated. Over an entire minibatch
of samples then the set WD̂ = (⋃̇|D̂|

i=1Wi) is the union of all active weight groups. We
define W̃D̂ identical to WD̂ but whose elements do not include bias weights. Therefore
W̃D̂ defines all active weight groups without their bias terms. The definition of the
modified truncated group shrinkage can now be stated,

[
Tmod-g-trunc(wj:, ηλ21, W̃D̂)

]
ℓ
=


[
1− ηλ21

||wj:||2

]
+
wjℓ wj: ̸∈ W̃D̂,

wjℓ otherwise.
(6.6)

In the final implementation an L2 penalty is added to any active weight update.
This was experimentally found to be vital such that extreme weight magnitudes were
mitigated. The adding and removing of final layer weights groups proved to be a
disruptive activity for the embedding function approximator and therefore the presence
of an L2-regulariser helped stabilise this process. Note that as the set W̃D̂ becomes
dense to include all weight groups in W then Tmod-g-trunc→Tg-soft. The difference
between Tg-trunc and Tmod-g-trunc is the definition of the ‘truncation’; Tg-trunc truncates
the application of group shrinkage to weight groups whose magnitude is within the
range [0, ω], whereas Tg-trunc limits its application to inactive weight groups induced
by the sparse TopNMax activation function.

6.1 Differentiable CMEs: Deep Embeddings 133

Figure 6.3 Adapting σ(·) = TopNmax(·) (Shazeer et al., 2017) as the last layer ac-
tivation function in a deep embedding with vanilla Adam weight updates, where
hθ(si, ai) = Wψϑ(si, ai) and αθ(si, ai) = σ(hθ(si, ai)): i) Sparse inference only acti-
vates output nodes {αj(si, ai)}j={1,4}. ii) The sparse backprop pass updates only
Wi := {wj:}j={1,4} in the last layer where wj: is the jth row in W. Note that
{wj:}j={2,3,5} ̸∈ Wi.

i) TopNMax forward inference.

1

∂L̂
∂ψϑ

∣∣∣
ψϑ(s,a)ψϑ(si, ai)

hθ(si, ai)

αθ(si, ai)

ii) Backpropagate sparse error signal.

1

∈Wi

̸∈Wi

∂L̂
∂ψϑ

∣∣∣
ψϑ(si,ai)

∂L̂
∂hθ

∣∣∣
hθ(si,ai)

∂L̂
∂αθ

∣∣∣
αθ(si,ai)

6.1.3 ACCME

A TopNMax embedding is used with the modified truncated group shrinkage operation
Tmod-g-trunc without using the δ-lossy operation for maintaining C. The sparse activation
function is central to i) maintaining the pseudo-MDP contraction constraint, ii)
providing a cheap and sparse evaluation of the embedding for planning/inference and
iii) induces a sparse gradient signal that is exploited by the newly developed modified
truncated gradient operation to maintain C.

At each kth policy iteration, the embedding is trained using an epoch of M = 3000
minibatches drawn D̂ ∼D from an experience replay memory (Lin, 1992). Each epoch
is split into four phases:

1. Initial phase (fig. 6.3): All new successor states S ′
new discovered during data

acquisition are added as basis functions to C. Corresponding weight groups
(rows) are initialised and added to W. Vanilla Adam SGD is executed over M

3

minibatches to train the entire network αθ driven by the RKHS loss. The last
layer weights in W experience sparse updates due to the sparse final activation
function. All updated weights in the last layer are penalised with the L2-norm.

134 Differentiable Sparse CME Policy Iteration

Figure 6.4 Tmod-g-trunc modified truncated gradient: i) W̃D̂ defines the set of weight
groups (without bias terms) that were updated by Adam in minibatch D̂. Group-
shrinkage is applied to all inactive weight groups i.e. ∀wj: ̸∈ W̃D̂. ii) At the end of the
shrinkage backprop phase, ∀wj: ∈W whose length (excluding bias terms) ||wj:||2 == 0
(dashed/grey) are removed.

(a) Active/inactive weight
groups for a single minibatch D̂.

1
̸∈W̃D̂

∈W̃D̂

(b) Remove groups where
||wj:||2 == 0 (grey).

1

2. Weight shrinkage phase (fig. 6.4a): Vanilla Adam SGD is executed over M
3

minibatches for the entire network as in the initial stage. All last-layer active
weight updates include an L2-regularisation penalty. Inactive last layer weights
are shrunk group-wise by applying Tmod-g-trunc once every minibatch. It was found
that setting a constant learning rate η= 1 for this operation induced adequate
sparsification.

3. Weight and C pruning phase (fig. 6.4b): For all groups whose ||wj:||2 that
have remained at zero for the last 3

4
M
3 minibatches, are removed from W along

with their corresponding basis functions in Ck.

4. Consolidation phase (fig. 6.3): Vanilla Adam SGD is executed over M
3

minibatches to train the entire network αθ with L2-regularisation applied to the
active weights in the last layer.

The regularisation parameters used are common for each task and are listed in table
6.2. Surprisingly fine tuning was not needed.

Table 6.2 ACCME architecture hyperparameters (in addition to table 6.1)

Param Value
W L2 regulariser λ2 (all MDPs) 1×10−4

W L21 regulariser λ21 (all MDPs) 0.1

6.2 Experiments 135

Figure 6.5 ACCME architecture: yellow and green are weighted sum layers with ReLU
activations, red is weighted sum with TopNMax, blue is scalar-valued weighted sum
only. DCCME’s red layer is a dense softmax.

(s,a)

200

200

200

200

200

dim
(ψ

ϑ)=
1000

dim
(α

θ)=
|C|

r

6.1.4 ACCME-R: Learning the Reward Function

Throughout this investigation the reward function is assumed known. However
ACCME-R demonstrates that the reward function can easily be learnt by exploiting
the penultimate layer as the state-action feature representation. The loss is

Lr
∣∣∣
D̂

:= 1
2|D̂|

|D̂|∑
i=1
||rβ(si, ai)− ri||22,

where reward function approximator is rβ(s, a) =β⊤ψϑ(si, ai). Reward weights β are
updated using

∇βLr
∣∣∣
D̂

= 1
|D̂|

m∑
i=1

(
rβ(si, ai)−ri

)
ψϑ(si, ai), (6.7)

using backprop. The derivative signal ∂Lr
∂ψϑ

∣∣∣
D̂

is collected with the embedding’s ∂Lα

∂ψ

∣∣∣
D̂

and backpropagated to the rest of the network during training.

6.2 Experiments

Algorithms 22 and 23 describe the full ACCME-R implementation. DCCME-Softmax
/TopNMax use δ-lossy and ACCME variants use the modified group truncated shrink-
age operation to maintain C. Experiments were carried out on the same MDPs as
previous chapters. The neural network code is a custom MATLAB implementation
created specifically for this investigation. No hardware acceleration or asynchronous
programming were used such that a fair comparison could be made with previous
algorithms. Embeddings were built with an identical vanilla feed-forward architecture
for all MDPs. It was found that during a weight shrinkage update, the learning rate

136 Differentiable Sparse CME Policy Iteration

Algorithm 22 ACCME-R Policy Iteration
1: Input: Kernel L :S×S→R, implicit state representation ϕ(s′) :=L(s′, ·), ac-

cess to unknown MDP M := {S,A, P, P1, r, γ} with continuous S, discrete A,
unknown average reward function r :S×A→ [0, 1]. H = 100 transitions per trajec-
tory, Jimp := 10, Jeval := 4000, start-state distribution P1, minibatch size |D̂|= 20,
minibatch epoch count M = 3000, shared network ψϑ(·, ·), TopNMax count N .

2: Parameters: Sample count nnew=2H, λ2=1×10−4, λ21=1×10−1, Jimp=10,
Jeval=4000, compression set C.

3: Output: πκ(·)≈ π∗(·).

4: Initialise: ϑ, β ∼N (0, σ2=0.01), W(0)=∅, C0=∅, q̂0(·, a)← rβ(·, a),
π1(·)← greedya∈A[q̂0(·, a)], exploration policy νπ1(·)← ϵ-greedya∈A[q̂(·, a)],
ϵ← 0.3, n0← 0, nnew← 2H, D0 = ∅, C0 ← ∅.

5: for k = 1, 2, ..., κ−1 do ▷ kth policy iteration master index
6: Data acquisition: nk←nk-1+nnew, collect Dnew = {si, ai, ri, s′

i}
nk
i=nk-1+1; one

trajectory from each πk and νπk , beginning from start state s∼P1,
Dk←Dk−1∪Dnew, S ′

new ← {s′
i}
nk
i=nk-1+1. ▷ aggregate data

7: Augment C: Ck←Ck−1∪{ϕ(s′
i)}

nk
i=nk-1+1

8: Wnew ∈Rnnew×dim(ψ)∼N (0, σ2 = 1×10−4) ,W(k)←[W(k−1); Wnew].
9: Model:

αθ(·, ·), Ck, rβ(·, ·)←TrainACCME
(
αθ(·, ·), Ck, rβ(·, ·), Dk

)
▷ algorithm 23

10: v:=[v(s′
1), ., v(s′

|Ck|)]⊤, (T̂ πµ v)(·):=rβ(·, π(·))+γα⊤
θ (·, π(·))v

11: Planning:
12: for i = 1 to Jimp do ▷ policy improvement index
13: v←0, π← πk
14: for j = 1 to Jeval do ▷ exact policy evaluation
15: v←T̂ πµ v
16: end for
17: v̂π ← v
18: q̂π(s, a) := r(s, a)+γα⊤

θ (s, a)v̂π, (s, a)∈S×A
19: π(·)← greedya∈A[q̂π(·, a)] ▷ greedy policy improvement
20: end for
21: πk+1 ← π
22: end for
23: return πκ(·)

on the L-21 norm was set to a constant η= 1. In all other instances (such as regular
weight updates), the learning rate was determined by the Adam optimiser.

6.3 Discussion

Figures 6.6, 6.7, 6.8 and 6.9 present results for all MDPs. Empirical cumulative
discounted reward and algorithm component timings are provided. Figure 6.11 com-

6.3 Discussion 137

Algorithm 23 TrainACCME(αθ(·, ·), C, rβ(·, ·),D)
1: for i = 1 to M do
2: Draw a minibatch D̂∼D
3: β←β−η∇βL̂r

∣∣∣
D̂

▷ update all reward weights
4: if i≤ 1

3M or i > 2
3M then ▷ initial or consolidation phase

5: W←W−η∇WL̂α
∣∣∣
D̂
− λ2W▷ update active weights with L2 regularisation

6: else if 1
3M < i≤ 2

3M then ▷ shrinkage phase
7: G← ∇WL̂α

∣∣∣
D̂

8: for each wj:∈W do ▷ update all last layer embedding weights
9: wjℓ←

[
Tmod-g-trunc(wj:, ηλ21, W̃D̂)

]
ℓ

▷ diminish inactive weights
10: end for
11: W←W−ηG− λ2W ▷ update active weights with L2 regularisation
12: if i == 2M/3 then ▷ pruning phase
13: for each wj:∈W do
14: if ||wj:||2 remained 0 over the last 3

4
1
3M minibatches then

15: W←W\wj:, C←C\ϕ(s′
j)

16: end if
17: end for
18: end if
19: end if
20: ϑ←ϑ−η

((
∂L̂α

∂ψ
+∂L̂r

∂ψ

)
∂ψ
∂ϑ

∣∣∣
D̂

)⊤
▷ update the rest of the network

21: end for
22: return αθ(·, ·), C, rβ(·, ·).

pares the size of the compression set C for all deep embeddings and the previous
CCME algorithm. A full comparison between all algorithms is presented in Chapter
7 whose results will be included in this discussion. Unfortunately training a neural
network is a non-convex optimisation procedure without guarantees of finding a global
minimum. Departure from the kernel embedding architecture also means that the
CME consistency guarantees (Grünewälder et al., 2012a)[lemma 2.2] are lost. However
these theoretical concerns prove unfounded in the practical setting where the goal is to
develop an algorithm that can handle data abundance. Until better understanding of
training neural networks is achieved, then the theoretical part of the deep embedding
training will remain elusive.

Lecun (2007) points out in his celebrated "who is afraid of non-convex loss functions"
lecture that it is not a requirement to find the global minimum to produce good
generalisable (out of sample) deep function approximators. Instead training only
has to select a good local minimum. Choromanska et al. (2015) present empirical
evidence that for large neural architectures, good local minima critical to the loss
function exist in a band close to the global minimum and is lower-bounded by the
global minimum. It is found that loss surfaces generally consist of saddle points and
the chance of converging to a good local minimum (corresponding to good out of

138 Differentiable Sparse CME Policy Iteration

sample generalisation) increases as the network size increases. Modern large-scale
neural network architectures trained with large data sets have been shown to generalise
surprisingly well out of sample without the problem of overfitting. However the
mechanism of generalisation and over-fitting for artificial neural networks is still poorly
understood and is an active area of research (Nguyen et al., 2015; Szegedy et al., 2013;
Zhang et al., 2017).

6.3.1 DCCME

DCCME-Softmax can be considered as the CCME algorithm whose α(·) weights are
replaced with a neural network and whose contraction constraint is maintained by
construction. The δ-lossy algorithm appears to work well with the deep function
approximator in the first three MDPs. Although the deep embedding’s performance
is not as efficient as the CCME, the objective of speeding up planning has been
achieved. The size of |C| is much larger for the DCCME when compared to the
CCME, despite the δ-lossy hyperparameters being identical. This suggests that the
DCCME embedding quality is poorer than the CCME such that more states are
experienced before a good policy has been learnt. This issue becomes more apparent
for the final holding pattern MDP. Referring to fig. 6.9a it is clear that the DCCME
embedding has difficulty learning the task. Extensive experimentation including a
δ-lossy hyperparameter search was initiated but without success. It was hypothesised
that either embedding evaluation or training was being inhibited by an ever increasing
compression set size |C|. The larger C, the more spread out α(·) weights will be over
the successor states which may stifle accurate embedding accuracy. A compounding
cycle of ever-increasing C size, embedding inaccuracy and therefore inability to learn
the control task leads the agent to encounter an excessive number of successor states
that are further added to C. Evidence presented for the DCCME-Softmax in fig. 6.11
supports this hypothesis.

Two techniques were proposed to counter this phenomenon. The first was to intro-
duce sparsity into the embedding’s evaluation. DCCME-TopNMaxSparse achieves this
however no performance increase was experienced over DCCME-Softmax. Inspection of
the compression set sizes demonstrates that DCCME-TopNMaxSparse suffers from the
same relentless increase of |C|. A sparsemax (Martins and Astudillo, 2016) activation
function was also investigated but this did not provide the α(·) sparsity at the sizes
of C encountered in the MDPs. This may change if very large MDPs are used and is
left to future work. The second technique to mitigate inferior policy learning in the
holding pattern MDP was to introduce a more aggressive pruning strategy of elements
in C.

6.4 Conclusion 139

6.3.2 ACCME

ACCME-TopNMaxSparse successfully applies a pruning strategy that is a novel and
biologically-inspired method of maintaining C. Evidence is provided in fig. 6.9 that
supports the hypothesis that a more aggressive pruning strategy enables more effective
training such that good policies can be learnt. Evidence of sparsification in the
embedding’s last layer is given in fig. 6.10. ACCME-R-TopNMaxSparse demonstrates
that the average reward function can be learnt by exploiting the ψ feature layer,
however the speed of policy learning and final performance are slightly diminished.
This may be explained by the reward signal being deterministic and future work should
include a focus on training ACCME-R-TopNMaxSparse with stochastic rewards.

6.4 Conclusion

Although a deep embedding no longer enjoys strong theoretical guarantees, it is a
practical solution in scaling the CME architecture when data is abundant. The novel
fusion of a non-parametric loss that drives backprop has been shown to work. In
addition, a novel adaptation of the truncated gradient algorithm enables ACCME to
learn good policies in the largest MDP featured in this investigation.

140 Differentiable Sparse CME Policy Iteration

Figure 6.6 Mountain car: DCCME activation functions
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Model construction time (d) Planning time

Figure 6.7 Cart pole: DCCME activation functions
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Model construction time (d) Planning time

6.4 Conclusion 141

Figure 6.8 Quadrocopter navigation: DCCME activation functions
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Model construction time (d) Planning time

Figure 6.9 Quadrocopter holding pattern: DCCME activation functions
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Model construction time (d) Planning time

142 Differentiable Sparse CME Policy Iteration

Figure 6.10 ACCME-Top40Max (mountain car) last layer weight group sparsity during
model training: for policy iterations k = {1, 2, 3} (top to bottom), every plot contains
||wj:||2 for each wj ∈W. The plots on the left are at the end of the initial phase (fig.
6.3) and those on the right are at the end of the weight shrinkage phase (fig. 6.4a)
just before pruning.

(a) At end of initial phase during k = 1 (b) At end of shrinkage phase during k = 1

(c) At end of initial phase during k = 2 (d) At end of shrikage phase during k = 2

(e) At end of initial phase during k = 3 (f) At end of shrinkage phase during k = 3

6.4 Conclusion 143

Figure 6.11 DCCME: compression set size |C|
(a) Mountain car (b) Cart-pole

(c) Quadrocopter navigation (d) Quadrocopter holding pattern

Chapter 7

Conclusion

7.1 Algorithm Comparison

7.1.1 Overview

A comparison of the PCME, CCME and ACCME algorithms developed in this thesis
are compared to the existing kernel smoothing and modified CME-Schur. In addition a
DQN algorithm was deployed to demonstrate the sample efficiency of MBRL compared
to an existing model-free algorithm. Policy learning performance and sample efficiency
depend not only on the RL method but also function approximator class i.e. kernel
methods are very efficient when the training dataset is small. From this perspective
it is more fair to compare the DQN algorithm performance to ACCME. Further
experimental details for the DQN can be found in section A.2. Computational
complexities for algorithm components are specified in table 7.2.

Table 7.1 Computational complexity of algorithms developed in this thesis at the
kth policy iteration, which should be compared to table 2.2. †Although ACCME has
convergence guarantees to the optimal policy defined by its pseudo-MDP, its neural
network embedding does not enjoy the consistency guarantees that a kernel-based
embedding has i.e. kernel-based embeddings will tend to the real MDP in the limit
of infinite data. ‡PCME batch model construction. N is ACCME’s last layer sparse
activation count. See table 7.2 for more terminology.

Algorithm Guarantees Planning Model Ê µ
(s,a)

πk evaln πk impvt build eval
CME-Schur ✓ n2

k+JevalN
∗
L1-Projnk |A|n2

k n2
k nk

PCME ✗ |Ck|3 |A| |Ck| |Bk| ‡|Bk|3 |Bk|
CCME ✓ |Ck|2+JevalN

∗
Lasso|Ck| |A|(|Bk| |Ck|+ l) |Bk|3+|Ck|2 |Bk|+ l

DCCME †✗ |Ck|2+Jeval|Ck|2 |A||Ck|2 |Ck|2 |Ck|2
ACCME †✗ |Ck|2+JevalN |Ck| |A|N |Ck| N |Ck| N |Ck|

146 Conclusion

Figure 7.1 Mountain car: Algorithm comparison
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Model (incl. B) construction time (d) Planning time

Figure 7.2 Cart-pole: Algorithm comparison
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Model (incl. B) construction time (d) Planning time

7.1 Algorithm Comparison 147

Figure 7.3 Quadrocopter navigation: Algorithm comparison
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Model (incl. B) construction time (d) Planning time

Figure 7.4 Quadrocopter holding pattern: Algorithm comparison
(a) Empirical discounted return (b) Iteration (incl. data acquisition) time

(c) Model (incl. B) construction time (d) Planning time

148 Conclusion

Table 7.2 Computational complexity of algorithm components at the kth policy it-
eration. CCME Lasso components have complexity l=m2

chol + flasso(|Ck|,mchol) e.g
flasso=mchol|Ck|2 (Friedman et al., 2010) or flasso=mchol|Ck| (Efron et al., 2004). N∗

lasso
and N∗

L1-Proj are the size of the sparsified α(s, a) which varies for each embedding
evaluation.

Algorithm: Classic PI CME-Schur PCME CCME ACCME
Constraint: L1ProjSparse LassoSparse TopNmax
i) C update − − nk|Ck| l |Ck|
ii) model & B update − n2

k |Bk|3 |Bk|3+|Ck|2 N |Ck|
iii) ||α(s, a)||1≤1 − nk − l N |Ck|
iv) planning Jeval|S|2 n2

k+JevalN
∗
L1-Projnk |Ck|3 |Ck|2+JevalN

∗
Lasso|Ck| |Ck|2+JevalN |Ck|

v) πk(s) |A||S| |A|nk |A| |Bk| |A|(|Bk|+ l) |A|N |Ck|

The original CME decoupled policy iteration from the number of states to the
size of the training set. CCME continues this trend by decoupling from a polynomial
complexity on the size of the data set to a linear dependency, instead the size of the
compression set |Ck| dominates quadratically (mainly in the lasso implementation for
the contraction constraint). ACCME not only breaks the training set dependency by
making stochastic updates, but also maintaining the contraction constraint is linear
in |Ck|. Both CCME and ACCME incur a one-off |Ck|2 computational complexity
when initiating planning, however the associated expense of this is small and is not a
dominant cost in either algorithm. Although ACCME lacks consistency guarantees, its
neural-kernel architecture hybrid balances expressive representation, guaranteed policy
evaluation convergence and practical computational efficiency. All MBRL algorithms
presented here retain sample efficiency when compared to a model-free DQN with
experience replay.

7.2 Future Work

7.2.1 Immediate Extensions

Deep Parametric Embeddings (DPCME) The deep parametric CME algorithm
with conservative policy updates is described in section 4.5.1. DPCME is hypothesised
to integrate better with conservative policy updates because it avoids having a state
representation whose basis is constantly changing (such as the matching pursuit-driven
feature learning in the PCME algorithm).

More Experiments (ACCME) An immediate extension to ACCME would be
to apply the algorithm to the low state dimensional control problems as specified in
Todorov et al. (2012).

7.2 Future Work 149

Sample Efficiency Comparison (ACCME) It would be desirable to not only
compare ACCME’s performance with all model-free DQN variants (Hessel et al.,
2018) but also DYNA architectures (Gu et al., 2016). Additional comparisons that
compare learning stability with those found in the deep learning community (Ha and
Schmidhuber, 2018; Henaff et al., 2017), including the recent work found in Kaiser
et al. (2019).

Model-Based Transfer Learning This investigation sought to develop principled
MBRL that is practical in online environments. Apart from general sample efficiency
however, this thesis hasn’t explored the advantages of maintaining policy-agnostic
transition models. The obvious advantage is being able to re-plan for multiple tasks
in the same environment i.e. by simply executing planning with a different reward
function. Does ACCME (or DPCME) transition models accelerate learning for new
tasks? An extension to the successor features for transfer learning may also be feasible
using the CCME or ACCME.

General Neural Network Pruning with Modified Group Shrinkage It may
be possible to apply the modified group shrinkage algorithm to sparsify parameters
deep inside feed forward function approximators with sparse activation functions.
ReLU activation functions encourage sparsity and therefore modified group shrinkage
may be able to work in conjunction with them. Changing the definition of the groups to
be shrunk should also be investigated as well the out-of-sample error wrt. sparsification
parameters in order to explore generalisation. Given also that network architecture
search is often difficult, could modified group shrinkage with the dynamic adding of
new nodes in hidden layers lead to more robust function approximators?

7.2.2 Long Term Extensions

High Dimensional States The ultimate goal would be to see if it is possible to
extend ACCME to deal with higher dimensional states. This is a hard problem as it may
require learning the state kernel bandwidth hyperparameters, perhaps by a separate
value function fitting procedure. The current CCME and CME implementation impose
relative weighting a priori to the diagonal of the bandwidth’s covariance matrix in the
state kernel. It would be desirable to learn these parameters as the agent is exploring
its environment. With full hardware acceleration, would it be possible to implement
an ACCME variant to solve MDPs as defined by the ALE (Bellemare et al., 2015)?

