Neurol Ther (2019) 8 (Suppl 2):S83-S94
https://doi.org/10.1007/s40120-019-00168-1

®

Check for
updates

REVIEW

Salivary Biomarkers for Alzheimer’s Disease

and Related Disorders

Nicholas J. Ashton - Mark Ide - Henrik Zetterberg - Kaj Blennow

Received: July 16, 2019/
© The Author(s) 2019

ABSTRACT

The search for accessible and cost-effective
biomarkers to complement current cere-
brospinal fluid (CSF) and imaging biomarkers in
the accurate detection of Alzheimer disease
(AD) and other common neurodegenerative
disorders remains a challenging task. The
advances in ultra-sensitive detection methods
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has highlighted blood biomarkers (e.g. amyloid-
B and neurofilament light) as a valuable and
realistic tool in a diagnostic or screening pro-
cess. Saliva, however, is also a rich source of
potential biomarkers for disease detection and
offers several practical advantages over biofluids
that are currently examined for neurodegener-
ative disorders. However, while this may be true
for the general population, challenges in col-
lecting saliva from an elderly population should
be seriously considered. In this review, we begin
by discussing how saliva is produced and how
age-related conditions can modify saliva pro-
duction and composition. We then focus on the
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data available which support the concept of
salivary amyloid-B, tau species and novel
biomarkers in detecting AD and alpha-synu-
clein (a-syn) in Parkinson’s disease (PD).
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Peripheral biomarkers for Alzheimer’s
disease and related disorders have taken
centre stage with ultra-sensitive assays
developed for amyloid-, tau species and
neurofilament light.

Saliva is an alternative peripheral source
for accessible and non-invasive disease
biomarkers.

Total tau, phosphorylated tau, amyloid-3
and alpha-synuclein proteins are all
detectable in saliva and preliminary
investigations have shown potential
diagnostic utility. Novel candidates (e.g.
lactoferrin) could be used for early disease
detection.

Standardisation of saliva collection and
storage methods are greatly needed to
advance this field further.

INTRODUCTION

The diagnosis of probable Alzheimer’s disease (AD)
and other common neurodegenerative disorders
remains primarily reliant on a clinical assessment
outside the specialist clinic. However, an AD diag-
nosis can now be supported by positron emission
tomography (PET) and cerebrospinal fluid (CSF)
biomarkers that detect the hallmark-underlying
pathologies of amyloid-p (Ap) [1] and tau [2]. One
of the many challenges that the dementia com-
munity face is the detection of the pre-symp-
tomatic phase of the AD using non-invasive,
widely accessible and disease relevant biomarkers.
In recent times, blood biomarkers have taken

centre stage, with measurements of AP species
[3-6], the axonal injury marker neurofilament
light (NfL) [7, 8] and phosphorylated tau on thre-
onine 181 (P-taul81) [9] showing much promise.
There are now international efforts underway to
progress these biomarkers to be applicable for
clinical use [10]. Without question, a blood bio-
marker is far more attainable for population
screening than PET or CSF; however, it still faces
certain logistical limitations. Saliva has been pro-
posed as a potential easily collectable source of
biomarkers for the diagnosis and risk assessment
for a range of pathological conditions occurring
not only in the mouth but also systemically [11].
Disorders that have been targeted include peri-
odontal and oral mucosal diseases, oral, pancreatic,
lung and breast cancer, together with diabetes and
hepatitis C infection [12]. The major salivary
glands secrete saliva in response to cholinergic
innervation from cranial nerves VII and IX, which
are monitored by the autonomic nervous system
(ANS) [13]. This relation to the nervous system
suggests that these gland secretions may represent
various physiologies of the nervous system.
Indeed, central nervous system (CNS) proteins are
secreted into the saliva in an age-dependent man-
ner [14, 15]. Furthermore, via passive diffusion,
active transport or microfiltration proteins can pass
from the blood into the saliva [13, 16]. For these
reasons, saliva may contain novel biomarkers for
CNS injury or be an alternative and more accessible
source in sampling AD-related biomarkers that are
currently being eagerly pursued in blood. In this
review, we summarise the current evidence for
salivary biomarkers in detecting AD and related
disorders, while considering important factors
related to saliva production, composition and col-
lection in older adults. This article is based on
previously conducted studies and does not contain
any studies with human participants or animals
performed by any of the authors.

