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Abstract

This paper considers the computational hardness of computing expected out-

comes and deciding almost–sure termination of probabilistic programs. We show

that deciding almost–sure termination and deciding whether the expected outcome

of a program equals a given rational value is Π0
2–complete. Computing lower and

upper bounds on the expected outcome is shown to be recursively enumerable and

Σ0
2–complete, respectively.

1 Introduction

Probabilistic programs [10] are imperative sequential programs with the ability to draw
values at random from probability distributions. They are used in security to describe
cryptographic constructions (such as randomized encryption) and security experiments [2],
in machine learning to describe distribution functions that are analyzed using Bayesian
inference [3], and in randomized algorithms. They are typically just a small number of
lines, but hard to understand and analyze, let alone algorithmically.

This paper considers a precise classification of the computational hardness of solving two
main analysis problems for probabilistic programs: (1) almost–sure termination [8] — does
a program terminate with probability one? — and (2) computing expected outcomes —
is the expected outcome of a program (variable) equal, smaller, or larger than a given
rational number? Expected outcomes correspond to McIver & Morgan’s weakest pre–
expectation semantics of pGCL, the probabilistic version of Dijkstra’s guarded command
language [11].

Several results on computational hardness in connection with analyzing probabilistic pro-
grams have been reported in the literature, like non–recursive–enumerability results for
probabilistic rewriting logic [4] and decidability results for restricted probabilistic pro-
gramming languages [13]. A lot of work has also been done towards automated reasoning
for almost–sure termination. For instance [17] gives an overview of some particularly inter-
esting examples of probabilistic logical programs and the according intuition for proving
almost–sure termination. Arons et al. reduce almost–sure termination to termination of
a non–deterministic program by means of a planner [1]. In [6], a pattern–based approach
which exploits this idea together with a prototypical tool support is presented.

∗This research is funded by the Excellence Initiative of the German federal and state governments and

by the EU FP7 MEALS project.
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Despite several approaches to tackle the problem of almost–sure termination in an au-
tomated manner, the majority of the literature does not consider the hardness of the
problem or states that it must intuitively be harder to solve than the termination prob-
lem for ordinary, i.e., non–probabilistic programs. For instance in [12] it is noted that
while partial correctness for small–scale examples is not harder to prove than for ordinary
programs, the case for total correctness of a probabilistic loop must be harder to analyze.
As another example [6] suggests that almost–sure termination must be harder to decide
than ordinary termination since for the latter a topological argument suffices while for
the former arithmetical reasoning is needed.

Aside from the intuition that almost–sure termination must be somewhat harder to de-
cide, to the best of our knowledge, there seems to be yet no precise classification of the
computational hardness of deciding this major analysis problem. This gap is bridged by
this paper. Such a precise classification is not only of theoretical interest, but allows for
deeper insights into the specific difficulties of dealing with the problem of almost–sure ter-
mination and may help in identifying subclasses of programs for which it becomes easier so
solve. Through our classification we cannot only establish that almost sure–termination
is in fact strictly harder to decide than ordinary termination but we can also make a
statement on the upper bound of the hardness of the problem.

In this paper we study and formalize the problem of computing expected outcomes and
the problem of deciding almost–sure termination, and we establish the following hardness
results: We first show that computing lower bounds on the expected outcome of program
variable v by executing a probabilistic program P is recursively enumerable. Computing
upper bounds for the expected outcome is shown to be Σ0

2–complete, whereas deciding
whether the expected outcome of v equals some rational is shown to be Π0

2–complete.
Finally, almost–sure termination of P is shown to be Π0

2–complete. The immediate conse-
quences of the latter result are twofold: (1) deciding almost–sure termination is not only
intuitively but provably strictly harder than deciding termination for ordinary programs,
and (2) deciding almost–sure termination is not harder than deciding whether an ordinary

program halts on all or infinitely many inputs [15].