Options and Hierarchical Learning Now that ACCME provides a practical way
of implementing a CME-based architecture, extending to learning SMDPs (Sutton

150 Conclusion

et al., 1998, 1999b) whose action sets with temporally abstract options (Precup et al.,
1998). Recent work for extending model-free approximate value iteration can be found
in Mann et al. (2015) and Yao et al. (2014b) with linear function approximation.

Bibliography

Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C.,
Banday, A., Barreiro, R., Bartlett, J., and Al., E. (2016). Planck 2015 results. XIII.
Cosmological parameters. AAP, 594:A13.

Antos, A., Szepesvári, C., and Munos, R. (2008). Learning Near-Optimal Policies with
Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample
Path. Machine Learning, 71(1):89–129,.

Aronszajn, N. (1950). Theory of Reproducing Kernels. Transactions of the American
Mathematical Society, 68(3):337–404.

Atkeson, C. and Santamaria, J. C. (1997). A comparison of direct and model-based
reinforcement learning. Proceedings of the International Conference on Robotics and
Automation (ICRA), 4:3557–3564.

Baird, L. (1995). Residual Algorithms: Reinforcement Learning with Function Approx-
imation. In Proceedings of the 12th International Conference on Machine Learning
(ICML), pages 30–37. Morgan Kaufmann.

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University
Press.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM J. Img. Sci., 2(1):183–202.

Bellemare, M., Naddaf, Y., Veness, J., and Bowling, M. (2015). The arcade learning
environment: An evaluation platform for general agents. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 4148–4152.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, 1 edition.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A re-
view and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828.

Bertsekas, D. (2012). Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, MA, 3rd edition.

Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA.

Bertsekas, D. and Yu, H. (2010). Distributed asynchronous policy iteration in dynamic
programming. 2010 48th Annual Allerton Conference on Communication, Control,
and Computing, Allerton 2010, pages 1368–1375.

152 Bibliography

Bhatnagar, S., Precup, D., Silver, D., Sutton, R., Maei, H., and Szepesvári, C.
(2009). Convergent Temporal-Difference Learning with Arbitrary Smooth Function
Approximation. In Bengio, Y., Schuurmans, D., Lafferty, J. D., Williams, C. K. I.,
and Culotta, A., editors, Advances in Neural Information Processing Systems 22,
pages 1204–1212. Curran Associates, Inc.

Bishop, C. (2006). Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies.

Bottou, L. (1998). On-line Learning and Stochastic Approximations. In On-line
Learning in Neural Networks, pages 9–42. Cambridge University Press.

Bottou, L. (2012). Stochastic Gradient Descent Tricks. In Neural networks: Tricks of
the trade, pages 421–436. Springer Berlin Heidelberg.

Boyan, J. (1998). Least-Squares Temporal Difference Learning. Technical report,
CMU.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed
Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers. Foundations and Trends in Machine Learning, 3(1):1–122.

Boyd, S. and Vandenberghe, L. (2009). Convex Optimization. Cambridge University
Press, Cambridge, 7th edition.

Bradtke, S. and Barto, A. (1996). Linear Least-Squares Algorithms for Temporal
Difference Learning. Machine Learning, 22:33–57.

Choromanska, A., Henaff, M., and Mathieu, M. (2015). The Loss Surfaces of Multi-
layer Networks. In Proceedings of the 15th International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 38, San Diego, CA, USA.

Christmann, A. and Steinwart, I. (2007). Consistency and robustness of kernel-based
regression in convex risk minimization. Bernoulli, 13(3):799–819.

Dann, C., Neumann, G., and Peters, J. (2014). Policy Evaluation with Temporal
Differences: A Survey and Comparison. Journal of Machine Learning Research,
15(1):809–883.

Dayan, P. and Berridge, K. (2014). Model-based and model-free Pavlovian reward
learning: Revaluation, revision, and revelation. Cognitive, Affective, & Behavioral
Neuroscience, 14(2):473–492.

Dayan, P. and Niv, Y. (2008). Reinforcement learning: The Good, The Bad and The
Ugly. Current Opinion in Neurobiology, 18(2):185–196.

Deisenroth, M. and Rasmussen, C. E. (2011). PILCO: A Model-Based and Data-
Efficient Approach to Policy Search. In Proceedings of the 28th International
Conference on Machine Learning (ICML), Bellevue, WA, USA.

Deisenroth, M., Rasmussen, C. E., and Peters, J. (2009). Gaussian Process Dynamic
Programming. Neurocomputing, 72(7-9):1508–1524.

Denardi, R. (2012). QRSim.

Bibliography 153

Doll, B., Simon, D., and Daw, N. (2012). The ubiquity of model-based reinforcement
learning. Current Opinion in Neurobiology, 22(6):1075–1081.

Dreyfus, S. (1973). The Computational Solution of Optimal Control Problems with
Time Lag. IEEE Transactions on Automatic Control, 18(4):383–385.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Journal of Machine Learning Research,
12:2121–2159.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections
onto the L1 -ball for learning in high dimensions. Proceedings of the 25th International
conference on Machine learning (ICML), pages 272–279.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., Ishwaran, H., Knight, K., Loubes,
J. M., Massart, P., Madigan, D., Ridgeway, G., Rosset, S., Zhu, J. I., Stine, R. A.,
Turlach, B. A., Weisberg, S., Johnstone, I., and Tibshirani, R. (2004). Least angle
regression. Annals of Statistics, 32(2):407–499.

Engel, Y., Mannor, S., and Meir, R. (2004). The Kernel Recursive Least Squares
Algorithm. IEEE Transactions on Signal Processing, 52:2275–2285.

Engel, Y., Mannor, S., and Meir, R. (2005). Reinforcement learning with Gaussian
processes. In In Proceedings of the 22nd International Conference on Machine
Learning (ICML), Bonn, Germany.

Engel, Y., Mannor, S., and Melr RMEIR, R. (2003). Bayes Meets Bellman: The
Gaussian Process Approach to Temporal Difference Learning. In Proceedings of the
20th International Conference on Machine Learning (ICML), Washington DC.

Evgeniou, T., Pontil, M., and Poggio, T. A. (2000). Regularization Networks and
Support Vector Machines. Advanced in Computational Mathematics, page 53.

Farahmand, A. M., Ghavamzadeh, M., Mannor, S., and Szepesvári, C. (2008). Reg-
ularized Policy Iteration. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou,
L., editors, Advances in Neural Information Processing Systems 21 (NIPS), pages
441–448. Curran Associates, Inc.

Ferns, N., Panangaden, P., and Precup, D. (2012). Metrics for markov decision
processes with infinite state spaces. CoRR, abs/1207.1386.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Gen-
eralized Linear Models via Coordinate Descent. Journal Of Statistical Software,
33(1).

Geist, M., Piot, B., and Pietquin, O. (2017). Is the Bellman residual a bad proxy? In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Information Processing Systems 31
(NIPS, pages 1–13. Curran Associates, Inc., Long Beach, United States.

Geramifard, A., Walsh, T., Tellex, S., Chowdhary, G., Roy, N., and How, J. (2013).
A Tutorial on Linear Function Approximators for Dynamic Programming and
Reinforcement Learning. Foundations and Trends in Machine Learning, 6(4):375–
454.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. Pmlr, 9:249–256.

154 Bibliography

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks.
In International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 315–323, Fort Lauderdale, FL, USA.

Gordon, G. (1995). Stable Function Approximation in Dynamic Programming. In
Proceedings of the 12th International Conference on Machine Learning (ICML).

Graybill, F. (1961). An Introduction to Linear Statistical Models, volume 1. McGraw
Hill, New York, NY, USA.

Gregor, K., Danihelka, I., Mnih, A., Blundell, C., and Wierstra, D. (2014). Deep
AutoRegressive Networks. In Proceedings of the 31st International Conference on
Machine Learning (ICML).

Grimmett, G. and Stirzaker, D. (2001). Probability and Random Processes. Oxford
University Press, Oxford; New York, 3rd edition.

Grünewälder, S., Lever, G., Baldassarre, L., Gretton, A., and Pontil, M. (2012a).
Modelling transition dynamics in MDPs with RKHS embeddings. In Proceedings
of the 29th International Conference on Machine Learning (ICML), pages 535–542,
Edinburgh, Scotland, UK.

Grünewälder, S., Lever, G., Baldassarre, L., Patterson, S., Gretton, A., and Pontil,
M. (2012b). Conditional Mean Embeddings as Regressors. In Proceedings of the
29th International Conference on Machine Learning (ICML), pages 1823–1830,
Edinburgh, Scotland, UK.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous Deep Q-Learning
with Model-based Acceleration. Proceedings of the 33rd International Conference
on Machine Learning (ICML).

Guestrin, C., Koller, D., and Parr, R. (2001). Max-norm Projections for Factored
MDPs. In International Joint Conference on Artificial Intelligence (IJCAI), number
August, pages 673–680, Seattle, Washington.

Ha, D. and Schmidhuber, J. (2018). World Models. CoRR.

Haggarty, R. (1993). Fundamentals of Mathematical Analysis. Prentice-Hall, Inc.,
Harlow, England, 2nd edition.

Harutyunyan, A., Stepleton, T., and Bellemare, M. (2016). Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems 30
(NIPS), pages 1054–1062.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with
Sparsity The Lasso and Generalizations. Chapman & Hall/CRC Press.

Henaff, M., Whitney, W. F., and LeCun, Y. (2017). Model-Based Planning in Discrete
Action Spaces. arXiv.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Bilal, P., Azar, M., and Silver, D. (2018). Rainbow: Combining Improvements
in Deep Reinforcement Learning. Association for the Advancement of Artificial
Intelligence.

Bibliography 155

Hinton, G. E., Srivastava, N., and Swersky, K. (2012). Lecture 6a- overview of
mini-batch gradient descent. COURSERA: Neural Networks for Machine Learning,
page 31.

Hofmann, T., Schölkopf, B., and Smola, A. (2008). Kernel Methods in Machine
Learning. Annals of Statistics, 36(3):1171–1220.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA, USA.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In Proceedings of the 32 nd Interna-
tional Conference on Machine Learning (ICML), Lille, France.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski,
K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., Sepassi, R., Tucker, G., and
Michalewski, H. (2019). Model-based reinforcement learning for atari. CoRR,
abs/1903.00374.

Kakade, S. and Langford, J. (2002). Approximately Optimal Approximate Reinforce-
ment Learning. In Proceedings of the 19th International Conference on Machine
Learning (ICML), ICML ’02, pages 267–274, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Kimeldorf, G. and Wahba, G. (1971). Some Results on Tchebychefian Spline Functions.
Journal of Mathematical Analysis and Applications, 33(1):82–95.

Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. Technical
report, University of Toronto.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research, 32(11):1238–1274.

Kolter, Z. and Ng, A. (2009). Regularization and feature selection in least-squares
temporal difference learning. Proceedings of the 26th Annual International Conference
on Machine Learning - ICML ’09, 94305:1–8.

Kong, D., Fujimaki, R., Liu, J., Nie, F., and Ding, C. (2014). Exclusive Feature
Learning on Arbitrary Structures via L12-norm. In Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 27, pages 1655–1663.

Kreyszig, E. (1978). Introductory Functional Analysis with Applications. John Wiley
& Sons, London.

Krizhevsky, A., Sutskever, I., Hinton, G. E. G. E., Sulskever, I., and Hinton, G. E.
G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In
Advances In Neural Information Processing Systems 25 (NIPS), pages 1097–1105.

Kroemer, O. and Peters, J. (2011). A Non-Parametric Approach to Dynamic Pro-
gramming. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 24
(NIPS), pages 1719–1727, Granada, Spain. Curran Associates, Inc.

Lagoudakis, M. and Parr, R. (2003). Least-squares Policy Iteration. Journal of
Machine Learning Research (JMLR), 4:1107–1149.

156 Bibliography

Lang, S. (1987). Linear Algebra. Springer New York Inc., New York, NY, USA, 3rd
edition.

Langford, J., Li, L., and Zhang, T. (2009). Sparse Online Learning via Truncated
Gradient. Journal of Machine Learning Research (JMLR), 10(1):777–801.

Lebedev, V. and Lempitsky, V. (2016). Fast ConvNets Using Group-wise Brain Damage.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Lecun, Y. (1998). Efficient BackProp. Neural Netwoks: tricks of the trade, 53(9):1689–
1699.

Lecun, Y. (2007). Who is afraid of non convex loss functions ? In Neural Information
Processing Systems 21 (NIPS) Workshop Lecture, Whistler. New York University.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-Based Learning
Applied to Document Recognition. In Proceedings of the IEEE, volume 86, pages
2278–2323.

LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal Brain Damage. In Touretzky,
D. S., editor, Advances in Neural Information Processing Systems 2, pages 598–605.
Morgan-Kaufmann.

Lever, G., Shawe-Taylor, J., Stafford, R., and Szepesvári, C. (2016). Compressed Con-
ditional Mean Embeddings for Model-Based Reinforcement Learning. In Association
for the Advancement of Artificial Intelligence (AAAI), pages 1779–1787, Phoenix,
Arizona.

Lever, G. and Stafford, R. (2015). Modelling Policies in MDPs in Reproducing Kernel
Hilbert Space. In AIStats, pages 590–598.

Lever, G., Stafford, R., and Shawe-Taylor, J. (2014). Learning Transition Dynamics
in MDPs with Online Regression and Greedy Feature Selection. In Autonomously
Learning Robots Workshop (ALR NIPS Workshop).

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-End Training of Deep
Visuomotor Policies. Journal of Machine Learning Research, 17:1–40.

Li, P. (2013). nth-element: Array Sorting in Matlab.

Lin, D. (2007). slmetric-pw - Computing Pairwise Distances and Metrics.

Lin, L.-J. (1992). Self-Improving Reactive Agents Based on Reinforcement Learning,
Planning and Teaching. Machine Learning, 8(3):293–321.

Maas, A., Hannun, A., and Ng, A. (2013). Rectifier Nonlinearities Improve Neural
Network Acoustic Models. Proceedings of the 30th International Conference on
Machine Learning (ICML), 28:6.

Mallat, S. G. and Zhang, Z. (1993). Matching Pursuits with Time-frequency Dictio-
naries. IEEE Transactions on Signal Processing, 41(12):3397–3415.

Mann, T., Mannor, S., and Precup, D. (2015). Approximate Value Iteration with
Temporally Extended Actions. Journal of Artificial Intelligence Research, 53(May
2015):375–438.

Bibliography 157

Martins, A. F. T. and Astudillo, R. F. (2016). From Softmax to Sparsemax: A Sparse
Model of Attention and Multi-Label Classification. In Proceedings of the 33 rd
International Conference on Machine Learning (ICML). JMLR.

Mercer, J. (1909). XVI. Functions of positive and negative type, and their connection
the theory of integral equations. Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, 209(441-458):415–446.

Micchelli, C. and Pontil, M. (2005). On Learning Vector-Valued Functions. Neural
computation, 17(1):177–204.

Minh, H. Q., Sindhwani, V., Sciences, M., and Heights, Y. (2011). Vector-valued
Manifold Regularization. In Proceedings of the 28th International Conference on
Machine Learning (ICML), number 1, pages 57–64, Bellevue, WA, USA.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. a., Veness, J., Bellemare, M., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis,
D. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540):529–533.

Monahan, G. E. (1982). A Survey of Partially Observable Markov Decision Processes:
Theory, Models, and Algorithms. Management Science, 28(1):1–16.

Munos, R. (2003). Error Bounds for Approximate Policy Iteration. Proceedings of the
20th International Conference on Machine Learning (ICML), 2:560–567.

Munos, R. (2005). Error Bounds for Approximate Value Iteration. American Associa-
tion for Artificial Intelligence (AAAI), 2:1006–1011.

Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press,
Cambridge, MA, USA.

Nadaraya, È. (1963). On Estimating Regression. Theory of Probability & Its Applica-
tions, 9(1).

Nair, V. and Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltz-
mann Machines. In Proceedings of the 27th International Conference on Machine
Learning (ICML), pages 807–814.

Nedic, A. and Bertsekas, D. (2003). Least Squares Policy Evaluation Algorithms with
Linear Function Approximation. Discrete Event Dynamic Systems, 13:79–110.

Nesterov, Y. (1983). A Method of Solving A Convex Programming Problem With
Convergence rate O(1/kˆ2).

Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep Neural Networks Are Easily
Fooled: High Confidence Predictions for Unrecognizable Images. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Ormoneit, D. and Sen, Ś. (2002). Kernel-Based Reinforcement Learning. Machine
learning, 49(2-3):161–178.

Painter-Wakefield, C. and Parr, R. (2012). Greedy Algorithms for Sparse Reinforcement
Learning. In In Proceedings of the 29th International Conference on Machine
Learning (ICML), Edinburgh, Scotland.

158 Bibliography

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and Littman, M. (2008). An Analysis
of Linear Models, Linear Value-function Approximation, and Feature Selection for
Reinforcement Learning. In Proceedings of the 25th International Conference on
Machine Learning (ICML), ICML ’08, pages 752–759, New York, NY, USA. ACM.

Pavlov, I. P. (1927). Lectures on conditioned reflexes. International Journal of Game
Theory, 4:25–55.

Peng, J. and Williams, R. J. (1996). Incremental Multi-Step Q-Learning. Machine
Learning, 22:283–290.

Peters, J., Mülling, K., and Altün, Y. (2010). Relative Entropy Policy Search. In Fox,
M. and Poole, D., editors, Association for the Advancement of Artificial Intelligence
(AAAI), pages 1607–1612. AAAI Press.

Peters, J. and Schaal, S. (2007). Natural Actor-Critic.

Peters, J. and Schaal, S. (2008). Reinforcement Learning of Motor Skills with Policy
Gradients. Neural Networks, 21(4):682–697.

Petersen, K. B. and Pedersen, M. S. (2012). The Matrix Cookbook.

Precup, D., Sutton, R., and Singh, S. (1998). Theoretical Results on Reinforcement
Learning with Temporally Abstract Options. In Proceedings of the 10th European
conference on Machine Learning (ECML), pages 382–393. Springer Verlag.

Puterman, M. and Shin, M. C. (1978). Modified Policy Iteration Algorithms for
Discounted Markov Decision Problems. Management Science, 24(11):1127–1137.

Qian, J., Hastie, T., Friedman, J., Tibshirani, R., and Simon, N. (2013). Glmnet for
Matlab.

Rasmussen, C. E. and Ghahramani, Z. (2002). Bayesian Monte Carlo. In Proceedings
of the 15th International Conference on Neural Information Processing Systems
(NIPS), NIPS’02, pages 505–512, Cambridge, MA, USA. MIT Press.

Rasmussen, C. E., Williams, C. K. I., Sutton, R., Barto, A., Spirtes, P., Glymour, C.,
Scheines, R., Schölkopf, B., and Smola, A. (2006). Gaussian Processes for Machine
Learning. MIT Press.

Robards, M., Sunehag, P., Sanner, S., and Marthi, B. (2011). Sparse Kernel-SARSA
(Lambda) with an Eligibility Trace. In Proceedings of the European Conference on
Machine Learning and Knowledge Discovery in Databases, ECML PKDD’11, pages
1–17, Berlin, Heidelberg. Springer-Verlag.

Robbins, H. and Monro, S. (1951). A Stochastic Approximation Method. Ann. Math.
Statist., 22(3):400–407.

Rosenblatt, M. (1956). On the Estimation of Regression Coefficients of a Vector-
Valued Time Series with a Stationary Residual. Annals of Mathematical Statistics,
27(1):99–121.

Ross, S. and Bagnell, A. (2012). Agnostic System Identification for Model-Based
Reinforcement Learning. In Proceedings of the 29th International Conference on
Machine Learning (ICML), Edinburgh, Scotland, UK. icml.cc / Omnipress.

Rudin, W. (1976). Principles of mathematical analysis. McGraw-Hill Book Co., New
York, third edition. International Series in Pure and Applied Mathematics.

Bibliography 159

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by
back-propagating errors. Nature, pages 533–536.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist
systems. Technical report, Cambridge University, Cambridge, UK.

Scherrer, B. (2010). Should one compute the Temporal Difference fix point or minimize
the Bellman Residual? The unified oblique projection view. In Proceedings of the
27th International Confer- ence on Machine Learning (ICML), pages 959–966, Haifa,
Israel.

Scherrer, B. (2014). Approximate Policy Iteration Schemes: A Comparison. In
Proceedings of the 31st International Conference on Machine Learning (ICML),
Beijing, China.

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview.

Schmidt, M. (2005). minFunc: unconstrained differentiable multivariate optimization
in Matlab.

Schoknecht, R. (2003). Optimality of Reinforcement Learning Algorithms with Linear
Function Approximation. Advances in Neural Information Processing Systems 15
(NIPS 2002), pages 1555–1562.

Schölkopf, B., Herbrich, R., and Smola, A. (2001). A Generalized Representer Theo-
rem. In Helmbold, D. and Williamson, B., editors, Proceedings of the 14th Annual
Conference on Computational Learning Theory (COLT) and and 5th European Con-
ference on Computational Learning Theory (EuroCOLT), pages 416–426, Amsterdam.
Springer-Verlag, Berlin Heidelberg.

Schölkopf, B. and Smola, A. (2002). Learning With Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction
and reward. Science, 275(June 1994):1593–1599.

Seijen, H. and Sutton, R. (2014). True Online TD(lambda). In Xing, E. P. and Jebara,
T., editors, Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, pages 692–700, Bejing,
China. PMLR.

Sejdinovic, D. and Gretton, A. (2012). Lecture Notes: What is an RKHS?

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.
Cambridge University Press, 1 edition.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean,
J. (2017). Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-
Experts Layer. International Conference on Learning Representations (ICLR).

Sherstov, A. and Stone, P. (2005). Function approximation via tile coding: Automating
parameter choice. In Zucker, J. and Saitta, I., editors, SARA, pages 194–205. Springer
Verlag.

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A., Bishop, R., Rueckert, D., and
Wang, Z. (2016). Real-Time Single Image and Video Super-Resolution Using an
Efficient Sub-Pixel Convolutional Neural Network. Computer Vision and Patter
Recognition (CVPR), pages 1874–1883.

160 Bibliography

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489.

Silver, D., Sutton, R., and Müller, M. (2008). Sample-Based Learning and Search
with Permanent and Transient Memories. In Proceedings of the 25th International
Conference on Machine Learning (ICML), Helsinki, Finland.

Singh, S. and Sutton, R. (1996). Reinforcement learning with replacing eligibility
traces. Machine Learning, 22(1-3):123–158.

Singh, S. and Yee, R. (1994). An Upper Bound on the Loss from Approximate
Optimal-Value Functions. Machine Learning, 16(3):227–233.

Song, L., Fukumizu, K., and Gretton, A. (2013). Kernel Embeddings of Conditional
Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical
Models.

Song, L., Gretton, A., and Guestrin, C. (2010). Nonparametric Tree Graphical Models
via Kernel Embeddings. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics (AISTATS), Chia Laguna Resort, Sardinia,
Italy.

Song, L., Huang, J., Smola, A., and Fukumizu, K. (2009). Hilbert Space Embeddings of
Conditional Distributions with Applications to Dynamical Systems. In Proceedings
of the 26th International Conference on Machine Learning (ICML), pages 961–968.

Stafford, R. and Shawe-Taylor, J. (2018). ACCME : Actively Compressed Conditional
Mean Embeddings for Model-Based Reinforcement Learning. In European Workshop
on Reinforcement Learning (EWRL), Lille, France.

Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer-Verlag
New York, Inc., New York, NY, USA, 1 edition.

Sutton, R. (1988). Learning to Predict by the Methods of Temporal Differences. In
Machine Learning, volume 3, pages 9–44.

Sutton, R. (1990). Integrated Architectures for Learning, Planning, and Reacting Based
on Approximating Dynamic Programming. In Proceedings of the 7th International
Conferencec on Machine Learning, pages 216–224. Morgan Kaufmann.

Sutton, R. (1991). Dyna, an integrated architecture for learning, planning, and reacting.
ACM SIGART Bulletin, 2:160–163.

Sutton, R. (1996). Generalization in Reinforcement Learning: Successful Examples
Using Sparse Coarse Coding. In Touretzky, D. S., Mozer, M. C., and Hasselmo,
M. E., editors, Advances in Neural Information Processing Systems 8 (NIPS), pages
1038–1044. MIT Press.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. A Bradford
Book - MIT Press, Cambridge, MA, USA, 1st edition.