PRODUCTION OF SALIVA
AND IMPACTS OF AGING, LOCAL
AND SYSTEMIC PATHOLOGY

Saliva collection generally represents a pooled
sample of the products from three pairs of major
salivary glands (submandibular, sublingual and
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parotid), supplemented by numerous minor
salivary glands. In addition, this material
includes microorganisms, their by-products,
host cells from epithelial surfaces, and other
components released from the gingival crevices
around teeth (gingival crevicular fluid). There-
fore, it is important to understand the processes
of production and regulation of saliva, and how
this may differ in populations, especially older
adults, since any variations may impact on the
relative validity of proposed biomarkers.

Saliva production varies between different
glands, not only in production volume but also
in composition [17]. The exocrine glands con-
tain secreting epithelial cells located in struc-
tures called acini as the terminal element of the
ductal tree within the gland. Acinar cells will
produce either dilute saliva with low levels of
mucins or mucin-rich secretion. Whilst the
parotid glands largely contain non-mucinous
acinar cells, submandibular glands are mixed,
whereas the sublingual glands and the minor
glands located throughout the mouth are lar-
gely mucin forming. The ducts and acini are
surrounded by myoepithelial cells, a rich blood
supply and dense innervation by parasympa-
thetic and sympathetic nerves. Consequently,
the steady unstimulated saliva flow occurring
throughout the day is made up primarily of
glands producing mucinous saliva; 68% from
submandibular and sublingual, and around 4%
from numerous minor glands. However, when
salivary output is stimulated (e.g. during mas-
tication via mucosal and periodontal
mechanoreceptors, activated taste bud recep-
tors, smells or thermal changes [18-21]), the
percentage contribution from parotid saliva
rises from around 1/4 to over 1/2 [22] even
though other glands also increase their pro-
duction. Autonomic innervation is supplied to
many (not just acinar) salivary grand cells,
although there is some variation between
glands in the extent of sympathetic input
[23, 24]. In animal models sympathetic stimu-
lation produces a different protein-rich saliva,
and mucin production from mucous glands
seems to be initiated by parasympathetic stim-
ulation [25]. As a result, whole salivary compo-
sition is believed to be influenced by
stimulation and the rate of secretion, although

this may be mainly related to dilution effects of
molecules from non-glandular sources. Many
components of freshly secreted saliva are
actively secreted by acinar and ductal cells and
so these will not be altered, with the exception
of sodium, chloride and bicarbonate salts,
which are more concentrated in stimulated
saliva following autonomic stimulation and
changes in flow rates [26]. Transport mecha-
nisms include exocytosis of protein storage
granules, ion pumps, transport proteins and
vesicular proteins [17]. Whole saliva will addi-
tionally contain some blood components (in-
cluding immunoglobulins such as IgG) which
have entered as a transudate within the gland
system as well as the supplemental materials
listed above.

Saliva flow is generally considered to be fre-
quently reduced in older individuals. However,
there has been some disagreement on the role of
direct age-related changes compared to indirect
effects such as the influence of medications that
are commonly experienced by older adults.
Medications which are known to increase the
risk of hyposalivation include anticholinergics,
proton pump inhibitors, antidepressants, phe-
nothiazines, benzodiazepines, antihistamines,
diuretics and various antihypertensives [27, 28].
Statins have also been reported as being
responsible for oral dryness in a small inter-
ventional study [29]. Hence salivary volume
and composition could further be influenced as
an outcome, complication or side effect from
systemic disease and treatment (including local
radiotherapy and systemic medications). These
effects may be direct or indirect, mediated by
other pathways such as dehydration, which
may itself be related to impaired fluid intake,
emesis, diarrhoea or polyuria.