Regarding the consequences of the Σ0
2–completeness of computing upper bounds for ex-

pected outcomes we note the following: If both upper and lower bounds for expected out-
comes were recursively enumerable, then each expected outcome would be a computable
real number. However, since upper bounds are shown to be not recursively enumerable
(implied by the Σ0

2–completeness), we can establish that in general it is not possible to
approximate expected outcomes from above and from below with arbitrary precision.

Our hardness results are established by reductions from the universal halting problem for
ordinary programs. Remarkably the probabilistic programs we use in our reduction obey
a certain syntactic schema, namely that the randomization and the actual computation
are strictly separated. We interpret this as possible evidence for the existence of a “normal
form” for probabilistic programs.

2 Preliminaries

In order to have a frame of reference in which we can classify the hardness of calculating
expected outcomes of probabilistic programs, we first briefly recall the concept of the
arithmetical hierarchy:
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Definition 1 (Arithmetical Hierarchy [9, 14]):

The class Σ0

n
is defined as

Σ0
n =

{

A
∣

∣

∣
A =

{

~x
∣

∣ ∃y1 ∀y2 ∃y3 · · · ∃/∀yn : (~x, y1, y2, y3, . . . , yn) ∈ R
}

,

R is a decidable relation
}

,

the class Π0

n
is defined as

Π0
n =

{

A
∣

∣

∣
A =

{

~x
∣

∣ ∀y1 ∃y2 ∀y3 · · · ∃/∀yn : (~x, y1, y2, y3, . . . , yn) ∈ R
}

,

R is a decidable relation
}

,

and the class ∆0

n
is defined as ∆0

n = Σ0
n ∩ Π0

n, for every n ∈ N.

Note that we implicitly always quantify over Q+ and that by the ~x’s we mean
tuples over Q+. Multiple consecutive quantifiers of the same type can be
contracted to one quantifier of that type, so the number n really refers to
the number of necessary quantifier alternations rather than to the number of
quantifiers used.

A set A is called arithmetical, iff A ∈ Γ0
n, for some Γ ∈ {Σ, Π, ∆} and some

n ∈ N. The inclusion diagram

Σ0
n

Π0
n

⊂

⊂
∆0

n+1

⊂
⊂

Σ0
n+1

Π0
n+1

holds for every n ≥ 1, thus the arithmetical sets form a strict hierarchy.
Furthermore note that Σ0

0 = Π0
0 = ∆0

0 = ∆0
1 is exactly the class of the decidable

sets and Σ0
1 is exactly the class of the recursively enumerable sets.

Next we recall the concept of many–one reducibility and the concept of completeness.
Both these notions allow us to precisely classify the hardness of calculating expected
outcomes and deciding almost–sure termination.

Definition 2 (Many–One Reducibility [14, 16]):

Let A, B be arithmetical and let X be some appropriate universe, such that
A,B ⊆ X . A set A is called many–one–reducible to a set B, denoted
A ≤m B, iff there exists a computable function f : X → X , such that

∀~x ∈ X :
(

~x ∈ A ⇐⇒ f(~x) ∈ B
)

.

If f is a function, such that f many–one reduces A to B, we denote this by
f : A ≤m B. Note that ≤m is obviously transitive.

Definition 3 (Γ0

n
–Completeness [14]):

A set A is called Γ0

n
–complete, for Γ ∈ {Σ, Π, ∆}, iff both A ∈ Γ0

n and A is
Γ0

n
–hard, meaning B ≤m A, for any set B ∈ Γ0

n.

An important fact about Σ0
n– and Π0

n–complete sets is that they are in some sense the
most complicated sets in Σ0

n and Π0
n, respectively. Formally, this can be expressed as

follows:

3



Lemma 1 (Properties of Complete Sets [5]):

If A is Σ0
n–complete, then A ∈ Σ0

n \ Π
0
n. Analogously if A is Π0

n–complete,
then A ∈ Π0

n \ Σ
0
n.

Lemma 1 implies in particular that for a Σ0
n–complete set A it holds that A 6∈ ∆0

n.

