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Polymer mimics of biomacromolecular antifreezes

Caroline I. Biggs® !, Trisha L. Bailey® !, Ben Graham® ', Christopher Stubbs® ',

Alice Fayter® ! & Matthew |. Gibson® 2

Antifreeze proteins from polar fish species are remarkable biomacromolecules which prevent
the growth of ice crystals. Ice crystal growth is a major problem in cell/tissue cryopre-
servation for transplantation, transfusion and basic biomedical research, as well as techno-
logical applications such as icing of aircraft wings. This review will introduce the rapidly
emerging field of synthetic macromolecular (polymer) mimics of antifreeze proteins.
Particular focus is placed on designing polymers which have no structural similarities to
antifreeze proteins but reproduce the same macroscopic properties, potentially by different
molecular-level mechanisms. The application of these polymers to the cryopreservation of
donor cells is also introduced.

0 °C, Nature has evolved a series of unique adaptations to enable life to flourish in

sub-zero climates, at high altitudes and at the Earth’s poles. Such extremophiles
include the wood frog (Lithobates sylvaticus) which can freeze solid over winter, tardigrades
which can be desiccated and rehydrated and cold tolerant plants’ 2. The mechanisms of these
cryoprotectants are varied, from enabling freeze-tolerance (being able to be frozen and then
thawed) to freeze avoidance (preventing ice forming) and even freeze promotion (as a predatory
mechanism)3-°.

One particular adaptation is the production of macromolecular antifreezes (proteins and
polysaccharides) which modulate ice formation and growth, and are found in freeze avoidant
organisms. These can be broadly split into the antifreeze proteins (AFPs) and antifreeze gly-
coproteins (AFGPs). AFGPs are highly conserved, with a relatively simple repeat tripeptide
structure and a disaccharide on every third amino acid, but are produced in a range of chain
lengths. Conversely, AFPs are far more diverse, with several subdivisions, and can assume
different structures; from beta barrels to alpha helices and vary in size (Fig. 1). They all have a
few core properties (discussed in detail below) including the ability to inhibit ice recrystallization,
shape ice crystals into unusual morphologies and to depress the freezing point in a non-
colligative manner. The relative magnitude of each effect varies between individual AF(G)Ps and
the exact mechanisms, involving ice-face recognition, are still under investigation. What is clear,
is that the ability to tune and modify ice growth and formation has the potential for huge
industrial and societal impact. For example, ice adhesion limits the performance of wind farms
by up to 50%’, is a major problem for aircraft® and even impacts our understanding of how
biological components affect our climate® '°.

Some AFPs have already found application in improving the texture of ice cream products by
preventing ice crystal growth, and other food uses are under investigation® . A key potential
field where AF(G)Ps could be applied is in cell and tissue cryopreservation where ice

W ater is fundamental to all life on our planet, and despite it having a freezing point of

TDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, UK. 2Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
Correspondence and requests for materials should be addressed to M.1.G. (email: m.i.gibson@warwick.ac.uk)

NATURE COMMUNICATIONS |8:1546 | DOI: 10.1038/541467-017-01421-7 | www.nature.com/naturecommunications


http://orcid.org/0000-0002-8007-3132
http://orcid.org/0000-0002-8007-3132
http://orcid.org/0000-0002-8007-3132
http://orcid.org/0000-0002-8007-3132
http://orcid.org/0000-0002-8007-3132
http://orcid.org/0000-0002-5448-1722
http://orcid.org/0000-0002-5448-1722
http://orcid.org/0000-0002-5448-1722
http://orcid.org/0000-0002-5448-1722
http://orcid.org/0000-0002-5448-1722
http://orcid.org/0000-0003-1313-6874
http://orcid.org/0000-0003-1313-6874
http://orcid.org/0000-0003-1313-6874
http://orcid.org/0000-0003-1313-6874
http://orcid.org/0000-0003-1313-6874
http://orcid.org/0000-0002-1756-705X
http://orcid.org/0000-0002-1756-705X
http://orcid.org/0000-0002-1756-705X
http://orcid.org/0000-0002-1756-705X
http://orcid.org/0000-0002-1756-705X
http://orcid.org/0000-0001-9470-9560
http://orcid.org/0000-0001-9470-9560
http://orcid.org/0000-0001-9470-9560
http://orcid.org/0000-0001-9470-9560
http://orcid.org/0000-0001-9470-9560
http://orcid.org/0000-0002-8297-1278
http://orcid.org/0000-0002-8297-1278
http://orcid.org/0000-0002-8297-1278
http://orcid.org/0000-0002-8297-1278
http://orcid.org/0000-0002-8297-1278
mailto:m.i.gibson@warwick.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