Sutton, R. and Barto, A. (2018). Reinforcement Learning: An Introduction. A Bradford
Book - MIT Press, 2nd edition.

Bibliography 161

Sutton, R., Maei, H., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., and
Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference learning
with linear function approximation. Proceedings of the 26th Annual International
Conference on Machine Learning (ICML), pages 1–8.

Sutton, R., McAllester, D., Singh, S., and Mansour, Y. (1999a). Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In Advances in
Neural Information Processing Systems 12 (NIPS), volume 99, pages 1057–1063.

Sutton, R., Precup, D., and Singh, S. (1998). Intra-Option Learning about Temporally
Abstract Actions. In Proceedings of the 15th International Conference on Machine
Learning (ICML).

Sutton, R., Precup, D., and Singh, S. (1999b). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112(1):181–211.

Sutton, R., Szepesvári, C., Geramifard, A., and Bowling, M. (2008a). Dyna-Style
Planning with Linear Function Approximation and Prioritized Sweeping. In Proceed-
ings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI), pages
528–536.

Sutton, R., Szepesvári, C., and Maei, H. (2008b). A Convergent O(n) Temporal-
difference Algorithm for Off-policy Learning with Linear Function Approximation.
In Advances in Neural Information Processing Systems 21 (NIPS 2008), pages
1609–1616.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. (2013). Intriguing properties of neural networks. arXiv:1312.6199, pages
1–10.

Szepesvári, C. (2010). Algorithms for Reinforcement Learning, volume 4 of Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool, San
Rafael, CA, USA.

Taylor, G. and Parr, R. (2009). Kernelized Value Function Approximation for Rein-
forcement Learning. In Proceedings ofthe 26th International Conference on Machine
Learning (ICML), Montreal, Canada.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural computation, 6(2):215–219.

Tibshirani, R. (1996). Regression selection and shrinkage via the lasso. Journal of the
Royal Statistical Society B, 58(1):267–288.

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-
based control. In IEEE International Conference on Intelligent Robots and Systems,
pages 5026–5033.

Tromp, J. and Farnebäck, G. (2006). Combinatorics of Go. In H. Jaap van den Herik
and Paolo Ciancarini, editors, Computers and Games, pages 84–99, Turin. Springer.

Tsitsiklis, J. and Van Roy, B. (1996). Feature-Based Methods For Large Scale Dynamic
Programming. Machine Learning, 22:59–94.

Tsitsiklis, J. and Van Roy, B. (1997). An Analysis of Temporal-Difference Learning
with Function Approximation. IEEE Transactions on Automatic Control, 42(5).

162 Bibliography

van Hoof, H., Peters, J., and Neumann, G. (2015). Learning of Non-Parametric
Control Policies with High-Dimensional State Features. In Proceedings of the 18th
International Conference on Artificial Intelligence and Statistics (AISTATS), San
Diego, CA, USA.

Van Roy, B. (1998). Learning and Value Function Approximation in Complex Decision
Processes. Doctor of philosoph y, MIT.

Vapnik, V. (1998). Statistical learning theory. Wiley.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions on
neural networks / a publication of the IEEE Neural Networks Council, 10(5):988–99.

Vincent, P. and Bengio, Y. (2002). Kernel matching pursuit. In Machine Learning,
pages 165–187. Kluwer Academic Publishers.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and
Composing Robust Features with Denoising Autoencoders. In Proceedings of the
25th International Conference on Machine Learning (ICML).

Wagner, P. (2011). A Reinterpretation of the Policy Oscillation Phenomenon in
Approximate Policy Iteration. In Advances in Neural Information Processing Systems
24 (NIPS), pages 2573–2581.

Wagner, P. (2013). Optimistic Policy Iteration and Natural Actor-Critic: A Unifying
View and a Non-Optimality Result. In Advances in Neural Information Processing
Systems 26 (NIPS), pages 1592–1600.

Wagner, P. (2014). Policy Oscillation is Overshooting. Neural Networks, 52:43–61.

Wahlström, N., Schön, T., and Deisenroth, M. (2015). From Pixels to Torques: Policy
Learning with Deep Dynamical Models. ArXiv.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, UK.

Watkins, C. and Dayan, P. (1992). Technical Note: Q-Learning. Machine Learning,
8(3-4):279–292.

Watson, G. (1964). Smooth Regression Analysis. Sankhya, 26(4):359–372.

Watter, M., Springenberg, J. T., Boedecker, J., and Riedmiller, M. (2015). Embed to
Control: A Locally Linear Latent Dynamics Model for Control from Raw Images.
Advances in Neural Information Processing Systems 28 (NIPS), pages 2746–2754.

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J.,
Badia, A. P., Vinyals, O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Silver, D.,
and Wierstra, D. (2017). Imagination-Augmented Agents for Deep Reinforcement
Learning. CoRR.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). Learning Structured Sparsity
in Deep Neural Networks. In 30th Conference on Neural Information Processing
Systems (NIPS 2016).

Werbos, P. (1982). Applications of advances in nonlinear sensitivity analysis. In
System Modeling and Optimization in 10th IFIP Conference, pages 762–770, New
York, NY, USA. Springer.

Bibliography 163

Williams, R. (1992). Simple Statistical Gradient-Following Algorithms for Connection-
ist Reinforcement Learning. Machine Learning, 8:229–256.

Williams, R. and Baird, L. (1993). Tight Performance Bounds on Greedy Policies
Based on Imperfect Value Functions. Proceedings of the Eighth Yale Workshop on
Adaptive and Learning Systems, pages 108–113.

Xu, X., Xie, T., Hu, D., and Lu, X. (2005). Kernel Least-Squares Temporal Difference
Learning. International Journal of Information Technology, 11(9).

Yao, H. (2011). Off-policy Learning with Linear Action Models: An Efficient One-
Collection-For-All Solution. In Planning and Acting with Uncertain Models Workshop
at the 28th ICML, Bellevue, WA, USA. Citeseer.

Yao, H. and Szepesvári, C. (2012). Approximate Policy Iteration with Linear Action
Models. In Association for the Advancement of Artificial Intelligence (AAAI), pages
1212–1217.

Yao, H., Szepesvári, C., Pires, B. A., and Zhang, X. (2014a). Pseudo-MDPs and Fac-
tored Linear Action Models. In Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pages 1–9.

Yao, H., Szepesvári, C., Sutton, R., Modayil, J., and Bhatnagar, S. (2014b). Universal
Option Models. In Advances in Neural Information Processing Systems 27 (NIPS),
pages 990–998.

Yoon, J. and Hwang, S. J. (2017). Combined Group and Exclusive Sparsity for Deep
Neural Networks. In Proceedings of the 34 th International Conference on Machine
Learning (ICML), Sydney, Australia.

Yu, Y.-l., Cheng, H., Schuurmans, D., and Szepesvári, C. (2013). Characterizing
the Representer Theorem. International Conference on Machine Learning (ICML),
pages 1–9.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society. Series B: Statistical
Methodology, 68(1):49–67.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding
deep learning requires rethinking generalization. In 5th International Conference on
Learning Representations (ICLR), Toulon. France.

Zhang, F. (2005). The Schur Complement and its Applications. Springer, 4th edition.

Appendix A

Supplemental

A.1 Matching Pursuit Variants

A.1.1 Notation

By explicitly reordering the summation then the embedding µ= Φ⊤
C WΥB can be

written as

(•)µd(·) :=
d∑
ℓ=1

(m∑
j=1

L(cj, •)wjℓ
)
K(bℓ, ·)∈HΓ,

=
d∑
ℓ=1

(
Φ⊤

C wℓ

)
K(bℓ, ·), wℓ ∈Rm, (A.1)

=
d∑
ℓ=1

w̃ℓK(bℓ, ·), w̃ℓ ∈HL, (A.2)

where wℓ is the ℓth column of the embedding’s weight matrix W. The embedding
summation can also be reordered to define

(•)µm(·) :=
m∑
j=1

L(cj, •)
(d∑
ℓ=1

wjℓK(bℓ, ·)
)
∈HΓ,

=
m∑
j=1

L(cj, •)wj:ΥB, w⊤
j: ∈Rd, (A.3)

=
m∑
j=1

L(cj, •)ŵj:, ŵ⊤
j: ∈HK , (A.4)

where wj: is the jth row vector of the embedding’s weight matrix W.

166 Supplemental

A.1.2 Matching Pursuit for RKHS-Valued Regression

Lemma A.1 (RKHS Matching Pursuit Regression for learning B). Given the embed-
ding µ :S×A→HL with basis B which takes the form in equation (A.2),

(•)µd(z) :=
d∑
ℓ=1

w̃ℓK(bℓ, z), w̃ℓ ∈HL, z ∈ S×A,

then the model residue for the current basis of size d= |B| is

(•)rdi :=L(s′
i, •)− (•)µd(zi), s′

i ∈S, zi ∈S×A, (A.5)

=L(s′
i, •)−

d∑
ℓ=1

w̃ℓK(bℓ, zi)∈HL. (A.6)

Given a dictionary G := {K(b̂1, ·), K(b̂2, ·), ..} and dataset D := {(z, s′)i}
n
i=1, then if the

minimisation problem (4.5) for greedily enriching the state-action feature representation
by one more basis function K(b, ·) is

K(bd+1, ·) = arg min
K(b,·)∈G

min
w̃∈HL

|D|∑
i=1
||(•)rdi − w̃K(b, zi)||

2
HL
,

then the following closed form results follow:
i) The optimal weight of the new basis function takes the form

w̃d+1 =
[
Φ⊤

C Φ⊤
S′

]
wd+1,

where ΦS′ := [L(s′
1, ·), ..., L(s′

n, ·)]⊤, S ′ := {s′
i}
n
i=1, wd+1 ∈Rm+n.

ii) The next basis function is chosen by which takes the form

K(bd+1, ·) = arg sup
K(b,·) ∈ G

[
ΥbZRΥZb

ΥbZΥZb

]
,

where Υ⊤
bZ = ΥZb := [K(b, z1), ..., K(b, zn)]⊤ ∈Rn, Z := {zi}ni=1,

R =
(
LS′S′ − LS′CWΥBZ −ΥZBW⊤LCS′ + ΥZBW⊤LCCWΥBZ

)
∈Rn×n and for ad-

ditional notation see section 5.1.1.

Proof. i) Recalling equation (4.5) then for a new basis function K(b, ·),

w̃d+1 =
(

n∑
i=1

K(b, zi) (•)rdi

)
/

(
n∑
i=1

K(b, zi)2
)
.

A.1 Matching Pursuit Variants 167

By expanding the numerator term,
n∑
i=1

K(b, zi) (•)rdi =
n∑
i=1

K(b, zi)
(
L(s′

i, •)− (•)µd(zi)
)
,

= Φ⊤
S′ΥZb −Φ⊤

C WΥBZΥZb,

=
[
Φ⊤

C Φ⊤
S′

] −WΥBZΥZb

ΥZb

 ,
then dividing by the denominator gives the weight vector,

w̃d+1 = 1
ΥbZΥZb

[
Φ⊤

C Φ⊤
S′

] −WΥBZΥZb

ΥZb

 ,
=
[
Φ⊤

C Φ⊤
S′

] ζ
β

 ,
=
[
Φ⊤

C Φ⊤
S′

]
wd+1, (A.7)

where ζ ∈Rm, β ∈Rn and the vector wd+1 ∈Rm+n is calculated in ∼O(md+ dn).
ii) By equation (4.4) the next basis function is specified by

K(bd+1, ·) = arg sup
K(b,·) ∈ G

[∑n
i=1

∑n
k=1 K(b, zi)⟨(•)rdi , (•)rdk⟩HL

K(b, zk)∑n
i=1 K(b, zi)2

]
.

The inner product in the numerator is

⟨(•)rdi , (•)rdk⟩HL
=
〈
L(s′

i, •)− (•)µd(zi), L(s′
k, •)− (•)µd(zk)

〉
HL

,

= L(s′
i, s′

k)−
〈
L(s′

i, •), (•)µd(zk)
〉

HL

−
〈

(•)µd(zi), L(s′
k, •)

〉
HL

+
〈

(•)µd(zi), (•)µd(zk)
〉

HL

,

= (LS′S′)ik − (LS′CWΥBZ)ik − (ΥZBW⊤LCS′)ik
+ (ΥZBW⊤LCCWΥBZ)ik,

=
(
LS′S′ − LS′CWΥBZ −ΥZBW⊤LCS′ + ΥZBW⊤LCCWΥBZ

)
ik
,

= (R)ik,

where R is computed in time ∼O(n2 +m2). Finally

K(bd+1, ·) = arg sup
K(b,·) ∈ G

[∑n
i=1

∑n
k=1 K(b, zi)(R)ikK(b, zk)∑n

i=1 K(b, zi)2

]
,

= arg sup
K(b,·) ∈ G

[
ΥbZRΥZb

ΥbZΥZb

]
,

which is computed in ∼O(n2) and is analogous to equation (4.7).

This is a naive application of the original matching pursuit algorithm which assumes
the derivative of the loss wrt. w̃ exists.

168 Supplemental

Corollary A.1.1. In addition, the closed form solution (A.7) for w̃d+1 ∈HL is not
only a function of the existing basis C but also a basis S ′ which consists of the successor
states in the dataset D. Therefore by incrementing B by one basis function also
increments the embedding’s C basis by n new basis functions as illustrated below (using
notation from equation (A.2)),

(•)µ̂d+1(z) =
d∑
ℓ=1

w̃ℓK(bℓ, z) + w̃d+1K(bd+1, z),

= Φ⊤
C WψB(z) +

[
Φ⊤

C Φ⊤
S′

]
wd+1K(bd+1, z),

=
[
Φ⊤

C Φ⊤
S′

] W ζ

0 β

  ψB(z)
K(bd+1, z)

 ,
= Φ⊤

C′W′ψB′(z),

where C ′ := C ⋃S ′, |C ′|=m+n, W′ ∈R(m+n)×(d+1), B′ :=B⋃K(bd+1, ·), |B′|= d+1 and
0∈Rn×d.

In order to make this approach sustainable would require sparsification of the
C basis continuously which is already a difficult procedure. It might be possible to
sparsify C using the RKHS norm sparsification variant of matching pursuit described
in lemma A.6 but this has not been explored. What also makes this approach difficult
is the overhead required to manage the calculation of R between adding each new
basis function. It was decided to abandon the RKHS-valued approach and develop
one that doesn’t add new bases to C.

A.1.3 Other Variants

Lemma A.1 demonstrated that if full RKHS-valued matching pursuit was used to
increment B, then as a side effect C is also enriched by the size of the data set. As a
way to mitigate this problem, two modified matching pursuit algorithms are outlined
below that enrich any one set of basis functions but keeps the other constant.

Maintaining B

Lemma A.2 (Modified Matching Pursuit for learning B). Assume the embedding
takes the form in equation (A.2) then the model residue for the current basis B is

(•)rdi :=L(s′
i, •)−

d∑
ℓ=1

(
Φ⊤

C wℓ

)
K(bℓ, zi)∈HL, z∈S×A.

Given a dictionary of basis functions G := {K(b̂1, •), K(b̂2, •), ...} as candidates and
dataset D := {(z, s′)i}

n
i=1 where n= |D|, then by keeping C constant, we want to solve

A.1 Matching Pursuit Variants 169

the optimisation problem

K(bd+1, •) = arg min
K(b,•)∈G

min
w∈Rm

n∑
i=1
||(•)rdi −Φ⊤

C wK(b, zi)||
2
HL

,

by greedily selecting bases from G. The following closed form results follow:

i) The optimal weight wd+1 of a new basis function K(b, ·) that minimises the loss is

wd+1 = (LCC)−1RCDΥZb/ΥbZΥZb ∈Rm,

where RCD := LCS′ − LCCWΥBZ ∈Rm×n which costs O(m3 +m2n).

ii) The next basis function is specified by

K(bd+1, ·) = arg sup
K(b,·) ∈ G

[
ΥbZRDC(LCC)−1RCDΥZb

ΥbZΥZb

]

which costs ∼O(m2n) if the inverse is already calculated.

Proof. i) Since ∇w
∑n
i=1 ||(•)rdi −Φ⊤

C wK(b, zi)||
2
HL

= 0 at the minimum we have,

0 =
n∑
i=1
∇w

(〈
Φ⊤

C wK(b, zi),Φ⊤
C wK(b, zi)

〉
HL

− 2
〈
Φ⊤

C wK(b, zi), (•)rdi
〉

HL

)
,

=
n∑
i=1
∇w

(
K(zi,b)w⊤LCCwK(b, zi)− 2K(zi,b)w⊤ (C)rdi

)
,

=
n∑
i=1

2K(zi,b)LCCwK(b, zi)− 2K(zi,b) (C)rdi ,

= LCCwΥbZΥZb −RCDΥZb,

⇒ wd+1 = (LCC)−1RCDΥZb/ΥbZΥZb,

where (C)rdi := LCs′
i
−LCCWψB(zi)∈Rm, RCD := LCS′−LCCWΥBZ ∈Rm×n and equation

(B.79) is used in line 3.
ii) Substituting the value of the new weight into the objective,
n∑
i=1
||(•)rdi −Φ⊤

C wK(b, zi)||
2
HL
,

=
n∑
i=1
||(•)rmi ||

2
HL

+K(zi,b)wmin⊤LCCwminK(b, zi)− 2K(zi,b)wmin⊤ (C)rdi ,

=
n∑
i=1
||(•)rmi ||

2
HL

+ wmin⊤LCCwminΥbZΥZb − 2wmin⊤RCDΥZB,

=
n∑
i=1
||(•)rmi ||

2
HL

+ ΥbZRDC(LCC)−1RCDΥZbΥbZΥZb

(ΥbZΥZb)2 − 2ΥbZRDC(LCC)−1RCDΥZb

ΥbZΥZb
,

=
n∑
i=1
||(•)rmi ||

2
HL
− ΥbZRDC(LCC)−1RCDΥZb

ΥbZΥZb
,

170 Supplemental

then next basis that maximally minimises the loss is

K(bd+1, ·) = arg sup
K(b,·) ∈ G

[
ΥbZRDC(LCC)−1RCDΥZb

ΥbZΥZb

]
.

Corollary A.1.2. If the original embedding is (•)µd(·) = Φ⊤
C WψB(·) then the embed-

ding with B′ (which is B augmented by one new basis function using matching pursuit
regression) is

(•)µd+1(·) = Φ⊤
C

[
W wd+1

]  ψB(·)
K(bd+1, ·)

 .

Maintaining C

Lemma A.3 (Modified Matching Pursuit for learning C). Assume the embedding
takes the form in equation (A.4) then the model residue for the current basis C is

(•)rmi :=L(s′
i, •)−

m∑
j=1

L(cj, •)wj:ψB(zi)∈HL.

Given a dictionary of basis functions G := {L(ĉ1, •), L(ĉ2, •), ...} as candidates and
dataset D := {(z, s′)i}

n
i=1 where n= |D| then by keeping B constant, we want to solve

the optimisation problem

L(cm+1, •) = arg min
L(c,•)∈G

min
w∈Rd

n∑
i=1
||(•)rmi − L(c, •)w⊤ψB(zi)||

2
HL

,

by greedily selecting bases from G. The following closed form results follow:

i) The optimal weight wm+1 of a new basis function L(c, ·) that minimises the loss is

wm+1 = (ΥBZΥZB)−1ΥBZRDc/L(c, c)∈Rd,

where w⊤
m+1 = wm+1 : , RDc := LS′c−ΥZBW⊤LCc ∈Rn and LCc := [L(c, c1), ..., L(c, cm)]⊤,

which costs ∼O(d3 + d2n).

ii) The next basis function is specified by

L(cm+1, •) = arg sup
L(c,•)∈G

[
RcD Π RDc/L(c, c)

]
,

where Π = ΥZB (ΥBZΥZB)−1ΥBZ ∈Rn×n which costs ∼O(d3 + nd2 + n2) in total.

A.1 Matching Pursuit Variants 171

Proof. i) Since ∇w
∑n
i=1 ||(•)rmi − L(c, •)w⊤ψB(zi)||

2
HL

= 0 at the minimum we have,

0 =
n∑
i=1
∇w

(〈
L(c, •)w⊤ψB(zi), L(c, •)w⊤ψB(zi)

〉
HL

− 2
〈
L(c, •)w⊤ψB(zi), (•)rmi

〉
HL

)
=

n∑
i=1
∇w

(
ψ⊤

B (zi) w
〈
L(c, •), L(c, •)

〉
HL

w⊤ψB(zi)

− 2ψ⊤
B (zi) w

〈
L(c, •), (•)rmi

〉
HL

)
,

=
n∑
i=1
∇w

(
ψ⊤

B (zi) wL(c, c)w⊤ψB(zi)− 2ψ⊤
B (zi)w (c)rmi

)
,

=
n∑
i=1

2L(c, c)ψB(zi)ψ⊤
B (zi)w− 2ψB(zi) (c)rmi ,

= L(c, c)ΥBZΥZBw−ΥBZRDc,

⇒ wm+1 = (ΥBZΥZB)−1ΥBZRDc/L(c, c),

where wm+1 ∈Rd and (c)rmi :=L(s′
i, c)−ψ⊤

B (zi)W⊤LCc ∈R.

ii) Substituting the value of the new weight into the objective,
n∑
i=1
||(•)rmi − L(c, •)wmin⊤

ψB(zi)||
2
HL

=
n∑
i=1
||(•)rdi ||

2
HL

+ L(c, c)ψ⊤
B (zi) wminwmin⊤

ψB(zi)− 2ψ⊤
B (zi) wmin (c)rdi ,

=
n∑
i=1
||(•)rdi ||

2
HL

+ Tr
(
L(c, c)ΥZB wminwmin⊤ΥBZ − 2ΥZB wminRcD

)
,

=
n∑
i=1
||(•)rdi ||

2
HL

+ Tr
(
ΥZB (ΥBZΥZB)−1ΥBZRDcRcDΥZB(ΥBZΥZB)−1ΥBZ

− 2ΥZB (ΥBZΥZB)−1ΥBZRDcRcD
)
/L(c, c),

=
n∑
i=1
||(•)rdi ||

2
HL

+ Tr
(
ΥZB(ΥBZΥZB)−1ΥBZΥZB (ΥBZΥZB)−1ΥBZRDcRcD

− 2ΥZB (ΥBZΥZB)−1ΥBZRDcRDc
)
/L(c, c),

=
n∑
i=1
||(•)rdi ||

2
HL

+ Tr
(
ΥZB(ΥBZΥZB)−1ΥBZRDcRcD

− 2ΥZB (ΥBZΥZB)−1ΥBZRDcRcD
)
/L(c, c),

=
n∑
i=1
||(•)rdi ||

2
HL
− Tr

(
Π RDcRcD/L(c, c)

)
,

=
n∑
i=1
||(•)rdi ||

2
HL
−RcD Π RDc/L(c, c),

172 Supplemental

where the trace’s cyclic property is exploited. The next basis that maximally minimises
the loss is

L(cm+1, •) = arg sup
L(c,•)∈G

[
RcD Π RDc/L(c, c)

]
.

Corollary A.1.3. If the original embedding is (•)µm(·) = Φ⊤
C WψB(·) then the embed-

ding with C ′ (which is C augmented by one new basis function using matching pursuit
regression) is

(•)µm+1(·) =
[
Φ⊤

C L(cm+1, ·)
]  W

w⊤
m+1

ψB(·).

A.1.4 Sparsification in the vvRKHS Norm

The following is matching pursuit specialised to a vvRKHS function h∈HΓ and builds
an approximation f̂ ∈HΓ by incrementally adding new basis functions that minimises
||h− f̂ ||Γ. This is not a solution to a regression problem that requires data as in the
previous matching pursuit variants. Instead this is a sparsification algorithm that
exploits the RKHS norm: if any two functions are close in their RKHS norm then
their point evaluations, over their entire domain, are also close. The following is not
necessarily specialised to an embedding.