3 Probabilistic Programs

In order to speak about probabilistic programs and the computations performed by such
programs, we first briefly introduce their syntax and their semantics:

Definition 4 (Syntax of Probabilistic Programs):

Let Var be the set of program variables. The set Prog of probabilis-
tic programs is defined inductively as follows: For any v ∈ Var and any
arithmetical expression e over Var (not to be confused with the sets from
the arithmetical hierarchy), the assignment v := e is in Prog. Furthermore
if P1, P2 ∈ Prog, p ∈ [0, 1] ⊆ Q, and if b is a Boolean expression over
arithmetic expressions then the concatenation P1;P2, the probabilistic choice
{P1} [p] {P2}, and the while–loop WHILE (b) {P1} are also in Prog. We call
the set of programs that do not contain any probabilistic choices the set of
ordinary programs and denote this set by ordProg.

This syntax is a subset of pGCL originated from McIver and Morgan [11]. We omitted
skip–, abort–, and if–statements, as those are syntactic sugar. Furthermore, we do
not consider (non–probabilistic) non–determinism. The operational semantics for our
programs is given below:

Definition 5 (Semantics of Probabilistic Programs):

Let the set of variable valuations be denoted by V = {η | η : Var → Q+}, let
the set of program states be denoted by S =

(

Prog ∪ {↓}
)

×V× I × {L, R}∗,
for I = [0, 1] ⊆ Q+, let JeKη be the evaluation of the arithmetic expression e
given the variable valuation η, and analogously let JbKη be the evaluation of the
Boolean expression b. Then the semantics of probabilistic programs is
given by the smallest relation ⊢ ⊆ S×S which satisfies the following inference
rules:

(assign)
〈v := e, η, a, θ〉 ⊢ 〈↓, η[v 7→ max{JeKη, 0}], a, θ〉

(concat1)
〈P1, η, a, θ〉 ⊢ 〈P

′
1, η

′, a′, θ′〉

〈P1; P2, η, a, θ〉 ⊢ 〈P ′
1; P2, η′, a′, θ′〉

(concat2)
〈↓; P2, η, a, θ〉 ⊢ 〈P2, η, a, θ〉

(prob1)
〈{P1} [p] {P2}, η, a, θ〉 ⊢ 〈P1, η, a · p, θ · L〉

(prob2)
〈{P1} [p] {P2}, η, a, θ〉 ⊢ 〈P2, η, a · (1− p), θ · R〉

(while1)
JbKη = True

〈WHILE (b) {P}, η, a, θ〉 ⊢ 〈P; WHILE (b) {P}, η, a, θ〉

4



(while2)
JbKη = False

〈WHILE (b) {P}, η, a, θ〉 ⊢ 〈↓, η, a, θ〉

We use σ ⊢k τ and σ ⊢∗ τ in the usual sense. Furthermore we write σ ⊢(name) τ
if τ is inferred by the use of the (name)–rule (for name ∈ {assign, concat1,
. . .}).

The semantics is mostly straightforward except for two things: in addition to the program
that is to be executed next and the current variable valuation, each state also stores a
string θ ∈ {L, R}∗ that indicates which probabilistic choices were made in the past (Left
or Right) as well as the probability a with which those choices were made. The graph
that is spanned by the ⊢–relation can be seen as an unfolding of the MDP–semantics for
pGCL provided by Gretz et al. [7].

4 Expected Outcomes and Termination Probabilities

In this section we formally define the notions of the expected outcome of P ∈ Prog as
well as its termination probability. We start by some auxiliary notions: It is a well–
known result due to Kleene that for any program state σ for which the successor is
inferred without the use of the (prob1)– or the (prob2)–rule, i.e., the next instruction to
be executed is not a probabilistic choice, the successor of σ is unique and computable:

Theorem 1 (The State Successor Function T [9]):

Let So be the set of program states for which the successor is inferred with-
out the use of the (prob1)– or the (prob2)–rule. Then there exists a total
computable function T: So →

(

S ∪ {⊤}
)

, such that

T(σ) =

{

τ, if σ ⊢ τ

⊤, if σ = 〈↓, η, a, θ〉.

