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Abstract. Numerous lung diseases, such as idiopathic pulmonary fi-
brosis (IPF), exhibit dilation of the airways. Accurate measurement of
dilatation enables assessment of the progression of disease. Unfortunately
the combination of image noise and airway bifurcations causes high vari-
ability in the profiles of cross-sectional areas, rendering the identification
of affected regions very difficult. Here we introduce a noise-robust method
for automatically detecting the location of progressive airway dilatation
given two profiles of the same airway acquired at different time points.
We propose a probabilistic model of abrupt relative variations between
profiles and perform inference via Reversible Jump Markov Chain Monte
Carlo sampling. We demonstrate the efficacy of the proposed method on
two datasets; (i) images of healthy airways with simulated dilatation; (ii)
pairs of real images of IPF-affected airways acquired at 1 year intervals.
Our model is able to detect the starting location of airway dilatation with
an accuracy of 2.5mm on simulated data. The experiments on the IPF
dataset display reasonable agreement with radiologists. We can compute
a relative change in airway volume that may be useful for quantifying
IPF disease progression.

1 Introduction

Monitoring the progression of air-
way dilatation in chest CT scans
have proven effective as predic-
tors of outcome in idiopathic
pulmonary fibrosis (IPF). How-
ever, analysis of CT airway im-
ages are restricted to crude visual
inspection and categorical scores
[8]. Computerised quantification of
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Fig. 1. Example of a healthy contiguous CSA
change (left) along an airway track between
longitudinal scans (right).
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change in airway dilatation is limited to computing the difference in cross-
sectional area (CSA) on a signal point at each generational branch [9]. Intro-
ducing contiguous CSA changes along the airway track (e.g. in Fig. 1) would
enable analysis of subtle dilatation. However one would have to distinguish a
dilatation from various sources of noise including: (i) Biases and precision from
computing CSA such as from centreline generation [13] and lumen identification
[6]. (ii) Artefactual measurements such as in bifurcation regions [15]. (iii) Normal
biological variations [2].

We introduce a novel application of Bayesian Changepoint Detection (BCPD)
for airway quantification in CT. Specifically, to automatically identify the loca-
tion of airway dilatation of the same airway across longitudinal CT scans in the
presence of measurement noise. The BCPD model, typically used in stock market
data analysis [12], aims to capture abrupt variations in the underlying distribu-
tions of a given signal or a time series. Our method processes a series of CSA
changes between baseline and follow-up CT scans, and generates the posterior
distribution over multiple possible points of abnormal variations, whose mode
is taken as the final prediction. The hypothesis being the initial perturbation
of an airway track that can lead to a cascade of events that pushes the over-
all measure beyond the normal statistical fluctuations seen in a stable system.
BCPD models the 1D signals as a distribution of points thus taking account
normal biological functions and measurement error. Furthermore, we set the
sampling algorithm to choose the number of changepoints thus taking account
spurious measurements along the 1D signal. We test the efficacy of the method
on (1) CT images of healthy airways with simulated dilatation, and (2) pairs
of real images of IPF-affected airways acquired after approximately 1 year. For
the simulated datasets, we measured the detection accuracy with respect to the
commonly used threshold and maximum likelihood based methods [10]. For the
longitudinal IPF dataset we compare the predictions of our model to radiologist
interpretation based on two different protocols.

2 Method

First we construct a 1D signal of CSA change across longitudinal scans (Sec. 2.1).
Secondly, we propose a Bayesian Changepoint model to find locations of abrupt
airway dilatation (Sec. 2.2 and 2.3). Finally, we determine the point ¢ of dilata-
tion (Sec. 2.4).

2.1 Airway Pre-processing

For each airway track, we compute a series of CSA measurements [15]. Following
interactive identification of the airway, the method outputs a 1D function of CSA
along the airway arclength at baseline fg(z) and at follow-up fp(x) from the
carina to the most distal point of the airway (e.g. on Fig. 5). Starting at the carina
we resample along the centreline at 1mm intervals using cubic interpolation. We
align using the first 50 points on both signals g, gr and apply the transformation
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fr(z — a) where a = argminge|_s 5 Hlog (gifw(f)a)

difference defined as y = log(fr) — log(f5) (e.g. of y on Fig.1).

