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First-principles soft-mode lattice dynamics of PbZr0.5Ti0.5O3 and shortcomings
of the virtual crystal approximation
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A comparative study of PbTiO3, PbZrO3, and the solid solution PbZr0.5Ti0.5O3 is performed on the soft-mode
lattice dynamics within the first Brillouin zone. We consider the six unique B-site orderings for PbZr0.5Ti0.5O3

representable within the 2 × 2 × 2 primitive perovskite supercell as well as the virtual crystal approximation
(VCA) to extract the phonon dispersion relations of a high-symmetry cubic-constrained form using density
functional perturbation theory. We find that the most unstable modes in the rock-salt ordered structure and the
VCA, like pure PbZrO3, are antiferrodistortive (AFD) while lower symmetry arrangements are dominated by
�-point ferroelectric (FE) instabilities like pure PbTiO3. Despite similarities in the phonon dispersion relations
between the rock-salt ordered supercell and the VCA, the character of modes at high symmetry points are found
to be different. In particular, the a0a0c− and a0a0c+ AFD instabilities of the rock-salt ordering are replaced with
a−b−c− and a+b+c+ instabilities within the VCA. Such a rotation pattern is not seen in any of the supercell-
based calculations, thus serving as a quantitative example of the inability of the method to accurately represent
local structural distortions. Single modes are found exhibiting dual order parameters. At the zone center, some
arrangements show mixed FE and antipolar soft modes (due to Pb motion transverse to the polar axis), and at
long wavelengths all arrangements have soft modes of a mixed antipolar and AFD character. These are described
with direct analysis of the eigendisplacements.

DOI: 10.1103/PhysRevB.100.224305

I. INTRODUCTION

The PbZrxTi1−xO3 (PZT) solid solution is the most abun-
dantly used piezoelectric material. This is due to its gi-
ant electromechanical response and well-developed, low-cost
synthesis [1,2]. Together, this has ensured the technological
relevance of the material, which is well adapted for exploita-
tion in ultrasonic transducers [3,4], ceramic capacitors, and
actuators [5]. More exotically, PZT has been proposed for
use in potential piezoelectricity induced room-temperature
superconductors where a supercurrent is induced along a
metal/piezoelectric interface [6,7]. For these applications, it is
most common to consider PZT at around x ≈ 0.52 [8,9] in the
region near the morphotropic phase boundary (MPB). This is
a compositional boundary at the peak of the electromechanical
response. This boundary exhibits complex lattice dynamics
where a flat energy surface for polarization rotation exists be-
tween the FE tetragonal (P ‖ [001]) and rhombohedral (P ‖
[111]) phases via intermediate monoclinic phases [8,10,11].

It is useful to regard PZT as a randomly ordered isovalent
B-site substituted compound in a matrix of either of the two
phase diagram end members PbTiO3 (PTO) or PbZrO3 (PZO).
The former is a prototypical FE with P4mm symmetry [12]
while the latter, though still topical [13–17], is considered
an antiferroelectric (AFE) with Pbam symmetry. These ob-
servations are supported using the soft-mode theory of lattice
dynamics by considering the symmetry (and energy) lowering
distortions of a high-symmetry cubic phase as indicated by
imaginary frequencies at certain wave vectors in the phonon
spectrum [18–21]. It is using this method that the modes

responsible for the paraelectric to FE transition in PTO
and paraelectric to AFE transition in PZO are identified as
�−

4 [12,22] and dual �2 + R+
4 (and to a lesser extent, S4, R+

5 ,
X−

3 , and M−
5 ) [15,17] respectively. Such a classification is not

possible for a truly random alloy. Even for ordered PZT, it
proves much more difficult since the character and frequencies
of the relevant modes may vary with Ti/Zr concentration as
well as with the specific ordering of the B-site substitutions in
the crystal lattice, for which in a periodic crystal the number
of permutations are infinite.

In order to study PZT near the MPB with first-principles
calculations, we consider two paths. Both paths impose fic-
titious symmetry when compared to the real random com-
pound. The first is to explore the different permutations of
Ti/Zr substitutions within a supercell of finite size. True mor-
photropic PZT requires simulation in a large supercell, so x =
0.5 is often chosen as a surrogate. This is the most common
approach taken and has been successful in the calculation of
structural [23,24], piezoelectric [25,26], and electronic prop-
erties [27]. Using this method, phonon disperison relations
across a small area of the first Brillouin zone have also been
calculated for [1:1] PZO/PTO superlattices [28]. For (001)
and (110) ordered structures, FE modes were isolated to Ti/Zr
layers while the (111) ordered superlattice displays one mode
behavior with competing FE and AFD character. This study,
however, was limited in scope by only considering modes
at the zone center. The second option is to use a mixed
potential scheme such as the VCA. This approach, like the
supercell method, predicts anomalous dynamical charges and,
with reasonable accuracy, the location of the MPB [29–31] but
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is unable to accurately represent distortions to local structure.
The extent to which this is true, however, is unknown; thus,
a quantitative comparison based on the characteristics of
the soft-mode distortions would be valuable. This approach,
however, does allow access to a wide range of Ti/Zr con-
centrations at a fraction of the computational cost of a large
supercell calculation.

It is the aim of this work to provide a complete comparative
study of the phonon dispersion relations in near-morphotropic
PbZr0.5Ti0.5O3 within density functional theory (DFT) using
the VCA and supercell method complete with comparison
to the end members PTO and PZO. We do so also with
special consideration of longer wavelength modes often not
considered. We compare the characters of soft modes by
considering distortions at high symmetry points via eigendis-
placement analysis and the projected phonon density of states
(PDOS). Doing so gives access to displacement patterns and
to the species-specific character of all modes in the soft space.
We select the 2 × 2 × 2 supercell of the primitive perovskite
unit for our simulations to coincide with measured mean
cluster size distributions for Ti/Zr ordering in PZT [32].
Such supercells have recently been used as local phases to
build a complex multiphase model of the material able to
predict the experimental pair distribution function to a high
accuracy [33]. Such a supercell dimension is also important
for theoretical studies since important competitive modes
including Glazer-like [34,35] AFD, FE, and some AFE modes
fold to the zone center. However, since our calculations are
performed throughout the full first Brillouin zone, we are not
limited to the zone center and so we can identify competitive
long-wavelength order not usually considered in PZT. We
obtain the irreducible representations (irreps) of the soft-mode
distortions and identify their incipient order parameters which
in the case of longer wavelength modes we find can impose
dual order. By doing so, we provide further insight into the
complex lattice dynamics occurring near the MPB. Further,
it will provide a guide for future investigations detailing the
consequences of using the supercell or VCA methods for
future studies of PZT and heterostructures for which PZT is
an ingredient.

