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Development and validation of a risk prediction model to 
diagnose Barrett’s oesophagus (MARK-BE): a case-control 
machine learning approach
Avi Rosenfeld, David G Graham, Sarah Jevons, Jose Ariza, Daryl Hagan, Ash Wilson, Samuel J Lovat, Sarmed S Sami, Omer F Ahmad, Marco Novelli, 
Manuel Rodriguez Justo, Alison Winstanley, Eliyahu M Heifetz, Mordehy Ben-Zecharia, Uria Noiman, Rebecca C Fitzgerald, Peter Sasieni, 
Laurence B Lovat, on behalf of the BEST2 study group*

Summary
Background Screening for Barrett’s oesophagus relies on endoscopy, which is invasive and few who undergo the 
procedure are found to have the condition. We aimed to use machine learning techniques to develop and externally 
validate a simple risk prediction panel to screen individuals for Barrett’s oesophagus.

Methods In this prospective study, machine learning risk prediction in Barrett’s oesophagus (MARK-BE), we used 
data from two case-control studies, BEST2 and BOOST, to compile training and validation datasets. From the BEST2 
study, we analysed questionnaires from 1299 patients, of whom 880 (67·7%) had Barrett’s oesophagus, including 
40 with invasive oesophageal adenocarcinoma, and 419 (32·3%) were controls. We randomly split (6:4) the cohort 
using a computer algorithm into a training dataset of 776 patients and a testing dataset of 523 patients. We compiled 
an external validation cohort from the BOOST study, which included 398 patients, comprising 198 patients with 
Barrett’s oesophagus (23 with oesophageal adenocarcinoma) and 200 controls. We identified independently important 
diagnostic features of Barrett’s oesophagus using the machine learning techniques information gain and correlation-
based feature selection. We assessed multiple classification tools to create a multivariable risk prediction model. 
Internal validation of the model using the BEST2 testing dataset was followed by external validation using the BOOST 
external validation dataset. From these data we created a prediction panel to identify at-risk individuals.

Findings The BEST2 study included 40 diagnostic features. Of these, 19 added information gain but after correlation-
based feature selection only eight showed independent diagnostic value including age, sex, cigarette smoking, waist 
circumference, frequency of stomach pain, duration of heartburn and acidic taste, and taking antireflux medication, 
of which all were associated with increased risk of Barrett’s oesophagus, except frequency of stomach pain, with was 
inversely associated in a case-control population. Logistic regression offered the highest prediction quality with an 
area under the receiver-operator curve (AUC) of 0·87 (95% CI 0·84–0·90; sensitivity set at 90%; specificity of 68%). In 
the testing dataset, AUC was 0·86 (0·83–0·89; sensitivity set at 90%; specificity of 65%). In the external validation 
dataset, the AUC was 0·81 (0·74–0·84; sensitivity set at 90%; specificity of 58%).

Interpretation Our diagnostic model offers valid predictions of diagnosis of Barrett’s oesophagus in patients with 
symptomatic gastro-oesophageal reflux disease, assisting in identifying who should go forward to invasive 
confirmatory testing. Our predictive panel suggests that overweight men who have been taking antireflux medication 
for a long time might merit particular consideration for further testing. Our risk prediction panel is quick and simple 
to administer but will need further calibration and validation in a prospective study in primary care.
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Introduction
Oesophageal cancer has a long-term survival rate of only 
12%, but 59% of cases are preventable.1 Early diagnosis 
is crucial to change disease outcome but symptoms in 
early oesophageal adenocarcinoma are often either 
absent or indistinguishable from uncomplicated gastro-
oesophageal reflux disease. Barrett’s oesophagus is the 
only known precursor lesion to oesophageal adeno-
carcinoma, increasing the risk by 30–60 times.2 
Nevertheless, the annual incidence of oesophageal 
adenocarcinoma in patients with Barrett’s oesophagus is 

low—eg, approximately 0·1–0·2% among people from 
the Netherlands3—and therefore the merits of endo-
scopic screening are contro versial. The cytosponge test 
is less invasive and might add an important triaging step 
because it can be administered in general practice and is 
more acceptable to patients (cytosponge device was 
designed by RCF and her research team in 2009–10; 
patents and a trademark were filed in 2010 by the 
UK Medical Research Council [MRC]; cytosponge was 
specifically designed for the BEST2 study in 2010; 
in 2013, the MRC licensed the technology to Covidien GI 
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Solutions, now part of Medtronic [Dublin, Ireland]).4 The 
cytosponge is in a capsule on a string that is swallowed 
by a patient. The capsule disintegrates upon entering the 
stomach and the sponge unravels within 5 min. The 
sponge is then pulled back out of the mouth using the 
string and as it travels out of the body it picks up cells 
from the lining of the oesophagus. These cells can then 
be tested for the presence of Barrett's oesophagus. 
Another alternative endoscopic test uses a video capsule 
that photographs the gut; however, because the capsule 
traveses the oesophagus very quickly, this test is not very 
useful for Barrett's oesophagus.5 Therefore, an important 
question is which patients with suspected Barrett's 
oesophagus should be screened with these tests.

Obvious target groups would have symptoms and 
known risk factors. These include age, sex, race, reflux 
symptoms, obesity, cigarette smoking, family history, 
and use of anticholinergic drugs.6,7 We previously tried to 
identify patients at risk by analysing these factors using 
statistical approaches, with relatively poor success.8 
Therefore, whether targeting these groups would work in 
clinical practice is unclear.

