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Application of the Schwarz-Christoffel map to the Laplacian growth of needles and fingers
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A numerical procedure based on the Schwarz-Christoffel map suitable for the study of the Laplacian growth of
thin two-dimensional protrusions is presented. The protrusions take the form of either straight needles or curved
fingers satisfying Loewner’s equation, and are represented by slits in the complex plane. Particular use is made of
Driscoll’s numerical procedure, the SC Toolbox, for computing the Schwarz-Christoffel map from a half plane
to a slit half plane. Since the Schwarz-Christoffel map applies only to polygonal regions, the growth of curved
fingers is approximated by an increasing number of short straight line segments. The growth rate is given by a
fixed power η of the harmonic measure at the finger or needle tips and so includes the possibility of “screening”
as the needles of fingers interact with themselves and with boundaries. The method is illustrated with examples
of multiple needle and finger growth in half-plane and channel geometries. The effect of η on the trajectories of
asymmetric bifurcating fingers is also studied.
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I. INTRODUCTION

Systems having an interface separating two different
phases or media evolving in response to diffusion arise in
many different scenarios and across widely varying scales.
When diffusion is governed by Laplace’s equation and the
velocity of the interface is given by the gradient of the
phase, the motion is known as Laplacian growth. Even in
two dimensions, Laplacian growth leads to complicated, of-
ten beautiful, patterns. Examples include Saffman-Taylor fin-
gering [1], diffusion-limited aggregation [2], the formation
of ramified river valley networks by groundwater flow [3],
erosion of sediment to form narrow channels in river deltas
[4], combustion fronts [5], magnetic flux dendrite formation in
superconductors [6], and growth of bacterial colonies [7]. In
these examples instability at the interface leads to long narrow
protrusions—fingers—of one phase penetrating the other.

Theoretical study of two-dimensional Laplacian growth
and its resultant pattern formation involves consideration of
difficult nonlinear free boundary problems. One assumption
which enables progress is to assume that the fingers are
infinitesimally thin and advance at their tips only with ve-
locity proportional to the local gradient of the phase. In
terms of complex analysis the fingers can be thought of as
evolving slits in the complex plane. This realization coupled
with conformal-mapping methods has resulted in considerable
understanding of the Laplacian growth of thin fingers, e.g.,
[8,9]. A striking example of this is an explanation of the
remarkable observation that in stream networks sculpted by
seepage erosion the angle at which streams bifurcate is close
to 2π/5, e.g., [3,10,11].

At its simplest, the thin protrusions can be modelled as
straight slits in the complex plane which grow at their tips
only. It is natural to map this slit domain to some canonical
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domain such as the upper half plane or the exterior to the unit
disk. Since needles are straight the slit domain is polygonal
and the mapping takes the form of a Schwarz-Christoffel map.
Such needle models have been proposed as representative of
growing “arms” in the star shaped clusters typically formed
in diffusion-limited aggregation, e.g., [12–14]. Similar radial
needlelike structures were reported in the recent numerical
solution of a Laplacian growth model for evolving river deltas
[4]. Theoretical results for these models are usually confined
to two arms or symmetric arrangements of multiple arms.
In the two arm case symmetry breaking occurs with one
of the arms eventually growing at the expense of the other
[13,14]. This effect is referred to as screening. The needle
model has also been studied in a half plane in the case of a
periodic “forest” of needles growing upward from the real
axis. In such an arrangement with adjacent needles being
of alternate lengths the screening effect can be shown to be
exponential [15], i.e., the growth speed of the shorter needles
becomes exponentially small as the difference in needle length
grows. A complementary approach models the growth of a
periodic set of parallel growing needles using a Fokker-Planck
equation [16].

The growth of curved infinitesimally thin fingers can also
be thought of as evolving curved slits in the complex plane.
The natural mathematical approach to describe growing slits
in the complex plane is to use Loewner’s differential equation
governing the time evolution of a conformal map from, say,
a now curved slit half plane to a half plane minus the slit.
The equation effectively encodes the shape of a growing slit
according to some given real driving function (see Sec. II A).
More generally, Loewner’s equation has proved an invaluable
tool in addressing questions in complex analysis since its
introduction in 1923. Recently it has received considerable
attention for the case when the driving function is stochastic
owing to its use in understanding two-dimensional lattice
models in statistical mechanics. See, for example, [17] for a
historical perspective and [18] for an extensive review with
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emphasis on applications. In the Laplacian growth problem
while the driving function is deterministic it needs to be found
as part of the solution [8,9,11].

Exact solutions of the Loewner equation in the half plane
are limited to cases involving either one slit and special
choices of the driving function, or symmetric arrangements of
two or three slits—see, e.g., [19–22]. Alternatively, for a given
driving function, Loewner’s equation can be solved numeri-
cally either by direct discretization [19], or by successively
approximating the driving function over short time intervals
by a function for which the Loewner equation may be solved
explicitly [23].

In Laplacian growth, when the finger grows along local
flow lines of the Laplacian field it is often referred to as
“geodesic growth” [8]. Recently, Devauchelle et al. [11] have
established the equivalence between geodesic growth, growth
which maintains local symmetry in the phase field lines about
the tip, and growth that maximizes flux into a finger’s tip.
This suggests an alternative numerical approach in which
the Laplacian field is computed (e.g., using finite elements
[24]) and its behavior near a given tip used to grow the
finger in a direction determined by local symmetry. A similar
approach is taken here: a curved finger is approximated by
a series of discrete straight-line segments and can therefore
be regarded as a polygon. The polygon is then mapped by
the Schwarz-Christoffel transform to the upper half plane
where the solution to Laplace’s equation is used to find the
direction along which the finger grows in order to preserve
local symmetry. This paper makes extensive use of the SC
Toolbox [25] to compute numerically the Schwarz-Christoffel
transform.

Section II details the Laplacian growth problems con-
sidered here, namely the evolution of both straight needles
and curved fingers and the rules governing their growth. A
common theme to both analytical and numerical approaches
of this paper is the use of the Schwarz-Christoffel transform.
Its application to needle growth in the half plane is presented
in Sec. III. The transform is used to derive asymptotic growth
rules for a pair of needles for small and large times, and
to investigate instability of pairs of needles, revealing strong
screening in which one needle grows at the expense of the
other. Configurations of needle pairs which are inclined to
the base of the half plane are studied numerically, as well as
multiple needles in both half-plane and semistrip geometries.
Section IV presents a numerical procedure for computing
curved finger growth and demonstrates its use by computing
results for symmetric two and three finger growth. Relevant to
the bifurcation of stream networks the method is used to find
trajectories of bifurcating fingers in Sec. V.