REVIEW ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01421-7

OH
Ho OH

HO
HO AcHN o

AV

AN \/\/
H o
4-50 * Chain length * Role of hydroxyls
Antifreeze Glycoprotein ¢ Architecture * Amphipathicity
* Monomers * Ice binding
Spruce Tenebrio 'm"""’ ¢ Tunability ¢ Cell cryopreservation
Budworm AFP Molitor AFP Winter flounder type | ¢ Translational potential

Fig. 1 General concept of this review. Simplification of antifreeze proteins and antifreeze glycoproteins to fully synthetic polymers. This figure is adapted
from Gibson (2010)24 with permission of The Royal Society of Chemistry. This image is not included under the creative commons licence for this article
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Fig. 2 Interaction of antifreeze proteins with ice. a Hexagonal ice crystal; b Adsorption-inhibition where AF(G)Ps bind to ice, causing local curvature and
hence growth inhibition; ¢ Preferential c-axis (basal) growth when prism planes inhibited; d Different morphologies observed for single ice crystals;

e Micrographs of ice crystals after annealing with/without antifreeze proteins showing IRI activity; f TH activity for different molecular weight AFGPs
(2.6-24 kDa)* 33. a-d are reproduced from Gibson (2010)%4 with permission of The Royal Society of Chemistry. These images are not included under the
creative commons licence for this article. f was created using the raw data from Wu et al. (2001)33

recrystallization is a major problem!2~!4, The availability of high
quality cells and tissues underpins all modern biomedical science
and drug screening, and is crucial for emerging regenerative
medicine applications. Progenitor (stem) cells remain challenging
to cryopreserve, requiring large amounts of organic solvents
which give less than 100% cell recovery and can affect their future
differentiation pathways'®>. AF(G)Ps are not always suitable for
cryopreservation due to potential immunogenicity and toxicity
concerns!®, expense of production and the formation of needle
like ice crystals (dynamic ice shaping), which is undesirable for
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cell cr}zfoPreservation, leading to mixed successes and
failures'® !> 17, There is a clear rationale to develop synthetic
mimics with tunable and tailored function.

In the past 20 years, huge advances have been made in syn-
thetic polymer chemistry, which now enables the design and
precise synthesis of a plethora of complex architectures incor-
porating nearly any functional group'® and even some progress
towards introducing monomer sequence has been made'®. This
has enabled the emergence of synthetic materials which have
protein-like function but with the scalability and tunability
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associated with polymers. For example, nanoscale drug delivery
devices from block copolymers®, biochemically responsive
polymers®!, glycopolymer mimics of natural glycoproteins and
polysaccharides?? and nucleobase containing polymers?3.

The aim of this perspective is to introduce the rapidly emerging
field of macromolecular cryoprotectants**—polymers designed to
mimic the complex function of antifreeze (glyco)proteins, without
necessarily mimicking their chemical structure. This focus on
function, not structure, is enabling the identification of new
materials with unexpected properties. These synthetic entities are
providing new insights into the mechanisms of action, enabling
translation towards real world applications and a particular focus
will be placed on their application in cellular cryopreservation.
The physical properties of AF(G)Ps and how they are measured
will be summarized, along with small molecule mimetics, fol-
lowed by a comprehensive summary of the state of the art within
macromolecular mimics.

Macroscopic Properties of Antifreeze(glyco) Proteins

The addition of AF(G)Ps to aqueous solutions significantly affects
both the ice formation and growth processes, with 3 key mac-
roscopic effects associated with growth (note; nucleation is a
separate property)'%; dynamic ice shaping (DIS); the modification
of the morphology of a growing ice crystal; ice recrystallization
inhibition (IRI); crystal growth (Ostwald ripening) is kinetically
suppressed such that growth is inhibited; thermal hysteresis (TH);
a non-equilibrium depression of the freezing point, resulting in a
lower freezing than melting point, which is greater than what is
expected on a colligative basis (Fig. 2f)?*~2. While the details of
the assays and ice-protein interactions are beyond the scope of
this review it is necessary to include core techniques to aid
understanding.

Early work in this field focused on AF(G)P function in relation
to TH and DIS activity, which remain the most studied macro-
scopic properties. TH and DIS appear to be interlinked with all
proteins which show TH also demonstrating DIS, although the
exact magnitude of each property varies between proteins. This is
most often exglained by an adsorption-inhibition mechanism
(Fig. 2a, b)2% 27 Without AF(G)Ps the curvature of the crystal is
unaffected and a round flat crystal is produced (Fig. 2b). When
AF(G)Ps are adsorbed onto a particular plane of ice, the local
surface curvature increases, and hence an increase in vapour
pressure, resulting in a lowering of melting point and water
molecules being unable to assimilate into surface pockets in the
ice’®. By binding to the fastest growing plane (prism) the
observed growth rate is slowed and progresses from the basal
plane and hence shaping occurs, giving rise to the unique
morphologies (Fig. 2c, d)*°. Early work in the field, using hemi-
spherical etching and ice plane affinity, supported these hypoth-
eses, althou%h they do not unravel the actual ice-protein
interactions®’. It is important to highlight that structural biology
tools, probing protein structure and function, including single
crystal structure determination and SAXS are providing insights
into the structure of AFPs and have revealed the ice-binding
domains in many cases, along with anchored clathrates, which
appear to mediate the interaction with the ice. These details are
beyond the scope of this review, but readers are pointed to several
articles on the subject’! 32,