The successor of a state σ ∈ S \ So is not unique, because the program chooses a left
or a right branch with some probability. However, if we resolve the probabilistic choice
by providing a symbol L or R that indicates whether the left or the right branch shall
be chosen, we can come up with a computable function Tprob which computes a unique
successor:

Corollary 1 (The Probabilistic State Successor Function Tprob):

There exists a total computable function Tprob : (S \ So) × {L, R} → S, such
that

Tprob(σ, s) =

{

τL, if s = L and σ ⊢(prob1) τL

τR, if s = R and σ ⊢(prob2) τR.

While T and Tprob each compute only the next successor state, we can also define a
computable function T∗

prob that computes the k-th successor state according to some
sequence w ∈ {L, R}∗ which tells T∗

prob how to resolve the probabilistic choices that occur
along the computation:

Corollary 2 (The k-th State Successor Function T∗
prob):

There exists a total computable function T∗
prob : S×N×{L, R}∗ →

(

S∪{⊤}
)

,
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such that

T∗
prob(σ, k, w) =

{

τ, if σ = 〈P, η, a, θ
〉

⊢k 〈P ′, η′, a′, θ · w
〉

= τ

⊤, otherwise.

So T∗
prob returns a successor state τ , if σ ⊢k τ , whereupon exactly |w| inferences must use

the (prob1)– or the (prob2)–rule and the probabilistic choices are resolved according to
w. Otherwise T∗

prob returns ⊤. Note in particular that for both the inference of a terminal
state 〈↓, η, a, θ〉 within less than k steps as well as the inference of a k-th successor state
through less than |w| probabilistic choices, the calculation of T∗

prob will result in ⊤.

In addition to T∗
prob , we will need three more computable operations for defining the

expected outcomes and almost–sure termination:

Corollary 3:

There exist total computable functions α :
(

S ∪ {⊤}
)

→ Q+, ℘ :
(

S ∪ {⊤}
)

×
Var → Q+, and h : N→ {L, R}∗, such that

α(σ) =

{

a, if σ = 〈↓, η, a, θ〉

0, otherwise,
(1)

℘(σ, v) =

{

η(v) · a, if σ = 〈↓, η, a, θ〉

0, otherwise,
(2)

h is a computable bijection. (3)

So the function α takes a state σ and returns the probability of reaching σ, and the
function ℘ takes a state σ and a variable v and returns the probability of reaching σ
multiplied with the value of v in the state σ. Both functions do that only if the provided
state σ is a terminal state. Otherwise they return 0.

We now have all the concepts and notations available for defining the expected outcome of
a program variable after executing a probabilistic program and for defining the program’s
termination probability:

Definition 6 (Expected Outcomes and Termination Probabilities):

Let P ∈ Prog and let η0 ∈ V, such that ∀x ∈ Var : η0(x) = 0. Then starting in
η0,

1. the expected outcome of v ∈ Var after executing P , denoted EP (v), is given by

EP (v) :=
∑

i∈N

∑

j∈N

℘
(

T∗
prob

(

〈P, η0, 1, ε〉, j, h(i)
)

, v
)

,

2. the probability that P terminates, denoted PrP (↓), is given by

PrP (↓) :=
∑

i∈N

∑

j∈N

α
(

T∗
prob

(

〈P, η0, 1, ε〉, j, h(i)
)

)

.

EP (v) is basically equivalent to the expected reward introduced by Gretz et al. in [7]
and thereby coincides with the expectation transformer semantics by McIver and Morgan
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[11]. The main difference is that the expected reward is defined on a Markov decision
process, whereas EP (v) is defined on its unfolding. In principle, for EP (v) we sum over
all possible numbers of inference steps and over all possible sequences for resolving prob-
abilistic choices, using ℘ we filter out the terminal states σ, and finally sum up the values
of ℘(σ, v).

