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Abstract
On the surface, task-completion should be easy in graphical
user interface (GUI) settings. In practice however, different
actions look alike and applications run in operating-system
silos. Our aim within GUI action recognition and prediction
is to help the user, at least in completing the tedious tasks
that are largely repetitive. We propose a method that learns
from a few user-performed demonstrations, and then
predicts and finally performs the remaining actions in the
task. For example, a user can send customized SMS
messages to the first three contacts in a school’s
spreadsheet of parents; then our system loops the process,
iterating through the remaining parents.

First, our analysis system segments the demonstration into
discrete loops, where each iteration usually included both
intentional and accidental variations. Our technical
innovation approach is a solution to the standing
motif-finding optimization problem, but we also find visual
patterns in those intentional variations. The second
challenge is to predict subsequent GUI actions,
extrapolating the patterns to allow our system to predict and
perform the rest of a task. We validate our approach on a
new database of GUI tasks, and show that our system
usually (a) gleans what it needs from short user
demonstrations, and (b) autocompletes tasks in diverse GUI
situations.
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Figure 1: A repetitive GUI task,
where the user is renaming files on
Google Drive to match names in
Excel (a separate app). This type
of task is long and tedious, and
hard for a typical computer user to
automate. Our system learns to
complete such tasks by watching a
user perform a few demonstration
iterations.

Introduction
People who do repetitive tasks on their computer or mobile
seemingly have a choice: they can either manually perform
each loop until the task is complete, or they can program a
macro to do the task for them. Except for short tasks, this is
often a no-win situation in practice. Programming is not a
universal skill, and most software applications (apps) must
be controlled through a graphical user interface (GUI),
rather than through an API or command-line hooks.

Figure 2: Mobile-phone testing:
The task is to visit websites from a
list, and to save screenshots of
how they appeared on a mobile
phone. The phone is connected to
a PC using remote desktop
software. GUI information is only
shared through computer vision.

Software agents, known as bots, are still very far from
fulfilling the seamless learning and skill-transfer dreams of
Maes [9], Negroponte [11], and Kay [5]. We find that even
computer-literate users over-estimate modern bot
capabilities until they are asked to automate a repetitive
task themselves. There are two main misconceptions.
Myth 1: “Modern bots can see, but just lack good human
interfaces.” Bots can indeed grab screenshots, and they can
attempt local Optical Character Recognition. But they can
not systematically understand the GUI elements in terms of
grouping widgets [3] or identifying interactive buttons. The
diversity in mobile app GUIs makes this harder than ever.
Without training data, scene-understanding of GUIs is not
especially easier than scene-understanding of satellite
images. Myth 2: “The bot can just ask the operating system
(OS), skipping computer vision of the GUI.” Even Open
Source OS’s like Android restrict developers (within an app)

to the narrow parameters of accessibility API’s, and those
cannot retrieve the complete visual information of a GUI [7].

Our proposed system addresses a desktop version of the
Programming by Demonstration problem. It lies at the
intersection of intention-inference, software usability, and
action recognition and prediction. It lets a user teach a bot
to perform a repetitive task, much like they’d teach a human.
Consider the examples shown in Figures 1 and 2. In the
first example, the user is renaming each file in Google Drive
to match a list of names given in an Excel spreadsheet.
This type of recurrent task is common to most computer
users, and it is only the experts who have access to the
scripting tools required to automate them. Our algorithm
takes snapshots and the user’s mouse/keyboard events as
inputs, and from that initial user-demonstration of the task, it
segments and extrapolates what was different about each
loop, to complete the task automatically. Like Microsoft
Excel’s AutoFill, users want to extrapolate from these first
few inputs, rather than cloning them. Aptly, Excel’s FlashFill
is touted as an important milestone [2] for practical inductive
programming, because it extrapolates non-sequential
patterns, e.g., parsing of initials from people’s names.
Unlike Microsoft’s apps, our input comes from many diverse
apps, bitmaps of heterogeneous content, and noisy
time-series human demonstrations, where order matters.

