
University College London

Department of Physics and Astronomy

Fault-tolerant quantum computing with
three-dimensional surface codes

Author:

Michael John George Vasmer

Supervisor:

Professor Dan Browne

Submitted in partial fulfilment for the degree of Doctor of Philosophy

December 5, 2019

I, Michael John George Vasmer, confirm that the work presented in this

thesis is my own. Where information has been derived from other sources, I confirm

that this has been indicated in the thesis.

Signature

December 5, 2019

Date

Abstract

Quantum computers are far more error-prone than their classical counterparts.

Therefore, to build a quantum computer capable of running large-scale quantum

algorithms, we must use the techniques of quantum error correction to ensure that

the computer produces the correct output even when its components are unreli-

able. However, the resource requirements of building such a fault-tolerant quantum

computer are currently prohibitive. Here, we examine the utility of using three-

dimensional (3D) surface codes in a fault-tolerant quantum computer. This family

of topological error-correcting codes is a generalization of the well-known 2D surface

code to three spatial dimensions.

We show that certain 3D surface codes have a transversal logical non-Clifford

gate. In a quantum computing architecture, a non-Clifford gate is required to achieve

computational universality. Transversal gates do not entangle qubits in different

codes, so they are naturally fault tolerant because they do not spread errors. Next,

we consider the problem of decoding 3D surface codes. In a quantum error-correcting

code, we cannot observe the qubits directly, so we measure parity-check operators to

gain information about the state of the code. Decoding is the problem of estimating

what error has occurred given a list of unsatisfied parity checks. We observe that

3D surface codes offer asymmetric protection against bit-flip and phase-flip errors,

but in both cases, we find that a threshold error rate exists below which we can

suppress logical errors by increasing the size of the code.

We use our results about logical gates and decoding to propose two fault-tolerant

quantum computing architectures that utilize 3D surface codes. Finally, we com-

pare the resource requirements of our architectures with the requirements of leading

quantum computing architectures based on topological codes. We find that one of

our architectures may be competitive with the leading architectures, depending on

the properties of the physical systems used to build the qubits.

Impact Statement

It is widely accepted that quantum computers have the potential to have a large

commercial and societal impact. A fully fault-tolerant quantum computer would

be able to perform calculations that are impossible to do using regular com-

puters. For example, with a fault-tolerant quantum computer, we could break

Rivest–Shamir–Adleman (RSA) encryption and simulate complex chemical reac-

tions exponentially faster than is currently possible. The work in this thesis does

not deal directly with the applications of quantum computers, however our results

could help to make fault-tolerant quantum computers a reality sooner.

This thesis could benefit groups of researchers and engineers who are build-

ing small prototype quantum computers. There are many such groups working in

academia, in start-ups, and in large corporations all across the world. At some

point in the next five to ten years, we anticipate that one of these groups will build

a quantum computer with enough qubits to realize error-correcting codes such as the

three-dimensional (3D) surface codes we study in this thesis. When this happens,

our results may inform the design and operation of such a quantum computer and

future quantum computers.

Our results may also have additional impact, because the techniques we develop

in this thesis could be applied to quantum error-correcting codes apart from the

3D surface code. For example, we anticipate that the cellular automaton decoder

we developed for 3D surface codes could be used to decode other quantum error-

correcting codes. We expect our methods to be of interest to researchers working in

the field of quantum error correction, as well as people working for companies who

are attempting to build large-scale quantum computers.

Acknowledgements

First of all, I would like to thank my supervisor, Dan Browne, for his support

and encouragement during my PhD studies. I have learned an enormous amount

from him about doing science and communicating my work effectively. I am also

indebted to the other members of Dan’s research group for giving me valuable advice

and support. I especially want to thank my office-mate, Padraic Calpin, for sharing

the ups and downs of PhD life with me, and Niko Breuckmann for many interesting

and useful conversations. I am grateful to have been able to meet and talk to

academics visiting UCL, especially Tom Stace and Paul Webster, who both helped

me to sharpen my thinking on multiple occasions.

Being part of the Quantum Technologies CDT has enhanced my experience at

UCL immeasurably, and I want to thank cohort two in particular — Alex, Dan,

David, Gavin, James, Nathanaël, Padraic, Paul, Simon and Sofia — for the good

times. I am especially thankful for Lopa’s support and unique sense of humour. I

have also been lucky to get the chance to collaborate with and visit many wonderful

academics from outside UCL. In particular, I want to thank Alex Kubica, Earl

Campbell and Joschka Roffe for their hospitality and for illuminating discussions.

I couldn’t have finished my PhD without the support of my family and friends. I

am grateful to my parents, David and Rachael, for their support and encouragement.

I want to thank my grandparents for their support, and I am particularly grateful

to my Grandad, John, for his insightful questions about my work. I am thankful

to have had the support of my girlfriend, Hannah, throughout my PhD. I want to

thank her in particular for proof-reading so much of my work. Finally, I want to

thank all of my friends in London and North Wales, who have made my life outside

my PhD so enjoyable.

Contents

1 Introduction 19

1.1 Quantum information and quantum errors 20

1.2 Protecting quantum information . 22

1.2.1 Surface codes . 24

1.2.2 Subsystem codes . 32

1.3 Processing encoded quantum information 33

1.3.1 Fault-tolerance with 2D surface codes 34

1.3.2 Restrictions on non-Clifford gates in topological codes 40

1.3.3 Colour codes . 42

2 Transversal gates in three-dimensional surface codes 47

2.1 The rectified picture . 47

2.1.1 The rotated picture . 48

2.1.2 Rectifying 3D surface codes 51

2.1.3 A family of 3D surface codes with boundaries 57

2.2 Transversal CCZ . 66

2.2.1 Transversal CZ . 73

2.2.2 Universal gate set . 73

2.3 Generalizations of the rectified picture 74

2.3.1 Transforming surface codes into colour codes 77

2.3.2 Codes from Coxeter diagrams 81

3 Decoding three-dimensional surface codes 89

3.1 Z-error decoding . 90

3.2 X-error decoding . 94

3.2.1 Sweep Rule with boundaries 98

3.2.2 Proof of error threshold . 105

12 Contents

3.2.3 Numerical error threshold estimates 117

4 Fault-tolerant three-dimensional surface code architectures 127

4.1 Fault-tolerance in a single stack . 127

4.2 3D surface code lattice surgery . 130

4.2.1 3D/3D lattice surgery . 131

4.2.2 2D/3D lattice surgery . 133

4.3 Architectures and overheads . 135

4.3.1 Purely 3D architecture . 136

4.3.2 Hybrid 2D/3D architecture 139

5 Conclusion 143

Appendices 147

A Proof of Lemma 1 147

Bibliography 149

List of Figures

1.1 The stabilizer generators and boundaries of a 2D surface code. . . . 25

1.2 Primal and dual 2D surface code lattices. 26

1.3 Errors in 2D surface codes. 27

1.4 The error threshold of the 2D surface code. 28

1.5 Error syndromes in 3D surface codes. 30

1.6 A stabilizer measurement circuit. 34

1.7 A T -state injection circuit. 39

1.8 The regular 2D colour code lattices. 43

2.1 Truncating a cube. 48

2.2 2D surface codes in the rotated picture. 49

2.3 A 3D surface code shown in the Kitaev picture and the rectified picture. 52

2.4 Polyhedra and their duals. 52

2.5 The rectified cubic lattice. 53

2.6 The rhombic-dodecahedral lattice. 54

2.7 Arranging three lattices so that their rectifications are identical. . . 55

2.8 The stabilizer generators of the codes in a stack of 3D surface codes. 56

2.9 The d= 3 rectified cubic lattice with boundaries. 58

2.10 The two types of layer in a rectified cubic lattice. 58

2.11 Stabilizers on the boundaries of a rectified cubic lattice. 60

2.12 Redundant Z-stabilizers on the boundaries of a rectified cubic lattice. 64

2.13 Canonical logical operators in a stack of 3D surface codes. 65

2.14 Overlapping stabilizers on the boundaries of a rectified cubic lattice. 72

2.15 Implementing a Hadamard gate via measurement. 74

2.16 Four-colouring a cubic lattice. 76

2.17 The [[8,3,2]] colour code. 79

2.18 Applying the [[8,3,2]] transformation to a single vertex. 80

14 List of Figures

2.19 Applying the [[8,3,2]] transformation to a stack of 3D surface codes. 80

2.20 Generating tessellations using Wythoff’s construction. 82

2.21 Topological code lattices with the same symmetry. 83

2.22 The fundamental region of a 3D Coxeter group. 84

2.23 A tesseract projected into 3D space. 86

3.1 The phase-flip error threshold of the 3D surface code. 93

3.2 The dynamics of Toom’s rule. 95

3.3 The phase diagram of Toom’s rule. 97

3.4 Errors that are not removed by the Sweep Rule decoder. 98

3.5 The future and past of a subset of vertices. 101

3.6 A causal region in a simplicial lattice with boundaries. 101

3.7 An illustration of the Sweep Rule cellular automaton update rule. . . 104

3.8 3D surface code lattices in the Kitaev picture. 118

3.9 Bit-flip error thresholds of 3D surface codes. 119

3.10 Errors that cause the SweepRule decoder to fail. 120

3.11 The sustainable bit-flip error threshold of 3D surface codes. 123

3.12 Optimization of the SweepRule decoder. 124

4.1 A rectified cubic lattice that supports three 3D surface codes. 128

4.2 Implementing a Hadamard gate via measurement. 130

4.3 Lattice surgery in 3D surface codes. 132

4.4 Lattice surgery between 3D and 2D surface codes. 134

4.5 Transferring quantum information using a Z⊗Z measurement. . . . 135

4.6 Implementing a CNOT gate using Z⊗Z and X⊗X measurements. 135

4.7 3D surface code architecture layout. 137

4.8 A CCZ state injection circuit. 139

4.9 Dimensional jumps in 3D surface codes. 141

List of Tables

2.1 The stabilizer generators of a stack of three surface codes. 56

2.2 The stabilizer generators of a stack of four 3D surface codes. 75

2.3 Using Wythoff’s construction to generate related 4D lattices. 85

3.1 Comparison of the SweepRule decoder with other decoders. 124

List of Abbreviations and Symbols

C The set of all complex numbers

F2 The finite field with two elements

Z The set of all integers

0D Zero-dimensional

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

4D Four-dimensional

bcc Body-centred cubic

CA Cellular automaton

CCZ Controlled-controlled-Z gate

CNOT Controlled-NOT gate

CPU Central processing unit

CSS Calderbank-Shor-Steane

CZ Controlled-Z gate

JIT Just-in-time

LPLO Locality-preserving logical operator

MSD Magic state distillation

MWPM Minimum-weight perfect matching

RG Renormalization group

Chapter 1

Introduction

In recent years, there has been an upsurge of investment in quantum computing

by large companies and start-up funders. In the near term, quantum computers

are likely to be relatively unreliable because of the difficulty of constructing many

interacting quantum bits (qubits) that are simultaneously well-isolated from their

environment and controllable with high precision. Early quantum computers will

undoubtedly enable interesting research, but there is no guarantee that near-term

quantum computers will have a substantial commercial impact. To run quantum

algorithms that are both exponentially faster than classical algorithms (e.g. [1, 2])

and have clear commercial applications (e.g. [3]), we need a fault-tolerant quantum

computer. Such a quantum computer would be still produce the correct output even

when some of its components fail. But there is a price to pay for fault tolerance.

Recently, various companies have claimed to posses quantum computers with 50–128

qubits [4, 5, 6]. However, using the most efficient architectures, it is estimated that

hundreds of thousands of qubits would be required to build a fault-tolerant quantum

computer capable of running large-scale quantum algorithms with exponential speed-

up [3, 7]. Therefore, to make fault-tolerant quantum computing a reality, we must

build more reliable qubits and increase the efficiency of fault-tolerant protocols. In

this thesis, we focus on the second of these tasks.

One of the current leading proposals for fault-tolerant quantum computing is

based on a quantum error-correcting code called the two-dimensional (2D) surface

code [8, 9, 10]. This code has a high error threshold [11, 12, 13, 14] which makes

it a very good candidate for storing quantum information. However, processing in-

formation using the 2D surface code is more challenging [15]. A resource-intensive

20 Chapter 1. Introduction

procedure known as magic state distillation (MSD) is required to do universal quan-

tum computation using 2D surface codes. Therefore, in order to reduce the resources

required to build a fault-tolerant quantum computer, one option is to consider us-

ing other codes where processing quantum information is easier. In this thesis, we

present results concerning one such code, the 3D surface code (the generalization of

the 2D surface code to three spatial dimensions). We show that MSD is not neces-

sary for doing universal quantum computation using 3D surface codes. In addition,

we find that the error threshold of 3D surface codes is comparable to the threshold

of 2D surface codes. Finally, we propose fault-tolerant quantum computing archi-

tectures based on 3D surface codes. We estimate that the resource requirements of

one of our architectures could be competitive with the requirements of 2D surface

code architectures (given certain assumptions).

In the remainder of this chapter, we review background material from the re-

search literature that is a prerequisite for understanding the results we have just

outlined. Firstly, we give a brief overview of a formalism for describing quantum

error processes. Secondly, we discuss how to protect quantum information from such

errors using quantum error-correcting codes. Thirdly, we consider the problem of

processing encoded quantum information in a way that is resilient to errors. Finally,

we conclude with a discussion of two leading quantum computing architectures.

1.1 Quantum information and quantum errors
We consider quantum information stored using qubits. A qubit is a two-level

quantum system which we model as a normalized vector in the two-dimensional

complex Hilbert space C2. We can write the state of an arbitrary qubit |ψ〉 =

α |0〉+β |1〉, where {|0〉= (1,0)T , |1〉= (0,1)T } are called computational basis states

and |α|2 + |β|2 = 1, where α,β ∈ C. We describe the states of multiple qubits using

tensor products of single qubits. We use density operators to describe qubits whose

state we only partially know. Suppose that we know that a qubit is in one of a

number of states |ψj〉, each with probability pj . We describe this situation using

the density operator ρ =
∑
j pj |ψj〉〈ψj |. If all the pj are zero except for one, then

the qubit is in a pure state, otherwise it is in a mixed state. To describe multiple

qubits, we again combine density operators using the tensor product.

To characterize the errors that occur in quantum computers, we use the quan-

1.1. Quantum information and quantum errors 21

tum channel formalism [16]. Suppose we have some qubits described by a density op-

erator, ρ. A quantum channel, E , maps ρ to E(ρ) =
∑
kEkρE

†
k, where

∑
kEkE

†
k = I.

The Ek are called Kraus operators [17, 16]. Unitary evolution is a special case where

there is only one Kraus operator. Using the quantum channel formalism, we can

also describe more general transformations.

Let us examine some common examples of quantum channels. Consider a single

qubit described by the density operator, ρ. The depolarizing channel, ED, is defined

as follows:

ED(ρ) = (1−p)ρ+ p

3(XρX+Y ρY +ZρZ), (1.1)

where p ∈ [0,1] and X, Y and Z are the Pauli matrices:

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 . (1.2)

The depolarizing channel describes an error model where a randomly-chosen Pauli

error is applied to a qubit with probability p. An error model where a bit-flip error

(Pauli X) happens with probability p is described by the bit-flip channel,

EX(ρ) = (1−p)ρ+pXρX. (1.3)

Similarly, an error model where a phase-flip error (Pauli Z) happens with probability

p is described by the phase-flip channel,

EZ(ρ) = (1−p)ρ+pZρZ. (1.4)

When we refer to one of ED, EX or EZ acting on many qubits, we mean the channel

acting independently on each qubit. We do not expect the three error channels

we have defined to be perfectly accurate descriptions of the errors that occur in

actual quantum computers. However, at present it is still unclear which quantum

system(s) will eventually be used to build a fault-tolerant quantum computer. So, it

is useful to be able to compare the performance of different fault-tolerant protocols

in a way that is relatively agnostic to the physical realization of the qubits. The error

channels we have defined satisfy this requirement, and capture some of the features

22 Chapter 1. Introduction

(e.g. decoherence and relaxation to the ground state) of the noise we observe in real

quantum computers.

1.2 Protecting quantum information

To protect the information stored in multiple qubits from errors, we use quantum

error-correcting codes, which were introduced by Shor [18] and Steane [19]. There are

other techniques that we can use to mitigate errors, e.g. dynamical decoupling [20] or

using decoherence-free subspaces [21]. However, these error-mitigation techniques

do not allow us to suppress errors arbitrarily, as some error-correcting codes do.

Therefore, so we concentrate on such codes in this thesis. We first consider a general

class of codes called stabilizer codes, which were first defined by Gottesman [22].

Next, we focus on a family of stabilizer codes called surface codes. Finally, we

review the definition of subsystem codes, a class of codes that generalize stabilizer

codes.

To begin, we recall the definition of the n-qubit Pauli group, Pn:

Pn =< i,Xj ,Yj ,Zj : j ∈ {1, . . . ,n}> (1.5)

where Xj denotes X acting on the qubit indexed by j etc. A stabilizer code is

specified by a stabilizer group, S, which is an Abelian subgroup of the n-qubit Pauli

group that does not contain the negative identity matrix, i.e. −I /∈ S [22, 23]. We

will use S to refer to the stabilizer group and the stabilizer code interchangeably.

The encoded (or logical) states of S are the states that are stabilized by S, i.e.

{|ψ〉 ∈ C2n : S |ψ〉 = |ψ〉∀S ∈ S}. Let m be the rank of S, i.e. the cardinality of a

minimum generating set of S. Then the stabilizer code specified by S encodes the

state of k = n−m logical qubits in the state of n physical qubits. We use a bar

to differentiate between logical qubit states, |ψ〉 ∈ C2k , and physical qubit states,

|ψ〉 ∈ C2n .

The logical operators of a stabilizer code act on the encoded states of the code.

The logical Pauli operators are contained in the normalizer of the stabilizer group in

the Pauli group, NPn(S), which is the set of Pauli group elements that commute with

the stabilizer group. We note that NPn(S) itself contains S. These are the operators

that act as the (logical) identity on the logical states of the code. Operators that are

1.2. Protecting quantum information 23

in NPn(S) but not in S act non-trivially on the logical states of the code. We use a

bar to denote logical operators that act on encoded states, e.g. X|0〉= |1〉. The code

distance (or distance) of a stabilizer code, d, is equal to the smallest weight non-

trivial logical operator. The weight of an operator acting on n qubits is simply the

number of qubits the operator acts on non-trivially. We use the shorthand [[n,k,d]]

to summarize the properties of a stabilizer code, where n is the number of physical

qubits, k is the number of logical qubits, and d is the code distance.

To correct errors using a stabilizer code, we measure a generating set of the

stabilizers. Suppose we have an encoded state |ψ〉 and qubit j experiences a bit-flip

error. The subsequent state of our code is Xj |ψ〉. Unless Xj is a logical operator of

the code (we assume this is not the case), it will necessarily anti-commute with one

(or more) of the stabilizer generators. Therefore, when we measure this stabilizer we

will get a −1 outcome which gives us some information about the error. In general,

the list of stabilizer measurement outcomes is called the (error) syndrome. We call an

all-ones syndrome a trivial syndrome. We use a classical algorithm called a decoder

to process the syndrome and return a correction operator. For the error correction

to be successful, we require that the product of the error and the correction operator

is a stabilizer. If this is the case, the system will be returned to the same logical state

it was in before the error happened. We note that in quantum codes two different

errors can have the same syndrome. Such errors are called degenerate errors and

codes with this property are called degenerate codes.

The error correction procedure we described for bit-flip errors also works for

general qubit error channels. Consider an arbitrary unitary error acting on qubit

j, Uj . The n-qubit Pauli group is a basis for n-qubit unitary matrices, so we can

expand Uj = cII + cXXj + cY Yj + cZZj , where cj ∈ C. We assume that the non-

trivial Pauli operators are not logical operators. Therefore, when we measure the

stabilizer generators after the error Uj has occurred, we will either collapse to the I

term in the superposition and observe a trivial syndrome or we will observe a non-

trivial syndrome. In the second case, we will have collapsed to a case where a Pauli

error occurred. For general qubit error channels, we can make the same argument

for each of the Kraus operators. We note that the above argument does not hold

for error channels where qubits can leak out of the computational subspace. Errors

24 Chapter 1. Introduction

can still be corrected in this case, although the standard stabilizer error correction

procedure we described above will need to be modified [22, 24].

In this thesis, we exclusively study a further subclass of stabilizer codes called

Calderbank-Shor-Steane (CSS) codes [23, 25], which are named after their inventors.

In a CSS code, we can split the stabilizer group into two subgroups, SX and SZ .

The subgroup SX (SZ) contains operators that are tensor products of X (Z) and I.

The union of a generating set of SX and a generating set of SZ generates the entire

stabilizer group. This structure means that, in a CSS code, we can correct X-errors

and Z-errors independently. To correct X (Z) errors, we measure a generating set

of SZ (SX) and process the syndrome using a decoder to obtain a correction. This

is useful because correcting either X-errors or Z-errors on their own is essentially

a classical error correction problem, so we can easily adapt existing decoders for

classical codes to the quantum setting. We note that since Y = iXZ, to correct any

Pauli error we only need to correct X-errors and Z-errors.

1.2.1 Surface codes

So far, we have discussed quantum codes in a relatively abstract way. In this section,

we describe a class of topological codes called surface codes, which were introduced

by Kitaev [8]. These codes can be understood as toy models of topological order,

where a quantum state is said to be topologically ordered if it cannot be prepared

by applying a constant depth circuit to a product state [26]. We begin by reviewing

the definition of the 2D surface code [8, 9, 10], before discussing its generalization

to higher dimensions.

Consider a planar 2D lattice in Euclidean space. We place a single qubit on

each of the edges of the lattice. These are the physical qubits of the 2D surface

code. We associate X-stabilizer generators with the vertices of the lattice, i.e. for

each vertex v, we have the following stabilizer generator:

Av =
⊗
e:v∈e

Xe, (1.6)

where Xe denotes an X-operator acting on the qubit on edge e. Similarly, for each

1.2. Protecting quantum information 25

Figure 1.1: The stabilizers and boundaries of a 2D surface code. We highlight two Z-
stabilizers (blue squares) and X-stabilizers (red crosses). The top/bottom
boundaries are rough boundaries and the left/right boundaries are smooth
boundaries. The Z (X) stabilizers have reduced weight on the rough (smooth)
boundaries. We also show a logical Z-operator (red string from one rough
boundary to the other).

face f , we have the following Z-stabilizer generator:

Bf =
⊗
e∈f

Ze. (1.7)

Given these definitions, we see that surface codes are an example of CSS codes. The

number of logical qubits encoded in a 2D surface code depends on the boundaries of

the lattice. We consider lattices with two types of boundaries: rough boundaries and

smooth boundaries (see Figure 1.1). Logical Z (X) operators are strings of physical

Z (X) operators that stretch from one rough (smooth) boundary to another. The

structure of the logical operators tells us why these codes are called topological codes

— the only way to access the information stored in a 2D surface code is to measure a

subset of physical qubits along a topologically non-trivial path from one boundary to

another. We consider 2D surface codes with two rough boundaries and two smooth

boundaries where the two types of boundary alternate. Such codes have one logical

qubit and their code distance is equal to the shortest path between boundaries of

the same type.

Suppose we have a 2D surface code defined on some lattice L. It is often useful

to consider an equivalent 2D surface code defined on the dual lattice, L∗. Given a

2D lattice without boundaries (e.g. a cellulation of the torus), we can construct its

dual lattice using the following procedure. First, we create a vertex at the centre

26 Chapter 1. Introduction

Figure 1.2: The primal lattice (solid grey) and dual lattice (dashed green) of a 2D surface
code.

of each of the faces of L. Then we connect these new vertices with an edge if the

corresponding faces of L share an edge. We can also define a dual lattice for 2D

lattices with boundaries, although this is slightly more involved [27]. In the dual

lattice, qubits are still on edges, but X-stabilizers are associated with faces and Z-

errors are associated with vertices. Rough boundaries and smooth boundaries are

also interchanged when moving to the dual lattice. Figure 1.2 shows an example

of the same 2D surface code in both the primal (original) lattice and dual lattice

pictures.

We now discuss 2D surface code decoding. Analysing this problem is easier if

we make an analogy to condensed matter physics, as was first noticed by Dennis et

al. [28]. One can define a Hamiltonian that corresponds to a given surface code:

H =−
∑
v

Av−
∑
f

Bf . (1.8)

The (topologically degenerate) ground states of this Hamiltonian are the encoded

states of the surface code and the excited states are those with unsatisfied stabi-

lizers (stabilizers with −1 eigenvalues). Therefore, in this picture, we can interpret

unsatisfied stabilizers as excitations. Usually, unsatisfied X-stabilizers are called

electric charges and unsatisfied Z-stabilizers are called magnetic fluxes [28]. This is

because the phase that is acquired (by the wave function) when transporting one

excitation around an excitation of the other type is analogous to the phase that

is acquired when an electric charge is transported around a magnetic flux in the

1.2. Protecting quantum information 27

a) b) c)

Figure 1.3: Errors in 2D surface codes. In Figure 1.3a, we show the syndrome (red circles)
of a single Z-error (red edge). And in Figure 1.3b, we show the syndrome of
a larger Z-error. Surface codes are degenerate codes, so different errors can
have the same syndrome. In Figure 1.3c, we show a higher weight error with
the same syndrome as the error in Figure 1.3b.