II. LAPLACIAN GROWTH OF NEEDLES AND FINGERS

A. Loewner’s equation

The Laplacian growth of curved fingers or straight nee-
dles is represented by slits growing from the real axis and
penetrating the upper half of the z = x + iy plane. Laplace’s
equation �φ = 0 is satisfied in the region exterior to the slits,
with boundary condition φ = 0 on the slits and real axis. The
“hydrodynamic” condition is imposed at infinity: φ → y as

z → ∞. Let w = gt (z) be the map from the slit upper half
of the z plane to the entire upper half of the w plane and let
z = ft (w) be its inverse (see Fig. 1). The map is normalized
by requiring

gt (z) = z + K (t )

z
+ O

(
1

z2

)
as z → ∞, (1)

where K (t ) is a real function of time. In the case of a single
slit the map gt (z) satisfies the (chordal) Loewner equation
(e.g., [19])

ġt (z) = d (t )

gt (z) − a(t )
, (2)

where a(t ) is the (real) driving function and d (t ) = K̇ (t ). Note
that a(t ) is the image of the finger or needle tip in the w plane.
The solution for φ is immediate once the map gt is determined
since φ = Im(w) = Im(gt ). It is usual to consider the growth
problem such that the finger has zero length at t = 0 so that
gt |t=0 := g0(z) = z is the identity map, and a(0) is the starting
location of the finger on the real z axis. For N fingers (2)
generalizes to (e.g., [9,19,20]).

ġt (z) =
N∑

k=1

dk (t )

gt (z) − ak (t )
. (3)

There is an extensive literature on the chordal Loewner
equation (2), and its radial counterpart, including the case
when the driving function is stochastic. See, for example, re-
views by Gruzberg and Kadanoff [26] and Bauer and Bernard
[18]. Here the focus is on the case when the driving function
is deterministic, and such that the slits either follow curved
paths which ensure the diffusive field is locally symmetric at
their tips (geodesic fingers), or when they are straight needles
growing in prescribed directions.

B. Growth speed of a finger or needle

At the tip z = γ of the finger or needle, the gradient of φ

has the usual inverse square root singularity:

|∇φ(γ + r, t )| ∼ C(t )√
r

, (4)

where r is a local radius from z = γ [14,20] and C(t ) is a
positive function of time. By integrating the flux of φ into the
tip it can be shown [14,20] that the speed of the tip v is given
by v = |C(t )|. Further, if the map from the upper half of the
w plane to the slit upper half z plane is z = ft (w) it can be
shown [8,14,20]

v = | f ′′
t (a(t ))|−1/2. (5)

More generally, the speed of the finger or needle can
be expressed as v = |C(t )|η = | f ′′(a(t ))|−η/2 where η is a
constant power; see, e.g., [8,20]. The value of η influences
the dynamics. For example, Derrida and Hakim [14] make
the choice η = 1 [referred to here as the “natural” choice
since it arises from direct integration of the flux about the
tip, i.e., Eq. (4)] in a study of radial needles growing from
a common origin. They showed that longer needles grow
at the expense of shorter needles. This screening effect is
inherent in Laplacian growth and is largely responsible for the
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FIG. 1. Mapping between the slit z plane and the upper half of the w plane. The slits in the form of straight needles have tips at z = γi

which map to real parameters w = ai, i = 1, 2, 3. In the z plane φ = 0 on the needles and real z axis, and φ → y as y → ∞. The needles make
angles μ1π , μ2π , and μ3π with the real axis. The solution to �φ = 0 in the w plane is φ = Im(w) = v. Contours of φ in the w plane are
dashed lines parallel to the real axis.

typical pattern formation in which long, dominant fingers are
observed in a variety of physical scenarios.

Depending on the choice of η, the screening effect is
also present in the growth of multiple fingers governed by
Loewner’s equation (see [8,20]). In the case of N fingers, the
relationship between the Loewner growth rate dk (t ) and vk

is [20]

|dk (t )| = | f ′′
t (ak (t ))|−1−η/2. (6)

For the special case η = −2, (6) shows dk (t ) is constant
and no screening occurs as fingers grow with constant speeds.
However, for other choices of η, including the natural choice
η = 1, screening results. The effect of η on bifurcating fingers
is investigated numerically in Sec. V.

III. NEEDLE GROWTH IN THE HALF PLANE

A. Numerical method based on the SC Toolbox

Since the direction of needle growth is prescribed by the
initial conditions, just the growth rate of needles is required in
order to compute their evolution. Consider N needles growing
upward in the z = x + iy plane at arbitrary angles to the real
axis. The “natural choice” of screening parameter η = 1 is
made, so that each needle grows at a speed according to (5).
Figure 1 shows a sketch of two straight needles making angles
πμ1 and πμ2 with the real axis, along with a curved finger
(see Sec. IV for discussion of curved fingers) growing in the
upper half of the z plane.

The solution of Laplace’s equation

�φ = 0, (7)

in the upper half z plane exterior to the needles, such that
φ = 0 on the needles and real z axis, and satisfying φ → y
as z → ∞ is readily obtained using the inverse Schwarz-
Christoffel map w = f −1

t (z) = gt (z) where the solution is
simply φ = Im(w). For N needles the Schwarz-Christoffel
map is given by

z = ft (w) = A
∫ w

w0

N∏
i=1

(s − ai )

(s − aiL )μi (s − aiR)1−μi
ds + f (w0),

(8)
where πμi is the angle the ith needle makes with the
negative real axis. The parameters aiL and aiR lie on the
real w axis to the left and right of ai respectively, and

the ordering aiL < ai < aiR < a(i+1)L < ai+1 < a(i+1)R, i =
1, . . . , N − 1 applies. As the slits grow the parameters
aiL(t ), ai(t ), aiR(t ), i = 1, . . . , N vary with time. The real
scale factor A = A(t ) is also a time-varying map parameter.