Machine learning applies mathematical models to 
generate computerised algorithms, which can create novel 
prediction models. Machine learning involves a computer 
that learns important features of a dataset to enable 
predictions about other unseen data. This approach can 
be particularly useful to create models to predict which 
individuals have a disease.9

We hypothesised that machine learning could yield 
better and more reproducible discrimination between 
patients with and without Barrett’s oesophagus than other 
statistical models. Previous studies in this area have not 
validated their results10,11 or found large reductions in 
model accuracy in validation cohorts.12 Additionally, most 
previous studies focused on only a few symptoms, making 
between-study comparisons difficult. The risk factors 
identified include older age,13 male sex,12,14 Caucasian race,15 
gastro-oesophageal reflux disease,13,16 smoking,17,18 and 

central obesity (ie, high waist circumference).18 Only 
two studies considered all of these factors together, of 
which one included only 235 patients with Barrett’s 
oesophagus19 and the other focused on familial disease.20 
Here, we used a large dataset to train and then test a 
model for detection of Barrett’s oesophagus. We added an 
additional independent validation dataset to confirm the 
robustness of the tool to prescreen patients for this 
condition.

Methods 
Study design and participants 
In this prospective study, machine learning risk 
prediction in Barrett’s oesophagus (MARK-BE), we 
collected data from two case-control studies done in the 
UK to construct training, testing, and external validation 
datasets. We collected data on patients with Barrett’s 
oesophagus and controls, both as defined in the inclusion 
criteria of the studies. All patients with a diagnosis of 
dysplastic Barrett’s oesophagus or oeso phageal adeno-
carcinoma were included in the Barrett’s oesophagus 
group and those with ultra-short segment Barrett’s 
oesophagus (Prague classification of less than C1Mx or 
C0M3) were removed from the analysis completely to 
create a clear distinction between the groups.

BEST2 (ISRCTN 12730505) was a case-control study 
undertaken nationwide in 14 UK hospitals, with patients 
recruited in 2011–14, that compared the accuracy of 
the cytosponge-trefoil factor 3 test for the detection of 
Barrett’s oesophagus with endoscopy and biopsy as the 
reference standard.4,21 Barrett’s oesophagus was defined 
as endoscopically visible columnar-lined oesophagus 
(Prague classification C1 or M3), with histopathological 
evidence of intestinal metaplasia on at least one biopsy 
sample. Controls were symptomatic patients without 
Barrett’s oesophagus referred for routine endoscopy. Of 
1299 patients, 880 (67·7%) had Barrett’s oesophagus, 
40 (3%) had invasive oesophageal adenocarcinoma, and 
419 (32·3%) were controls. In parallel to assessing the 

Research in context

Evidence before this study
We searched PubMed for publications in English from database 
inception until June 30, 2019, on models to identify the 
presence of Barrett’s oesophagus using the terms “Barrett’s 
esophagus”, “prediction model”, “risk factors”, and “risk 
prediction models”. Previous studies have identified multiple 
risk factors but—with two recent exceptions, one involving a 
small cohort of patients and the other looking at familial risk—
they have either not synthesised the model to create a 
comprehensive risk factor panel or have not validated it in a 
completely independent dataset.

Added value of this study
Here we took two large datasets (BEST2 and BOOST) that 
together include more than 1600 patients and controls. 

We used robust machine learning methods to create a stable 
algorithm to predict the presence of Barrett’s oesophagus from 
the BEST2 cohort. These algorithms were tested internally in a 
separate subset of the cohort and then validated externally in 
the BOOST cohort. A reliable and stable risk prediction panel 
was created, comprising eight risk factors, that can now be 
prospectively tested in a primary care cohort.

Implications of all the available evidence
A successful risk prediction panel would, for the first time, 
potentially allow routine non-invasive identification of patients 
who are at high risk of having Barrett’s oesophagus. The machine 
learning approach we used to develop this risk prediction panel 
could be used for other medical conditions to aid diagnosis and 
avoid unwarranted and low yield invasive testing.
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accuracy of the cytosponge test, patients were asked to 
complete a questionnaire giving details of 40 symptoms 
and risk factors of their condition to analyse whether these 
symptoms and risk factors could be used to stratify patients 
by risk, such as we have done previously.8 Questionnaire 
data were collected from all 1299 participants. For the 
current study, we randomly split this large dataset (6:4) 
using a computer algorithm into a training dataset (n=776) 
and a testing dataset (n=523). We split the dataset using 
this ratio to allow sufficient training data to quantify the 
model’s complexity while maintaining adequate data to 
validate the model.

BOOST (ISRCTN 58235785) was a case-control study 
undertaken in four European hospitals (two in the UK in 
London and Nottingham, one in Leuven, Belgium, and 
one in Madrid, Spain), with patients recruited in 2013–15, 
that used enhanced endoscopic techniques to target high-
risk lesions that occur in patients with Barrett’s oesoph-
agus.22 Clinical and demographic data were collected. 
Controls were patients referred by their primary care 
physician with suspected oesophageal cancer who had 
neither Barrett’s oesophagus nor oesophageal adenocar-
cinoma and were analogous to those in BEST2. Although 
BOOST was a multicentre study, questionnaires were only 
collected from 398 patients at a single site, University 
College London Hospial, London, UK.  197 (50%) of 
398 participants who completed questionnaires were 
controls and 24 (6%) of 398 had oesophageal adeno-
carcinoma. Patients were asked to complete a question-
naire similar to that in BEST2. This questionnaire was 
designed from the outset to include the same questions as 
in the BEST2 questionnaire so that the cohort could be 
used as a validation dataset for a symptom-based algorithm 
that was to be generated from the BEST2 dataset in line 
with TRIPOD guidelines.23 However, some extra questions 
were included relating to food intake, anxiety, and 
depression. We used this dataset as the external validation 
dataset.