Aharonov-Bohm effect [29, 30, 28]. A single Z-error in the bulk of the lattice cre-

ates a pair of electric charges (see Figure 1.3). We can also create single electric

charges at the rough boundaries (we note that this is sometimes used to define the

rough boundaries).

Suppose that we apply the phase-flip channel independently to all the physical

qubits in a 2D surface code. We can interpret the syndrome of such an error as a

collection of electric charges. A valid correction for such a syndrome is an operator

that removes all the electric charges from the system, either by annihilating pairs or

by moving single charges to a rough boundary. The standard decoder used for finding

such a correction in the minimum-weight perfect-matching algorithm (MWPM) [28,

31, 32], which returns a correction operator with minimum weight. The X-error

decoding problem is completely analogous because X-errors and syndromes in the

dual lattice have the same structure as Z-errors and syndromes in the primal lattice.

To quantify the performance of a family of quantum codes, we use the concept

of an error threshold. Suppose we have a family of codes with increasing size, e.g.

surface codes defined on L×L lattices. Given a particular noise model parameterized

by an error probability, p, and a decoder, the error threshold of a code family, pth, is

the value of p below which increasing the size of the code exponentially reduces the

probability of a logical error (after decoding). If we make some reasonably strong

assumptions about the noise, it is sometimes possible to prove that a code family

has an error threshold, for example see [33, 34]. When this is not possible, we can

28 Chapter 1. Introduction

Figure 1.4: A plot showing the error threshold of the 2D surface code. The logical error
rate, pL, is plotted as a function of the depolarizing error probability, p, for
different code distances. The error threshold, pth ≈ 1%, is the value of p where
the different curves intersect. Figure adapted from Fowler et al. [35]

use Monte Carlo simulations to estimate the logical error probability as a function

of the physical error probability for various code sizes. The point where the data for

different sizes intersect gives us an estimate of the error threshold (see Figure 1.4

for an example).

In the error models we have considered so far, we have assumed that stabilizer

measurements are perfect, but this is unlikely to be the case in actual quantum

computers. Therefore, we also want to find the error threshold of a code family

when stabilizer measurements are unreliable. Error models of this type are often

called phenomenological error models. In 2D surface codes, the standard approach

to decoding in the presence of measurement errors is to repeat the stabilizer gen-

erator measurements for a number of times that scales with the code distance. We

then use a decoder to process the syndrome history (the record of all the stabilizer

measurements) and return a correction. Using this approach, decoding a 2D surface

code in the presence of measurement errors is equivalent to decoding errors in a

3D graph (where one dimension represents time) rather than a 2D graph, as was

pointed out by Dennis et al. [28]. We can also use the MWPM algorithm to decode

in this case. In addition, we can consider more detailed noise models that take into

account the circuits used for measuring the stabilizer generators. Estimates of the

1.2. Protecting quantum information 29

error threshold of the 2D surface code for noise models with unreliable measurements

range from 0.5% to 1.4% depending on the details of the error model (see [14] and

references therein).

Given that the code distance of an L×L surface code is equal to L = O (
√
n)

(where n is the number of physical qubits in the code), it is somewhat surprising

that this code family has an error threshold. Suppose that a bit-flip error affects

each physical qubit independently with probability p. Then, as we increase L, the

expected number of errors np ≈ L2p will become larger than L, which is equal to

the code distance. Therefore, we may expect that the probability of a logical error

occurring increases as L increases. However, this does not happen as the proportion

of weight L errors that cause a logical error becomes smaller as L increases [36].

The 2D surface code can be readily generalized to higher dimensions, as was

first noted by Dennis et al. [28]. In later chapters, we study the properties of 3D

surface codes in detail. Here, we review the definition of 3D surface codes and

contrast them with 2D surface codes. In addition, we give a brief overview of prior

work on these codes.

Consider a 3D lattice with boundaries in Euclidean space. We place qubits

on the edges of the lattice, we associate X-stabilizers, Av, with the vertices and

we associate Z-stabilizers, Bf , with the faces. As in the 2D case, it is useful to

define a Hamiltonian which corresponds to the code, H = −
∑
vAv−

∑
f Bf . This

Hamiltonian allows us to interpret unsatisfied stabilizers as excitations. However,

unlike the 2D case, the X-stabilizer excitations (electric charges) are different from

the Z-stabilizer excitations (magnetic fluxes). Specifically, the electric charges are

associated with 0D lattice elements (vertices in the primal lattice) whereas the mag-

netic fluxes are associated with 1D lattice elements (edges in the dual lattice). This

difference has consequences for the error correction properties of the code, as we

show in Chapter 3. In the bulk of the lattice, we can only create pairs of electric

charges (vertices connected by edges) and closed loops of magnetic flux (edges that

form the boundary of a set of faces). However, we can create single electric charges

on the rough boundaries, and open loops of magnetic flux can terminate on the

smooth boundaries (see Figure 1.5). For now, we use these properties to define the

rough and smooth boundaries. In later chapters, when we consider specific lattices,

30 Chapter 1. Introduction

Figure 1.5: Errors and syndromes in 3D surface codes. The rough boundaries are shaded
and the smooth boundaries are clear. We show examples of Z-errors (dashed
red lines) and their syndromes (red circles). We also show the syndromes of
X-errors (solid blue lines). The errors causing these syndromes are collections
of faces in the dual lattice whose boundary is equal to the blue lines.

we use a more explicit definition of the boundaries.

We restrict our attention to lattices that are tessellations of the cube with four

smooth boundaries and two rough boundaries, where the rough boundaries are on

opposite sides of the cube (e.g. the lattice shown in Figure 1.5). Surface codes defined

on such lattices encode a single logical qubit. The logical operators of such a code

can be understood in terms of electric and magnetic excitations. We can implement

a logical Z-operator by creating a pair of electric charges in the bulk and annihilating

them on opposite rough boundaries. Therefore, logical Z-operators are strings of

(physical) Z-operators that terminate on opposite rough boundaries. Similarly, we

can implement a logical X-operator by creating a loop of magnetic flux in the bulk of

the lattice and expanding the loop until it annihilates on all four smooth boundaries.

This implies that logical X-operators are membranes of (physical) X-operators with

a boundary that is a cycle around the four smooth boundaries. Finally, we note that

the code distance of the 3D surface codes we consider is equal to the length of the

shortest path between the two rough boundaries.

The different structure of the X-excitations and Z-excitations in 3D surface

codes means that decoding X-errors and Z-errors are different problems. Decoding

Z-errors is the same as decoding errors in 2D surface code, except the lattice is now

1.2. Protecting quantum information 31

3D. The X-error decoding problem is easier to state if we switch to the dual lattice.

In this (equivalent) picture, qubits are on faces, X-stabilizers are associated with

cells and Z-stabilizers are associated with edges. Therefore, the syndromes of X-

errors are loops of edges (which can be open or closed). Given a syndrome, finding

a correction is equivalent to finding a collection of faces whose boundary equals the

syndrome. We return to the topic of decoding 3D surface codes in Chapter 3.

Like the 2D case, 3D surface codes are toy models of topological order. In

fact, 3D surface codes were originally studied in this context [37, 38]. Prior work

on 3D surface codes in the context of quantum computation has focussed on their

relationship to other topological quantum codes [39, 40]. There has also been work

on decoding 3D surface codes [41, 42, 43, 44] and on understanding their non-Pauli

logical operators [39, 45]. We give a fuller account of this work in later sections and

chapters.

In more than three dimensions, there are multiple possible definitions of surface

codes. In 4D, one possible definition is to place qubits on the edges of a 4D lattice,

associate X-stabilizer generators with vertices and associate Z-stabilizer generators

with faces. However, there is an inequivalent definition where we place qubits on

faces, associate X-stabilizer generators with edges and associate Z-stabilizer gen-

erators with cells. The second definition is more interesting, because a 4D surface

code with qubits on faces is an example of a passive quantum memory [28, 46]. Such

a memory is the quantum analogue of a hard disk, i.e. a quantum memory that is

stable against thermal fluctuations and therefore does not require active error cor-

rection to preserve information. It is still an open question as to whether such a

passive quantum memory exists in 3D [47].

In D dimensions, we can define a surface code with qubits on i-cells, X-

stabilizers on (i− 1)-cells and Z-stabilizers on (i+ 1)-cells, where a i-cell is a i-

dimensional cell. For example, 0-cells are vertices, 1-cells are edges, 2-cells are faces

etc. As long as i ∈ {1, . . . ,D−1}, then we will have a valid surface code. We refer to

a surface code with qubits on i-cells as a type-i surface code. In the dual lattice of a

type-i surface code, qubits will be associated with (D− i)-cells, X-stabilizers will be

associated with (D− i+1)-cells and Z-stabilizers will be associated with (D− i−1)-

cells. We recall that as surface codes are CSS codes, we can correct X- and Z-errors

32 Chapter 1. Introduction

independently. For a given type-i surface code, we say that X (Z) errors have m-

dimensional syndromes, wherem is the smallest dimensional lattice element (m-cell)

to which Z (X) stabilizers are associated in either the primal or dual lattice. That

is, m= min(i−1,D− i+ 1) for Z-errors and m= min(i+ 1,D− i−1) for X-errors.

For example, consider type-2 4D surface codes. In the primal lattice, qubits are on

faces (2-cells), X-stabilizers are associated with edges (1-cells), and Z-stabilizers are

associated with cells (3-cells). And in the dual lattice, qubits are still on faces, but

the support of the stabilizer types is exchanged. Therefore, both X- and Z-errors

in type-2 4D surface codes have 1-dimensional syndromes.

1.2.2 Subsystem codes

Subsystem codes, introduced by Poulin, are a generalization of stabilizer codes to

non-commuting stabilizer groups [48]. In a subsystem code, the encoded qubits

separate into two sets: the logical qubits and the gauge qubits. We only store

information in the logical qubits, but the gauge qubits give the code additional

structure which can be useful for error correction. A subsystem code with n physical

qubits is defined by its gauge group G, a (possibly non-Abelian) subgroup of the n-

qubit Pauli group. The stabilizer of a subsystem code, S = Z(G), is the centre of

the gauge group, i.e. the elements of the gauge group that commute with everything

in the gauge group. We note that a subsystem code with an Abelian gauge group

is a stabilizer code. In a subsystem code, there are two types of logical operators:

bare logical operators and dressed logical operators. Bare logical operators are the

elements of the Pauli group that commute with the gauge group but are not in the

gauge group. These logical operators act on the logical qubits and don’t have an

effect on the gauge qubits. Dressed logical operators are the elements of the Pauli

group that commute with the stabilizer but are not in the gauge group. These

operators act on the logical qubits and the gauge qubits.

Error correction in subsystem codes works in a slightly different way to stabilizer

codes. Instead of measuring the stabilizers, we measure a generating set of gauge

operators. As stabilizers are products of gauge operators, we can infer the values of

the stabilizers from the gauge operator measurements. For some subsystem codes,

the same stabilizer operator is the product of different sets of gauge operators.

Therefore, the measurement outcomes of the gauge operators redundantly tell us

1.3. Processing encoded quantum information 33

the values of the stabilizers. Consequently, we can avoid having to do multiple

rounds of measurement to get reliable estimates of the eigenvalues of the stabilizer

generators. This is an example of a property of quantum codes called single-shot

error correction [49, 50, 51]. A code with single-shot error correction is simply a

code where we can obtain a reliable error syndrome using O (1) stabilizer (or gauge

operator) measurements.

In this section, we have given a brief overview of quantum error-correcting codes,

with a particular focus on surface codes, a family of topological quantum codes.

Codes from this family are some of the most promising candidates for protecting

quantum information from decoherence caused by interactions with the environ-

ment. This is chiefly due to their high error threshold, robustness to disorder and

relatively simple structure. However, a family of codes that is good at protecting

quantum information will not necessarily be well-suited to processing encoded quan-

tum information. In fact, in the next section we explain how these two requirements

can come into conflict.

1.3 Processing encoded quantum information

If we want to build a fault-tolerant quantum computer, we need find methods for

processing quantum information in a way that is resilient to errors. Shor was the

first to tackle this problem [52], proposing fault-tolerant protocols based on error-

correcting codes. There are a range of possible definitions of fault-tolerance, but the

one we use here is as follows. We call a protocol fault-tolerant if one failure during the

protocol leads to at most one physical qubit error in each code block (a single [[n,k,d]]

code), where a failure can be a single-qubit error, a gate error, a measurement error

etc. This captures the idea of errors not spreading too much during the protocol.

We begin this section by giving an overview of the requirements of a fault-tolerant

quantum computing architecture, using the 2D surface code as an example. We then

focus on schemes for doing fault-tolerant logical gates in topological codes, giving

an overview of existing results in the research literature. Finally, we consider a

quantum computing architecture based on a class of topological codes called colour

codes.

34 Chapter 1. Introduction

1.3.1 Fault-tolerance with 2D surface codes

There are some basic operations which we need to be able to implement fault-

tolerantly if we want to execute an arbitrary quantum algorithm with imperfect

hardware. These operations are: preparation of encoded |0〉 states, measurement

in the Z-basis, implementation of a universal gate set and error correction. First,

we consider fault-tolerant error correction. In Section 1.2.1, we discussed decoding

2D surface codes when measurements are unreliable. However, we also need to

ensure that measuring stabilizer generators does not corrupt the encoded data in an

uncontrolled way.

Consider a 2D surface code X-stabilizer, X⊗4. We can measure this stabilizer

using the circuit shown in Figure 1.6. If an X-error happens to the ancilla qubit

|ψ1〉

|ψ2〉

|ψ3〉

|ψ4〉

|0〉 H • • • • H

Figure 1.6: A circuit for measuring an X⊗4 stabilizer. |ψi〉 are the physical qubits of the
code, H = 1√

2 (X +Z) is the Hadamard gate, and the ancilla is measured in
the Z-basis.

at the start of the circuit, then each of the physical qubits experiences an X-error

due to the controlled-NOT (CNOT) gates. In general, when using the method in

Figure 1.6 to measure stabilizers, one ancilla error can cause up to w physical qubit

errors for a weight w stabilizer. We can prevent this from happening using a variety

of fault-tolerant gadgets, which allow us to replace naive stabilizer measurement

circuits with fault-tolerant circuits (e.g. [52, 53, 54, 55, 56, 57]). These circuits have

the same effect as the original circuits, but they limit the propagation of errors.

Interestingly, using fault-tolerant stabilizer measurement circuits is not necessary in

2D surface codes [28]. An intuitive explanation for this is that although single ancilla

errors can cause weight two physical qubit errors (weight-four errors are stabilizers

and weight-three errors are equivalent to weight-one errors up to a stabilizer), these

errors will be on nearest-neighbour qubits. We do not expect such errors to lead

to logical errors due to the topological protection given by the code. However, we

1.3. Processing encoded quantum information 35

do expect these correlated errors to degrade the error threshold, which is what has

been seen in simulations [14].

We now consider the task of fault-tolerantly preparing encoded computational

basis states. Dennis et al. proposed a method for preparing encoded |0〉 (and |+〉

states) in 2D surface codes [28], which we review here. To begin with, we assume that

state preparation and measurement of physical qubits are both perfect. First, we

prepare all the physical qubits of the code in the |0〉 state. This state is already a +1

eigenstate of all the Z-stabilizers. Next, we measure theX-stabilizer generators, each

of which will have a random outcome. Finally, we process the syndrome and apply

a correction. This correction may well result in the application of a Z-operator,

but this has no effect on the encoded state because the code started off in a +1

eigenstate of Z and measuring X-stabilizers will not change this eigenvalue. If state

preparation and measurement are imperfect, then we have to modify the procedure

somewhat. We still attempt to prepare every physical qubit in the |0〉 state, but

instead of just measuring X-stabilizers we measure all the stabilizer generators d

times, where d is the code distance. The final step of the procedure is to use an

efficient decoder (e.g. MWPM for 2D surface codes) to compute a correction. We

again might apply a Z-operator, but the probability of applying a X-operator will

be exponentially suppressed in the size of code, as long as we are below threshold.

We can prepare a logical |+〉 state using an analogous procedure where we start with

all the physical qubits in the |+〉 state.

The penultimate requirement we consider is being able to measure encoded

qubits in the Z-basis fault-tolerantly. Again, there is a simple procedure for achiev-

ing this with surface codes [28]. We assume that we have a code with a single

encoded qubit for simplicity. To measure this qubit in the Z-basis we first measure

all the physical qubits in the Z-basis. Next, we calculate the values of all the Z-

stabilizers using the outcomes of the physical qubit measurements. The final step is

to use an efficient decoder to process the stabilizer measurements and apply a cor-

rection (which in this context just means flipping some physical qubit measurement

outcomes). We then compute the eigenvalue of any Z-operator. This procedure

works because single measurement errors do not lead to unsatisfied stabilizers that

are very far from each other in the lattice. So unless the measurement errors are

36 Chapter 1. Introduction

correlated over a distance comparable to the lattice size, we can deal with them in

the same way that we deal with physical qubit errors before the measurements. To

measure in the X-basis, we repeat the above procedure except with X instead of Z.

The final demand we make of a quantum computing architecture is that it

should be possible to implement a universal set of quantum gates fault-tolerantly. A

discrete set of gates is called universal if we can approximate any unitary operation

using gates from the set. Importantly, the Solovay-Kitaev theorem guarantees that

this approximation is efficient [58, 59]. Let us consider some examples of universal

gate sets. The most common universal gate set is called Clifford+T. Clifford gates

are unitary operators that map Pauli operators to Pauli operators. The two-qubit

Clifford group can be generated by CNOT = I2⊕X, the Hadamard gate H = (X+

Z)/
√

2, and the phase gate S = diag(1, i), where Ij is the j× j identity matrix. We

call any (non-Pauli) gate that is not in the Clifford group a non-Clifford gate. The T -

gate is a non-Clifford gate with the following form: T = diag(1,exp(iπ/4)). Adding

any non-Clifford gate to the Clifford group gives us a universal set of gates [60]. We

can also construct universal sets without using the Clifford group, e.g. the Hadamard

gate and the controlled-controlled-Z gate (CCZ = I6⊕Z) together are universal [61].

Given a universal gate set, we need to find a fault-tolerant implementation of

each gate in the set. One natural class of fault-tolerant gates is transversal gates.

Suppose we want to implement a gate on j logical qubits and we use m [[n,k,d]]

codes to protect the logical qubits, where m= dj/ke. We call each of the individual

codes a code block. Then, a transversal gate (or operation) is a depth-one circuit

that does not entangle qubits in the same code block. Examples of transversal gates

include tensor products of single-qubit unitary operators (e.g. logical Pauli gates in

stabilizer codes).

Unfortunately, the power of transversal gates is limited, as shown by the Eastin-

Knill theorem:

Theorem 1 ([62]) Suppose that an error-correcting code can detect an error on an

arbitrary physical qubit. Then its set of transversal encoded gates is not universal.

We give an idea of the physical intuition behind this result below, following the

argument given in [63]. Assume that some code has a universal set of transversal

gates. Then, we can implement a continuous group of rotations using a subset of the

1.3. Processing encoded quantum information 37

transversal gates. These gates must conserve the charge J that is associated with

the continuous rotation group. For a given code word, there will be a conserved

charge in the logical qubit space, J , and a corresponding conserved charge in the

physical qubit space, J =
∑
iJi, which is a sum of single-qubit terms due to the

transversal nature of the gates. The environment has access to the local reduced

states and can therefore estimate the value of the conserved charge and thereby

access the logical information stored in the code. This fact implies that the code

cannot correct single-qubit erasures, which is close in spirit to being able to detect

single-qubit errors.

The Eastin-Knill theorem exposes a deep conflict between protecting quantum

information and processing quantum information. However, there are methods for

avoiding the constraints of this theorem. Firstly, one can fault-tolerantly switch be-

tween different codes with different sets of transversal gates. Each code individually

will not have a universal and transversal set of gates, but the union of the transversal

gates of both codes can be universal. Alternatively, the Eastin-Knill theorem can

be circumvented by using measurements and classical feed-forward, as is the case in

magic state distillation schemes. Finally, we note that the theorem does not apply

to non-transversal but still fault-tolerant gates (e.g. non-transversal constant depth

unitaries in topological codes).

To begin our discussion of fault-tolerantly implementing a universal gate set

with 2D surface codes, we review two ways of encoding a large number of qubits in

a single layer of surface code. The first encoding method is defect-based encoding,

which was introduced by Raussendorf et al. [64]. Suppose we have a large layer

of surface code with only smooth boundaries. Such a surface code has no encoded

qubits. We can create defects in the bulk of the layer by ceasing to measure some

of the stabilizers. This introduces additional degrees of freedom into the system,

which we can use to encode logical qubits [11, 15]. We can also encode qubits in

twist defects [65, 66] (a twist in this context is the end-point of a lattice dislocation).

Using twist defects, it is possible to implement the Clifford group fault-tolerantly in

2D surface codes [66].

The second method for encoding a large number of qubits in a single sheet

of surface code is called lattice surgery. This encoding method was introduced by

38 Chapter 1. Introduction

Horsman et al. [67]. In a lattice-surgery architecture, we split a large sheet of

surface code into multiple smaller patches of surface code, each encoding a single

qubit. We can merge and split different patches by changing the stabilizers that we

measure between patches [67]. Using a lattice-surgery encoding, we can also realize

the Clifford group fault-tolerantly [68]. Out of the two encodings, lattice surgery is

currently favoured because it requires fewer physical qubits to encode a logical qubit

with the same code distance [69, 70].

We have discussed two methods for implementing the Clifford group in a 2D

surface code architecture. However, to achieve universality, we need a method for

implementing a non-Clifford gate. We do not need to worry about the Eastin-Knill

theorem, because the implementations of the Clifford group we have described do

not rely exclusively on transversal gates. However, the 2D surface code does not have

a transversal non-Clifford gate. Almost all codes with such gates have a property

called tri-orthogonality, a concept introduced by Bravyi and Haah:

Definition 1 (Tri-orthogonal code [71]). Let the H be a m×n binary matrix de-

scribing the support of the X-stabilizer generators of a [[n,k,d]] CSS code. That is,

each row in H represents a stabilizer generator, and if Hij = 1 then the generator

corresponding to row i acts non-trivially on qubit j. Otherwise, Hij = 0. In addition,

let L be a k×n binary matrix describing the support of the logical X-operators of

the code. The code is called tri-orthogonal if, and only if, G=
(
H
L

)
has the following

properties:
n∑
j=1

GajGbj = 0 mod 2, (1.9)

for all pairs of rows 1≤ a≤ b≤m, and

n∑
j=1

GajGbjGcj = 0 mod 2, (1.10)

for all triples of rows 1≤ a≤ b≤ c≤m. In other words, the overlap of the supports

of any pair of rows in G is even and the overlap of the supports of any triple of rows

in G is also even.

From the definition, it may not be immediately clear how tri-orthogonality

relates to transversal non-Clifford gates. However, it transpires that that the phases

of certain Z-rotations applied to the physical qubits of a tri-orthogonal code sum in

1.3. Processing encoded quantum information 39

|T 〉 • S T |ψ〉

|ψ〉 •

Figure 1.7: A circuit that consumes one |T 〉 state to apply the (non-Clifford) T -gate to a
second qubit, |ψ〉. This circuit is an example of a gate teleportation circuit, a
generalization of quantum (state) teleportation [77, 78].

just the right way to implement a logical non-Clifford gate [71, 72]. We will see an

example of this in Section 2.2.

Since the 2D surface code is not tri-orthogonal, we must find another way of

implementing a non-Clifford gate fault-tolerantly. The standard solution to this

problem is known as magic state distillation (MSD), and was introduced by Bravyi

and Kitaev [73]. In an MSD protocol, we start with ni low-fidelity magic states,

which we distil into nf higher-fidelity magic states (where nf < ni). The most com-

mon magic state is the T -state, |T 〉 = T |+〉. Once we have a high-fidelity encoded

T -state, we use a state-injection circuit (e.g. Figure 1.7) to apply the (non-Clifford)

T -gate to another encoded qubit, consuming the T -state in the process. The distil-

lation procedure achieves exponential error suppression, so we only need to repeat

it for a number of times that is logarithmic in the target infidelity of the magic

state(s). In addition, the distillation procedure and the state-injection circuit only

use Clifford gates. Therefore, we can implement a MSD protocol using the logical

qubits of a quantum code, as long as the code has a fault-tolerant implementation

of the Clifford group. For example, MSD can be used to implement a T -gate fault-

tolerantly in a 2D surface code architecture [15]. Interestingly, many MSD protocols

are based on tri-orthogonal codes [71, 72, 74, 75, 76].

