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Operator products occur naturally in a range of regularised boundary integral equation formulations. However,

while a Galerkin discretisation only depends on the domain space and the test (or dual) space of the operator,

products require a notion of the range. In the boundary element software package Bemppwe have implemented

a complete operator algebra that depends on knowledge of the domain, range and test space. The aim was to

develop a way of working with Galerkin operators in boundary element software that is as close to working

with the strong form on paper as possible while hiding the complexities of Galerkin discretisations. In this

paper, we demonstrate the implementation of this operator algebra and show, using various Laplace and

Helmholtz example problems, how it significantly simplifies the definition and solution of a wide range of

typical boundary integral equation problems.
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1 INTRODUCTION
A typical abstract operator problem can be formulated as

Au = f ,

where A is an operator mapping from a Hilbert spaceH1 into another Hilbert spaceH2 with the

unknown u ∈ H1 and known f ∈ H2. Many modern operator preconditioning strategies depend

on the idea of having a regulariser R : H2 → H1 and solving the equation

RAu = Rf (1)

instead. This is particularly common in the area of boundary integral equations, where integral

operators can be efficiently preconditioned by operators of opposite order [4, 12, 20]. Now suppose
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that we want to discretise (1) using a standard Galerkin method. In general, we cannot discretise

RA directly. We instead rewrite the above equation as an operator system

Au = q

Rq = Rf ,

where q is an auxiliary unknown. Upon Galerkin discretisation of the two equations we obtain the

discrete matrix system

Au = Mq
Rq = Rf,

where the matrices A and R are the discrete matrices associated with the corresponding operators,

and u, q, f are now coefficient vectors for the associated functions. The matrix M is a mass matrix

(see Section 3.2). Assuming that M is square and invertible we can now eliminate the vector q and

obtain the discrete equation

RM−1Au = Rf . (2)

In order to solve (2), we have to assemble all involved matrices, form the right-hand side,

implement a function that evaluates RM−1Av for a given vector v, and then solve (2) with GMRES

or another iterative solver of choice. Ideally, we would not have to deal with these implementational

details and just directly write the following code.

A = operator(...)
R = operator(...)
f = function(...)
u = gmres(R * A, R * f)

Note that at the end, the solution u is again a function object. In order for this code snippet to work

and the mass matrixM to be assembled automatically, either the implementation of the operator

product needs to be aware of the test space of A and domain space of R, or the software definition of

A needs to contain information about its range. We have decided for the second approach, namely

associating information about the range space with the definition of operators. The reasons are as

follows:

• It allows an elegant way of describing the product of operators in software.

• By storing information about the range space we can form products of operators and functions

and obtain resulting function objects that are presented by coefficients in the correct range

space.

• Mass matrix preconditioning becomes a natural property associated with each operator. In

(2) the mass matrix preconditioned equation is M̂−1RM−1Au = M̂−1Rf , where M̂ is the mass

matrix between the discrete dual space of R and its discrete range space. If the range space

information is associated with the operator definition then mass matrix preconditioning can

be enabled in the iterative solver without requiring any further information from the user.

The underlying ideas are based on a software implementation of the notion of discrete strong

forms of Galerkin discretisations, which are generalized Riesz maps of Galerkin discretisations.

In this paper we will briefly introduce the associated functional analysis concepts, then discuss

the implementation in detail and provide examples of how this product algebra can be used to

elegantly describe some complex boundary element applications in software.

To demonstrate the product algebra we use the Python/C++ based boundary element library

Bempp (www.bempp.com) [18], originally developed by the authors of this paper. Bempp is a
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comprehensive library for the solution of boundary integral equations for Laplace, Helmholtz

and Maxwell problems. The leading design principle of Bempp is to allow a description of BEM

problems in Python code that is as close to the mathematical formulation as possible, while hiding

implementational details of the underlying Galerkin discretisations. This allows us to formulate

complex block operator systems such as those arising in Calderón preconditioned formulations of

transmission problems in just a few lines of code. Initial steps towards a Bempp operator algebra

were briefly described in [18] as part of a general library overview. The examples in this paper are

based on the current version (Bempp 3.3), which has undergone significant development since then

and now contains a complete and mature product algebra for operators and grid functions.

As examples for the use of an operator algebra in more complex settings, we discuss: the efficient

assembly of the hypersingular operator via a representation using single layer operators; the

assembly of Calderón projectors and the computation of their spectral properties and the Calderón

preconditioned solution of acoustic transmission problems.

A particular challenge is the design of product algebras for Maxwell problems. The stable

discretisation of the electric and magnetic field operators for Maxwell problems requires the use of

a non-standard skew symmetric bilinear form. The Maxwell case is discussed in much more detail

in [17].

The paper is organised as follows. In Section 2 we review basic definitions of boundary integral

operators for Laplace and Helmholtz problems. In Section 3 we introduce the basic concepts of a

Galerkin product algebra and discuss some implementational details. Section 4 then gives a first

application to the fast assembly of hypersingular operators for Laplace and Helmholtz problems.

Then, in Section 5 we discuss block operator systems at the example of Calderón preconditioned

transmission problems. The paper concludes with a summary in Section 6.

While most of the mathematics presented in this paper is well known among specialists, the

focus of this paper is on hiding mathematical complexity of Galerkin discretisations. With the

wider penetration and acceptance of high-level scripting languages such us Matlab, Python and

Julia in the scientific computing community, we now have the tools and structures to make complex

computational operations accessible for a wide audience of non-specialist users, making possible the

fast dissemination of new algorithms and techniques beyond traditional mathematical communities.

2 BOUNDARY INTEGRAL OPERATORS FOR SCALAR LAPLACE AND HELMHOLTZ
PROBLEMS, AND THEIR GALERKIN DISCRETISATION

In this section, we give the basic definitions of boundary integral operators for Laplace and

Helmholtz problems and some of their properties needed later. More detailed information can be

found in e.g. [16, 19].

We assume that Ω ⊂ R3 is a piecewise smooth bounded Lipschitz domain with boundary Γ. By

Ω+
:= R3\Ω we denote the exterior of Ω. We denote by γ±

0
the associated interior (-) and exterior

(+) trace operators and by γ±
1
the interior and exterior normal derivative operators. We always

assume that the normal direction ν points outwards into Ω+
.

The average of the interior and exterior trace is defined as {{γ0 f }} := 1

2

(
γ +
0
f + γ –

0
f
)
. Corre-

spondingly, the average normal derivative is defined as {{γ1 f }} :=
1

2

(
γ +
1
f + γ –

1
f
)
.