The primary outcome of both studies was a diagnosis of 
Barrett’s oesophagus, which was ascertained by histo-
pathologists who were masked to predictor variables.

For BEST2, symptoms of gastro-oesophageal reflux 
disease (GERD) were collected with a questionnaire 
adapted from the GERD Impact Scale8 together with 
the GERD questionnaire.10 BOOST also included the 
hospital anxiety and depression scale. The total number 
of variables reported in BEST2 was 40 and in 
BOOST was 204. In both studies, data were collected on 
paper case-report forms and transferred into electronic 
databases by investigators.

Data handling and machine learning approaches
We imputed missing data for nominal and numerical 
features with the modes and means of the training data. 
Here we describe how predictors were handled, and the 
workflow is shown in figure 1. We used feature analysis 
to process data and identify important predictors.

For the training dataset, we analysed data using 
two accepted feature selection filters: information gain 
and correlation-based feature selection. Information gain 
is a machine learning univariate filter that compares each 
feature separately and its correlation with the class. 
Features are chosen on the basis of how much each one 
discriminates between the groups being investigated; 
in our case, Barrett’s oesophagus versus no Barrett’s 
oesophagus. Correlation-based feature selection filtering 
is a multivariable filter that specifically considers features’ 
correlation to each other and removes redundant features 
that are highly correlated. The final set of features is then 
used to generate the analysis model.

Both information gain and correlation-based feature 
selection are filter feature selection methods and 
thus have the advantage of being fast, scalable, and 
independent of the classifier.24 Independence from the 
classifier is crucial to our study because it allows us to 
understand which features are being selected by the 
algorithm and their medical importance. As made clear 
by Nie and colleagues,25 filters that are independent of 
the classifier enable improved interpretability. They 
should also lead to more stable algorithms than 
conventional statistical approaches, such as backward 
logistic regression, because they minimise data over-
fitting. Similar to our previous work,8 we initially 
identified k features that had at least a minimal 
correlation to Barrett’s oesophagus. We then plotted the 
change in mean area under the receiver operator curve 
(AUC) for prediction of Barrett's oesophagus using 
between 1 and k features.

Figure 1: Machine learning workflow for data processing and model 
development 
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We identified the smallest number of independent 
features in the BEST2 training dataset to create our 
model. The smaller the set of predictors, the more stable 
and robust the model, which minimises the risks of 
overfitting the data.

Once our features were defined, we considered five 
different machine learning methods: logistic regression, a 
decision tree based on the Gini measure of quality, a naive 
Bayes classifier assuming a Gaussian distribution, a 
support vector machine using the radial bias function 
kernel, and a random forest classifier using ten trees. 
These five algorithms were chosen for comparison 
because they are well accepted machine learning methods 
that are typically of use in medical applications.26–31 The 
relative strengths and weaknesses of learning algorithms 
remain a major research topic but in principle, when 
training data are restricted, simpler models usually 
perform better because they will generalise more 
reliably—eg, linear and logistic regression models. 
Random forest and decision trees usually perform better 
when training data are abundant and a complex interaction 
exists between features. Support vector machines can be 
extremely robust if the number of predictive features 
is very large compared with the number of training 
examples; a situation in which overfitting often occurs. 
Naive Bayes should be preferred over logistic regression if 
data are sparse but one is confident of the modelling 
assumptions.32 We also considered using deep neural 
networks, but given the lack of dimensionality of our 
data, these models are substantially less accurate and 
interpretable.33–35 Although we considered several options 
for building a supervised prediction model, unless 
otherwise specified, we present the results from a logistic 
regression prediction model.

We developed a prediction model using 90% of the 
BEST2 training dataset to train and 10% to internally test 
the model (figure 1). This process was repeated ten times. 
We used the mean AUC to determine which model 
performed best, which was then tested with the BEST2 
testing dataset. Finally, we validated the model on the 
BOOST external validation dataset. For the AUC calcu-
lation, we set the sensitivity of the model to 90%, because 
we considered this sensitivity to be a clinically important.

Because the AUC measurements might have restricted 
accuracy for imbalanced datasets, we calculated precision 
recall and log loss to show the stability of the derived 
model. We calculated and present extended metrics for 
the machine learning application for the training model 
when applied to the BEST2 testing dataset, and for the 
BEST2 training model after external validation on the 
BOOST dataset. We present accuracy, which is the ratio 
of the correctly labelled participants to the whole dataset; 
recall, which is equivalent to sensitivity (of all the people 
with Barrett’s oesophagus, how many could we correctly 
predict?); precision, which is equivalent to positive 
predictive value (how many of those labelled with 
Barrett’s oesophagus actually have it?) measured at the 

highest point on the receiver operator curve; and the 
F-measure, which is the harmonic mean (average) of the 
precision and recall.

The input datasets included obvious biases, such as 
different sex prevalences in the Barrett’s oesophagus and 
control groups and duration of symptoms. Patients with 
Barrett’s oesophagus are known to have a higher preva-
lence of long-term gastro-oesophageal reflux disease.13,16 
Additionally, controls presented with new symptoms 
whereas those with Barrett’s oesophagus were mostly in 
surveillance programmes. We reconstructed the datasets 
so that race, sex ratios, and age profiles were similar 
across all datasets. We also removed all features relating 
to symptom duration. We then repeated all machine 
learning with this reconstructed dataset to build a new 
risk prediction panel. The risk prediction panel was tested 
on both the BEST2 testing dataset and the BOOST 
independent validation dataset with the actual diagnoses 
withheld. Once the panel had predicted the diagnoses, 
the results were compared with the true diagnoses and 
the accuracy of the model was then calculated.