In this section, we have described the protocols that need be realized fault-

tolerantly in a quantum computer that is resilient to error. Methods for fault-

tolerant state preparation, measurement, error correction and logic can be combined

to prove threshold theorems [79, 80, 81]. Suppose that qubit errors, state preparation

errors, measurement errors and gate errors occur according to probabilities that are

smaller than some threshold pth. Then, the threshold theorem tells us that a fault-

tolerant version of any circuit can be constructed, where the overhead of the fault-

tolerant circuit is poly-logarithmic in the number of qubits in the original circuit

and in the number of gates in the original circuit. This result has been generalized

40 Chapter 1. Introduction

to a wide variety of noise models [82, 83, 84, 85], which gives us confidence that

building a fault-tolerant quantum computer is possible in principle.

The threshold theorem tells us that the asymptotic resource cost of fault-

tolerance is not too large, but the resource requirements of a fault-tolerant archi-

tecture can still be substantial in practice. For example, consider the 2D surface

code. We can estimate the resource requirements of a 2D surface code architecture

by using a space-time metric. We say that an architecture that requires n physical

qubits per logical qubit and d rounds of stabilizer measurement per operation has

a space-time overhead of nd (we neglect the cost of efficient classical computation).

In a 2D surface code architecture, we require ≈ d2 physical qubits per logical qubit,

where d is the code distance, which is a function of the physical-qubit error rate and

the target logical error rate. Per operation, we need to do O (d) rounds of stabilizer

measurement, so the space-time overhead of using 2D surface codes is O
(
d3). This

figure gives tells us how the overhead scales, but the Big O notation hides some

important constants. For example, using 2D surface codes, it has been estimated

that the resource cost of implementing a T -gate using MSD is ∼ 150–300 times more

than the cost of implementing Clifford gates [86]. Reducing this cost is an active

field of research [74, 75, 76, 87], though no full-scale analysis has been done for the

most recent MSD schemes. In addition, the overhead of MSD has motivated research

into fault-tolerant implementations of non-Clifford gates in topological codes that

do not require MSD. In the following sections, we review some of the results of these

investigations.

1.3.2 Restrictions on non-Clifford gates in topological codes

There is an important theorem about fault-tolerant logical gates in topological codes,

which was proved by Bravyi and König [88]. Much of the following discussion follows

their article closely. Before stating the theorem, we need to define a generalization

of the Clifford group called the Clifford hierarchy [77]. The D’th level of the Clif-

ford hierarchy, CD, is the set of all unitary operators that map Pauli operators to

operators in the (D−1)’th level of the hierarchy (under conjugation). That is,

CD = {U : UPnU † ⊆ CD−1}, (1.11)

1.3. Processing encoded quantum information 41

where C1 :=Pn (the Pauli group). From the definition, we see that C2 is the Clifford

group. C3 contains the T -gate and CCZ gate. We are now ready to state Bravyi

and König’s theorem:

Theorem 2 ([88]) Suppose a unitary operator U implementable by a geometrically-

local constant-depth quantum circuit preserves the codespace of a topological code

on a D-dimensional lattice, D ≥ 2. Then U implements a gate from the set CD.

Constant-depth circuits are a natural class of fault-tolerant gates for topological

codes. This is because a constant-depth circuit can only spread an existing error in

a region R to a new region of size R+O (1). Also, any error that happens during

the constant-depth circuit can cause errors on at most O (1) physical qubits. As

topological codes are robust against errors in local regions, if an error is correctable

before a constant-depth circuit, it will be correctable afterwards. An implementation

of a unitary using a constant-depth circuit is sometimes called a logical-preserving

logical operator (LPLO) [45].

One important consequence of Theorem 2 is that the 2D surface code has no

non-Clifford LPLOs. We now sketch the proof of the theorem for this special case.

Consider a 2D surface code with two rough and two smooth boundaries, encoding

a single logical qubit. For any two logical Pauli operators P and Q, we can always

find equivalent (up to stabilizers) logical operators that overlap on at most two

physical qubits. Now, assume we apply a constant-depth unitary U that preserves

the codespace. Let us consider the group commutator of P and Q conjugated by

U : K[P,UQU †] = P (UQU †)P †(UQU †)†. Because P and Q overlap on a constant

number of qubits and U is constant depth, the group commutator only has non-trivial

support on O (1) qubits. Any operator that preserves the codespace and has O (1)

support must be an implementation of ±I because of the topological protection

offered by the code. One can verify that an operator whose group commutator

with Pauli operators is trivial must either be a Pauli operator or ±I. Therefore

UQU † ∈ Pn for any Q ∈ Pn, which means that U is in the Clifford group.

Bravyi and König’s result has been generalized to subsystem codes [89] and

to constant-depth unitary operators that are geometrically non-local [90]. It is im-

portant to note that a D-dimensional topological code is not guaranteed to have

an LPLO in CD. For example, the 4D surface code (with qubits on faces) has no

42 Chapter 1. Introduction

non-Clifford LPLOs, as can be seen from a similar argument to the one made above.

Interestingly, the structure of the 4D surface code’s logical operators makes the code

thermally stable [46], but also prevents it from having non-Clifford LPLO. There-

fore, the 4D surface code is another example of the conflict between protecting and

processing quantum information. Finally, we note that the LPLOs of various topo-

logical codes have recently been classified using an analogy between LPLOs and

generalized domain walls [91, 92, 45]. In particular, it was recently shown that the

(non-Clifford) CCZ gate is an LPLO in the 3D surface code [45].

1.3.3 Colour codes

In this section, we review a family of topological quantum codes that saturate The-

orem 2 in all spatial dimensions: colour codes. This code family was introduced

by Bombín and Martin-Delgado [93, 94, 95]. To begin, we revise the definition of

2D colour codes, before considering 3D colour codes in more detail. Then, we ex-

amine a subsystem code generalization of the 3D colour code. We conclude this

section by estimating the space-time overhead of a colour code quantum computing

architecture.

In 2D, a colour code can be defined on any three-valent lattice that has three-

colourable faces, i.e. one can assign one of three colours to each face of the lattice

so that faces sharing an edge have different colours. Figure 1.8 shows the three

regular 2D colour code lattices. Qubits are placed on the vertices of the lattice and

X-stabilizer generators and Z-stabilizer generators are associated with the faces of

the lattice. That is, for each face f , there is an X-stabilizer Af =
⊗
v∈fXv and a

Z-stabilizer Bf =
⊗
v∈f Zv, where Z(v) (X(v)) denotes a Pauli Z (X) acting on the

qubit at vertex v. Like 2D surface codes, the logical operators of 2D colour codes are

supported on topologically non-trivial paths in the lattice. Every 2D colour code has

transversal Clifford operators, but the specific operators depends on the boundaries

of the code. For example, H and S are transversal for codes defined on lattices that

tessellate the triangle, whereas SWAP ·H⊗H and CZ = I2⊕Z are transversal for

codes defined on lattices that tessellate the square.

3D colour codes are defined on four-valent lattices whose cells are four-

colourable, i.e. the cells of the lattice can each be assigned one of four colours so that

no cells that share a face have the same colour. Qubits are placed on the vertices,

1.3. Processing encoded quantum information 43

Figure 1.8: The three regular 2D colour code lattices. We use the (r.s.t) shorthand to
denote a lattice where an r-gon, an s-gon and a t-gon meet at each vertex.
Figure adapted from Landahl et al. [96].

X-stabilizer generators are associated with the cells and Z-stabilizer generators are

associated with the faces of the lattice. Unlike their 2D cousins, 3D colour codes

do not have a transversal implementation of the Clifford group. However, every 3D

colour code is a tri-orthogonal code and consequently has a transversal non-Clifford

gate [97, 98, 99]. For example, a 3D colour code defined on a tessellation of the

tetrahedron has a transversal T -gate, and a 3D colour code defined on a tessellation

of the cube has a transversal CCZ gate.

Given that colour codes have a wider variety of transversal gates when com-

pared with surface codes, it is natural to ask why surface codes are still the leading

topological codes. The main reason is that colour codes tend to have lower error

thresholds than surface codes. This is because colour codes have higher weight sta-

bilizers than surface codes, which makes errors during the stabilizer measurement

procedure more likely and leads to a lower error threshold. Also, decoding colour

codes is more complicated than decoding surface codes, because the structure of the

excitations in colour codes is more complex [100, 96].

The stabilizer weight problem is more pronounced in higher-dimensional colour

codes. The 3D colour code lattice with the lowest average stabilizer weight still

has weight twenty-four X-stabilizers. To alleviate this problem, Bombín introduced

a subsystem code version of the 3D colour code called the gauge colour code [97].

These codes are defined on 3D colour code lattices and their physical qubits are

placed on the vertices. We associate X and Z gauge generators with the faces of

the lattice. We recall from Section 1.2.2 that the stabilizer group of a subsystem

code is the centre of the gauge group. We can, therefore, deduce that the stabilizer

44 Chapter 1. Introduction

generators of the gauge colour code are associated with the cells of the lattice. In a

subsystem code we can find the eigenvalues of the stabilizers by measuring the gauge

generators, and in the gauge colour code the gauge operators (faces) are much lower

weight than the stabilizers (cells). In addition, the structure of the gauge colour

code means that we only need to measure the gauge generators O (1) times to gain

a reliable estimate of the eigenvalues of the stabilizers. Therefore, the gauge colour

code exhibits single-shot error correction [49].

The gauge colour code also has another useful property: so-called ‘dimensional

jumps’ [101]. A dimensional jump is a fault-tolerant method for switching between

a 3D gauge colour code and a 2D colour code defined on its boundary. For example,

the gauge colour code could be defined on a lattice that tessellates the tetrahedron

and the 2D colour code would be defined on one of the triangular faces of the

tetrahedron. As such a 2D colour code has a transversal implementation of the

Clifford group and the tetrahedral gauge colour code has a transversal T -gate, the

dimensional jump allows us to implement a universal and fault-tolerant set of gates

without using MSD. This is an example of circumventing the Eastin-Knill theorem

(Theorem 1) by switching between different codes with complementary transversal

gates.

The gauge colour code’s single-shot error correction property means that we

only need to measure the stabilizer generators O (1) times per dimensional jump.

Single-shot error correction also enables us to prepare encoded |0〉 states in constant

time. In addition, we can fault-tolerantly measure encoded qubits in the Z-basis

in constant time, using an analogous procedure to the 2D surface code measure-

ment procedure (described in Section 1.3.1). Consequently, the number of stabilizer

measurements per operation in a gauge colour code architecture is O (1). We need

≈ d3 physical qubits per logical qubit in this architecture, so the overall space-time

overhead is O
(
d3), which is scales in the same way as the overhead of 2D surface

code architectures (see Section 1.3.1).

The error threshold of the gauge colour code has been estimated to be pth ∼

0.31% [102], which is slightly smaller than the threshold of the 2D surface code.

However, we emphasize that the value of the error threshold is not the only fig-

ure of merit which should be used when comparing two codes. The quality of the

1.3. Processing encoded quantum information 45

error-suppression below the error threshold is also important. Given that the re-

source overheads and error thresholds of 2D surface codes architectures and gauge

colour code architectures are similar, the answer as to which architecture is prefer-

able will likely depend on the type of qubits used. For example, superconducting

qubits fabricated on a 2D chip [103] will be better-suited to a (planar) 2D code

but ion-trap qubits may be better-suited to 3D codes due to the availability of non-

local gates [104]. We return to this discussion in Chapter 4, where we present an

architecture based on 3D surface codes.

The final aspect of colour codes that we discuss is their surprisingly close re-

lationship to surface codes [105, 106, 107, 39, 40, 108]. It transpires that for any

D-dimensional colour code, there exists a local Clifford unitary that maps the colour

code to D copies of the D-dimensional surface code [39]. This equivalence is useful

in a number of ways. For example, the colour code decoding problem can be reduced

to the surface code decoding problem [109, 110]. Since surface codes are generally

easier to decode than colour codes, the equivalence between the code families gives

us better colour code decoders. In addition, the equivalence can be used to imple-

ment new logical gates in surface codes [39, 111]. In an article that inspired our

work, Kubica et al. showed that it is possible to apply a CCZ gate fault-tolerantly

to three 3D surface codes by transforming the surface codes into a 3D colour code

with a transversal CCZ [39].

Conclusion

Building a fault-tolerant quantum computer requires us to protect quantum informa-

tion and process encoded quantum information. In this chapter, we have considered

both of these requirements in turn and exposed the tension between them. More

specifically, we reviewed the Eastin-Knill theorem, which states that any code that

can correct a single error can not have a universal and transversal set of encoded

gates. Fortunately, the threshold theorem tells us that even with this tension, build-

ing a fault-tolerant quantum computer is possible. We have reviewed two leading

quantum computing architecture proposals: one based on 2D surface codes and

one based on gauge colour codes. These architectures each have their strengths,

and which architecture is better is likely to depend on the physical systems used

to realize the components of the computer. However, to make fault-tolerant quan-

46 Chapter 1. Introduction

tum computers a reality sooner, we need to reduce the resource requirements of the

current leading architectures.

In the remainder of this thesis, we build towards proposing a fault-tolerant

quantum computing architecture based on 3D surface codes. First, in Chapter 2, we

consider processing information encoded in 3D surface codes. We show that the 3D

surface code has more transversal gates than were previously known. In particular,

we demonstrate that certain 3D surface codes have a transversal (non-Clifford) CCZ

gate. In Chapter 3, we present results on 3D surface code decoding. Notably, we

propose a cellular automaton decoder for correcting bit-flip errors in 3D surface codes

with boundaries. We prove that our decoder has an error threshold when stabilizer

measurements are perfect and we provide numerical evidence of a threshold when

measurements are unreliable. Our decoding results allow us to estimate how good

3D surface codes are at protecting quantum information. We bring the results from

previous chapters together in Chapter 4, where we propose fault-tolerant quantum

computing architectures based on 3D surface codes that do not require MSD. Finally,

in Chapter 5, we discuss our results in a wider context, and suggest directions for

future research.

Chapter 2

Transversal gates in three-dimensional

surface codes

In most quantum codes, implementing Clifford gates fault-tolerantly is relatively

simple and has a low resource cost, but to achieve universality we also need a fault-

tolerant implementation of a non-Clifford gate. Unfortunately, costly procedures

such as magic state distillation (MSD) are usually required to implement non-Clifford

gates fault-tolerantly, as codes that have transversal non-Clifford gates are uncom-

mon. A transversal implementation of a non-Clifford gate is the best fault-tolerant

construction we can hope for. This is because transversal operators are depth-one

circuits that do not couple qubits in different code blocks, so these operators severely

limit the spread of errors. In this Chapter, we show that certain 3D surface codes

have a transversal non-Clifford gate. Firstly, we introduce a rectified picture for vi-

sualizing stacks of 3D surface codes, which allows us to reason about how stabilizers

from different codes overlap. Secondly, we use the rectified picture to show that

specific 3D surface codes have a transversal CCZ. Finally, we end the chapter by

sketching generalizations of the rectified picture to higher dimensions and curved

spaces. Most of the original material in this Chapter previously appeared in [112],

a paper by the author and Dan Browne.

2.1 The rectified picture
A rectification (or full truncation) is a geometrical transformation where the vertices

of a polyhedron are truncated until the edges of the polyhedron become vertices [113,

Chapter 8]. Truncating a polyhedron means cutting off its vertices so that the

vertices are replaced by faces. Figure 2.1 shows a series of truncations of a cube,

48 Chapter 2. Transversal gates in three-dimensional surface codes

a) b) c)

Figure 2.1: Truncating a cube to obtain its rectification. In Figure 2.1b, we show a cube
whose vertices have been partially truncated. And in Figure 2.1c, we continue
the truncation to obtain a cuboctahedron (rectified cube).

culminating in a rectified cube (cuboctahedron). The rectified picture of 3D surface

codes is simply the picture one obtains by rectifying a 3D surface code lattice. This

generalizes the well-known rotated picture of 2D surface codes. We begin this section

by revising the rotated picture in Section 2.1.1. Then, in Section 2.1.2, we formally

introduce the rectified picture. Finally, we define a family of stacked 3D surface

codes in Section 2.1.3. This family of stacked codes is one of the main components

of the fault-tolerant quantum computing architecture we present in Chapter 4.

2.1.1 The rotated picture

In Chapter 1, we defined 2D surface codes in the standard (Kitaev) picture. We

recall that, in this picture, qubits are placed on edges, X-stabilizer generators are

associated with vertices and Z-stabilizer generators are associated with faces. There

is an equivalent picture where qubits are placed on vertices, which is called the

rotated picture. This picture was introduced by Wen [114], and has since been

frequently used to analyse 2D surface codes and related codes (e.g. [115, 116, 117,

118]). In the rotated picture, surface codes are defined on four-valent lattices with

two-colourable faces [115]. That is, the faces of the lattice can be assigned one of

two colours so that no faces that share an edge have the same colour. Consider such

a lattice and assume the faces are coloured red (r) and blue (b). We place qubits on

the vertices of the lattice, we associate X-stabilizer generators with r-faces and we

associate Z-stabilizer generators with b-faces. That is, for each r-face fr we have a

stabilizer,

Afr =
⊗
v∈fr

X(v), (2.1)

2.1. The rectified picture 49

a) b) c)

Figure 2.2: The rotated picture of 2D surface codes. In Figure 2.2a and Figure 2.2b,
we show the same surface code in the Kitaev picture and the rotated picture,
respectively. In each code, we highlight the same subset of qubits (black circles)
and the same logical Z-operator. In Figure 2.2c, we show another surface code
in the rotated picture, which has the same code distance but fewer physical
qubits. We highlight an X-stabilizer (red square) and a Z-stabilizer (blue
semicircle).

and for each b-face fb we have a stabilizer,

Bfb =
⊗
v∈fb

Z(v), (2.2)

where X(v) denotes an X-operator acting on the qubit on vertex v, and Z(v) is

defined analogously. Figure 2.2 shows a 2D surface code in both the Kitaev picture

and the rotated picture.

We also associate colours with the boundaries of rotated picture lattices. We

define an r-boundary (b-boundary) as a boundary where all edges on the boundary

are part of r-faces (b-faces). With this definition, logical X-operators are strings of

X-operators that terminate on different r-boundaries. Similarly, logical Z-operators

are strings of Z-operators that terminate on different b-boundaries. By comparing

with Section 1.2.1, we see that the b-boundaries (r-boundaries) are rough (smooth)

boundaries in the Kitaev picture.

We note that the colours are arbitrary and we could just as well associate the

different stabilizer types with the other colours. Therefore, we can use one rotated

picture lattice to represent a stack of two 2D surface codes, where we have two

qubits at each vertex (one for each code). In one code, we associate X-stabilizer

generators with r-faces and Z-stabilizer generators with b-faces, and in the other code

we associate X-stabilizer generators with b-faces and Z-stabilizer generators with r-

50 Chapter 2. Transversal gates in three-dimensional surface codes

faces. This is equivalent to two 2D surface codes defined on dual tessellations in the

Kitaev picture (see Figure 1.2). We refer to the 2D surface code whose X-stabilizer

generators are associated with r-faces (b-faces) as SCr (SCb). We only consider 2D

surface codes with one encoded qubit and we denote the logical operators of SCc by

Xc and Zc, where c ∈ {r,b}.

The rotated picture allows to see that the controlled-Z (CZ) gate is transversal

for a stack of two surface codes defined on the same rotated picture lattice. To

show this, we need the concept of an operator’s vertex support, which we define

to be the set of vertices where the qubits in the support of the operator lie. We

recall that the support of an operator is the set of qubits on which the operator acts

non-trivially. We claim that U = CZ⊗n is a transversal logical operator, where the

CZ gates act on the pairs of (physical) qubits at each of the n vertices of the lattice.

Furthermore, we claim that U implements a logical CZ between the encoded qubits

of SCr and SCb. To show that this is the case, we compute the action of U on the

logical operators of the two codes. The CZ gate transforms Pauli operators in the

following way:

CZ(I⊗Z)CZ† = I⊗Z,

CZ(Z⊗ I)CZ† = Z⊗ I,

CZ(I⊗X)CZ† = Z⊗X,

CZ(X⊗ I)CZ† =X⊗Z.

(2.3)

We now show that U implements the unitary defined in Equation 2.3 at the

logical level. First, consider how U transforms logical identity operators (stabilizers).

From Equation 2.3, it is clear that U has no effect on the Z-stabilizers of either code

but it does affect the X-stabilizers. Remembering that X-stabilizers in one code

have the same vertex support as Z-stabilizers in the other code, we conclude that U

maps an X-stabilizer of one code to a tensor product of the same X-stabilizer and a

Z-stabilizer of the other code with the same vertex support. Overall, we see that U

maps stabilizers to stabilizers and therefore maps the logical identity to the logical

identity. Next, we consider the transformation of the logical Pauli operators. As the

logical Z-operators of both codes are tensor products of Z-operators acting on the

physical qubits, Equation 2.3 immediately tells us that these logical operators are

2.1. The rectified picture 51

left invariant by U . The logical X-operators of both codes are tensor products of

X-operators acting on the physical qubits, and each logical X-operator of one code

has the same vertex support as a logical Z-operator of the other code. Therefore,

U maps every Xr to some Xr⊗Zb and U maps every Xb to some Xb⊗Zr. This

concludes our proof that U is a transversal implementation of the CZ gate.

2.1.2 Rectifying 3D surface codes

We are now ready to formally introduce the rectified picture of 3D surface codes.

We begin by explaining how this picture relates to the standard definition of 3D

surface codes. Then, we show that the rectified picture is natural for understanding

how the stabilizers of different codes overlap in a stack of 3D surface codes.

Consider a 3D surface code lattice in the standard (Kitaev) picture. We recall

that, in this picture, qubits are placed on edges, X-stabilizer generators are associ-

ated with vertices, and Z-stabilizer generators are associated with faces. To obtain

a rectified-picture lattice, we rectify every cell of the original lattice. As we noted at

the beginning of Section 2.1, to rectify a polyhedron we truncate its vertices until its

edges become vertices (see Figure 2.1). Under rectification, the elements of a lattice

transform as follows: edges are mapped to vertices, cells and vertices are mapped

to cells, and faces are mapped to faces. Therefore, in the rectified picture, qubits

are on vertices, X-stabilizer generators are associated with cells and Z-stabilizer

generators are associated with faces. Figure 2.3 shows a 3D surface code lattice in

the Kitaev picture and in the rectified picture.

There is an analogous transformation that maps 3D surface code dual lattices

(with qubits on faces, see Section 1.2.1) to rectified-picture lattices. This transfor-

mation is called a face-rectification and is equivalent to taking the dual of every

cell in the lattice. To construct the dual of a polyhedron, we create vertices at the

centre of its faces and we connect these vertices with edges if their corresponding

faces in the original polyhedron share an edge. Figure 2.4 shows two polyhedra and

their duals. Finally, we note that the rectified picture is similar to the primal lattice

picture of 3D colour codes [94] and much of our terminology was inspired by these

codes.

The utility of the rectified picture comes when we consider stacks of 3D surface

codes i.e. different codes occupying the same physical space. This is because different

52 Chapter 2. Transversal gates in three-dimensional surface codes

a) b)

Figure 2.3: The same 3D surface code lattice shown in the Kitaev picture (Figure 2.3a)
and the rectified picture (Figure 2.3b). We highlight the same subset of qubits
(black circles) in each picture. Figure adapted from Vasmer and Browne [112].

a) b)

Figure 2.4: Polyhedra and their duals. Figure 2.4a shows a cube and its dual, an octa-
hedron. Figure 2.4b shows a rhombic dodecahedron (yellow) and its dual, a
cuboctahedron (red). Figure adapted from Vasmer and Browne [112].

lattices in the Kitaev picture correspond to the same lattice in the rectified picture.

We now illustrate this with an example. Consider a 3D surface code defined on a

cubic lattice. For simplicity, we consider a tessellation of the 3-torus by cubes. A

3-torus is a manifold that can be constructed by identifying the opposite facets of

a cube. Let us examine how the cubic lattice transforms under rectification. The

vertices of the lattice are mapped to octahedra, the edges are mapped to vertices,

2.1. The rectified picture 53

Figure 2.5: The rectified cubic lattice. Octahedra are green and cuboctahedra are red and
blue. Figure adapted from Vasmer and Browne [112].

the square faces are mapped to square faces and the cubic cells are mapped to

cuboctahedra (the polyhedron shown in Figure 2.1c). In the resultant lattice, two

octahedra and four cuboctahedra meet at every vertex. This lattice, which is shown

in Figure 2.5, is usually called a rectified cubic lattice.