2.1 Operator definitions
We consider a function ϕ– ∈ H 1(Ω) satisfying the Helmholtz equation −∆ϕ– − k2ϕ– = 0, where

k ∈ R. By Green’s representation theorem we have

ϕ–(x) =
[
Vγ –

1
ϕ–

]
(x) −

[
Kγ –

0
ϕ–

]
(x), x ∈ Ω (3)
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for the single layer potential operator V : H−1/2(Γ) → H 1

loc
(Ω ∪ Ω+) defined by

[Vµ] (x) =
∫
Γ
G(x, y)µ(y) ds(y), µ ∈ H−1/2(Γ)

and the double layer potential operator K : H 1/2(Γ) → H 1

loc
(Ω ∪ Ω+) defined by

[Kξ ] (x) =
∫
Γ

∂G(x, y)
∂ν (y)

ξ (y) ds(y), ξ ∈ H 1/2(Γ).

Here, G(x, y) := e
ik |x−y|

4π |x−y | is the associated Green’s function. If k = 0, we obtain the special case of

the Laplace equation −∆u = 0.

We now define the following boundary operators as the average of the interior and exterior

traces of the single layer and double layer potential operators:

• The single layer boundary operator V : H−1/2(Γ) → H 1/2(Γ) defined by

Vµ = {{γ0Vµ}}, µ ∈ H−1/2(Γ).

• The double layer boundary operator K : H 1/2(Γ) → H 1/2(Γ) defined by

Kξ = {{γ0Kξ }}, ξ ∈ H 1/2(Γ).

• The adjoint double layer boundary operator K′
: H−1/2(Γ) → H−1/2(Γ) defined by

K′µ = {{γ1Vµ}}, µ ∈ H−1/2(Γ).

• The hypersingular boundary operator W : H 1/2(Γ) → H−1/2(Γ) defined by

Wξ = −{{γ1Kξ }}, ξ ∈ H 1/2(Γ).

Applying the interior traces γ –
0
and γ –

1
to the Green’s representation formula (3), and taking into

account the jump relations of the double layer and adjoint double layer boundary operators on the

boundary Γ [19, Section 6.3 and 6.4] we arrive at[
γ –
0
ϕ–

γ –
1
ϕ–

]
=
(
1

2
Id + A

) [γ –
0
ϕ–

γ –
1
ϕ–

]
(4)

with

A :=

[
−K V
W K′

]
, (5)

which holds almost everywhere on Γ. The operator C–
:= 1

2
Id + A is also called the interior

Calderón projector. If ϕ+ is a solution of the exterior Helmholtz equation −∆ϕ+ − k2ϕ+ = 0 in Ω+

with boundary condition at infinity

lim

|x |→∞
|x|

(
∂

∂ |x|
ϕ+ − ikϕ+

)
= 0

for k , 0 and

lim

|x |→∞
|ϕ+(x)| = O

(
1

|x|

)
for k = 0, Green’s representation formula is given as

ϕ+(x) =
[
Kγ +

0
ϕ+

]
(x) −

[
Vγ +

1
ϕ+

]
(x), x ∈ Ω+. (6)

Taking the exterior traces γ +
0
and γ +

1
now gives the system of equations[
γ +
0
ϕ+

γ +
1
ϕ+

]
=
(
1

2
Id − A

) [γ +
0
ϕ+

γ +
1
ϕ+

]
(7)
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with associated exterior Calderón projector C+
:= 1

2
Id − A.

2.2 Galerkin discretisation of integral operators
Let Th be a triangulation of Γ with N piecewise flat triangular elements τj andM associated vertices

pi . We define the function space S0h of elementwise constant functions ϕ j such that

ϕ j (x) =

{
1, x ∈ τj

0, otherwise,

and the space S1h of globally continuous, piecewise linear hat functions ρi such that

ρi (pℓ) =

{
1, i = ℓ

0, otherwise.

Denote by ⟨u,v⟩Γ the suitable extension of theL
2
based surface dual form defined by

∫
Γ
u(x)v(x) ds(x)

for L2 functionsu andv . By restrictingH 1/2(Γ) onto S1h andH
−1/2(Γ) onto S0h , we obtain the Galerkin

discretizations V, K, K′
,W defined as

[V]i j := ⟨Vϕ j ,ϕi ⟩Γ, [K]i j := ⟨Kρ j ,ϕi ⟩Γ
[K′]i j := ⟨K′ϕ j , ρi ⟩Γ, [W]i j := ⟨Wρ j , ρi ⟩Γ

,

where here [·]i j denotes the element (i, j) of the given matrix. A computable expression ofW using

weakly singular integrals is given in Section 4.

A problemwith this definition of discretisation spaces is that S0h and S
1

h have a different number of

basis functions, leading to non-square matricesK andK′
. Hence, it is only suitable for discretisations

of integral equations of the first-kind involving only V orW on the left-hand side. There are two

solutions to this.

(1) Discretise both spaces H 1/2(Γ) and H−1/2(Γ) with the continuous space S1h . This works well

if Γ is sufficiently smooth. However, if Γ has corners then Neumann data in H−1/2(Γ) is not
well represented by continuous functions.

(2) Instead of the space S0h use the space of piecewise constant functions ϕD on the dual grid

which is obtained by associating each element of the dual grid with one vertex of the original

grid (see Figure 1). We denote this piecewise constant space by S0D ,h . With this definition of

piecewise constant functions also the matrix K is square. Moreover, the mass matrix between

the basis functions in S1h and S0D ,h is inf-sup stable [4, 12].

In [2] the different convergence behaviour of these two approaches for polyhedral domains is

discussed.

3 GALERKIN PRODUCT ALGEBRAS AND THEIR IMPLEMENTATION
In this section we discuss the product of Galerkin discretisations of abstract Hilbert space operators

and how a corresponding product algebra can be implemented in software. While the mathematical

basis is well known, most software libraries do not support a product algebra, making implemen-

tations of operator based preconditioners and many other operations more cumbersome than

necessary. This section proposes a framework to elegantly support operator product algebras in

general application settings. The formalism introduced here is based on (generalised) Riesz maps.

A nice introduction in the context of Galerkin discretisations is contained in [13]. The specific

formalism based on realisations of dual spaces presented here is described in more detail in [5].
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Fig. 1. Construction of a dual grid from the barycentric refinement. We subdivide each triangle using its
barycenter into six smaller triangles (left figure) and form the elements of the dual grid from all small triangles
which are adjacent to the same vertex (right figure).