The rest of this work is organized as follows. In Sec. II, we
detail the theoretical methods for the calculations, including
details for the calculation of the electronic ground state,
phonon dispersions, and details for the specific implemen-
tation of the VCA. In Sec. III A, we discuss the properties
of the fully relaxed parent structures. Then, in Sec. III B, we
present the full phonon dispersion relations and PDOS along
with a discussion and tabulation of the relevant soft modes and
their frequencies. We begin first with a comparison between
the end members PTO and PZO. The other dispersions are
then paired based on their similarity and discussed together
with the exception of Pm3̄m ordered PZT supercell, which has
its own dedicated section. Modes important to the discussion
are shown graphically. These results are then discussed more
broadly and summarized in Sec. IV.

II. THEORETICAL METHOD

Calculations are performed using the implementation of
DFT as present in the ABINIT code (v8.10.2) [36,37]. We

use scalar-relativistic, norm-conserving pseudopotentials gen-
erated by the ONCVPSP code (v3.3.0) [38] as made avail-
able on the PseudoDojo website [39]. These potentials treat
the Pb 5d106s26p6, Ti 3s23p64s23d10, Zr 4s24p65s25d10, and
O 2s22p6 orbitals as valence. These pseudopotetial include
partial core corrections. For the 2 × 2 × 2 supercells, Bril-
louin zone integrals are performed with sums over �-centered
4 × 4 × 4 Monkhorst-Pack [40] meshes. A plane-wave cutoff
energy of 1088.46 eV (40 Ha) is employed to ensure the
accuracy of our calculations. Exchange and correlation effects
are represented by the PBESol [41] functional as present in
Libxc (v3.0.0) [42]. This functional is known to produce high-
accuracy structural properties compared with experimental
results [43], justifying its use in a study of structural distor-
tion. This method returns the paraelectric cubic Pm3̄m lattice
constants of PTO and PZO as aPTO = 3.918 Å (−0.304%)
and aPZO = 4.140 Å (+0.242%), where bracketed values are
errors compared with experimental results [44,45]. We make
particular use of the linear response features in ABINIT for
the calculation of phonon dispersions using density functional
perturbation theory (DFPT) [46,47]. Dynamical matrices are
calculated on the q-point mesh of the supercell calculation and
dispersion is extracted using a Fourier interpolation scheme

FIG. 1. The structures used for the phonon dispersion calcula-
tions of Sec. III B. A-site Pb has been removed for clarity and BO6

octahedral complexes have been colored to match the B-site species.
Supercell models (rows 1 and 2) are labeled with Roman numerals
I–VI while the last row indicates the PZT-VCA supercell as well as
the end members PTO and PZO. Each supercell is also assigned a
crystalline space group.
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between points on the q-point mesh [46,47]. Since the per-
ovskite oxides are known to give rise to giant longitudinal
optical-transverse optical (LO-TO) splitting [48], we require
the nonanalytic correction (NAC) at the � point [46] to

TABLE I. The space groups, Wyckoff positions, and primitive
supercell dimensions of the relaxed, cubic-constrained structures.
All structures are representable in the 2 × 2 × 2 primitive perovskite
supercell as illustrated in Fig. 1. Wyckoff positions are stated using
the site multiplicity and Wyckoff letter as made standard by the
Bilbao Crystallographic Server [59]. Supercell dimensions are given
in lengths of the mutually orthogonal axes a, b, and c with the
exception of PZT I, whose axes are at an angle α = β = γ = 60◦

with the full form of the lattice vectors displayed.

PTO/PZO/VCA (Pm3̄m O1
h)

a = aPTO/aPZO/aVg

Pb 1b (1/2, 1/2, 1/2)
Ti/Zr/(1/2 Ti + 1/2 Zr) 1a (0, 0, 0)

O 3d (1/2, 0, 0)

PZT: I (Fm3̄m O5
h)

a = (0, aVg, aVg), b = (aVg, 0, aVg), c = (aVg, aVg, 0)
Pb 2c (1/4, 1/4, 1/4)
Zr 1a (0, 0, 0)
O 6e (x, 0, 0), x = 0.74232
Ti 1b (1/2, 1/2, 1/2)

PZT: II (P4/mmm D1
4h)

a = √
2aVg, b = √

2aVg, c = aVg

Pb 2f (0, 1/2, 0)
Zr 1d (1/2, 1/2, 1/2)
Ti 1b (0, 0, 1/2)
O 4k (x, x, 1/2), x = 0.75838
O 1c (1/2, 1/2, 0)
O 1a (0, 0, 0)

PZT: III (P4/mmm D1
4h)

a = b = aVg, c = 2aVg

Pb 2g (0, 0, x), x = 0.26377
Zr 1c (1/2, 1/2, 0)
Ti 1d (1/2, 1/2, 1/2)
O 2f (0, 1/2, 0)
O 2h (1/2, 1/2, x), x = 0.26279
O 2e (1/2, 1/2, 1/2)

PZT: IV (Pm3̄m O1
h)

a = 2aVg

Pb 8g (x, x, x), x = 0.74307
Zr 1a (0, 0, 0)
Zr 3d (1/2, 1/2, 0)
Ti 3c (0, 1/2, 1/2)
Ti 1b (1/2, 1/2, 1/2)
O 6e (x, 0, 0), x = 0.74807

O 12h (x, 1/2, 0), x = 0.26024
O 6f (x, 1/2, 1/2), x = 0.74667

PZT: V (P4/mmm D1
4h)

a = 2aVg

Pb 8r (x, x, z), x = 0.75030, z = 0.74302

TABLE I. (continued.)

Zr 1a (0, 0, 0)
Zr 2f (0, 1.2, 0)
Zr 1d (1/2, 1/2, 1/2)
Ti 1b (0, 0, 1/2)
Ti 2e (0, 1/2, 1/2)
Ti 1c (1/2, 1/2, 0)
O 4l (x, 0, 0), x = 0.74975
O 2g (0, 0, z), z = 0.73908
O 4m (x, 0, 1/2), x = 0.75053
O 4n (x, 1/2, 0), x = 0.74198
O 4i (0, 1/2, z), z = 0.73972
O 4o (x, 1/2, 1/2), x = 0.75804
O 2h (1/2, 1/2, z), z = 0.75582

PZT: VI (P42/mmc D9
4h)

a = 2aVg

Pb 8n (x, x, 1/4), x = 0.25710
Zr 2a (0, 0, 0)
Zr 2c (0, 1/2, 0)
Ti 2d (0, 1/2, 1/2)
Ti 2b (1/2, 1/2, 0)
O 2e (0, 0, 1/4)
O 2l (x, 0, 1/2), x = 0.25134
O 4j (x, 0, 0), x = 0.26117
O 4i (0, 1/2, z), z = 0.74154
O 4k (x, 1/2, 1/2), x = 0.25375
O 4m (x, 1/2, 0), x = 0.26
O 2f (1/2, 1/2, 1/4)

correct for the undefined nature of the long-range Coulomb
interactions [49]. This correction requires knowledge of the
high frequency electronic dielectric tensor ε∞ and Born ef-
fective charges Z∗

i , where i labels each atomic site in the
supercell. Both are obtained also using DFPT in response to a
homogeneous electric field [46,50].