Lemma A.4 (Vector-Valued Matching Pursuit for Sparsification). A known vvRKHS
function h∈HΓ is given where h :X →Y, X is a non-empty set and Y is Hilbert
space. The vvRKHS kernel Γ(x,x′) =K(x,x′)I (where I :Y→Y) is associated with
a scalar-valued RKHS HK of functions over X . If h is a weighted sum of d′ kernels
K(x, ·) :X → R, then

h(·) :=
d′∑
ℓ=1

w̃ℓK(x̃ℓ, ·)∈HΓ, w̃ℓ ∈Y .

Given a dictionary of candidate basis functions made from the existing d′ kernels
G := {K(x̃1, ·), ..., K(x̃d′ , ·)}, then matching pursuit aims to find a sparse approximation
to h in the form

f̂d(·) :=
d∑
ℓ=1

wℓK(xℓ, ·)∈HΓ, w̃ℓ ∈Y ,

where d<d′, B= {K(xℓ ·)∈HK}dℓ=1⊆G is the sparsified basis and {wℓ ∈Y}dℓ=1 are the
basis weights. If matching pursuit greedily adds a new basis element K(xd+1, ·) to

A.1 Matching Pursuit Variants 173

minimise the RKHS norm,

K(xd+1, ·) = arg min
K(x,·)∈G

min
w∈Y
||h(·)− (f̂d(·) + wK(x, ·))||

2
Γ ,

then the following closed form results are as follows:

i) If the residue for the dth estimator is defined as

rd(·) = h(·)− f̂d(·) ∈ HΓ,

then the weight of the new basis element K(x, ·) is

wd+1 = rd(x)/K(x,x)∈Y , (A.8)

where rd(x) = h(x)− f̂d(x)∈Y, and

ii) the new basis element K(xd+1, ·) is the solution to

K(xd+1, ·) = arg sup
K(x,·) ∈ G

[
||rd(x)||2Y
K(x,x)

]
. (A.9)

Proof. i) Beginning with the optimisation problem,

gd+1 = arg min
K(x,·) ∈ G

min
w∈Y
||h(·)− (f̂d(·) + wK(x, ·))||

2
Γ ,

= arg min
K(x,·) ∈ G

min
w∈Y
||rd(·)−wK(x, ·)||2Γ ,

then since ∇w||rd(·)−wK(x, ·)||2Γ = 0 at the minimum and by lemma A.5, we have

0 = ∇w
(
−2⟨w, rd(x)⟩Y + ||w||2Y K(x,x)

)
,

= −2rd(x) + 2wK(x,x),
⇒ wd+1 = rd(x)/K(x,x)∈Y .

ii) Substituting the value of the minimiser wmin = wd+1 into the objective expanded
by lemma A.5, then

||rd(·)−wminK(x, ·)||2Γ
= ||rd(·)||2Γ − 2⟨wmin, rd(x)⟩Y + ||wmin||2Y K(x,x),

= ||rd(·)||2Γ −
||rd(x)||2Y
K(x,x) ,

then the next basis that maximally minimises the loss is

K(xd+1, ·) = arg sup
K(x,·) ∈ G

[
||rd(x)||2Y
K(x,x)

]
,

174 Supplemental

which can be directly compared to the matching pursuit regression results in lemma
4.

Algorithm 24 MatchingPursuitSparsification(h, dmax, δtol)
1: Input: vvRKHS function h∈HΓ, h :X →Y of the form h(·) = ∑d′

ℓ=1 w̃ℓK(x̃ℓ, ·),
maximum sparse basis count dmax≤ d′, RKHS norm tolerance δ.

2: Output: f̂d(·) = ∑d
ℓ=1 wℓK(xℓ, ·) where d≤ dmax or ||h− f̂d||

2
Γ<δtol.

3: Initialise: d← 0, δ←∞, f̂0 ← ∅, G := {K(x̃ℓ, ·)}d
′

ℓ=1, r0(x) := h(x) ∀x∈G.
4: while d<dmax or δ > δtol do

5: K(x∗, ·) = arg sup
K(x,·) ∈ G

[
||rd(x)||2Y
K(x,x)

]
▷ equation (A.9)

6: w∗ = rd(x∗)/K(x∗,x∗) ▷ equation (A.8)
7: f̂ ← f̂ + w∗K(x∗, ·)
8: G ← G\K(x∗, ·) ▷ Remove basis from G
9: d← d+ 1

10: for each K(x,)̇∈G do
11: rd(x)← rd(x)− f̂(x) ▷ Residue is maintained over the dictionary basis
12: end for
13: δ ← ||rd(·)||2Γ = 1

2|G|
∑|G|
i=1 ||rd(xi)||

2
Y ▷ rd(·) = h− f̂

14: end while
15: return f̂

Lemma A.5 (Residue loss in the RKHS norm). Assume the current residue is some
vvRKHS function (as defined in lemma A.4) is decomposed into some expansion
rd(·) := ∑

ℓ w̄ℓK(x̄ℓ, ·) where w̄ℓ ∈Y. Then the squared loss when a new wK(xℓ, ·) is
subtracted is,

||rd(·)−wK(x, ·)||2Γ = ||rd(·)||2Γ − 2⟨w, rd(x)⟩Y + ||w||2Y K(x,x),

where w∈Y.

Proof.

||rd(·)−wK(x, ·)||2Γ =
〈
rd(·)−wK(x, ·), rd(·)−wK(x, ·)

〉
Γ
,

= ||rd(·)||2Γ − 2⟨wK(x, ·), rd(·)⟩Γ + ⟨wK(x, ·),wK(x, ·)⟩Γ,
= ||rd(·)||2Γ − 2⟨wK(x, ·),

∑
ℓ

w̄ℓK(x̄ℓ, ·)⟩Γ + ⟨w,w⟩Y ⟨K(x, ·), K(x, ·)⟩HK
,

= ||rd(·)||2Γ − 2
∑
ℓ

⟨w, w̄ℓ⟩Y ⟨K(x̄ℓ, ·), K(x, ·)⟩HK
+ ⟨w,w⟩Y K(x,x),

= ||rd(·)||2Γ − 2
∑
ℓ

⟨w, w̄ℓ⟩Y K(x̄ℓ,x) + ⟨w,w⟩Y K(x,x),

= ||rd(·)||2Γ − 2
∑
ℓ

⟨w, w̄ℓK(x̄ℓ,x)⟩Y + ⟨w,w⟩Y K(x,x),

= ||rd(·)||2Γ − 2⟨w, rd(x)⟩Y + ||w||2Y K(x,x).

A.1 Matching Pursuit Variants 175

where the vvRKHS inner product ⟨·, ·⟩Γ is expanded by equation (B.69). Notation w̄
and K(x̄, ·) represent weights and basis functions in the residue rd(·) respectively.

The algorithm implementing this sparsification technique only requires maintaining
residues rd(x)∈Y over ∀K(x, ·)∈G. If Y is an RKHS then tracking the residue basis
points is required and adds overhead to the calculation. Although not implemented in
this investigation, the next section outlines such a case for the embedding.

A.1.5 Sparsifying Embeddings in the RKHS norm

Embedding notation in equation (A.1.1) is assumed, then by adapting lemma A.4 we
set X as state-actions Z and Y as an RKHS HL over states S. If the derivative ∇w

of the loss function is defined then it may be possible to sparsify the embedding in the
B basis by directly applying lemma A.4 as sketched below.

Lemma A.6 (Sparsify B in the RKHS norm). Given an existing embedding to be
sparsified in the form of equation (A.2)

(•)h(·) :=
d′∑
ℓ=1

w̃ℓK(b̃ℓ, ·), w̃ℓ ∈HL,

from which a dictionary of candidate basis functions G := {K(b̃1, ·), ..., K(b̃d′ , ·)} is
defined. Matching pursuit aims to find a sparse approximation to h in the form

(•)f̂d(·) :=
d∑
ℓ=1

wℓK(bℓ, ·),

where d<d′. If matching pursuit greedily adds a new basis element from G to minimise
the residue in the RKHS norm,

K(bd+1, ·) = arg min
K(b,·)∈G

min
w∈HL

||(•)h(·)−
(

(•)f̂d(·) + wK(b, ·)
)
||

2

Γ
,

then by lemma A.4 the following closed form results are as follows:

i) If the residue for the dth estimator is defined as

(•)rd(·) = (•)h(·)− (•)f̂d(·) ∈ HΓ,

then the weight of a new basis element K(b, ·) is

wd+1 = (•)rd(b)/K(b,b)∈HL,

and ii) the new basis element is the solution to

K(bd+1, ·) = arg sup
K(b,·) ∈ G

[
||(•)rd(b)||2HL

K(b,b)

]
. (A.10)

176 Supplemental

Corollary A.1.4. By considering an existing embedding to be sparsified of the form in
equation (A.4) and dictionary of candidate basis functions G := {L(ĉ1, •), ..., L(ĉm′ , •)},
then by a similar argument it might be possible sparsify C such that

w⊤
m+1 = (c)rm(·)/L(c, c)∈HK ,

and the new basis function is given by

L(cm+1, •) = arg sup
L(c,•) ∈ G

[
||(c)rm(·)||2HK

L(c, c)

]
. (A.11)

Both conditions A.6 and A.11 require tracking residue basis functions because for an
embedding Y is an RKHS. Consider for example when Y is a regular Hilbert space,
then successive residues after each new basis function has been added can be updated
quickly as rd(x) seen in line 11 in algorithm 24 is a vector of real values. However if Y
is an RKHS, then the new residual calculation requires the tracking of basis functions.
An efficient way of applying lemma A.6 to an embedding would be to follow a similar
approach to section 5.1.1 by approximating the target embedding so Y is a regular
Hilbert space.

Approximate Matching Pursuit in the RKHS Norm for Maintaining B

The embedding is approximated in the same way as for approximate matching
pursuit regression in section 5.1.1. Using notation in section 5.1.1, then a target
embedding h∈HΓ is approximated by making a Cholesky decomposition Φ⊤

C ≈
P = [p1, ...,pm]∈Rmchol×m,

(•)h(·) =
d∑
ℓ=1

w̃ℓK(bℓ, ·), w̃ℓ ∈HL

= Φ⊤
C WψB(·)∈HΓ,

≈ PWψB(·),
= QψB(·), Q∈Rmchol×d,

=
d∑
ℓ=1

qℓK(bℓ, ·), qℓ ∈Rmchol ,

= h̃(·).

In doing so, algorithm 24 can be used to sparsify an existing approximate embedding
ĥ :S×A→Rmchol . Once the new sparse set B has been found, it replaces the original
RKHS-valued embedding’s previous basis and the weights are back-fitted in the primal
as described in section 5.1.1.

A.2 DQN Experiments 177

Experiments were carried out to analyse the test errors of embeddings sparsified in
this way and compared to the approximate matching pursuit regression whose results
are shown in fig. A.1. Trajectory data with 2000 samples for both mountain car and
cart-pole was collected during policy iteration. Using approximate matching pursuit
regression with backfitting, embeddings were trained on 10 independently sampled
sets of 1000 samples for sparse basis sizes |B| ∈ {5, 25, 50, 100, 200} (mountain car) and
|B| ∈ {10, 50, 100, 200, 500} (cart-pole). Test errors were calculated on a separate test
set. Approximate matching pursuit in the RKHS norm is also carried out to sparsify
existing |B|= 300 (mountain car) and |B|= 600 (cart-pole) embeddings to the sparse
basis sizes.

Figure A.1 Approximate regression matching pursuit (Regression MP) vs. approximate
RKHS norm matching pursuit (RKHS Norm MP) for sparsifying B in an embedding.
Each method was run 10 independent times from existing trajectory data for both
mountain car and cart-pole.

(a) Mountain Car (b) Cart-Pole

Both methods produce sparse embeddings with very similar test errors. Predictably
as the sparse basis size falls, the test error increases. Further experiments are required
to explore if RKHS norm sparsified embeddings can work in a CCME policy iteration
algorithm. Given the out of sample errors it would seem that such an approach would
work. However the disadvantage is that a non-sparse embedding has to be trained first
before it is sparsified, which is avoided during approximate matching pursuit regression.
Future work should also investigate the matching pursuit variants described in section
A.1.3.

A.2 DQN Experiments

DQN experiments were performed to establish a model-free benchmark. DQN ar-
chitecture as described by Mnih et al. (2015) and parameters were searched for in
order to maximise performance and implemented . Like the ACCME architecture,

178 Supplemental

Figure A.2 DQN: Varying the number of minibatches per transition affects sample
efficiency. Empirical discounted return is presented for each MDP.

(a) Mountain car (b) Cart-pole

(c) Quadrocopter navigation (d) Quadrocopter holding pattern

DQN is implemented as a ReLU hidden layered feed-forward (but not convolutional)
architecture and trained using the Adam optimisation algorithm (with initial learning
rate η = 1×10−3 with all other parameters set to default values) as described in section
B.5. For mountain car and cart-pole, the hidden node counts are {25, 50, 100, 200, 300},
for the quadrocopter experiments this was increased to {25, 50, 100, 200, 300, 500}. The
input layer is dim(S) and last layer is |A|.

Value function updates were made online after each new sample was experienced
by drawing minibatches from an experience replay memory. Crucially it was important
to extract as much information out of each sample as possible such that making
5 minibatch updates per transition was optimal. Reducing the number of updates
per transition drastically decreased DQN’s sample efficiency and can be seen in fig.
A.2. Target function approximator freezing (Mnih et al., 2015) was implemented as a
function of the number of value function updates. For mountain car and cart-pole the

A.2 DQN Experiments 179

target function approximator was updated with the current approximator every 100
minibatches, for the quadrocopter experiments this was increased to 2000.

Appendix B

Literature Review Supplemental

B.1 Bellman Sup-Norm Contractions

Well-known results reproduced here e.g. Szepesvári (2010).

Lemma B.1 (Bellman operator contraction). Given u, v ∈B(S), γ ∈ [0, 1), determin-
istic policy π, P πv := ∑

s′∈S P (s′|s, π(s))v(s′), reward function rπ for actions defined
by π, then T πv := rπ + γP πv is a sup-norm contraction.

Proof.

||T πu− T πv||∞ = γ sup
s∈S

[
|
∑

s′ ∈ S
P (s′|s, π(s))

(
u(s′)− v(s′)

)
|
]
,

≤ γ sup
s∈S

[∑
s′ ∈ S

P (s′|s, π(s))|u(s′)− v(s′)|
]
,

≤ γ sup
s∈S

[∑
s′ ∈ S

P (s′|s, π(s))||u− v||∞
]
,

= γ||u− v||∞,

where ∑s′ ∈ S P (s′|s, π(s)) = 1 and |∑i xi| ≤
∑
i |xi| for xi ∈R.

Lemma B.2.
∣∣∣sup
a∈A

[f(a)]− sup
a∈A

[g(a)]
∣∣∣ ≤ sup

a∈A

[
|f(a)− g(a)|

]
.

Proof. Let a′ = argsup
a∈A

[f(a)], then

∣∣∣sup
a∈A

[f(a)]− sup
a′∈A

[g(a′)]
∣∣∣ < ∣∣∣sup

a∈A
[f(a)]− g(a′)

∣∣∣
= |f(a′)− g(a′)|
≤ sup

a∈A

[
|f(a)− g(a)|

]
.

Lemma B.3 (Bellman optimality operator contraction). Given u, v ∈B(S) and
γ ∈ [0, 1), then T ∗ is a sup-norm contraction.

182 Literature Review Supplemental

Proof.

||T ∗u− T ∗v||∞ = sup
s ∈ S

[∣∣∣sup
a ∈ A

[
|
∑

s′ ∈ S
P (s′|s, a)u(s′)|

]
− sup

a ∈ A

[
|
∑

s′ ∈ S
P (s′|s, a)v(s′)|

]∣∣∣],
≤ γ sup

(s,a) ∈ S×A

[
|
∑

s′ ∈ S
P (s′|s, a)

(
u(s′)− v(s′)

)
|
]
,

≤ γ sup
(s,a)∈S×A

[∑
s′ ∈ S

P (s′|s, a)|u(s′)− v(s′)|
]
,

≤ γ sup
(s,a)∈S×A

[∑
s′ ∈ S

P (s′|s, a)||u− v||∞
]
,

= γ||u− v||∞,

where in the second line lemma B.2 is used.

Lemma B.4 (Fixed point of the exponentially-weighted Bellman operator).
Given the Bellman operator T π and λ∈ [0, 1), then vπ is the fixed point of the
exponentially-weighted operator T λ :B(S)→B(S); T λv := limn→∞(1−λ)∑n

k=1 λ
k−1(T π)kv.

Proof. The n-step weighted operator is T λ[n]v := (1−λ)∑n
k=1 λ

k−1(T π)kv and we have
λT πT λ[n]v= (1−λ)∑n

k=1 λ
k(T π)k+1v, then

T λ[n]v − λT πT λ[n]v = (1− λ)
n∑
k=1

(
λk−1(T π)k − λk(T π)k+1

)
v,

= (1− λ)
(
T π − λn(T π)n+1

)
v.

Taking the limit n→∞,

T λv − λT πT λv := lim
n→∞

(1− λ)
(
T π − λn(T π)n+1

)
v,

= (1− λ)T πv,
⇒ T λv − λrπ − λγP πT λv=T πv − λrπ − λγP πv,

then cancelling/rearranging terms and subtracting v from both sides,

T λv − λγP πT λv + λγP πv − v = T πv − v,

(I − λγP π)
(
T λv − v

)
= T πv − v,

⇒ T λv = v + (I − γλP π)−1
(
T πv − v

)
.

Setting v= vπ and we know by definition T πvπ = vπ, then

(T λvπ) = vπ + (I − γλP π)−1
(
vπ − vπ

)
,

= vπ.

B.2 Block Matrix Inversion 183

Lemma B.5 (Online Average). For a random variable Yt−1 whose empirical average
is Ȳt−1 := 1

t−1
∑t−1
i=1 yi, then the online (iterative) mean after seeing sample yt is,

Ȳt = Ȳt−1 + 1
t
(yt − Ȳt−1)

Proof.

Ȳt = 1
t

t∑
i=1

yi

= 1
t
((t− 1)Ȳt−1 + yt)

=⇒ Ȳt = Ȳt−1 + 1
t
(yt − Ȳt−1).

B.2 Block Matrix Inversion

A block matrix inverse derived using the Schur complement is reproduced below, as
detailed in (Zhang, 2005). Let

M =
A B

C D

 , (B.1)

then assuming A is non-singular, the block LDU decomposition for M is

M =
 I 0

CA−1 A

A 0
0 M/A

I A−1B
0 I

 , (B.2)

where M/A := (D−CA−1B) is the Schur complement of block A. Similarly if D is
assumed non-singular, the LDU decomposition can be written as

M =
I BD−1

0 I

M/D 0
0 D

 I 0
D−1C I

 , (B.3)

where M/D := (A −BD−1C) is the Schur compliment of block D. It follows that
M−1 can be written by taking the inverse of either LDU decomposition respectively,

M−1 =
I −A−1B

0 I

A−1 0
0 (M/A)−1

 I 0
−CA−1 A

 (B.4)

=
 I 0
−D−1C I

(M/D)−1 0
0 D−1

I −BD−1

0 I

 , (B.5)

184 Literature Review Supplemental

where the following inversion identities were used for lower block diagonal L, upper
block diagonal U

L =
 I 0

P I

⇒ L−1 =
 I 0
−P I


U =

I Q
0 I

⇒ U−1 =
I −Q

0 I

 ,
and for any square matrices V, W, the inverse of their multiplication is (VW)−1 =
W−1V−1. By multiplying out (B.4) and (B.5) respectively,

M−1 =
A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

(M/A)−1CA−1 (M/A)−1

 (B.6)

=
 (M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 + D−1C(M/D)−1BD−1

 . (B.7)

If we have access to A−1 already, then equation (B.6) is used to perform the block
inverse efficiently.

B.3 Some Mathematical Definitions

B.3.1 Some Measure Theory

Definitions adapted from Grimmett and Stirzaker (2001) and Rudin (1976, chapter
11).

Definition B.1 (Measurable Space). A measurable space is the ordered pair (X ,Σ)
consisting of a non-empty set X equipped with a sigma-algebra Σ on X . Σ defines a
collection whose elements are subsets Ei ⊂ X where the following hold; i) ∅∈Σ and
X ∈Σ, ii) if E ∈Σ then so is the complement Ec ∈F , iii) if Ei ∈Σ for every i∈N,
then ⋃∞

i=1 Ei ∈Σ.

Conditions ii) and iii) are known as closed under complement and closed under
countable unions respectively. Elements of Σ are known as measurable subsets of X
and are candidates for having a size assigned to each of them as defined by a measure.
If X =R (as an example of an uncountable set) then a fundamental sigma-algebra is
the Borel sigma-algebra; a collection containing subsets of R that are the open sets
defined on an interval.

Definition B.2 (Measure). Given a measurable space (X ,Σ), then m : Σ→R+ is
called a measure on (X ,Σ) which assigns a size to elements of Σ if i) m(∅) = 0
and m(E)≥ 0 ∀E ∈Σ (non-negative), ii) m(⋃∞

i= 1 Ei) = ∑∞
i=1 m(Ei) for any countable

family (Ei)i of measurable disjoint sets of X (countably additive).

B.3 Some Mathematical Definitions 185

Definition B.3 (Probability Measure). A probability measure is m : Σ→ [0, 1] with
the added condition that m(Σ) = 1.

Definition B.4 (Signed Measure). A signed measure relaxes its range to include
negative values such that m : Σ→R and m(Σ) does not necessarily need to be 1.

Definition B.5 (Measure Space). A measurable space (X ,Σ) equipped with a measure
m is known as a measure space (X ,Σ,m).

B.3.2 Some Functional Analysis

Definition B.6 (Vector Space (Kreyszig, 1978, p 129)). A real vector space (or linear
space) over a field R is a non-empty set X of elements x1,x2, ... together with two
algebraic operations of vector addition and multiplication by scalars.

Definition B.7 (Metric Space (Kreyszig, 1978, def. 1.1-1)). A metric space is a
pair (X , d); where X is a set and d is a metric (or distance function) on X , that is
d :X×X → [0,∞) i.e. d is i) real, finite and non-negative, ii) d(x,x′) = 0 ⇔ x = x,
iii) symmetric and iv) obeys the triangle inequality, ∀x,x′ ∈X .

Definition B.8 (Normed and Banach Space (Kreyszig, 1978, def. 2.1-1)). A normed
space is the pair (X , || · ||); a vector space whose metric is induced by a norm d(x,x′) =
||x−x′||, ∀x,x′ ∈X . The concept of a norm is motivated by quantifying element
length or distance between elements and is a real-valued function obeying a specific set
of properties as detailed in Kreyszig (1978, def. 2.1-1, eqns N1-4). A Banach space
B := (X , || · ||) is a complete normed space.

Completeness refers to a property that every Cauchy sequence (xn)n≥1 of elements
xn ∈X converges to an element x∈X . A Cauchy sequence, or sequence of diminishing
oscillations satisfies the following property (Shawe-Taylor and Cristianini, 2004, p 49),

lim
n→ ∞

[
sup
m≥n

[||xn − xm||]
]

= 0. (B.8)

Completeness intuitively means that there are no ‘missing points’ or holes in a space
such that every Cauchy sequence has a limit in the space itself. Certain algebraic
properties that one may want to operate on a space may be unavailable if it is
incomplete e.g. well-known examples include i) when working in Q, the solution to
x2− 2 = 0 does not exist and requires a completion in R because the solution is ±

√
2,

or ii) when working in R, the solution to x2 + 1 = 0 lies in C.

186 Literature Review Supplemental

Definition B.9 (Hilbert Space (Kreyszig, 1978, def. 3.1-1)). A Hilbert space H :=
(B, ⟨·, ·⟩) is a Banach space endowed with an inner product. An inner product (Kreyszig,
1978, p 129) is a real-valued symmetric bilinear (linear in each argument) map ⟨·, ·⟩
that satisfies ⟨x,x⟩ ≥ 0. It is also strict if ⟨x,x⟩ = 0⇐⇒ x = 0. This is equivalent
to an inner product (pre-Hilbert) space (Shawe-Taylor and Cristianini, 2004, p 48),
complete in the metric induced by its inner product, ||v|| =

√
⟨v,v⟩.