3.1 Background in functional analysis
In the following we provide a brief overview over the functional analysis background of the discrete

Galerkin operator calculus introduced in the remainder of Section 3. While the discrete operator

calculus can be understood on its own, the following shows the connections to the concepts of

dual spaces and (generalised) Riesz maps. For a more formal introduction into the construction

of realisations of dual spaces see the recent paper by Chandle-Wilde, Hewett, and Moiola [5]. We

consider the operator equation

Au = f

for A a linear operator mapping from the domain Hilbert space Hdom

A into the range Hilbert space

H ran

A . Correspondingly, we have u ∈ Hdom

A and f ∈ H ran

A . Let (·, ·)Hran

A
: H ran

A ×H ran

A → C be the

natural (complex and anti-linear) inner product associated withH ran

A . We can rewrite the above

equation in its variational form as

(Au,ψ )Hran

A
= (f ,ψ )Hran

A
, ∀ψ ∈ H ran

A . (8)

Define the map τ : H ran

A →
(
H ran

A

)∗
by τx = (x, ·)Hran

A
. Here,

(
H ran

A

)∗
is the space of all bounded

anti-linear forms defined onH ran

A . The map τ is an isometry. Its inverse τ−1 :
(
H ran

A

)∗
→ H ran

A is

called the Riesz map associated with H ran

A (see e.g. [6]). We can then reformulate (8) as

τAu = τ f

with Ã := τA being the weak form of the operator A and A = τ−1Ã its strong form.

For practical application it is often not beneficial to work with the natural inner product. Consider

the single layer operator V with domain H−1/2(Γ) and range H 1/2(Γ). The natural inner product in
H 1/2(Γ) is a complicated and unwieldy object. We would much rather like to work with dual forms

induced by the standard L2 inner product. Assume that we have a Hilbert space Hdual

A together

with an isomorphism ι : Hdual

A →
(
H ran

A

)∗
. The pair (Hdual

A , ι) is called a realisation of

(
H ran

A

)∗
[5].

The operator ι∗ : H ran

A →
(
Hdual

A

)∗
defines a bilinear form ⟨ϕ,ψ ⟩Hran

A ×Hdual

A
:= (ι∗ϕ)(ψ ) = (ιψ )(ϕ).

For example, in the case of the Sobolev space H 1/2(Γ) the associated dual space is the Sobolev

space H−1/2(Γ) with ι∗ being given through the L2 induced H 1/2(Γ) × H−1/2(Γ) dual form. We can

formulate the operator equation Au = f as variational equation of the form

⟨Au, ξ ⟩Hran

A ×Hdual

A
= ⟨f , ξ ⟩Hran

A ×Hdual

A
, ∀ξ ∈ Hdual

A .
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The weak form Ã of A is now given as Ã := ι∗A with associated strong form A = (ι∗)−1 Ã. The map

(ι∗)−1 is a generalised Riesz map. When introducing finite dimensional subspaces and suitable bases

it turns out ι∗ is the mass matrix between the discrete subspaces of Hdual

A andH ran

A .

3.2 Discrete operator products
In addition to A we define the operator B : Hdom

B → H ran

B . Correspondingly, we define the space

Hdual

B as dual space (in the sense of a realisation as descibed above) to H ran

B with respect to a dual

pairing ⟨·, ·⟩Hran

B ×Hdual

B
.

If H ran

A ⊂ Hdom

B the product

д = BAf (9)

is well defined in H ran

B . We now want to evaluate this product using Galerkin discretisations of the

operators A and B.
Defining the function q = Af , the operator product (9) can equivalently be written as

q = Af
д = Bq.

Rewriting this system in its variational form leads to the problem of finding (q,д) ∈ H ran

A ×H ran

B
such that

⟨q, µ⟩Hran

A ×Hdual

A
= ⟨Af , µ⟩Hran

A ×Hdual

A

⟨д, τ ⟩Hran

B ×Hdual

B
= ⟨Bq, τ ⟩Hran

B ×Hdual

B

(10)

for all (µ, τ ) ∈ Hdual

A ×Hdual

B . We now introduce the finite dimensional subspacesVdom

h,X ⊂ Hdom

X ,

Vran

h,X ⊂ H ran

X andVdual

h,X ⊂ Hdual

X with basis functions ζ domX, j , ζ ranX,i , ζ
dual

X,ℓ for X = A,B. In what follows

we assume that the dimension ofVdual

h,X is identical to the dimension ofVran

h,X and that the associated

dual-pairing is inf-sup stable in the sense that

sup

ζ dual

X ∈Vdual

h,X

|⟨ζ ranX , ζ
dual

X ⟩Hran

X ×Hdual

X
|

∥ζ dualX ∥Hdual

X

≥ cX∥ζ
ran

X ∥Hran

X
, ∀ζ ranX ∈ Vran

h,X

for some cX > 0, implying that the associated mass matrix is invertible. The discrete version of (10)

is now given as

MAq = Af,
MBg = Bq̃,

where [MX]ℓ,i = ⟨ζ ranX,i , ζ
dual

X,ℓ ⟩Hran

X ×Hdual

X
, X = A,B. are the mass matrices of the dual pairings. The

vectors f , q, q̃ and g are the vectors of coefficients of the corresponding functions. If we further

impose the strong condition that q = q̃, assuming that Vran

h,A and Vdom

h,B have identical bases, we

can combine the above equations to obtain

g = M−1
B BM−1

A Af .

In light of Section 3.1 the matrix A is also called the discrete weak form of the operator A. Corre-
spondingly, the matrixM−1

A discretises the corresponding generalised Riesz map motivating the

following definition.

Definition 3.1. Given the discrete weak form A defined as above. We define the associated discrete
strong form as the matrix

AS
:= M−1

A A.

The notation of the discrete strong form allows us to define a Galerkin product algebra as follows.
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Definition 3.2. Given the operator product C := BA. We define the associated discrete operator

product weak form as

C := B ⊙ A := B · AS = BM−1
A A

and the associated discrete strong form as

CS
:= M−1

B (B ⊙ A) .

This discrete operator algebra is associative since

(C ⊙ B) ⊙ A = CM−1
B BM−1

A A = C ⊙ (B ⊙ A) .

We note that the a direct discretisation ⟨BAϕdomA, j ,ϕ⟩Hran

B ×Hdual

B
is usually not identical to C as the

action of the latter is computed as the solution of the operator system (10) whose discretisation error

also depends on the spaceVran

h,A and the corresponding discrete dual. However, the discretisation

of the operator product BA can rarely be computed directly and solving (10) is usually the only

possibility to evaluate this product.