Statistical analysis
This Article is reported in alignment with TRIPOD 
guidelines.23 No generally accepted approaches exist to 
estimate sample size requirements for derivation and 
validation studies of risk prediction models. We used all 
available data to maximise the power and generalisability 
of our results. Model reliability was enhanced by our use 
of an external validation cohort.

We present discrete variables as numbers and 
percentages and continuous variables as mean (SD). We 
calculated p values for the association of each factor with 
presence and absence of Barrett’s oesophagus using 
Student’s t test or the χ² method. We calculated AUCs by 
generating a univariate logistic regression model using 
only that feature.

We present the ranked features from the training 
dataset using regression coefficients of the association of 
each feasture in the final prediction model. We present 
the risk of Barrett's oesophagus associated with each 
feature using odds ratios and 95% CIs. 

We did all analyses using the RWeka, cvAUC and 
pROC packages in R (version 3.6.1).

Role of the funding sources
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. PS had access to all the BEST2 data 
and LBL and AR had access to all data. The corresponding 
author had final responsibility for the decision to submit 
for publication. 

Results
Demographic and symptom characteristics for all three 
datasets are shown in table 1. Patients with Barrett's 
oesophagus were generally older than those without and 
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were also more likely to be male and smokers, had more 
central obesity, took more antireflux medication, and had 
less frequent stomach pain. Addtionally, those with 
Barrett's oseophagus had experienced acidic taste and 
heartburn for significantly longer than those without.

In the case-control BEST2 training dataset,  all cases had 
a confirmed diagnosis of Barrett’s oesophagus. We 
selected features with a non-negligible information gain. 
In line with previous work,36 we used a threshold of 0·01 
(ie, above a negligible zero value) to select features that 
would positively affect the model. Features with a weaker 
correlation to disease were removed. A total of 19 features 
were selected (table 2). We sorted these features from 
highest to lowest information gain correlation with 
Barrett’s oesophagus and considered subsets with the top 
k features ranging between 1 and 24. We selected the eight 
features with the highest information gain and found no 
significant increase in the AUC (p value of the moving 
average of the next 10 points compared with the original 
values being 0·7; figure 2). This finding is consistent with 
the concept that adding features, even those with strong 
correlation to Barrett’s oesophagus (table 2), does not 
necessarily improve model performance.

We developed multivariable models using correlation-
based feature selection based on the entire 24 common 
features. Correlation-based feature selection selected eight 

features as independent predictors of Barrett’s oesophagus 
(age, sex, waist circumference, stomach pain, taking 
antireflux medication, duration of heartburn, duration of 
acidic taste in the mouth, and smoking; figure 3A). These 
features were not the same as the top eight features 
identified with information gain analysis (table 2).

The prediction model was based on the features selected 
via the correlation-based feature selection analysis 
(figure 3A). Once we had our small panel of features, we 
tested the five different machine learning methods and 
found that logistic regression yielded the best median 

Figure 2: Performance of the model using the BEST2 training dataset 
Increasing the number of features strengthens the model to a plateau point that 
is reached around eight features. The model AUC remains unaffected when up to 
a total of 19 features are added. AUC=area under the receiver operator curve. 

0 5 10 15 19
0

0·70

0·65

0·75

0·80

0·85

0·90

AU
C

Number of features used in model

Information 
gain 

Remain in 
model after 
correlation-
based feature 
selection

Regression 
coefficients in 
final model to 
predict 
Barrett’s 
oesophagus*

Odds ratio 
for Barrett’s 
oesophagus

Taking antireflux medication 0·192 Yes 2·033 7·639 (yes)

Sex 0·133 Yes 1·592 4·901 (male)

Waist circumference 0·107 Yes 0·035 1·035

Duration of heartburn† 0·095 Yes 0·132 1·142

Frequency of stomach pain 0·085 Yes –0·836 0·433

Duration of acidic taste† 0·074 Yes 0·297 1·345

Age 0·065 Yes 0·034 1·035

Frequency of heartburn 0·062 No ·· ··

Ethnicity 0·060 No ·· ··

Weight 0·060 No ·· ··

Height 0·051 No ·· ··

Frequency of sleep disruption 0·049 No ·· ··

Body-mass index 0·040 No ·· ··

Amount of alcohol drunk at age 30 years 0·036 No ·· ··

Frequency of acidic taste 0·031 No ·· ··

Education level 0·018 No ·· ··

Number of cigarettes smoked 0·016 Yes 0·045 1·046

Ever smoked 0·014 No ·· ··

Amount of alcohol drunk currently 0·011 No ·· ··

These features offered more than minimal information gain to predict a diagnosis of Barrett’s oesophagus. The number 
of features was reduced by assessing for correlated feature selection. The final eight features were fed into the analytical 
model. The intercept for the regression equation is –5·031. *To three significant figures. †Years since started.

Table 2: Ranked features in the BEST2 training dataset

Figure 3: Risk prediction model panels for Barrett’s oesophagus 
(A) The eight features selected by correlation-based feature selection for the 
BEST2 training dataset, and the direction of association with presence of 
Barrett’s oesophagus. (B) Of the eight features identified, those that are still 
associated using the correlation-based feature selection model using the 
reconstructed datasets, excluding potential age, sex, race and symptom 
duration biases, are shown in black, with those no longer associated in grey. 
Arrows show the direction of association, with an arrow pointing up indicating 
an increased likelihood of Barrett's oesophagus. 
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AUC, and so we elected to use this model (figure 4). 
Furthermore, this model is most readily understandable 
to a medical audience making it easy to convert into a 
usable tool in clinical practice.