B.4 Function Approximation Review

Below is a brief review of function approximation and regression from a frequentist’s
perspective, briefly touching on statistical learning theory (Vapnik, 1998, 1999).

B.4.1 Learning Prediction Functions from Data

Let independent variables X =Rd and dependent Y =R be modelled by an unknown
deterministic scalar-valued function ftarg :X →Y corrupted by noise ε∼N (0, σ2),
Y=ftarg(X) + ε i.e. Y ∼N (ftarg(X), σ2). Let data pairs be drawn from an unknown
joint distribution (X, Y) ∼ p(·, ·). We search for the prediction function f ∈H⊆YX

that best generalises (out of sample) the target function ftarg. The hypothesis class H
may or may not contain the target function, but the learning algorithm will not be
aware of this. It is easy to see that the best hypothesis class contains only the target
function i.e. H= {f} and learning would proceed by plucking the function from its
hypothesis class. In reality this is not possible and instead H is picked and a finite data
set D := {(x, y)i}ni=1 is sampled i.i.d (independently and identically distributed) from
p(x, y). By defining a loss function, a model f̂ is trained with the goal of minimising
out of sample error so that f generalises the real signal ftarg well but does not capture
high frequency noise (also known as overfitting).

Empirical Risk Minimisation

A non-negative loss (also known as risk) function V :Y×Y→ [0,+∞) penalises hy-
pothesis prediction errors. The expected loss (also known as expected prediction error
(EPE) (Hastie et al., 2001) or expected loss), is defined as

L(V, f) : = E(X,Y)∼p(·,·)[V (f(X), Y)], (B.9)
= EX∼p(·)EY∼p(·|X)[V (f(X), Y))].

B.4 Function Approximation Review 187

By placing equal probability mass pi = 1
2n on the ith training sample (Barber, 2012)

such that p(x, y) = ∑n
i=1 piδ(x− xi)δ(y − yi), the empirical estimate for (B.9) is

L̂(V, f,Dn) =
∫

X ×Y

n∑
i=1

piδ(x− xi)δ(y − yi)V (f(x), y)dxdy,

=
n∑
i=1

piV (f(xi), yi) = 1
2n

n∑
i=1

V (f(xi), yi), (B.10)

leading to the empirical risk minimisation (ERM) problem,

f̂ = arg min
f∈H

[1
2n

n∑
i=1

V (f(xi), yi)]. (B.11)

Mean Squared Error

The loss function V is assumed to be continuous, strongly convex and smooth so that
a unique solution can be found by differentiation. For function approximation the
squared error (SE) loss VSE(f(X), Y) = (f(X)−Y)2 is a common choice such that the
expected loss is

L(VSE, f) = EX∼p(·)EY∼p(·|X)
[
(f(X)− Y)2

]
, (B.12)

whose empirical minimisation problem is

f̂ = arg min
f∈H

[1
2n

n∑
i=1

(f(xi)− yi)2
]
. (B.13)

The conditional distribution component of the expected loss (B.12) makes it possible
to work with p(y|x) instead of having to deal with the unknown joint distribution
p(x, y). The solution to the least squares expected risk is now reduced to a point-wise
minimisation problem,

f(x) = arg min
c

[
EY∼p(·|X=x)[(c− Y)2]

]
.

Lemma B.6 (Regression Function). The minimiser of VSE is the conditional mean
of the target variable, f(x) =EY∼p(·|X=x)[Y].

Proof. Expand the square term in the expectation

L(VSE, f |x) = EY∼p(·|X=x)
[
(f(x)− Y)2

]
,

= EY∼p(·|X=x)
[
f(x)2 − 2f(x)Y + Y 2

]
,

= f(x)2 − 2f(x)EY∼p(·|X=x)[Y] + EY∼p(·|X=x)[Y 2].

188 Literature Review Supplemental

By taking the derivative with respect to f(x) (see Bishop (2006, p 46)) and setting to
zero,

2f(x)− 2EY∼p(·|X = x)[Y] = 0,

clearly identifies f(x) = EY∼p(·|X=x)[Y] as the minimiser for the expected square loss1

also known as the regression function.

Linear OLS Regression

How does ordinary least squares (OLS) linear regression fit into this point-wise EPE
minimisation? Following Hastie et al. (2001, p 19), by assuming a linear approximation
scheme H := {f(x) = x⊤β |β ∈Rd}, then the solution β can be solved theoretically by
substituting f(X)=X⊤β (where X is a random variable) back into equation (B.12),
taking the derivative w.r.t β and setting to zero,

EX,Y∼p(·,·)[XX⊤β−XY] = 0,
⇒ β = EX∼p(·)[XX⊤]−1E(X,Y)∼p(·,·)[XY], (B.14)

= var(X)−1cov(X, Y).

The empirical least squares estimate β̂ can be calculated by replacing the expectations
in (B.14) by sample averages over the training data. This is equivalent to accumulating
samples in matrix X = [x1, ...,xn]⊤ ∈Rn×d (where implicitly a bias column is included
as x0 = 1) and vector y∈ [y1, ..., yn]⊤ ∈Rn; then the least squares minimiser β̂ols ∈Rd

of (B.13) is

0 = ∇f

(1
2n

n∑
i=1

V (f(xi), yi)
)

= ∇β
[1
2n ||y−Xβ||22

]
,

= − 1
n

X⊤(y−Xβ), (B.15)

⇒ β̂ols = (X⊤X)−1X⊤y. (B.16)

Note that ’mean squared error’ (MSE) usually refers to the empirical average ’residual
sum of squares’ (RSS), which is the sum of the residuals (or realised errors) of
observations under the assumed statistical model. The residual vectors e = (y−Xβ)
are assumed to belong to a Hilbert space Rn endowed with an inner product induced
by its norm || · ||22 = ⟨·, ·⟩2, such that RSS := ||e||22 = (y−Xβ)⊤(y−Xβ).

The set of columns of the design matrix X = [x(1), ..,x(d)] are considered to form a
column space of X labelled span(X). The OLS solution minimises the RSS by choosing
the shortest vector y− ŷ to span(X) which is the normal vector and geometrically is

1Note that if V (Y, f(X)) = |f(X)−Y |, then the optimal solution is f(x) = medianY ∼p(·|X=x)[Y]
where V is more robust to outliers, however it lacks smoothness of the squared loss.

B.4 Function Approximation Review 189

an orthogonal projection Π :Rn→Rd (see figure B.1),

ŷ = Xβ̂ols,

= X(X⊤X)−1X⊤y = Πy,

=
d∑
i=1

βix(i). (B.17)

Figure B.1 Geometric interpretation of regression and Π.

y

e = y− ŷ

ŷ = Πy

β2x(d)
β1x(1)

x(1)

x(d)

Theorem B.4.1 (Orthogonal Complement (Kreyszig, 1978, thm 3.3-4)). Given a
Hilbert space H and a closed subspace Ĥ⊆H with elements ĥ, then the orthogonal
complement Ĥ⊥ of Ĥ is

Ĥ⊥ := {h∈H | ⟨h, ĥ⟩H = 0,∀ĥ∈ Ĥ},

then the orthogonal decomposition is the internal direct sum H= Ĥ ⊕ Ĥ⊥.

The OLS analysis makes the decomposition y = ŷ + e such that ⟨ŷ, e⟩2 = 0.

Unique Solution

For a unique solution βols to exist depends on the properties of the design matrix X
and its corresponding non-centred sample covariance matrix X⊤X as outlined below.
Equation (B.17) states that the predicted ŷ lies within the basis defined by the columns
of X.

Definition B.10 (Rank (Lang, 1987, p 113)). Let M∈Rm×n then M = [c1, ..., cn] are
columns that generate a subspace whose dimension is called the column rank of M.
Similarly the rows M = [r1, ..., rm]⊤ form a subspace whose dimension is called the row

190 Literature Review Supplemental

rank. The column (row) rank is the maximum number of linearly independent columns
(rows) of M.

Following Hastie et al. (2001, p 64) and Lang (1987, ch 8), the singular value decompo-
sition (SVD) of the design matrix is defined X = UΣV⊤ ∈Rn×d where U∈Rn×n and
V∈Rd×d are orthogonal matrices such that U⊤U=In and V⊤V=Id. The columns
of U and V span the column space and row space of X respectively. Σ∈Rn×d is a
rectangular diagonal matrix whose diagonal values are the singular values σi ∈R

+ of
decreasing order for i= 1, ...,min(n, d).

If there are linearly dependent columns in the design matrix X∈Rn×d then
Rank(X)<n. This means that at least one basis vector (explanatory variable or
column x(i) in equation (B.17)) of the subspace spanned by col(X) is a linear com-
bination of another basis vector x(j). Such column rank deficiencies can occur by i)
exact multicollinearity where two or more columns are linear combinations of each
other, ii) numerical multicollinearity where columns are highly correlated at machine
precision or iii) the regression problem is underdetermined where dimensionality of
the data exceeds the number of samples collected d > n. Rank deficiency implies that
the column basis is insufficient to span the space that the raw data resides in.

The eigen-decomposition (Lang, 1987, ch 8, §1) and (Shawe-Taylor and Cristianini,
2004, chapter 3) of a square real symmetric matrix is A = VΛV⊤ where orthonormal
eigenvectors are collected into columns V := [v1, ...,vd] and eigenvalues are arranged
by Λ = diag(λ1, ..., λd). The inverse is therefore A−1 = VΛ−1V⊤. Comparing this with
the SVD of the uncentered sample covariance matrix can is therefore decomposed

X⊤X = VΣ⊤U⊤UΣV⊤,

= VΣ2V⊤, (B.18)
= VΛV⊤,

then Λ−1 = Σ−2 such that diag(λ−1
1 , ..., λ−1

d) = diag(σ−2
1 , ..., σ−2

d). If any singular val-
ues (and therefore eigenvalues) are zero then X⊤X is known as a singular matrix.
Conversely if all singular values (and therefore all eigenvalues) are non-zero then X⊤X
is non-singular. The number of non-zero singular values is equal to rank(X). Then if
n<d, the covariance matrix X⊤X has at least one zero eigenvalue or singular value,
rendering it a singular matrix that is not invertible. The solution β̂ is therefore
not uniquely defined such that there is more than one way to project ŷ onto the
column space of X. Symmetric positive semi-definite matrices have non-negative
eigenvalues and symmetric strictly positive definite matrices have positive eigenvalues
(Shawe-Taylor and Cristianini, 2004, p 57, thm. 3.6). By the eigen-decomposition
of X⊤X, it is easy to see that an inverse does not exist if any of the eigenvalues are
zero. It is therefore possible to see if there is a least squares solution by checking if

B.4 Function Approximation Review 191

the design matrix X is full column rank. Given equation (B.17), then full rank is
achieved if X has linearly independent columns. The same properties of the design
matrix directly relate to the convexity properties of the loss function (Murphy, 2012,
section 7.3.3). Adding a diagonal (ridge term) constant to a matrix mitigates zero
eigenvalues, making it invertible (see regularisation below).

Bias-Variance Decomposition of the Expected Loss

The expected loss can be decomposed into different sources of error using the bias-
variance decomposition (see Hastie et al. (2001, p.223) or Murphy (2012, p.202)). The
decomposition describes how the sources of error change depending on the richness
of the hypothesis class H from which functions are fitted under a fixed training set.
The same analysis motivates how to pick functions that best fit out-of-sample data by
mitigating overfitting. For clarity (whose steps are usually omitted in the literature)
the decomposition will be reproduced here.

Lemma B.7 (Bias-variance decomposition). Given a fixed hypothesis set H, data
model Y = ftarg(X) + ε, ε∼N (0, σ2) and a budget of n training samples drawn (as
a random variable) from the joint distribution Dn := {(X, Y)i}ni=1∼ p(X, Y), then the
expected out-of-sample error Lout is decomposed into bias2[h(X)] + varD[h(Dn)(X)] +σ2.

Proof. Let the out of sample expected error, averaged over training sets be

Lout(VSE, h) = EDn

[
EX ∼ p(·)

[
EY ∼ p(·|X)[(h(Dn)(X)− Y)2]

]]
,

= EX ∼ p(·)

[
EDn

[
EY ∼ p(·|X)[(h(Dn)(X)− Y)2]

]]
, (B.19)

where h(Dn) ∈H is the hypothesis from H created (i.e. selected from H) by being
trained on the finite training set Dn. The inner most term is

EY ∼ p(·|X)
[(
h(Dn)(X)− Y

)2]
= Eε∼ N (0,σ2)

[(
h(Dn)(X)− ftarg(X)− ε

)2]
,

= Eε∼ N (0,σ2)
[(
h(Dn)(X)− ftarg(X)

)2
− 2ε

(
h(Dn)(X)− ftarg(X)

)
+ ε2

]
,

=
(
h(Dn)(X)− ftarg(X)

)2
+ σ2, (B.20)

where in the last line Eε[ε] = 0 and Eε[ε2] = var(ε) +Eε[ε]2 = var(ε) =σ2. Substituting
(B.20) into (B.19),

Lout(VSE, h) = EX ∼ p(·)

[
EDn

[(
h(Dn)(X)− ftarg(X)

)2]
+ σ2

]
. (B.21)

The average hypothesis over all training sets of size n is h̄(X) :=EDn [h(Dn)(X)] =
limN→∞

1
N

∑N
j=1 h

D(j)
n (X) where {D(1)

n , ...,D(N)
n } is a collection of N unique datasets

192 Literature Review Supplemental

all with n samples. Introducing h̄ into the inner term of equation (B.21),

EDn

[(
h(Dn)(X)− ftarg(X)

)2]
= EDn

[(
h̄(X)− ftarg(X) + h(Dn)(X)− h̄(X)

)2]
,

= EDn

[(
h̄(X)− ftarg(X)

)2
+
(
h(Dn)(X)− h̄(X)

)2]
,

=
(
h̄(X)− ftarg(X)

)2
+ EDn

[(
h(Dn)(X)− h̄(X)

)2]
,

= bias2
[
h(X)

]
+ varDn

[
h(Dn)(X)

]
, (B.22)

where in line three the cross-terms are zeroed out due to the expectation. The average
hypothesis h̄ can be considered as the best hypothesis given the chosen H and budget
n, but in all practical settings it is not accessible and used only as a tool to express
the bias-variance trade-off. Substituting (B.22) into (B.21),

Lout(VSE, h) = EX ∼ p(·)

[
bias2

[
h(X)

]
+ varDn

[
h(Dn)(X)

]]
+ σ2. (B.23)

Theorem B.4.2 (Gauss Markov Theorem (Graybill, 1961)). Assuming the unobserved
errors i) satisfy E[ε] = 0, ii) they are homoscedastic across all X , iii) var[ε] =σ2 <∞
and uncorrelated across X , then the linear least squares estimate h(x) = ⟨x, β̂ols⟩2 is
an unbiased estimator and has the lowest variance for a linear estimator.

Bias-Variance Trade-Off and Overfitting

A good function approximator that adequately captures the signal from ftarg will
have a low out of sample error Lout, therefore how does one achieve this in practice?
Given a budget of n samples per training set, a practitioner only has the freedom
to choose the hypothesis class H. The bias-variance decomposition (B.23) tells us
how the choice H affects Lout by decomposing it into three sources of error. Two of
these are sources of noise; i) stochastic noise generated from ε and ii) deterministic
noise represented by the expected bias term (over X) which is the signal generated
by the target function that the chosen H cannot capture. Stochastic noise cannot be
minimised, but deterministic noise can be reduced if ftarg is included in H which can
be achieved by enriching H.

A final third source of error is due to the term varDn [h(Dn)(X)] which represents
overfitting. Data is the only resource that helps guide the training process to an h

which is hopefully close to the average hypothesis h̄ (achievable given H). A high
variance term is typically induced by a rich H being deployed in a training process
when n is limited. In this scenario, the evaluation of a trained h(Dn) for any instance of
training data Dn will frequently lie far from the average hypothesis’ evaluation i.e. the

B.4 Function Approximation Review 193

limited training data available is not good enough to consistently guide the learning
algorithm through the rich H to a good hypothesis close to h̄. This effect can be seen
as the hypothesis capturing the high frequency ε noise. In the limit of infinite data
the variance term will tend to zero as there is adequate data resource to consistently
select a good hypothesis.

Increasing n decreases overfitting, increasing H decreases bias however a too
complex H (when n is a finite budget) will induce overfitting. Trading an increase of
bias for a decrease in variance (B.23) can be better understood by an additional bias
decomposition (Hastie et al., 2001, p 224-226). The best unconstrained hypothesis can
be thought of as trained over the entire domain X and whose targets are the actual
target function, h∗ := arg min

h∈ H

[
EX [(ftarg(X)− h(X))2]

]
into the bias term,

EX ∼ p(·)
[(
h̄(X)− ftarg(X)

)2]
= EX

[(
h̄(X)− h∗ + h∗ − ftarg(X)

)2]
,

= EX
[(
h̄(X)− h∗

)2]
+ EX

[(
h∗ − ftarg(X)

)2]
,

= EX
[
estimationBias2[X]

]
+ EX

[
modelBias2[X]

]
.

(B.24)

More precisely in the context of the bias-variance trade-off, if H is an unconstrained
set of ordinary least squares linear approximators, then the estimation bias in (B.24) is
zero as stated by the Gauss-Markov theorem B.4.2. It is possible to trade off an increase
in estimation bias for a reduction in variance by constraining H. If the reduction in
variance is greater than the increase in estimation bias then the out-of-sample error is
lower, which is known as the ’bias-variance’ trade-off. Model bias can only be reduced
by enriching H.

Practitioners do not have access to the out-of-sample error because any data made
available will always make it into the training set. Validation error is therefore used
in a cross-validation scheme to search for the constrained H that strikes the best
bias-variance trade-off.

Penalised Empirical Risk Minimisation

Restricting the hypothesis space H is made possible by the constrained optimisation
problem,

minimise
f

1
2n

n∑
i=1

V (f(xi)− yi)

subject to g(f) ≤ c

194 Literature Review Supplemental

which has a one-to-one correspondence (Hastie et al., 2015, sec 2.2) with the regularised
risk minimisation problem

f̂ = arg min
f∈H

[1
2n

n∑
i=1

V (f(xi), yi) + λg(f)], (B.26)

where g(·) is a convex penalty function, shrinkage parameter is λ≥ 0 and V is a
convex loss function. Ridge regression (also known as Tikonov regularisation) penalises
ordinary least squares regressors (where V is the squared loss) with the L2 norm
g(f) := 1

2 ||β||
2
2 (Hastie et al., 2001, p 61) such that the restricted hypothesis set to

search through is H := {f(x) = x⊤β | β ∈Rd, ||β||22 ≤ 2c}2.
The ERM problem for regularised ridge regression is solved by setting f =β ∈Rd,

V =VSE, g(f) =λ||β||22 which is both convex and smooth. Therefore β can be solved
in closed form,

0 = ∇f

(1
2n

n∑
i=1

V (f(xi), yi) + g(f)
)

= ∇β
[1
2n ||y−Xβ||22 + λ

2 ||β||
2
2

]
, (B.27)

= − 1
n

X⊤(y−Xβ) + λβ, (B.28)

⇒ β̂ridge = (X⊤X + λId)−1X⊤y. (B.29)

Solution (B.29) is known as the primal solution (with n absorbed into λ). The
estimation bias in equation (B.24) quantifies the distance between the achievable
average hypothesis h̄ in the constrained hypothesis set and the closest fit h∗ in the
unconstrained hypothesis set. The gradient of decreasing penalised loss (equation
(B.28)) has the term −λβ (excluding the bias term β0) from the regulariser which is
clearly a shrinkage operation. Informally the addition of the L2 regulariser prevents
elements of β growing uncontrollably (Bishop, 2006, p 11) and leads to smoother
regressors that are less-susceptible to capturing high frequency noise. The regularised
empirical loss proves to be a better proxy to the out-of-sample error and leads to
better hypothesis generalisation.

Another perspective is to observe a convex loss surface for OLS where the minimum
is not obvious, such as for a long, almost level and very flat loss surface valley. In
such a case, many OLS candidate solutions would have a very similar loss value. By
adding an additional convex penalty (such as the L2 norm) modifies the loss surface
such that a well-defined minimum exists. Following (Hastie et al., 2001, p 66), the
SVD decomposition for OLS and ridge regression is,

2For brevity the notation doesn’t explicitly include bias terms and should be assumed depending
on context. All function evaluations include the bias term, however regularisers exclude acting on
bias terms during penalisation.

B.4 Function Approximation Review 195

ŷ = Xβ̂ols,

= UΣ(Σ2)−1ΣU⊤y

= UU⊤y

=
d∑
i=1

uiu⊤
i y. (B.30)

ŷ = Xβ̂ridge,

= UΣ(Σ2 + λI)−1ΣU⊤y

=
d∑
i=1

ui
σ2
i

σ2
i + λ

u⊤
i y, (B.31)

where the columns in U := [u1, ...,ud]∈Rn×d form an orthogonal basis. Both equations
(B.30) and (B.31) take the form ∑d

i=1 uiβ̃i where β̃i weights the coordinates of ŷ in
span(U). The ridge estimate re-scales this weight by shrinking those β̃i with the
smallest σi the most. Hastie et al. (2001, p 66) argue that in this way ridge-regression
shrinks the coefficients for low variance directions (whose singular terms σi are smallest)
in the data X more than large variance directions, effectively reducing the effective
degrees of freedom (Hastie et al., 2001, p 68) which is normally d+1 free parameters
(which includes the bias term) for ordinary least squares. Informally this leads to
smoother function approximators.

Figure B.2 L1 (LASSO) and L2 (ridge regression) regularisation for β ∈R2.

r
β1

β2

β̂ols
bc

β̂lasso bc

β1

β2

β̂ols
bc

β̂ridge
bc

Choice of regularisation norms lead to different effects on β during the optimisation
procedure. By choosing g(f) := ||β||1 (which is the L1-norm) leads to lasso (Tibshirani,
1996) sparse regression where elements of β are driven to zero. However the L1
regulariser is not smooth as it possesses a discontinuity in its first derivative and
therefore a LASSO-based ERM cannot be solved directly. A cannon of convex
optimisation algorithms exist that deal with solving the LASSO and a good summary
is made by Hastie et al. (2015, sec 5). The weight space when optimising with both
L1 and L2 regularisers is visualised in fig. B.2, noting that the ‘angular’ geometry of
the L1-norm induces sparsity in the weight vector.

196 Literature Review Supplemental

B.4.2 Reproducing Kernel Hilbert Spaces of Functions

The following summary of RKHS theory takes elements from Shawe-Taylor and Cris-
tianini (2004, chapter 3), Steinwart and Christmann (2008, chapter 4) and Sejdinovic
and Gretton (2012). We briefly re-visit penalised risk minimisation for fitting linear
functions. Given a Hilbert space of scalar-valued functions F ⊂RX whose function eval-
uation is f(x) = ⟨f,ϕ(x)⟩F with a feature representation ϕ :X →F then the penalised
empirical risk problem is

f̂ = arg min
f∈H

[n∑
i=1

V (f(xi), yi) + g(||f ||H)
]
, (B.32)

with loss function V :Y×Y→R ∪ {∞} and a strictly monotonically increasing real-
valued function g(|| · ||H) : [0,∞)→R that restricts the hypothesis space H⊆F . Choos-
ing V as the squared loss and g(||·||H) = λ

2 ||·||
2
2 then the penalised ERM (B.32) becomes

the ridge regression problem that is solved by (B.29) with a substitution X = Φ and
Φ := [ϕ(x1), ..,ϕ(xn)]⊤. The introduction of the feature representation identifies F as
the feature space in which function evaluation is linear and provides a mechanism to
model non-linear target functions ftarg.

Primal and Dual Representation

Ridge regression PERM (B.27) has already been solved by the primal solution (B.29)
whose feature-based version is

0 = ∇f

(1
2n

n∑
i=1

V (f(xi), yi) + g(f)
)

= ∇β
[1
2n ||y−Φβ||22 + λ

2 ||β||
2
2

]
, (B.33)

= − 1
n

Φ⊤(y−Φβ) + λβ, (B.34)

⇒ β̂ridge = (Φ⊤Φ + λId′)−1Φ⊤y, (B.35)

where dim(F) = d′ is the dimensions of the feature space. The regression solution is
computed with a cost that scale cubically with d′ which can be impractical if very
rich representation is required or impossible for infinite dimensional F . Parametric
regression requires either ϕ to be provided a priori or learnt before βridge is calculated.