While thermal hysteresis and dynamic ice shaping appear
correlated, the third property (IRI) appears to operate indepen-
dently, with little or no correlation to the magnitude of TH
activity'!. For example, AFPs such as TmAFP, winter flounder
type I-Hyp and M. primoryenisis are considered hyperactive, with
high TH activity, but show relatively low IRI activity. Conversely
AFGPs and winter flounder type I are moderately TH active but
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with high IRI*!., These observations indicate that multiple
molecular-level mechanisms may be present, and exploited dif-
ferentially by the different proteins. The gold standard method to
test for TH and DIS activity is nanoliter osmometry>> %>, Samples
are frozen and then slowly melted until a single crystal remains.
To determine the TH of a sample the crystal is cooled further
until there is a sudden burst in growth. TH is defined as the
difference between the melting point and non-equilibrium
freezing point® 3. There are limitations in determining TH in
this way, mainly the technical challenges of avoiding burst growth
and precise temperature control required, alongside the relatively
high concentrations of material (>20 mg mL™1) needed to induce
this effect. Sonocrystallization is a method proposed by Voets
et al. to overcome these issues and allow the measurement of
freezing and melting points in one experiment. The method
involves supercooling a solution before the application of a short
ultrasound pulse, which induces nucleation and freezing. The
sample is then melted for melting point determination. Data
obtained from sonocrystallization links to TH though does not
scale with values obtained from nanoliter osmometry, which may
provide new insights or indicate it is probing different molecular-
level processes®”. Low temperature solid-state NMR is emerging
as a new tool in the field as it is possible to monitor the liquid
water phase, the ice and the protein component all in the same
experimental set-up.'H-"H cross-saturation and cross studies of
frozen AFP:ice solutions have recently provided detailed struc-
tural information regarding the AFP:ice interface. These studies
present solid-state NMR as a technique which is likely to lead to
breakthroughs in the near future’.

The ‘splat cooling’ IRI assay is widely used to probe recrys-
tallization®”. In short, this method involves the formation of a
polynucleated ice wafer by dropping a small volume of a buffered
solution containing the AFP/inhibitor onto a pre-cooled surface.
The ice crystals are then annealed at a sub-zero temperature,
above the eutectic phase transition, and the growth of the ice
crystals monitored. Due to the large number (100’s) of ice crystals
obtained, various image analysis methods have been developed to
facilitate this, but due to the non-regular size and shape of the ice
crystals this remains non-trivial’®. The length of time of the
annealing will also affect the outcome, as this is only a kinetic
slowing with slow growth still occurring.

A related assay using high concentrations of sucrose (40 wt%)
is also used to study growth in complex media with the advantage
of simpler image analysis due to a lower density of ice crystals
being obtained and does not require apparatus to ‘splat’ the
droplet®. Microcapillary methods for screening for IRI have been
shown by Davies and co-workers, with the advantage of allowing
the sample to be archived?’. It is very important to note, that
when interpreting IRI data, either crystal area (mean grain size)
or crystal length (MLGS) are used as measures. As area has a
squared term (e.g. nm?) these values tend to be smaller at equal
activity. It is important to consider this when comparing inhi-
bitors. As a guide, 40% MLGS would be equivalent to 16% MGS.

The following sections will discuss the synthesis and applica-
tion of various AF(G)P mimetic strategies, focusing on the
macromolecular mimics, and their application to cellular cryo-
preservation, while referring to their activity in the above-named
assays.

Small Molecule and Peptide Based Mimics

AFPs are routinely produced by recombinant expression methods
or, for shorter sequences, by solid phase synthesis® 3. AFGPs,
which show greater IRI activity than AFPs, are harder to access as
bacterial protein expression does not routinely enable the
installation of the post-translation modification (in this case the
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disaccharide) necessitating chemical synthesis*!. Therefore,

efforts have been made to use chemical synthesis as a route to
accessing these materials.