For PrP (↓) we basically do the same thing but we merely sum up the probabilities of
reaching final states, thus ignoring the variable valuations, by using α instead of ℘. Re-
garding the termination probability of a probabilistic program, the case of almost–sure
termination is of special interest:

Definition 7 (Almost–Sure Termination):

We say that a program P terminates almost–surely iff PrP (↓) = 1. Con-
sequently, we define the according set AST ⊂ Prog as

P ∈ AST :⇐⇒ PrP (↓) = 1 .

In order to investigate the complexity of calculating EP (v), we define three sets: LEXP,
which relates to the set of lower bounds of EP (v), UEXP, which relates to the set of
upper bounds of EP (v), and EXP which relates to EP (v) itself:

Definition 8 (LEXP, UEXP, and EXP):

The sets LEXP ,UEXP ,EXP ⊆ Prog × Var ×Q are defined as follows:

(P, v, q) ∈ LEXP :⇐⇒ q < EP (v)

(P, v, q) ∈ UEXP :⇐⇒ q > EP (v)

(P, v, q) ∈ EXP :⇐⇒ q = EP (v)

5 Hardness of Computing Expected Outcomes

We now have all definitions available to begin the investigation of the computational
hardness of computing expected outcomes. The first fact we observe is that lower bounds
for expected outcomes are recursively enumerable:

Lemma 2:

LEXP ∈ Σ0
1, thus LEXP is recursively enumerable.

Proof: (P, v, q) ∈ LEXP

⇐⇒ q < EP (v)

⇐⇒ q <
∑

i∈N

∑

j∈N

℘
(

T∗
prob

(

〈P, η0, 1, ε〉, j, h(i)
)

, v
)

⇐⇒ ∃y1∃y2 : q <

y1
∑

i=0

y2
∑

j=0

℘
(

T∗
prob

(

〈P, η0, 1, ε〉, j, h(i)
)

, v
)

=⇒ LEXP ∈ Σ0
1

Recursive enumerability of LEXP means that lower bounds for expected outcomes can
be effectively enumerated by some algorithm.

Now, if the set of upper bounds, i.e., UEXP, was recursively enumerable as well, then
expected outcomes would be computable reals. However, the contrary will be established
over the course of the following lemmas:

7



q

∃y1, y2 −→

EP (v)

(P, v, q) ∈ LEXP

q

←− ∀y1, y2 −→

δ
EP (v)

(P, v, q) ∈ UEXP

Figure 1: Schematic depiction of the formulae defining LEXP and UEXP, respec-
tively. In each diagram, the solid line represents the monotonically increasing graph
of

∑

0≤i≤y1

∑

0≤j≤y2
℘
(

T∗
prob (〈P, η0, 1, ε〉 , j, h(i)) , v

)

plotted over increasing y1 and y2.

Lemma 3:

UEXP ∈ Σ0
2 .

Proof: (P, v, q) ∈ UEXP

⇐⇒ q > EP (v)

⇐⇒ q >
∑

i∈N

∑

j∈N

℘
(

T∗
prob

(

〈P, η0, 1, ε〉, j, h(i)
)

, v
)

⇐⇒ ∃δ > 0 ∀y1 ∀y2 : q − δ >

y1
∑

i=0

y2
∑

j=0

℘
(

T∗
prob

(

〈P, η0, 1, ε〉, j, h(i)
)

, v
)

=⇒ UEXP ∈ Σ0
2

Figure 1 shows a schematic depiction of the intuition behind the formulae defining LEXP
and UEXP, respectively.

After establishing UEXP ∈ Σ0
2 there is in principle still hope that UEXP is recursively

enumerable as Σ0
1 ⊂ Σ0

2. We will, however, establish next that UEXP ∈ Σ0
2 \ Π

0
2 6⊇ Σ0

1

meaning that UEXP is much harder to solve than, for instance, the halting problem.
To establish this, we will make use of a well–known Π0

2–complete problem, namely the
universal halting problem for ordinary programs.