We used the testing dataset to provide an upper estimate 
of the model’s predictive ability (table 2). Using the 
BEST2 testing dataset, the AUC was 0·87 (95% CI 
0·84–0·90) and, for a sensitivity arbitrarily set at 90%, the 
specificity was 68%.

We validated this model using the BEST2 testing dataset. 
The model reproduced well, with an AUC of 0·86 (95% CI 
0·83–0·89), with sensitivity set at 90%, and specificity of 
65%. The model was finally tested on the independent 
validation BOOST dataset. Here the model achieved an 
AUC of 0·81 (95% CI 0·74–0·84), with a set sensitivity of 
90%, and a specificity of 58%. This three-stage development 
process led to a stable, reproducible model.

For completeness, we also present the accuracy, recall, 
precision, and F-measure results of the training model 
applied to the BEST2 training dataset and the external 
validation model on the BOOST dataset (table 3). The 
results were in a relatively narrow range (eg, accuracy 
76·88–84·51% and F-measure 0·77–0·84) with the lowest 
values being recorded when validating the BEST2 model 
on the BOOST data. These results are consistent with the 
AUC results.

We repeated our analyses using reconstructed data bases 
to remove potential biases. Reconstructing the cohorts 
reduced the BEST2 training dataset from 776 to 394 patients; 
the BEST2 testing dataset from 523 to 297 patients; and the 
BOOST external validation dataset from 398 to 162 patients 
(table 4). We used the same workflow to create a new 
model. We determined the new correlation-based feature 
selection variables (figure 3B). The same features remain 
apart from age, sex, and symptom duration. No new 
features entered the correlation-based feature selection 
analysis. As for the initial analyses, we selected features 
with non-negligible information gain, and selected a total 
of seven features. We then built multivariable models 
based on correlation-based feature selection on these seven 
features. Three were selected as independent predictors of 
Barrett’s oesophagus (waist circumference, frequent 
stomach pain, and taking antireflux medication; figure 3B). 
The overall accuracies are lower than the original eight 
features but a clear difference remains between patients 
with and without Barrett’s oesophagus. The initial model 
had an AUC of 0·84 (95% CI 0·79–0·88; sensitivity 90%, 
specificity 43%), which decreased to 0·78 (95% CI 
0·72–0·84; sensitivity 90%, specificity 41%) after testing 
internally, and to 0·77 (0·64–0·81; sensitivity 90%, 
specificity 37%) after external validation.

Most features identified through both iterations of the 
model are readily understandable such as age, male 
sex, longer duration of symptoms, taking antireflux 
medications, and central obesity (ie, waist circumference). 
However, the feature of lower frequency of stomach pain 
appears counterintuitive.

Discussion
We have shown that a panel with eight features, including 
detailed stomach and chest symptoms, can identify the 
presence of Barrett’s oesophagus with high sensitivity and 
specificity in a case-control population. The currently used 
system for identifying patients with Barrett’s oesophagus, 
or those at risk of oesophageal adeno carcinoma, is flawed 
because it is based on symptoms that trigger expensive 
and unpleasant invasive tests. Simple triaging of 
individuals might be possible on the basis of predictive 
panels that include variables that are widely available or 
easy to obtain. Work on the QResearch database has 
shown the usefulness of this approach to predict 
oesophageal cancer.37 This approach is slowly being 
incorporated into general practice but it has not yet been 
robustly confirmed to detect the premalignant phenotype 
of Barrett’s oesophagus, potentially because Barrett’s 
oesophagus is frequently asymptomatic and takes many 
years to develop into cancer. Nevertheless, this condition 
needs to be recognised because of the success of early 
intervention in preventing oesophageal adenocarcinoma 
with its dire prognosis.38

In our study, we specifically did not include patients with 
ultrashort Barrett’s oesophagus (ie, Prague clas sification of 
<C1 or <M3). Differences exist between UK and US 
guidelines on follow-up for this low-risk group and our 
aim was to create a prediction tool that avoided this 

Figure 4: Comparison of model’s AUC with different machine learning 
classification algorithms
Box plots show AUCs and 95% CIs. AUCs when using the BEST2 training dataset 
with 13 features. AUC=areas under the receiver operator curve.
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BEST2 testing dataset 84·51 0·85 0·84 0·84
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The first line are these measures when evaluating the model developed with the 
BEST2 training dataset and tested on the BEST2 testing dataaset. The second line 
shows the results of these measures for the BEST2 model after external validation 
on the BOOST dataset.

Table 3: Extended metrics for evaluating the machine learning application, 
by dataset
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ambiguity. Although the methods we used are generally 
applicable and should be considered for prediction of other 
diseases, we focused on Barrett’s oesophagus as an 
example of how a tool could be used by primary-care 
physicians to better target people for formal screening. 
Patient age and sex, together with medication and smoking 
history, are routinely captured in primary care systems. 
Additionally asking about duration of heartburn and 
acidic taste, frequency of stomach pain, and measuring 
waist circumference should be simple for physicians. 
Alternatively, a patient could do a self-assessment using a 
web-based app and generate a personalised risk profile for 
having Barrett’s oesophagus. Precise cutoffs between 
patients and controls will need to be defined once this risk 
prediction panel is tested prospectively in a primary care 
population in which the prevalence of Barrett’s oesophagus 
is lower than in our cohorts. For a particular AUC, the 
sensitivity chosen for use in clinical practice can be altered 
depending on the clinical question. Whereas, if triaging 
for cancer in symptomatic individuals would require a 
sensitivity of 95% or greater, missing a diagnosis of 
Barrett’s oesophagus might not be so critical, and a 
sensitivity of even lower than 90% might be adequate. 
Indeed, machine learning might offer a way to create 
accurate predictive panels to prescreen for many other 
diseases and could be tuned to achieve the desired 
sensitivity depending on the importance of the disease in 
question.