)H . We consider the series
2

2.2 Bayesian Changepoint Model

We hypothesise that at the start of dilatation, the series y undergoes an abrupt
variation, which we refer to as a changepoint. More formally, given signal y =
(y1,-..,Yn) of length n, we define a changepoint 7 as the location where there ex-
ists a change in parameters # in the underlying distribution F'. In other words,
at changepoint 1 < 7 < n, the observations y can be separated at 7 such
that (y1,...,y-) ~ F(01) and (yry1,.-.,Yn) ~ F(62) where 6; # 05. This
definition can be naturally extended to the scenario with M changepoints; we
denote the changepoint location vector by 7 = (71,...,7), with parameters
0 = (61,...,0k41) for each respective segment. For ease of notation, we also
denote 79 = 1 and 7,11 = n. Assuming statistical independence between seg-
ments, the likelihood factorises as: p(y|r,0, M) = ;c:+11 F(Yr,_,:r,|01), where
Yr, 1 = Yrvs--->Yn ). We also specify prior distributions on the number of
changepoints p(M; d), the locations of the changepoints p(7|M;~), and the pa-
rameters of the corresponding segments p(0|M; 3) where 3, v and § represent
the hyper-parameters.

Given the likelihood and the prior distributions above, we require an esti-
mate of the posterior distribution over the locations of changepoints p(7|y). As
discussed in Sec. 1, our signal y is subjected to anatomical and acquisition noise.
To overcome these variations in CSA, we choose the likelihood F' as the Student
t-distribution [14]. Thus, we denote degrees of freedom v, mean p, variance o2
and parameter 0 = (u, 02, v).

2.3 Reversible Jump MCMC for Posterior Inference

Posterior inference with our model possesses two challenges. Firstly, without the
conjugacy assumption, computing the posterior distribution is intractable. In
our case, the Student’s t distribution is not an exponential family and therefore
cannot have a conjugate prior. Thus the posterior is not available in a closed
form. Secondly, the dimensionality of the posterior distribution over the change-
points 7 is given by M and varies during inference. To combat the first problem,
we use the Metropolis-Hasting (MH) algorithm [1], a variant of Markov Chain
Monte Carlo (MCMC) methods that can sample from the posterior, with or
without conjugacy. Given that the number of changepoints M is known, MH
can be used to sample from the posterior distributions over the changepoints 7
and segment parameters 6. To address varying posterior dimensionality M, we
extend the above sampling scheme to the Reversible Jump MCMC framework
[5]. Taken altogether, the method is capable of traversing the full posterior dis-
tributions for M, 7,6 and we refer to this as the Reversible Jump Metropolis
Hasting (RJMH) algorithm.
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Overview of RJMH: The RJMH proceeds by randomly executing one
of four possible moves, denoted as Y; at each iteration: (i) resample parame-
ters 6, Yg; (i) move an existing changepoint, Y.; (iii) add a new changepoint,
Y rm—am+1; (iv) delete an existing changepoint, Y ar41-a. We also define the
maximum number of changepoints k.., and at the boundary cases for k, we
impose restrictions such that Y s ar41, Y arp1-ar are skipped for & = 0, knax
respectively. Each move updates the appropriate subset of parameters 6,7 by
sampling from the corresponding distributions q(ew|0oia) and ¢(Tnew|To1d), and
is only executed if it passes the associated acceptance criteria .

MH Steps: For Yy, we set ¢(Onew|0oid) = (folds 024 Vora)+N(0, €). This
step resamples parameters of each segment by proposing Gaussian perturba-
tions around the current values of parameters for all segments. For Y., we set
q(Tnew!|Tota) = Toa + (—1)°Poi(\) where b ~Binary[0,1]. This step selects a
changepoint 7 at random and shifts it with a Poisson perturbation. The seg-
ments neighbouring this new changepoint location have parameters 6 resampled
as in move Yy using the current segment parameters.