Definition 9 (The Universal Halting Problem):

The universal halting problem is a subset UH ⊂ ordProg, which is char-
acterized as follows:

P ∈ UH :⇐⇒ ∀η ∃k ∃η′ : 〈P, η, 1, ε〉 ⊢k 〈↓, η′, 1, ε〉

We denote by UH the complement of UH, i.e., UH = ordProg \ UH.

In other words, a program P is in UH, if it terminates its computation after a fi-
nite number of steps starting in any initial valuation η. A characterization from a
more computational point of view would be that P ∈ UH if and only if P satisfies
∀η ∃k ∃η′ : T∗

prob

(

〈P, η, 1, ε〉, k, ε
)

= 〈↓, η′, 1, ε〉 .

The universal halting problem and its complement satisfy the following completeness
properties:

Theorem 2 ([15]):

UH is Π0
2–complete and UH is Σ0

2–complete.
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Next we will exploit Theorem 2 to establish the Σ0
2–completeness of UEXP:

Lemma 4:

UEXP is Σ0
2–complete.

Proof: By Lemma 3 we have UEXP ∈ Σ0
2, so it remains to show that UEXP is Σ0

2–hard:
We do this by proving UH ≤m UEXP. Consider the following function f : UH ≤m UEXP:
f takes an ordinary program Q ∈ ordProg as its input and returns the triple (P, v, 1),
where v does not occur in Q and P ∈ Prog is the following probabilistic program:

i := 0; {continue := 0} [0.5] {continue := 1};
while (continue 6= 0){

i := i + 1;

{continue := 0} [0.5] {continue := 1}
};
s := 0; {continue := 0} [0.5] {continue := 1};
while (continue 6= 0){

s := s + 1;

{continue := 0} [0.5] {continue := 1}
};
v := 0; TQ

TQ is a program that computes ℘
(

T∗
prob

(〈

Q; v := 1, gQ(i), 1, ε
〉

, s, ε
)

, v
)

· 2s+1 and
stores the result in the variable v, and gQ : N → V is some computable bijection, such
that ∀z ∈ Var :

[

gQ(i)
]

(z) 6= 0 implies that z occurs in Q.

Partial Correctness: ℘
(

T∗
prob

(〈

Q; v := 1, gQ(i), 1, ε
〉

, s, ε
)

, v
)

· 2s+1 returns 2s+1 if and
only if Q halts on input gQ(i) after exactly s steps (otherwise 0), because only then,
the variable v is set to 1 after executing the program Q; v := 1 for s steps. The two
while–loops generate independent geometric distributions with parameter 0.5 on i and s,
respectively, so the probability of generating exactly the numbers i and s is (2i · 2s)−1.
The expected value of v after executing the program P is hence

∑

i∈N

∑

s∈N

1

2i · 2s
· ℘

(

T∗
prob

(

〈

Q; v := 1, gQ(i), 1, ε
〉

, s+ 1, ε
)

, v

)

· 2s+1 .

Since for each input, the number of steps until termination is either unique or does not
exist, the formula for the expected outcome reduces to

∑

i∈N 2
−i · 2 = 1 if and only if Q

halts on every input after some finite number of steps. Thus if there exists an input on
which Q does not eventually halt, then (P, v, 1) ∈ UEXP as then the expected value is
strictly less than one. If, on the other hand, Q does halt on every input, then the expected
value is exactly one and hence (P, v, 1) 6∈ UEXP.

Total Correctness: It is an easy but tedious exercise to construct a program computing
gQ(i) given only Q. Program code for ℘, T∗

prob , multiplication and potentiation is also
computable. So in total, the program code for P and thereby the triple (P, v, 1) is
computable.

By Theorem 2, UH is Σ0
2–complete, so for any A ∈ Σ0

2 it holds that A ≤m UH. Since
we have just proven that UH ≤m UEXP, it follows that A ≤m UH ≤m UEXP, and by
transitivity A ≤m UEXP.