In general the Schwarz-Christoffel map of the type (8)
contains two arbitrary parameters. Here the choice A = 1 is
made ensuring that the hydrodynamic condition at infinity
φ → y as y → ∞ is satisfied. The other choice made is
a1L = −aNR, so that the unknown parameters are located in
the interval [−aNR, aNR] along the real w axis.

By expanding (8) as w → ∞ the condition that z → w +
O(w−1) gives the following relation for the parameters:

N∑
i=1

ai − μiaiL + (1 − μi )aiR = 0. (9)

Note that the SC Toolbox makes a different choice in
assigning the two arbitrary parameters, namely a1L = −1 and
aNR = +1 and retains A as a parameter. This implies z → Aw

as w → ∞. In order to satisfy the hydrodynamic condition at
infinity computations from the SC Toolbox must therefore be
rescaled.

For N � 2 fingers the map parameters ai, aiL, aiR, i =
1, . . . , N are difficult to find explicitly. The SC Toolbox is
an efficient way to accurately compute them, provided the
spacing between needles is such that numerical inaccuracies
owing to “crowding” is not problematic (see Sec. IV D).

The growth speed of the needles (5) requires the second
derivatives f ′′

t (ai ), i = 1, . . . , N be computed. This is done
numerically using the SC Toolbox by computing

f ′′
t (ai ) = lim

ε→0
[ f ′

t (ai + ε) − f ′
t (ai − ε)]/2ε, (10)

where ε > 0 is a small parameter; a typical value used here is
10−7. Note the first derivatives in (10) are computed straight-
forwardly and to high accuracy by the SC Toolbox since they
are simply the derivatives of the integral form of the map
(8), i.e., its integrand. For a small increment in time �t the
needle tips are advected in the along-needle direction by the
local tip velocity using a time-stepping routine. After each
step the map parameters are recomputed enabling the local tip
velocities to be updated. Example computations are presented
in Sec. III C.

013101-3



N. R. MCDONALD PHYSICAL REVIEW E 101, 013101 (2020)

B. Analytical approach: Two needles

In the case of needle growth in the half plane it is pos-
sible to derive a system of coupled ODEs for the Schwarz-
Christoffel parameters which when solved determine the nee-
dle lengths as functions of time. The ODE system is derived
in this section for two needles using ideas from Tsai [22]; see
also [27] for the case of N interacting fingers growing parallel
to the sides of a semi-infinite strip. The key idea is to model

needles as Loewner fingers satisfying (3) and then to find
the functional form of driving functions ak (t ), k = 1, . . . , N
which gives straight fingers.

Consider two needles with lengths h1,2(t ) growing upwards
from z = ±L making angles πμ1 and πμ2 with the real z
axis as in Fig. 1. The Schwarz-Christoffel map from the upper
half of the w plane to the upper half of the z plane slit by the
needles is

ft (w) =
∫ w

a1L

(s − a1)(s − a2)

(s − a1L )μ1 (s − a1R)1−μ1 (s − a2L )μ2 (s − a2R)1−μ2
ds − L. (11)

Note that the choice a1L = −a2R is not explicitly imposed in (11). This simply means the ODE system has an additional first-
order ODE to solve. The corresponding Loewner equation for gt and that satisfied by its inverse ft are, from (3),

ġt = d1

gt − a1
+ d2

gt − a2
, (12)

and

ḟt = − f ′
t

[
d1

w − a1
+ d2

w − a2

]
, (13)

where f ′
t = dft/dw.

Let I (w) = f ′
t (w)2 be the square of the integrand in (11):

I = (w − a1)2(w − a2)2

(w − a1L )2μ1 (w − a1R)2−2μ1 (w − a2L )2μ2 (w − a2R)2−2μ2
. (14)

Note that I ′/I = 2 f ′′
t / f ′

t and, using (13),

İ

I
= 2 f ′

t ḟ ′
t

f ′2
t

= − I ′

I

[
d1

w − a1
+ d2

w − a2

]
+ 2

[
d1

(w − a1)2
+ d2

(w − a2)2

]
. (15)

Direct differentiation of (14) with respect to time gives

İ

I
= − 2ȧ1

w − a1
− 2ȧ1

w − a2
+ 2μ1ȧ1L

w − a1L
+ (2 − 2μ1)ȧ1R

w − a1R
+ 2μ2ȧ2L

w − a2L
+ (2 − 2μ2)ȧ2R

w − a2R
, (16)

while differentiating (14) with respect to w gives
I ′

I
= 2

w − a1
+ 2

w − a2
− 2μ1

w − a1L
− 2 − 2μ1

w − a1R
− 2μ2

w − a2L
− 2 − 2μ2

w − a2R
. (17)

Substituting (17) into (15) yields an alternative expression for İ/I which when equated to (16) and the six limits w → ai, aiL, aiR,
i = 1, 2, considered separately, yields six coupled first-order ordinary differential equations for the Schwarz-Christoffel
parameters:

ȧ j = (2δ1 j − 1)
d1 + d2

a1 − a2
+ μ1d j

a1L − a j
+ (1 − μ1)d j

a1R − a j
+ μ2d j

a2L − a j
+ (1 − μ2)d j

a2R − a j
,

ȧ jL =
2∑

i=1

di

a jL − ai
, ȧ jR =

2∑
i=1

di

a jR − ai
, (18)

for j = 1, 2.
Recall that the velocity of a needle is given by ḣi = vi = | f ′′(ai )|−1/2, i = 1, 2, and that (6) implies di(t ) = | f ′′(ai )|−3/2.

From (11)

| f ′′
t (ai )| = |a1 − a2|

|(ai − a1L )μ1 (ai − a1R)1−μ1 (ai − a2L )μ2 (ai − a2R)1−μ2 | . (19)

Thus knowledge of the Schwarz-Christoffel parameters at
any given time determines the needle velocities via (19).
In practice integrating the needle velocity to find hi(t ) is
straightforward. Alternatively having computed the Schwarz-
Christoffel parameters, the integral (11) can be evaluated
numerically to find hi = Im[ ft (ai )].