We have so far considered the approximation of the weak form ⟨BAϕdomA, j ,ϕ
dual

B,ℓ ⟩Hran

B ×Hdual

B
, where

the operator B acts on AϕdomA, j . However, there are situations where we want a discrete approximation

of the product ⟨AϕdomA, j ,Bϕ
dom

B,ℓ ⟩Hran

A ×Hdual

A
for B : Hdom

B → Hdual

A . An example for the assembly of

hypersingular operators will be given later. Note that if y is a coefficient vector of a function

ϕ ∈ Hdom

B then ỹ = M−1
B By is the coefficient vector to the Galerkin approximation of

˜ϕ = Bϕ.
Hence, a discrete approximation of the weak form ⟨AϕdomA, j ,Bϕ

dom

B,ℓ ⟩Hran

A ×Hdual

A
is given by

BH ·M−H
B · A =

[
BS

]H A.

Note that in the above product the test space of the left-most matrix BH
is now the domain space

of B due to the adjoint. Furthermore, we are discretising the operator A. Hence, the proper range
space for this expression is the range space of A. This motivates the following definition.

Definition 3.3. We define the dual discrete product weak form associated with the operators A
and B as

B ⊙D A := BH ·M−H
B · A (11)

and the associated discrete strong form as

C := M−1
B,A (B ⊙D A) .

where MB,A is the mass matrix between the domain space of B and the range space of A.

3.3 Example: Operator preconditioned Dirichlet problems
As a first example, we describe the formulation of an operator preconditioned interior Dirichlet

problem using the above operator algebra. We want to solve

−∆ϕ– − k2ϕ– = 0 in Ω,

γ0ϕ
– = д on Γ.

for a given function д ∈ H 1/2(Γ). For simplicity, we assume that k2 is neither an interior Dirichlet

nor Neumann eigenvalue. Then the following formulations are well defined. (see also comments

below).

From the first line of (4) we obtain that

γ –
0
ϕ– =

(
1

2
Id − K

)
γ –
0
ϕ– + Vγ –

1
ϕ–.
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Substituting the boundary condition, we obtain the integral equation of the first kind

Vγ –
1
ϕ– =

(
1

2
Id + K

)
д. (12)

The operator V : H−1/2(Γ) → H 1/2(Γ) is a pseudodifferential operator of order −1 and can be pre-

conditioned by the hypersingular operator W : H 1/2(Γ) → H−1/2(Γ), which is a pseudodifferential

operator of order 1 [12, 20]. We arrive at the preconditioned problem

WVγ –
1
ϕ– =W

(
1

2
Id + K

)
д. (13)

Note that the operatorW is singular if k2 is an interior Neumann eigenvalue. Moreover, V is singular

if k2 is an interior Dirichlet eigenvalue. This can be seen for example by choosing the boundary data

of interior Dirichlet eigenfunctions or interior Neumann eigenfunctions in the interior Calderón

projector given in (4). For more details on stabilised boundary element methods for Helmholtz

problems see for example [19] or for Bempp implementations the recent overview article [3].

In the case of Laplace problems (k = 0) the nullspace of W can be avoided by a rank-one

modification of this operator [20]. For the discretisation of the operators we use the spaces S0D ,h
and S1h as described in Section 2.2. Using the notation introduced in Section 3 we obtain the discrete

system

W ⊙ Vx =W ⊙
(
1

2
M + K

)
д, (14)

where x is the vector of coefficients of the unknown function ϕh in the basis S0D ,h . The matrix M is

the discretisation of the identity operator on H 1/2(Γ). If in addition we want to use Riesz (or mass

matrix) preconditioning we can simply take the discrete strong forms of the product operators on

the left and right hand side of (14).

In terms of mathematics the definition of the discrete strong form is simply a notational con-

venience. We could equally write (14) by directly inserting the mass matrix inverses. The main

advantage of an operator product algebra first becomes visible in a software implementation that

directly supports the notions of discrete strong forms and operator products. This is described

below.

3.4 Basic software implementation of an operator algebra
Based on the definition of a discrete product algebra for Galerkin discretisations, we can now

discuss the software implementation. Two concepts are crucial: namely that of a grid function,
which represents functions defined on a grid; and that of an operator, which maps grid functions

from a discrete domain space into a discrete range space.

3.4.1 Grid functions. We start with the description of a grid function. A basic grid function

object is defined by a discrete function space and a vector of coefficients on the space. However, for

practical purposes this is not always sufficient. Consider the following situation of multiplying the

discrete single layer operator V, discretised with the space of piecewise constant functions S0h and a

vector of coefficients f . The resulty = Vf is defined as yi =
∑n

j=1 fj ⟨Vϕ j ,ϕi ⟩. Since the single layer
operator maps onto H 1/2(Γ) we would like to obtain a suitable vector of coefficients ỹ of piecewise

linear functions in S1h such that

y = Mỹ,

whereM is the rectangular mass-matrix between the spaces S0h and S1h . Solving for ỹ is only possible

in a least-squares sense. Moreover, for these two spaces the matrixMmay even be ill-conditioned or

singular in the least-squares sense, making it difficult to obtain a good approximation in the range

space. Hence, we also allow the definition of a grid function through its projection coefficients into

the dual space even though a stable map into the discrete range space may not exist.
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The constructors to define a grid function either through coefficients in a given space or through

projections into a dual space are defined as follows.

fun = GridFunction(space, coefficients=...)
fun = GridFunction(space, dual_space=..., projections=...)

Associated with these two constructors are two methods that extract the vectors of coefficients or

projections.

coeffs = fun.coefficients()
proj = fun.projections(dual_space)

If the grid function is initialised with a coefficient vector, then the first operation just returns this

vector. The second operation sets up the corresponding mass matrix M and returns the vector

M * coeffs . If the grid function is initialised with a vector of projections and a corresponding

dual space then access to the coefficients results in a solution of a linear system if the space and

dual space have the same number of degrees of freedom. Otherwise, an exception is thrown. If the

projections method is called and the given dual space is identical to the original dual space on

initialisation the vector projections is returned. Otherwise, first a conversion to coefficient

form via a call to coefficients() is attempted.

This dual representation of a grid function via either a vector of coefficients or a vector of

projections makes it possible to represent functions in many standard situations, where a conversion

between coefficients and projections is mathematically not possible and not necessary for the

formulation of a problem.

3.4.2 Operators. Typically, in finite element discretisation libraries the definition of an operator

requires an underlying weak form, a domain space and a test space. However, to support the

operator algebra introduced in Section 3 the range space is also required. Hence, we represent a

constructor for a boundary operator in the following form.

op = operator(domain, range_, dual_to_range, ...)