The current opinion based on primary
research and systematic reviews [30, 31] is that
there is an age-related decrease in salivary gland
function and thus in xerostomia, and that
medication merely enhances this further.
However, the primary research is somewhat
contradictory for age-related changes in both
unstimulated [32-35] and in stimulated [35-38]
salivary flow rate, and large inter-individual
differences between participants within study
groups have been reported. Nagler and
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Hershkovich [39] have shown how there is not
only a change in volume but also composition
(including ions, immunoglobulins and other
proteins) with aging, although their partici-
pants were taking a range of medications to
maintain health. However, this was confirmed
in a large cross-sectional study by Dodds et al.
[40]. Consequently, it would seem that saliva
flow is impaired in older populations, and that
aging can also modify the composition of saliva
produced. It would seem necessary to accom-
modate this into study design and data analysis
if possible when determining the value of
biomarkers in populations of differing or mixed
ages.

Finally, psychogenic causes, such as depres-
sion, anxiety or stress, can also result in xeros-
tomia mediated by sympathetic stimulation. In
cases of AD, stroke or other neurological
pathology, patients may complain of dry mouth
in the presence of reduced or normal salivary
secretion due to altered production [41]. Hence
self-reported dryness in some patients may not
by itself be an exclusion factor for attempted
salivary sampling—it would seem wise to con-
firm this with intraoral examination even if
ultimately collection is unsatisfactory. The
impact of these challenges is illustrated by the
observations recently reported by Galloway
et al. [42] that approximately 1/3 of participants
in the recent UK Biobank study were unable to
produce an adequate saliva sample, and that
this was noticeably increased amongst those
with a range of systemic diseases. Indeed only
57.7% of participants with a diagnosis including
dementia, AD or Parkinson’s diseases (PD) were
able to produce an adequate sample for archiv-
ing (Table 1). Therefore, it appears that results
from salivary analysis, whilst offering excellent
potential as a research and management tool,
may have to be considered carefully allowing
for age, concurrent medication and other risk
factors. EFach of these factors may indepen-
dently have an impact on data and these vari-
ables should at least be recorded in clinical
studies. Likewise, there may be issues with
obtaining adequate samples for some partici-
pants, especially the elderly and/or those with
significant systemic disease.

CURRENT EVIDENCE OF SALIVARY
BIOMARKERS FOR ALZHEIMER’S
DISEASE AND RELATED DISORDERS

Amyloid-p

The accumulation of AP plaques, the foremost
hallmark of AD, begins 15-20 years prior to the
clinical onset of cognitive and functional
decline [43]. Visually assessed and quantitative
positron emission tomography (PET) studies
using ''C and '®F AB tracers have consistently
verified increased retention in AD dementia and
preclinical AD when compared with elderly
controls, with the binding typically elevated in
the frontal, cingulate, precuneus, striatum,
parietal and lateral temporal cortices [1]. This
regional distribution visualised by AB PET clo-
sely follows the categorisation of AB burden in
post-mortem studies [44]. More recently, it has
been confirmed that CSF AB42 is also a reliable
marker of amyloid plaque pathology in the
brain (as determined at autopsy or through Ap
PET studies [45]), especially when measured in a
ratio with CSF AB40. The assessment of AB by
PET or CSF immunoassays is now included in
research criteria for AD [46] as well as in the
biological definition of the disease [47]. AP
peptides can be readily measured in plasma
utilising ultra-sensitive immunoassays [5, 6] or
targeted mass spectrometry (MS) [3] and
emerging evidence suggests that a decreased A
peptide ratio can identify cerebral AB-positive
individuals with high sensitivity and specificity
(Table 2).

The widespread peripheral expression of the
amyloid precursor protein (APP) would make it
seemingly likely that AP peptides are present in
saliva via interaction with blood or degradation
of buccal cells [48]. Indeed, a collection of
studies have shown that salivary APB42 is
detectable and increased in AD [49-53], with
AB40 remaining unchanged. Lee et al. [49] have
so far demonstrated the most encouraging
findings of salivary APB42. In this study,
thioflavin S was added to the salivary sample at
collection to inhibit the aggregation of Af and a
twofold increase in salivary Ap42 concentration
was observed in AD compared to controls and
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Table 1 Number of UK Biobank participants with selected health conditions (non-cancerous) who attempted to produce a

saliva sample at baseline assessment (selected data, adapted from Galloway et al. [42])

Participant groups (selected)

Samples attempted

Samples adequate (%)