Next, we show that another lattice has the same rectification of the cubic lat-

tice. Consequently, we can use a single rectified lattice to understand a stack of

3D surface codes defined on different lattices. We consider a lattice where six oc-

tahedra and eight tetrahedra meet at every vertex. This lattice is usually called

a tetrahedral-octahedral lattice. Again, we restrict ourselves to a tessellation of a

3-torus for simplicity. Under rectification, the vertices of the lattice are mapped to

cuboctahedra, the triangular faces are mapped to triangular faces, the tetrahedral

cells are mapped to octahedra and the octahedra are mapped to cuboctahedra. The

resultant lattice is also a rectified cubic lattice.

We can arrange one cubic lattice and two tetrahedral-octahedral lattices so that

all three lattices are transformed into exactly the same lattice under rectification. To

see how this works, it is easiest to consider the dual lattices and work with the face-

rectification transformation. To construct the dual of a 3D lattice, we create vertices

at the centre of all the cells and connect these vertices if the corresponding cells

54 Chapter 2. Transversal gates in three-dimensional surface codes

Figure 2.6: The rhombic-dodecahedral lattice (dual to the tetrahedral-octahedral lattice).
We highlight the acute vertices (red) and obtuse vertices (green) of one rhombic
dodecahedron. This image was generated using Great Stella [119].

share a face. The cubic lattice is self-dual while the dual lattice of the tetrahedral-

octahedral lattice is the rhombic-dodecahedral lattice, a portion of which is shown

in Figure 2.6. The rhombic-dodecahedral lattice is a tessellation where every cell

is a rhombic dodecahedron (see Figure 2.4b). There are two types of vertices in

the lattice: acute vertices and obtuse vertices. Four rhombic dodecahedra meet at

obtuse vertices and six rhombic dodecahedra meet at acute vertices.

Let us define a coordinate system for a 3-torus with length L ∈ 2Z+. We use a

standard Cartesian system where the coordinates are (i, j,k) for i, j,k ∈ Z/LZ. The

vertices of the cubic lattice lie at these coordinates, which we divide into two sets:

the coordinates with even sum and the coordinates with odd sum. The centres of the

cubes have half-integer coordinates. We arrange one of the rhombic-dodecahedral

lattices in such a way that the acute vertices of the rhombic dodecahedra are at the

even coordinates. In this arrangement, the obtuse vertices of the rhombic dodecahe-

dra are at the centres of the cubes and the rhombic dodecahedra are centred at odd

coordinates. We illustrate this arrangement in Figure 2.7a. We place the second

rhombic-dodecahedral lattice so that the acute vertices of this lattice are at the odd

coordinates. Consequently, the obtuse vertices of this lattice are at the centres of

cubes and the rhombic dodecahedra are centred at even vertices. The arrangement

of the three lattices is shown in Figure 2.7b.

In the arrangement we have just described, all three lattices are mapped to an

2.1. The rectified picture 55

a) b)

Figure 2.7: Arranging a cubic lattice (green) and two rhombic-dodecahedral lattices (red
and blue) so that their face-rectifications are identical. We show a single cell
from each lattice. Figure adapted from Vasmer and Browne [112].

identical rectified cubic lattice by the face-rectification transformation. To see why

this is true, we compare how the different lattices transform at the same coordinates.

First, we review how the different lattices transform. Under face-rectification, the

cells of the cubic lattice transform into octahedra and the vertices transform into

cuboctahedra. The cells and acute vertices of the rhombic-dodecahedral lattice

transform into cuboctahedra, and the obtuse vertices transform into octahedra. As

the obtuse vertices of rhombic dodecahedra lie at the centres of cubes, all three

lattices transform the same way at these points. Similarly, because the vertices of

cubes and acute vertices of one of the rhombic-dodecahedral lattices both lie at

the centres of the cells of the other rhombic-dodecahedral lattice, the three lattices

transform in the same way at these points. Therefore the three lattices transform

identically at every coordinate.

Now that we have shown that three Kitaev picture lattices correspond to one

rectified-picture lattice, we detail the stabilizer generators of a stack of three codes

in the rectified picture. We place three qubits at each vertex (one per code) of a

rectified cubic lattice that tessellates the 3-torus. The cells of this lattice are three-

colourable i.e. we can assign each cell one of three colours so that cells that share

a face have different colours. The colours have no physical significance, but we use

56 Chapter 2. Transversal gates in three-dimensional surface codes

them to define the stabilizer groups of the three codes. We choose a colouring where

octahedra are green (g) and the two sets of cuboctahedra are red (r) and blue (b) (see

Figure 2.5). We assign each face of the lattice the colour of the two cells it is part of.

For example, a face shared by a r-cuboctahedron and a g-octahedron is a rg-face.

We use the colours to label the three codes, SCc for c∈ {r,g,b}. We associate the X-

stabilizer generators of SCc with c-cells and we associate the Z-stabilizer generators

of SCc with c′c′′-faces. Table 2.1 and Figure 2.8 detail the stabilizer generators of

the three codes in the stack.

Code X stabilizers Z stabilizers

SCr r-cuboctahedra bg-faces (triangles)
SCb b-cuboctahedra rg-faces (triangles)
SCg g-octahedra rb-faces (squares)

Table 2.1: The stabilizer generators of a stack of three 3D surface codes defined on a
rectified cubic lattice.

a) SCr X-stabilizer b) SCr Z-stabilizer c) SCg X-stabilizer d) SCg Z-stabilizer

Figure 2.8: The stabilizer generators of SCr and SCg. The stabilizer generators of SCb

are identical to those of of SCr except with red and blue interchanged. The
maximum stabilizer weight in SCg is six and the the maximum stabilizer weight
in SCr and SCb is twelve. Figure adapted from Vasmer and Browne [112].

Given the definitions of the stabilizer generators in Table 2.1, we can easily

understand how stabilizers from different codes overlap. For example, we imme-

diately observe that X-stabilizer generators from two different codes overlap on a

Z-stabilizer of the third code. This would not be obvious if we considered three

interlocking lattices in the Kitaev picture. We note that this overlap property is

similar to the tri-orthogonality property we discussed in Section 1.3.1, except now

we have three codes instead of one. In Section 2.2, we use the overlap of stabilizers

in our proof that CCZ is transversal for a stack of three 3D surface codes. But first,

2.1. The rectified picture 57

in the next section, we introduce a family of 3D surface codes defined on rectified

cubic lattices with boundaries.

2.1.3 A family of 3D surface codes with boundaries

If we want to use 3D topological codes in a fault-tolerant quantum computing ar-

chitecture, then defining our codes on tessellations of the 3-torus is not the most

practical choice. One obvious problem is that the 3-torus cannot be embedded in

3D space. In this section, we define a family of 3D surface codes defined on lattices

that tessellate the cube, and we verify the properties of the codes.

We consider rectified cubic lattices with boundaries and we use the same colour-

ing of the cells as we used in Section 2.1.2. On the boundaries, we assign faces that

are part of only one cell the colour they would have in an infinite lattice. Because

of the regularity of the rectified cubic lattice, we can always imagine a lattice with

boundaries to be a restricted region of the infinite lattice. The lattices in our family

have two types of boundary. One type of boundary slices a layer of cuboctahedra in

half and the other type of boundary slices between a layer of cuboctahedra. We call

these boundaries half-cuboctahedra boundaries and full-cuboctahedra boundaries,

respectively (see the boundaries of the lattice in Figure 2.3b). Each lattice in our

family is a tessellation of the cube, with two half-cuboctahedron boundaries and

four full-cuboctahedron boundaries. Opposite boundaries are the same type. We

parameterize the lattices in our family with an integer, d≥ 2, which will ultimately

be equal to the code distance of the 3D surface codes supported on the corresponding

lattice. Figure 2.9 shows the d= 3 lattice.

We specify the micro-structure of a distance d lattice by dividing it into 2D

layers, each of which is parallel to the half-cuboctahedra boundaries. There are two

types of layer in this division, which we call “chequerboard layers” and “diamond

layers”, due to their appearance. Figure 2.10 shows the structure of both types

of layer in the d = 3 lattice and the d = 4 lattice. In a distance d lattice, there

are d chequerboard layers and (d− 1) diamond layers and the two types of layer

alternate. The half-cuboctahedra boundaries are themselves chequerboard layers.

Layers directly above and below each other are connected by edges according to the

structure of the rectified cubic lattice (see Figure 2.9).

Next, we describe and verify the properties of the three 3D surface codes defined

58 Chapter 2. Transversal gates in three-dimensional surface codes

Figure 2.9: The d= 3 rectified cubic lattice with boundaries. The top and bottom bound-
aries are half-cuboctahedra boundaries and the other four boundaries are full-
cuboctahedra boundaries. Figure adapted from Vasmer and Browne [112].

Figure 2.10: The two types of layer in a d= 3 (left) and a d= 4 (right) rectified cubic lattice
with boundaries. Chequerboard layers are shown in blue and diamond layers
are shown in red. Figure adapted from Vasmer and Browne [112].

on a distance d lattice. We place three qubits at each vertex of the lattice (one qubit

per code). Each chequerboard layer in the lattice has d2 vertices and each diamond

layer has 2d(d−1) vertices. Therefore, the number of physical qubits in each code

is

n= d3 + 2d(d−1)2 = 3d3−4d2 + 2d. (2.4)

As in Section 2.1.2, we label each code, SCc, by the colour of its X-stabilizer genera-

tors. Specifically, we associate the X-stabilizer generators of SCc with c-cells and we

associate the Z-stabilizer generators of SCc with c′c′′-faces, where c,c′, c′′ ∈ {r,g,b}.

2.1. The rectified picture 59

Table 2.1 and Figure 2.8 show the stabilizer generators of the three codes. We de-

note the X-stabilizer group of SCc by ScX and we denote the Z-stabilizer group of

SCc by ScZ .

We also associate colours with the boundaries of our rectified cubic lattices.

We define a c-boundary to be a boundary that corresponds to a rough boundary

in SCc and a smooth boundary in SCc′ and SCc′′ . Since the underlying Kitaev

picture lattices are regular, we can use a simple definition of the rough and smooth

boundaries, which is equivalent to the definition in terms of excitations we used in

Section 1.2.1. In all three codes in the stack, each qubit in the bulk of the lattice

is in the support of two X-stabilizer generators and four Z-stabilizer generators.

We define a rough boundary to be a boundary of the lattice where every qubit is

in the support of a single X-stabilizer generator and four Z-stabilizer generators.

Similarly, we define a smooth boundary to be a boundary of the lattice where every

qubit is in the support of twoX-stabilizer generators and fewer than four Z-stabilizer

generators.

If we want stacks of codes in our family to have a transversal CCZ gate, we need

to make sure that the logical operators of different codes have the correct overlap

(see Section 2.2). It transpires that this requirement will be satisfied if the lattices

in our family have two boundaries of each colour where opposite boundaries have

the same colour. The half-cuboctahedra boundaries in a distance d lattice are au-

tomatically valid g-boundaries. However, the full-cuboctahedra boundaries are nei-

ther r-boundaries nor b-boundaries. The problem is that the four full-cuboctahedra

boundaries are identical. Therefore, we need to break the symmetry between the

four full-cuboctahedra boundaries in just the right way. We do this by adding ad-

ditional low weight stabilizers with support on full-cuboctahedra boundaries to two

of the codes. These stabilizers are analogous to the weight-two stabilizers on the

boundaries of the 2D surface code shown in Figure 2.2c. In Figure 2.11, we show the

additional stabilizers we add to SCr and SCb to ensure that the full cuboctahedra

boundaries have the correct structure.

We now show that with the additional stabilizers shown in Figure 2.11, the

three codes have the desired boundaries. That is, the lattice has two boundaries

of each colour and opposite boundaries are the same colour. We recall that c-

60 Chapter 2. Transversal gates in three-dimensional surface codes

Figure 2.11: Low weight stabilizers on the boundaries of the lattice. On the front (full-
cuboctahedra) boundary, we associate SCr X-stabilizers with the faces of
the b-cuboctahedra (blue faces). In addition, we associate SCb Z-stabilizers
with some of the edges of these blue faces (red circular segments). These
edges would have been part of rg-faces in the infinite lattice. In effect, we
have added multiple 2D “flattenings” of r-cuboctahedra to the lattice. The
edges of these 2D flattenings are themselves 1D flattenings of rg-faces. We
add analogous stabilizers to the back boundary. Next, consider the left and
right boundaries. We associate SCb X-stabilizers with the faces of the r-
cuboctahedra (red faces) on these boundaries. We also associate SCr Z-
stabilizers with some of the edges of these faces (blue circular segments).
Figure adapted from Vasmer and Browne [112].

boundaries are defined to be rough boundaries in SCc and smooth boundaries in

SCc′ and SCc′′ . First consider top and bottom boundaries in Figure 2.11. We claim

these boundaries are g-boundaries. Each vertex on the top/bottom boundaries is a

member of a single g-octahedron (SCg X-stabilizer). Each vertex is also a member

of four rb-faces (SCg Z-stabilizers), except where a top/bottom boundary meets

one of the other boundaries. The top/bottom boundaries are, therefore, rough

boundaries in SCg. Each vertex on the top/bottom boundaries is a member of

two r-cuboctahedra (including 2D flattenings shown in Figure 2.11) and two b-

cuboctahedra (including 2D flattenings), except where the top/bottom boundaries

meet a left/right boundary or a front/back boundary, respectively. The vertices on

the top/bottom boundaries are all members of fewer than four rg-faces (including

1D flattenings shown in Figure 2.11) and fewer than four bg-faces (including 1D

flattenings). Therefore, the top/bottom boundaries are smooth boundaries in SCb
and SCr.

2.1. The rectified picture 61

The next pair of boundaries we consider are the front and back boundaries in

Figure 2.11. We claim that these boundaries are b-boundaries. Due to the additional

stabilizers shown in Figure 2.11, each vertex on the front/back boundaries is a mem-

ber of two r-cuboctahedra (including 2D flattenings) and two g-octahedra, except

where the front/back boundaries meet the left/right boundaries and top/bottom

boundaries, respectively. However, each vertex on the front/back boundaries is a

member of a single b-cuboctahedron. Every vertex on the front/back boundaries is

a member of fewer than four rb-faces and fewer than four bg-faces (including 1D

flattenings). But each vertex is a member of four rg-faces (including 1D flattenings)

except for the vertices that are also on one of the other boundaries. Therefore,

the front/back boundaries are rough boundaries in SCb and smooth boundaries in

SCr and SCg, as claimed. The argument for the left and right boundaries being

r-boundaries is identical to the argument for the b-boundaries, except with r and b

exchanged.

Next, we show that each of the three codes has one logical qubit. The number

of logical qubits in a stabilizer code is equal to the number of physical qubits minus

the number of independent stabilizer generators. So we need to count the stabilizer

generators of each of the three codes. We begin with SCg. In this code, X-stabilizer

generators are associated with g-cells (octahedra) and Z-stabilizer generators are

associated with rb-faces. Consider the top g-boundary of a distance d lattice oriented

the same way as the lattice in Figure 2.11. This boundary has the structure of

a chequerboard layer and each vertex on this boundary is a member of a single

(complete or incomplete) octahedron. Chequerboard layers have d2 vertices so we

have d2 octahedra that are situated directly below the top boundary. Every other

chequerboard layer (except the bottom layer) also has d2 octahedra situated below

it. There are d chequerboard layers so there are d2(d− 1) octahedra in a distance

d lattice. The X-stabilizers we associate with these octahedra are all independent.

Therefore, the number of independent X-stabilizer generators in SCg, i.e. the rank

of SgX , is

rank(SgX) = d2(d−1). (2.5)

We now count the Z-stabilizer generators of SCg. As we stated previously,

these stabilizers are associated with the rb-faces of the lattice. We split these faces

62 Chapter 2. Transversal gates in three-dimensional surface codes

into two groups: faces that are parallel to g-boundaries, and faces that are parallel

to the r-boundaries or the b-boundaries. In a distance d lattice, we have (d− 1)2

rb-faces parallel to the g-boundaries in each diamond layer. There are d−1 diamond

layers, so there are (d−1)3 rb-faces parallel to the g-boundaries. Each chequerboard

layer cuts through 2d(d− 1) rb-faces that are parallel to the r-boundaries or the

b-boundaries. There are d chequerboard layers, so there are 2d2(d−1) of these rb-

faces. Therefore, the total number of rb-faces in a distance d lattice is (d−1)(3d2−

2d+1). However, these stabilizers are not all independent. We can multiply the Z-

stabilizers associated with the rb-faces of any cuboctahedron (both full cuboctahedra

and half cuboctahedra) to get the identity. Consequently, we must remove one Z-

stabilizer from the list of independent stabilizer generators for every cuboctahedron

in the lattice. Each chequerboard layer has (d− 1)2 cuboctahedra and there are

d chequerboard layers, so in total we have d(d− 1)2 cuboctahedra in a distance d

lattice. Subtracting the redundant stabilizers, we have

rank(SgZ) = (d−1)(2d2−d+ 1). (2.6)

Combining Equations 2.5 and 2.6, we see that the total number of independent

stabilizer generators in SCg is

rank(SgX) + rank(SgZ) = (d−1)(3d2−d+ 1),

= 3d3−4d2 + 2d−1.
(2.7)

By comparing Equations 2.7 and 2.4, we see that SCg has has n− 1 independent

stabilizer generators, where n is the number of physical qubits in the code. Therefore,

SCg encodes a single logical qubit.

Next, we count the stabilizer generators of SCb. The X-stabilizer generators

of this code are associated with b-cells (including the 2D flattenings) and the Z-

stabilizer generators are associated with rg-faces (including the 1D flattenings).

First, we count the X-stabilizer generators of SCb. Consider the chequerboard lay-

ers parallel to the g-boundaries. Each chequerboard layer has (d−1)2 cuboctahedra

(half of which are r and half of which are b). There are d chequerboard layers, so

there are d(d− 1)2/2 SCb X-stabilizers associated with b-cuboctahedra (either full

2.1. The rectified picture 63

cuboctahedra or half cuboctahedra). Now consider the r-boundaries of the lattice.

On each r-boundary we have additional SCb X-stabilizers associated with the faces

of r-cuboctahedra (as explained in Figure 2.11). There are d(d−1) of these faces in

a distance d lattice so we have d(d−1) additional SCb X-stabilizers. The stabilizers

we have just detailed are all independent. Hence, the rank of SbX is

rank(SbX) = (d−1)
2 (d2 +d). (2.8)

We now count the Z-stabilizer generators of SCb. These stabilizers are as-

sociated with rg-faces (and their 1D flattenings). The rg-faces are part of r-

cuboctahedra, which we counted in the previous paragraph. The (d− 1)2/2 half

r-cuboctahedra on the g-boundaries each have four rg-faces. The chequerboard lay-

ers that are parallel to the g-boundaries but are not the g-boundaries each have

(d−1)2/2 full r-cuboctahedra with eight rg-faces. There are d chequerboard layers

in a distance d lattice and two of these layers are the g-boundaries. Therefore, the

total number of SCb Z-stabilizers associated with rg-faces is 4(d− 1)3. As shown

in Figure 2.11, we also associate SCb Z-stabilizers with the edges of the faces that

belong to b-cuboctahedra on the b-boundaries. These faces are either square or tri-

angular. Each square face has three independent Z-stabilizers associated with its

edges and each triangular face has two independent Z-stabilizers associated with

its edges. There are 2(d− 1) such triangular faces and (d− 1)(d− 2) such square

faces on the b-boundaries. Therefore, the total number of independent weight-two

Z-stabilizer generators in SCb is (d−1)(3d−2).

Some of the Z-stabilizers we have counted so far are not independent. Consider

a complete g-octahedron. Half of its faces are rg-faces and half are bg-faces. The

product of the Z-stabilizers associated with the rg-faces is the identity, as each vertex

is part of exactly two rg-faces. The product of all the Z-stabilizers associated with

the rg-faces of each complete r-cuboctahedron is also the identity for the same

reason. Therefore we must remove a single Z-stabilizer from the list of independent

stabilizer generators for each complete octahedron and r-cuboctahedron. Every

chequerboard layer parallel to the g-boundaries (except the bottom g-boundary)

has a complete octahedron below all the vertices in the bulk of the layer. There

are therefore (d− 1)(d− 2)2 complete octahedra in a distance d lattice. We have

64 Chapter 2. Transversal gates in three-dimensional surface codes

Figure 2.12: Redundant Z-stabilizers in SCb. We can construct the identity by multiplying
the Z-stabilizers associated with the rg-faces and edges of half octahedra on
the b-boundaries. We have highlighted one such collection of faces and edges
in bright green. Figure adapted from Vasmer and Browne [112].

already counted the (d− 1)2(d− 2)/2 complete r-cuboctahedra. There is also one

other redundancy we have not taken into account. We can construct the identity

by multiplying the Z-stabilizers associated with the rg-faces and edges of the half

octahedra on the b-boundaries, as illustrated in Figure 2.12. There are 2(d−1)(d−2)

of these half octahedra. In total we need to remove (d−1)(3d2−7d+2)/2 redundant

Z-stabilizers from the list of independent stabilizer generators. The rank of SbZ is

therefore

rank(SbZ) = (d−1)
2 (8(d−1)2 + 6d−4−3d2 + 7d−2),

= d−1
2 (5d2−3d+ 2).

(2.9)

Summing Equations 2.8 and 2.9 gives us the number of independent stabilizer

generators in SCb:

rank(SbX) + rank(SbZ) = (d−1)(3d2−d+ 1),

= 3d3−4d2 + 2d−1.
(2.10)

By comparing Equations 2.10 and 2.4, we see that SCb has has n− 1 independent

stabilizer generators, where n is the number of physical qubits in the code. Therefore,

SCb encodes a single logical qubit. SCr also encodes a single logical qubit by the

2.1. The rectified picture 65

Figure 2.13: Canonical Zr (red line), Zg (green line) and Zb (blue line) operators. The
canonical Xc-operators act on every qubit on one of the c-boundaries. Figure
adapted from Vasmer and Browne [112].

same argument, except with r and b swapped everywhere.

To finish our discussion of rectified-cubic codes with boundaries, we detail the

logical operators of the three codes. In SCc, Zc-operators are strings of Z-operators

from one c-boundary to the other and Xc-operators are membranes of X-operators

with a boundary that spans the c′ and c′′-boundaries. It is useful to define a canonical

set of logical operators for each code. The canonical Zc-operators lie along the lines

where c′-boundaries meet c′′-boundaries. That is, given a c′-boundary and a c′′-

boundary that share vertices, a canonical Zc-operator acts on all qubits that are

members of both boundaries. Figure 2.13 shows example canonical Zc-operators

for the three codes in a single stack. These canonical Zc-operators are all weight

d, where d is the integer that parameterizes the lattice. We define the canonical

Xc-operators as membranes of X-operators that act on every qubit on one of the

c-boundaries. The canonical Xg-operators are weight d2 and the canonical Xr and

Xb-operators are weight d2 + (d−1)2.

In this section, we introduced the rectified picture of 3D surface codes and we

used our new picture to better understand the structure of stacks of 3D surface

codes. We also defined a family of 3D surface codes with boundaries. In the next

section, we make use of the rectified picture to show that our family of codes has

two transversal non-Pauli gates, one of which is non-Clifford.

66 Chapter 2. Transversal gates in three-dimensional surface codes

2.2 Transversal CCZ

In this section, we prove that the CCZ gate is transversal for triples of 3D surface

codes with certain properties. Our proof builds on previous proofs of the transver-

sality of non-Clifford gates in tri-orthogonal codes [71, 72, 75, 74, 76]. We recall

that a non-Clifford gate such as the CCZ gate can be combined with the Clifford

group to make a universal gate set. In 2D surface code architectures, implementing

a non-Clifford gate has a relatively large overhead. In contrast, transversal gates

have the lowest possible overhead because they are depth-one circuits and they do

not use ancilla qubits.

We consider a stack of three 3D surface codes defined on the same rectified-

picture lattice. For the sake of clarity, we restrict ourselves to the case where each

code has a single logical qubit, though the proof can be generalized to the case

where the codes have multiple logical qubits. We denote the three codes by SCr,

SCb and SCg. In each code we chose a canonical Xc-operator. Let Hc ∈ Fm×n2 be

the m×n binary parity check matrix of the X-stabilizer generators of SCc, where

n is the number of physical qubits in the code (the same for all three codes), m is

the number of X-stabilizer generators (which could be different for different codes)

and c ∈ {r,g,b}. That is, (Hc)ij = 1 if the X-stabilizer corresponding to row i acts

non-trivially on qubit j and (Hc)ij = 0 otherwise. We denote the row span of Hc

by G0
c . Let Xc ∈ Fn2 by a n-bit vector that describes the support of Xc. That is,

Xc has a 1 at position j if, and only if, Xc acts non-trivially on the qubit at the

vertex corresponding to j. We define the coset G1
c = {Xc+ g : g ∈G0

c}. With these

definitions, we can write the encoded state of SCc as follows:

|α〉c = 1√
|Gαc |

∑
g∈Gαc

|g〉c , (2.11)

where the c subscript on the kets refers to the qubits of SCc, |Gαc | is the number of

elements in Gαc and α ∈ {0,1}. This form of the encoded state can be derived from

applying the X-stabilizer projector to the state |0〉⊗n. Such a state is clearly a +1

eigenstate of the X-stabilizers and will also be a +1 eigenstate of the Z-stabilizers

due to the stabilizer group being Abelian.