Reflux duration is strongly correlated with cancer risk 
and is longer in patients with Barrett’s oesophagus. In our 
panel, use of antireflux medicines was a strong predictor 
of Barrett’s oesophagus. Metabolic obesity characteristically 
presents with truncal obesity and is also a risk factor for 
Barrett’s oesophagus,39 which explains why our model 
predicted patients with Barrett’s oesophagus to have 
greater waist circumferences. Waist circumference is not 
routinely collected, but is an easy measurement to collect, 
particularly for patients who wish to self-triage. A clear 
correlation exists between waist circumference and body-
mass index (BMI), which is routinely collected. Our 
method identified the most important independent 
predictors of Barrett’s oesophagus. In routine practice, 
replacing waist circumference with BMI might be more 
practical but the model would then need to be reworked. 
Another finding that initially appears counterintuitive is 
the negative correlation between Barrett’s oesophagus 
and frequency of stomach pain; however, on further 
investigation this correlation makes sense. Most patients 
with oesophageal adenocarcinoma are not identified 
before cancer develops despite many of them having 
Barrett’s oesophagus. Indeed, 40% of patients with 
oesophageal adenocarcinoma have not previously had 
symptomatic reflux and many probably had Barrett’s 
oesophagus.40 Therefore, Barrett’s oesophagus has been 
hypothesised to not be associated with severity of reflux 
symptoms;41 which fits with the model determined from 
our data.

BE
ST

2 
tr

ai
ni

ng
 d

at
as

et
 (n

=3
94

)
BE

ST
2 

te
st

in
g 

da
ta

se
t (

n=
29

7)
BO

O
ST

 v
al

id
at

io
n 

da
ta

se
t (

n=
16

2)

Ba
rre

tt
’s 

oe
so

ph
ag

us
 

pr
es

en
t

Ba
rre

tt
’s 

oe
so

ph
ag

us
 

ab
se

nt

p 
va

lu
e 

(χ
 ²)

AU
C

Ba
rre

tt
’s 

oe
so

ph
ag

us
 

pr
es

en
t

Ba
rre

tt
’s 

oe
so

ph
ag

us
 

ab
se

nt

p 
va

lu
e 

(χ
²)

AU
C

Ba
rre

tt
’s 

oe
so

ph
ag

us
 

pr
es

en
t

Ba
rre

tt
’s 

oe
so

ph
ag

us
 

ab
se

nt

p 
va

lu
e (

χ²
)

AU
C

n
29

6 
(7

5%
)

98
 (2

5%
)

··
··

22
7 

(7
6%

)
70

 (2
4%

)
··

··
87

 (5
4%

)
75

 (4
6%

)
··

··

W
ai

st
 ci

rc
um

fe
re

nc
e,

 cm
10

0·
66

 (1
3·

17
)

93
·0

3 
(1

2·
51

)
<0

·0
00

1
0·

66
 (0

·5
9–

0·
72

)
10

0·
19

 (1
2·

97
)

95
·5

5 
(1

3·
02

)
0·

00
92

6
0·

60
 (0

·5
2–

0·
68

)
91

·0
3 

(8
·3

1)
87

·0
9 

(9
·3

8)
0·

00
58

8
0·

62
 (0

·5
3–

0·
71

)

Ta
ki

ng
 a

nt
ire

flu
x 

m
ed

ica
tio

n

N
o

14
/2

96
 (5

%
)

43
/9

5 
(4

5%
)

<0
·0

00
1

0·
70

 (0
·6

5–
0·

75
)

17
/2

26
 (8

%
)

29
/7

0 
(4

1%
)

<0
·0

00
1

0·
67

 (0
·6

1–
0·

73
)

7/
86

 (8
%

)
24

/7
4 

(3
2%

)
<0

·0
00

1
0·

62
 (0

·5
6–

0·
68

)

Ye
s

28
2/

29
6 

(9
5%

)
52

/9
5 

(5
5%

)
··

··
20

9/
22

6 
(9

2%
)

41
/7

0 
(5

9%
)

··
··

79
/8

6 
(9

2%
)

50
/7

4 
(6

8%
)

··
··

St
om

ac
h 

pa
in

 fr
eq

ue
nc

y

N
ev

er
21

7/
29

6 
(7

3%
)

35
/9

5 
(3

7%
)

<0
·0

00
1

0·
71

 (0
·6

4–
0·

76
)

15
8/

22
5 

(7
0%

)
38

/7
0 

(5
4%

)
0·

00
86

7
0·

60
 (0

·5
4–

0·
66

)
59

/8
5 

(6
9%

)
32

/6
9 

(4
6%

)
0·

00
01

8
0·

68
 (0

·6
0–

0·
75

)

O
cc

as
io

na
lly

*
48

/2
96

 (1
6%

)
28

/9
5 

(2
9%

)
··

··
47

/2
25

 (2
1%

)
15

/7
0 

(2
1%

)
··

··
11

/8
5 

(1
3%

)
3/

69
 (4

%
)

··
··

W
ee

kl
y

20
/2

96
 (7

%
)

9/
95

 (9
%

)
··

··
10

/2
25

 (4
%

)
6/

70
 (9

%
)