The total chemical synthesis of AFGPs has mainly focused on
AFGP-8, the shortest naturally occurring fraction (Mw =2700g
mol~!), Table 142, Nishimura and co-workers reported the most
comprehensive study of AFGPs to date*. In this work 10 dif-
ferent carbohydrates and different chain lengths were synthesized
via a polymerization/fractionation approach. Interestingly, only
TH and DIS were tested as an indicator of activity. It was con-
cluded that an N-acetyl sugar, the y-methyl on threonine and an
a-glycosidic linkage were all essential components for TH and
DIS to be retained. Solution phase NMR analysis revealed a lar-
gely unstructured secondary structure similar to that of a poly-
proline II helix (as seen in native AFGP), but interestingly all the
glycans were presented on a single face creating an amphipathic
structure. This is remarkably similar to crystal structures for AFPs
which have clearly segregated hydrophobic (ice binding) and
hydrophilic domains, suggesting that certain generic macro-scale
features are crucial for function, rather than just the primary
sequence; this is a key observation for the design of polymer
mimics, later in this review. While the above observations were
conclusive, in a sense, the study omitted any IRI activity testing
(Table 1). This omission meant the role of structural simplifica-
tions and the minimum requirements for IRI could not be drawn,
leading to conclusions that simplified AFGPs could not be
designed, and hence synthetic mimics might not be so accessible
—which as this review will highlight, was an incorrect
assumption.
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Ben and co-workers reported that glycopeptides bearing a C-
linked galactosyl-serine and glycine (i.e. non stereogenic) back-
bone, rather than alanine, were highly potent IRI’s, functionin
below 0.05uM, which is more active than AFP Type III'® 4.
Interestingly, no thermal hysteresis or dynamic ice shaping
activity was observed, providing the first evidence that these
properties were resolvable from IRI, which is uniquely tolerant to
structural deviations from the core AFGP motif. Further studies
from Ben and co-workers have explored the tolerance of glycans
and backbone hydrophilicity effects on activity in detail, with
galactose being preferred in general, and hydroghilic modifica-
tions to the backbone reducing activity (Table 1)!* 4, Inspired by
the polyproline II helix of AFGP, glycosylated poly(proline) was
also synthesized as a peptide mimetic and tested for activity;
surprisingly it displayed greater activity without the glycan (as
hydroxyproline) than with, highlighting the challenge associated
with rational IRI synthesis, and indicating the ambiguity of the
role of the sugar in AFGP; functional, or structural (to direct
folding)*®.

Carbohydrates alone have some weak IRI, with the hypothesis
that their degree of hydration correlates with activity, but whether
this relationship holds when attached to the AFGP backbone
remains unknown®* %°. Ben and co-workers were the first to
report the synthesis of low molecular weight carbohydrate
derived small molecules possessing IRI activity*® 4% 0. Inspired
by the obvious presentation of hydrophobic faces in AF(G)Ps,
(Fig. 3b) installation of hydrophobic groups onto the anomeric
position was a route to increase activity. Alkyl (octyl/nonyl/decyl)
galactosides were found to inhibit recrystallization at 5.5mM,
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Fig. 3 Amphipathic domains in IRI-active compounds. a Safranin O°3; b Solution NMR structure of AFGP-8°%; ¢ Postulated structure of ZrOAc>®; d Nisin A
simulation with hydrophilic (red) and hydrophobic (blue) domains indicated®®; e Modulation of Nisin A IRl by solution pH. a is adapted with permission
from Drori et al. (2016)°3. Copyright (2016) American Chemical Society. This image is not included under the creative commons licence for this article.
b is reproduced from Tachibana et al. (2004)*3. Copyright (2004) WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim. This image is not included under
the creative commons licence for this article. ¢ is reproduced from Mizrahy et al. (2013)°® published under CC-BY4.0 at PLOS. d, e are reproduced from

Mitchell et al., (2015)°8 published under CC-BY4.0 at ACS

compared to the free sugar which failed to inhibit fully even at
22mM. A key design criteria emerged, with longer alkyl sub-
stituents being more active, until micellization occurs, at which
point the hydrophobic domains are no longer presented, as they
are internalized within the core*® °!.

It is clear from these non-peptide studies that the sugar could
be seen as acting as a hydrophilic moiety, complementary to the
hydrophobic unit necessary to induce activity, and is not in itself
playing an essential recognition derived role. Taking this concept
further, lysine based surfactants with non-sugar components and
a charged headgroup were engineered such that they have IRI
activity, indicating that a sugar group is a useful but not essential
motif>2,