We define the overlap of logical operators (including stabilizers) from different

2.2. Transversal CCZ 67

codes to be the vertices of the lattice where all of the logical operators act non-

trivially. And we define the vertex support of a logical operator to be the set of

vertices that host the qubits in the support of the logical operator. To prove our

main theorem, we need the following Lemma.

Lemma 1 Given a finite set of binary vectors {aj}, the parity of their sum is equal

to the sum of their parities.

This lemma is easy to prove. For completeness, we include a proof in Ap-

pendix A. In addition, we need the the following pair of Lemmas, which concern the

overlap of stabilizers and logical operators.

Lemma 2 Consider a stack of three 3D surface codes defined on the same rectified-

picture lattice. Suppose that the overlap of any two X-stabilizer generators of

different codes is equal to the vertex support of a Z-stabilizer of the third code.

Then, the overlap of any two X-stabilizers from different codes is equal to the vertex

support of a Z-stabilizer of the third code.

Proof. Let t∈G0
r denote the support of an X-stabilizer of SCr and let u∈G0

g denote

the support of an X-stabilizer of SCg. We can decompose each of these operators

into sums of vectors denoting the support of stabilizer generators, i.e. t=
∑
i ti and

u=
∑
j uj , where ti and uj are rows of Hr and Hg, respectively. The overlap of these

two operators is given by the following formula:

t◦u=
∑
i

ti ◦
∑
j

uj =
∑
ij

ti ◦uj , (2.12)

where t ◦u denotes the bit-wise binary product between t and u. By assumption,

ti ◦uj is equal to the vertex support of a Z-stabilizer of SCb for any i and j. And

because the set of Z-stabilizers form a group,
∑
ij ti ◦uj = t◦u is also equal to the

vertex support of a Z-stabilizer of SCb. An identical argument holds for any pair of

X-stabilizers of different codes.

Lemma 3 Consider a stack of three 3D surface codes defined on the same rectified-

picture lattice, where each code has one encoded qubit. Assume that the overlap of

any two X-stabilizer generators of different codes is equal to the vertex support of

a Z-stabilizer of the third code. Suppose that we can find three X-operators (one

from each code) that have the following properties:

68 Chapter 2. Transversal gates in three-dimensional surface codes

i The overlap of any two of the X-operators and the X-stabilizer group of the

third code is even.

ii The overlap of the three X-operators is odd.

Then, any three logical X-operators (one from each code) also have the same prop-

erties.

Proof. Let Xr, Xg, and Xb denote the support of Xr, Xg and Xb-operators that

satisfy the requirements of the Lemma. The parity of the overlap of an X-stabilizer

of SCb with aribtrary logical X-operators of SCr and SCg is equal to

|(Xr + t)◦ (Xg +u)◦v| mod 2, (2.13)

where t ∈ G0
r , u ∈ G0

g and v ∈ G0
b denote the support of X-stabilizers in SCr, SCg

and SCb, respectively, and | · | denotes the Hamming weight. We can expand (Xr +

t)◦ (Xg +u)◦v as follows:

(Xr + t)◦ (Xg +u)◦v = (Xr ◦Xg ◦v) + (Xr ◦u◦v) + (t◦Xg ◦v) + (t◦u◦v). (2.14)

By Lemma 1, the parity of (Xr+ t)◦(Xg+u)◦v is equal to the parities of each term

in the expansion shown in Equation 2.14. Let us calculate the parity of each of these

terms in turn.

First, consider (t◦u◦v). By Lemma 2, the bit-wise product of t and u is equal

to the vertex support of a Z-stabilizer of SCb. As v denotes the support of an

X-stabilizer of SCb and stabilizers of the same code commute, |t◦u◦ v|= 0 mod 2

for any t, u and v. Next, consider (Xr ◦u ◦ v). By Lemma 2, u ◦ v is equal to the

vertex support of a Z-stabilizer of SCr. Logical operators and stabilizers of the

same code commute, which implies that |Xr ◦u◦v|= 0 mod 2 for any u and v. An

analogous argument holds for |t◦Xb ◦v|. Finally, |Xr ◦Xg ◦v|= 0 mod 2 for any v,

by assumption. We have found that every term in the expansion in Equation 2.14

has even Hamming weight, which implies that the sum has even Hamming weight.

Therefore, the overlap of any X-stabilizer of SCb with any logical X-operators of

SCr and SCg is even. An identical argument holds for the logical X-operators of

any other pair of codes.

2.2. Transversal CCZ 69

Next, we prove the second property. The parity of the overlap of any three

logical-X operators is given by the following formula:

|(Xr + t)◦ (Xg +u)◦ (Xb+v)| mod 2, (2.15)

where t ∈G0
r , u ∈G0

g and v ∈G0
b again denote the support of X-stabilizers in SCr,

SCg and SCb, respectively. We can expand (Xr + t)◦ (Xg +u)◦ (Xb+v) as follows:

(Xr + t)◦ (Xg +u)◦ (Xb+v) =Xr ◦Xg ◦Xb

+ (Xr ◦Xg ◦v) + (Xr ◦u◦Xb) + (t◦Xg ◦Xb)

+ (Xr ◦u◦v) + (t◦Xg ◦v) + (t◦u◦Xb)

+ t◦u◦v.

(2.16)

By Lemma 1, the parity of (Xr + t)◦ (Xg +u)◦ (Xb+ v) is equal to the sum of the

parities of each term in the expansion shown in Equation 2.16. By the argument

for the previous property, we know that every term except (Xr ◦Xg ◦Xb) has even

Hamming weight, for any t, u, and v. The parity of (Xr + t)◦ (Xg +u)◦ (Xb+v) is

therefore determined by the parity of (Xr ◦Xg ◦Xb), which is odd by assumption.

Therefore, the overlap of any three logical X-operators (from different codes) is

odd.

We are now ready to state and prove our main theorem.

Theorem 3 Consider a stack of three 3D surface codes defined on the same rectified-

picture lattice, where each code has one encoded qubit. Suppose that that the stack

of codes satisfies the following conditions:

i The overlap of any two X-stabilizer generators of different codes is equal to

the vertex support of a Z-stabilizer of the third code.

ii There exist three X-operators (one from each code) with the following prop-

erties:

a The overlap of any two of the X-operators and the X-stabilizer group of

the third code is even.

b The overlap of the three X-operators is odd.

70 Chapter 2. Transversal gates in three-dimensional surface codes

Then, applying CCZ gates to each triple of physical qubits (one from each code) at

the vertices of the lattice implements a logical CCZ gate.

Proof. Define U =CCZ⊗n, where each CCZ gate acts on the three qubits (one per

code) at one of the n vertices of the lattice. We consider the initial state

|αβγ〉rgb =
∑
t∈Gαr
u∈Gβg
v∈Gγ

b

|t〉r |u〉g |v〉b , (2.17)

where α,β,γ ∈ {0,1}. We have omitted the normalization factor. Now, we apply U

to |αβγ〉rgb:

U |αβγ〉rgb =
∑
t∈Gαr
u∈Gβg
v∈Gγ

b

CCZ⊗n |t〉r |u〉g |v〉b ,

=
∑
t∈Gαr
u∈Gβg
v∈Gγ

b

(−1)|t◦u◦v| |t〉r |u〉g |v〉b ,
(2.18)

where u ◦ v denotes the bit-wise (binary) product between u and v and |t| denotes

the Hamming weight of t. We want to show that U implements a logical CCZ,

which has the following action on the encoded computational basis states:

CCZ|αβγ〉=


−|αβγ〉 α= β = γ = 1,

|αβγ〉 else.

(2.19)

To show that U implements the correct logical operator, we calculate (−1)|t◦u◦v|

for each encoded computational basis state. We can expand t◦u◦v as follows:

t◦u◦v = (αXr + t′)◦ (βXg +u′)◦ (γXb+v′), (2.20)

where t′ ∈Gr0, u′ ∈G
g
0 and v′ ∈Gb0. Xr is an n-bit vector describing the support of

a Xr-operator (likewise for Xg and Xb). We emphasize that (Xr + t′) describes the

support of an operator that is logically equivalent to Xr.

First, consider the exponent for
∣∣000

〉
, which is equal to |(t′ ◦ u′ ◦ v′)|. By

2.2. Transversal CCZ 71

Lemma 2, the overlap any two X-stabilizers of SCr and SCg is equal to the overlap

of a Z-stabilizer of SCb. As the stabilizers of the same code commute, |t′ ◦u′ ◦v′|= 0

mod 2 for all t′, u′ and v′ and therefore (−1)|t◦u◦v| = 1 for
∣∣000

〉
. Next, consider the

exponent for
∣∣001

〉
, which is equal to |t′ ◦u′ ◦ (Xb+ v′)|. We know that the overlap

any two X-stabilizers of SCr and SCg is equal to the overlap of a Z-stabilizer of SCb.

Logical operators and stabilizers of the same code commute, so the overlap of Xb

with any pair of stabilizers from the other two codes is always even. This implies

that |t′ ◦u′ ◦ (Xb + v′)| = 0 mod 2 for every t′, u′ and v′. Therefore (−1)|t◦u◦v| = 1

for
∣∣001

〉
. We can make an analogous argument for the states

∣∣100
〉
and

∣∣010
〉
.

The next computational basis state we consider is
∣∣110

〉
. The exponent for this

state is |(Xr + t′)◦ (Xg +u′)◦v′|. By Lemma 3, the overlap of any Xr operator, Xg

operator and SCb stabilizer is even, so |(Xr+ t′)◦ (Xg +u′)◦v′|= 0 mod 2 for all t′,

u′ and v′. Hence, (−1)|t◦u◦v| = 1 for
∣∣110

〉
. The same is true for

∣∣101
〉
and

∣∣011
〉
by

an identical argument. Finally, for the state
∣∣111

〉
we must consider the exponent

|(Xr + t′)◦ (Xg +u′)◦ (Xb+v′)|. By Lemma 3, any three logical X-operators (from

different codes) have odd overlap so |(Xr + t′)◦ (Xg +u′)◦ (Xb+ v′)|= 1 mod 2 for

all t′, u′ and v′, which implies that (−1)|t◦u◦v| =−1 for
∣∣111

〉
.

Given the proof of Theorem 3, to show that a stack of three 3D surface codes

has a transversal CCZ, we only need to show that the codes satisfy the conditions of

the theorem. We note that the conditions in Theorem 3 are very similar to those in

the definition of tri-orthogonal codes, which we discussed in Section 1.3.1. The main

difference is that the conditions in our theorem concern the overlap of stabilizers and

logical operators in different codes whereas tri-orthogonality concerns the overlap of

stabilizers and logical operators in the same code.

The family of codes we described in Section 2.1.3 are an example of a family

of stacked 3D surface codes with a transversal CCZ. We recall that these codes

are defined on rectified cubic lattices with boundaries (see Figure 2.11). Consider

the first condition of Theorem 3 (stabilizer overlap). From the definition of the

stabilizers (see Table 2.1), it is clear that the overlap of X-stabilizer generators from

different codes in the bulk is equal to the vertex support of a Z-stabilizer of the

third code. However, this condition is not necessarily satisfied stabilizers on the

boundaries, because they can overlap on edges. However, by inspecting Figure 2.11,

72 Chapter 2. Transversal gates in three-dimensional surface codes

Figure 2.14: The overlap of a stabilizers on the boundaries of a rectified cubic lattice. A
SCg X-stabilizer (dark green) and a SCr X-stabilizer (dark blue) overlap
on an edge (dark red). A SCb Z-stabilizer is associated with this edge, as
explained in Figure 2.11. Figure adapted from Vasmer and Browne [112].

we conclude that the overlap of any pair of X-stabilizers (from different codes) that

are associated with lattice elements on the boundaries is equal to the vertex support

of a Z-stabilizer of the third code. We illustrate one of the cases where stabilizers

overlap on an edge in Figure 2.14.

Next, we consider the second condition of Theorem 3 (logical operator overlap).

By inspecting Figure 2.13, we see that the overlap of any two canonical X-operators

of different codes is equal to the vertex support of the canonical Z-operator of the

third code. This implies that any two canonical X-operators of different codes have

even overlap with the X-stabilizers of the third code, because logical operators and

stabilizers of the same code commute. In addition, the fact that the overlap of any

two canonical X-operators of different codes is equal to the vertex support of the

canonical Z-operator of the third code implies that the three canonical X-operators

have odd overlap, because logical X- and Z-operators acting on the same qubit

anticommute. We have shown that our family of 3D surface codes with boundaries

satisfy the assumptions of Theorem 3. Therefore, these codes have a transversal

CCZ gate.

2.2. Transversal CCZ 73

2.2.1 Transversal CZ

Stacks of 3D surface codes that have a transversal CCZ also have a transversal CZ.

We make this statement precise in the following corollary.

Corollary 1 Consider a stack of three 3D surface codes defined on the same

rectified-picture lattice, where each code has one encoded qubit. Let Xc denote

a logical X-operator of the code SCc, where c ∈ {r,g,b}. Assume that CCZ⊗n im-

plements CCZ, where the physical CCZ gates act on the triple of qubits at each of

the n vertices of the lattice. Then, applying CZ gates to the physical qubits of SCc
and SCc′ at the vertices in the vertex support of a Xc′′-operator implements CZcc′ ,

where CZcc′ denotes a logical CZ operator acting on the encoded qubits of SCc and

SCc′ .

Proof. We recall the definition of the group commutator of two operators A and

B: K[A,B] = ABA†B†. One can easily verify that K[CCZ,Xk] = CZij , where i,

j and k label three qubits and the operator subscripts denote which qubits the

respective operators act on (CCZ acts on all three so we omit the indices for this

operator). Therefore, we can implement CZrg by applying the product of transversal

logical operators K[CCZ,Xb]. Now, consider the action of these transversal logical

operators on the physical qubits of the three codes. All triples of qubits at vertices

that are not in the vertex support of Xb are acted upon by CCZ×CCZ† = I. All

triples of qubits at vertices that are in the vertex support of Xb are acted upon by

K[CCZ,Xb] = CZrg. Therefore, we can implement a transversal CZrg-operator by

applying CZ gates to pairs of physical qubits (one from SCr and one from SCg) that

lie on the vertices in the vertex support of a Xb-operator. The argument for CZrb
and CZgb is identical.

2.2.2 Universal gate set

We have shown that stacks of 3D surface codes have transversal CCZ and CZ gates.

However, these two gates do not form a universal set of gates. For this, we also need

another gate, e.g. the Hadamard gate [61]. However, this gate cannot be transversal

without violating the no-go result of Eastin and Knill [62], which states that any code

that can correct any single-qubit error cannot have a universal and transversal set of

encoded gates. Therefore, we need to find a method for implementing a Hadamard in

74 Chapter 2. Transversal gates in three-dimensional surface codes

3D surface codes. Fortunately, this can be achieved using CZ, |+〉 state preparation

and an X-basis measurement, as shown in Figure 2.15. We have just shown that CZ

is transversal in 3D surface codes and we can accomplish the other two operations

using state preparation and measurement procedures that are completely analogous

to those used in 2D surface codes (which we described in Section 1.3.1). Using

the circuit in Figure 2.15 and our transversal CCZ gate, we can implement a fault-

tolerant and universal set of gates using 3D surface codes with smaller time overhead

than is required in 2D surface codes. Whether the overall overhead is smaller is a

more subtle question, which we return to in Chapter 4.

|ψ〉 • X •

|+〉 • H |ψ〉

Figure 2.15: A circuit which implements a H-gate using |+〉 state preparation, X-basis
measurement and CZ [78].

2.3 Generalizations of the rectified picture

We discovered the rectified picture by generalizing the rotated picture of 2D surface

codes. Therefore, it is natural to ask whether we can generalize the rectified picture.

From a more practical standpoint, our family of 3D surface codes (see Section 2.1.3)

may not be the most efficient in terms of number of logical qubits and code distance.

Generalizing the rectified picture may enable us to find more efficient codes with a

transversal CCZ. In this section, we first try to find other examples of rectified-

picture lattices in 3D. Then we consider generalizations of the rectified picture to

higher dimensions and curved spaces.

Our first task is find other lattices that support three 3D surface codes in the

rectified picture. We say a lattice supports n lattices in the rectified picture if we

can partition the cells and faces into n sets in such a way that we can define a valid

3D surface code for each set. In 2D there are many lattices that support two surface

codes in the rotated picture. For example, the lattices in Figure 2.2 support two

different 2D surface codes (either we haveX-stabilizers on red faces and Z-stabilizers

on blue faces or we have X-stabilizers on blue faces and Z-stabilizers on red faces).

Indeed, any planar 4-valent lattice will support two surface codes in the rotated

picture [115, Section 5].

2.3. Generalizations of the rectified picture 75

In 3D, we have not found any other any convex uniform lattices that support

three 3D surface codes in the rectified picture. A convex uniform 3D lattice is

a tiling of 3D space by non-overlapping uniform polyhedra, where uniform means

that every polyhedron (and the lattice) are vertex-transitive [113, 120]. We have

found an example of a convex uniform lattice that supports four 3D surface codes

in the rectified picture: the cubic lattice. Suppose that we colour the cells of the

cubic lattice with four colours so that each cube has the same colour as the cubes

with which it shares exactly one vertex (see Figure 2.16). With this colouring the

cubic lattice supports four 3D surface codes in the rectified picture. We place four

qubits at each vertex (one per code) and we index the four codes with the colours

c∈ {r,g,b,y}. The stabilizer generators of the four codes are shown in Table 2.2. The

Code X-stabilizers Z-stabilizers

SCr r-cells bg-faces, by-faces and gy-faces
SCg g-cells rb-faces, ry-faces and by-faces
SCb b-cells rg-faces, ry-faces and gy-faces
SCy y-cells rb-faces, rg-faces and bg-faces

Table 2.2: The stabilizer generators of the four 3D surface codes supported on the same
cubic lattice (in the rectified picture).

idea of defining a 3D surface code the cubic lattice in this way is due to Kubica [121].

However, he did not consider multiple 3D surface codes defined on the same cubic

lattice.

Remarkably, the cubic lattice surface codes we have just defined are gauge

choices of the 3D Bacon-Shor code [122], a well-known subsystem code. We recall

that in a subsystem code, the encoded qubits can be divided into logical qubits

(which we use to store information) and gauge qubits (whose state we don’t care

about). To fix the gauge of a subsystem code, we fix the gauge qubits to be in

some stabilizer state (a stabilizer state is a k= 0 stabilizer code). It is widely-known

that the 2D surface code is a gauge choice of the 2D Bacon-Shor code, see e.g. [118,

Section 2].

In the 3D Bacon-Shor code, we place qubits on the vertices of a cubic lattice.

We use a coordinate system where the edges of the cubic lattice are parallel to either

ı̂, ̂ or k̂ (the three unit vectors in the standard basis). The gauge group of the 3D

Bacon-Shor code is generated by X ⊗X and Z⊗Z operators associated with the

76 Chapter 2. Transversal gates in three-dimensional surface codes

Figure 2.16: A cubic lattice coloured with four colours. Cubes which share exactly one
vertex have the same colour. Figure adapted from Vasmer and Browne [112].

edges of the cubic lattice. The X gauge generators are associated with edges parallel

to ı̂ and ̂. The Z gauge generators are associated with edges parallel to ̂ and k̂.

The stabilizer group of the 3D Bacon-Shor code is generated by “nearest plane”

operators. That is, the X-stabilizer generators consist of X-operators acting on all

the qubits in two ̂-k̂ planes (planes parallel to ̂ and k̂) that are adjacent in the ı̂

direction. Analogously, the Z-stabilizer generators consist of Z-operators acting on

all the qubits in two ı̂-̂ planes that are adjacent in the k̂ direction.

A stabilizer code defined by a stabilizer group S is a gauge choice of a subsystem

code defined by the gauge group G1 if the following inclusions hold [72, 97]:

S1 ⊆ S ⊆ G1, (2.21)

where S1 = Z(G1) is the stabilizer group of the subsystem code. Consider SCr as

defined in Table 2.2. The X-stabilizer generators of SCr are associated with r-

cubes. We can construct these operators from the X gauge generators of the 3D

Bacon-Shor code (X⊗X operators associated with edges parallel to either ı̂ or ̂).

The Z-stabilizer generators of Sr are associated with bg-, by- and gy-faces. We can

construct these operators from the Z gauge generators of the 3D Bacon-Shor code

(Z ⊗Z operators associated with edges parallel to either ̂ or k̂). Therefore, the

2.3. Generalizations of the rectified picture 77

gauge group of the 3D Bacon-Shor code contains the stabilizer group of SCr.

Now consider the stabilizers of the 3D Bacon-Shor code. We can construct any

X ̂-k̂ nearest plane operator from the X-stabilizer generators of SCr (r-cubes). We

can construct any ı̂-̂ Z nearest plane operators from the Z-stabilizer generators of

SCr (bg-, by- and gy-faces). This can seen by considering the relevant cells and faces

of the cubic lattice in Figure 2.16. Therefore, the stabilizer group of SCr contains

the stabilizer group of the 3D Bacon-Shor code, which implies that SCr is a gauge

choice of the 3D Bacon-Shor code. The same argument holds for all the other 3D

surface codes defined in Table 2.2 by symmetry.

We have managed to find one other example of a rectified-picture lattice in 3D,

the cubic lattice. Using this lattice may have advantages over the rectified cubic

lattice, due to its regularity and the fact that the surface codes defined on it have

maximum stabilizer weight of eight. Also, the fact that these surface codes are

gauge choices of the 3D Bacon-Shor code means that we should be able to measure

gauge operators instead of stabilizers, reducing the weight of the operators we have

to measure still further. However, to fully understand whether the cubic lattice is

preferable, we need to check if CCZ is transversal for codes defined on this lattice

(with and without boundaries). We also need to investigate the decoding problem

and estimate the error threshold. We leave these tasks for future work.

2.3.1 Transforming surface codes into colour codes

In the next section, we present a generalization of the rectified picture to higher

dimensions and to hyperbolic space. But before we do this, it is useful to consider

the relationship between the rectified picture and colour codes in more detail. We

illustrate this connection with an example, showing that one can transform three

3D surface codes into a colour code by encoding the physical qubits of the surface

codes using small colour codes. This provides a simple implementation of the local

Clifford circuits for transforming surface codes into colour codes which have been

proven to exist [39]. Our implementation is a generalization of a result due to Criger

and Terhal who showed that one can transform a pair of 2D surface codes into a

2D colour code by encoding pairs of physical qubits in the [[4,2,2]] error detecting

code [123]. In our 3D construction, we use the [[8,3,2]] code instead of the [[4,2,2]]

code.

78 Chapter 2. Transversal gates in three-dimensional surface codes

The [[8,3,2]] code can be regarded as a 3D colour code defined on a cube with

qubits on the vertices (see Figure 2.17). We recall that in 3D colour codes, we place

qubits at vertices, we associate X-stabilizer generators with cells, and we associate

Z-stabilizer generators with faces. Therefore, the X-stabilizer of the [[8,3,2]] code

acts on all the qubits and the Z-stabilizer generators are associated with the faces

of the cube. The X-operators are products of X-operators acting on all qubits on

the same face (opposite faces support X-operators that act on the same encoded

qubit). The Z-operators are products of Z-operators acting on the qubits at the

endpoints of edges linking the faces that support the corresponding X-operators.

The 1-skeleton (vertices and edges) of a cube is a bipartite graph, and we use this

to divide the physical qubits into two sets. We can implement a transversal logical

CCZ-gate in the [[8,3,2]] code by applying T and T † respectively to the qubits in

each of the bipartite sets. This fact can be verified by computing the action of T

and T † on the codeword kets [124].

In a 3D colour code, we can assign faces the colours of the cells they are members

of. For example, a face that is a member of a c-cell and a c′-cell is a cc′-face. Due

to the 4-colourability of the cells in a 3D colour code lattice, each cell’s faces are

3-colourable. Consider a 3D colour code lattice where each cell is assigned a colour

from the set {r,g,b,y}. The [[8,3,2]] code could be the cell of such a lattice, say with

colour y. Then the its faces would be coloured ry, gy and by. We use these colours to

index the logical operators of the [[8,3,2]] code. That is, we denote the X-operators

that are supported on the cy-faces by Xcy, where c ∈ {r,g,b}. Analogously, we use

Zcy to denote the Z-operators that are supported on edges that link the cy-faces.

This notation is illustrated in Figure 2.17.

Now that we have introduced the [[8,3,2]] code, we can describe the transfor-

mation that maps three 3D surface codes to a single 3D colour code. Consider three

3D surface codes defined on a rectified cubic lattice that tessellates the 3-torus.