Following Shawe-Taylor and Cristianini (2004, p 31, sec. 2.2.2) (see also Hastie et al.
(2001, section 12.3.7)), by making the observation that equation (B.34) contains a
term that is a linear combination of feature vectors, then substituting α := 1

nλ
(y−Φβ)

into equation (B.34) gives

0 = −λΦ⊤α+ λβ,

⇒ β = Φ⊤α=
n∑
j=1

αjϕ(xj). (B.36)

B.4 Function Approximation Review 197

This specifies that the solution of the PERM problem to be a weighted sum of features
over each training point. Substituting equation (B.36) into the new definition for α,

α = 1
nλ

(y−ΦΦ⊤α),

⇒ α = (ΦΦ⊤ + λIn)−1y,

= (K + λI)−1y, (B.37)

where K := ΦΦ⊤ and Kij = ⟨ϕ(xi),ϕ(xj)⟩F . This is known as the dual solution to
the PERM problem which can now be solved without searching for β (which may exist
in an infinite feature space), and instead search for a vector α whose size is invariant
to the feature representation which scales linearly with the size of the training set,

0 =∇α
(n∑
i=1

V ((ΦΦ⊤α)i, yi) + g(Φ⊤α)
)

= ∇α
[1
2n ||y−ΦΦ⊤α||22 + λ||Φ⊤α||2H

]
,

(B.38)

= − 1
n

(y−Kα) + λα⊤Kα,

whose solution is equation (B.37). Solving the penalised ERM problem in the dual
therefore requires and inversion of the kernel matrix which has a computational cost
that scales cubically with the number of data points n. Reducing a possibly infinite
dimensional search problem in F to a problem whose solution scales only with the
number of training samples is an example of the representer theorem. Elaboration on
this will be delayed until further formalisation of the dual solution is made. Both the
the primal and dual solutions can now be compared,

f̂(x) = ϕ⊤(x)β̂ (B.39)

= ⟨ϕ(x),Φ⊤α̂⟩F = ⟨ϕ(x),
n∑
j=1

α̂jϕ(xj)⟩F =
n∑
j=1

α̂j⟨ϕ(x),ϕ(xj)⟩F =
n∑
j=1

α̂jK(xj,x),

= k⊤
x α̂, (B.40)

where kx := [K(x,x1), ..., K(x,xn)]⊤ and K is a positive definite kernel function rep-
resenting inner products in feature space. Hilbert space dual solutions, definition
of kernels and their relationship is formalised by reproducing kernel Hilbert spaces
(RKHS) of functions in the following section.

Reproducing Kernel Hilbert Spaces

In the previous section it was shown that function evaluation is tantamount to evaluat-
ing inner products of points in feature space. An RKHS is a non-parametric function
class (because its solution grows with the number of data points) which assumes that
functions exist in a Hilbert space endowed with additional structure related to the

198 Literature Review Supplemental

smoothness of evaluation and function similarity. Function evaluation of this powerful
function class replaces explicit inner products in F with kernel evaluations, implicitly
representing inner products in potentially an infinite dimensional feature space.

Figure B.3 Equivalent concepts in RKHS theory.

RKHS of functions, HK (definition B.11): (B.41)
Linear function evaluation operators δxf = f(x) are bounded,

where x∈X , f :X →R, f ∈HK , δx :HK→R, δx ∈H
∗
K .

⇕ (Theorem B.4.4)
Reproducing Kernel/Property (definition B.12): (B.42)

For an R-Hilbert space H, function K :X×X →R is a reproducing kernel,
if K(·,x)∈H and f(x) = ⟨f,K(·,x)⟩H .

⇕ (Lemma B.8)
A Kernel as an Inner Product (definition B.13): (B.43)

A kernel is an inner product in feature space H, of feature maps ϕ :X →H,
K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H .

⇕ (Lemma B.9)
Positive semi-definite Function: (definition B.14): (B.44)

A symmetric function K :X×X →R is positive semi-definite if
a⊤Ka≥ 0, Kij =K(xi,xj), ∀α∈Rn.

Definition B.11 (Reproducing Kernel Hilbert Space (Schölkopf and Smola, 2002)).
Given a non-empty set X , an RKHS HK is an R-Hilbert space of functions f :X →R
whose function evaluation operator δx is bounded,

|f(x)| = |δxf | ≤ λx||f ||HK
, ∀f ∈HK , ∀x∈X , λx≥ 0. (B.45)

If follows that two functions that agree at every point are identical in the RKHS norm
|| · ||HK

=
√
⟨·, ·⟩HK

(Shawe-Taylor and Cristianini, 2004, p 62) i.e.

|f(x)− g(x)| ≤ λx||f − g||HK
, ∀f, g ∈HK , ∀x∈X (B.46)

Point evaluation as a continuous linear functional (which is equivalent to a bounded
linear functional in this setting) is the defining property of RKHS functions that
differentiates them from other Hilbert spaces of functions, such as the set of square
integrable functions L2(X) (Kreyszig, 1978, def. 3.1-5) i.e. it is possible to construct
two functions f, g ∈L2(X) that when evaluated over X are very different, but are
identical in their norm induced by their inner product (Hofmann et al., 2008, p 1176).
For an RKHS, if f, g ∈HK are close in the norm || · ||HK

, then f(x)≈ g(x). Evaluation

B.4 Function Approximation Review 199

similarity and function similarity are directly related and make RKHS function classes
ideal for solving the penalised ERM problem where optimisation occurs over f ∈HK

at each sample in the training set.

Theorem B.4.3 (Riesz Representation Theorem (Kreyszig, 1978, 3.8-1)). Let H be
a Hilbert space and H∗ be its dual space consisting of all bounded linear functionals
δx :H→R, then for every f ∈H there exist some unique element (known as the
representer of evaluation) gx ∈H such that

δxf = ⟨f, gx⟩H.

Riesz tells us that all bounded (i.e. continuous) evaluation functionals on a Hilbert
space are also using inner-products (a bilinear, positive-definite and symmetric function
(Kreyszig, 1978, sec 3.1)) with respect to a unique element (or representer of evaluation)
in the Hilbert space.

Definition B.12 (Reproducing Kernel/Property (Aronszajn, 1950) and (Steinwart
and Christmann, 2008, def 4.18 part 1)). An R-Hilbert space of functions has a
reproducing kernel K :X×X →R if i) for every x∈X , gx =K(·,x)∈HK and ii) the
reproducing property (defining point-wise evaluation) is,

f(x) = ⟨f,K(·,x)⟩HK
, ∀f ∈HK , x∈X . (B.47)

Theorem B.4.4 (A Hilbert Space of functions with a reproducing kernel is equivalent
to an RKHS (Steinwart and Christmann, 2008, lemma 4.19)). An R-Hilbert space of
functions with a reproducing kernel is equivalent to it having linear evaluation operators
δx that are bounded.

Proof. By expanding equation (B.47), it can be shown that if a Hilbert space of
functions H is endowed with a reproducing kernel then δx are bounded,

|f(x)| = |⟨f,K(·,x)⟩H|, (B.48)
≤ ||K(·,x)||H||f ||H,
= λx||f ||H,

where in the second line the Cauchy-Schwarz inequality (Shawe-Taylor and Cristianini,
2004, p 51, prop. 3.5) is used. Completing the equivalence the other way (where
every RKHS determines a unique reproducing kernel) is described by Steinwart and
Christmann (2008, theorem 4.20).

Definition B.13 (Kernel). Given a Hilbert space H and map ϕ :X →H, then a kernel
is a function K :X×X →R defined as

K(x,x′) := ⟨ϕ(x),ϕ(x′)⟩H, x,x′ ∈X .

200 Literature Review Supplemental

Lemma B.8 (Reproducing kernels are kernels (Steinwart and Christmann, 2008,
lemma 4.19 part 2)). The reproducing kernel K associated with RKHS HK is also
kernel that is an inner product in HK.

Proof. The canonical feature mapping ϕ :X →HK can be defined using the reproduc-
ing kernel of an RKHS HK as ϕ(x) :=K(·,x), x∈X . By choosing a specific x′ ∈X
then the element f :=K(·,x′) is fixed and the reproducing property can be written as

⟨f,K(·,x)⟩HK
= ⟨K(·,x′), K(·,x)⟩HK

(B.49)
= ⟨ϕ(x′),ϕ(x)⟩HK

= K(x,x′),

which is a kernel.

Corollary B.4.1. From equation (B.48), the boundedness of an RKHS evaluation
operator can be expressed in terms of the kernel,

|f(x)| ≤
√
⟨K(·,x′), K(·,x)⟩HK

||f ||HK
,

=
√
K(x,x)||f ||HK

,

= λx||f ||HK
.

Definition B.14 (Positive Semi-Definite Function (Steinwart and Christmann, 2008,
lemma 4.15)). A symmetric function K :X×X →R is positive definite if
∀n≥ 1, ∀{x1, ...,xn}∈X n, ∀a := [a1, ..., an]⊤∈Rn then

n∑
i=1

n∑
j=1

aiajK(xi,xj) = a⊤Ka ≥ 0, (B.50)

where Kij = K(xi,xj). The function K(·, ·) is strictly3 positive definite if for
mutually distinct {x1, ...,xn}∈X n, a⊤Ka ≥ 0 and a⊤Ka = 0⇔ a = 0.

Lemma B.9 (A kernel is equivalent to a positive semi-definite function).

Proof. Every kernel function is a positive semi-definite function follows from definition
B.14 such that we can write,

n∑
i=1

n∑
j=1

aiajK(xi,xj) =
n∑
i=1

n∑
j=1
⟨aiϕ(xi), ajϕ(xj)⟩H,

= ⟨
n∑
i=1

aiϕ(xi),
n∑
j=1

ajϕ(xj)⟩H ,

=
∣∣∣∣∣∣ n∑
i=1

aiϕ(xi)
∣∣∣∣∣∣2

H
≥ 0,

3We define "positive definite" and "positive semi-definite" as equivalent, using only the term
"strict" to define a strict inequality.

B.4 Function Approximation Review 201

which uses the linearity of the inner product and definition of the Hilbert space norm.
The definition of the kernel matrix K∈Rn×n follows where Kij =K(xi,xj). Every
positive definite function is a kernel is proven in Steinwart and Christmann (2008,
lemma 4.16) or Shawe-Taylor and Cristianini (2004, theorem 3.11).

Theorem B.4.5 (Moore-Aronszajn (Aronszajn, 1950)). Every symmetric, positive
definite kernel constructs a unique RKHS.

As we have seen, a unique RKHS is associated with a positive semi-definite kernel.
The Moore-Aronszajn explicitly constructs the associated RKHS from the positive
definite kernel K(·, ·) on X×X . Informally (see e.g. Hofmann et al. (2008)) a
Hilbert space of functions H0⊆RX associated with K is then constructed contain-
ing all finite linear spans that take the form f = ∑m

i=1 αiK(xi, ·)∈H0. By defining
g= ∑n

j=1 βjK(x′
j, ·)∈H0 then for any f, g ∈H0, the inner product (whose bilinearity,

symmetric and positive definite properties need to be confirmed) between any two
functions is defined as

⟨f, g⟩H0
=

m∑
i=1

n∑
j=1

αiβj⟨K(xi, ·), K(x′
j, ·)⟩H0

,

=
m∑
i=1

n∑
j=1

αiβjK(xi,x′
j).

This pre-RKHS H0 is then further shown to possess all of the characteristics of an
RKHS such as the reproducing property (definition B.12). To show that H0 is in
fact an RKHS HK requires that H0 also contains the limits of all f under the norm
induced by the inner product. This is known as completing H0 w.r.t its norm and
a formal analysis can be found in Steinwart and Christmann (2008, theorem 4.21).
As before, explicit ϕ representation is never required, only a symmetric positive
semi-definite kernel is needed to specify a unique RKHS. As a consequence,
a function is formed from a summation of kernel evaluations,

f(x) = ⟨f,K(·,x)⟩K ,

=
〈 n∑
j=1

αjK(xj, ·), K(·,x)
〉
K
,

=
n∑
j=1

αj⟨K(xj, ·), K(·,x)⟩K ,

=
n∑
j=1

αjK(xj,x), (B.51)

which concludes the dual function representation as specified by equation (B.40).

202 Literature Review Supplemental

Choosing Kernels

Theorem B.4.5 states that all one needs to do in order to specify an RKHS is to
choose a kernel that is a symmetric and positive definite function. It is this con-
dition that guarantees the kernel to be an inner product in a feature space (that
is a Hilbert space). Common examples include linear kernels K(x,x′) = ⟨x,x′⟩X ,
polynomial kernels kb(x,x′) = (⟨x,x′⟩X + c)b (where c≥ 0, b > 0), Gaussian kernels
kσ(x,x′) = exp(− 1

2σ2 ||x − x′||2X) (where bandwidth σ > 0) and more complex kernel
construction techniques all detailed by Shawe-Taylor and Cristianini (2004, chap-
ter 9). At no point is an explicit feature representation required. The kernel trick
also originates from the Moore-Aronszajn theorem where linear algorithms can be
transformed into non-linear forms by replacing all inner products between variables
x,x′ ∈X (including inner products between features) with kernel evaluations K(x,x′).
The non linearity being achieved by the rich implicit feature representations defined
by the kernel.

An order b= 2 polynomial kernel (where c= 0), over X =R2 input variables
x = [x1, x2]⊤ and y = [y1, y2]⊤, does not have a unique feature representation. Both
ϕ :R2→R3 and ϕ :R2→R4 are equivalent to this kernel,

K(x,y) = ⟨x,y⟩2R2 ,

= x2
1y

2
1 + x2

2y
2
2 + 2x1x2y1y2,

=
〈

x2
1

x2
2√

2x1x2

 ,


y2
1

y2
2√

2y1y2


〉
R3

=
〈

x2

1

x2
2

x1x2

x1x2

 ,

y2

1

y2
2

y1y2

y1y2


〉
R4
.

It is the kernel that is unique and by theorem B.4.5, this is equivalent to a unique RKHS.
In order to quantify the relationship of the polynomial feature representation dimension
as a function of b requires the binomial theorem (Shawe-Taylor and Cristianini, 2004,
p 292),

kb(x,y) =
b∑

s=0

b
s

 cb−s⟨x,y⟩s2, dim(ϕ) =
dim(X) + b

b

 ∼ O(dim(X)b). (B.52)

The cost of the explicit inner product in feature space is exponential in b, but the
implicit inner product (kernel) calculation is only ∼O(dim(X)). If very high order
polynomial features are required to make the hypothesis set rich enough, then a
kernel-based function class has distinct cost advantage.

B.4 Function Approximation Review 203

Gaussian Kernels and Infinite Dimensional Feature Space

Gaussian kernels are used throughout this thesis and can be written as the expansion
(Shawe-Taylor and Cristianini, 2004, p 64)

kσ(x,x′) = exp
(
− 1

2σ ||x− x′||22
)
,

= exp
(
− 1

2σ (||x||22 + ||x′||22)
)

exp
(1
σ
⟨x,x′⟩2

)
,

= exp
(
− 1

2σ (||x||22 + ||x′||22)
) ∞∑
j=0

⟨x,x′⟩j2
σjj! ,

= exp
(
− 1

2σ (||x||22 + ||x′||22)
) ∞∑
j=0

kb=j(x,x′)
σjj! ,

where the Taylor expansion in line three consists of a series of polynomial kernels of
degrees b= 1→∞ (see equation (B.52)). Given that a polynomial kernel corresponds
to explicit features representations, then if the Gaussian kernel is an infinite sum over
all degrees of polynomial kernels, then it too not only corresponds to explicit feature
representation, but also the feature space dimensionality is infinite. The higher degree
terms fall off by a factor of j! thus diminishing non-smooth terms, however in this form
no statements are made about the convergence of the infinite series. Mercer’s theorem
(Mercer, 1909) was originally used to construct valid kernels whose inner products are
over Hilbert space feature mappings. The previous analysis on RKHS construction
(including the Moore-Aronszajn theorem) somewhat supersedes Mercer’s approach
because the only assumption on X is that it is a non-empty set. However Mercer’s
approach is still useful to describe an RKHS and its smoothness characteristics induced
by the RKHS norm. Indeed the RKHS norm as a regulariser constrains empirical risk
minimisation - smoothness is induced in the function approximator when the RKHS
norm is small. For extensive discussion on this subject with comparison to primal
regularised risk minimisation, see Rasmussen et al. (2006, section 4.2), Shawe-Taylor
and Cristianini (2004, pp 64-68) and Evgeniou et al. (2000, sec 3).

Kernel Matrix Decompositions

Factorising techniques are useful in reducing the exposure of computational complexity,
w.r.t the number of data samples, of parent algorithms that extensively use and
manipulate kernel matrices.

Gram-Schmidt Orthonormalisation and QR Decomposition SVD used in
equation (B.30) demonstrates that projecting a vector ϕ(x)∈F onto an orthonor-
mal basis col(Q), denoted by ProjQϕ(x) := QQ⊤ϕ(x). A vector orthogonal to this
projection by simple geometry is Proj⊥Qϕ(x) = ν−1(I−QQ⊤)ϕ(x) with appropriate

204 Literature Review Supplemental

normalisation constant ν. Following Shawe-Taylor and Cristianini (2004, p 124) then
given data X := [ϕ(x1), ...,ϕ(xn)]⊤, Gram-Schmidt orthonormalisation incrementally
builds an orthonormal basis Qn := [q1, ...,qn] as follows. For each i= 1, ...n take new
data point ϕ(xi), and

i find orthogonal vector qi = Proj⊥Qi−1
ϕ(xi) = ν−1(I−Qi−1Q⊤

i−1)ϕ(xi),

ii Qi ← Qi−1 ∪ qi.

The data can therefore be represented as the QR-decomposition,

X⊤ = QR,

where R = [r1, ..., rn]∈Rn×n is an upper triangular matrix and ith column ri contains
the coordinates of ϕ(xi) in the orthonormal basis i.e. for a basis of n coordinates then
ϕ(xi) = ∑n

j=1 qjRji = Qnri.

Cholesky Decomposition of a Kernel Matrix Performing a Cholesky decompo-
sition on a positive semi-definite matrix is unique and if F is some feature space, then a
Cholesky decomposition on a kernel matrix is equivalent to performing Gram-Schmidt
orthonormalisation in this feature space (Shawe-Taylor and Cristianini, 2004, def 5.10).
This results in the following decomposition,

K = XX⊤ = R⊤Q⊤
nQnR = R⊤R,

where Q⊤
nQn = In and each column ri ∈R is a new mapping ϕ̂ : xi→ ri i.e.

Kij = ⟨ϕ(xi),ϕ(xj)⟩F ,
= ⟨ri, rj⟩2 .

The Cholesky implementation doesn’t require explicitly representing the basis Q and
instead constructs R directly from K where Rji = ⟨qj,ϕ(xi)⟩F for i > j. By processing
the data in order of the size of their residual norms (associated with ν), then a basis
can be constructed that captures the most important dimensions of the data. An
incomplete Cholesky decomposition limits increasing the basis by adding a tolerance
on the residual norm, under which any newly processed data point won’t be used
to augment the basis. This investigation regularly limits the basis to mchol<n such
that R∈Rmchol×n in order to place a hard limit on computational costs associated
with parent algorithms that are manipulating kernel matrices. This is achieved with a
minor modification to Shawe-Taylor and Cristianini (2004, code fragment 5.4) whose
decomposition computational complexity is linear in the size of the data ∼O(nm2

chol),
assuming an existing kernel matrix is already calculated. This subroutine is referred

B.4 Function Approximation Review 205

to as IncompleteCholesky(K,mchol, ξ) where factorisation of K will stop if either
the residual norm falls below a threshold ξ or the basis exceeds mchol.

B.4.3 Penalised Empirical Risk Revisited

The primal L̂(w) (equation (B.33)) and dual L̂(α) (equation (B.38)) penalised ERM
problems have both been posed and solutions given. The celebrated representer
theorem proves that a minimiser over the finite training set is the minimiser to the full
penalised empirical risk minimisation problem.

Representer Theorem

By explicitly choosing the hypothesis space as an RKHS H=HK in the penalised
empirical risk minimisation problem (B.32), then the representer theorem formalises
working in the dual (see section B.4.2).

Theorem B.4.6 (Representer Theorem (Schölkopf et al., 2001)[Thm. 1]). Given
a non-empty set X , an RKHS HK with kernel K :X×X →R, αj ∈R, training data
Dn = {xi, yi}ni=1, with targets Y ∈R, a strictly monotonically increasing real-valued
function g on [0,∞], cost function V :Y×Y→R ∪ {∞}, then the minimiser f̂ ∈HK

of the regularised risk functional

f̂ = arg min
f∈HK

[n∑
i=1

V (f(xi), yi) + g(||f ||HK
)
]
,

is a linear combination of kernel evaluations over training samples,

f̂(·) =
n∑
j=1

α̂jK(xj, ·)∈ Ĥk⊆HK .

Kimeldorf and Wahba (1971) first proposed this theorem with when V is a squared loss
and g(||f ||HK

) := λ||f ||2HK
. Schölkopf et al. (2001) relaxed the squared loss and regu-

lariser assumption to those assumptions stated in theorem B.4.6. Further broadening of
the conditions under which the representer theorem hold can be found in Yu et al. (2013).
The proof of theorem B.4.6 is based on the orthogonal decomposition (see theorem
B.4.1) of the RKHSHK = Ĥk⊕Ĥ⊥

k where Ĥk := {f̂ ∈HK | f̂=∑n
j=1 αjK(xj, ·), αj∈R}

is the space of functions that span the training samples in feature space HK . Thus
any RKHS function evaluation is decomposed into

f(x) = (f̂ + f̂⊥)(x),
= f̂(x) + f̂⊥(x),

= ⟨
n∑
j=1

αjK(xj, ·), K(·,x)⟩HK
+ ⟨f̂⊥, K(·,x)⟩HK

, (B.53)

206 Literature Review Supplemental

Table B.1 Least-squares computational complexity (scalar-valued f̂) for training and
function evaluation where n is the size of the training set.

Algorithm Operations

Closed-form training f̂ evaluation

Primal O(d′3) O(d′)
Dual O(n3) O(n)

where in the last line the reproducing property is invoked. The key point is that
evaluating function (B.53) at any training point xi ∈Dn results in ⟨f̂⊥, K(·,xi)⟩HK

= 0
due to orthogonality. The value of the loss function V in the penalised ERM is
therefore independent of f̂⊥, which is consistent with replacing f with f̂ in the loss
function. However the orthogonal component in the ERM’s penalising norm still exists.
By Pythagoras’ theorem,

g(||f ||HK
) = g(

√
||f̂ ||2HK

+ ||f̂⊥||2HK
),

≥ g(||f̂ ||HK
),

then the best choice for f that minimises the regulariser term is when ||f̂⊥||HK
= 0.

Thus by choosing H= Ĥk for the penalised empirical risk minimisation problem, the
solution is f̂ = ∑n

j=1 αjK(xj, ·)∈ Ĥk.

Tension in Complexity

The table B.1 describes the complexity of learning primal and dual functions in the
closed-form regression problem where d′ = dim(F) is the dimensionality of the explicit
feature space.

B.4.4 Vector-Valued Primal Regression

The general vector-valued minimisation problem is a simple extension to the scalar
penalised empirical risk problem (B.26),

f̂ = arg min
f∈H

[D∑
j=1

1
2n

n∑
i=1

V (fj(xi), yij) + λg(f)
]
,

where L is assumed to be the squared loss, D= dim(Y), f :X →Y and fj(x) is the
prediction of the jth output dimension at x. The choice of H is the interesting
component of this problem and below both the linear primal and RKHS settings are
summarised.

B.4 Function Approximation Review 207

Vector-Valued Primal Ridge Regression

Let X ∈Rd and vector dependent variables be in Y ∈RD, then assuming that all
D dimensions of Y are independent then the penalised empirical risk minimisation
problem is tantamount to solving each scalar problem (Hastie et al., 2001; Rosenblatt,
1956),

β̂(j) = arg min
β(j)

[1
2n

n∑
i=1

(yij − x⊤
i β

(j))2 + λ

2 ||β
(j)||22

]
.