The set (18) is straightforward to solve using standard
numerical routines for coupled first-order ODEs. Condition
(9) serves as a useful check on the accuracy of the solution.
Even in this alternative ODE approach there is need, however,
to use the SC Toolbox once at the beginning of the procedure
to determine the initial values of the Schwarz-Christoffel
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parameters. The initial z-plane finger having lengths h1(0)
and h2(0) (usually assumed small) are mapped to the upper
half of the w plane using the SC Toolbox. The parameters
a1(0), a1L(0), a1R(0), a2(0), a2L(0), a2R(0) are outputs of the
map computed by SC Toolbox, taking care, as previously
noted, to scale these outputs so that the far-field condition
φ → y as y → ∞ is satisfied.

It is straightforward to extend this approach to N interact-
ing needles; the Appendix gives, for example, the system of
ODEs satisfied by the Schwarz-Christoffel parameters for a
system of N parallel needles all making right angles to the
real z axis.

C. Examples of two needle growth

The evolution of two needles can be computed by either
(i) the analytical method of Sec. III B involving the solution
of system (18) and using this solution to compute the needle
velocities vi = | f ′′(ai )|−1/2 and hence lengths at any instant
of time, or (ii) employing the SC Toolbox approach described
in Sec. III A, where the SC Toolbox is invoked at every time
step in order to compute the instantaneous needle velocities.
Both methods were tested and found to agree with each other
to high accuracy.

Consider two parallel needles of lengths h1 and h2 growing
in the pure imaginary direction from z = ±1. For small times
when the needle lengths are small their effect on each other is
negligible and the needles effectively grow independently. For
larger times the needles compete with each other and screen-
ing occurs. This unstable situation leads to the larger needle
growing with the smaller slowing and eventually coming to a
halt. These behaviors for two needle pairs are quantified in the
following subsections.

1. Equal length needles

Let μ1 = μ2 = 1/2 so both needles grow upward from the
real axis parallel to the imaginary axis. Letting h1 = h2 = h
and choosing the origin of the z plane to lie equidistant from
each needle it follows from (8) that w0 = 0 and a2 = −a1 =
a, −a1L = a2R = aR, and −a1R = a2L = aL. The Schwarz-
Christoffel map (8) then becomes

z = ft (w) =
∫ w

0

(s2 − a2)√(
s2 − a2

L

)(
s2 − a2

R

)ds. (20)

For needles distance two apart (20) gives

ih =
∫ a

aL

(s2 − a2)√(
s2 − a2

L

)(
s2 − a2

R

)ds

= −
∫ aR

a

(s2 − a2)√(
s2 − a2

L

)(
s2 − a2

R

)ds,

1 =
∫ aL

0

(s2 − a2)√(
s2 − a2

L

)(
s2 − a2

R

)ds. (21)

For small time the needle lengths are correspondingly small
and hence from (21) aL → a. Letting aL = (1 − ε)a, where
ε � 1, it follows from (9) that aR = (1 + ε)a, and from (21)
a = O(1) and h = aε + O(ε2). In the same limit (19) gives

FIG. 2. Growth of two needles of equal length h1 = h2 = h(t )
(solid line). Superimposed are asymptotic length functions for small
time, h ∼ t2/4, and large time, h ∼ t2/4

√
2 + const (both dashed

lines).

z′′(a) = (aε)−1 + O(1). Hence using (5), to leading order,
ḣ = h1/2 giving h ∼ t2/4 growth for small time. Note that this
is a different growth rate from the typical

√
t growth law for an

isolated needle for Loewner’s equation with constant forcing
(6) d (t ) = const (see, e.g., [19]) since

√
t growth results from

the choice η = −2 rather than η = 1 used here.
For large times when h � 1 (21) implies aL � a � aR and

hence πa2 = 2aR, and h = aR to leading order. The growth
speed of the needles is now given by ḣ = | f ′′

t (a)|−1/2 ≈
(aR/2)1/2 ≈ √

h/2, giving h ∼ t2/4
√

2 growth, a factor of
√

2
slower than the initial growth speed.

Figure 2 shows the length h1 = h2 = h(t ) of the needles
as a function of time computed using the SC Toolbox method
described in Sec. III A to find the velocity at the tips at any
instant and using the Adams-Bashforth time-stepping routine
to advance the tips. Also shown is the asymptotic relations for
needles with small length h ∼ t2/4 and for needles of large
length h ∼ t2/4

√
2 + const, where the constant is chosen so

that h(t ) and its large length approximation coincide at t = 6.

2. Long needles having different lengths

In this asymptotic analysis it is convenient to rescale (11)
using a2R > 0 so that a1L → −1 and a2R → +1. The rescal-
ing reintroduces the scaling parameter A = a2R and gives the
Schwarz-Christoffel map,

z = ft (w) = A
∫ w/A

−1

(s − a)(s − d )√
(s2 − 1)(s − b)(s − c)

ds − 1, (22)

where a = a1/a2R, b = a1R/a2R, c = a2L/a2R, d = a2/a2R.
Hence

ih1 = A
∫ a

−1

(s − a)(s − d )√
(s2 − 1)(s − b)(s − c)

ds

= −A
∫ b

a

(s − a)(s − d )√
(s2 − 1)(s − b)(s − c)

ds,

ih2 = A
∫ c

b

(s − a)(s − d )√
(s2 − 1)(s − b)(s − c)

ds

= −A
∫ 1

d

(s − a)(s − d )√
(s2 − 1)(s − b)(s − c)

ds. (23)
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FIG. 3. Lengths of two needles as functions of time with initial
lengths 1.0 and 1.05.

In the two long and equal needle limit considered above
b, c → 0 and a = −d . Here the same limit is considered
but the parameters are perturbed so that a → a∗ = −d −
ε, b, c → b∗ = c∗ = −2ε, and d → d∗ = d − ε, where 0 <

ε � d < 1. The perturbed parameters satisfy the constraint
(9). Substituting into (23) gives to leading order in ε,

h1 − h2 = −4d2Aε

∫ 1

d

ds

s2
√

1 − s2
+ O(ε2). (24)

Since the right hand side of (24) is negative, the effect of the
perturbation is to increase the needle length h2 with respect to
h1. In the same limit the ratio of the square of the speeds of
the needles is from (19) to leading order,

v2
2

v2
1

= 1 + 2ε

d (1 − d2)
, (25)

and so v2 > v1. Thus the taller needle grows more quickly
than the shorter needle. Consequently the equal length dis-
tribution is unstable to small perturbations. This instability,
which is evident for needle pairs of any length and not just the
long needle limit considered in this analysis, is well known
for Laplacian growth, including radial needle growth, e.g.,
[14]. Figure 3 demonstrates this instability with an exam-
ple computation of the evolution of h1,2(t ) with initial tip
locations −1 + 1.0i and 1 + 1.05i. The growth rate of the
shorter needle approaches zero, while the other grows with
ever-increasing speed.