We assume that the cells of the rectified cubic lattice have the same colours as in

Section 2.1.2. To transform the three codes, we encode the three physical qubits

at each vertex of lattice using the [[8,3,2]] code. More specifically, we encode the

physical qubits of SCc as the cy-qubits of the [[8,3,2]] codes. This allows us to under-

stand the transformation geometrically. For example, consider a SCg X-stabilizer

2.3. Generalizations of the rectified picture 79

a) b)

|q1〉= |0〉

|q2〉= |ψgy〉 •

|q3〉= |0〉

|q4〉= |0〉

|q5〉= |ψby〉 •
|q6〉= |+〉 •
|q7〉= |0〉

|q8〉= |ψry〉 •
c)

Figure 2.17: The [[8,3,2]] code as a 3D colour code. In Figure 2.17a, we show our labelling
of the qubits, which we use in the encoding circuit shown in Figure 2.17c.
In Figure 2.17b, we show the [[8,3,2]] code as if it was a cell in a larger
3D colour code. The highlighted Xcy-operators act on the encoded qubits
corresponding to |ψcy〉 in Figure 2.17c. Figure adapted from Vasmer and
Browne [112].

associated with a g-octahedron. Each X-operator acting on the individual physical

qubits is mapped to an Xgy-operator by the [[8,3,2]] encoding circuit. Therefore, the

weight six SCg stabilizer is mapped to a weight twenty-four stabilizer. Geometri-

cally, this corresponds to truncating the octahedron so that it becomes a truncated

octahedron. All other stabilizers transform in a similar way: cuboctahedra become

truncated cuboctahedra, squares become octagons, triangles become hexagons and

vertices become cubes.

The transformed stabilizers commute with each other because the encoding

circuit of the [[8,3,2]] code preserves the commutation of Pauli operators acting on

the input physical qubits (|ψcy〉 in Figure 2.17c). The logical operators of the 3D

surface codes are mapped to logical operators in the 3D colour code for the same

80 Chapter 2. Transversal gates in three-dimensional surface codes

a) b)

Figure 2.18: Applying the [[8,3,2]] transformation to a single vertex of a rectified cubic
lattice. In Figure 2.18a, we show part of the initial rectified cubic lattice.
In Figure 2.18b, we have encoded the three qubits at the vertex where the
cells meet in an [[8,3,2]] code. Geometrically, this corresponds to replac-
ing the vertex with a cube (yellow cell). Figure adapted from Vasmer and
Browne [112].

a) b)

Figure 2.19: Transforming a stack of three 3D surface codes into a single 3D colour code.
The lattice in Figure 2.19a supports three distance two 3D surface codes. It is
the smallest non-trivial member of the family of 3D surface codes with bound-
aries defined in Section 2.1.3. Each vertex in Figure 2.19a is transformed as
shown in Figure 2.18. The resultant lattice (Figure 2.19b) is a distance four
3D colour code. Figure adapted from Vasmer and Browne [112].

reason. Globally, the rectified cubic lattice is transformed into a cantitruncated

cubic lattice (one of the vertex-regular lattices that supports a 3D colour code). In a

cantitruncated cubic lattice, two truncated cuboctahedra, one truncated octahedron

and one cube meet at each vertex. Figure 2.18 shows how a single vertex transforms

and Figure 2.19 shows how a small stack of surface codes transforms.

2.3. Generalizations of the rectified picture 81

2.3.2 Codes from Coxeter diagrams

In this Section, we generalize the rectified picture to higher dimensions and to curved

spaces. Because we can no longer rely on visualizations, we need more sophisticated

mathematical tools. We restrict our attention to uniform (vertex-transitive) tessel-

lations because these tessellations have a compact representation in terms of such

a mathematical tool: Coxeter groups [113, Chapter 11]. We specify Coxeter groups

using a group presentation < S|R >, where S is a generating set of the group and

R are relations amongst the generators. Using this language, Coxeter groups are

groups with the following presentation:

〈R1,R2, . . .Rm|(RiRj)pij = 1〉, (2.22)

where pii = 1 and pij ≥ 2. If pij =∞, then the corresponding relation is ignored.

The Ri can be thought of as reflections. We restrict ourselves to Coxeter groups

whose fundamental regions are simplices, where for a given group the Ri correspond

to the facets of the fundamental region simplex. A D-dimensional simplex is the

generalization of the triangle to D-dimensions. For example, a 0D simplex is a

point, a 1D simplex is a line, a 3D simplex is a tetrahedron, and a 4D simplex is

a tetrahedral pyramid. The fundamental region of a reflection group is a region

whose reflections cover the whole space without overlapping (and without gaps).

We make the restriction to simplicial fundamental regions because it is unclear how

the rectified picture should be defined for non-simplicial fundamental regions.

Coxeter groups are nicely represented by graphs, called Coxeter diagrams. In a

given Coxeter diagram, the vertices represent the facets of the fundamental region,

where a facet is a (D− 1)-cell of a D-dimensional simplex. Edges represent the

dihedral angles between different facets. Unmarked edges correspond to dihedral

angles of π/3 whereas edges marked by p > 3 correspond to dihedral angles of π/p.

There are no edges between vertices that correspond to perpendicular facets. For

example, 44 represents the Coxeter group whose fundamental region is a right-

angled isosceles triangle and represents the Coxeter group whose fundamental

region is an equilateral triangle.

We use Wythoff’s (kaleidoscopic) construction [113, 125] to construct tessella-

tions from Coxeter diagrams. Given a Coxeter diagram, we mark a subset of its

82 Chapter 2. Transversal gates in three-dimensional surface codes

a) b) c)

Figure 2.20: Wythoff’s construction applied to 44 . In Figure 2.20a, we highlight the
fundamental region in black. In Figure 2.20b, we show the generating point
of the tessellation corresponding to 44 in red, and in Figure 2.20c, we
show the full tessellation (square lattice).

vertices. Then we imagine a generating point inside the fundamental domain, where

the generating point is equidistant from all the facets that correspond to marked

vertices. If a vertex is unmarked, then the generating point lies on the corresponding

facet. The tessellation is the reflection of the generating point in all of the facets.

The easiest way to illustrate Wythoff’s construction is via an example, which we

provide in Figure 2.20.

The useful thing about marked Coxeter diagrams is that different mark-ups

of a Coxeter diagram correspond to surface code lattices in different pictures and

their related colour codes. For example, 44 corresponds to the square lattice (see

Figure 2.20). If we define a 2D surface code on this lattice, then 44 corresponds

to the dual lattice of this code and 44 corresponds to the rotated picture lattice

of the same 2D surface code. Furthermore, 44 corresponds to the 2D colour

code that is local-Clifford equivalent to a pair of surface codes defined on 44 and
44 . Figure 2.21 shows these lattices. The fact that colour code lattices correspond

to Coxeter diagrams with all vertices marked has previously been noticed [126].

Furthermore, this construction is similar to a method for constructing colour code

lattices presented in [95, Appendix A].

Thus far we have considered 2D tessellations, but we can also consider higher

dimensions. For example, the Coxeter diagram, 4 , corresponds to a reflection

group whose fundamental domain is a certain trirectangular tetrahedron (shown in

Figure 2.22), i.e. a tetrahedron with three faces that meet at right angles. The

2.3. Generalizations of the rectified picture 83

a) b) c)

Figure 2.21: Related topological code lattices with the same symmetry. In Figure 2.21a,
we show the lattices corresponding to the Coxeter diagrams 44 (red) and

44 (blue). In Figure 2.21b, we add the lattice corresponding to 44

(green). Finally, in Figure 2.21c, we add the lattice corresponding to 44

(yellow).

marked Coxeter diagram, 4 , corresponds to the cubic lattice; 4 and 4

correspond to tetrahedral-octahedral lattices; 4 corresponds to the rectified cubic

lattice; and 4 corresponds to the cantitruncated cubic lattice. These are exactly

the 3D surface code lattices and related 3D colour code lattices that we examined

earlier in this chapter.

We can spot a pattern developing as we go from two to three dimensions. If

we want to define multiple surface codes on the same lattice in the rectified pic-

ture, we need to find Kitaev picture lattices that can be arranged so that every

edge of each lattice intersects an edge from each of the other lattices (with exactly

one such intersection point for each edge). When this is the case, we can place

rectified-picture vertices at the points where the edges of the Kitaev picture lattices

intersect. In 2D, this is possible for any tessellation described by a Coxeter dia-

gram whose fundamental region is a right-angled triangle (44 and 6 [113,

pp. 297]). And in 3D, we can construct rectified-picture lattices using any Coxeter

diagram whose fundamental region is some trirectangular tetrahedron. For such a

fundamental region, the three edges of the tetrahedron correspond to the edges of

the (Kitaev picture) surface code lattices, as we show in Figure 2.22. As every point

in the tessellation is just some reflection of the fundamental region, the edges of the

three lattices intersect in just the way we want. The only Coxeter diagram with a

84 Chapter 2. Transversal gates in three-dimensional surface codes

Figure 2.22: The (tetrahedral) fundamental region of the Coxeter diagram, 4 , shown

inside a cube. We have highlighted the edges (red, green and blue) of the
three tessellations formed by marking each of the three outer vertices of the
diagram using Wythoff’s construction. The point where these edges meet
(black circle) is the vertex of the corresponding rectified-picture lattice.

trirectangular tetrahedron fundamental region in 3D Euclidean space is 4 [113,

pp. 297].

In general, to find uniform tessellations that support D, D-dimensional surface

codes in D-dimensions, we need to find Coxeter diagrams that look like star graphs

with D+ 1 vertices. A star graph on D+ 1 vertices is simply a graph with one

central vertex connected to all the other (outer) vertices. The fundamental regions

of such a Coxeter diagram is a right-angled simplex (the generalization of a right-

angled triangle to D-dimensions). Given such a Coxeter diagram, we construct

D Kitaev picture surface codes by marking each of the D outer vertices of the

diagram in turn. In each of the resultant tessellations, we place qubits on the

edges, we associate X-stabilizer generators with the vertices, and we associate Z-

stabilizer generators with the faces. We construct the rectified-picture lattice that

simultaneously supports these D surface codes by marking the central vertex of the

diagram. The resultant lattice can be obtained via rectification from any of the

Kitaev picture lattices. In the rectified-picture lattice, we place D qubits at each

vertex, we associate X-stabilizer generators with the 4D cells and we associate Z-

stabilizer generators with the faces. There is a one-to-one mapping between the 4D

cells of the rectified-picture lattice and the vertices of the Kitaev picture lattices;

and there is a one-to-one mapping between the faces of the rectified-picture lattice

and the faces of the Kitaev picture lattices. These mapping allow us to work out

2.3. Generalizations of the rectified picture 85

which rectified-picture stabilizer belongs to which code.

We have already listed all the examples of star-graph Coxeter diagrams in 2D

and 3D. In 4D, there is one star-graph Coxeter diagram: . Table 2.3 lists the

tessellations we can construct by marking up this diagram. From this table, we

Coxeter Diagram Lattice

16-cell lattice

24-cell lattice

Truncated 24-cell lattice

Table 2.3: The 4D lattices that can be constructed by applying Wythoff’s construction to
the Coxeter diagram .

see that one can arrange four 4D surface codes defined on 16-cell lattices so that

the rectification of each lattice is an identical 24-cell lattice. The 16-cell and the

24-cell (also known as the hyper-diamond) are two of the 4D analogues of Platonic

solids. Both of these 4D polytopes tessellate 4D Euclidean space [113, Chapter 7].

Furthermore, we conjecture that one can transform the four 4D surface codes into

a single 4D colour code by encoding the qubits at rectified-picture vertices in the

[[16,4,2]] code (the 4D analogue of the [[8,3,2]] code). We anticipate that the resulting

colour code will be defined on uniform 4D lattice where four truncated 24-cells and

one tesseract meet at each vertex. The tesseract is the 4D analogue of the cube (see

Figure 2.23).

Coxeter diagrams can also be used to describe tessellations of curved spaces

e.g. hyperbolic space. Surface codes defined on tessellations of hyperbolic space

have previously been studied in [127, 128, 129, 130, 131]. In any dimension D ≥ 2,

the rate of a hyperbolic surface code is constant, i.e. the number of encoded qubits

is proportional to the number of physical qubits. This is in contrast to surface codes

defined on tessellations of Euclidean space, where the number of encoded qubits is a

(small) constant that is independent of the number of physical qubits. In 2D, 3D and

4D, hyperbolic Coxeter groups exist whose Coxeter diagrams are star graphs [132,

pp. 141–144], so we can construct rectified-picture lattices in hyperbolic space that

86 Chapter 2. Transversal gates in three-dimensional surface codes

Figure 2.23: A tesseract projected into 3D space.

support multiple surface codes. In both Euclidean and hyperbolic space, there are no

star-graph Coxeter diagrams in any dimension D ≥ 5, we cannot use our method to

construct uniform tessellations that support D, D-dimensional surface codes when

D ≥ 5.

Conclusion

In this Chapter, we have shown that 3D surface codes are uncommonly useful for

processing quantum information. More specifically, we proved that the non-Clifford

CCZ gate is transversal for certain 3D surface codes. This is important because

implementing a non-Clifford gate in a fault-tolerant architecture often has high re-

source requirements. Architectures incorporating 3D surface codes may therefore

have smaller overhead than other leading architectures based on topological codes.

In Chapter 4, we propose two fault-tolerant quantum computing architectures that

incorporate 3D surface codes, and we compare the overhead of our architectures

with the overhead of other leading architectures. However, before we can make this

comparison, we need to understand how good 3D surface codes are at protecting

quantum information. This is the subject of the next chapter.

To prove our transversality result, we introduced the rectified picture of 3D

surface codes. Using this picture makes it easier to understand how the stabilizers of

different 3D surface codes overlap. In Section 2.3, we considered some generalizations

of the rectified picture. In particular, we used Coxeter diagrams to generalize our

picture to lattices that exist in four dimensions and/or hyperbolic spaces. Such

lattices (in D ≥ 3 dimensions) may support surface codes with transversal non-

2.3. Generalizations of the rectified picture 87

Clifford gates. Hyperbolic surface codes with this property would be especially

interesting, because their non-zero rate means that the non-Clifford gate would act

on many encoded qubits at the same time. This could be useful for information

processing and/or for magic state distillation. We leave further investigation of this

possibility to future work.

Chapter 3

Decoding three-dimensional surface

codes

In this chapter, we tackle the problem of decoding 3D surface codes. By decoding,

we mean using a classical algorithm to process stabilizer measurement outcomes in

order to find a correction operator. If the product of the error that occurred and

the correction operator is a stabilizer, then we have decoded successfully. As 3D

surface codes are CSS codes, we can correct X-errors and Z-errors independently.

In Section 3.1, we use a well-established decoder to estimate the Z-error threshold of

3D surface codes. And in Section 3.2, we develop a cellular automaton decoder forX-

errors in 3D surface codes with boundaries. We prove that this decoder has an error

threshold when stabilizer measurements are perfect, and we numerically estimate

the value of the error threshold when stabilizer measurements are unreliable. The

results of this chapter are useful for understanding the feasibility of the fault-tolerant

quantum computing architectures we present in Chapter 4. The work on the cellular

automaton decoder described in this Chapter was carried out in collaboration with

Aleksander Kubica and Dan Browne.

The optimal solution to the decoding problem for a stabilizer code returns a

correction that maximizes the probability that the product of the error and the

correction is a stabilizer. Finding such a correction is called maximum likelihood

decoding, and unfortunately no efficient solution to this problem for has been found

for 3D surface codes. With an efficient maximum likelihood decoder we would be to

find the optimal error threshold of a code (for a given noise model). However, even

if we don’t have such a decoder, we can still estimate the optimal error thresholds

90 Chapter 3. Decoding three-dimensional surface codes

of topological codes. This is because solving the maximum likelihood decoding

problem for a topological code can be reduced to finding the partition function of a

classical statistical mechanics model [28, 133, 134, 135]. Using such a reduction, the

optimal phase-flip error threshold of the 3D surface code has been estimated to be

pZth ≈ 3.3% [136] and the optimal bit-flip error threshold of the 3D surface code has

been estimated to be pXth ≈ 23.2% [137, 138]. Both these values are for 3D surface

codes defined on the cubic lattice.

3.1 Z-error decoding

The Z-error decoding problem for 3D surface codes is essentially the same as the

decoding problem for 2D surface codes. We recall that, in both cases, qubits are on

edges and X-stabilizers are associated with vertices (see Section 1.2.1). Therefore,

chains of errors on edges create unsatisfied stabilizers at their endpoints. The task

of a decoder is to find a collection of edges (a correction) whose endpoints are

the unsatisfied stabilizers, so that the product of the correction and the error is a

stabilizer. Let us introduce some terminology to state this problem more clearly. We

denote the set containing all the i-cells of a lattice L by ∆i (L), e.g. ∆0 (L) are the

vertices of L and ∆1 (L) are the edges of L. We define Ci to be an F2-vector space

with a basis formed by the i-cells of the lattice, ι ∈∆i (L). With this definition, we

can introduce boundary operators ∂i : Ci→ Ci−1, which are linear maps defined for

all basis elements ι ∈∆i (L):

∂iι=
∑

ν∈∆i−1(ι)
ν, (3.1)

where ∆i−1 (ι) are the (i−1)-cells contained in ι. We emphasize that any vector in

Ci is isomorphic to a subset of the i-cells of the lattice.

Using the terminology defined above, Z-errors in 3D surface codes are subsets

ε ⊆∆1 (L). The syndrome, σ, corresponding to an error ε is the image of ε under

the 1-boundary map, i.e. σ = ∂1ε. A correction, ζ, is a subset of edges with the

same boundary as the error. We know of no efficient algorithm for finding the

optimal correction, however we can find a good approximate solution by choosing the

correction with the lowest weight. This is equivalent to a weighted graph matching

problem, as was first pointed out by Dennis et al. [28]. Given a graph G = (V,E),

where V is the node-set of the graph and E is the link-set of the graph, a matching is

3.1. Z-error decoding 91

a set of links without common nodes. We refer to vertices and edges of such a graph

as nodes and links to avoid confusion with the elements of the lattice. In a perfect

matching, every node of the graph appears in one of the links of the matching. If the

links of the graph are weighted, we can also ask to find a matching with minimum

weight. Edmonds’ Blossom algorithm [31] can be used to solve the minimum-weight

matching problem efficiently [32]. We note that in the quantum error-correction

research literature, the weighted-graph generalization of the Blossom algorithm is

usually called minimum-weight perfect matching (MWPM).

Given a syndrome, we construct its corresponding matching graph, G, as fol-

lows. First, we create a node for each unsatisfied stabilizer generator. Then, for

each node i, we create a link (i, j) to every other node j with weight equal to the

path-length between the corresponding unsatisfied stabilizer generators in the syn-

drome graph. We note that we can describe such a path using a vector in C1, which

corresponds to the edges in the path. If the code has boundaries, we also have to

create nodes for the boundaries [139]. To solve the decoding problem, we need to

find a minimum-weight matching in G. Given such a matching, we can construct

the correction by taking the sum of the vectors in C1 that correspond to the links

in the matching.

As we discussed in Section 1.2.1, when stabilizer measurements are unreliable

the Z-error decoding problem for surface codes is essentially the same as when

measurements are perfect [28]. To deal with unreliable measurements, we measure

the stabilizer generators O (d) times, where d is the code distance. In the 2D case,

we imagine building up a 3D lattice from 2D time-slices, where each slice is a copy

of the surface code lattice. We connect each slice to its preceding and succeeding

slices by edges that link vertices with the same spatial position in the different

time-slices. In this new lattice, the vertices store the change in the value of the

corresponding stabilizer from the previous time-slice to the current time-slice. Errors

on the physical qubits are edges in a particular time-slice and measurement errors are

edges between different time-slices. Therefore, the syndrome in this case is a subset

of the vertices of the 3D lattice. We can again map this problem to a minimum-

weight matching problem, possibly using different edge weights for space-like and

time-like edges to reflect different data qubit and measurement error probabilities.

92 Chapter 3. Decoding three-dimensional surface codes

Since the Blossom algorithm works for arbitrary graphs [31, 32], we can decode

efficiently. To use this method on 3D surface codes, we build a 4D lattice from 3D

time-slices in an analogous way.

From the previous paragraph, we now understand that decoding Z-errors in 3D

surface codes can be reduced to solving minimum-weight matching problems. We

used an implementation of the Blossom algorithm in the library NetworkX [140] to

estimate the Z-error threshold of 3D surface codes for perfect measurements and

unreliable measurements. Specifically, we considered an error model where a Z-

error is applied independently to each physical qubit with probability p, and each

stabilizer measurement outcome is flipped with probability q. The surface code

lattice we simulated was a L×L×L cubic tessellation of the 3-torus. When q = 0

(perfect measurements), we observe an error threshold of approximately 2.9%, which

is in agreement with the value found by Wang et al. using a mapping to a condensed

matter model [141]. The data are shown in Figure 3.1a. When q = p (unreliable

measurements), we observe an error threshold of approximately 1.25%, as shown in

Figure 3.1b. We expect a lower error threshold when stabilizer measurements are

unreliable, but we note that the difference smaller than in the 2D case, where the

error threshold for perfect measurements is approximately 10% [35] and the error

threshold for unreliable measurements is approximately 1% [14].

As we stated previously, the results presented in Figure 3.1 are for surface codes

defined on cubic tessellations of the 3-torus. However, we are also interested in the

performance of MWPM for surface codes with boundaries, as in Chapter 4, we use

such codes in our quantum computing architecture. We argue that the threshold

value shown in Figure 3.1 are useful as an estimate of the error thresholds of codes

with boundaries. We do not expect the boundaries to have a significant impact on

the error threshold, because as the linear lattice size becomes large, the behaviour of

the code will be dominated by the bulk. This intuition is correct for 2D surface codes,

where the error threshold is similar whether or not the lattice has boundaries [139].

The surface code architectures we present in Chapter 4 use 3D surface codes de-

fined on cubic lattices and tetrahedral-octahedral lattices (see Section 2.1.2). We ex-

pect the error thresholds for surface codes defined on different lattices to be different.

In the 2D case, the (perfect measurement) error threshold of the triangular-lattice

3.1. Z-error decoding 93

2 2.2 2.4 2.6 2.8 3 3.2 3.4
·10−2

10−3

10−2

10−1

p

p
L

L= 3
L= 5
L= 9
L= 15

a)

0.8 1 1.2 1.4 1.6 1.8 2
·10−2

10−3

10−2

10−1

100

p

p
L

L= 3
L= 5
L= 7
L= 9
L= 11

b)

Figure 3.1: The error threshold of 3D surface code against phase-flip noise when measure-
ments are perfect (3.1a) and when measurements are unreliable (3.1b). We
plot the probability of a logical error, pL, as a function of the physical er-
ror probability p (which is also the measurement error probability in 3.1b),
for different values of L (the linear lattice size, or, equivalently, the code dis-
tance). Each data point represents 10,000 trials. In Figure 3.1a, we observe
a crossing point (error threshold) at p≈ 2.9% and in Figure 3.1b, we observe
an error threshold of p ≈ 1.25%. The error bars show the standard error of
the mean:

√
pL(1−pL)/η, where η is the number of Monte Carlo trials. The

data shown in Figure 3.1a were generated using ∼ 900 CPU hours and the
data shown in Figure 3.1b were generated using ∼ 11,000 CPU hours. We
acknowledge use of UCL supercomputing facilities (https://www.ucl.ac.uk/
research-it-services/services/research-computing-platforms). The
code that we used to produce these plots is available at the following URL:
https://github.com/MikeVasmer/Toric-Code-Matching.

https://www.ucl.ac.uk/research-it-services/services/research-computing-platforms
https://www.ucl.ac.uk/research-it-services/services/research-computing-platforms
https://github.com/MikeVasmer/Toric-Code-Matching

94 Chapter 3. Decoding three-dimensional surface codes

surface code is 6.6% [142], which is approximately two thirds of the square-lattice

surface code error threshold. Similarly, we expect the error threshold of 3D sur-

face codes defined on tetrahedral-octahedral lattices to be a fraction of the error

threshold of the cubic-lattice surface code. This is because the X-stabilizers of the

tetrahedral-octahedral surface code are higher weight than the X-stabilizers of the

cubic surface code. We leave an investigation of the error threshold of tetrahedral-

octahedral surface codes to future work. In Chapter 4, we use the error threshold

values derived from Figure 3.1 as a rough estimate of the Z-error threshold of the

3D surface codes we use in our quantum computing architectures.

To conclude this section, we briefly discuss other algorithms that can be used

to decode Z-errors in 3D surface codes. The Blossom algorithm is near-optimal and

efficient, but its generalization to weighted graphs has (worst-case) runtime com-

plexity O
(
|V |3|E|

)
[32], where V and E are the node-set and link-set of the graph.