Here, the objects domain, range_ and dual_to_range describe the finite dimensional domain,

range and dual spaces. Each operator provides the following two methods.

discrete_weak_form = op.weak_form()
discrete_strong_form = op.strong_form()

The first one returns the standard discrete weak form while the second one returns the discrete

strong form. The discrete_weak_form and discrete_strong_form are objects that

implement at least a matrix-vector routine to multiply a vector with the corresponding discrete

operator. The multiplication with the inverse of the mass matrix in the strong form is implemented

via computing an LU decomposition and solving the associated linear system.

Important for the performance is caching. The weak form is computed in the first call to the

weak_form() method and then cached. Correspondingly, the LU decomposition necessary for

the strong form is computed only once and then cached.

3.4.3 Operations on operators and grid functions. With this framework the multiplication

result_fun = op * fun of a boundary operator op with a grid function fun can be el-

egantly described in the following way:

result_fun = GridFunction(
space=op.range,
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dual_space=op.dual_to_range,
projections=op.weak_form() * fun.coefficients)

Alternatively, we could have more simply presented the result as

result_fun = GridFunction(
space=op.range,
coefficients=op.strong_form() * fun.coefficients)

However, the latter ignores that there may be no mass matrix transformation available that could

map from the discrete dual space to the discrete range space.

As an example, we present a small code snippet from Bempp that maps the constant function

f (x) = 1 on the boundary of the cube to the function д = Vf , where V is the Laplace single layer

boundary operator. f is represented in a space of piecewise constant functions on the dual grid

and д is represented in a space of continuous, piecewise linear functions, reflecting the smoothing

properties of the Laplace single layer boundary operator. The following lines define the cube grid

with an element size of h = 0.1 and the spaces of piecewise constant functions on the dual grid,

and continuous, piecewise linear functions on the primal grid.

grid = bempp.api.shapes.cube(h=0.1)
const_space = bempp.api.function_space(grid, "DUAL", 0)
lin_space = bempp.api.function_space(grid, "B-P", 1)

We would like to remark on the parameter B-P (barycentric-polynomial) in the code given above

for the function space definitions. Since the piecewise constant functions are defined on the dual

grid, we are working with the barycentric refinement of the original grid [4]. Hence, the piecewise

linear functions on the primal grid also need to be defined over the barycentric refinement (denoted

by the parameter B-P) as the discretisation routines require the same refinement level for the

domain and dual to range space. Mathematically, the standard space of continuous, piecewise linear

functions over the primal grid and the space B-P over the barycentric refinement are identical.

We now define the operator and the constant grid function. For the grid function the coefficient

vector is created via the NumPy routine ones, taking as input the number of degrees of freedom

in the space.

op = bempp.api.operators.boundary.laplace.single_layer(
const_space, lin_space, const_space)

fun = bempp.api.GridFunction(
const_space,
coefficients=np.ones(const_space.global_dof_count))

We can now multiply the operator with the function and plot the result.

result = op * fun
result.plot()

The output is the left cube shown in Figure 2. It is a continuous function in H 1/2(Γ). The right cube
in Figure 2 shows the result of multiplying the Laplace hypersingular operator defined by

op = bempp.api.operators.boundary.laplace.hypersingular(
lin_space, const_space, lin_space)
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Fig. 2. Left: The Laplace single layer operator applied to a constant function on the boundary of a cube. Right:
The Laplace hypersingular operator applied to the function on the left.

with the function on the left. Since the hypersingular operator maps into H−1/2(Γ), the appropriate
range space consists of piecewise constant functions, and the result of the discrete operation

correspondingly uses a space of piecewise constant functions.

Under the condition that the operations mathematically make sense and operators and functions

are correctly defined this mechanism always maps grid function objects into the right spaces under

the action of a boundary operator while hiding all the technicalities of Galerkin discretisations.

The internal implementation of the product of two operators is equally simple in this frame-

work. Given two operators op1 and op2. Internally, the weak_form() method of the product

op1 * op2 is defined as follows.

def weak_form():
return op1.weak_form() * op2.strong_form()

Correspondingly, the strong form of the product is implemented as:

def strong_form():
return op1.strong_form() * op2.strong_form()

Internally, the product of two discrete operators provides a matrix-vector routine that successively

applies the two operators to a given vector. If op1 and op2 implement caching then an actual

discretisation of a weak form is only performed once, and the product of the two operators is

performed with almost no overhead.

It is very easy to wrap standard iterative solvers to support this operator algebra. Suppose we

want to solve the product system (14). Using an operator algebra wrapper to any standard GMRES

(such as the one in SciPy [1]) the solution to the system (14) now takes the form

solution, info = gmres(W * V, W * (.5 * ident + K) * g)

with solution being a grid function that lives in the correct space of piecewise constant functions.

The definition of such a GMRES routine is as follows:

def gmres(A, b, ...):
from scipy.sparse import linalg
x, info = linalg.gmres(

A.weak_form(),
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b.projections(A.dual_to_range),
...)

return GridFunction(A.domain, coefficients=x), info

The product algebra automatically converts W * V into a new object that provides the correct

space attributes and a weak_form method as defined above. Similarly, the right-hand side b is

evaluated into a vector with the projectionsmethod. The full Bempp implementation provides

among other options also a keyword attribute use_strong_form. If this is set to true then

inside the GMRES routine the solution is computed as

x, info = linalg.gmres(A.strong_form(), b.coefficients)

This corresponds to Riesz (or mass matrix) preconditioning and comes naturally as part of this

algebra. Note that we have left out of the description checks that the spaces of the left and right

hand side are compatible. In practice, this should be done by the code as sanity check.

Finally, the weak form of the dual product B ⊙D A can be be implemented as

def weak_form():
return B.strong_form().adjoint() * A.strong_form()

The range space and domain space of the dual product are the same as that of A while the dual

space is the same as the domain space of B.