Recurrent Actions in User Input
We strive to recover and predict a user’s intended loops by
analyzing the data from their initial demonstration. We take
as input a sequence of basic actions,
A = (A0, A1, . . . AN ), scraped using [4]. Figure 3 shows
the input sequence for a simple example task, where the
user had performed click actions in different locations to
sequentially delete one type of file from a folder. Each basic
action An is a tuple containing the action type an, together
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Figure 3: An example problem setup. This diagram shows that our system allows detour actions, which can accidentally happen during the
demonstration process, without the user needing to re-record everything again from scratch. Here, the Windows pop-up asks to restart the
system, and the user dismisses this dialog with a mouse click. Our system only has access to whole-screen screenshots and corresponding
keystrokes and mouse pointer locations, and uses these to infer the intended recurrent behavior.

with, where appropriate, a screenshot and mouse cursor
location. The action types obtained by [4] are: LeftClick,
RightClick, DoubleClick, ClickDrag, and Typing.

Dataset: We used 15 GUI tasks
to evaluate the system’s ability
to save users’ time. Examples
are shown in the video. One ex-
ample task is visiting each “per-
son” on a web-page of experts,
where each one has a photo
and a text name that links to
that individual’s homepage. Our
system must detect the differ-
ent photos that have nothing in
common, localize the text, and
then print the resulting home-
page, before coming back to
the start page and repeating the
loop. Another example task has
a user creating a list of local files
based on a folder visible in a re-
mote desktop.

to extra, unwanted actions being performed, or missing actions
from the sequence. Our motif-finding algorithm is usually able
to deal with these issues.

RECURRENT ACTION RECOGNITION

Basic Motif Finding
Given a sequence A, the purpose of a basic motif finding
algorithm is to identify just a pair of subsequences (Si,S j),
each of which is composed of equivalent actions executed
in the same order [34, 31]. Because only a single pair is
identified, this is not suitable for our purpose where we wish
to find all loops in A.

Bagnall et al. [5] propose two greedy algorithms for finding
a set of motifs from an input sequence. They find the best
matching pair of subsequences from all the existing subse-
quence pairs in A, before then greedily matching other non-
overlapping subsequences to this bootstrap pair. There are,
however, fundamental limitations to this greedy style algo-
rithm. The largest problem is that it can be trapped in a local
minimum — if a bad initial pairwise match is found, then the
algorithm can not recover. We demonstrate these issues in our
experiments section. Further, they require the motif length
to be user-specified. In comparison to these basic methods,
we maintain a set of candidate matches while iterating over
different length subsequences.

Distance Between Two Sequences Dist(Si,S j)
Crucial to our algorithm is a method for determining the simi-
larity between a pair of candidate subsequences (Si,S j). We
seek a distance measure Dist() which is small when the two
subsequences perform the same task, and is large otherwise.
For example, given the following three sequences:
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we would expect A to have a smaller distance to B than it
does to C. Each action is a tuple containing the basic action
a and, where applicable, screenshots at the start and end of
the basic action, and the respective mouse locations. For clar-
ity, in this example we only depict the extracted screenshots.
We define Dist as the sum of individual differences between
corresponding pairs of actions, i.e.,

Dist(Si,S j) =
L

Â
z=0

d(Siz,S jz), where

d(Siz,S jz) = dAction(Siz,S jz)+dOb j(Siz,S jz). (2)

The difference between actions, dAction, is a simple binary in-
dicator function, applying infinite penalty if the basic actions
(e.g., LeftClick, ClickDrag) performed did not match, and
a fixed cost of e where they do. dOb j is a visual matching
penalty, evaluated by comparing the Normalized Cross Corre-
lation between shifted sub-images of the screenshots extracted

from the region around the cursor position when the action
took place. See the supplementary material for further details
of dAction and dOb j.

We notice that just using Dist strongly favors trivial pairwise
matches of length 1. Therefore, we use a normalized distance,
which favors longer subsequences, defined as

NormDist(Si,S j) = a�|Si|Dist(Si,S j), (3)

where a is a small constant.