D. Two inclined needles

It is straightforward to use the numerical method to quan-
titatively study the evolution of inclined needles making arbi-
trary angles with the real axis. While most previous studies
of needle growth have considered needles which emanate
at right angles to the real axis or needles growing radially
outward from a central point, numerical experiments on diffu-
sion limited aggregation suggest that secondary needles may
branch at angles other than 90 degrees from primary branches,
e.g., [28,29]—see their Figs. 2 and 3 respectively. Recently
Krapivsky et al. [30] considered multiple needle growth in a
half space with growing needles making arbitrary angles to
a substrate. Such a situation may occur when needles grow

FIG. 4. (a) Snapshot of a pair of needles at t = 6. The initial
lengths of the needles were both 0.05. One grows at right angles to
the real axis and the other inclined at angle μπ = 3π/5. (b) The
needle lengths as functions of time.

from a substrate which is not perfectly flat but, rather, has
small, random topographic variations. While their paper did
not consider Laplacian growth (their needles only interact
upon collision), they remark on the application of inclined
needle growth to crystal growth.

In this section pairs of inclined needles growing in a half
space are considered. Generally, when needles are angled
away from each other they continue to grow unimpeded for all
time. For needles angled such that they approach each other it
is typical for one of the needles to slow allowing the other
to pass. The slower needle is then effectively screened and
comes to a halt, while the other continues to grow. Figure 4
shows a typical example. Both needles have the same initial
length h1,2 = 0.05 and are initially a unit distance apart. The
left needle is inclined slightly from the vertical: μ1 = 0.6,
while μ2 = 0.5. Figure 4(a) shows a snapshot of the needles
after t = 6 and Fig. 4(b) shows their length as a function of

FIG. 5. Contours of the stream-function field at t = 2.5 for the
same two needle experiment shown in Fig. 4. The stream-function
values on the contours are uniformly spaced.
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FIG. 6. (a) Snapshot of a pair of needles at t = 6. The initial
lengths of the needles were both 0.05; both grow at angle μπ =
3π/5. (b) The needle lengths as functions of time.

time. The screening effect is demonstrated in Fig. 5 which
shows uniformly spaced contours of the stream function (the
conjugate function of the potential, contours of which are
readily obtained using the SC Toolbox) for the same pair of
needles at time t = 2.5. The concentration of stream lines
entering the tip of the larger needle in comparison to the
shorter needle indicates a greater flux entering the large needle
and hence its more rapid growth.

Figure 6 shows two parallel needles with the same angle
of incline μ1,2 = 0.6 and with the same initial lengths h1,2 =
0.05 and a unit distance apart. Ultimately screening occurs
with one of the needles slowing and the other continuing to
grow. As expected, it is the left needle that is screened. This
behavior is replicated for other angles of parallel needle pairs
starting with the same lengths: if μ1,2 > 0.5 then the left
needle is screened and for μ1,2 < 0.5 it is the right needle
which is screened, i.e., the “inside” needle is the one that
ultimately grows the quickest.

E. N > 2 needles

Figure 7 shows nine needles each separated by a unit
distance growing parallel to the imaginary axis. The needles

all start with the same length hi(0) = 0.05, i = 1, . . . , 9. As
expected the needles grow symmetrically about the central
needle with the outermost needles growing at the fastest rate,
since they are influenced by the other needles on one side only.
Since the outermost needles grow quickest it follows that the
other needles are eventually screened to a degree proportional
to their distance from the outer needles. Hence the resulting
pattern illustrated in Fig. 7(a) in which the interior needle tips
form a smooth profile with maximum length in the center.
Figure 7(b) shows that at about t = 8 the interior needles
have stopped growing while the outermost needles continue
to grow. Similar patterns arise for any number of equally
spaced needles with the same starting lengths. If the number of
needles is even, then the two central needles grow in tandem
at the same rate.

The evolution of needles in the semistrip geometry |x| <

1, y > 0 with zero flux boundary condition φx = 0 on x =
±1, y > 0 can also be computed using the method. This is
achieved by the same sequence of mappings used by [20].
First, the semi-infinite strip and needles are mapped to the
upper half of the w plane by the SC Toolbox. Second, the
upper w plane is mapped to the empty semi-infinite strip in the
ζ plane using the map ζ = (2/π ) sin−1 w. The combination of
the two maps z = ft (ζ ) is to map the z plane with needles in a
semi-infinite strip to an empty semi-infinite strip and the tips
z = γi of the needles map to the real ζ axis, i.e., γi = f (αi )
where |αi| < 1, i = 1, . . . , N . The velocity of each tip is given
by | f ′′

t (αi )|−1/2 which is computed numerically as before.
An example computation is shown in Fig. 8: nine needles

evenly spaced in the interval (−1,+1) each having initial
length hi(0) = 0.05 grow vertically upwards. In this case
the middle needle continues to grow while the other needles
eventually stop growing.

IV. GEODESIC FINGER GROWTH:
NUMERICAL PROCEDURE

A. Numerical method

In geodesic growth fingers follow curved paths determined
by field lines of φ(x, y). Recent work [11,24] has established
the equivalence of geodesic growth and fingers that grow such

FIG. 7. (a) Nine evenly spaced needles growing vertically in a half plane. The initial lengths of the needles is 0.05. The needle lengths
maintain a symmetric distribution. (b) Lengths of the needles as function of time.
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FIG. 8. (a) Nine evenly spaced needles growing vertically in a semi-infinite strip with zero flux conditions on the vertical sidewalls (shown
as thick dark lines). The initial length of the needles is 0.05. The needle lengths maintain a symmetric distribution. (b) Length of the needles
as function of time.

that they maintain local symmetry in the streamlines [i.e.,
level curves of the conjugate function of the phase φ(x, y)]
entering the tip, and in a direction that maximizes flux into
the tip.