All participants in UK BioBanks
Diabetes mellitus

Cerebrovascular disease

Ischemic heart disease

Alzheimer’s and Parkinson’s disease
Clinical depression

Chronic obstructive pulmonary disease
Asthma

Inflammatory bowel disease
Rheumatoid arthritis

Osteoporosis

Acute renal failure/Chronic kidney disease

120,175 84,721 (70.5)
743 4787 (64.4)
2723 1725 (63.3)
6839 4474 (65.4)
284 164 (57.7)
7632 5006 (65.6)
1245 739 (59.4)
14,442 10,040 (69.5)
3524 2354 (66.8)
1447 919 (63.5)
2652 1721 (64.9)
679 415 (61.1)

patients with PD. An earlier study has also
demonstrated an increase of salivary Ap42 in
AD compared to PD but these significant find-
ings were confined to mild AD and not observed
in severe AD [50]. These small pilot studies
point towards salivary AB42 being a potentially
specific and early biomarker for AD. However, it
must be noted that Ap42 has also been
demonstrated to be unchanged or not
detectable in studies using similar antibody-
based methodologies [54, 55]. These inconsis-
tent results are similar to the early reports of
AB42 in plasma which also utilised standard
sandwich  enzyme-linked immunosorbent
assays [56]. The application of ultra-sensitive
immunoassays (e.g. Simoa or SMx-Pro) or tar-
geted MS for salivary Ap may render more con-
sistent results. Furthermore, no study has yet to
compare salivary AB42 to AB-positive confirmed
AD or tested the salivary Ap42/Ap40 ratio which
may improve the diagnostic accuracy.

Tau

An aggregated and phosphorylated form of tau
protein is the major constituent of neurofibril-
lary tangles (NFT) in AD. First-generation tau

PET ligands show elevated retention in patients
with AD, as compared to controls, with uptake
patterns matching histopathology staging
schemes for tau [2]. The second-generation tau
ligands (e.g. ['®F]MK-6240, ['®*F]JRO-948, and
['®F]GTP-1) appear to be superior and this is due
to their reduced off-target binding to iron,
neuromelanin and monoamine oxidase B [2].
The core CSF biomarkers for AD include total
tau (T-tau) and tau phosphorylated at thre-
onine 181 (P-tau). Consistently, clinical studies
have shown an increase of these biomarkers in
AD and in patients with mild cognitive
impairment (MCI) [56]. However, the concen-
trations of these markers are within the normal
range in the majority of other primary tauo-
pathies. In blood, increases in plasma T-tau
reach statistical significance in large AD cohorts
[57, 58]. However, the substantial overlaps
between control groups and the poor correla-
tions with CSF levels certainly limit plasma
T-tau as being diagnostically useful [57]. The
reason for this may be explained by the rapid
degradation of tau in blood with a reduced half-
life compared to CSF [59]. Preliminary data
demonstrating increases of P-tau [9] and
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Table 2 Summary of salivary biomarkers investigated in Alzheimer’s disease

Biomarker Proteomic platform

Observations in AD

References

Increased (versus healthy controls, p < 0.001)
Increased (versus healthy controls, p < 0.001)
(

Increased (versus healthy controls, p < 0.05)

AChE Ellman colorimetric
method No change
No change
AP42 Sandwich ELISA
Not detectable
Luminex ELISA Not detectable
Nanobead ELISA
AP40 Sandwich ELISA No change

Nanobead ELISA
Lactoferrin  Sandwich ELISA

T-tau Simoa No change
Sandwich ELISA No change
Luminex ELISA No change

P-tau Luminex ELISA
p < 0.05)

Western blot
p < 0.05)

Decreased (versus healthy controls, p < 0.005)

Increased (versus healthy controls, p < 0.05)

Increased (versus healthy controls, p < 0.001)

Decreased (versus healthy controls, p < 0.001)

Increased p181/T-tau (versus healthy controls,

Increased s396/T-tau (versus healthy controls,

Sayer et al. [80]
Bakhtiari et al. [81]
Boston et al. [82]
Sabbagh et al. [52]
McGeer et al. [53]
Lee et al. [49]

Bermejo-Pareja et al.

[50]
Lau et al. [54]
Shi et al. [55]
Kim et al. [51]

Bermejo-Pareja et al.