Our Method for Multiple Motif Finding
Our algorithm extends exact time series motif discovery [34,
5] by jointly adding to a set of motifs instead of just a single
pair. We assume that the user has provided K, the number
of times they have performed the loop. We start by finding a
set C of candidate pairs of single actions. This set includes
all pairs which have a NormDist smaller than a threshold r.
Each of these pairs is one possible candidate seed (ideally,
two-of-a-kind), which could grow into a full solution. For the
example in Figure 2, this might be:
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We then grow each pair by finding the closest matching action
from A not yet in the pair. This creates a set of 3-tuples:
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(4)

Some of these lists correctly contain multiple occurrences of
the same action, while others do not. A second pruning stage
shrinks this set to a manageable size. We then extend each
3-tuple of single items in C into 3-tuples of two-actions, by
adding subsequent actions from A:
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This process continues until there are no more items to add
to each list. We can assign a score to each candidate in C
by measuring the average normalized distance between each
pair of subsequences. The list in C with the lowest score is
returned as our discovered set of motifs R. In this example,
the output we expect is

✓⇣
, ,

⌘
,

⇣
, ,

⌘
,

⇣
, ,

⌘◆
.

(5)

Note that the three separate loops have been correctly identi-
fied and segmented, and the equivalent actions in each loop

Figure 4: Expected result (R) of
an example input from Figure 3.

We assume that there is a sequence of actions T which, in
the user’s mind, is the ‘true’ sequence. Template T contains
the ground truth sequence of events that the user wishes to
be repeated to complete their long chain of iterative tasks. If,
in demonstrating the task, the user just perfectly performed
T once as in [4], the problem would still be difficult, as:

1. The computer vision system seeks to find visual
similarity between changing elements, and if the loop
is only performed once, then we only have a single
training example for predicting each future iteration.

2. The prediction of future actions relies on knowing
about iterative changes between user actions in

different loops. For example, loop two might require a
click below the corresponding click in the first loop.
This cannot be learned from a single loop.

3. In reality, even when a user tries to complete a
sequence correctly, they typically deviate from the
true sequence through no fault of their own. Multiple
repetitions help us to discover the ‘true’ intention of
the user.

We therefore ask that the user performs several loops. We
then use our motif-finding algorithm to recover a set of
divided subsequences, given A. The only assumption we
make is that our full sequence A contains at least one
‘good enough’ sequence T̃ which is functionally equivalent
to the true sequence T, despite having some minor
additions or deviations from the ideal. Other instantiations



of T in A may be noisier, with extra, unwanted actions
being performed, or missing actions. Our motif-finding
algorithm is usually able to deal with these issues.

Recurrent Action Recognition

Contribution overview: Our
main contribution is an algorithm
for programming by demonstra-
tion of recurrent GUI tasks.
Our visual motif analysis over-
comes three main challenges:
(1) The user-demonstrated
loops are non-identical. The
community working on set-
based Motif-finding has avoided
visual problems, and seeks to
identify a perfect subsequence
that was repeated K times,
given N actions and known K.
(2) The demonstrated actions
are typically iterating through
the initial loops of a lengthy
task. To automatically predict
and execute the remaining
loops, we must detect the one
or more iterators implied by the
demonstration. (3) Compared
to experimental validation of
passive action-recognition in
computer vision, recogniz-
ing and then predicting GUI
tasks requires a video dataset
annotated with acceptable-
interaction meta-information.

Our algorithm extends exact time series motif discovery [1,
10] by jointly examining a set of motifs instead of just a
single pair. We assume that the user has provided K, the
number of times they have performed the loop. The
algorithm starts building a list of candidates C by forming
K-tuples of similar single actions which have distances
between all pairs of members smaller than a threshold.
Each K-tuple of single actions is then extended into
K-tuple of two-actions subsequences by adding
subsequent actions from A. The process continues until
there are no more actions to add to each subsequence. The
algorithm finally returns the set of motifs R which is the
candidate with the lowest average distance from the set C.