For calculations involving use of the VCA, we use the
implementation in ABINIT. It is used to create an alchemical
virtual atom of Ti/Zr character by linearly mixing the pseu-
dopotentials of the individual species:

V ps
VCA = xV ps

Zr + (1 − x)V ps
Ti . (1)

This can be further broken down into local contributions
and short-range nonlocal corrections [51]. Phonon dispersion
calculations using DFPT and the VCA are currently not fully
supported in the code so we instead use the (formally equiv-
alent) finite displacement method (FDM) as implemented in
the Phonopy code (v2.1) [52] using a 4 × 4 × 4 supercell of
the primitive perovskite unit and a displacement of 0.01 Å.
For this calculation, the virtual atom must take on the inter-
mediate mass of Ti and Zr, equal to 69.55 AMU. The NAC
is accounted for following the same method as used in the
DFPT calculations. For means of validation, a comparison
of the phonon dispersions for PTO and PZO using both
DFPT and the FDM are given in Sec. 2 of the Supplemental
Material [53].
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TABLE II. The diagonal elements of the stress tensor σ , high-frequency dielectric tensor ε∞, and averaged born effective charges Z̄∗ of
the unique elements for the primitive cubic perovskite following the convention of Ref. [48]. For PZT, these calculations were performed at
aVg while PTO and PZO were perfomed at aPTO and aPZO respectively.

σ11 [GPa] σ22 [GPa] σ33 [GPa] Z̄∗
Pb Z̄∗

B Z̄∗
O‖ Z̄∗

O⊥ ε∞
11 ε∞

22 ε∞
33

PTO ≈0 ≈0 ≈0 3.88 7.19 −5.91 −2.58 8.49 8.49 8.49
PZO ≈0 ≈0 ≈0 3.90 5.94 −4.90 −2.47 6.93 6.93 6.93
Mean ≈0 ≈0 ≈0 3.89 6.55 −5.41 −2.53 7.71 7.71 7.71
VCA −1.51 −1.51 −1.51 3.90 6.13 −4.99 −2.52 7.06 7.06 7.06
I 0.56 0.56 0.56 3.89 6.54 −5.36 −2.53 7.59 7.59 7.59
II 0.64 −1.60 0.64 3.89 6.55 −5.38 −2.53 7.59 7.67 7.59
III −1.85 −1.85 0.50 3.86 6.48 −5.31 −2.51 7.54 7.54 7.52
IV −0.67 −0.67 −0.67 3.87 6.49 −5.32 −2.52 7.55 7.55 7.55
V −0.56 −0.56 0.59 3.88 6.53 −5.35 −2.53 7.60 7.60 7.57
VI −0.62 −0.60 −0.60 3.87 6.51 −5.34 −2.52 7.56 7.57 7.57

For Sec. III B, we treat the six unique B-site configurations
of PbZr0.5Ti0.5O3 within the 2 × 2 × 2 supercell labeled
with Roman numerals I–VI. These supercells are shown
in Fig. 1. Although PTO, PZO, and VCA calculations are
representable in the primitive perovskite cell, we still choose
to use the 2 × 2 × 2 supercell such that phonon dispersions
are calculated along the same q path as for structures
I–VI and share the same total number of phonon branches
(3 × Natom = 120). PZT supercells are constrained to be cubic
with dimensions (2aVg, 2aVg, 2aVg), where aVg = 4.029 Å,
the lattice constant set by Vegard’s law [54]. For x = 0.5,
this is a simple average of aPTO and aPZO. This choice of
lattice constant favors no particular B-site ordering that
may be biased in different experimental conditions. Further,
structural data for high-temperature cubic PZT is scarce since
the technologically relevant large piezoelectric coefficients
stem from the low-temperature tetragonal/rhombohedral
phases. Simulations for PTO and PZO are performed at their
theoretical lattice constants. Before the phonon calculations,
internal degrees of freedom are relaxed to a stringent force
tolerance of 1 × 10−6 eV/Å to prevent soft modes forming
from nonequilibrium vibrations. To further illuminate the
mode characters, we also calculate the phonon PDOS for
each structure. To do so, we calculate the dynamical matrix
on a dense 49 × 49 × 49 grid of q points and integrate with
the tetrahedron method [55].

Throughout this work, we make use of group theoretical
software. We use the programs FINDSYM (v6.0) [56] and
ISODISTORT (v6.5) [57] as made available in the ISOTROPY

software suite. We also make use of the web-based phonon
spectrum visualization tools made available by Miranda [58].

III. RESULTS

A. Parent structures

Table I details the structural and symmetry properties of
the relaxed primitive cells. We find that a simple metric
like the number of Wyckoff sites (and their deviation from
the ideal perovskite sites) suggests which arrangements have
comparable lattice dynamics. This is used as a basis for
the discussion in Sec. III B. These primitive cells are then
translated into the 2 × 2 × 2 supercell of the primitive PbBO3
unit (B = Zr or B = Ti) and are shown in Fig. 1. These form a

set of parent structures from which we later perform mode
decompositional analysis. Table II shows other important
structural, dynamical, and dielectric properties also important
to the discussion in this section.

PTO/PZO/VCA cells show the usual cubic Pm3̄m symme-
try. These are joined by PZT I (Fm3̄m) and IV (Pm3̄m) which
also support a cubic local minimum. The former adopts rock-
salt-like ordering with continuous B sites aligned along the
[111] direction while the latter shows a separation of Ti and Zr
sites into opposite corners of the supercell. As a consequence,
these parents show isotropic behavior in both the stress and
high-frequency dielectric tensor (Table II). This is in contrast
to the other four PZT parents which are members of lower
symmetry tetragonal space groups (even while constrained
to aVg), thus showing anisotropic behavior in these tensors
about a single axis. It is typical behavior across all of the PZT
parents (bar the VCA) to compress areas of TiO6 coordination,
making way for the larger ZrO6 octahedra. When constrained
to avg, PZT I is the most energetically stable configuration
while III is the most unstable, with an energy difference
of 114 meV/PbBO3 unit between them. Remarkably, if we
perform a full cell shape and size relaxation, this energy
difference marginally narrows to 111 meV/PbBO3, showing
the small contribution of strain energy to the nonpolar phases
of PZT.