RJ Steps: For Y pr41,

q(frnewlis i) = y10r+N(0,€2)  Yaromar q(pir|prora) = yr + N(0, €2)

we proposed random NeW (o2, 07,07) = 57, +NO0,)_———a g(o2lol,) — 52 + N0, )
changepoints over our data, — 1(ueolvr) = (n+v)/2 4 [Vota) = voa —u
Tnew ~U[l,n — 1]. The pro- = Tnew Tir1 e Taew it
posed Tpew split an existing g = N (?)

. Y u M \071901a) = $i ) €
segment into a new left seg- MM G(lvora) = vola +u

_ 2
ment 0, = (w,o07,v) and
new right segment 6, = Fig. 2. A schematic diagram describing the proposals

(4r, 02, v,). Our proposal for MOves Y ar—ari1, Yars1-n- Note that u ~ N(0,¢?)
11; o2 are defined by a Gaus- and y;,s? are the mean and variance respectively of
(2] 1

sian perturbation on empir- data within the coloured segment.

ical values of the respective i = [,r segments (Fig. 2). The proposal for v;, is
Gaussian perturbation of the previous update v,;4. Due to dependence of the

v; proposal, a Jacobian term is introduced |Jpr—pr41| = 2. For Y100, we
remove a changepoint 7,e.,. As before, proposals for pi,ew, 02,,, are defined using

empirical values of the segments and Gaussian perturbation (Fig. 2). The pro-
posal for v, is the mean of the previous v, v,.. The move introduces Jacobian
term |Jar11- 7] = 0.5.

Implementation: We follow the same RJMH algorithm as defined in the
literature [4,3]. The priors were set as u ~ N(0, 1), 02 ~ Scaled-Inv-x2(5, 0.42),
v ~ U[2,100] and M ~ Bin(n — 1, %), where p, 0%, v were chosen to be non-
informative and within plausible ranges. The expectation for M was sufficiently
low to avoid detecting changepoints in noise. Finally, we set burn-in for 25%
of the total iteration count and only storing the 5*" iteration, after the burn-in
period to avoid auto-correlation.

2.4 Locating Change in Airway Dilatation

For airways affected by IPF, dilatation starts and progresses from the distal
point of the airway [7]. Topologically, we can assume each airway undergoes a
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signal changepoint from which dilatation starts. To locate such a unique change-
point, we consider the posterior over of the changepoint p(7]y), and perform the
following post-processing steps. On each y, the proximal region is surrounded
by cartilage [16]. The end of cartilage causes an anatomical changepoint inde-
pendent of disease state. We eliminate it by discounting the most proximal peak
on p(7|y). We then selected the highest peak on the modified posterior p(7|y)
as the starting point of dilatation denoted as t.

3 Evaluation & Results

We evaluated our proposed method with two experiments: (i) Simulated dilata-
tions from healthy airways to assess accuracy. (ii) Airways affected by IPF to
assess clinical utility. The image properties are displayed on Tab. 1.

Experiment|Patient| BL Voxel Size | FU Voxel Size |Airway|Time between scans
1 1 0.67, 0.67, 1.00[0.56, 0.56, 1.00| 6 9M 6D
1 2 0.63, 0.63, 1.00{0.78, 0.78, 1.00 7 35M 6D
1 3 0.72, 0.72, 1.00{0.72, 0.72, 1.00 1 5M 22D
2 4 0.72, 0.72, 1.00{0.64, 0.64, 1.00 3 12M 5D
2 5 0.67, 0.67, 1.00/0.87, 0.87, 1.00 1 10M 24D

Table 1. Table of the image properties of voxel size, number of airways used and the
time interval between scans. Voxel size is in the form (x,y,z), units: mm. The airways
were selected by a trained radiologist R1. All patients in Experiment 1 do not have
IPF. Abbreviation: BL - Baseline Scan, FU - Follow-up Scan, M - Months, D - Days.