Artificial Subsequences for Robustness
Our algorithm, so far, has assumed that each version of R
contained in A is a perfect, unmodified copy. However, as
we have discussed, many users will miss out actions or
include extra unneeded actions. The user variations can be
categorized into three classes: (a) Missing actions, where
the user omits a single step; (b) Noisy actions between two
subsequences, and (c) Noisy actions within a subsequence.
Figure 3 shows an example of a noisy action within a
subsequence, where the user has dismissed a system
dialogue with a click while demonstrating the loops.

To cope with the user variations, we generate artificial
subsequences during our solving process. We extend
subsequences in C with copies of items within C, each of
which has some user actions removed, or extra ones
appended. These simulate user variations help to improve

the matching between noisy input subsequences. Distance
measures computed from or to any of these generated
subsequences have an additional penalty added for each
each appended or skipped action.

As a result of our Recurrent Action Recognition algorithm,
the example input from Figure 3 will be mapped to the
output in Figure 4. Note that our system automatically
identified and segmented the three separate loops, and
then aligned the equivalent actions in each loop. The extra
action (of dismissing the popup window) has been correctly
identified as noise, and is therefore not shown in this final
result. An ability to deal with user variations gives our
algorithm much greater scope for use compared to
Familiar [12].

Prediction of Future Actions
We use the discovered sets of loops to predict the user’s
intended actions. Our best discovered set of subsequences
R effectively forms a training set to enable this inference.
As the user confirms or corrects the system at run-time, the
training set will grow. See the Human-in-the-loop sidebar.

We find, for each discovered action Ai, the set of
corresponding actions from each of the K subsequences in
R. This gives us up to K cropped training images for each
action in the loop. We denote this set of crops associated
with action Ai as Hi. Our system iteratively plays back
each action Ai at time t at a predicted screen location
(x∗, y∗), computed using Bayes’ Theorem as

x∗, y∗ = argmax
x,y

P (x, y |Hi, I)

= argmax
x,y

P (Hi, I |x, y)P (x, y), (1)

where I is the current screenshot, P (Hi, I |x, y) is the
visual term, computed by normalized cross-correlation, and



P (x, y) is the location prior, inferred by maximum likelihood
estimation. This strategy allows our algorithm to deal with
loop variations as described in Figure 6.

Validation of the Algorithm
We first measure our system’s ability to recognize recurrent
actions in the user’s demonstration loops, using our
Demonstration Dataset. The dataset comprises 55 GUI
tasks. Each sequence was recorded by asking 7
experienced computer users to perform the first four or so
loops of specific repetitive GUI tasks. While working and
with their knowledge, they were recorded by sniffer-software
that captured both mouse/key events, and screenshots
throughout each task. The mouse/key events in this
dataset, and all sniffer-events observed at test-time, are
converted into basic actions thanks to [4], and serve as
inputs to our system.

Human-in-the-loop
A good Programming by
Demonstration (PbD) system
should let users know the next
action that the system is going
to execute, and allow users to
approve or, if necessary, modify
the action [6]. After predicting
the most likely action location
x∗, y∗ at time step t, our system
shows the user an animation of
the proposed action and asks
them to approve or correct the
action. The user’s response
is added to the information
‘bucket’ for this action, used for
refining the prediction model for
the action at the next iteration.
This means that, as our system
interacts with the human, it
learns more about the task and
improves its predictions.

We then annotated each task’s action-transcript, identifying
the boundaries between loops, and tagging the parts of
each loop that included either extra actions or were missing
actions, as compared to the other loops in the task. On
average, each loop in this dataset has 4.33 actions. A test
user performed the first 3 or 4 loops of each task, and these
were labeled to quantify performance. Because real users
are not perfect, loops within the same sequence naturally
differ from each other by having extra, missing, or iteratively
changing actions. On average, 65% of sequences have
noisy actions and 29% have missing actions.