By defining the regressor W := [β(1), ..,β(D)]∈Rd×D, then the minimisation problem
is characterised by choosing g(f) = 1

2
∑
j ||β(j)||22 = 1

2 ||W||
2
Fr = 1

2
∑
ij |βij|

2 then
D∑
j=1

(1
2n ||y

(j) −Xβ(j)||22 + λ

2 ||β
(j)||22

)
= 1

2n ||Y −XW||2Fr + λ

2 ||W||
2
Fr.

The solution is found by solving D regression problems, or in compact matrix form

0 = ∇W
[1
2n ||Y −XW||2Fr + λ

2 ||W||
2
Fr

]
,

= ∇W
[1
2nTr

(
(Y −XW)⊤(Y −XW)

)
+ λ

2 Tr
(
W⊤W

)]
,

= − 1
n

X⊤(Y −XW) + λW,

⇒ Ŵridge = (X⊤X + λId)−1X⊤Y, (B.54)

where line three uses the identities (B.80) and (B.82). The minimiser is a mapping
Ŵ⊤

ridge :X →Y such that predictions are made by f̂(x) = Ŵ⊤
ridgex.

Group Lasso Penalisation

Soft Thresholding The general mixed norm is used to define the L21 norm on the
matrix W∈Rd×D,

||W||pq :=
 d∑
j=1

(
D∑
ℓ=1
|wjℓ|p

)q/p1/q

,

⇒ ||W||21 =
d∑
j=1

(
D∑
ℓ=1
|wjℓ|2

)1/2

,

=
d∑
j=1
||wj:||2, (B.55)

where wj: is the jth row of W. Incorporating this into the vector-valued regression
problem describes the well-known group lasso (Yuan and Lin, 2006) problem specialised
specifically for inducing row sparsity in W (i.e. diminishes less important dimensions

208 Literature Review Supplemental

Algorithm 25 vvRegression-Primal(D)

1: Input: Data D := {X,Y}, X := [x1, ...,xn]⊤, Y := [y1, ...,yn]⊤, x∈X , y∈Y .
2: Output: linear mapping W⊤ :X →Y .
3: Initialise: ϵbestTest←∞, nfolds←5, ntest←n/nfolds, d←dim(X), partitions
{D1, ...,Dnfolds}←D, {λ}←{10−10, ..., 100}.

4: Cross-validate regulariser:
5: for each λ∈{λ} do
6: ϵsumTest ← 0
7: for k = 1 to nfolds do
8: Dtrain ← (⋃̇nfolds

i=1 Di)i ̸=k ▷ Dtrain := {Xtrain,Ytrain}
9: Dtest ← Dk ▷ Dtest := {Xtest,Ytest}

10: Wtrain = (X⊤
trainXtrain + λId)−1X⊤

trainYtrain ▷ equation (4.8)
11: ϵsumTest ← ϵsumTest + 1

2ntest
||XtestWtrain −Ytest||2Fr

12: end for
13: ϵavTest ← ϵsumTest/nfolds
14: if ϵavTest <ϵbestTest then ▷ compare estimate of out-of-sample error
15: λ∗ ← λ, ϵbestTest ← ϵavTest.
16: end if
17: end for
18: W← (X⊤X + λ∗Id)−1X⊤Y ▷ equation (4.8)
19: return W

of the input variable),

1
2n ||Y −XW||2Fr + λ||W||21 = 1

2n ||Y −
d∑
j=1

x(j)wj:||2Fr + λ
d∑
j=1
||wj:||2,

where wj: ∈R1×D, X := [x(1), ...,x(d)] and x(j) ∈Rn. This loss can be solved by sepa-
rately differentiating w.r.t. each wj: and solving

0⊤ = − 1
n

x(j)⊤(Y −
d∑

j′=1
x(j′)wj′:) + λ∇wj:||wj:||2,

where unfortunately the derivative for the L2 norm is not defined everywhere. Pro-
ceeding with

∇wj:||wj:||2 = ∇wj:

(
D∑
ℓ=1
|wjℓ|2

)1/2

=
∇wj:

∑D
ℓ=1 |wjℓ|

2

2||wj:||2
,

⇒ ∂

∂wjℓ
||wj:||2 = |wjℓ| sign(wjℓ)

||wj:||2
= wjℓ
||wj:||2

,

⇒ ∇wj:||wj:||2 = wj:

||wj:||2
∈RD,

B.4 Function Approximation Review 209

then clearly if ||wj:||2 = 0 then the derivative is undefined and therefore we must define
the subderivative (Hastie et al., 2015, p. 63),

∂||wj:||2 =

wj:/||wj:||2 ||wj:|| ≠ 0,

u∈RD : ||u||2≤ 1 ||wj:||= 0.
(B.56)

The minimisation problem that we are now faced with is

Ŵ = arg min
W ∈Rd×D

[
L(W) + Ω(W)

]
where L is the usual convex differentiable (smooth) loss function and Ω is the regulariser
which is non differentiable (non-smooth). A common approach to solve this problem is
to decouple the minimisation of both functions into separate operations in an iterative
proximal gradient (Hastie et al., 2015, section 5.3.3) (also known as a projected
gradient) descent where for the group lasso example

W(t+1) = proxλ||·||21

[
W(t) − η∇WL(W(t))

]
. (B.57)

The prox operator is a generalisation of a projection operation that projects W to a
solution constrained by || · ||21. In general if x∈H then prox operator proxλ||·|| :H→H
is defined (Hastie et al., 2015, p. 63) for some H is a Hilbert space as

proxλ||·||[x] := arg min
x̂ ∈ H

[1
2 ||x̂− x||2H + λ||x̂||

]
.

Given that the norm (equation (B.55)) is separable w.r.t. each individual group, then[
proxλ||·||21

[W(t)]
]
j:

= proxλ||·||2 [w(t)
j:] such that the operation can be carried out on each

weight group wj: independently. By solving the definition of the prox operation for the
L21 norm then proxηλ||·||21

[wj:] is in fact the group soft-thresholding operator (Hastie
et al., 2015, eqn 4.16b)

[
S21
ηλ(wj:)

]
ℓ
=


(

1− ηλ
||wj:||2

)
wjℓ ||wj:||2 >ηλ,

0 ||wj:||2≤ ηλ,
(B.58)

which is succinctly
[
S21
ηλ(wj:)

]
ℓ
=
[
1 − ηλ

||wj:||2

]
+
wjℓ , where [·]+ := max[·, 0]. For the

special case of each group being exactly each ℓth element of wj: (i.e. the jℓth element
of W) then the group lasso collapses to the lasso

[
proxλ||·||2 [w(t)

j:]
]
ℓ
=
[
proxλ||·||1 [w(t)

j:]
]
ℓ

whose soft-thresholding operator is

[
S1
ηλ(wj:)

]
ℓ
=

(|wjℓ| − ηλ) sign(wjℓ) |wjℓ|>ηλ,

0 |wjℓ| ≤ ηλ.
(B.59)

210 Literature Review Supplemental

which is succinctly
[
S1
ηλ(wj:)

]
ℓ
=
[
|wjℓ| − ηλ

]
+

sign(wjℓ). This can easily be derived
by noticing the L2 norm in equation (B.58) of the group is replaced by |wjℓ| and by
making the substitution wjℓ := |wjℓ| sign(wjℓ).

Optimising Lasso-Type Problems Iterative soft-thresholding (ISTA) (see Beck
and Teboulle (2009) and references therein) solves this optimisation problem by
iteratively making a gradient descent step followed by a projection (or soft-thresholding
operation). The celebrated FISTA (Beck and Teboulle, 2009) algorithm is a variant of
this approach that combines accelerated gradient descent (Nesterov, 1983). However
from experience with these methods in the experimental setting, their cost is high if
one wants to maintain sparse regressors in an online fashion. Solving these lasso-type
problems in the SGD domain instead proves beneficial for the algorithm developed in
Chapter 6. A review of induced structural sparsity in the stochastic setting is found
in Appendix B.5.3.

B.4.5 Sparse Projections

A Euclidean projection onto the L1-ball (see fig. B.4) is described by the following
optimisation problem,

minimise
β̂

||β̂ − β||22

subject to ||β̂||1 ≤ z,

which can be solved in linear time ∼O(dim(β)) by Duchi et al. (2008). By setting
z= 1 then any point lying outside the unit ball will be projected onto its surface.
Points occupying the interior are not projected and sparsity is induced when a vector
is projected to any of the ball’s vertices.

Figure B.4 Euclidean projections onto the L1-ball for β ∈R2.

β1

β2

z

β(1)

β̂(1)

β(2)

β̂(2)

β(3), β̂(3)

B.4 Function Approximation Review 211

B.4.6 Vector-Valued RKHS Regression

Vector-Valued RKHS

By following (Grünewälder et al., 2012b; Micchelli and Pontil, 2005), a vector-valued
RKHS (vvRKHS) can be formulated by extending the scalar RKHS (definition B.11)
and reproducing property (definition B.12) to the vector-valued setting as summarised
below.

Definition B.15 (Vector-Valued Reproducing Kernel Hilbert Space (Grünewälder
et al., 2012b)). Let X be a non-empty set, let Y be a Hilbert space with inner product
⟨·, ·⟩Y and let (H, ⟨·, ·⟩Γ) be a Hilbert space of functions f :X →Y. Then H is a Y-
valued RKHS HΓ, if for all x∈X and y∈Y the linear functional f→⟨y, f(x)⟩Y is
continuous.

By the Riesz representation theorem B.4.3, there exists for every x∈X and y∈Y , an
element Γ(x|y)(·)∈HΓ for all f ∈HΓ such that

⟨y, f(x)⟩Y = ⟨Γ(x|y)(·), f⟩Γ. (B.61)

Recall in scalar-valued setting, Riesz implies yf(x) = ⟨K(x, ·)y, f⟩K . In the vector-
valued setting this implies that there exists a linear operator Γ(x, ·) :Y→HΓ such that
Γ(x|y)(·) := Γ(x, ·)y∈HΓ. The vector-valued reproducing property (cf. the scalar
definition B.12) is therefore defined as

⟨y, f(x)⟩Y = ⟨Γ(x, ·)y, f⟩Γ, (B.62)

where Γ is the reproducing kernel.
The reproducing kernel in the vector-valued setting is related to Γ(·,x) in the

following way. Define L(Y) as the space of bounded linear operators that map Y→Y ,
then the operator-valued reproducing kernel Γ :X×X →L(Y) indexed at x,x′ ∈X is
Γ(x,x′)∈L(Y), leading to the definition

Γ(x,x′)y = (Γ(x|y))(x′). (B.63)

If Γ :X×X →L(Y) is defined by both equation (B.63) and equation (B.62) then it is
a kernel i.e. it satisfies conditions set out in Micchelli and Pontil (2005, proposition
2.1). These conditions specify a valid kernel and can be compared to the scalar RKHS
setting regarding lemma B.9 and definition B.14. One of these conditions is the inner
product. By choosing f(·)=Γ(x′|y′)(·) then from equations (B.61) and (B.62), the
inner product is defined by

⟨Γ(x|y)(·),Γ(x′|y′)(·)⟩Γ = ⟨y,Γ(x′|y′)(x)⟩Y ,

= ⟨y,Γ(x′,x)y′⟩Y , x,x′∈X , y,y′ ∈Y . (B.64)

212 Literature Review Supplemental

In the spirit of theorem B.4.4 for scalar RKHS, if a kernel Γ satisfies Grünewälder
et al. (2012b, proposition 2.1), then it is associated with a unique vvRKHS where
Γ is its reproducing kernel. In the spirit of Moore-Aronszajn (theorem B.4.5) for
scalar-valued functions, it is possible to (conversely from Riesz) define a valid kernel
and explicitly construct its unique vvRKHS (see e.g. Minh et al. (2011)).

vvRKHS Penalised Empirical Risk

By considering a data set Dn := {(x,y)i}ni=1 then Grünewälder et al. (2012b) solve the
PERM problem by choosing a hypothesis class HΓ of vvRKHS functions,

f̂ = arg min
f∈HΓ

[1
2n

n∑
i=1
||f(xi)− yi||2Y + λ||f ||2Γ

]
. (B.65)

The solution takes the form (Grünewälder et al., 2012b, theorem 2.2)

f̂(·) =
n∑
i=1

Γ(xi, ·)ci ∈HΓ, ci ∈Y ,

where coefficients {ci}i≤n are to be found. Micchelli and Pontil (2005, theorem 4.1)
show that these coefficients can be found in closed form as they are the unique solution
to the linear system of equations,

n∑
i=1

(
Γ(xj,xi) + λδij

)
cj = yi ∈Y , 1≤ j≤n.

Kernel Choice

Equation B.64 demonstrates that relationship between kernel evaluation in the vvRKHS
Γ and the output space Y . By defining function elements as

Γ(x|y)(·) = Γ(x, ·)y,
= K(x, ·)Iy,
= K(x, ·)y∈HΓ,

where I :Y→Y is an identity map and scalar kernel K :X×X →R, then equation
(B.64) becomes

⟨yK(x, ·),y′K(x′, ·)⟩Γ = ⟨y,y′K(x′,x)⟩Y
= K(x′,x)⟨y′,y⟩Y .

This is tantamount to choosing kernel Γ(x,x′) :=K(x,x′)I∈L(Y) and is valid because
it can be shown to satisfy Grünewälder et al. (2012b, proposition 2.1). The solution

B.5 Artificial Neural Networks 213

to the regression problem is therefore the solution to
n∑
i=1

(
K(xj,xi)I + λδij

)
ci = yj ∈Y , 1≤ j≤n,

⇒ ci =
n∑
j=1

Wijyj,

where Wij is an element in W = (K + λIn)−1 and Kji =K(xj,xi) is an element in K.
The function approximator therefore takes the form

f̂(x) =
n∑
i=1

Γ(xi,x)ci ∈Y ,

=
n∑
i=1

K(xi,x)I
n∑
j=1

Wijyj,

=
n∑
i=1

n∑
j=1

K(xi,x)Wijyj,

= Y⊤Wψ(x), (B.66)

where Y := [y1, ...,yn]⊤ and ψ(x) := [K(x1,x), ..., K(xn,x)]⊤. The function in equa-
tion equation (B.66) can be written as

f̂(·) = Y⊤Wψ(·),
= W̃ψ(·), (B.67)

=
n∑
i=1

w̃iK(xi, ·), (B.68)

where W̃ := [w̃1, ..., w̃n], w̃i ∈Y, which can be directly compared to primal vector-
valued ridge regression estimator.

vvRKHS Inner Product

Using the standard choice of vvRKHS kernel Γ(x,x′) :=K(x,x′)I∈L(Y) where
I :Y→Y and scalar-valued kernel K :X×X →R, then HΓ has the inner product
(Grünewälder et al., 2012a, D2, eqn 21)〈

yK(x, ·), y′K(x′, ·)
〉

Γ
:= ⟨y,y′⟩Y K(x,x′) y,y′ ∈Y , x,x′ ∈X . (B.69)

B.5 Artificial Neural Networks

The following is a brief review of gradient descent, stochastic gradient descent (SGD),
the chain rule and backpropagtion.

214 Literature Review Supplemental

B.5.1 Gradient-based Empirical Risk Minimisation

Instead of minimising the empirical loss L̂ using a closed-form batch solution, it can
instead be minimised by navigating parameters in a vector space Θ, endowed with a
norm || · ||Θ, using gradient descent (Bottou, 1998).

Batch Gradient Descent

Gradient descent is an optimisation method deployed to solve (Bottou, 1998) the
penalised risk minimisation problem as described in section B.4.1. For fθ :X →Y
belonging to a hypothesis class H of parametrised vector-valued multivariate functions,
data Dn := {(xi,yi)i}

n
i=1 drawn i.i.d, then the batch objective is defined as

L̂θ|Dn := 1
2n

n∑
i=1

V (fθ(xi),yi) + λ

2 Ω(θ),

where for the square loss V (fθ(xi),yi) = ||fθ(xi)− yi||2Y and Ω(θ) is a regulariser on the
function parameters θ. In order to form any gradient update requires the application
of the chain rule.

Lemma B.10 (Chain/Composite Rule (Haggarty, 1993, sec. 6.1.6)). a) The following
is an extension of the scalar case to the multivariate and vector-valued setting. Let a
real vector-valued and multivariate function be f :Rn→Rd. Similarly let g :Rm→Rd

and h :Rn→Rm be differentiable at h=h(x = a) and x = a∈Rn respectively. Then
the derivative of the composition f(x) := (g ◦ h)(x) w.r.t. x at x=a is written as

∂f(x)
∂x

∣∣∣∣∣
x=a

= ∂(g ◦ h)(x)
∂x

∣∣∣∣∣
x=a

= ∂g
∂h

∣∣∣∣∣
h=h(a)

◦ ∂h
∂x

∣∣∣∣∣
x=a

,

⇒ ∂f
∂x

= ∂g
∂h

∂h
∂x

,

where the last line is shorthand whose Jacobian matrix elements are(
∂f
∂x

)
ij

= ∂fi(x=a)
∂xj

,

(
∂g
∂h

)
ij

= ∂gi(h=h(a))
∂hj

,

(
∂h
∂x

)
ij

= ∂hi(x=a)
∂xj

.

b) Similarly if function h is parametrised by θ∈θ, then

∂fθ(x)
∂θ

∣∣∣∣∣
x=a

= ∂(g ◦ h)(x)
∂θ

∣∣∣∣∣
x=a

= ∂g
∂h

∣∣∣∣∣
h=h(a)

◦ ∂h
∂θ

∣∣∣∣∣
x=a

,

⇒ ∂fθ
∂θ

= ∂g
∂h

∂h
∂θ

,

Deferring the choice of regulariser until below, a first order gradient update rule is
formed by noting that the loss is the composition between the scalar-valued risk

B.5 Artificial Neural Networks 215

function V and the function approximator,

L̂θ|Dn = 1
2n

n∑
i=1

V (yi) ◦ fθ(xi) + λ

2 Ω(θ),

⇒ ∂L̂θ
∂θ

∣∣∣∣∣
Dn

= 1
n

n∑
i=1

∂V

∂fθ
∂fθ
∂θ

∣∣∣∣∣
xi,yi

+ λ

2∂θΩ(θ),

= 1
2n

n∑
i=1

(
fθ(xi)− yi

)⊤∂fθ
∂θ

∣∣∣∣∣
xi

+ λ

2∂θΩ(θ).

where ∂θΩ(θ) is the subgradient of the regulariser and in the last line the square loss
risk function is used. The first-order batch gradient descent update for a weight θ∈θ
is therefore

θ(t+1) = θ(t) − ηt
∂L̂θ
∂θ

∣∣∣∣∣
Dn
.

Stochastic Gradient Descent

The batch setting is however is computationally expensive as it requires the use of
the entire training set to evaluate the gradient step at each tth iteration. Instead
stochastic optimisation techniques can drastically decrease computational costs by
estimating gradient steps with a subset of samples drawn i.i.d from the the training
data. A concise summary can be found in Murphy (2012, sec 8.5.2). At the extreme is
stochastic gradient descent which only uses one sample drawn from (x,y)∼Dn to give
an unbiased estimate of the gradient at each tth update. The expected SGD step of
the sample gradient is the full batch gradient evaluated over the entire Dn. Stochastic
minibatch attempts to reduce the variance of the gradient update by estimating each
gradient step with a subset or minibatch of samples D̂ ∼ Dn i.e.

θ(t+1) = θ(t) − ηt
∂L̂θ
∂θ

∣∣∣∣∣
D̂
. (B.70)

In the stochastic setting one of the main focusses is in deciding on the schedule of
the learning rate ηt that guarantees convergence to a local minimum. Robbins and
Monro (1951) identify the following sufficient conditions,

∞∑
t=1

ηt =∞,
∞∑
t=1

η2
t <∞. (B.71)

Following Murphy (2012, sec 8.5.2.1)), the simplest schedule that satisfy these con-
ditions is ηt=1/t. Bottou (1998) provides additional analysis and proposes a more
configurable schedule ηt = η0(1 + at)−b (Bottou, 2012, sec 5.2) where each constant is
a tuned hyperparameter.

A cannon of work exists in the stochastic setting for modifying regular gradient
updates in order to improve algorithm convergence. Momentum (Rumelhart et al.,

216 Literature Review Supplemental

1986) (also see Nesterov (1983) which has superior convergence properties than vanilla
gradient descent) adds an update term to reduce ‘zig-zagging’ descent paths, AdaGrad
(Duchi et al., 2011) and RMSProp (Hinton et al., 2012) calculate adaptive learning rates
for each individual weight. RMSProp divides the learning rate with an exponentially
decaying square gradient magnitude for each weight. One of the most common
methods currently in use is Adam (Kingma and Ba, 2014) which can be thought
of as a combination of momentum and RMSProp. Adam maintains exponentially
decaying averages of both gradient and square gradient magnitudes for each weight,
used to compute bias-corrected first and second order gradient moments in the form
of adaptive learning rates.

B.5.2 Training Neural Networks

A brief summary of backpropagation and the architecture choice used by this thesis is
summarised below. Schmidhuber (2015) provides a deeper historical summary.

A Brief History of Artificial Neural Networks

Dreyfus (1973) details one of the first explicit examples of applying backprop (see
below) to adjust parameters in a function approximator to minimise a loss function.
But it was Werbos (1982) who first explicitly deployed backprop to train neural network
architectures, Rumelhart et al. (1986) noting that backprop allows representation
learning and later LeCun et al. (1998) in the gradient-based risk minimisation setting.
Only up until very recently have neural networks been notoriously difficult to reliably
train with only limited techniques (Lecun, 1998) available. One particular problem
was that gradient update signals became vanishingly small when activation functions
became saturated (Glorot and Bengio, 2010), thus effectively sending learning rates to
zero.

Recent research has mitigated the vanishing gradient problem by techniques such
as batch normalisation (Ioffe and Szegedy, 2015) and identifying activation functions
known as rectified linear units (ReLUs) (Nair and Hinton, 2010) that are not vulnerable
to saturation (Glorot et al., 2011; Maas et al., 2013). Together with recent Adam
(Kingma and Ba, 2014) adaptive learning rates, the ReLU-Adam architecture choice is
vastly more practical for a wide range of supervised learning problems than previous
configurations. Practical deep learning fully entered the scene when image recognition
and classification competitions started to be regularly won by hardware-accelerated
deep convolutional network architectures (Krizhevsky et al., 2012), that although have
no convergence guarantees, they frequently outperform shallow function approximators
like RKHS methods such as SVMs (Schölkopf and Smola, 2002). Deep, highly paramet-

B.5 Artificial Neural Networks 217

ric architectures are cited as having the ability to learn rich data-driven representations
(Bengio et al., 2013) and scaling well with abundant data.

Backprop

Using the notation from before, we express the function approximator of multiple com-
posite functions characterised by multiple layers of a weighted sum hℓ(x) := Wℓσℓ−1(x)
operation (where h1(x) := W1x) and a non-linearity σℓ(x) :=σℓ ◦ hℓ(x), where ℓ is
the layer index,

fθ(x) :=σL ◦ hL ◦ σL−1 ◦ ... ◦ σℓ ◦ hℓ ◦ σℓ−1 ◦ ... ◦ σ1 ◦ h1(x),
=σL ◦ hL ◦ σL−1 ◦ ... ◦ σℓ ◦ hℓ ◦ σℓ−1(x),
=σL ◦ hL ◦ σL−1 ◦ ... ◦ σℓ ◦ hℓ(x),
=:σL(x).

This notation specifies hℓ(x) as the output layer of function hℓ and σℓ(x) as the output
layer of function σℓ, both of which are evaluated when the input to fθ is x. For a
minibatch D̂ then the empirical loss4 for the neural function approximator is

L̂θ|D̂ := 1
2|D̂|

|D̂|∑
i=1

V (fθ(xi),yi).