The essential requirement for IRI to have amphipathic struc-
tures is a challenging design criteria, as hydrophobicity tends to
drive aggregation or self-assembly which results in only hydro-
philic surfaces being presented. Drori and co-workers screened a
range of sparingly soluble organic dyes, which have flat planar
structures ideal for self-assembly for TH/DIS/IRI activity. Safra-
nin O, was identified as being a highly potent IRI-active species,
inhibiting all ice growth at 42mM (1.47 mg mL™!), which is a
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remarkable level of activity for a small molecule. Detailed studies
revealed it was actually forming long facially amphipathic fibres
similar to a rigid AFP (Fig. 3a, b)>>. Amphipathic enantiomeri-
cally pure metallohelicies have also been found to be IRI active™.
An unexpected IRI controlling compound is zirconium acetate
(ZrAc) (Fig. 3d). ZrAc was observed by Deville and co-workers,
to give strange pore shapes during ice-templated materials
synthesis. Further experiments showed it to be a Eotent ice shaper
and a very potent IRI (150 mM, 13.3 mg mL™)*. ZrAc is a well-
known co-ordination polymer, and it is hypothesized to have a
solution structure®® related to poly(vinyl alcohol) (PVA), a highly
potent IRI (see later) which may explain activity’”. Nisin A, an
antimicrobial peptide with pH switchable amphiphilicity was
used to further exemplify the role of segregating domains, and the
first example of a ‘stimuli-responsive’ IRI (Fig. 3d, €)%, The above
clearly shows that a rather diverse set of materials have been
shown to have activity, but clear structure-property relationships
are still missing, except for the key observation that higher
molecular weights seem to lead to more activity which provides
inspiration for the use of synthetic polymers.
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Synthetic Polymer Materials with Antifreeze Protein-Like
Function

The previous sections have served to highlight the attempts to
reproduce the function of natural macromolecular antifreezes,
especially in inhibiting ice recrystallization, and small molecule
mimetics. There are clearly still no design rules and the de novo
design of new non-peptide IRI-active compounds remains elu-
sive. Compared to small molecules, synthetic polymers are often
low cost, and can be assembled from a vast range of monomers
and into diverse topologies and architectures offering vast scope
for modulating function.

However, given the precise folding of AF(G)Ps and the largely
unstructured nature of synthetic polymers this would seem to be
an ambitious goal. In 1995, however, Knight observed that PVA,
was a potent IRI but did not display significant thermal hyster-
esis’”. This was one of the first instances of a synthetic polymer
displaying such a property, and can be considered the birth of this
field. Inada et al. evaluated the AF(G)P-like properties using
commercial PVA samples®. They found that PVA had a mole-
cular weight dependence on IRI activity and that on a molar basis
had activity comparable to the shortest AFGPs. A key point to
note here is that due to the high molar mass (Mw) of the poly-
mers they were actually 10-100 fold less active than AFGP on a
mass basis, but still remain the most active synthetic polymers
reported today. Due to the activity of PVA, a simple assumption
would be that any poly(hydroxylated) polymer could show IR, as
AFGPs are also poly-ols to a first approximation. Gibson et al.
have tested various polysaccharides and glycopolymers which
were found to be weak IRIs; in short, a poly-ol alone is not the
minimum required feature of a synthetic IRI®"* ©2. Koop et al.
have postulated that the spacing between hydroxyls on PVA are a
good match for the basal glane of a growing ice crystal and hence
may explain its activity®>. However, this does not take into
account the observations with small-molecule IRIs about the role
of amphiphilicity, and that an AFP’s ice-binding face is actually
the most hydrophobic, with the hydrophilic face directed into the
unfrozen water layer; in short, this is still not clear, but multiple
molecular-level mechanisms could give rise to the same macro-
scopic affects and it therefore warrants more study.

6 NATURE COMMUNICATIONS | 8:1546

The above studies were all conducted using commercial PVA
samples; these are characterized by broad molecular weight dis-
tributions (Mw/Mn>2), low molecular weight contaminants
(unless dialyzed before use) and the presence of 0-20 mol%
acetate groups remaining from its synthesis from poly(vinyl
acetate). This inhomogeneity meant that drawing structure-
activity relationships was challenging, if not impossible. To enable
a more systematic approach, Congdon et al. employed controlled
radical polymerization (RAFT) to obtain well-defined PVA of
predictable chain length and narrow molecular weight dis-
persity (Fig. 4a, b)*’. By using hydrazine (rather than NaOH) to
remove the acetate groups it was possible to obtain homogenous
PVA. Selective re-acetylation, or co-polymerization with
isopropenylacetate, revealed that incorporation of more than
20mol% of any additional functionality lead to substantial
reduction in the IRI activity. Crucially, this explains the incon-
sistent results from commercial PVAs due to their residual
acetates, but also shows how sensitive the PVA structure is to
structural modifications. Interestingly, similar effects are
demonstrated by AFGP’s which lose activity if >35% of the
hydroxyl groups are removed, but whether this is due to the loss
of hydroxyl ‘function’ or a change in the folding of the protein has
not been resolved®. Conversely, block co-polymerization of PVA
appeared to be tolerated, with no change in activity. Fusion
proteins of AFPs with N-terminus maltose binding protein have
been found to have identical activity to free proteins also sup-
porting that large chain-end modifications are tolerated®.