··
··

8/
85

 (9
%

)
13

/6
9 

(1
9%

)
··

··

Da
ily

11
/2

96
 (4

%
)

23
/9

5 
(2

4%
)

··
··

10
/2

25
 (4

%
)

11
/7

0 
(1

6%
)

··
··

7/
85

 (8
%

)
21

/6
9 

(3
0%

)
··

··

Da
ta

 a
re

 n
 (%

), 
n/

N
 (%

), 
or

 m
ea

n 
(S

D)
, p

 v
al

ue
, o

r A
UC

 w
ith

 9
5%

 C
I i

n 
pa

re
nt

he
se

s. 
p 

va
lu

es
 w

er
e 

ca
lcu

la
te

d 
us

in
g 

th
e 

χ²
 te

st
 a

nd
 A

UC
s a

s c
al

cu
la

te
d 

us
in

g 
th

e 
re

co
ns

tr
uc

te
d 

m
od

el
. W

he
re

 d
at

a d
iff

er
 b

et
w

ee
n 

gr
ou

ps
 it

 is
 d

ue
 to

 m
iss

in
g 

da
ta

. T
ot

al
 

pe
rc

en
ta

ge
s m

ig
ht

 n
ot

 e
qu

al
 1

00
%

 d
ue

 to
 ro

un
di

ng
  A

UC
=a

re
a u

nd
er

 th
e 

re
ce

iv
er

 o
pe

ra
to

r c
ur

ve
. *

O
nc

e o
r t

w
ice

 a
 m

on
th

.

Ta
bl

e 4
: D

em
og

ra
ph

ic
 a

nd
 sy

m
pt

om
 ch

ar
ac

te
ris

ti
cs

 o
f r

ec
on

st
ru

ct
ed

 d
at

as
et

, b
y 

pr
es

en
ce

 o
r a

bs
en

ce
 o

f B
ar

re
tt

’s 
oe

so
ph

ag
us



Articles

www.thelancet.com/digital-health   Vol 2   January 2020 e45

Our panel of features differs from the QResearch 
database work for oesophageal cancer.42 The QResearch 
panel includes dysphagia, appetite loss, weight loss, and 
anaemia as predictors for cancer and does not include 
duration of symptoms or central obesity data. These 
differences reflect the different realities of Barrett’s 
oesophagus and oesophageal adenocarcinoma.

Previous works have identified risk factor panels, 
including multiple biomarkers, such as leptin and 
interleukin levels, or data from genome-wide association 
studies, which are not easily available, and others included 
only a few symptoms.10,43 For those in which the risk factor 
panels were larger, several key differences exist between 
our analyses and these previous works. We confirmed 
the importance of older age,13,43,44 male sex,11,12,14 gastro-
oesophageal reflux disease,10,11,13,16,44,45 smoking,17,18,43,44 and 
central obesity;43,44,46 however, we found that many of these 
risk factors were cross-correlated in our data analysis. 
We overcame the challenge of panels failing external 
validation through a combination of univariate and 
multivariable feature selection techniques that yielded a 
stable panel. The results are better than previous panels 
with sensitivities of 70–80% and specificities of 50–60% 
or AUCs of 0·7 or lower.10,11,43,44 By contrast, our panel 
validates between completely different datasets with an 
AUC of at least 0·81 when only considering eight risk 
factors. This predictive panel of risk factors might be 
adequate to be used as a triaging tool in clinical practice 
for Barrett’s oesophagus.

Three recent studies support our risk prediction panel. 
Xie and colleagues followed-up 63 000 patients for 
20 years in Norway for risk of developing oesophageal 
adenocarcinoma and they constructed a model based on a 
very similar risk panel to ours.47 Their data were taken 
from a patient cohort without the level of symptom 
granularity we achieved by using data from cohorts in 
which patients were interviewed. The AUC of their model 
to identify 15-year risk of oesophageal adeno carcinoma 
was 0·84 (95% CI 0·76–0·91) but it did not attempt to 
identify patients with Barrett’s oesophagus.47 Similarly, 
Kunzmann and colleagues examined 355 034 indi viduals 
from the UK Biobank for risk of developing oesophageal 
adenocarcinoma. Their panel including age, sex, smoking, 
BMI, and history of oesophageal conditions or treatments 
and they identified individuals who would later develop 
oesophageal adenocarcinoma with an AUC of 0·80 
(95% CI 0·77–0·82).48 Once again, their study did not 
specifically aim to identify Barrett’s oesophagus, although 
the features are remarkably similar to those we identified, 
suggesting that many patients they identified might have 
undiag nosed Barrett’s oesophagus. We found one study 
that targeted sporadic Barrett’s oesophagus alone that was 
undertaken in a small Australian cohort in which their 
choice of risk factors was determined by complex 
deduction; however, this approach did lead to a tool with 
an AUC of 0·82 (95% CI 0·78–0·87).19 This tool was later 
validated in an independent dataset.19,49 One additional 

feature of that model was hypertension, which was not 
identified as an independently important feature in our 
model even though we queried for it, raising the question 
of the stability of their model. 