The derivative of the loss wrt. the ℓth layer’s wkj ∈Wℓ is calculated using Jacobian
multiplication which derives from the chain rule of composite vector-valued functions,

∂L̂θ
∂wℓkj

∣∣∣∣∣
D̂

= 1
2|D̂|

|D̂|∑
i=1

∂V (fθ(xi),yi)
∂fθ

∣∣∣∣∣
fθ(xi)

∂fθ
∂hℓ

∣∣∣∣∣
hℓ(xi)

∂hℓ

∂wℓkj

∣∣∣∣∣
σℓ−1(xi)

,

= 1
2|D̂|

|D̂|∑
i=1

∂V

∂σL

∣∣∣∣∣
σL(xi)

∂σL

∂hL

∣∣∣∣∣
hL(xi)

∂hL

∂σL−1

∣∣∣∣∣
σL−1(xi)

...
∂hℓ+1

∂σℓ

∣∣∣∣∣
σℓ(xi)

∂σℓ

∂hℓ

∣∣∣∣∣
hℓ(xi)

∂hℓ

∂wℓkj

∣∣∣∣∣
σℓ−1(xi)

,

(B.72)

= 1
2|D̂|

|D̂|∑
i=1

∂V

∂hℓ

∣∣∣∣∣
hℓ(xi)

∂hℓ

∂wℓkj

∣∣∣∣∣
σℓ−1(xi)

,

where the last term is a zero vector of size dim(hℓ(xi)) apart from its kth element, ∂hℓ

∂wℓkj

∣∣∣∣∣
σℓ−1(xi)


k

=σℓ−1
j (xi).

4For simplicity the regularisation term is ignored, however reintroducing it requires additional
considerations as described in the next section

218 Literature Review Supplemental

The gradient of the loss function (evaluated for a minibatch) wrt. the entire Wℓ

matrix is therefore

∇WℓL̂
∣∣∣
D̂

= 1
2|D̂|

|D̂|∑
i=1

 ∂V
∂hℓ

∣∣∣∣∣
hℓ(xi)

⊤

σℓ−1⊤(xi), (B.73)

where σ0(xi) := xi. For every xi, it would be inefficient to evaluate each Jacobian
separately in equation (B.72) during the calculation of equation (B.73). Instead,
backpropagation efficiently calculates ∂V/∂hℓ from ∂V/∂hℓ+1,

∂V

∂hℓ+1

∣∣∣∣∣
hℓ+1(xi)

∂hℓ+1

∂σℓ

∣∣∣∣∣
σℓ(xi)

∂σℓ

∂hℓ

∣∣∣∣∣
hℓ(xi)

= ∂V

∂hℓ

∣∣∣∣∣
hℓ(xi)

,

=⇒ ∂V

∂hℓ+1

∣∣∣∣∣
hℓ+1(xi)

Wℓ+1∂σ
ℓ

∂hℓ

∣∣∣∣∣
hℓ(xi)

= ∂V

∂hℓ

∣∣∣∣∣
hℓ(xi)

,

so that equation (B.73) can be efficiently calculated one layer after another in the
backwards pass.

Figure B.5 Feedforward neural architecture at the ℓth layer, with bold lines illustrating
information flow.

i) Forward inference.

1

∂V
∂σℓ−1

∣∣∣
xσℓ−1(x)

hℓ(x)

σℓ(x)

ii) Backpropagate error signal.

1

∂V
∂σℓ−1

∣∣∣
σℓ−1(x)

∂V
∂hℓ

∣∣∣
hℓ(x)

∂V
∂σℓ

∣∣∣
σℓ(x)

Activation Functions

Softmax For any layer ℓ and positive integer m, then each jth element of σℓ(x)∈Rm

is a softmax function,

σℓj(x) :=
exp(hℓj(x))∑m
i=1 exp(hℓi(x)) .

B.5 Artificial Neural Networks 219

Typically, including architectures used in this thesis, the softmax is used as the last
Lth activation function. In this case the computational complexity of the derivative is
linear in m if the derivative is combined with the loss function derivative (Martins
and Astudillo, 2016),

∂V

∂σℓ

∣∣∣∣∣
σL(x)

∂σL

∂hL

∣∣∣∣∣
hL(x)

= σL(x)⊙ (v− v̄1)∈Rm,

where v :=
(
∂V
∂σL

∣∣∣
σL(x)

)⊤
and v̄ := ∑m

j=1 σ
ℓ
j(x)vj.

ReLU All other activation functions are set as ReLUs,

σℓj(x) := max[hℓj(x), 0],

whose Jacobian is

∂σℓ

∂hℓ

∣∣∣∣∣
hℓ(x)

= diag
∂σℓ1
∂hℓ1

∣∣∣∣∣
hℓ1(x)

, ...,
∂σℓm
∂hℓm

∣∣∣∣∣
hℓm(x)

 ∈Rm×m,

where

∂σℓj
∂hℓj

∣∣∣∣∣
hℓj(x)

=

 1 hℓj(x)>0,

0 otherwise.

B.5.3 Weight Sparsity in the Stochastic Setting

Pruning parameters from neural networks has been shown to not only improve com-
putational/memory costs, but also function approximator generalisation. Optimal
brain damage LeCun et al. (1990) use second-order derivative information to rank
parameters by their saliency wrt. to the loss function. This approach requires an
existing trained network that is then sparsifies rather than maintain structured sparsity
as the network is being trained. Other methods use mixed norm approaches to induce
sparsity in individual layer parameters or structural sparsity in groups of parameters
(Kong et al., 2014; Lebedev and Lempitsky, 2016; Wen et al., 2016; Yoon and Hwang,
2017). Such approaches implement either sub-gradient descent or stochastic proximal
gradient methods during network training (see Appendix B.4.4 for the deterministic
setting).

Truncated Gradient for Online Lasso Regression

The following summarises existing work that is modified in Chapter 6 to induce
structural sparsity in a deep CME. Langford et al. (2009) focus on solving the batch

220 Literature Review Supplemental

lasso (cf. equation (B.26))

β̂ = arg min
β∈Rd

[
L(β) + λ||β||1

]
, (B.74)

where L(β) := 1
2n ||Xβ − y||22 is a differentiable convex loss function formed from

D := {(x, y)i}
n
i=1 and linearly independent features of x are provided a priori. The

aim is such that at any iteration, β is sparse with k non-zero entries such that the
goal is to incur a cost linear in k and independent of d for each iteration. The naive
approach is to simply use subgradient descent

β ← β − η∇βL̂
∣∣∣
D̂
− ηλ∂β||β||1,

where L̂ is the loss over a minibatch D̂ ∼D. For element ℓ, the subgradient is the
piecewise function

[
∂β||β||1

]
ℓ
∈

 sign(βℓ) βℓ ̸= 0,

[−1, 1] βℓ = 0.
(B.75)

Usually practitioners ignore the ambiguous gradient at βℓ = 0, however stochastic
gradient descent will not produce sparse solutions as it is almost impossible for a β
estimate be driven to zero when using floating point arithmetic. Another approach is
to iteratively take an SGD step with an additional mapping T :Rd→Rd,

β ← T
(
β − η∇βL̂

∣∣∣
D̂
,ω
)
, (B.76)

where ω is a set of hyperparameters. A naive choice for T = Tround is to round the
gradient steps to zero if they fall within a value ω i.e.

[
Tround(u, ω)

]
ℓ
=

 0 |uℓ| ≤ω,

uℓ otherwise.
(B.77)

The problem with this approach is that the rounding is a hard threshold and may
send too many weights to zero as they pass through [−ω, ω]. On the other hand,
gradient descent may not actively drive weights to this range thus not inducing sparsity.
Overall the algorithm is very sensitive to choice of ω. A final approach would be to
set T = Tsoft as the soft thresholding operator in equation (B.59) i.e.[

Tsoft(u, ηλ)
]
ℓ
=
[
S1
ηλ(u)

]
ℓ
=
[
|uℓ| − ηλ

]
+

sign(uℓ),

which is equivalent to a stochastic variant of the iterative shrinkage methods as
described in Appendix B.4.4. However Langford et al. (2009) point out that even the
soft thresholding method may be too aggressive and drive all weights to zero over the
course of the optimisation. Langford et al. (2009) instead combine both Tsoft and Tround

B.6 Matrix Identities 221

into the truncated Ttrunc by only applying the soft-thresholding in a range [−ω, ω],

[
Ttrunc(u, ηλ, ω)

]
ℓ
=


[
|uℓ| − ηλ

]
+

sign(uℓ) |uℓ| ≤ω,

uℓ otherwise.
(B.78)

It is claimed that not only will this create sparsity but it restricts driving parameters
to zero to a small region around zero. Note that as ω→∞ then Ttrunc→Tsoft. All T
variants are be visualised in fig. B.6.

Figure B.6 Individual weight shrinkage

(a) Previous Shrinkage Methods (b) Truncated Shrinkage

B.6 Matrix Identities

B.6.1 Cook Book

The following identities are used throughout this thesis and are taken from the Matrix
Cookbook (Petersen and Pedersen, 2012).

No. 85: ∇ww⊤Bw = 2Bw (B.79)
No. 115: ∇WTr[W⊤W] = ∇WTr[WW⊤] = 2W (B.80)
No. 118: ∇WTr[WXW⊤Z] = 2ZWX (B.81)
No. 119: ∇WTr[(XWZ−Y)⊤(XWZ−Y)] = 2X⊤(XWZ−Y)Z⊤ (B.82)

Appendix C

External Work

C.1 CCME Supplemental

The following supplemental summarises contributions external from this thesis made
by colleagues in Lever et al. (2016). These contributions are integral to the final
operation of the CCME algorithm. However this thesis does contribute to the overall
experimentation of the final algorithm in multiple control tasks, therefore a description
of this external work is critical. This work is also an inspiration to this thesis’ final
chapter where the compression set is maintained in an alternative way in the SGD
setting.

C.1.1 Compression Set

At the kth policy iteration, a CME is defined over the entire set of successor states
S ′:={s′

i}
n
i=1 seen thus far in data Dn,

µ̂(s, a) =
n∑
j=1

αj(s, a)ϕ(s′
j)∈F , (s, a)∈S×A. (C.1)

If ||α(s, a)||1≤ 1 for all (s, a)∈S×A then this is known as a proper CME. If n grows
uncontrollably, so does i) the cost of training the embedding and ii) the cost of policy
evaluation in the finite-induced MDP. The compressed CME (CCME) approximates the
embedding over a compressed basis C:={ϕ(ci)}mi=1. The following theory establishes
that a compressed embedding can approximate the uncompressed embedding within a
tolerance defined by the norm in F by choosing C with algorithm 26.

Lemma C.1. Given a proper CME µ̂, S ′:={s′
i}
n
i=1 from data Dn and any small error

δ, suppose there exists a compression set C= {ϕ(cj)}mj=1 such that a basis b(s′
j)∈Rm

224 External Work

exists that can approximate ϕ(s′
j),

||
m∑
i=1

bi(s′
j)ϕ(ci)− ϕ(s′

j)||F ≤ δ, ∀s′
j ∈S ′, (C.2)

where the constraint ||b(s′
j)||1≤ 1 holds. In addition, if we define

αCCME
i (s, a) := ∑n

j=1 bi(s′
j)αj(s, a), then

i)
m∑
i=1
|αCCME
i (s, a)| ≤ 1,

and ii) if µ̂CCME(·) := ∑m
i=1 α

CCME
i (·)ϕ(ci) then

||µ̂(s, a)− µ̂CCME(s, a)||F ≤ δ, ∀(s, a)∈S×A.

Proof. i)
m∑
i=1
|αCCME
i (s, a)| =

m∑
i=1
|
n∑
j=1

bi(s′
j)αj(s, a)|,

≤
n∑
j=1
|αj(s, a)|

m∑
i=1
|bi(s′

j)|,

≤ 1.

ii) For all (s, a)∈S×A,

||µ̂(s, a)− µ̂CCME(s, a)||F = ||
n∑
j=1

αj(s, a)ϕ(s′
j)−

m∑
i=1

αCCME
i (s, a)ϕ(ci)||F ,

= ||
n∑
j=1

αj(s, a)ϕ(s′
j)−

m∑
i=1

n∑
j=1

bi(s′
j)αj(s, a)ϕ(ci)||F ,

= ||
n∑
j=1

αj(s, a)
(
ϕ(s′

j)−
m∑
i=1

bi(s′
j)ϕ(ci)

)
||F ,

≤
n∑
j=1
|αj(s, a)|max

j
||ϕ(s′

j)−
m∑
i=1

bi(s′
j)ϕ(ci)||F ,

≤ δ.

Therefore if condition C.2 is satisfied, then a δ-lossy CCME is guaranteed.

Theorem C.1.1. Algorithm algorithm 26 with C initialised to ∅ returns a δ-lossy
compression set of S ′.
Proof: Condition C.2 in lemma C.1 must be satisfied to guarantee a δ-lossy CCME

C.1 CCME Supplemental 225

embedding. By construction algorithm 26 solves

max
1≤j≤n

min
b∈Rm, ||b||1≤1

[
||

m∑
i=1

biϕ(ci)− ϕ(s′
j)||F

]
, (C.3)

which satisfies this condition, such that the returned set is the δ-lossy compression
set.

The compression algorithm takes each new data point, projects it onto a sparse basis
of existing compression points using a constrained optimisation algorithm such as lasso.
If the error is over a threshold δ, the successor state is added to the compression set.

Algorithm 26 AugmentCompressionSet(L, C, S ′, δ)
1: Input: State kernel L :S × S→R defining implicit feature map ϕ(s) :=L(s, ·),

existing compression set C= {ϕ(c1), ...,ϕ(cm)}, candidate states S ′ = {s′
1, ..., s′

n},
tolerance δ.

2: Output: Augmented compression set C.
3: for j = 1 to n do
4: if minb∈Rm, ||b||1≤1||

∑m
i=1 biϕ(ci)− ϕ(s′

j)||F > δ then
5: C←C ∪ ϕ(s′

j), m←m+ 1 ▷ Augment compression set.
6: end if
7: end for
8: return C

This algorithm is guaranteed to find the compression set for a proper (||α(s, a)||1 ≤ 1)
CME.

Corollary C.1.1 (Performance Guarantee). Given a proper CME µ̂ and proper CCME
µ̂CCME, if

sup
(s,a) ∈ S×A

[
||µ̂(s, a)− µ̂CCME(s, a)||F

]
≤ δ,

and if the policy improvement suboptimality bound in theorem 4 is defined as Bk(ṽ∗),
then at the k=κ iteration, policy improvement suboptimality using the CCME is upper
bounded by

||vπ̂κ − v∗||∞ ≤ Bκ(ṽ∗) + 2γ
(1− γ)2 δ||ṽ

∗||F .

By using the compressed embedding for value iteration, the original policy improvement
suboptimality bound for a proper vanilla CME is only worsened by 2γ

(1−γ)2 δ||ṽ∗||F .

Implementation

Gaussian kernel matrices are positive definite and therefore they have a unique
symmetric square root. The kernel matrix over the compression set C and candidate

226 External Work

state s′,

L =
LCC LCs′

Ls′C Ls′s′

 ,
has a square root of the form L 1

2 = [Φ̃⊤ϕ̃(s′)] = [Φ̃; ϕ̃⊤(s′)]∈Rm+1×m+1 where LCC ≈
Φ̃Φ̃⊤ ∈Rm×m, LCs′ ≈ Φ̃ϕ̃(s′)∈Rm and Ls′s′ ≈ ϕ̃⊤(s′)ϕ̃(s′)∈R. The constrained
minimisation in lemma 26 can therefore be implemented as a lasso (Tibshirani, 1996)
optimisation problem

b̂ = min
b∈Rm, ||b||1≤1

[
||Xb− y||2

]
,

with design matrix X := Φ̃⊤ and target y := ϕ̃(s′).

C.1.2 Contraction Constraint

The following projection can be achieved by a lasso (Tibshirani, 1996) optimisation
where for each (s, a) presented to the model, the projection is

Proj
(
α(s, a)

)
= arg min

β∈Rm, ||β||1≤1

[
||

m∑
j=1

αj(s, a)ϕ(s′
j)−

m∑
j=1

βjϕ(sj)||F
]
,

= arg min
β∈Rm, ||β||1≤1

[
||Φ⊤α(s, a)−Φ⊤β||F

]
. (C.4)

Implementation

An incomplete Cholesky decomposition (see section B.4.2) of the kernel matrix
LCC ≈ Φ̃Φ̃⊤ is made to approximate Φ⊤≈ Φ̃⊤ ∈Rmchol×m where the constantmchol <<m

is the dimensionality of the underlying orthonormal basis that each ϕ(s′) is decomposed
by. The projection (C.4) is therefore approximated by

β̂ = LassoSparse
(
α(s, a)

)
, (C.5)

= arg min
β∈Rm,||β||1 ≤ 1

[
||Φ̃⊤α(s, a)− Φ̃⊤β||2

]
.

The Cholesky decomposition is used to limit the computational complexity of the lasso
minimisation problem, which is performance critical as it is executed every time the
embedding is evaluated. In a similar way that the L1-projection (in section B.4.5) was
used to induce α sparsity for the CME, LassoSparse performs a lasso optimisation on
α to find the projected β̂ constrained by the L1-norm. Note that the β̂ is normalised
with the L1-norm to ensure it lies on the unit ball such that it satisfies the pseudo-MDP
contraction constraint.

	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Foreward
	1.1.1 Model-based vs model-free RL
	1.1.2 Neuropsychological motivation for MBRL
	1.1.3 Existing MBRL Approaches

	1.2 Rationale
	1.2.1 Approximate Value Prediction
	1.2.2 CMEs and Pseudo MDPs
	1.2.3 Investigation Summary and Contributions
	Contributions

	2 Literature Review
	2.1 Reinforcement Learning
	2.1.1 Overview
	2.1.2 Bellman Equations
	2.1.3 The Control Problem

	2.2 Theory of Dynamic Programming in Known MDPs
	2.2.1 Space of Value Functions
	2.2.2 Bellman Operators
	Bellman Operator & Policy Evaluation
	Bellman Optimality Operator & Policy Improvement

	2.3 Implementation of DP Algorithms
	2.3.1 Value Prediction: Policy Evaluation
	2.3.2 Control: Value Iteration
	2.3.3 Control: Policy Iteration
	2.3.4 Summary

	2.4 Model-Free RL in Unknown Discrete MDPs
	2.4.1 Value Prediction: TD Learning
	2.4.2 Control: SARSA & Q-Learning

	2.5 Model-Free Approximate Policy Iteration
	2.5.1 Value Function Approximation (Supervised Learning)
	2.5.2 Approximate Value Prediction
	Dynamic Programming with Linear Value Function Approximation
	Bellman Residual (MSBE Objective)
	Projected Bellman Residual (MSPBE Objective)
	LSTD Link to Linear TD
	Value Prediction Stability and Motivation for the CME Approach
	Approximate Action-Value Prediction

	2.5.3 Approximate Policy Improvement
	Policy Improvement Stability and Chatter
	Policy Improvement Stability and Motivation for the CME Approach

	2.6 Model-based Approximate Policy Iteration
	2.6.1 Hilbert Space Embeddings of Conditional Expectations
	Conditional Mean Embeddings
	Pseudo MDPs

	2.6.2 Additional Pseudo-MDPs
	Non-Parametric Finite-Induced MDPs
	Parametric Linear Action Models

	2.6.3 Research Preamble

	3 Benchmark Algorithms and Initial Improvements
	3.1 Explorative PI
	3.1.1 Online Data Acquisition
	3.1.2 CME Improvements
	3.1.3 Experimental Method
	General Settings
	CME Settings
	FLAM-ADMM Settings

	3.1.4 Experiments
	Mountain Car
	Cart-Pole
	Quadrocopter MDPs

	3.1.5 Results
	3.1.6 Discussion

	3.2 Conclusion

	4 Parametric CME Policy Iteration
	4.1 Function Approximation with Vector-Valued Matching Pursuit
	4.1.1 Algorithm Details
	4.1.2 Backfitting
	4.1.3 Function Sparsification
	4.1.4 Algorithm Implementation
	4.1.5 Experiments

	4.2 PCMEs: Parametric Embeddings with Greedy Feature Selection
	4.2.1 Algorithm Details
	Data Acquisition
	Model Learning
	Greedy Feature Learning
	Approximate Policy Evaluation
	Conservative Policy Improvement

	4.3 Experiments
	4.4 Discussion
	4.4.1 Comparison with non-parametric pseudo MDPs
	4.4.2 PCME with fixed state representation
	4.4.3 PCME with learnt state representation

	4.5 Conclusion and future work
	4.5.1 Deep PCME
	4.5.2 Is PCME a pseudo-MDP?

	5 Sparse Non-Parametric CME Policy Iteration
	5.1 CCMEs: Non-Parametric Embeddings with Sparsification
	5.1.1 Algorithm Details
	Solving for W in the Primal
	Maintaining a Compact Basis B
	Implementing a Sparse C
	Other Approaches to Embedding Sparsification
	Contraction Constraint (External Work)

	5.2 Experiments
	5.2.1 Holding Pattern Task

	5.3 Discussion
	5.3.1 Comparison with Other Algorithms
	5.3.2 Learning B
	5.3.3 Contraction Constraint
	5.3.4 Controlling C

	5.4 Conclusion

	6 Differentiable Sparse CME Policy Iteration
	6.1 Differentiable CMEs: Deep Embeddings
	6.1.1 DCCME
	Online Dynamics Model
	Architecture
	Contraction Constraint
	Compression Set C

	6.1.2 Pruning C During SGD
	Contraction Constraint
	Compression Set

	6.1.3 ACCME
	6.1.4 ACCME-R: Learning the Reward Function

	6.2 Experiments
	6.3 Discussion
	6.3.1 DCCME
	6.3.2 ACCME

	6.4 Conclusion

	7 Conclusion
	7.1 Algorithm Comparison
	7.1.1 Overview

	7.2 Future Work
	7.2.1 Immediate Extensions
	7.2.2 Long Term Extensions

	Bibliography
	Appendix A Supplemental
	A.1 Matching Pursuit Variants
	A.1.1 Notation
	A.1.2 Matching Pursuit for RKHS-Valued Regression
	A.1.3 Other Variants
	Maintaining B
	Maintaining C

	A.1.4 Sparsification in the vvRKHS Norm
	A.1.5 Sparsifying Embeddings in the RKHS norm
	Approximate Matching Pursuit in the RKHS Norm for Maintaining B

	A.2 DQN Experiments

	Appendix B Literature Review Supplemental
	B.1 Bellman Sup-Norm Contractions
	B.2 Block Matrix Inversion
	B.3 Some Mathematical Definitions
	B.3.1 Some Measure Theory
	B.3.2 Some Functional Analysis

	B.4 Function Approximation Review
	B.4.1 Learning Prediction Functions from Data
	Empirical Risk Minimisation
	Mean Squared Error
	Linear OLS Regression
	Unique Solution
	Bias-Variance Decomposition of the Expected Loss
	Bias-Variance Trade-Off and Overfitting
	Penalised Empirical Risk Minimisation

	B.4.2 Reproducing Kernel Hilbert Spaces of Functions
	Primal and Dual Representation
	Reproducing Kernel Hilbert Spaces
	Choosing Kernels
	Gaussian Kernels and Infinite Dimensional Feature Space
	Kernel Matrix Decompositions

	B.4.3 Penalised Empirical Risk Revisited
	Representer Theorem
	Tension in Complexity

	B.4.4 Vector-Valued Primal Regression
	Vector-Valued Primal Ridge Regression
	Group Lasso Penalisation

	B.4.5 Sparse Projections
	B.4.6 Vector-Valued RKHS Regression
	Vector-Valued RKHS
	vvRKHS Penalised Empirical Risk
	Kernel Choice
	vvRKHS Inner Product

	B.5 Artificial Neural Networks
	B.5.1 Gradient-based Empirical Risk Minimisation
	Batch Gradient Descent
	Stochastic Gradient Descent

	B.5.2 Training Neural Networks
	A Brief History of Artificial Neural Networks
	Backprop
	Activation Functions

	B.5.3 Weight Sparsity in the Stochastic Setting
	Truncated Gradient for Online Lasso Regression

	B.6 Matrix Identities
	B.6.1 Cook Book

	Appendix C External Work
	C.1 CCME Supplemental
	C.1.1 Compression Set
	Implementation

	C.1.2 Contraction Constraint
	Implementation