Inada’s original work had revealed a strong molecular weight
dependence on activity®®. Gibson and co-workers confirmed that
even at relatively low molecular weights (<10,000 g mol™!) there
was significant IRI. An increase in chain length generally
increases IRI activity but the most startling increase was seen to
be between DP 10 (~450 gmol_l) and DP 20 (~900 gmol_l)
(Fig. 4b) where the PVA essentially switched from being inactive
to active. This was the first demonstration of the critical point in
terms of size being required to activate IRI activity and shows that
the crucial length for activity is rather short, compared to e.g. AF
(G)Ps and may give future insight into its mechanism of action®’.
This molecular weight dependence was also exploited to generate
the first example of an ‘externally triggerable’ IRI. Catechol end-

| DOI: 10.1038/541467-017-01421-7 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01421-7

REVIEW ARTICLE

Structure Ref IRI Structure Ref IRI
10% | iy 60 %
OH N
77 MLGS, ° EL o MLGS,
1 mg.rnL'1 P on 20 rng.mL'l
G 65 %
me-m “"vpﬁ{ ﬁ sim 20 mg.rnL'l
/N\ " e
@ 4% b
HaN HN" S0 70 MLGS 76 10 % MGS,
b0 oHo T A 100 mg.mL""
M 20 mg.mL
NH, HO
50 % fey gt
N oHo " : oo 76 48 % MGS,
{\;fv\} MLGS, 100 mg.mL"
20 mg.mL"™’ BN &
HO™ ~O
MGS mean grain size determined as the average area of each ice crystal; MLGS mean largest grain size, which reflects the length of the largest ice crystal

functional PVA was synthesized and upon addition of Fe3*
enabled formation of a supramolecular polymer with 3x mole-
cular weight, and hence dramatically higher IRI (Fig. 4c)®. Such
systems where an external stimulus can control IRI have not be
widely explored, but a small molecule photo-reactive IRI has been
shown, offering hope for spatiotemporal control over IRIL

A key advantage of using controlled RAFT is the ability to
modulate polymer architecture and topology'®. 3-armed, star
branched PVA was found to have essentially identical activity to a
2-armed equivalent suggesting the third arm is redundant, and
that total hydrodynamic volume rather than valency (number of
hydroxyls) is a crucial parameter. Voets and co-workers synthe-
sized bottlebrush PVAs and observed that the increased mole-
cular weight did not correspond to an increase in activity, unlike
with linear polymers, and hence determined that steric confine-
ment limits activity (Fig. 4d)®’.

While PVA has been the most studied polymeric-IRI, the
findings from small molecule IRIs suggest that hydroxyl groups
are not essential components and that a wide chemical space
should be studied. Also, PVA itself is a relatively challenging
polymer to access, as vinyl acetate is not easy to polymerize by
controlled RAFT methods, only a limited range of additional
functionality can be included by co-polymerization and the
removal of acetate groups requires harsh conditions. Inspired by
this, Matsumura et al., reported that poly(ampholytes), polymers
with mixed cationic and anionic groups, were remarkable cryo-
preservatives and seemed to influence ice crystal morphologies at
high concentrations (Table 2)%8. Mitchell et al. synthesized well-
defined poly(ampholytes) via post-polymerization modification
of poly(aminoethyl methacrylate) from RAFT polymerization.
This revealed that when an exact 50:50 ratio of carboxylic acids to
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amines were present, the polymer showed clear IRI but excess of
either charge removed activity®. PVA,o, a relatively inactive
chain length, is still around 6x more active than the most active
ampholyte (10% MLGS vs. ~70% for ampholytes at the same
concentration). This was, however, still a remarkable observation,
in that there were no obvious ice-binding sites, and that charge
balance appears to be crucial. A further feature is that the basic
requirement of an ampholyte is very synthetically accessible; an
equal balance of cations and anions. Matsumura and co-workers
have reported copolymers of 2-(dimethylamino)ethyl methacry-
late and methacrylic acid”® and also carboxylated polysaccharides
(dextran) as IRI-active polymers’!. To date, there is no clear
mechanistic explanation for why these work. Due to the synthetic
routes used, only on average, were these materials actually 1:1
cationic to anionic, and the sequence distribution within the
polymers was random. To overcome both these challenges, maleic
anhydride copolymers have been exploited; maleic anhydride has
a low propensity to self-propagate, and hence when a second
monomer is added, near-perfect alternative (ABABx) structures
are formed. Furthermore, the anhydride ring can be opened with
a nucleophile to install the desired functionality. Mitchell et al’2.
and Stubbs et al. have exploited this to generate libraries of
sequentially modified poly(ampholytes) to probe their function”3.
Increasing the backbone hydrophobicity lead to increased IRI
activity, but at a cost of significantly reduced solubility—the role
of hydrophobicity is again crucial to highlight here. It was found
that dimethyl amino side chains lead to the most active polymers,
despite being less hydrophobic than ethyl and propyl analogues;
this subtle balance between hydrophobicity and hydrophilicity
underlies the challenges in the rational design of AFP mimics.
These polymers, while more active than the ampholytes
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Fig. 5 Ice nucleating materials. a Multi-point freezing assay used to assess ice nucleation, nucleating droplets are circled in red®%; b Carbon nanomaterials
with ice nucleation activity: (i) carboxylated graphene nanoflakes, (ii) mellitic acid, (iii) graphene oxide, (iv) multiwalled carbon nanotubes and (v) single

walled carbon nanotubes®': ¢ Graphene oxide-polymer composites®2. a and ¢ are reproduced from Biggs et al. (2017