Because our aim was to create a tool for prescreening, we 
intentionally used the BEST2 and BOOST datasets, which 
had a higher incidence of Barrett’s oesophagus than the 
general population. Generally, an open challenge to 
machine learning is how to properly identify important so-
called minority categories, such as Barrett’s oesophagus. 
Because Barrett’s oesophagus is relatively uncommon, 
with a prevalence as low as 2% found in Mexico,50 one 
could create extremely accurate models by assuming no 
individuals have Barrett’s oesophagus. In the BEST2 and 
BOOST datasets, this issue was mitigated by use of a 
targeted collection of suspected at-risk individuals, which 
led to a distribution of Barrett’s oesophagus that is much 
higher than that in the general population. Several 
methods exist to computationally rebalance the data 
beyond or in addition to this approach. The most common 
approach is undersampling, whereby existing records 
belonging to a prevalent category are intentionally removed 
to create a different ratio between the classes. Here, 
the relatively high number of patients with Barrett’s 
oesophagus could be adjusted by randomly removing 
some of the patients. Alternatively, over sampling could be 
used, whereby individuals without Barrett’s oesophagus 
are added to generate a new balance between the target 
patients. One popular example of this approach is the 
synthetic minority oversampling technique,51 which 
synthetically adds artificial cases to the minority class. 
Another approach would be to apply a ratio of controls to 
known cases to train the model with a prevalence that 
more closely aligns with the real-world setting.

The advantage of using datasets that inherently have 
higher distributions of patients with Barrett’s oesophagus 
is that our data are non-synthetic and thus more likely to 
be effective as a screening tool; although, one could argue 
that undertaking this study in a cohort with a prevalence of 
Barrett’s oesohpagus that is similar to that of the general 
population might yield different results. However, further 
studies are needed to confirm this hypothesis and to study 
any potential effects of false positives or false negatives 
generated in a real-world setting. To this end, we propose 
that our algorithm should be applied to the data generated 
from the BEST3 study, which is a pragmatic, multisite, 
cluster-randomised controlled trial set in primary care 
centres in England, UK, where the prevalence of Barrett’s 
oesophagus is representative of the general UK population 
and in which the same questions have been asked as in 
BEST2 and BOOST.52 We are also undertaking another 
prospective study (ISRCTN 11921553) to test this 
hypothesis independently in a second population that 
more closely aligns with the  general population prevalence 
of the disease.

The methods used to apply the machine learning 
analysis also present a challenge. Many researchers do 
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both univariate and multivariable analysis of each dataset 
independently, which often leads to selecting similar 
features in both datasets. We have previously used this 
approach ourselves. We made very small changes in our 
definitions of Barrett’s oesophagus (with or without 
intestinal metaplasia), each of which was associated with 
different risk factors being important in the ensuing 
algorithms. These differences stem from a lack of 
so-called stability in the features that each model 
independently selected;8 too many features, even those 
with relatively high prediction value, often reduces the 
model’s power.

One current solution to both these challenges is effective 
feature selection. We approached this challenge by 
identifying which features add information. This approach 
is called information gain, a univariate approach. In our 
previous work,8 we used a threshold of 0·1 within χ² with 
one degree of freedom to select eight features in the 
dataset. An advantage to using feature selection to 
determine important features is that they are based on a 
filter approach to selection, which is undertaken without 
any connection to a specific learning algorithm. Similarly, 
no human bias is involved. We incorporated this approach 
as one step in our current analysis.

Our results show stability across the BEST2 and BOOST 
datasets. Although each of these datasets was collected 
independently, their collection methodologies and 
definitions were similar enough for effective comparison. 
This study shows that such analyses are possible if stable 
features are identified that are not influenced by random 
artifacts in the data collection process.53

We considered using other multivariate feature 
selection algorithms including least absolute shrinkage 
and section operator (LASSO).54 LASSO is one type of 
feature selection that is embedded in logistic regression 
because its feature analysis is inherently linked to this 
machine learning method. It has a similar limitation to 
the support vector machine recursive feature selection 
(RFE-SVM) approach.55 Both approaches are limited to 
only one algorithm, in the case of RFE-SVM, the support 
vector machine algorithm that we also considered. 
Because we aimed to consider a variety of machine 
learning methods, we preferred using information gain 
and correlation-based feature selection, which are filter 
methods and can be used without any connection to a 
specific machine learning prediction model,24 thus 
facilitating improved medical understanding.35

We also considered correlations between features, which 
often exist in medical datasets. We used the multivariable 
correlation-based feature selection algorithm to do this. 
We reasoned that features selected by correlation-based 
feature selection should be more stable than other 
approaches. This hypothesis is borne out by the high 
AUC of the predictive model and its stability against the 
independent validation cohort.

Having created our dataset, we considered possible 
biases and sought to minimise these by reconstructing 

the cohorts to avoid any age, sex, or race bias; however, 
we found that our model remains robust.

The risk prediction panels we generated are easy to use 
in practice. Theoretically, people could enter their 
symptoms into a smartphone app and receive an 
immediate risk factor analysis. These data could then be 
uploaded to a central database (eg, in the cloud) that 
would be updated after that person sees their medical 
professional.

Our study had several limitations. Because both datasets 
were collected from at-risk individuals, the dataset was 
enriched for patients with Barrett’s oesophagus. 
Additionally, patients attending for symptom assessment 
are more symptomatic than those undergoing surveillance 
endoscopy. Nevertheless, all the patients with Barrett’s 
oesophagus undergoing surveillance would have presented 
initially with symptoms. Notably, many individuals with 
Barrett’s oesophagus have no symptoms and so this risk 
prediction panel is unlikely to work for these people. 
Nonetheless, given the robustness of the models generated, 
the predictive panel produced here could be of benefit to 
rapidly triage symptomatic patients for minimally invasive 
screening tools, such as the cytosponge test, because 
many symptomatic individuals currently undergo no 
testing at all.56

Further prospective data collection is needed using a 
cohort study design in a primary care setting where the 
prevalence of Barrett’s oesophagus will be much lower to 
confirm the validity of our findings and to establish the 
final best risk prediction model parameters.
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