Our recurrent action recognition algorithm is able to
produce a ranked list of possible answers, sorted by the
average value of normalized distances between every pair
of motifs inside the answer. We count up the fraction of
tasks where the correct answer is within the top k answers
returned by the algorithm, and plot this success rate against

1 2 3 4 5 6 7 8 9 10

Number of predictions made (k)

0

10

20

30

40

50

60

70

80

90

100

%
 s

e
q

u
e

n
ce

s 
co

rr
e

ct
ly

 f
o

u
n

d

* These  algorithms
have  access  to
ground truth pairwise  
dis tances

Ours  (full)*
Ours  (full)
Ours  (-miss ing)*
Ours  (-miss ing)
Greedy motif*
Motif*
Motif
Greedy motif
Divis ion

{

Figure 5: Quantitative results of our recurrent action recognition
algorithm on the Demonstration Dataset. Algorithms with an
asterisk, also shown with dashed lines, have access to the ground
truth distance measures. We compare our algorithm to three
baselines: Division, Greedy motif and Motif. Greedy motif and
Motif achieve the same performance so are shown as one line
here. Ours (-missing) is our ablation study, showing the degraded
result when we remove the artificially appended actions.

different values of k. Figure 5 demonstrates the
performance of our full algorithm compared to three
baselines: Division, Motif, and Greedy motif.

Usability Testing
We conducted a user study to evaluate the usability of our
prototype system. Ten users, who are white-collar workers,
participated in this study. The group consisted of 7 females
and 3 males, their ages varying between 24 to 40. One of
the participants works as a programmer, and the rest have
little to no programming skills (the average score of ten
participants on the question "I can do programming" is 2.4
on 7-point Likert scale). All of the participants reported that
they use computers in their daily work.



The participants were introduced to our system and each of
them was asked to complete two recurrent tasks in rounds:
the first round has them complete a task manually (without
our system), while they complete the task using our system
in the second round. The tasks we set the users were
“creating list of filenames from the files in a folder”, and
“creating slides of images from a folder of images”. After

Category Score / 7
Usefulness 5.65 ± 0.36
Ease of use 5.51 ± 0.30

Ease of learning 6.05 ± 0.06
User satisfaction 5.86 ± 0.14
Overall average 5.70 ± 0.32

Table 1: Results of the user study
on our full system. Each question
was scored on a Likert scale out of
a maximum of 7 (strongly agree).

completing the tasks, participants were asked to fill out the
USE questionnaire [8], which measures usefulness, ease of
use, ease of learning, and satisfaction aspects of the
system. Each item was rated on a 7-point Likert scale, with
values from "Strongly Disagree:1" to "Strongly Agree:7".

The overall averaged score of the system was 5.70, and the
breakdown of scores across categories is shown in Table 1.
Participants stated in the open ended comments, that the
system reduced tedium in completing recurrent work, is
easy to learn and use, and gains users’ trust by asking the
users when a prediction is uncertain. Users expressed that
they would like the initial analysis to run faster, and for the
pattern matching to be robust (e.g., to occlusions).

Conclusions and Future Work

Figure 6: Loop Variations: Some
actions have the same visual
appearance on each loop – we
show these here as squares. This
might include clicking the browser’s
’back’ button. Other actions change
appearance, and even location, on
each loop. These are shown here
as stars, to indicate intentional
variations. Our system can
correctly predict for both of these
scenarios, and when actions are
missing or added, while HILC [4]
can only deal with the scenario
where there is only a single star at
the start of the loop, and that
example must be perfect.

We have shown how to recognize repeated actions in hybrid
visual-sniffer data, when a user interacts with one or more
GUIs. The key has been to extend existing motif-finding
algorithms to deal with sets, and to cope with noisy and real
user interaction data. Beyond parsing a user’s GUI
demonstration, we were able to make an interactive
prediction and correction system that users can guide.

In future work, we need to detect and control
screen-scrolling, and parse text. Even without these
enhancements, our system demonstrates a new
visual-interaction problem within programming by
demonstration. That many repetitive GUI-based tasks might

be automatable for non-programmers is significant, and
could be especially helpful for building interfaces for
motor-impaired and hands-free computer users.
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