3.5 A note on the performance of the operator algebra
The operator algebra described above relies on being able to perform fast mass matrix LU decom-

positions and solves. In finite element methods LU decompositions with a mass matrix can be as

expensive as solves with a stiffness matrix. In BEM the situation is quite different. Even with the

utilisation of fast methods such as FMM (fast multipole method [9]) or hierarchical matrices [10],

the assembly and matrix-vector product of a boundary operator is typically much more expensive

than assembling a mass matrix and performing an LU decomposition of it. Therefore, mass matrix

operations can be essentially treated as on-the-fly operations compared to the rest. One potential

problem is the complexity of the LU decomposition of a mass matrix over a surface function space

on Γ. For discretisations on regular planar grids the expected complexity of the LU decomposition

is O(n3/2) (or O(n2) over three dimensional regular grids), where n is the number of dofs [14]. For

boundary element problems we expect a higher complexity than O(n3/2) since we are not dealing
with planar grids but with surface grids over manifolds embedded in three dimensions. Hence, there

will be a cross-over point when the practical cost of the LU decomposition becomes higher than the

linear or log-linear cost of the FMM or H-Matrices for the assembly and evaluation of matvecs with

discretised integral operators. We have not observed this cross-over in our experiments. But this

depends on the underlying geometry and implementation details of the algorithms. We have used

the SuperLU code provided by SciPy for the sparse mass matrix LU decomposition on medium size

BEM problems with hundreds of thousands of surface elements without any noticeable performance

issues.
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4 THE FAST ASSEMBLY OF HYPERSINGULAR BOUNDARY OPERATORS
The weak form of the hypersingular boundary operator can, after integration by parts, be repre-

sented as [11, 15]

Wi j =
1

4π

∫
Γ

∫
Γ

e
ik |x−y |

|x − y|
⟨curlΓρi (x), curlΓρ j (y)⟩2 ds(y) ds(x)

−
k2

4π

∫
Γ

∫
Γ

e
ik |x−y |

|x − y|
ρi (x)ρ j (y)⟨ν (x),ν (y)⟩2 ds(y) ds(x),

(15)

where the basis and test function ρ j and ρi are basis functions in S1h . Both terms in (15) are now

weakly singular and can be numerically evaluated.

However, (15) motivates another way of assembling the hypersingular operator, which turns

out to be significantly more efficient in many cases. In both terms of (15), a single layer kernel is

appearing. We can use this and represent W in the form

W =
3∑
j=1

PTj · V · Pj − k2
3∑
j=1

QT
j · V · Qj , (16)

where we now only need to assemble a single layer boundary operator V with smooth kernel in

a space of discontinuous elementwise linear functions, and the Pj and Qj are sparse matrices. Pj
maps a continuous piecewise linear function to the jth component of its surface curl and Qj scales

the basis functions with the contributions of ν in the jth component in each element. If k = 0

(Laplace case) the second term in (16) becomes zero and it would even be sufficient to use a space

of piecewise constant functions to represent V.
This evaluation trick is well known and is suitable for discretising the hypersingular operator

with continuous, piecewise linear basis functions on flat triangles. The disadvantage is that an

explicit representation of the sparse matrices Pj and Qj is necessary. This representation depends

on the polynomial order and dof numbering of the space implementation.

In the following we use the product algebra concepts to write the representation (15) in a

form that generalises to function spaces of arbitrary order on curved triangular elements without

requiring details of the dof ordering in the implementation. Given a finite dimensional trial space

V
trial

h with basis θ1, . . . , θL and a corresponding test space V
test

h with basis ξ1, . . . , ξL′ we define the
discrete sparse surface operators [

Cℓ
]
i j = ⟨

[
curlΓθ j

]
ℓ
, ξi ⟩Γ,[

Nℓ
]
i j = ⟨θ j [ν ]ℓ , ξi ⟩Γ .

The operator Cℓ
weakly maps a function f to its elementwise ℓth surface curl component, and

the operator Nℓ
weakly multiplies a function f with the ℓth component of the surface normal

direction.

We can now represent the hypersingular operator as

W =
3∑
j=1

Cj ⊙D V ⊙ Cj − k2
3∑
j=1

Nj ⊙D V ⊙ Nj. (17)

The dual multiplication ⊙D in (17) acts on the test functions and the right multiplication ⊙ acts on

the trial functions. Let V
m,cont
h be a globally continuous, elementwise polynomial function space of

orderm and denote by V
m,disc
h the corresponding space of discontinuous elementwise polynomial

functions of orderm. Then the operators in (15) have the following domain, range and dual spaces.
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Operator domain range dual

W V
m,cont
h V

m,disc
h V

m,cont
h

V V
m,disc
h V

m,disc
h V

m,disc
h

Nj
V
m,cont
h V

m,disc
h V

m,disc
h

Cj
V
m,cont
h V

m,disc
h V

m,disc
h

We note that (15) only requires inverses of dual parings on V
m,disc
h with itself as dual space and not

dual pairings between V
m,disc
h and V

m,cont
h which are not invertible. If k = 0 we can use spaces of

orderm − 1 for V and the dual and range space of C since then the second sum in (16) vanishes

and the first sum only contains products of derivatives of the basis and trial functions. Also, we

have chosen the discontinuous function space V
m,disc
h as range space of V. This guarantees that the

result in (17) has the correct range space.

In terms of standard matrix products (17) has the form

W =
3∑
j=1

[
Cj ]T ·M−T · V ·M−1 · Cj − k2

3∑
j=1

[
Nj ]T ·M−T · V ·M−1 · Nj ,

where M is the mass matrix associated with the space V
m,disc
h of discontinuous basis functions.

Hence,M is elementwise block-diagonal and thereforeM−1
is too, and we can efficiently directly

computeM−1
as a sparse matrix. We can then accumulate the sparse matrix products in the sum

above to obtain (16) with Pj = M−1 · Cj
and Qj = M−1 ·Nj

. In Bempp the whole implementation of

the hypersingular operator can be written as follows.

D = ZeroBoundaryOperator(...)
for i in range(3):

D += C[i].dual_product(V) * C[i]
D += -k**2 * N[i].dual_product(V) * N[i]

Due to efficient caching strategies, all operators, including the mass matrices and their inverses,

are computed only once. Hence, there is minimal overhead from using a high-level expressive

formulation.

In Figure 3, we compare times and memory requirements for the hierarchical matrix assembly

of the hypersingular boundary operator on the unit sphere with wavenumber k = 1 using basis

functions in S1h . The left column shows the standard assembly based on (15) and S1h basis functions.