By approximating curved fingers as series of small straight-
line segments—steps—of given length δl and treating them as
polygons, the SC Toolbox can be employed to model geodesic
growth as follows:

(i) At a given time the discretized fingers (which may be
growing in a domain with general polygonal geometry, e.g.,
semistrip, wedge, etc.) are mapped to the upper half of the w

plane using the SC Toolbox. As in the needle case, the solution
in the w plane is given by φ = Im(w), with the w-plane image
of the jth finger tip z = γ j being a j ∈ Re; see Fig. 9. In the
SC Toolbox, a j is computed using the “evalinv” routine.

(ii) The direction at which the next small straight-line
increment is oriented is determined by finding the point in
the z plane which is given a distance δl from the tip, and has
the same value of the stream function as the tip γ j , i.e., the
value a j . In practice this is done by computing the image w∗ of
points z∗, where |z∗ − γ j | = δl and such that they lie in a small

arc of possible angles on either side of the present direction of
the finger (see Fig. 9). The particular point z∗ = z∗∗ sought is
such that the value of its stream function Re(w∗∗) = a j and
is found by interpolating between the computed images w∗.
Typically 100 z∗ points are chosen in the arc [−π/6, π/6]. If
there is only one finger then z∗∗ is the next tip location γ j+1.
For multiple fingers, their relative speeds need to be computed
in order to find their relative increment lengths. The procedure
is described in the next step.

(iii) The relative growth speeds of multiple fingers are
computed using (5) with the second derivative computed
according to the limit (10) and the first derivatives calculated
using the SC Toolbox “evaldiff” routine. Once the speeds
are computed for all tips they are normalized according to
v j = | f ′′

t (a j )|−η/2/
∑N

k=1 | f ′′
t (ak )|−η/2, to give relative speeds

and then each tip is advanced by an increment proportional to
their relative speed.

(iv) Once the new straight-line segments have been added
to the tips of each finger, the new polygon is mapped to the
w plane and the procedure (i)–(iii) is repeated to find the next
increment.

FIG. 9. Mapping between the piecewise straight-line discretized finger in the physical z plane and the upper half of the w plane: γ j maps to
aj on the Re(w) axis. The set of points z∗ lie on an arc of radius δl from γ j . The point z∗ = z∗∗ is such that Re(w∗∗) = aj , where w∗∗ = gt (z∗∗).
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FIG. 10. (a) Two symmetric fingers growing in a half plane
computed using the numerical method. Nine iterations are shown
with each step of length 0.1 showing as a different color. The dark
line shows the initial starting configuration with fingers 0.2 apart.
(b) Shape of the computed right finger for two different step sizes
δl = 0.05 (dotted line), 0.1 (dashed line) with 44 and 22 iterations
respectively, compared with the exact solution (26) (solid line).

B. Numerical tests

The numerical procedure is tested by comparing to known
exact solutions in two different scenarios: (a) two symmetric
fingers growing in a half space [20], and (b) a single finger
growing in a semi-infinite strip with zero flux condition on the
sidewalls [20]. In (a) the exact solution for the time evolution
of the tips z = γ±(t ) is [11,20]

γ±
(
γ 2

± − 5a2
0

)2 = ±16
(
a2

0 + t
)5/2

, (26)

where γ±(0) = ±a0 correspond to the initial starting points of
the fingers on the real z axis. Figure 10(a) shows the computed
fingers after nine iterations having evolved from initial steps
of length δl = 0.1 perpendicular to the real axis, and spaced
2a0 = 0.2 apart, i.e., γ±(0) = 0.1 + 0.1i. A comparison with
the exact solution for two different choices of step length
δl = 0.1, 0.05 is shown in Fig. 10(b), demonstrating that as
the step length decreases there is convergence toward the exact
solution. Defining the error as the mean of the absolute differ-
ence between the numerical solution and the exact solution
at the data points (the same error measure as used by [24]),
Fig. 11 shows that the error decreases approximately linearly
with step length over a range of step lengths. Unlike the
needle case where the number of sides of the polygon remains
fixed, the finger computation slows in time as the number of
elements forming the polygon increases. The SC Toolbox is
required to determine an additional three Schwarz-Christoffel
parameters per finger at every time step. Eventually the num-
ber of elements becomes so large that “crowding” occurs and
the method is no longer reliable; see remarks at the end of this
section.

The second test problem grows a single geodesic finger
in a semistrip of width 2 [20]. The boundary conditions are
φ = 0 on the finger and y = 0, |x| < 1, φ → y as y → ∞
and there is zero flux through the sidewalls so that φx = 0
on x = ±1, y > 0. By mapping the channel to a half space,
Gubiec and Szymczak [20] show that the finger satisfies the
modified Loewner equation (for suitably scaled time t and
irrespective of the choice of screening parameter η since there

FIG. 11. The average error of the two symmetric finger com-
putation compared to the exact solution as a function of step size
δl = 0.05, 0.075, 0.1, 0.125, 0.15.

is only one finger)

ġt = π

2

cos (πgt/2)

sin (πgt/2) − sin [πa(t )/2]
, (27)

where, for geodesic growth, a(t ) = (2/π ) sin−1[exp(−π2t/8)
sin(πa0/2)]. An implicit solution for the trajectory of the
finger can be obtained by solving (27) for gt with the initial
condition g0 = z and then realizing that the finger tip in the w

plane is given by gt = a:√
cos

(πγ

2

)
+ sin

(πa0

2

)
F

(
πγ

4

∣∣∣∣2
)

= h(t ), (28)

where F (σ |m) is the incomplete elliptic integral of the first
kind and h(t ) is an increasing function of time h(0) � h(t ) <

∞. The precise form of h(t ) is unimportant in determining the
shape of the finger trajectory. Note that Gubiec and Szymczak
[20] state that such a solution in terms of elliptic function can
be found but do not present it.

Figure 12(a) shows the numerically computed finger shape
for two different step sizes δl = 0.15, 0.05 compared with
the analytical solution (28). Figure 12(b) shows the average
error as a function of step size. As in the two finger test
case, the error decreases approximately linearly with step
size. For a step size δl = 0.1, the error is comparable to the
high resolution finite-element procedure of Cohen et al. [24]
who also performed the same numerical test. Their method
also grows the finger by successively adding discrete steps
which satisfy local symmetry, the difference being that they
directly compute φ(x, y) in the semistrip using a finite element
method.