This runtime complexity is not ideal because we anticipate correcting errors after

every operation in a fault-tolerant quantum computer. Therefore, a slow decoding

algorithm would severely limit the processing speed of the computer. With this in

mind, alternative decoding algorithms have been investigated for 2D surface codes.

These include renormalization group (RG) decoders [143], cellular-automaton de-

coders [144, 145] and the Union-Find decoder [146]. In general, these approaches

have better runtime complexity but worse performance than the MWPM algorithm.

Given the similarity of the Z-error decoding problems in 2D and 3D, we anticipate

that one could apply these decoders to 3D surface codes.

3.2 X-error decoding
In this section, we propose a cellular automaton (CA) decoder for X-errors in sur-

face codes defined on (D ≥ 3)-dimensional lattices with boundaries. Our decoder

builds on the Sweep Rule decoder, which was recently introduced by Kubica and

Preskill [43]. The Sweep Rule decoder in turn is based on a (classical) cellular au-

tomaton called Toom’s Rule [147]. This cellular automaton can be thought of as an

extremely robust classical memory [147, 148, 149]. We give a brief overview of this

aspect of Toom’s rule here, because it shares many properties with our decoder. Our

discussion closely follows [149]. Suppose we have a square lattice with spins placed

on faces. Each spin can either be up or down (i.e. it is a classical bit). We associate

3.2. X-error decoding 95

a) b)

c) d)

Figure 3.2: Applying Toom’s rule to a randomly initalized lattice of (classical) spins. Spins
are on faces, and an edge is bright (dark) if the spins on the faces that are
part of the edge are the same (different). Figure 3.2a shows the initial state
of the lattice, before we apply the rule. Figures 3.2b, 3.2c, and 3.2d show the
state of the lattice after the rule has been applied one, three, and seven times,
respectively.

check operators with edges of the lattice, where a check operator is satisfied if both

the faces it is part of have the same value, and is unsatisfied otherwise. The dy-

namics of the rule are simple: at each time step, we flip the spin on a given face if

its north and east check operators are unsatisfied. We note that we simultaneously

update the values of all the spins before updating the values of the check operators.

96 Chapter 3. Decoding three-dimensional surface codes

Figure 3.2 shows Toom’s rule being applied multiple times to a randomly initalized

lattice of spins. We can also make the rule probabilistic, by stipulating that after

we update the value of a spin, if the spin points up then we change it to down with

probability p and if the spin points down we change it to up with probability q.

The remarkable behaviour of Toom’s CA is made clear by making an anal-

ogy with the Ising model [147, 148, 149]. One can define a “magnetic field”

h = (p− q)/(p+ q), a “temperature” T = p+ q and a “magnetization”, M , which

is the expectation value of any spin. Toom proved that two stable phases exist (one

withM > 0 and one withM < 0) for non-zero values of T and/or h [147]. Figure 3.3

shows the phase diagram. Consequently, as long as the temperature and magnetic

field are below critical values, we can use a system with dynamics described by

Toom’s rule to store a classical bit. In contrast, in a 2D Ising model, there is no

region of the phase diagram with non-zero magnetic field where two stable phases

exist. As observed by Bennett and Grinstein, the key reason for the difference in

the behaviour of Toom’s rule and the 2D Ising model is the irreversibility of Toom’s

rule [148].

Toom’s rule is similar to a 3D surface code in the dual Kitaev picture. We recall

that in this picture, we place qubits on faces, we associate Z-stabilizer generators

with edges and we associate X-stabilizer generators with cells. The Z-stabilizer

generators are analogous to the check operators in Toom’s rule, and as decoding X-

errors on their own is essentially a classical error-correction problem, we can imagine

that a decoder based on Toom’s rule may be very robust. Indeed, one can make

an analogy between the temperature in Toom’s rule and the physical qubit bit-flip

error probability in a 3D surface code; and between the magnetic field in Toom’s

rule and the measurement error probability in a 3D surface code. The stability of

Toom’s rule implies that a 3D surface code decoder based on this rule should be

resilient against physical qubit errors and measurement errors. This is exactly the

behaviour we observe for our cellular automaton decoder in Section 3.2.3.

Topological code decoders based on cellular automata are attractive because

such decoders process syndrome information locally. Therefore, decoders of this type

are inherently parallelizable and could be implemented using specialist hardware

near to the qubits themselves. In contrast, decoders such as MWPM require complex

3.2. X-error decoding 97

Figure 3.3: The phase diagram of a spin system with dynamics governed by Toom’s rule. In
contrast to equilibrium systems like the the Ising model, two stable phases exist
for non-zero values of h (shaded region). Figure adapted from Grinstein [149].

processing of the entire syndrome. Also, since it is not currently known whether a

passive quantum memory exists in fewer than four dimensions [47], a code requiring

only local error correction may be the closest we can get to a passive quantum

memory in 3D.

Previously, cellular automaton decoders have been proposed for 2D surface

codes [150, 151, 144, 145], anyon systems [152], and 4D surface codes [28, 153, 151].

Recently, Kulkarni and Sarvepalli showed that one can use a decoder based on

Toom’s rule to correct errors in 3D surface codes defined on cubic lattice (with

and without boundaries) [44]. However, we want a decoder that works on a wider

variety of 3D lattices, because the transversal implementation of CCZ we presented

in Chapter 2 requires 3D surface codes defined on non-cubic lattices.

The Sweep Rule decoder [43, 154] almost meets our requirements. This decoder

is based on a CA that generalizes Toom’s rule to a broad class of lattices. However,

the Sweep Rule decoder does not work for lattices with boundaries, as we illustrate

in Figure 3.4. In the remainder of this section, we adapt the Sweep Rule decoder

to work for lattices with boundaries. First, we review the definition of the Sweep

Rule cellular automaton. Secondly, we prove that a 3D surface code decoder based

on this cellular automaton has a non-zero error threshold when measurements are

perfect. Finally, we report numerical evidence of an error threshold when stabilizer

measurements are unreliable, and we compare the performance of our decoder with

98 Chapter 3. Decoding three-dimensional surface codes

a) b) c)

Figure 3.4: Errors that are not removed by the Sweep Rule decoder. We show a slice of
a 3D surface code with qubits on faces and Z-stabilizer generators associated
with edges. In this example, the Sweep Rule decoder is essentially the same
as Toom’s rule. For each face in the lattice, the Sweep Rule applies an X-
operator to the qubit on a face if the north and east stabilizers of the face are
unsatisfied. Figure 3.4a shows an X-error (blue faces) and Figure 3.4b shows
the corresponding syndrome (blue edges). Figure 3.4c shows the same lattice
after the application of the rule. We see that the Sweep Rule partially corrects
the error in the bulk of the lattice, whereas the error on the boundaries does
not change. This is because the corresponding syndrome does not contain
both the north and the east edges of any face. To deal with this problem, we
can run Toom’s rule again, but using south and west edges instead. In the
language of the Sweep Rule, this is equivalent to changing the sweep direction,
as we explain in Section 3.2.1.

other approaches.

3.2.1 Sweep Rule with boundaries

In this section, we analyse the behaviour of the Sweep Rule for lattices with bound-

aries. We begin by defining basic concepts which we will use throughout the re-

mainder of this chapter. Next, we state the conditions that a lattice must satisfy so

that the Sweep Rule can be defined on it. Finally, we give a general definition of the

Sweep Rule and illustrate how it works using a 2D example. Many of the definitions

in this section are lightly modified versions of definitions that originally appeared

in [43].

3.2.1.1 Preliminary definitions

To begin, we consider infinite regular lattices (we introduce boundaries later). Fur-

thermore, we only consider simplicial lattices i.e. lattices formed by attaching D-

dimensional simplices along their (D−1)-dimensional boundaries. We recall that a

D-dimensional simplex is the D-dimensional analogue of a triangle. For example, a

0D simplex is a point, a 1D simplex is a line, a 3D simplex is a tetrahedron, and

3.2. X-error decoding 99

a 4D simplex is a tetrahedral prism. We confine our attention to simplicial lattices

to simplify the error threshold proof in Section 3.2.2. However, the intuition we

develop in the following sections can be extended to other lattices, as evidenced by

the numerical results we present for non-simplicial lattices in Section 3.2.3.

Let L denote an infinite simplicial lattice. We use ∆i (L) to denote the set of

i-dimensional simplices (i-simplices) in L. We define an F2-vector space, Ci, with a

basis formed by the i-simplices of the lattice. There is a bijection between vectors

in Ci and subsets of i-simplices in L. This allows us to define (linear) boundary

operators, ∂i : Ci→ Ci−1, which we specify for all basis elements:

∂iι=
∑

ν∈∆i−1(ι)
ν, (3.2)

where ∆i−1 (ι) is the set of all (i−1)-simplices in ι. We define the m-star of an i-cell

ι, Stm(ι), to be the set of all m-simplices in the neighbourhood of ι that contain ι

(where m≥ i).

We also need a set of sweep directions, D. Each sweep direction is a unit

vector in RD that is not orthogonal to any of the edges of L. We group a lattice,

L, and a set of sweep directions, D, in a pair (L,D). For a decoder based on the

Sweep Rule to work, we need the pair (L,D) to satisfy certain conditions, which we

state in Section 3.2.1.2. But before stating these conditions, we need to define some

additional concepts.

We define a path (u : v) between two vertices, u and v, to be a collection of edges

(u,w1), . . . ,(wn,v), where each wi is a vertex in the lattice. The distance between

two vertices, u and v, is naturally defined to be the length of the smallest path

between them, that is d(u,v) = min(u:v) |(u : v)|. We extend this definition to finite

subsets of vertices, U and V , in the obvious way: d(U,V) = minu∈U,v∈V d(u,v). We

define the diameter of a subset of vertices, diam(V), to be the maximum distance

between any two vertices in V . And we define a D-dimensional ball of radius r

centred at a vertex v to be

Bv(r) =
D⋃
i=0
{ι ∈∆i (L) |d(ι,v)< r} (3.3)

We call a path causal (with respect to a sweep direction ~δj ∈ D), if the sign

100 Chapter 3. Decoding three-dimensional surface codes

of the inner product, ~δj · (wl,wl+1), is the same for all edges in the path. We use

the notation (u l v)j to denote a causal path from u to v. We define the causal

distance between two vertices to be the length of the shortest causal path between

them (with respect to ~δj), that is:

dj(u,v) = min
(ulv)j

|(u l v)j |. (3.4)

It could be the case that no causal path exists between two vertices, in this case we

set the causal distance between them to be infinite.

As noted in [43], a sweep direction induces a partial order over the vertices of

the lattice. We say that a vertex, u, precedes another vertex, v, with respect to ~δj ,

u �j v, if a there exists a causal path from u to v and all edges in the path have

positive inner product with ~δj , or u= v. This is equivalent to saying that v succeeds

u, v �j v, which is defined analogously. We also extend this notation to simplices.

We say that an i-simplex ι precedes a vertex v, ι �j v, if all the vertices that are

part of ι themselves precede v. We define the future (past) of a vertex v to be the

set of all simplices that succeed (precede) v, that is

↑j (v) =
D⋃
i=0
{ι ∈∆i (L) | ι�j v},

↓j (v) =
D⋃
i=0
{ι ∈∆i (L) | ι�j v},

(3.5)

where ↑j (v) and ↓j (v) denote the future and past of v, respectively.

Let V ⊆ ∆0 (L) denote a finite subset of vertices. We define the future of V

to be ↑j (V) =
⋂
v∈V ↑j (v) and we define the past of V to be ↓j (V) =

⋂
v∈V ↓j (v)

(both with respect to the sweep direction ~δj). Figure 3.5 shows an example. The

(unique) j-supremum of V , supj V , is the least element in ↑j (V). Similarly, the

(unique) j-infimum of V , infj V is the greatest element in ↓j (V). We now come to

an important concept, the causal diamond of a set of vertices, which is defined as

follows:

♦j (V) =↑j (inf
j
V)∩ ↓j (sup

j
V). (3.6)

Having defined all the relevant concepts in terms of infinite regular lattices, we

now introduce boundaries. We exclusively consider finite lattices that are restrictions

3.2. X-error decoding 101

a) b)

Figure 3.5: The future and past of a subset of vertices. Let a subset of vertices V contain
the red and the blue vertices highlighted in Figure 3.5a. In Figure 3.5b, we
show the future and the past of each of the vertices in V (red and blue shaded
regions of the lattice). The sweep direction is illustrated by the arrow. The
future (past) of V is the intersection of the futures (pasts) of its constituent
vertices (purple shaded regions of the lattice).

a) b)

Figure 3.6: A causal region in a simplicial lattice with boundaries. In Figure 3.6a, we
show a subset of vertices (blue circles), V , in a finite lattice (solid grey lines).
The dashed grey lines represent the infinite lattice. In Figure 3.6b, we show
the infimum and supremum of V with respect to the sweep direction ~δj . The
infimum lies inside the finite lattice whereas the supremum is in the infinite
lattice. The causal region of V consists of everything inside the solid pink lines
(the dashed pink lines represent the parts of the causal diamond outside the
finite lattice).

of infinite regular lattices i.e. we consider a connected subset of the simplices of the

infinite lattice. This stipulation allows us to carry over all the definitions we made

above without changes, except for the causal diamond. In a lattice with boundaries,

for a given sweep direction ~δj , a subset of vertices, V ⊂ ∆0 (L), may not have a

102 Chapter 3. Decoding three-dimensional surface codes

j-infimum and/or a j-supremum, and in this case the causal diamond is ill-defined.

Therefore, we define the causal region of a V with respect to ~δj , Rj (V), to be

the causal diamond of V in the infinite lattice but restricted to the lattice with

boundaries. Figure 3.6 shows a subset of vertices whose causal region in the finite

difference is different from the corresponding causal diamond in the infinite lattice.

3.2.1.2 Lattice conditions

Consider a pair (L,D), where L is a D-dimensional simplicial lattice with boundaries

and D is a set of sweep directions. We place ±1 spins on the i-simplices of L, where

2 ≤ i ≤ D. We use ε to denote a subset of i-simplices whose spins are −1 and we

refer to such a set as an error. We denote the i-boundary of an error ε by σ = ∂iε.

Given a vertex, v ∈ ∆0 (L), we denote the restriction of the i-boundary σ to the

neighbourhood of v by σ|v. That is, σ|v contains the (i−1)-simplices that are in σ

and Sti−1(v). For a given vertex v, if σ|v is non-empty and σ|v ⊂↑j (v), then we call

the vertex a j-trailing vertex. In other words, a vertex is j-trailing if the restriction

of the i-boundary to this vertex is non-empty and is also in the future of v with

respect to the sweep direction ~δj ∈ D. Finally, we assume that the lattice has some

linear size L, and we define a local region of the lattice to be a connected subset of

simplices whose diameter is at most a fraction of L.

We now state the conditions that the pair (L,D) must satisfy if one wants to

define a Sweep Rule for the pair. We call these requirements causality conditions:

1. Every sweep direction ~δj ∈ D is not orthogonal to any of the edges of L.

2. For any subset of vertices within a local region of L, V ⊂∆0 (L), there exists

a unique causal region of V , R(V), which the same for all sweep directions
~δj ∈ D.

3. For any i-boundary σ ∈ im∂i contained within a local region of L, the j-

infimum of σ is contained in the (finite) lattice for at least one sweep direction,
~δj . In this case, there exists at least one j-trailing vertex, v, such that one can

find a set of i-simplices ϕ(v)⊆ Sti(v)∩ ↑j (v) with the following properties:

(a) [∂iϕ(v)]|v = σ|v

(b) R(ϕ(v)) =R(σ|v)

3.2. X-error decoding 103

The first two conditions are straightforward, but the third is a little harder to parse.

Consider the case where spins are on faces and the corresponding boundary, σ, is a

collection of edges. The trailing vertices in this case are a subset of the corners of σ.

The two edges in σ that meet at one of these corners will both have a positive inner

product with the sweep direction. Condition three guarantees that a j-infimum of

σ is contained in the finite lattice, which means that at least one j-trailing vertex

will exist. And the second part of condition three ensures that we can flip a subset

of faces in the neighbourhood of such a trailing vertex so that the boundary of the

−1 faces is moved in the sweep direction.

In order to prove that the Sweep Rule gives rise to a 3D surface code decoder

with a threshold, we also require (L,D) to be locally Euclidean. This concept is

captured in the following requirements:

1. For any ball Bv(R) of radius R within a local region of L there exists a cover,

⋃
u∈U

Bu(r)⊃Bv(R), (3.7)

consisting of balls of radius r < R indexed by U ⊂∆0 (L), such that

|U |< cB(R/r)D, (3.8)

where D is the dimension of the lattice and cB is a constant.

2. For any subset of vertices V ∈∆0 (L) within a local region of L,

diam(R(V))≤ cD×diam(V), (3.9)

where cD ≥ 1 is a constant. In other words, the diameter of the causal region

of V is upper bounded by cD times the diameter of V .

3. For any pair of vertices, u and v, and sweep direction ~δj ∈ D, if u �j v, then

there exists a constant cP ≥ 1 such that

max
(ulv)j

|(u l v)j | ≤ cP ×d(u,v), (3.10)

that is, the length of the longest causal path between two vertices is upper

104 Chapter 3. Decoding three-dimensional surface codes

a) b) c)

Figure 3.7: An example of how the Sweep Rule works. In Figure 3.7a, we show a 2-
boundary σ (solid blue) in a 2D causal lattice with boundaries. We recall
that this lattice (solid grey) is restriction of an infinite regular lattice, which
is illustrated here using dashed grey lines. The sweep direction ~δj points
upwards. In Figure 3.7b, we highlight the j-trailing vertices with blue circles.
When we apply the Sweep Rule to the top j-trailing vertex, nothing happens
because there are no triangles in the future of the vertex whose boundary
locally matches σ. But when we apply the Sweep Rule to the bottom j-trailing
vertex, there are two triangles (shaded blue) in the future of the vertex whose
(joint) boundary locally matches σ. Therefore, the Sweep Rule flips the spins
on these triangles. Finally, in Figure 3.7c, we show the new 2-boundary after
the application of the Sweep Rule.

bounded by cP times the distance between them.

We emphasize that the three constants, cB, cD and cP must all be independent of

the size of the lattice.

3.2.1.3 Sweep Rule definition

Let L be a lattice with boundaries and let D be a set of sweep direction chosen

such that the pair (L,D) satisfy the causality conditions given in Section 3.2.1.2.

Place spins on the i-simplices of L and let σ be the i-boundary of an error ε. For

every vertex v ∈∆0 (L) and each sweep direction ~δj ∈ D, the sweep rule is defined

as follows:

Definition 2 (Sweep Rule [43]). If v is j-trailing, find a subset of neighbouring

i-simplices ϕ(v)⊂↑j (v) with an i-boundary that locally matches σ, i.e. [∂iϕ(v)]|v =

σ|v. Flip the spins on the i-simplices in ϕ(v).

We emphasize that the Sweep Rule defined above is identical to the Sweep Rule

introduced in [43]. Figure 3.7 shows an example of the Sweep Rule being applied

to a 2-boundary. From this Figure, we see the similarity between the Sweep Rule

3.2. X-error decoding 105

and Toom’s Rule. Indeed, the Sweep Rule on a square lattice with a sweep direction

pointing south-west is the same as Toom’s Rule. The utility of the Sweep Rule is

that there are some lattices where a simple generalization of Toom’s Rule does not

remove certain i-boundaries, whereas the Sweep Rule removes them [43].

3.2.2 Proof of error threshold

In this section, we analyse the performance of a decoder based on the Sweep Rule

when stabilizer measurements are perfect. We adapt the proof presented in [43]

to show that our decoder has a non-zero error threshold for for errors with m-

dimensional syndromes in surface codes with boundaries, where m ≥ 1. We recall

from Section 1.2.1, that a type-i surface code has qubits on i-cells, X-stabilizers that

are associated with (i− 1)-cells, and Z stabilizers that are associated with (i+ 1)-

cells, where i ∈ {1 . . .D−1}. In such a surface code, we say that X (Z) errors have

m-dimensional syndromes, where m is the smallest dimensional lattice element (m-

cell) to which Z (X) stabilizers are associated in either the primal or dual lattice.

For example, consider type-1 3D surface codes. In the primal lattice, qubits are on

edges (1-cells), X-stabilizers are associated with vertices (0-cells), and Z-stabilizers

are associated with faces (2-cells) And in the dual lattice, qubits are on faces, X

stabilizers are associated with cells (3-cells), and Z-stabilizers are associated with

edges. Therefore, Z-errors in 3D surface codes have 0-dimensional syndromes and

X-errors have 1-dimensional syndromes. Consequently, our decoder can be applied

to X-errors in 3D surface codes, but not to Z-errors.

We begin by proving that the Sweep Rule has certain properties, before using

these properties to show that a decoder based on the Sweep Rule has a non-zero

error threshold. The structure of our proof closely follows the structure of the

proof presented in [43]. Our main new contribution is to generalize the Sweep

Rule properties Lemma to lattices with boundaries. Once this is accomplished, the

remainder of the proof proceeds in much the same way as the original.

3.2.2.1 Sweep Rule properties

Before we consider the properties of the Sweep Rule, we prove the following lemma

about causal regions.

106 Chapter 3. Decoding three-dimensional surface codes

Lemma 4 For U,V ⊂∆0 (L), if U ⊆ V , then

U ⊆R(U)⊆R(V) . (3.11)

Proof. To show that U ⊆R(U), we recall that R(U) is defined to be the restriction

of ↑j (infjU)∩ ↓j (supjU) to the finite lattice (where j is arbitrary by causality con-

dition 2). We observe that both ↑j (infjU) and ↓j (supjU) contain U , so their inter-

section also contains U . If U ⊆ V , then either infjU = infj V or infjU �j infj V . In

either case, ↑j (infjU)⊆↑j (infj V). Likewise, if U ⊆ V , then either supjU = supj V

or supjU � supj V . In either case ↓j (supjU) ⊆↓j (supj V). Therefore, anything

in the intersection of ↑j (infjU) and ↓j (supjU) will also be in the intersection

↑j (infj V) and ↓j (supj V), i.e. R(U)⊆R(V).

We now prove some facts about how i-boundaries behave when we repeatedly

apply the Sweep Rule using the same sweep direction.

Lemma 5 Let L be a lattice with boundaries and let D be a set of sweep di-

rection chosen such that the pair (L,D) satisfy the causality conditions given in

Section 3.2.1.2. Let ε be an error contained in a local region of L, and let σ = ∂iε

denote the i-boundary of the error. Choose a sweep direction ~δj ∈ D. Suppose we

apply the Sweep Rule simultaneously to every vertex of L between time steps T and

T + 1 for T = 0,1, Then the following properties hold:

1. (Support) The i-boundary at time T , σ(T), stays within the causal region of

the original i-boundary, R(σ), that is

σ(T) ⊆R(σ) ∀T. (3.12)

2. (Propagation) The causal distance between σ and any vertex v of σ(T) is at

most T , that is

dj(v,σ)≤ T ∀v ∈∆0
(
σ(T)

)
. (3.13)

Proof. We first prove the support property by induction. This property is clearly

true before the Sweep Rule has been applied (i.e. at time T = 0) because σ(0) = σ.

3.2. X-error decoding 107

Now we prove the inductive step from time T to time T + 1. Between times T and

T + 1, depending on the sweep direction, the i-boundary may or may not contain

j-trailing vertices. If the i-boundary does not contain any j-trailing vertices, then no

spins are flipped and hence σ(T+1) = σ(T) ⊆R(σ). Now, assume that the i-boundary

contains at least one j-trailing vertex. Let V (T) denote the set of j-trailing vertices

of the i-boundary at time T . For each j-trailing vertex v ∈ V (T), the Sweep Rule

may find a subset of i-simplices, ϕ(T)(v), whose boundary locally matches the i-

boundary, that is [∂iϕ(T)(v)]|v = σ(T)|v. In this case, the spins on the i-simplices in

ϕ(T)(v) are flipped so the i-boundary becomes

σ(T+1) = σ(T) +
∑

v∈V (T)

∂iϕ
(T)(v). (3.14)

By causality condition 3,R
(
ϕ(T)(v)

)
=R

(
σ(T)|v

)
, which implies thatR

(
∂iϕ

(T)(v)
)
⊆

R
(
ϕ(T)(v)

)
⊆R

(
σ(T)

)
⊆R(σ). Combining this with Lemma 4 implies the follow-

ing:

σ(T+1) ⊆R
(
σ(T+1)

)
=R

σ(T)∪
⋃

v∈V (T)

∂iϕ
(T)(v)

 ,
⊆R

R(σ(T)
)
∪

⋃
v∈V (T)

R
(
ϕ(T)(v)

)⊆R(σ) .

(3.15)

Next, we prove the propagation property, also by induction. For T = 0, the

propagation property holds because the Sweep Rule has not been applied so the

causal distance between σ and any vertex of σ(0) is zero. Now we prove the inductive

step from time T − 1 to T . Either σ(T) = σ(T−1) and the propagation property is

trivially true or σ(T) 6= σ(T−1). In this case, for every vertex v ∈∆0
(
σ(T)

)
, either

v ∈∆0
(
σ(T−1)

)
or there exists an edge between v and some vertex u ∈∆0

(
σ(T−1)

)
.