The middle column shows results for assembling the operator directly on a larger space of piecewise

linear discontinuous functions using the weak form (15) and then projecting down to basis functions

in S1h , that is W = PTWdiscP for a sparse matrix P that maps from S1h to a space of piecewise linear

discontinuous functions. This assembly allowsmatrix compression directly on the elementwise basis

functions instead of only compressing on nodal basis functions after summing up the elementwise

contributions. However, in the case of the hypersingular operator, this leads to larger memory

consumption through the larger matrix size on the discontinuous space, but similar assembly

times. The interesting case is the single layer formulation in (17). Even though the single layer

operator is assembled on the larger discontinuous space it compresses better since it is a smoothing

operator and therefore leads to around twice as fast assembly times. The price is a larger memory

size compared to the standard assembly. If this is not of concern then the single layer based

assembly is preferrable. Note that the evaluation of the matrix-vector product using (17) requires

six multiplications with the single layer operator. So if a large number of matrix-vector products is

needed this can become a bottleneck.
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N (cont/discont)

Standard projection via single layer

time mem time mem time mem

258 / 1536 0.7 s 1.0 MiB 1.0 s 31 MiB 0.4 s 15.5 MiB

1026 / 6144 3.9 s 9.0 MiB 3.5 s 177 MiB 1.6 s 88 MiB

4098 / 24576 19.6 s 60.1 MiB 15.2 s 907 MiB 7.7 s 467 MiB

16386 / 98304 1.6 m 345 MiB 1.4 m 4.4 GiB 39.4 s 2.2 GiB

65538 / 393216 7.6 m 1.79 GiB 8.6 m 21.5 GiB 3.9 m 11.0 GiB

Fig. 3. Time and memory for the assembly of the hypersingular operator using the standard weak form on
the continuous space, discontinuous assembly with projection spaces or a single layer formulation. In the
latter two cases only the assembly time and memory of the boundary operator is given. Assembly time and
memory requirements for the sparse operators are negligble.

5 BLOCK OPERATOR SYSTEMS
Block operator systems occur naturally in boundary element computations since we are typically

dealing with pairs of corresponding Dirichlet and Neumann data whose relationship is given by the

Calderón projector shown in (4) for the interior problem and (7) for the exterior problem. In this

section we want to demonstrate some interesting computations with the Calderón projector which

can be very intuitively performed in the framework of block operator extensions of the product

algebra.

Within the Bempp framework, a blocked operator of given block dimension (m,n) is defined as

blocked_operator = bempp.api.BlockedOperator(m, n)

We can now assign individual operators to the blocked operator by e.g.

blocked_operator[0, 1] = laplace.single_layer(...)

Not every entry of a blocked operator needs to be assigned a boundary operator. Empty positions

are automatically treated as zero operators. However, we require the following conditions before

computations with blocked operators can be performed:

• There can be no empty rows or columns of the blocked operator.

• All operators in a given row must have the same range and dual_to_range space.

• All operators in a given column must have the same domain space.

These conditions are easily checked while assigning components to a blocked operator. The

weak form of a blocked operator is obtained as

discrete_blocked_operator = blocked_operator.weak_form()

This returns an operator which performs a matrix-vector product by splitting up the input vector

into its components with respect to the columns of the blocked operator, performs multiplications

with the weak forms of the individual components, and then assembles the result vector back

together again.

The interesting case is the definition of a strong form. Naively, we could just take the strong

forms of the individual component operators. However, since each strong form involves the solution

of a linear system with a mass matrix we want to avoid this. Instead, we multiply the discrete weak

form of the operator from the left with a block diagonal matrix whose block diagonal components

contain the inverse mass matrices that map from the dual space in the corresponding row to the
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range space. This works due to the compatibility condition that all test and range spaces within a

row must be identical.

5.1 Stable discretisations of Calderón projectors
With the concept of a block operator we now have a simple framework to work with Calderón

projectors C± =
(
1

2
Id ∓ A

)
with A defined as in (5). For the sake of simplicity (to avoid discussions

of special cases where k2 is an interior resonance) in the following we use the Calderón projector C+

for the exterior problem. The interior Calderón projector C–
is treated in the same way. Remember

that both operators are defined on the product space H 1/2(Γ) × H−1/2(Γ)
Two properties are fundamental to Calderón projectors. First, (C+)2 = C+

; and second, if U =[
γ +
0
u, γ +

1
u
]T

is the Cauchy data of an exterior Helmholtz solution u satisfying the Sommerfeld

radiation condition, it holds thatU = C+U , or equivalently C–U = 0.

Based on the product algebra framework introduced in this paper we can easily represent these

properties on a discrete level to obtain a numerical Calderón projector up to the discretisation error.

As an example, we consider the Calderón projector on the unit cube with wavenumber k = 2. As-

sembling the projector within the Bempp product operator framework is simple, and corresponding

functions are already provided.

k = 2
from bempp.api.operators.boundary.sparse \

import multitrace_identity
from bempp.api.operators.boundary.helmholtz \

import multitrace_operator
calderon = .5 * multitrace_identity(grid, spaces="dual") \

- multitrace_operator(grid, k, spaces="dual")

In this code snippet, the option spaces="dual" automatically discretises the Calderón projector

using stable dual pairings of continuous, piecewise linear spaces on the primal grid, and piecewise

constant functions on the dual grid.

To demonstrate the action of the Calderón projector to a pair of non-compatible Cauchy data we

define two grid functions, both of which are constant one on the boundary.

f1 = bempp.api.GridFunction.from_ones(
calderon.domain_spaces[0])

f2 = bempp.api.GridFunction.from_ones(
calderon.domain_spaces[1])

The two functions are defined on the pair of domain spaces discretising the product spaceH 1/2(Γ)×
H−1/2(Γ). We can now apply the Calderón projector to this pair of spaces to compute new grid

functions which form a numerically compatible pair of Cauchy data for an exterior Helmholtz

solution. The code snippet for this operation is given by

[u1, v1] = calderon * [f1, f2]

The grid functions u1 and v1 again live in the spaces of piecewise continuous and piecewise

constant functions, respectively. We now apply the Calderón projector again to obtain

[u2, v2] = calderon * [u1, v1]
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The grid functions u1 and u2, respectively v1 and v2 should only differ in the order of the

discretisation error. We can easily check this.

error_dirichlet = (u2-u1).l2_norm() / u2.l2_norm()
error_neumann = (v2-v1).l2_norm() / v2.l2_norm()

For the corresponding values we obtain 1.2 × 10
−4

and 8.0 × 10
−4
. It is interesting to consider the

singular values and eigenvalues of the discrete strong form of the Calderón projector. We can

compute them easily as follows.

from scipy.linalg import svdvals, eigvals
calderon_dense = bempp.api.as_matrix(calderon.strong_form())
sing_vals = svdvals(calderon_dense)
eig_vals = eigvals(calderon_dense)

The grid has 736 nodes. This means that the discrete basis for the possible Dirichlet data has

dimension 736. For each Dirichlet basis function there is a unique associated Neumann function

via the Dirichlet-to-Neumann map. Hence, we expect the range of the Calderón projector to be of

dimension 736 with all other singular values being close to the discretisation error. Correspondingly,

for the eigenvalues we expect 736 eigenvalues close to 1 with all other eigenvalues being close to

0. This is indeed what happens as shown in Figure 4. In the top plot we show the singular values

of the discrete Calderón projector and in the bottom plot the eigenvalues. While the eigenvalues

cluster around 1 and 0 the singular values show a significant drop-off between σ736 ≈ 1.04 and
σ737 ≈ 4.9× 10

−3
, which corresponds to the approximation error as the accuracy of the hierarchical

matrix approximation was chosen to be 10
−3
.