Finally, it follows from Lemma 1 that membership for UEXP is in some sense the hardest
problem in Σ0

2:

9



Corollary 4:

UEXP ∈ Σ0
2 \ Π

0
2 .

Remark 1:

In the probabilistic program P used in the proof of Lemma 4, the randomiza-
tion and the actual computation are completely separated. Since P in a sense
“solves” the universal halting problem, we interpret this as possible evidence
that P is in some sort of “normal form” for probabilistic programs.

We now go on with characterizing the complexity of the set EXP, which is the set we are
mainly interested in, when it comes to expected outcomes. As a first result we establish
the following:

Lemma 5:

EXP ∈ Π0
2 .

Proof: By Lemma 3, there exists a decidable relation U , such that (P, v, x) ∈ UEXP
iff ∃r1∀r2 : (r1, r2, P, v, x) ∈ U . Furthermore from Lemma 2 it follows that there exists a
decidable relation L, such that (P, v, x) ∈ LEXP ⇐⇒ ∃ℓ : (ℓ, P, v, x) ∈ L. Let ¬U and
¬L be the (decidable) negations of U and L, respectively, then:

(P, v, q) ∈ EXP

⇐⇒ q = EP (v)

⇐⇒ q ≤ EP (v) ∧ q ≥ EP (v)

⇐⇒ ¬
(

q > EP (v)
)

∧ ¬
(

q < EP (v)
)

⇐⇒ ¬
(

∃r1 ∀r2 : (r1, r2, P, v, q) ∈ U
)

∧ ¬
(

∃ℓ : (ℓ, P, v, q) ∈ L
)

⇐⇒
(

∀r1 ∃r2 : (r1, r2, P, v, q) ∈ ¬U
)

∧
(

∀ℓ : (ℓ, P, v, q) ∈ ¬L
)

⇐⇒ ∀r1 ∀ℓ ∃r2 : (r1, r2, P, v, q) ∈ ¬U ∧ (ℓ, P, v, q) ∈ ¬L

=⇒ EXP ∈ Π0
2

Intuitively the above proof asserts that we check whether q = EP (v) by deciding both
q ≤ EP (v) and q ≥ EP (v) and that this check can be done by deciding a Π0

2–relation.
Furthermore, we now establish the main theorem showing that EXP is Π0

2–complete, thus
extremely hard to solve:

Theorem 3:

EXP is Π0
2–complete.

Proof: By Lemma 5, EXP ∈ Π0
2, so it remains to show that EXP is Π0

2–hard. We do
this by proving UH ≤m EXP. Consider again the function f from the proof of Lemma 4:
Given an ordinary program Q, f computes the triple (P, v, 1), where P is a probabilistic
program P which has an expected outcome of one for the variable v if and only if Q
terminates on all inputs, which is nothing else than Q ∈ UH. Thus f : UH ≤m EXP.

By Theorem 2, UH is Π0
2–complete, so for any A ∈ Π0

2 it holds that A ≤m UH. Since
we have just proven that UH ≤m EXP, it follows that A ≤m UH ≤m EXP, and by
transitivity A ≤m EXP.

It now follows from Lemma 1 that membership for EXP is in some sense the hardest
problem in Π0

2:
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Corollary 5:

EXP ∈ Π0
2 \ Σ

0
2 .

6 Hardness of Deciding Almost–Sure Termination

In this section, we turn towards the problem of almost–sure termination and establish
completeness results for this problem. We first establish that almost–sure termination is
many–one reducible to EXP and thereby lays in Π0

2:

Lemma 6:

AST ≤m EXP .

Proof: Consider the following function f which takes a probabilistic program Q as its
input and returns the triple (P, v, 1), where P is the following probabilistic program:

v := 0; Q; v := 1

Total and Partial Correctness: The triple (P, v, 1) is obviously computable. On execut-
ing P , the variable v is set to one only in those runs in which the program Q terminates.
So the expected value of v converges to one, if and only if the probability of Q termi-
nating converges to one. So if Q ∈ AST , then and only then (P, v, 1) ∈ EXP. Thus
f : AST ≤m EXP .