)82 with permission of PCCP owner

societies. These images are not included under the creative commons licence for this article. b is reproduced from Whale et al. (2015)8" published under

CC-BY4.0 at ACS

previously mentioned, are still much less active than PVA of a
similar molecular weight. Interestingly, these sequence-regulated
polymers appeared to have higher activity than random copoly-
mers but again the fundamental mechanisms governing activity
remains unknown’3. Other synthetic materials have also been
investigated as cryoprotectants, with suggested IRI activity, but
are only just emerging. Graphene oxide has also been shown to
have IRI activity, with its ability to inhibit ice growth demon-

strated as being as effective as PVA at similar concentrations’?,

Ice Nucleating Proteins and Materials

In addition to the AF(G)Ps, which inhibit the growth of ice
crystals, there are also ice nucleating (formation) proteins. It is
important to include a brief discussion of these, as the promotion
of nucleation by biological macromolecules is also an interesting,
and still a misunderstood process with many potential applica-
tions and scope for synthetic materials chemists to mimic. The
most widely used ice nucleating protein is from Pseudomonas
syringae which promotes frost formation on plant leaves, to
release nutrients for feeding’®. As with AF(G)Ps the mechanism
of action is also not clear but water ordering is thought to be
involved”’. The underlying mechanism of ice nucleation (even in
the absence of promoters) is still not understood and is a major
challenge in modelling and theory’8, made harder by the lack of
sequentially modifiable materials which can be used to carry out
systematic structure-activity studies and the fact that, due to the
stochastic nature of ice nucleation, time-consuming multi-point
assays must be used (Fig. 5a). Currently a number of materials,
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including soots’®, have been shown to promote ice nucleation.
Whale et al. have reported the first synthetic materials which can
promote nucleation; carbon nanotubes, graphene nanoflakes and
associated structures (Fig. 5b)80. Covalent modification of the
surface of base-washed graphene oxide enabled the nucleation
temperature to be tuned over a 15 °C range (Fig. 5¢)3!. The exact
link between ice nucleators and antifreezes remains unclear, but it
has been shown that synthetic AFGP mimics also demonstrate
some nucleation inhibition properties®?. In short, this process
remains open for study and is even less studied than the already
complex IRI mimetics.

Enhanced Cell Cryopreservation with Ice Recrystallization
Inhibitors

Tissue engineering, gene therapy, and cell transfusion all rely on
the ability to store and transport cells and tissues in order to be
clinically successful®®. Cryopreservation is the most successful
method for storage of these biological materials but is a complex
process in which the sample volume, cooling rates, and cryo-
protectants, such as dimethyl sulfoxide (DMSO), are all extremely
important. Unfortunately, DMSO exhibits cytotoxicity at room
temperature®® 8°, damages mitochondrial integritfé, has been
shown to impact the epigenetic profile of cells!> 87, disrupts
intracellular cell signalling®, and if transfused into patients leads
to a vast range of clinically undesirable symptoms. Due to this,
there is a real need for new cryoprotectants with innovative
modes of action, and AF(G)P inspired materials are presenting an
exciting new avenue.
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The formation of ice under typical cryopreservation conditions
is inevitable and in most cases ice will form outside the cell®.
Formation of extracellular ice creates an increased osmotic
pressure across the cell membrane and this “osmotic flux”
intensifies as ice growth continues after the nucleation event; cells
will rupture if they cannot dehydrate fast enough. However, it has
been shown that dehydration along with exposure to severely
high concentrations of solutes is also lethal to the cell and will
facilitate irreparable damage to the cell membrane®’. Penetrating
cryoprotectants, such as DMSO, readily cross the cell membrane
and decrease the concentration of intracellular electrolytes while
maintaining greater cell volumes but still carry with them the
cytotoxic effects mentioned previously. Non-penetrating cryo-
protectants do not cross the cell membrane, which results in an
increase of osmolarity in the extracellular solution, facilitates
dehydration prior to freezing, and prevents the formation of
intracellular ice. Therefore, controlling and limiting extracellular
ice growth, should be able to modulate and improve cell survival.