Finally, we would like to stress that while the eigenvalues of the discrete strong form are

approximations to the eigenvalues of the integral operator, the singular values of the discrete strong

form are generally not approximations to those of the integral operator. Given any operator A acting

on a Hilbert space H the Galerkin approximation of the continuous eigenvalue problem Aϕ = λϕ
is given as Ax = λMAx , where MA is the mass matrix between the dual space and H with respect

to the chosen dual form. If MA is invertible this is equivalent to M−1
A Ax = λx or ASx = λx. The

situation is more complicated for the singular values. For simplicity, consider a compact operator

(e.g. the single layer boundary operator) acting on L2(Γ). We have that

∥A∥L2(Γ) = sup

ϕ∈L2(Γ)

∥Aϕ∥L2(Γ)

∥ϕ∥L2(Γ)
.

Let M = CTC be the Cholesky decomposition of the L2(Γ) mass matrix M in a given discrete basis

and A the Galerkin approximation in the same basis. Since ∥ϕ∥L2(Γ) = ∥Cx∥2 for a function ϕ living

in the discrete subspace of L2(Γ) with given coefficient vector x it follows that

∥A∥L2(Γ) ≈ max

x,0

∥CM−1Ax∥2
∥Cx∥2

= ∥C−TAC−1∥2,

which is generally not the same as ∥M−1A∥2. So while the strong form correctly represents spectral

information it does not recover norm or similar singular value based approximations.
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Fig. 4. Top: Singular values of the discrete strong form of the Calderón projector on the unit cube. Bottom:
Eigenvalues of the discrete strong form.

5.2 Calderón preconditioning for acoustic transmission problems
As a final application we consider the Calderón preconditioned formulation of the following acoustic

transmission problem.

−∆u+ − k2u+ = 0, in Ω+,

−∆u– − n2k2u– = 0, in Ω,

γ –
0
u– = γ +

0
u+ + γ +

0
u inc, on Γ,

γ –
1
u– = γ +

1
u+ + γ +

1
u inc, on Γ,

lim

|x |→∞
|x|

(
∂

∂ |x|
u+(x) − iku+(x)

)
= 0. (18)
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Here,n = c+/c− is the ratio of the speed of sound c+ in the surroundingmedium to the speed of sound

c− in the interior medium. The incident field is denoted by u inc. The formulation that we present

is based on [8]. A generalized framework for scattering through composites is discussed in [7].

We denote by V −
:=

[
γ−
0
u− γ−

1
u−

]T
, V + :=

[
γ+
0
u+ γ+

1
u+

]T
, and V inc

:=
[
γ+
0
u inc γ+

1
u inc

]T
the

Cauchy data of u−, u+ and u inc. Let A+ be the multitrace operator associated with the wavenumber

k+ := k and A−
the multitrace operator associated with k− := nk as defined in (5). From the Calderón

projector it now follows that (
1

2
Id + A−

)
V − = V −(

1

2
Id − A+

)
V + = V + (19)

Together with the interface condition V − = V + +V inc
we can derive from these relationships the

formulation (
A− + A+

)
V + =

(
1

2
Id − A−

)
V inc. (20)

This formulation is well defined for all wavenumbers k > 0 [8]. Moreover, it admits a simple

preconditioning strategy [7] based on properties of the Calderón projector as follows. We note that

A+ is a compact perturbation of A−
[16]. We hence obtain(

A− + A+
)
2

= (2A− + compact)2 = Id + compact.

We can therefore precondition (20) by squaring the left-hand side to arrive at(
A− + A+

)
2

V + =
(
A− + A+

) (
1

2
Id − A−

)
V inc. (21)

With the block operator algebra in place in Bempp the main code snippet becomes

A_minus = multitrace_operator(grid, n * k, spaces="dual")
A_plus = multitrace_operator(grid, k, spaces="dual")
ident = multitrace_identity(grid, spaces="dual")
op = A_minus + A_plus
rhs_op = op * (.5 * ident - A_minus)
sol, info = bempp.linalg.gmres(op * op, rhs_op * v_inc,

use_strong_form=True)

As in the single-operator case we can intuitively write the underlying equations and solve them.

All mass matrix transformations are being taken care off automatically. An example is shown in

Figure 5. It demonstrates a two-dimensional slice at height 0.5 of a plane wave travelling through

the unit cube. In this example k = 10 and n = 0.8. The system was solved in 7 GMRES iterations to

a tolerance of 10
−5
.

6 CONCLUSIONS
In this paper we have demonstrated how a Galerkin based product algebra can be defined and

implemented. The underlying idea is very simple. Instead of an operator being defined just via a

domain and a test space we define it by a triplet of a domain space, range space, and dual to range

(test) space. This is more natural in terms of the underlying mathematical description and allows

the software implementation of an automatic Galerkin operator product algebra.

We have demonstrated the power of this algebra using three examples, the efficient evaluation

of hypersingular boundary operators by single-layer operators, the computation of the singular

values and eigenvalues of Calderón projectors, and the Calderón preconditioned solution of an

acoustic transmission problem.
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Fig. 5. Squared acoustic pressure distribution of a wave travelling through a piecewise homogeneous medium.

As long as an efficient LU decomposition of the involved mass matrices is possible the product

algebra can be implemented with little overhead. Multiple LU decompositions of the same mass

matrix can be easily avoided through caching.

In this paper we focused on Galerkin discretizations of boundary integral equations. Naturally,

operator algebras are equally applicable to Galerkin discretizations of partial differential equa-

tions. The main difference here is that for large-scale three dimensional problems an efficient LU

decomposition of mass matrices may not always be possible.

Finally, we would like to stress that the underlying principle of this paper and its implementation

in Bempp is to allow the user of software libraries to work as closely to themathematical formulation

as possible. Ideally, a user treats operators as continuous objects and lets the software do the rest

while the library ensures mathematical correctness. The framework proposed in this paper and

implemented in Bempp provides a step towards this goal.

While in this paper we have focused on acoustic problems the extension to Maxwell problems is

straight forward and has been used in [17].
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