Table II indicates that at avg, PZT is held at a nonvanishing
pressure. The VCA exhibits the largest σRMS of 2.62 GPa
while II and III show stronger uniaxial stress about the axes
of compositional modulation, indicating a proclivity for
expansion in these directions. PZT I–VI show remarkably
similar Z∗ and ε∞, indicating that Ti/Zr cation ordering has
little influence on these quantities. It is also notable that Z∗
of PZT I–VI deviates only a small amount from the mean
Z∗ of PZO and PTO. The VCA shows good agreement with
the supercell method for Z̄∗

Pb and Z̄∗
O⊥ but underestimates

strongly the magnitudes of the alchemical Z̄∗
B and Z̄∗

O‖. The
VCA also features a strong discrepancy in ε∞ compared
to both the mean and supercell approach. Although not
tabulated, it should be noted that PZT II, IV, V, and VI feature
off-diagonal elements in the Born effective charge tensor only
for Z̄∗

Pb. These components are small and do not exceed 0.34
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FIG. 2. The soft mode phonon dispersion relations for PZT I–VI, the VCA, PTO, and PZO. All dispersions are over an identical fractional
q path controlled by the parameter ζ = 1/2 (upper x axis). Folded symmetry labels (described in Table III) are included for PZT I–III, the
VCA, PTO, and PZO. We only include folded labels if a soft mode of that wave vector is present at the given q point. In the particular case
of PTO, this leads to no label for the wave vector (1/2, 1/2, 1/2). Since dispersions for PZT IV–VI were calculated on the primitive cell, no
folding takes place and thus only one symmetry label is required.

electronic charges in magnitude but do vary in sign despite the
positive nature of the Pb cation. It should also be noted that
using a similar method, a previous study reports off-diagonal
elements not of Pb, but of the O 4k site, always negative in
sign [28].

B. Phonon dispersion and density of states

Figure 2 shows the phonon dispersions for PZT I–VI,
PTO, PZO, and the VCA calculated within the supercells
indicated in Fig. 1. Although we have calculated all bands
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TABLE III. The fractional q vectors associated with the Brillouin
zone labels used in Fig. 2. For each space group, labels in bold
indicate high symmetry points while those in plain font are not
special points. For the full Brillouin zone vector identification, the
reader is referred to the database made available by the Bilbao
Crystallographic Server [62].

(qx , qy, qz) (qx , qy, qz)

Pm3̄m O1
h

� (0, 0, 0) R (1/2, 1/2, 1/2)
X (0, 1/2, 0) 
 (0, 1/4, 0)
M (1/2, 1/2, 0) T (1/2, 1/2, 1/4)
Z (1/4, 1/2, 0) � (1/4, 1/4, 0)
S (1/4, 1/2, 1/4) � (1/4, 1/4, 1/4)

Fm3̄m O5
h

� (0, 0, 0) W (1/2, 1/4, 3/4)
X (1/2, 0, 1/2) � (1/4, 1/4, 1/2)

 (1/4, 0, 1/4) L (1/2, 1/2, 1/2)

P4/mmm D1
4h

� (0, 0, 0) C (1/4, 1/4, 1/4)
X (0, 1/2, 0) V (1/2, 1/2, 1/4)
M (1/2, 1/2, 0) W (0, 1/2, 1/4)
A (1/2, 1/2, 1/2) 
 (0, 1/4, 0)
Z (0, 0, 1/2) Y (1/4, 1/2, 0)
� (0, 0, 1/4) � (1/4, 1/4, 0)
S (1/4, 1/4, 1/2)

P42/mmc D9
4h

� (0, 0, 0) X (0, 1/2, 0)
R (0, 1/2, 1/2) A (1/2, 1/2, 1/2)

(available in Sec. 3 of the Supplemental Material [53]), we
consider only the space where ν̄(q) ∈ iR, thus presenting a set
of symmetry-lowering phase transitions along the fractional
q path (0, 0, 0) ⇒ (0, 1/2, 0) ⇒ (1/2, 1/2, 0) ⇒ (0, 0,
0) ⇒ (1/2, 1/2, 1/2). It is at these supercell wave vectors
exactly that we analyze the character of the distortions. The
soft-mode character has an important impact on the properties
of the crystal. This is then inferred with PDOS calculations
(Figs. 4 and 5) and, for some important modes, found directly
with eigendisplacement analysis. Table IV serves as a com-
panion to the dispersion, identifying modes symmetries, their
multiplicities, and numerical values of imaginary frequencies.
Table III presents the q-vectors associated with the high-
symmetry labels which also serves as a companion to Fig. 2.

1. PTO and PZO

We begin with a discussion of end members PTO and
PZO. Our choice of supercell for these calculations reveals
folded spectra not previously reported in the literature. We
have also, however, calculated dispersions over the primitive
cell and found good agreement with previous calculations
using similar methods [43,60] (see Sec. 2 of the Supplemental
Material [53]). For PTO, we report seven unique soft modes at
the appropriate wave vectors compared to 26 in the more com-
plex spectrum of PZO. As expected, the most unstable mode
in PTO is found to be �−

4 , featuring Pb/Ti countermotion

against the O anions, inducing a net polarization and incipient
FE distortion. Although the �−

4 distortion exists in PZO,
it is harder and features Zr motion alongside O, requiring
that the smaller macroscopic polarization is as the result of
Pb-O separation. PTO shows oxygen octahedron rotational
instabilities at the R and M points. These are the R+

4 and
M+

3 AFD modes respectively. In real space, these correspond
to out-of-phase and in-phase rotations of the BO6 octahedra
about a single axis, or a0a0c− and a0a0c+ in Glazer’s notation,
respectively. These modes are generally not competitive in
PTO but this is not true for PZO. The R+

4 distortion is the
softest mode in PZO and is a prime mover for the AFE phase
transition, known to make up ≈60% of the total distortion [61]
(when the rotation is about the [11̄0] axis).

Branches mostly harden along the (0, 0, 0) ⇒ (0, 1/2, 0)
path in PTO, resulting in an antipolar mode 
5 and a long
wavelength AFD mode T4. The latter shares a likeness with
both a0a0c− and a0a0c+ distortions but with a doubled period-
icity of four perovskite units along the axis of rotation. Of the
four TiO6 octahedra in the mode, two neighboring octahedra
rotate counterclockwise and the other two clockwise about the
axis of rotation as seen in Fig. 3(i) (left). Although there is also
a general hardening of branches along the same path in PZO,
the softest is almost dispersionless, resulting in another AFD
mode of symmetry T4. Although over the same wave vector
as the T4 mode of PTO, this mode is better described as an
a0a0c−-like distortion where rotating octahedra are separated
by static ones [Fig. 3(i) (right)]. Both PTO and PZO now
become harder at (1/2, 1/2, 0), resulting in several antipolar
modes and, for the first time in this study, single modes
with a mixed antipolar/AFD character. These modes often
manifest in a sublattice of BO6 octahedra rotating with a
Glazer-like pattern with adjacent PbBO3 units, showing local
polar distortions. These local polar distortions are aligned
such that there is no net polarization induced by the mode.
An example of this is the �2 distortion of PTO, although it
has relatively low soft-mode frequency (27.05i cm−1). Modes
of this character are considerably softer in PZO, including
the S4 distortion, which features local AFD modes (with a
complex non-Glazer-like rotation pattern) and antipolar cation
displacements. This mode is also known to make a small
contribution to the AFE PZO ground state [61].