In 1992, Carpenter and Hansen demonstrated that addition
of AFPs to blood cryopreservation solutions increased the
post-thaw recovery levels. However, the effect was limited, as the
AFP concentration was increased, the cell recovery actually
decreased”. This was found to be due to the secondary effect of
dynamic ice shaping, promoting bipyramidal ice crystals which
could pierce the cell membranes. This was further demonstrated
by Capicciotti et al. who showed various AF(G)Ps in the presence
of 5% DMSO resulted in good cell post-freeze viabilities but cells
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frozen with a LpAFP mutant, which had a much smaller thermal
hysteresis gap (and hence less dynamic ice shaping activity),
resulted in the least amount of cellular damage’'. In addition to
ice-shaping, a challenge of using native AF(G)Ps is the potential
for immunogenicty and toxicity. AFGPs have been found to have
some cytotoxicity against human cell lines'® and conflicting
reports showing either benefits or problems!? 9> 3 of AFGPs in
cryopreservation, and hence polymer mimics with specific IRI
(and not TH/DIS) could make a major impact.

Gibson et al.,, showed that addition of PVA to red blood cells
cryopreservation mixtures significantly enhances cryopreserva-
tion outcomes, either alone, or in tandem with hydroxgrl ethyl
starch or polymeric hydrogelators (Fig. 6a)!® °% . PVA
also improved the protection of A549 and BeWo cells during
DMSO-mediated cryopreservation, with PVA alone not enabling
recovery of nucleated cells (Fig. 6b)°°. It is important to note that
PVA also has an effect of inhibiting nucleation, and can improve
cryopreservation by vitrification by reducing de-vitrification®’.
However, as vitrification requires very high levels of solvents
(often >40 wt%) this method is not as widely used for cells,
with the slow-thawing method being greferred, but has been
used to cryopreserve a rabbit kidney®®. In addition to PVA,
polyampholytes have been found to be extremely potent cryo-
preservation enhancers, despite their significantly lower IRI
activity, relative to PVA or AF(G)Ps®. 1929 and RMSCs cells
were cryopreserved using polyampholytes as the sole CPA, which
appear to directly interact with cell membranes, in addition to
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slowing ice growth® which is similar to the proposed mechan-
isms of AF(G)P?> %% 190, Ampholyte cryopreservation is optimal
with an exact balance of cationic to anionic groups!'®!, which also
maps to IRI activity (Fig. 6¢), which raises the question of just
how much IRI is needed to enhance cryopreservation, or what
other structural features are essential. Leclere et al. determined C-
linked analogues of AFGPs protected WRL 68 cells during
cryopreservation as efficiently as 2.5% DMSO!2. Briard et al.
found that several low molecular weight carbohydrate derivatives
were effective IRIs and effective additives for cryopreservation of
human red blood cells resulting in significantly higher numbers of
intact red blood cells post-thaw, while using reduced quantities of
glycerol 03,

The above observations demonstrate that AF(G)P mimetics
can clearly improve cryopreservation outcomes to increase cell
yield post-thawing. However, for most cases, there is still the need
for low molecular weight cryoprotectants/osmolytes to ensure
efficient cryopreservation. Yet another challenge in this field is the
question of how much IRI (or TH) activity is needed to enhance
cryopreservation and how little cryoprotectant can be used while
still achieving a clinically/biotechnologically useful recovery rate.
If these questions can be answered, AF(G)P mimetics could have
a huge impact, especially in emerging regenerative applications
and the storage of primary stem cells, or those emerging from
stem-cell factories.

Summary

This focused review has summarized the current state-of-the-art
in the rapidly emerging field of synthetic macromolecules which
can mimic the function of antifreeze (glyco) proteins. In parti-
cular, recent developments in polymer chemistry have enabled a
wide range of polymers to be accessed and although identification
of any new material which is active remains rare, an increasingly
large number are being discovered. It has become clear that the
precise primary sequence and 3-D structure of natural antifreezes
is essential for thermal hysteresis and ice shaping to occur, sup-
porting a molecular-recognition type mechanism on the ice
crystal surface. However, ice recrystallization inhibition appears
to be an easier to access property, with a diverse range of poly-
mers, supramolecular assemblies and even small molecules being
reported, despite no structural similarities between these. The
application of IRIs in cellular cryopreservation is highlighted,
where slowing the growth of ice during thawing has been found
to lead to remarkable enhancements in cell recovery post-storage
proving innovative solutions to the logistical challenges associated
with emerging regenerative medicine treatments. These advances
have triggered renewed interest in this area, and we anticipate
that as more research groups enter this exciting, highly inter-
disciplinary, field advances will continue to the point where
synthetic materials may be able to outperform natural proteins,
but with both increased selectivity (in terms of antifreeze prop-
erties) and also additional, currently unforeseen, functionality.
We would suggest that (non-exhaustively) the following key
challenges need to be addressed for the field to continue to
advance:

e Do several molecular-level mechanisms give rise to the
observed macroscopic effects and if so can these be separated?

e Do polymeric mimics function by the same mechanisms as
AF(G)Ps?

e What is the exact role of amphipathicity in IRI?

e Is there a minimum/maximum IRI activity required to
increase cell cryopreservation?

e Can AF(G)P mimics be used to remove the need for organic
solvents in cryopreservation?
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