C. Three finger evolution

The numerical method can be used to compute multiple
fingers evolving in the half plane for arbitrary values of η.
In this section the evolution of three fingers which maintain
symmetry about the middle (vertical) finger is computed for
the choices η = −2, 1, 4. For η = −2 finger growth rates
are constant and there is an analytic solution for the finger
shapes obtained by direct solution of Loewner’s equation (3)
[21]: denoting the left and right tips by γ1(t ) and γ3(t ), the
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FIG. 12. (a) Shape of finger starting at x = −0.5 and growing in a semi-infinite strip of width 2. Shown are numerically computed fingers
for two different step sizes 0.15 (dashed line) and 0.5 (dotted line) and the exact solution given by (28) (solid line). (b) The average error
compared to the exact solution as a function of step size.

trajectories are solutions of the algebraic equation
[
γ1,3(t )2 − a2

0β+
]1+α[

γ1,3(t )2 − a2
0β−

]1−α

= (1 − β+)1+α (1 − β−)1−α
(
a2

0 + 3d0t
)2

, (29)

where α = √
3/19, β± = (9 ± √

57)/6, d0 is the constant
growth rate, and ±a0 are the starting locations of the finger
tips γ1,3. Note that (29) corrects a minor typographic error
in Eq. (14) of [21], namely the presence of the a2

0 terms
inside the square brackets on the left hand side. For the choice
η = −2 the numerical results compare well (not shown) to
the exact solution (29). For η �= −2 the finger growth rates
are not constant, screening may occur, and there are no exact
solutions.

Figure 13 superimposes trajectories of the fingers for three
different numerical experiments: η = −2, 1, 4, with a0 = 1.
As in the needle case, screening is evident for η = 1 with
growth of the middle needle suppressed in comparison to
the outer needles (cf. Fig. 7). Given the middle needle has
less influence on the outer fingers, they pursue more vertical
paths in comparison to the η = −2 case. The screening effect
is even more pronounced for η = 4, with a relatively small
middle needle and more vertical outer needles.

D. Remarks on numerical crowding

The numerical method based on the SC Toolbox provides
an accurate and efficient computational approach since it
accounts for the singularity at the finger tip by mapping the
whole finger to the real axis of the w plane. Its main limitation
is the number of steps that can be added before crowd-
ing prevents accurate numerical calculation of the Schwarz-
Christoffel map—that is, when the parameters of the Schwarz-
Christoffel map on the real w axis become exponentially close
(see user guide for the SC Toolbox [25]). For example, in
the test example of this section involving semi-infinite strip
geometry crowding becomes problematic when the number of
steps with δl = 0.1 reaches 55. In contrast, for the same step
size, in the symmetric two finger evolution in the half-plane
experiment, the number of elements in each finger can be

grown well beyond 80. It is likely that the reason for this is
that the fingers in this case grow away from each other. No
crowding is evident in the results reported in Sec. III on needle
growth over the time scales shown, although for larger times
crowding is evident especially when fingers are very long
compared to the separation distance of their tips. In general,
the numerical problem of crowding depends on the geometry
and shape of the fingers. The present numerical method is
not well suited for application to, say, whole stream networks
with many interacting streams (which involves a large number
of Schwarz-Christoffel parameters). It is, however, useful in

FIG. 13. Snapshots of the trajectories taken by three fingers
which are symmetric about the middle finger. Three different numer-
ical experiments are shown corresponding to η = −2 (solid line), 1
(dashed line), 4 (dotted line). The tip of the middle finger is denoted
in each case by η = −2 (◦); η = 1 (∗); η = 4 (×). The small vertical
solid black ticks on the real axis represent the initial heights of the
fingers.
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FIG. 14. (a) Comparison of exact finger trajectories (solid line) obtained by conformal mapping of (26) for t = 2.4, and those obtained by
the numerical method (dashed lines). The initial secondary bifurcation and the primary semi-infinite needle are the thick solid lines. (b) The
angle between the tangents of the finger tips as a function of time. The dashed line is the 2π/5 angle.

understanding local phenomena such as interaction of fingers
with boundaries and when they bifurcate. The latter applica-
tion is considered in the next section.

V. BIFURCATING FINGERS

The remarkable observation that groundwater-fed streams
tend to bifurcate at an angle of 2π/5 has attracted much
attention, e.g., [3,10,11]. Groundwater flow in these networks
is approximated by the solution of Laplace’s equation �φ = 0
subject to φ = 0 on the streams and with uniform flux at
infinity. Assuming streams to be infinitesimally thin, the use
of Loewner’s equation to model their growth is appropriate.

Carleson and Makarov [8] showed that for two needles
of finite length (“secondary” needles) branching symmet-
rically from a semi-infinite needle (the “primary” needle)
the bifurcation angle 2π/5 is special since it is the unique
angle for which the secondary needles are geodesic, i.e., φ

is locally symmetric about the tips (see also [3,9–11,31]).
More generally, the solution (26) describing a pair of fingers
growing symmetrically in the half plane can be mapped to
two secondary fingers bifurcating from a primary semi-infinite
needle: Devauchelle et al. [11] showed, for arbitrary initial
symmetric bifurcating angles, the secondary fingers asymp-
tote toward a 2π/5 bifurcation angle, and that this angle is a
stable fixed point.

For fingers bifurcating asymmetrically from a semi-infinite
needle the same mapping approach can be used provided the
fingers grow at the same constant rate. To do this first, the
“exact” finger trajectories are found for a nonsymmetric initial
angle of bifurcation using the same procedure as used in [11]:
suppose the primary needle lies along the negative real axis
and bifurcates at the origin with one finger extending unit
distance along the positive real axis and a second branch
extending unit distance along the ray r exp(−3π/4); see
Fig. 14(a). Note that there is no length scale in this problem
so the initial lengths of the perturbations are taken to be
of a unit length. The initial bifurcation (the thick lines of
Fig. 14) is mapped to the real axis of the w plane using the

SC Toolbox, with the tips of the secondary fingers mapped
to w = ±a0. The solution (26) is then the solution in the w
plane and is mapped back (using the map computed by the
SC Toolbox) to giving the solid line trajectories in Fig. 14.
Care needs to be taken to ensure the correct scaling is made
when using the SC Toolbox, since in the semi-infinite needle
case the far-field condition w → z1/2 for large z applies, so
the scaling of the computed Schwarz-Christoffel parameters
involves

√
A instead of A as in the half-plane case. This is

essentially the same procedure as [11] except that here the SC
Toolbox is used to compute the map since its analytic form is
not explicitly known in the asymmetric case.