3.1 Disease Simulation

To quantitatively assess accuracy, a ground truth is required. To this end, we
applied our changepoint detection algorithm on augmented healthy airway se-
ries to simulate the airway dilatation caused by IPF. A trained radiologist (R1)
selected 14 pairs of healthy airways in both baseline and follow-up scans. The
image properties are displayed on Tab. 1. They were acquired from different scan-
ners and used different reconstruction kernels. The airways were pre-processed
as described in Sec. 2.1 to produce a function of CSA change along the length
of the airway. Augmented Difference

We modelled the change in dilatation with a
logistic function I = M/(1+e~M*=%)) where M
is magnitude of dilatation and « as the point of
dilatation. The parameters o are set such that
the dilatation starts 10-40mm from the distal o Ly 4"y
point and we set M to range from 0.5-3. Finally A v‘u‘ ‘”\‘H‘v‘w ‘\‘
we set A = 0.5mm™!, in order to create an abnor-
mal increase in CSA. To simulate the dilatation " U aclengthmm
on the airway; the logistic function was added Fig.8. An augmented CSA
to the logarithmic CSA change of the airways, change from airway on Fig. 1.
as shown on Fig. 3. We applied our proposed The red line corresponds to our
method to every permutation of M and o on ground truth as the starting
each of the 14 healthy airways. point of dilatation a.

[ Mo
MWl 4y o

Log Area Change
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The proposed method was compared against two conventional methods. First,
a basic thresholding method. We smoothed and thresholded the point at which
y reached above the upper quartile from the right hand side. Secondly, we imple-
mented the method based on Lavielle [10] and implemented in a Matlab inbuilt
function; findchangepts’. In summary we consider K changepoint and these
changepoints y;, minimize the function: J(K) = Zfz_ol Zf;};i_l AYis Ykyikrsr—1)
+ 8K, where (8 is modified such that the function finds less than K changepoints.
We found A = y; —mean(yx, .k, ., —1) gives the most accurate results. The method
[10] assumes the data y is Gaussian distributed. To replicate the post processing
in Sec. 2.4, we consider K = 2 possible changepoints and minimum distance of
20mm. This takes into account the changepoint caused by the support cartilage.
The most peripheral point was chosen as the point of dilatation.

35 3 25 25 |05 05 05|05 1 45

08 a4 4

Distance mm
Distance mm

20
08 g1 N 38 A5 10 D e 95,16 D 0F I N3 A8 10 206 95,16 B 08 o8 A3 A® 1 2 96 95,10
Magnitude of dilatation Magnitude of dilatation Magnitude of dilatation

Fig. 4. Heatmap showing the accuracy of each method in mm. (Left). Thresholding
method. (Middle). Method from Lavielle [10]. (Right). Our proposed method. The
colour scale is the same on all of the heatmaps.

Fig. 4 shows the accuracy for each method as a heatmap. Each entry on
the heatmap corresponds to the median average of all displacements over 14
airway pairs. A positive displacement corresponds to an overestimation of the
ground truth towards the distal point. When the magnitude of dilation is larger
than M > 0.75, our proposed method achieves consistently higher accuracy
than Lavielle [10]. The accuracy gain in the peripheral regions of the airways
at @ = 10-30mm from the distal point are the most clinically relevant in IPF
as parenchymal damage begins in the lung periphery and progresses proximally
[7]. Furthermore, on the same peripheral regions o = 10-30mm, the baseline
method showed systematic bias in accuracy towards the central airways. This
was due to the baseline method being influenced by outliers from the longer
expanses of normal airway regions. The proposed method uses the t-distribution
as the likelihood thus making it robust to possible outliers within the data [14].
The proposed method suffers from poor accuracy below magnitudes of dilatation
M = 0.75. However, in physical terms a dilatation of M = 0.75 corresponds to
a percentage increase in CSA of ¢*™ — 1 ~ 112%. This is within the range of
normal change of the airways [2].