Along the (0, 0, 0) ⇒ (1/2, 1/2, 1/2) path, the dispersion
now becomes real in PTO and thus we see no instabilities
at this longer wavelength. For PZO, the dispersion remains
imaginary. We see a hardening resulting in two strongly
degenerate modes of symmetry �2 and �3. The former is
an eight-fold degenrate AFD mode while the latter is 16-fold
degenerate, featuring Pb-O antipolar displacements. The char-
acter of these modes are reminscient of some of the known
modes contributing to the PZO ground state. This suggests
that the inclusion of these distortions, with others, could create
another similar low-energy competing phase. Figure 4 shows
that the two end members have a striking dissimilarity in the
PDOS. All species for PTO show a rather featureless smooth
function, peaking at ≈24i cm−1 while PZO shows a peaked
PDOS penetrating further into the imaginary space, indicating
that cubic PZO is more dynamically unstable than PTO. The
peak at ≈50i cm−1 is in part due to the dispersionless behavior
of a Pb-O antipolar branch extending from (1/2, 1/2, 0) ⇒
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FIG. 3. Visualization of eigendisplacements described in the text
following the same key as Fig. 1 but also with gray spheres rep-
resenting Pb sites. (i) The T4 modes of PTO and PZO. Both Pb
and counter-rotating octahedra are removed for clarity. (ii) The �+

4

distortion of PZT I (c axes into page) and the M+
2 distortion of

the VCA from three viewing angles indicating out-of-phase rota-
tion about three axes of rotation. (iii) The antipolar 
4 distortion
of PZT III. Arrows indicate the direction and magnitude of the
local polarization. (iv) The mixed antipolar/AFD M+

3 distortion of
PZT IV.

(0, 0, 0). This behavior continues for most of the (0, 0, 0) ⇒
(1/2, 1/2, 1/2) path also. It is noteworthy that the Pb character
vanishes for the softest part of the PZO PDOS, leaving just
modes of Zr-O character.

FIG. 4. Species projected phonon density of states D(ν̄ ) for
PTO, PZO, the VCA, and PZT I over the imaginary wave-number
space. For the VCA calculation, the gold curve is the PDOS of
the alchemical 50/50 Ti/Zr atom while for the supercell models it
represents the sum of B-site PDOS.

2. Virtual crystal approximation and PZT I

There is a remarkable visual similarity in the dispersion
relations between PZT I and the VCA. At first glance, this
suggests that within the mixed potential scheme the dynamics
of alternating Zr and Ti atoms in the rock-salt structure
are well approximated. We do, however, see more unique
branches for PZT I and find that the lowest lying modes of
the VCA penetrate further into the soft space than its rock-
salt ordered counterpart. It is also true that both approaches
resemble PZO more so than PTO. This can be seen when
assessing the modes at wave vector (0, 0, 0). At this point,
PZT I, the VCA, and PZO share a similar hierarchy of modes.
PZT I and the VCA also share identical multiplicities. In
descending order in imaginary wave number, we have out-
of-phase AFD, in-phase AFD, FE, and then a number of
antipolar modes. It is illuminating in this case to perform
a full analysis of the character. It soon becomes apparent
that the VCA features AFD modes about all three axes of
rotation. The amplitude of these rotations about two of the
axes is small and much larger for the remaining axis. We
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could then consider these modes as rotations about a single
axis but with small, erroneous rotations about the other axes.
This is in contrast to PZT I where the softest AFD mode (�+

4 )
has (like both end members) an a0a0c− displacement pattern,
shown in FIg. 3(ii)(a). In the VCA, this rotation (M+

2 ) retains
its out-of-phase characteristic but now rotates about all three
axes of rotation with different amplitudes, thus exhibiting the
a−b−c− rotation pattern shown in Figs. 3(ii)(b) and 3(ii)(d).
The next softest mode in PZT I (X+

3 ) has the a0a0c+ pattern
while the in-phase rotations in the VCA (R−

5 ), as before, have
differing amplitudes about all three axes of rotations. This is
the a+b+c+ rotation pattern. The rotation patterns in the VCA
are not seen in any of the PZT supercell models, indicating
that rotations about more than one axis are a fictitious artifact
of the method, better illustrating the inaccuracy of the VCA in
the prediction of local atomic displacements.

The character of the FE �−
4 modes are also dissimilar in

nature. For PZT I, all ions play a role in the development of
polarization, including Ti and Zr displacement of a similar
magnitude. For the VCA, the alchemical B site plays much
less of a role. We can then infer (without the full Berry-
phase calculation) that the incipient polarization is smaller in
magnitude in part owed to the smaller B-site displacements
but also due to the smaller value of Z̄∗

B (Table II). A lack
of alchemical B-site character is in fact commonplace for
the VCA, as evidenced in Fig. 4, where although optically
coupled to Pb motion, it has an almost vanishingly small
PDOS. This suggests that within the VCA, the B site is
dynamically inert. This leaves the softest modes of the VCA
to have nearly a pure O character. It is only for Pb that we
see similarity in the PDOS between the VCA and PZT I. We
see a peak in the Pb D(ν̄) for PZT I at ≈48i cm−1, which
is shifted ≈−2i cm−1 in the VCA. The Pb peak in PZT I
coincides with the other species. Such a coupling is in fact
true for all PZT configurations and end members PTO/PZO.
It is unique to the VCA that we see little coupling between
Pb and O. This can be regarded as a knock-on effect of the
inert B site. Since Pb and B-site vibrations are weakly cou-
pled, the usual B-site displacements which would otherwise
follow Pb are not present. It is these displacements which
more greatly influence O motion since Pb has only a weaker
mixed ionic/covalent interaction with O. While we expect
the general ficticious character of the eigendisplacements to
persist across all concentrations within the VCA, it is likely
that the magnitude of the error may vary. We expect largely
ficticious eigendisplacements when Ti/Zr concentrations are
comparable but expect the effect to diminish in the limit of
high/low concentrations where the mixed potential becomes
very similar to the original, unmixed pseudopotential.

Moving away from (0, 0, 0) toward (0, 1/2, 0) both PZT
I and the VCA give rise to longer wavelength AFD and
antipolar modes. The T2 and 
4 modes of the VCA and PZT I,
respectively, display the same rotation pattern as the aformen-
tioned T4 distortion in PTO. This mode is significantly more
unstable in PZT I. Despite the VCA appearing to have a higher
degeneracy for the antipolar soft modes at ≈50i cm−1, modes
are still unique splitting only by ≈0.5i cm−1. One of these
modes, Z1, is not purely antipolar and once again we see the
mixed AFD/antipolar character displaying non-Glazer-like
rotations coupled with Pb cation motion.