[50]
Kim et al. [51]
Carro et al. [79]
Ashton et al. [61]
Lau et al. [54]
Shi et al. [55]
Shi et al. [55]

Pekeles et al. [62]

N-terminal tau [60] in the blood of patients
with AD offer an exciting avenue for blood
biomarkers.

We have recently reported the largest AD
salivary biomarker study which consisted of 160
age-matched controls, 68 participants with
MCI, and 53 participants with AD [61]. Fur-
thermore, this was the first study to utilise an
ultrasensitive single molecule array (Simoa)
assay to measure T-tau concentration in saliva.
However, we found no statistically significant
differences across these diagnostic groups.
Interestingly, T-tau was detectable in more than
95% of all participants and the concentration
was approximately fourfold higher than that in

plasma (cohort mean, 11.85 ng/L). In addition,
we demonstrated that there was no association
of salivary T-tau with cognitive scores or atro-
phy measures. This study confirms the prelimi-
nary findings by two earlier studies [54, 55]. Shi
and colleagues confirmed the presence of tau in
saliva by identifying five unique peptide
sequences by MS. A subsequent Luminex assay
(based on mid-domain tau antibodies) demon-
strated no change of salivary T-tau. However, a
1.3-fold increase of the salivary P-taul81/T-tau
was observed in AD [55]. In a similar manner,
Lau et al. demonstrated no change in salivary
T-tau but increases in P-tau [54]. A study using
semi-quantitative proteomics investigated a
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number phosphorylation sites in saliva [62]. In
a ratio with T-tau, phosphospecific antibodies
for serine 396 demonstrated increases in AD,
while serine 404 was increased in frontotem-
poral dementia (FTD). However, no association
could be drawn with brain atrophy or CSF
measures of tau. Furthermore, this study repor-
ted no change of P-taul81 in patients with AD.
While data on salivary T-tau is consistently
negative, phosphorylated tau species in saliva
may have greater utility. However, as with P-tau
in blood, ultra-sensitive assays are still being
refined for reliable detection of P-tau in
peripheral fluids.

The presence of tau in saliva may have a
number of sources. In a similar manner to Ap,
interactions with the bloodstream or release
from buccal cells is likely given that elevated tau
isoform levels in isolated buccal cells have been
shown in AD [63]. Furthermore, salivary tau
may originate from acinar cells that express tau
mRNA [64] or nerves that innervate the salivary
glands.

Alpha-synuclein

The presynaptic neuronal protein alpha-synu-
clein (a-syn) is the most abundant protein of
the intracellular aggregates found in Lewy
bodies in PD, dementia with Lewy bodies (DLB)
and in glial cytoplasmic inclusions of multiple
system atrophy [65]. However, a truncated form
of a-syn (termed non-amyloid component or
NAC) is also a major component in the A pla-
ques in patients with AD [66]. CSF biomarkers
for a-syn pathology have been a challenging
task but a general trend has emerged of
decreased total a-syn and an increase in phos-
phorylated and oligomeric o-syn in PD [67, 68],
while level of total a-syn is markedly increased
in AD and correlates with T-tau [69], which may
suggest that total o-syn largely reflects neu-
rodegeneration or synaptic damage [70].
Post-mortem submandibular gland biopsies
are positive for Lewy-type a-syn in patients with
PD but not in healthy subjects [71], and this
finding has made salivary a-syn one of the most
investigated salivary biomarkers in neurode-
generation. Yet, both increases and decreases in

salivary total o-syn have been reported [72-74].
On the other hand, increases in oligomeric o-
syn [75] and oligomeric a-syn/total a-syn ratio
have been demonstrated to be specific for PD
[74, 76]. To date, there has been no investiga-
tion of salivary o-syn in AD. In addition to o-
syn, a mutation in the protein DJ-1 has been
associated with rare early onset familial auto-
somal recessive PD. Preliminary data appear to
show increases in PD [72, 77, 78] and correlate
with motor disability [78].