By Theorem 3, EXP is Π0
2–complete, so it follows directly from Lemma 6 that:

Corollary 6:

AST ∈ Π0
2 .

Next we will establish the Π0
2–hardness and thereby the Π0

2–completeness of AST by
many–one–reduction from the universal halting problem:

Theorem 4:

AST is Π0
2–complete.

Proof: By Corollary 6, AST ∈ Π0
2, so it remains to show that AST is Π0

2–hard. For
that we many–one reduce the Π0

2–complete universal halting problem to AST using the
following function f : UH ≤m AST : f takes an ordinary program Q as its input and
returns the following probabilistic program P :

i := 0; {continue := 0} [0.5] {continue := 1};
while (continue 6= 0){

i := i + 1;

{continue := 0} [0.5] {continue := 1}
};
TQ

where TQ is an ordinary program that simulates the program Q on input gQ(i), and
gQ : N→ V is some computable bijection, such that ∀v ∈ Var :

[

gQ(i)
]

(v) 6= 0 implies that
v occurs in Q.

Partial Correctness: The while–loop in P establishes a geometric distribution with pa-
rameter 0.5 on i and hence a geometric distribution on all possible inputs for Q. After
the while–loop, the program Q is simulated on the input generated probabilistically in the
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while–loop. Obviously then the entire program P terminates with probability one, i.e.,
terminates almost–surely, if and only if the simulation of Q terminates on every input.
Thus Q ∈ UH if and only if P ∈ AST .

Total Correctness: As mentioned in the proof of Lemma 4, the program code for gQ is
computable. Also the program code for a universal program capable of simulating any
program Q on a given input is computable [9]. So in total, the program code for P is
computable.

By Theorem 2, UH is Π0
2–complete, so for any A ∈ Π0

2 it holds that A ≤m UH. Since
we have just proven that UH ≤m AST , it follows that A ≤m UH ≤m AST , and by
transitivity A ≤m AST .

7 Conclusion

Our results show that one can effectively enumerate all rationals that are strictly less than
the expected outcome for a program variable v after executing a probabilistic program
P , i.e., arbitrarily close approximations from below are computable. Obtaining such
approximations from above is harder: These would be recursively enumerable only if
there would be access to an oracle for the (non–universal) halting problem [9, 14]. This
approximation problem is as hard to solve as deciding whether e.g., an ordinary program
halts on finitely many inputs [15].

Deciding almost–sure termination is even harder and is as hard as computing exact ex-
pected outcomes. Namely, such outcomes are not recursively enumerable even if there
would be access to an oracle for the halting problem [15]. Other natural examples that
are equally hard are the universal halting problem and the problem of deciding whether
an ordinary program halts on infinitely many inputs [15].

The established hardness results give insights into the specific difficulties of dealing with
the studied decision problems. In particular further research could be directed towards
identifying subsets of probabilistic programs for which the upper bounds of the expected
outcome are given by a Σ0

2–set A = {x | ∃y1∀y2 : (x, y1, y2) ∈ R} such that the set
A′ = {(x, y1) | ∀y2 : (x, y1, y2) ∈ R} is decidable. In this case, the set A of upper
bounds would be recursively enumerable and thus the exact expected outcome can be
approximated arbitrarily close from below and from above. Obtaining and deciding A′

would basically amount to transforming a given probabilistic program into an ordinary
program for which then a non–termination proof has to be found which in certain cases
can be automated.

Aside from the above considerations the structure of the probabilistic programs we use
in our proofs hints towards the possible existence of a normal form for probabilistic pro-
grams in which the randomization and the actual computation are separated. Further
investigation of this issue is planned. Further research could also deal with hardness of
the considered problems in presence of non–determinism.
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