" https://www.mathworks.com /help/signal /ref/findchangepts.html last accessed on
August 14, 2019.
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3.2 Application to Airways affected by IPF

To show clinically utility, we acquired 4 airway pairs from 2 patients (Tab. 1).
All airways were judged by the radiologist R1 to be dilated as a consequence of
IPF on baseline and to have visually worsened on follow-up imaging.

We compared the performance of our method against two trained thoracic
radiologists R1, R2. To assessed the reproducibility of manual labelling, each
radiologist labelled the same airway twice through two different protocols. First,
the radiologists interrogated axial CT images. Using 2 separate workstations and
the airway centreline, the radiologists identified the point on the centreline (on
the follow-up scan) where the airway demonstrated definitive worsened dilata-
tion. Second, the radiologist compared the aligned reconstructed cross-sectional
planes on baseline and follow-up scans (e.g. Fig. 5). The radiologist then selected
the slice where the airway had worsened when evaluated against the baseline.

The results (Fig. 5) indicate that the predictions for Airway 1, 3 and 4 are
within the range of the radiologists’ labels. In the case of Airway 2 our method
overestimates compared to radiologists’ predictions. The posterior distribution
contains another equally probable peak that underestimates the radiologists’ la-
bels (see the second highest peak at 70mm), potentially indicating a more proxi-
mal point of dilatation. To test this, we delineated the boundary of the lumen on
the reconstructed cross sectional slices at baseline in the neighbourhood of this
peak, and Fig. 5 shows the initial few slices (62-64mm). When the delineated
boundary from baseline was superimposed on the follow-up scan, the boundary
is contained inside the follow-up lumen. This result indicates that the starting
point of dilatation is more proximal than the labels from the radiologists.

Volumetric Analysis: By com- [Airway[PVC of V., 4[PVC of V;4|PVC of V.,
puting the starting point ¢ of dilata- é g:g Z‘: 13229?;{;2 é;gz
tion of the airways, we can compute 3 2.6 % 47.4 % -0.3%
airway volume changes in diseased 4 74 % 48.4 % 7.1%
and healthy regions of the airway Table 2. The percentage volume change
track by integrating CSA measure- (PVC %) for each region of the airway.
ments along arclength fr,fg. We used the trapezium rule to find 3 volumetric
regions: (i) the entire airway track, V.4, (ii) carina to ¢, V., (iii) ¢ to the dis-
tal point V;_,4. Tab. 2, shows the results of the percentage volume change. The
volume change in V;_,4 had greater sensitivity for selecting progressive airway
dilatation in IPF than the volume change in the entire airway V._,4.

4 Discussion & Conclusion

In this paper, we propose a novel application of the BCPD in detecting airway
dilatation caused by progression of IPF. The model uses a series of CSA changes
between longitudinal scans with presence of normal biological variation and pre-
cision errors in measuring CSA. Experiments on simulated data show our model
can detect the starting location of airway dilatation with superior accuracy to
competing methods. The results display reasonable agreement with radiologists.
One case indicated a more plausible location of dilatation, potentially missed
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Fig. 5. Left: The log CSA and posterior distribution p(7|y) for each of the four air-
way pairs. In the magnified region (black) we compared the labels from our proposed
method with the radiologist. The top and bottom reconstructed airway corresponds to
the baseline and follow up scans respectively. Right: A row of three consecutive recon-
structed slices in Airway 2, arc length of 62-64mm, baseline (left) and follow-up (right).
The boundary delineation (red) from the baseline are superimposed on the follow-up
scan. The blue arrows indicate pixels from the lumen outside the boundary.

by the experts. There is a clinical need for head to head comparisons for the
effectiveness of drugs in treating IPF [11]. Identifying a change in airway dilata-
tion over time could become a sensitive measure of IPF worsening, providing
an important secondary endpoint in drug trials. As future work, we believe the
technology can be be applied to other progressive diseases that results in a cas-
cade of events leading to spread of pathology, such as the growth of plaque and
aneurysms in major blood vessels.
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