Lactoferrin

Lactoferrin is an antimicrobial peptide with ApB-
binding properties which targets bacteria and is
abundantly present in human saliva. Carro et al.
[79], using an initial MS discovery and subse-
quent ELISA validation, have shown a substan-
tially decreased concentration of lactoferrin in
patients with MCI and patients compared to
aged-matched controls, while patients with PD
exhibited higher concentrations than controls.
In patients with AD, unstimulated lactoferrin
was also positively correlated with Mini-Mental
State Examination (MMSE) score and CSF A42
while being negatively correlated to T-tau. In a
follow-up study, a concentration cut-off
(7.43 pg/mL) successfully discriminated people
with AD from controls participants. Finally,
lactoferrin may have potential in early disease
detection. In a longitudinal study, 78% of con-
trol participants that presented with “AD-like”
concentrations of lactoferrin (< 7.43 pg/mL)
converted to an MCI or AD diagnosis within
5 years of the baseline collection. None of the
control participants with “normal” lactoferrin
(> 7.43 pg/mL) changed clinical status within
the same time frame.

Acetylcholinesterase

In AD, acetylcholinesterase inhibitors (AChE-I)
are the primary drug prescribed for symptom
management which mechanistically encourage
an increase in acetylcholine (AChE) neuro-
transmitter release into the synapse cleft.

The activity of AChE in saliva can be mea-
sured by the Ellman colorimetric method,
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where decreases are seen with age but also fur-
ther reduced in people with AD compared to
aged-matched controls [80-82], albeit not all
studies reaching statistical significance. In
addition to these findings, within the AD pop-
ulation, AChE is significantly decreased further
in AChE-I non-responders when compared to
AChE-I responders [80]. In PD, a single report
demonstrates an increase in AChE activity
compared with age-matched controls, which
was an indicator of disease progression as
indexed by the Hoehn and Yahr scale [83].

CONCLUSIONS

In the last decade, there has been considerable
advancement in the detection of AD-related
biomarkers in non-invasive peripheral materi-
als, such as blood. This remarkable and rapid
success has posed a new challenge—can other
peripheral sources be utilised for AD-related
biomarkers, namely saliva? The data currently
available shows that AB42, AB40 and multiple
tau species are all detectable in saliva using
conventional immunoassays. While salivary
APB40 and T-tau are not related to clinical AD
disease, increases in Ap42, phosphorylated tau
species and decreases in lactoferrin may have
potential. Yet, how salivary Af42 relates to
brain amyloid metabolism, to CSF or plasma
levels of AB42, or to brain amyloidosis evaluated
by AP PET status is not known. On the other
hand, the antimicrobial peptide lactoferrin has
been shown to correlate well with AD CSF
biomarkers and to detect preclinical AD. In PD,
multiple forms of a-syn have been investigated,
with oligomeric a-syn being the most promising
for disease diagnosis. Although the non-inva-
sive nature of saliva is an attractive attribute
there remain important considerations. Firstly,
standardisation in collection (e.g. stimulated
versus unstimulated), pre-processing (e.g. cen-
trifugation speeds) and storage (e.g. addition of
sodium azide) is currently lacking. While the
majority of studies included in this review
analysed unstimulated whole saliva, there are
very clear distinctions in proteome content
between unstimulated and stimulated collec-
tions from different glands. It is currently not

known how the concentrations of AB, tau and
other biomarkers discussed in this review differ
between sublingual, parotid, whole unstimu-
lated and stimulated saliva or if their presence
in saliva is simply from blood. Secondly, while
the successful collection of blood and CSF from
a consenting participant is driven by a physi-
cian, the access to unstimulated saliva is solely
dependent on the participant. This is likely to
create large variabilities in the material col-
lected and therefore stimulated saliva could be a
preferred method due to the simplicity of the
collection method. As previously mentioned,
there is substantial evidence available to
demonstrate that elderly patients, particularly
suffering with dementia, find it difficult to
produce an adequate saliva sample. For these
reasons, a saliva biomarker would be more
suitable for the preclinical phase of disease and
not for individuals with significant cognitive
impairment. At this moment in time, the lim-
ited data in large well-characterised and, in
some cases, conflicting reports means we are
unable to conclude this with any real certainty.
Nonetheless, the current research reviewed in
this article cautiously indicates the potential of
saliva as a non-invasive biomarker source at the
preclinical phase of the disease which should be
further investigated to determine the reliability
of such biomarkers in detecting disease pathol-
ogy or monitoring disease progression.
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