Comparison is made in Fig. 14(a) between trajectories
found by the conformal mapping procedure and those com-
puted numerically by growing the fingers with screening
parameter η = −2, so that from (6) d1,2 = const. The step
size is δl1 + δl2 = δl = 0.2. The agreement between the two
methods is reasonable. Also plotted in Fig. 14(b) is the angle
between the fingers as a function of time, as measured by the
tangential directions of the fingers at their tips. As expected
this angle approaches 2π/5.

When η �= −2 growing fingers must be computed numer-
ically since the mapping procedure does not apply since it
relies on the symmetric case where fingers grow at the same
rate. Figure 15 considers an initial π/2 bifurcation from
a semi-infinite primary needle and shows the evolution of
secondary fingers for three different numerical simulations
with η = −2, 1, 4. Clearly the trajectories are dependent on
choice of η: with η = −2 (solid line) the growth rate of each
finger is the same and the fingers evolve toward a bifurcation
angle of 2π/5. For the natural choice of η = 1 one of the
fingers is noticeably longer with the finger initially at right
angles to the primary needle being screened to some extent. In
the η = −4 case there is very strong screening and the finger
from the right-angled branch starting at z = −i is so short it
does not appear in the figure. As a result there is only a small
deviation of the other finger as it continues largely in the same
direction as the primary finger, and the bifurcation angle stays
close to π/2.
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FIG. 15. Screening of fingers from an initial right-angled bifur-
cation (thick solid line) from a semi-infinite needle for η = −2 (solid
line), 1 (dashed line), 4 (dotted line). Shown are the shape of the
fingers in each case after 100 iterations. In the case η = 4 the finger
growing from the right-angle starting at z = −i is barely noticeable.

VI. CONCLUSION

This paper presents effective analytical and numerical
methods for studying Laplacian growth of fingers and needles
in the upper half plane. The methods share the use of the
Schwarz-Christoffel map, this being the “natural” map to use
in the case of needles which form polygonal regions. Curved
fingers are approximated as polygons by discretization.

Knowledge of the conformal map from the empty upper
w plane to the upper z plane slit by needles enables the
growth speed of the needles to be expressed explicitly in
terms of the second derivative of the map. The asymptotic
behavior of pairs of needles is deduced from the form of the
Schwarz-Christoffel map. When the screening parameter η =
1, the results demonstrate the fundamental Laplacian growth
instability, namely that longer needles grow at the expense
of shorter needles. Screening also occurs when needles prop-
agate toward each other or when they propagate parallel to
each other but are inclined to the real z axis. The SC Toolbox
provides an accurate way of computing the map and hence
the growth of the needles. The numerical method is able to
compute N � 2 interacting needles either in the upper half
plane or in a semistrip. Alternatively, following [22,27], a set
of ODEs governing the parameters of the Schwarz-Christoffel
map is derived whose solution for needle growth agrees with
the numerical method.

By discretizing fingers into straight-line segments their
growth and interaction is similarly considered. Fingers which
bifurcate from a semi-infinite needle are of interest in the
ramification of stream networks and are considered here as
an example of the numerical method. It is shown that asym-
metric bifurcations experience screening and that the finger
trajectories depend on the screening parameter η.

The numerical method for growing fingers and needles is
straightforward to adapt to other geometries provided they are
polygonal, e.g., the Laplacian growth of fingers in wedges
and growing from finite polygons can be readily computed.
For growth governed by partial differential equations (PDEs)
other than Laplace’s equation the method may still be use-

ful. Although such PDEs are likely not to be conformally
invariant, the fact that the Schwarz-Christoffel transformation
accurately accounts for the singularity at the tips is a powerful
feature of the present method. The drawback is that after
mapping a nontrivial PDE needs to be solved in the w plane
which although in a simple domain is likely to need solving
by other numerical methods, e.g., spectral methods. Even so,
this combined approach has been successfully used in other
problems, e.g., the computation of point vortex motion near
sharp corners governed by the modified Helmholtz equation
[32].

Another extension of this work would be to use the
methodology to consider “fat slits” [33,34] in which Loewner-
type evolution is applied to fingers and slits which are not
vanishingly thin. For example, Durán and Vasconcelos [34]
consider the growth of fat fingers in a channel, a scenario
which mimics interfacial fingering instability in a channel.
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APPENDIX: N PARALLEL NEEDLES

For N needles growing parallel to the imaginary axis in
the upper half of the z plane the map (8) has time-dependent
Schwarz-Christoffel parameters: ak, akL, akR, k = 1, . . . , N
where ak is the preimage in the w plane of the tip of the kth
needle. Using a similar method as Sec. III B (see also [27] for
the semi-infinite strip geometry case) it can be shown that the
parameters satisfy

ȧk =
N∑

j( �=k)=1

dk + d j

ak − a j
− dk

2

N∑
j=1

(
1

ak − a jL
+ 1

ak − a jR

)
,

ȧkL =
N∑

j=1

d j

akL − a j
, ȧkR =

N∑
j=1

d j

akR − a j
, (A1)

for k = 1, . . . , N . The dk are given by (6). Also,

2
N∑

j=1

a j =
N∑

j=1

(a jL + a jR), (A2)

which serves as useful check on the solution of system (A1).
The needle lengths as a function of time can be deduced from
the Schwarz-Christoffel map (8) or by direct integration of the
velocities

ḣk =
∣∣∣∣∣∣

∏N
j �=k (ak − a j )√∏N

j=1(ak − a jL )(ak − a jR)

∣∣∣∣∣∣
η

. (A3)

The initial conditions for ak, akL, akR, k = 1, . . . , N are
found using the SC Toolbox: at t = 0 the initial needle lengths
hk (0) are known and the resultant polygon is mapped to the
upper half of the w plane and the SC Toolbox computes the
parameters ak (0), akL(0), akR(0). As noted in Sec. III A, care
must be taken to rescale the results from the SC Toolbox to
ensure that gt → z as z → ∞.
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