Like PZO, both the VCA and PZT I become their hardest
along the (0, 1/2, 0) ⇒ (1/2, 1/2, 0) path. This leads to
further antipolar modes at the � and S points. Notably, PZT I
gains an additional soft mode from the real domain along this
path, �1. This is distinct from the other Pb-O modes since
it features antipolar Pb-B displacements with no significant
O character. For the VCA, there is also a fourfold degenerate
mode Z1 once again with mixed antipolar/AFD character. The
most distinct differences in the dynamical behavior between
the VCA and PZT I now comes along the path (0, 0, 0) ⇒
(1/2, 1/2, 1/2). Many of the harder antipolar branches in
the VCA move to the real domain. These modes do begin
to harden in PZT I but then resoften to become degenerate
with other branches at the L point, giving rise to two long-
wavelength modes both of symmetry L−

3 . Now commonplace,
they share a mixed antipolar/AFD character split by 
ν̄ =
4.13i cm−1. We distinguish between modes sharing an irrep
by priming those with the lower imaginary frequency, as seen
in Table IV. Each mode has eight-fold degeneracy despite L−′

3
having a longer wavelength AFD rotation pattern than L3

−.
This splitting closes for the VCA, giving rise to one 16-fold
degenerate mode of symmetry �3 displaying a similar mixed
antipolar/AFD character.

3. PZT II and III

We move now to consider the dispersions of PZT II and
III. These are the [110] and [001] ordered superlattices re-
spectively. These structures were considered in a previous
work in a study of the instabilities at the � point [28] using
the local density approximation (LDA). Consistent with the
previous work, we find that both PZT II and III have strong
TO FE instabilities of �−

3 and �−
5 symmetry respectively. The

softest TO mode of the [110] ordered structure is not seen in
our dispersion path due to the anisotropy of LO-TO splitting
in noncubic crystals. This anisotropy can be reasoned by the
form of the NAC. Recall that the NAC is a function of both
Z∗

i and ε∞. The former gains more unique elements in lower
symmetry crystals and the latter is no longer isotropic, as
evidenced in Table II. The affected elements of the dynamical
matrix are then corrected by a different amount based on the
direction of the q vector as it approaches �. This effect is
seen in PZT II, II, V, and VI since they are all members of a
tetragonal spacegroup. These anisotropies are also accessible
in experiments as evidenced by inelastic neutron scattering in
tetragonal PTO [63]. Taking just the analytic part of the �−

3
mode of PZT II returns an eigenfrequency of 242.28i cm−1,
slightly softer than what is predicted by the LDA.

We find that both PZT II and III give rise to soft LO
modes, again, in agreement with the previous work. The [110]
ordering is generally more dynamically unstable than [001]
ordering, showing a distinct separation between the most
imaginary FE/antipolar modes and groupings of Glazer AFD
modes. What was not considered in a previous study [28]
was competition of polar modes with other order parameters.
The antipolar mode M−

3 of PZT II is closely competitive with
�−

5 . This mode is an antipolar arrangement of Ti-O displace-
ments completely isolated to local PTO environments, leaving
undistorted areas of PZO units. There are also a plethora of
unique Glazer tilt modes owed to inequivalent directions in

224305-8



FIRST-PRINCIPLES SOFT-MODE LATTICE DYNAMICS … PHYSICAL REVIEW B 100, 224305 (2019)

TABLE IV. The ten softest modes, for each structure, measured along the phonon dispersion path in Fig. 2 (with the exception of PTO,
featuring only seven soft-modes over the dispersion path). Modes are listed in descending imaginary wave number ν̄ across the page. Each entry
features a symmetry label for the irrep and a multiplicity M. Since PZT II–IV and VI feature directional polar modes, affected wave numbers
are given in the format ν̄[010]/ν̄[110]/ν̄[111]. The full tabulation of all soft modes can be found in Sec. 1 of the Supplemental Material [53].

M ν̄ [i cm−1] M ν̄ [i cm−1] M ν̄ [i cm−1]

PTO �−
4 2 149.60 
+

5 4 83.40 R+
4 3 62.12

T4 2 45.40 �3 4 37.61 �2 4 27.05
M+

3 3 18.02
PZO R+

4 3 181.52 T4 2 178.75 M+
3 3 176.09

�−
4 2 132.14 S4 4 128.32 T5 4 120.45

�2 4 119.69 Z4 4 119.53 S3 4 105.37
�2 8 103.13

VCA M+
2 3 146.58 
5 2 141.95 R−

5 3 137.38
�−

4 2 101.18 S1 4 71.78 T2 4 52.87
Z1 4 52.18 T5 4 52.14 �3 16 49.55
X−

5 6 44.89
I �+

4 3 138.10 
4 2 133.08 X+
3 3 128.11

�−
4 2 111.99 �2 4 73.53 
5 4 62.02

L−
3 8 52.83 X−

5 6 49.09 L−′
3 8 48.70

W5 4 48.29
II M−

3 1 227.52 �−
5 1 144.78/201.13/215.93 Z−

5 2 148.78
A−

5 2 140.02 Z−
1 1 137.91 �4 2 132.92

�+
3 1 127.97 C1 4 105.26 �5 4 101.14

W2 4 90.22
III �−

5 1 196.63/196.63/196.63 M+
2 1 190.76 �−

3 1 174.29/174.29/181.62

4 2 173.52 X+

2 2 156.67 M+
5 2 152.61


3 2 150.97 X+
3 2 149.79 Y3 2 147.85

X−
2 2 143.46

IV �−
4 2 181.41 �+

4 3 169.33 X+
3 1 168.90

X+
5 2 168.18 M−

2 1 157.00 M+
3 1 150.48

R+
4 3 148.69 X+′

5 2 130.13 M+
5 2 129.20

�−′
4 2 114.61

V �−
5 1 209.42/209.42/209.42 X−

3 1 202.33 �−
3 1 153.93/153.93/182.48

�+
3 1 167.07 �−′

5 1 148.18/148.18/123.20 �+
5 1 147.67

X+
4 1 146.16 X−

1 1 132.83 �+′
5 2 131.48

X−
2 1 129.84

VI �−
5 1 206.22/206.22/206.22 X+

2 1 197.36 �−
3 1 180.33/195.87/191.69

R−
1 1 190.45 �+

5 2 167.85 X+
4 1 167.42

X+
3 1 167.00 �−′

5 1 159.78/146.71/150.21 �+
4 1 149.99

�+
3 1 142.07

the crystals and thus inequivalent axes of rotation. The softest
of these is an a0a0c− mode with the axes of rotation along
the [001] (or [010]) direction, the direction of compositional
modulation. This is followed by a several antipolar modes and
harder FE modes. In PZT III, rotational instability is highly
competitive with FE order due to the M+

2 mode. This mode
shows in-phase rotation of ZrO6 octahedra, leaving the TiO6

octahedra static in a manner reminiscent of the T4 distortion
of PZO. This shows there is no mechanical coupling along the
axis of rotation between octahedra centered on a different B-
site species. While rotations of all octahedra are also unstable
(both out-of-phase M+

5 and in-phase X−
2 ), they are harder.

Further, both of these modes rotate along homogeneous
B-site chains, whereas the M+

2 mode rotates along the het-
erogeneous direction where no other Glazer-type instability
exists.

The character of AFD modes in PZT II alters as we
approach the wave vector (0, 1/2, 0). This mode shows out-of-
phase rotations of the ZrO6 octahedra but with a doubled pe-
riodicity. Rotating octahedra are also separated by static ZrO6

octahedra, this time showing a lack of interlayer coupling
even along the homogeneous direction. A long-wavelength
AFD mode also exists for PZT III at this wave vector of
irrep Y3. This mode shows the same character of the T4

mode of PTO with the axis of rotation being along the ho-
mogeneous direction. This wave vector for PZT III, however,
is dominated by antipolar instability with the most unstable
being the 
4 mode. This mode appears with two separate
polar domains with a domain period of 4 perovskite units,
separated by a 180◦ domain wall as depicted in Fig. 3(iii).
Local PTO units are significantly more polar than local PZO
units.
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Like in PZT I, the VCA, PTO, and PZO, the most imag-
inary bands at (0, 1/2, 0) have a steep gradient to the hard
wave vector (1/2, 1/2, 0). This results in tight groupings of
antipolar and mixed antipolar/AFD modes for PZT III but
only antipolar modes for PZT II. The dispersion now returns
to (0, 0, 0). We note that along this direction of approach
([110]), anisotropy in LO-TO splitting allows for softer LO FE
modes to appear in both PZT II and III and softer still along
the [111] direction. This results in a sharp discontinuities in
the spectra. From (0, 0, 0) to the long wavelength (1/2, 1/2,
1/2) point, hardening occurs for both PZT II and III, giving
rise to five distinct distortions for each arrangement. For PZT
II, these are the W1–4 (where the subscript indicates all modes
with integers 1 through 4) and W′

1 distortions. Each of these
modes has a pure antipolar character. Further, the splitting of
the isosymmetrical modes W1 and W′

1 is large (64.16i cm−1)
due to the inclusion of Zr displacement in W′

1 where W1

features static Zr. PZT III possesses similar characteristics
in its long wavelength distortions, S1–4 and S′

4. Unlike PZT
II, two of these distortions have the mixed AFD/antipolar
character while the remaining are purely antipolar. The S4-S′

4
splitting is also large (61.19i cm−1) but is now the result of the
inclusion of local AFD displacements in S4 while S′

4 is purely
antipolar.

The general character of the distortions in both PZT II and
III can be inferred from the PDOS (Fig. 5). We see that for
both arrangements, all species are optically coupled to one
another, but, like before, the Pb character starts to diminish
as we penetrate further into the soft domain. While both PZT
II and III give rise to two separated islands of states in the
PDOS, a sharp peak exists on the softer island of PZT II
at ≈100i cm−1. This is owing to the nearly dispersionless
behavior of the antipolar branch connecting the �5 and C1

modes. The fourfold degenerate W1 antipolar mode also ap-
pears at this wave number (along with �5 and C1) containing
significant Pb character.

4. PZT IV

We discuss now PZT IV in isolation, which, despite sharing
m3̄m symmetry with PZT I, shows radically different dynami-
cal behavior as well as being generally more unstable. For the
first time in this study, also, we consider dispersion over what
is the primitive lattice so we pass through high-symmetry
points without any folding of the BZ. Unlike PZT I, the softest
mode at (0, 0, 0) is now a �−

4 distortion, which suggests but
does not guarantee a FE ground state. This is because the
phonon frequency gives us only information on the instability
of the mode and not on the magnitude of energy lowering
once the soft lattice mode has condensed in the crystal. This
distortion shows stronger local polarity in directions with con-
tinuous PTO units. The presence of Zr along a polar direction
dampens the distortion. For the first time in this study, no pure
Glazer type AFD instabilities are found to exist in a single
mode. These are replaced with isolated in-phase AFD instabil-
ities, the softest of which is the �+

4 mode. This mode features
a rotating layer (isolated by static PbBO3 layers) with a ratio
of 8:1 ZrO6 to TiO6 octahedra. In this case, the dominance of
the PZO-rich environment (which favors rotation) is able to
overpower the single PTO unit (favoring FE distortion) into

FIG. 5. Species projected phonon density of states D(ν̄ ) for PZT
III–VI over the imaginary wave-number space. This figure shares a
legend with Fig. 4.

rotation. One other rotational instability exists at this point,
�+′

4 . This mode shares the same characteristics as �+
4 , but

the rotating layer contains fewer ZrO6 octahedra, making the
mode more stable than its counterpart. It is notable that there
are three separate occurrences of the FE �−

4 irrep: �−
4 , �−′

4 ,
and �−′′

4 . The latter (although much harder than the others) is
distinct not only due to its weak B-site displacements but also
to its alternating Pb cation motion transverse to the direction
of polarization, giving rise to a mode of a mixed FE and
antipolar character at the zone center.

Most bands harden only slightly along the path to X, much
in contrast to the superlattice-type arrangements. Antipolar-
type distortions at this wave vector are much harder than
previous arrangements featuring only Pb-O motion. There is
now only a slight hardening in the dispersion along the � ⇒
X path, once again leading to a selection of antipolar and
AFD modes. The X+

3 and X+
5 modes are particularly unstable.

The first is a long-wavelength AFD mode much like �+
4 but

with out-of-phase rotations. These rotational modes are very
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closely competing split by <1i cm−1 in the favor of X+
3 . The

second, X+
5 , is an isolated antipolar distortion where local

PTO units are polar in the direction of compositional homo-
geneity. PZO units are once again resistant to polarization
and are left static. After a small degree of hardening along
the path to M, we find 15 unique distortions of antipolar and
mixed AFD/antipolar character, the largest concentration oh
such states in this study. The softest is antipolar M−

2 , bearing
great resemblance to X+

5 but over a greater wavelength.
The M+

3 mode is the clearest example of a mixed
AFD/antipolar mode. This is shown in Fig. 3(iv). It fea-
tures a central in-phase rotation similar to �+

4 . PbBO3 units
perpendicular to the axis of rotation now show local polar
displacements in a pattern enclosing the central rotating unit.
Softer modes of this character can be seen at the R point. Here
we find that the most unstable branches are dominated by the
mixed AFD/antipolar character. In fact, the unstable mode of
this character, among all PZT arrangements, is found here and
is the triply degenerate R+

4 . This shares great similarity to M+
3

but rotations are out of phase and about two axes, making the
rotation pattern a0b−b−-like. Other modes at this wave vector
are also visually similar to M+

3 but now the local polar regions
include Pb and Ti cation motion where before local polarity
was just as the result of O displacing against static Zr.

PZT IV is the only arrangement to form three distinct
islands in the PDOS. The two more stable islands feature
coupled ionic motion between all species, but as before the
most imaginary states have a diminished Pb character. It is
clear that the first (and least imaginary) island is composed
entirely of antipolar states and the second of antipolar and
mixed AFD/antipolar states. The softest island features the
purely rotational states but also FE and mixed AFD/antipolar
order. Unlike previous arrangements, there is a significant
peak in the most unstable island at ≈140i cm−1 as a result
of a significant amount of mixed AFD/antipolar modes. This
suggests that such a mode character could play a role in a
low-energy structure of this arrangement.

5. PZT V and VI

The last of the arrangements we consider together are
PZT V and VI. A striking dissimilarity between these two
arrangements and the rest is the increased number on unique
bands in the soft space. The vast majority of these states
are singly degenerate in response to the large number of
uniquely coordinated ions. At the � point, both arrangements
are dominated by a highly imaginary FE distortion of sym-
metry �−

5 . Both distortions display greater local polarization
in the direction of compositional homogeneity in Ti. Local
PZO units are polarized but, as in the end member PZO, Zr
plays less of a role. Both arrangements feature other polar
modes where, like PZT IV, Pb cation motion is in a direction
perpendicular to the polarization, suggesting a dual FE and
antipolar character.

Like PZT III and IV, PZT V favors isolated rotations
separated by static octahedra. One example of this is �3

+
mode, where rotating layers feature a higher number of Zr
sites and static layers have a higher number of Ti sites. It is
true once more that purely Glazer-type rotations are not seen
in the spectra of PZT V. These are replaced with Glazer-like

modes where one layer rotates more strongly than the other.
The most unstable example of this is the �+

5 mode, which
is strongly a0a0c−-like, but the rotating layer with the higher
Ti/Zr ratio rotates at a diminished amplitude. For both V and
VI, the most imaginary polar branch is almost dispersionless
along the path to X, resulting in the softest mode at the
X−

3 and X+
2 for each arrangement, respectively. Both modes

are antipolar, featuring no Pb cation motion but heavy Ti-O
countermotions. Like previous PZT arrangements at this wave
vector, we see non-Glazer-like isolated AFD modes and a
variety of harder antipolar modes.

For PZT VI, we see that the most imaginary TO branch is
not only dispersionless along the previously mentioned path
but is for much of the BZ, until we see a rapid hardening
as we approach �. Even here, however, the branch remains
unstable. This shares some similarity with the dynamical
behavior seen in the dispersion relations of BaTiO3 (BTO),
but for BTO the result is a confinement of the instability to
three quasi-two-dimensional slabs of q space intersecting at
� since the branch becomes real toward the R point. With the
exception of this branch, the character of modes at the wave
vectors (1/2, 1/2, 0) and (1/2, 1/2, 1/2) are rather similar.
Both give rise to a large number of unique AFD/antipolar
distortions similar to those described before. Notable also
is the anisotropic behavior of polar branches approaching
the � point from different considered directions. While most
imaginary TO branches are unaffected, discontinuity can be
seen clearly when comparing the [110] and [111] directions
for both PZT V and VI, which is tabulated in Table IV.
The fairly even distribution of states across the soft space
results in a single island in the PDOS for both PZT V and
VI, although, like other PZT arrangements, there is a higher
density of antipolar states in the harder part of the soft space.
Remarkably, despite the near-dispersionless character of the
most imaginary polar branch in PZT VI, the resulting peak in
the PDOS is small as a result of its isolation from other bands
in the spectra and its single-fold degeneracy.

IV. SUMMARY

We have explored the soft-mode lattice dynamics of PTO,
PZO, and PbZr0.5Ti0.5O3 and determined the character of the
most unstable modes of each arrangement. This has revealed
a complex landscape of local minima and possible phase
transition paths for each arrangement. It is important to em-
phasize that this work indicates that altering B-site ordering
in a fixed concentration of Ti/Zr in PZT can in some special
cases lead to the dominance of different order parameters. We
find that, in general (with the exception of PZT IV), higher
symmetry models like PZT I and the VCA are dominated
by rotational instabilities of the BO6 octahedra which, like
pure PZO, are able to couple with Pb antipolar modes at
the � point, suggesting the stability of an AFE structure.
Lower symmetry supercells are found to be more PTO-like,
implicated by the soft zone center modes with a FE character.
We suggest that this effect is the result of the presence of
crystalline directions where continuous Ti-O-Ti chains exist
or at least a direction where the Ti to Zr ratio is high. If
this is not true (as is the case for PZT I), the more inert Zr
sites act to dampen the FE distortion, allowing for rotational
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instabilities to dominate. In the context of a realistic ordering
of PbZr0.5Ti0.5O3, these findings imply that for any given
sample unless the Ti/Zr ordering is high symmetry (which
is very unlikely) the dominant order parameters are likely
be zone center and FE in character. This finding agrees with
the experimental observation that PZT is ferroelectric at this
concentration [8]. Given the number of unique distortions in
any one of the supercell models, however, it is unlikely that
the ground state of these structures can be described only by
a FE distortion. Further work could include identification of
the phase transition paths, resulting in a mixed-mode ground
state.

We find also that there is considerable competition with the
routinely considered polar and Glazer-like rotational modes
from longer wavelength antipolar modes and with non-Glazer-
like AFD modes. In some cases, non-Glazer-like isolated
out-of-phase rotation of ZrO6 octahedra is more unstable than
Glazer a0a0c+ and is either closely competitive with or more
unstable than a0a0c− distortions. For PZT IV and V, we find
no soft modes which result in Glazer-type rotations. We find
that some soft modes can give rise to distortions characteristic
of more than one order parameter. It is found that in PZT
IV–VI FE order can appear simultaneously with antipolar Pb
displacements. All PZT arrangements have long-wavelength
soft modes displaying a dual antipolar/AFD character. It is
possible that such distortions are competitive in PZT IV,
suggesting a complex local minima rivalling the softer FE

distortion. Given the long wavelengths associated with these
modes, there are a large number of participating atoms. It can
then become costly to study their behavior with conventional
plane-wave-based DFT due to well-known scaling issues.
Accurate first-principles simulations of these systems will
then require large-scale electronic structure methods [64].

The applicability of the VCA as a substitute for the super-
cell method has been investigated. While the disperion looks
strikingly similar to that of PZT I, we find that the species-
specific character is considerably different. The alchemical
Ti/Zr atom does not play a role in the lattice dynamics but
rather is a site inert to displacement. Crucially, the softest
Glazer-type rotational modes have a different classification
in the VCA, becoming a−b−c− and a+b+c+ as opposed to
a0a0c− and a0a0c+ like found in other PZT supercells and
end members PTO and PZO. This quantitatively displays the
inability of the VCA to represent local structural distortions.
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