The second possibility occurs when, between times T − 1 and T , the Sweep Rule

flips a spin on an i-simplex containing an edge that links u and v. By invoking the

triangle inequality, we see that

dj(v,σ)≤ dj(v,u) +dj(u,σ),

≤ 1 + (T −1) = T.
(3.16)

108 Chapter 3. Decoding three-dimensional surface codes

The final lemma we prove about the Sweep Rule concerns the behaviour of i-

boundaries when we repeatedly apply the Sweep Rule and vary the sweep direction.

Lemma 6 Let L be a lattice with boundaries and let D be a set of sweep di-

rection chosen such that the pair (L,D) satisfy the causality conditions given in

Section 3.2.1.2. Let ε be an error contained in a local region of L, and let σ de-

note the i-boundary of the error. Assume there are m sweep directions ~δj ∈ D. For

each j = 0,1, . . . ,m−1, suppose we apply the Sweep Rule (using sweep direction ~δj)

simultaneously to all the vertices in the lattice for T ∗j time steps, where

T ∗j ≥ max
u∈R(σ)

max
(ulsupj σ)j

|(u l sup
j
σ)j |. (3.17)

That is, T ∗j is greater than or equal to the length of the longest causal path between

any vertex in R(σ) and the j-supremum of R(σ). We use T to denote the time

steps of the entire procedure. Therefore, T takes values in

{0,1, . . . ,T ∗0 ,T ∗0 + 1, . . . ,T ∗0 +T ∗1 , . . . ,
m−1∑
j=0

T ∗j }, (3.18)

and the Sweep Rule is applied in between time steps, as in Lemma 5. Then the

following properties hold:

1. (Support) The i-boundary at time T , σ(T), stays within the causal region of

the original i-boundary, R(σ), throughout the procedure.

2. (Propagation) The distance between any vertex of the i-boundary at time T

and the original i-boundary is upper bounded by T .

3. (Removal) The i-boundary is removed by the end of the procedure (i.e. for

times T ≥
∑
j T
∗
j).

Proof. We prove the support property by induction on the list of sweep directions.

Consider the first sweep direction in the list ~δ0. For all times T ≤ T ∗0 , we have

σ(T)⊆R(σ) by Lemma 5. Now, we prove the inductive step from j to j+1. Consider

times T ′ ∈ {
∑j
l=0T

∗
l ,(
∑j
l=0T

∗
l) + 1, . . . ,

∑j+1
l=0 T

∗
l }. Let Tj =

∑j
l=0T

∗
l . By Lemma 5,

3.2. X-error decoding 109

the i-boundary at all times T ′ is supported within the causal region of the i-boundary

at time Tj , i.e. σ(T ′) ⊆R
(
σ(Tj)

)
. By assumption, σ(Tj) ⊆R(σ), and by Lemma 4

R
(
σ(Tj)

)
⊆R(R(σ)) =R(σ) , (3.19)

which implies that σ(T ′) ⊆R(σ) for all T ′.

Next we prove the propagation property, also by induction. Consider the causal

distance between any vertex v ∈∆0
(
σ(T)

)
and the original i-boundary, where T ∈

{0, . . . ,T ∗0 }. By Lemma 5 this causal distance is upper bounded by the number of

steps that the Sweep Rule has been applied, i.e. for any v we have

d0(v,σ)≤ T. (3.20)

As the causal distance upper bounds the regular distance, the propagation property

is true for T ≤ T ∗0 . Next, we prove the inductive step from j to j+ 1. Consider

times T ′ ∈ {
∑j
l=0T

∗
l ,(
∑j
l=0T

∗
l) + 1, . . . ,

∑j+1
l=0 T

∗
l }. Let Tj =

∑j
l=0T

∗
l . We assume

that the distance between any vertex of the i-boundary at time Tj and the original

i-boundary is upper bounded by Tj . For any vertex u ∈∆0
(
σ(T ′)

)
, we have

d(u,σ)≤ d(u,σ(Tj)) +d(w,σ), (3.21)

where w ∈∆0
(
σ(Tj)

)
is the vertex that minimizes d(u,σ(Tj)). The distance between

u and σ(Tj) is upper bounded by the causal distance between them, so

d(u,σ)≤ dj+1(u,σ(Tj)) +d(w,σ),

≤ (T ′−Tj) +Tj = T ′,
(3.22)

where the inequality between the first and second lines holds by Lemma 5 and the

inductive assumption.

To prove the removal property, we define the m-tuple of functions

(fσ0 (T),fσ1 (T), . . . ,fσm−1(T)), where

fσj (T) =


maxu∈R(σ(T)) max(ulsupj σ)j |(u l supj σ)j | infj σ ∈∆0 (L) ,

∞ infj σ /∈∆0 (L) ,
(3.23)

110 Chapter 3. Decoding three-dimensional surface codes

for j ∈ {0,1, . . . ,m−1}. If infj σ is contained within the finite lattice, fσj (T) is the

length of the longest causal path between the supremum of the original i-boundary

and any vertex within the causal region of the i-boundary at time T . As we noted

in Section 3.2.1.1, for certain i-boundaries and sweep directions, supj σ may not be

contained in the finite lattice. However, because we consider lattices that are finite

regions of regular infinite lattices, supj σ will always exist in the infinite lattice for

any σ.

We now show that at least one fσj (T) is a non-increasing function of T . By

causality condition 3, infj σ is contained in the finite lattice for at least one of the

sweep directions, say ~δj . In this case, fσj (T) is finite, and is upper bounded by fσj (0),

the maximum causal distance between any vertex of the causal region of the original

i-boundary and the supremum of the original i-boundary. This is because the causal

region of the i-boundary at time T is contained in the causal region of the original

i-boundary for all T (Sweep Rule support property).

Next, we define a new function

gσj (T) = max
u∈∆0(σ(T))

max
(ulsupj σ)j

|(u l sup
j
σ)j |, (3.24)

which is equal to the longest causal path between any vertex of the i-boundary

at time T and the supremum of the original i-boundary. The presence of infj σ

in the finite lattice implies that any vertex v ∈ ∆0 (σ) that maximizes gσj (T) will

have the following properties. First, v will be j-trailing, and secondly, there will

exist a subset of neighbouring i-simplices ϕ(v)⊂↑j (v) with a boundary that locally

matches σ(T). Suppose we apply the Sweep Rule using sweep direction ~δj between

times T and T + 1. Then the i-boundary will be modified in the neighbourhood of

v. Specifically, v will not be part of σ(T+1), but other vertices in the neighbourhood

of v will be part of σ(T+1), and these vertices will all be a shorter causal distance

from supj σ than v was. Therefore,

gσj (T + 1)< gσj (T). (3.25)

Depending ordering of the sweep directions, it is possible that gσj (T) > gσj (0), but

we also have that gσj (T)≤ fσj (T)≤ fσj (0) for all T . This fact combined with Equa-

3.2. X-error decoding 111

tion 3.25 implies that if we apply the Sweep Rule (with sweep direction ~δj) for time

T ≥ fσj (0) = T ∗j , then the i-boundary will be removed. During the procedure de-

scribed in Lemma 6, we apply the Sweep Rule T ∗j times for each sweep direction,

respectively. Therefore, the i-boundary is sure to be removed at some point during

the procedure.

3.2.2.2 SweepRule decoder

In this Section, we detail a surface code decoder that is based on the Sweep Rule.

We consider D-dimensional surface codes defined on causal lattices with boundaries,

where D ≥ 3. For concreteness, we consider tessellations the D-dimensional hyper-

cube with linear lattice size L. We pick a number i ∈ {2, . . . ,D− 1} and we place

a qubit on each i-simplex in the lattice. We associate Z-stabilizers with (i− 1)-

simplices and we associate X-stabilizers with (i+ 1) simplices. We consider a noise

model where the bit-flip channel (Equation 1.3) is applied independently to each

qubit, i.e. with probability p each qubit experiences a bit-flip (X) error. Consider

an error, ε, generated according to this noise model. The error syndrome of ε is

∂iε = σ, an i-boundary in the lattice. Decoding the error syndrome is the problem

of estimating ε (up to a stabilizer) given σ. We construct an algorithm based on

the Sweep Rule to solve this problem, which is described using pseudocode in Algo-

rithm 1. We note that for D ≥ 4, the Z-error decoding problem is analogous to the

X-error decoding problem, so the SweepRule decoder can be used to correct both

X and Z-errors in (D ≥ 4)-dimensional surface codes.

112 Chapter 3. Decoding three-dimensional surface codes

Algorithm 1 SweepRule Decoder
Input: X-error syndrome σ ∈ im∂i, sweep directions D, times T
Output: Correction ζ ⊆∆i (L)
T ← 0
σ(0)← σ
ζ←∅
Tmax← Sum(T)
while σ(T) 6= 0 and T < Tmax do

for j← 0 to |D|−1 do
T ′← 0
~δ←D[j]
T ∗←T [j]
while T ′ ≤ T ∗ do

Apply the Sweep Rule with sweep direction ~δ simultaneously to every
vertex of L to get ζ(T), the i-simplices flipped by the rule.
σ(T+1)← σ(T) +∂iζ

(T)

ζ← ζ	 ζ(T) . 	 denotes the symmetric difference of sets
T ′← T ′+ 1
T ← T + 1

end while
end for

end while
if T = Tmax then

return fail
else

return ζ
end if

There are two ways the SweepRule decoder can fail. Either the i-boundary is not

removed and the algorithm returns fail or the algorithm returns a correction, ζ, such

that the product of the original error, ε, and ζ is a logical X-operator. We now prove

that the probability that the SweepRule decoder fails is exponentially suppressed

in the linear size of the lattice, as long as the physical qubit error probability is

below some non-zero threshold error probability. This statement is formalized in

the following theorem.

Theorem 4 Consider a family of lattices that tessellate the D-dimensional hyper-

cube {L}, with growing linear size L. Choose a set of sweep directions D such that

each pair (L,D) satisfies the causality conditions and the local Euclidean conditions

detailed in Section 3.2.1.2. Pick an integer i∈ {2, . . . ,D−1}. Define a D-dimensional

surface code on each L, where qubits are placed on i-simplices and Z-stabilizers are

associated with (i−1)-simplices. Assume an error model where at each time step, a

3.2. X-error decoding 113

bit-flip error is applied independently to each qubit with probability p. Then, there

exists a constant pth > 0, such that if p < pth the probability that the SweepRule

decoder fails to correct the error is O
((

p
pth

)L)
.

To prove Theorem 4 we adapt the proof presented in [43], which itself builds on

work in [33, 150, 155]. The proof strategy is as follows. First, we show that errors

can be decomposed into chunks that are reasonably small and well-separated from

each other. Next, we show that the SweepRule decoder removes these chunks of the

error independently from each other in a bounded amount of time. Then, we show

that the probability of an error containing large chunks is suppressed in the size of

the chunks. As the maximum size chunk that the SweepRule decoder can correct

grows with the lattice size L, we can suppress the probability of a logical error by

increasing L.

3.2.2.3 Chunk decomposition

Let ε ⊂ ∆i (L) be an error in a D-dimensional surface code. A level-0 chunk is

a single error and a level-t chunk is the disjoint union of two level-(t− 1) chunks

that are contained with a sufficiently small region of L. More specifically, a level-0

chunk E[0] is a single element of ε and a level-t chunk is recursively defined to be

E[t] = E
[t−1]
1 tE[t−1]

2 such that diam(E[t]) ≤ Qt/2 for some constant Q. We use t

to denote the disjoint union of two sets, i.e. the union of two sets with an empty

intersection. The level-t error Et ⊆ ε is defined to be the union of all level-t chunks,

i.e. Et =
⋃
iE

[t]
i . We have the following inclusions:

ε= E0 ⊇ E1 ⊇ . . .⊇ Em) Em+1 = ∅, (3.26)

where m is always finite for any finite ε. Given the above, an error ε can be decom-

posed as follows:

ε= F0tF1t . . .tFm, (3.27)

where Ft =Et \Et+1. A subset M ⊆ ε is said to be an l-connected component if, for

any M1,M2 6= ∅ such that M =M1tM2 we have d(M1,M2)≤ l. In what follows, we

need the following lemma concerning connected components:

Lemma 7 (Connected Components [33]) Let ε ⊂ ∆i (L) be an error with disjoint

decomposition ε = F0 tF1 . . . and let Q ≥ 6 be a constant. Let M ⊆ ε be a Qt-

114 Chapter 3. Decoding three-dimensional surface codes

connected component of Ft. Then, diam(M)≤Qt and d(M,Ei \M)>Qt+1/3.

Lemma 7 gives us both an upper bound on the size of any Qt-connected compo-

nent of the error and a lower bound on the separation of theQt-connected component

from the rest of the error. For a proof, see [33, 43]. Next, we use Lemma 7 to prove

that the SweepRule decoder removes any level-t chunk of an error as long as t is

smaller than a certain value.

Lemma 8 Let ε ⊂ ∆i (L) be an error with disjoint decomposition ε = F0 tF1

Choose constants Q= 6|D|cP cD and m∗ = dlogQ(L/cD)e, where L is the linear lat-

tice size, D is the set of sweep directions, and cD and cP are lattice-dependent

constants (see locally Euclidean conditions 2 and 3). Suppose we apply the Sweep

Rule for Tt = cP cDQ
t time steps in each of the sweep directions ~δj ∈ D. Then for

any Qt-connected component M of Ft where t < m∗, the corresponding part of the

i-boundary ∂iM will be removed by the end of the procedure. Furthermore, ∂iM is

removed independently from the rest of the i-boundary.

Proof. Consider some Qt-connected component M of Ft. Given that t < m∗ =

dlogQ(L/cD)e, we have

diam(R(M))≤ cD×diam(M)≤ cDQt < cDQ
m∗ ≤ L, (3.28)

where the first inequality holds because the lattice is locally Euclidean (condition 3).

Equation 3.28 tells us that M is contained within a local region of L, which implies

that we can apply Lemma 6 to σ = ∂iM .

First, we show that σ is removed by the procedure described in Lemma 8.

Lemma 6 states that σ will be removed by the Sweep Rule if we sweep in each

direction ~δj ∈ D for time T ∗j , where

T ∗j = max
u∈R(σ)

max
(ulsupj σ)j

|(u l sup
j
σ)j |, (3.29)

the longest causal path between any vertex of σ and the j-supremum of σ. For any

M , we have σ = ∂iM ⊂M , so by Lemma 4 R(σ) ⊆ R(M). Therefore, to get a

3.2. X-error decoding 115

bound on T ∗j , we bound

max
u∈R(M)

max
(ulsupjM)j

|(u l sup
j
M)j |. (3.30)

Due to the lattice being locally Euclidean (conditions 2 and 3) we have

max
u∈R(M)

max
(ulsupjM)j

|(u l sup
j
M)j |,

≤ max
u∈R(M)

cP ×d(u,sup
j
M),

≤ cP ×diam(R(M)),

≤ cP cD×diam(M).

(3.31)

Lemma 7 tells us that diam(M)≤Qt, which combined with Equation 3.31 gives us

the following bound on T ∗j :

T ∗j ≤ cP cDQt. (3.32)

Next, we show that σ = ∂iM is removed independently of the rest of the i-

boundary ∂iε \ σ. Lemma 6 tells us that the distance of propagation for both σ

and ∂iε \σ is upper bounded by the total runtime of the procedure T =
∑
j T
∗
j =

|D|cP cDQt. By Lemma 7, d(σ,∂iε \σ) ≥ Qt+1/3, so in order for σ and ∂iε \σ to

remain separated during the procedure, we need T = |D|cP cDQt ≤Qt+1/6. This is

satisfied for any Q≥ 6|D|cP cD.

To prove Theorem 4, we need one more ingredient. Using the van den Berg

and Kesten inequality [156], it was shown in Ref. [43] that the probability of an

level-t chunk occurring in a randomly chosen error ε⊆∆i (L) is suppressed doubly

exponentially in t. That is

pr(level-t chunk in ε)≤ |∆0 (L) |λ−2
(
p

pth

)2t

, (3.33)

where λ= (2Q)DcB, D is the dimension of L and the threshold error probability is

pth =
(
λ2 max

v∈∆0(L)
|Sti(v)|

)−1

. (3.34)

Proof. (Proof of Theorem 4). Lemma 8 tells us that the SweepRule decoder re-

116 Chapter 3. Decoding three-dimensional surface codes

moves any Qt-connected component M of Ft by time T = |D|cP cDQt as long as

t < m∗ = dlogQ(L/cD)e. In addition, each M is removed independently of the rest

of the error when Q = 6cP cD|D|, which is independent of the linear lattice size L.

Finally, when t < m∗ we have diam(R(M)) < L (Equation 3.28), and as M stays

within R(M) throughout the procedure (Lemma 6), no correction can implement

a non-trivial logical operator. Suppose we run the SweepRule decoder for time

T = |D|cP cDQ(m∗−1) +1 =O (L). Then the SweepRule decode will successfully cor-

rect any error that does not contain level-m∗ or higher chunks. When p < pth, the

probability of a of a level-t chunk being part of the error is doubly exponentially sup-

pressed in t (Equation 3.34). As m∗ =O (logL), the probability that the SweepRule

decoder fails to correct the error is O
((

p
pth

)L)
when p < pth.

This concludes our proof that the SweepRule decoder has a non-zero error

threshold. Let us now consider some example 3D surface codes, and see what error

threshold our proof predicts for them. First, consider 3D surface codes defined on

cubic lattices with boundaries (with qubits on faces and Z-stabilizer generators on

edges). We can use the SweepRule decoder to correct X-errors in this code. We note

that the cubic lattices are locally Euclidean, with parameters cD = cP = 2 and cB = 1.

In addition, maxv∈∆0(L) |St2(v)|= 8. Plugging these values into Equation 3.34 gives

a threshold value ≈ 10−17. In the next Section, we will see that the real value

is ≈ 10−1, which illustrates the importance of using simulations to get accurate

estimates of the error threshold. The second code family we consider is surface codes

defined on rhombic-dodecahedral lattices (see Figure 2.6). These lattices are locally

Euclidean, with parameters cD ≤ 3, cB = 1, cP = 1 and maxv∈∆0(L) |St2(v)| = 12.

Plugging these values into Equation 3.34 gives a threshold value ≈ 10−16, whereas

the real value is ≈ 10−1 (as we show in the next section).

We note that neither the cubic lattice nor the rhombic-dodecahedral lattice is a

simplicial lattice. One may worry, therefore, that the proof in the previous section

will not apply to these lattices because we assumed a simplicial lattice structure.

However, one can embed a rhombic-dodecahedral lattice in a simplicial lattice, the

body-centred cubic (bcc) lattice. We recall that the bcc lattice is a lattice of cubes

with additional vertices at the centres of the cubes, where each additional vertex is

connected to the vertices of the cube it is at the centre of. Let us use a Cartesian

3.2. X-error decoding 117

coordinate system where the vertices of the cubes are located at integer coordinates

and the vertices at the centres of cubes are located at half-integer coordinates. Then,

one can construct a rhombic-dodecahedral lattice from a bcc lattice by deleting the

vertices with odd half-integer coordinates (i.e. (i, j,k) such that 2(i+ j+k) is odd)

and deleting the edges between integer coordinates. Clearly, we can also embed a

cubic lattice in a bcc lattice (just delete all half integer coordinates). The closeness

of the cubic lattice and the rhombic-dodecahedral lattice to simplicial lattices gives

us confidence that it should be possible to prove a non-zero error threshold for these

lattices as well.

We emphasize that our proof only applies when stabilizer measurements are

perfect. As we have said before in this thesis, in an actual quantum computer,

measurement results will be unreliable. In general, the existence of a threshold when

measurements are perfect does not imply that a threshold exists for the same decoder

when measurements are unreliable. However, the stability of Toom’s rule against

a form of measurement noise (see Figure 3.3) gives us hope that the SweepRule

decoder should work when for unreliable measurements. Indeed, this is what we

observe in the simulations described in the next section. In future work, we plan

to prove that the SweepRule decoder has a threshold when stabilizer measurements

are unreliable. A similar result has recently been proved for a family of quantum

codes based on expander graphs [157].

3.2.3 Numerical error threshold estimates

We implemented the SweepRule decoder in C++ and applied the decoder to 3D

surface codes defined on lattices from the family of stacked 3D surface codes we de-

scribed in Section 2.1.3. We recall that the surface codes in our family are defined on

cubic lattices and rhombic-dodecahedral lattices. We use the picture where qubits

are on faces, Z-stabilizer generators are associated with edges and X-stabilizer gen-

erators are associated with cells. The codes in our family are parameterized by their

code distance, d, which is equal to L− 1 where L is the linear dimension of the

corresponding (Kitaev picture) lattice. Figure 3.8a shows the d = 3 cubic lattice

and Figure 3.8b shows the d = 3 rhombic-dodecahedral lattice. We note that the

cubic surface code is an example of SCg in Table 2.1 and the rhombic-dodecahedral

surface code is an example of SCr or SCb in Table 2.1 (these codes are the same up

118 Chapter 3. Decoding three-dimensional surface codes

a) b)

Figure 3.8: Lattices of the codes described in Section 2.1.3 shown in the Kitaev picture
(qubits on faces, Z-stabilizer generators on edges, X-stabilizer generators on
cells). Figure 3.8a shows the d = 3 cubic lattice and Figure 3.8b shows the
d = 3 rhombic-dodecahedral lattice, where d = L− 1 (d is the code distance
and L is the linear size of the lattice). The faded edges are shown to illustrate
how these lattices can be embedded in infinite lattices.

to a rotation of the lattice).

To estimate the error threshold of the two code families, we carried out Monte

Carlo simulations to estimate the probability of a logical error, pL, as a function

of the physical error rate, p, for codes with growing linear size L. We used an

error model where a bit-flip is applied independently to each physical qubit with

probability p. In each case, we used eight sweep directions {(i, j,k)|i, j,k ∈ {−1,1}}.

One can verify that the lattices we consider combined with this set of sweep directions

satisfy the causality conditions we detailed in Section 3.2.1.2 (the lattices are trivially

locally Euclidean). We observe an error threshold of ≈ 15.5% for cubic surface codes

and we observe an error threshold of ≈ 20% for rhombic-dodecahedral surface codes.

The data are shown in Figure 3.9. We note that in each case, after applying the

error channel we applied the sweep rule to every vertex 32×L times. This is in

agreement with the scaling of the decoder runtime that we derived during the proof

of Theorem 4. We changed the sweep direction after every L sweeps, meaning that

each direction was swept four times.

The main difference between the two code families is that in cubic surface

codes certain errors exist that are never removed by the SweepRule decoder (see

Figure 3.10 for an example), whereas in rhombic-dodecahedral surface codes no

3.2. X-error decoding 119

0.1 0.12 0.14 0.16 0.18 0.2 0.22

10−4

10−3

10−2

10−1

100

p

p
L L= 10

L= 14
L= 18
L= 24
L= 32
L= 42

a)

0.16 0.18 0.2 0.22 0.24
10−4

10−3

10−2

10−1

p

p
L L= 10

L= 14
L= 18
L= 24
L= 32
L= 42

b)

Figure 3.9: Error threshold plots for cubic surface codes (3.9a) and rhombic-dodecahedral
surface codes (3.9b). In both cases, we apply the bit-flip channel independently
to each of the physical qubits in the code and then we use the SweepRule de-
coder (Algorithm 1) to attempt to correct the error. In each subfigure, we plot
the logical error probability, pL, as a function of the physical error probabil-
ity, p, for codes of increasing linear size, L. Each data point is the average
of 10,000 trials. The error threshold is the value of p where these curves in-
tersect. We observe an error threshold of ≈ 15.5% for cubic surface codes
and an error threshold of ≈ 20.0% for rhombic-dodecahedral surface codes.
The error bars show the standard error of the mean:

√
pL(1−pL)/η, where

η is the number of Monte Carlo trials. The data in this Figure were gener-
ated using ∼ 1,800 CPU hours. We acknowledge use of UCL supercomput-
ing facilities (https://www.ucl.ac.uk/research-it-services/services/
research-computing-platforms).

https://www.ucl.ac.uk/research-it-services/services/research-computing-platforms
https://www.ucl.ac.uk/research-it-services/services/research-computing-platforms

120 Chapter 3. Decoding three-dimensional surface codes

Figure 3.10: An example of a persistent syndrome in a 3D surface code. The filled-in
faces have experienced bit-flip errors. The corresponding syndrome is shown
in red. The SweepRule has no effect for this syndrome, intuitively because
it has no corners. Persistent syndromes of this type have previously been
observed by Breuckmann et al. [151].

such errors exist. However, these problematic syndromes are caused by specific

errors (high-level chunks) with support ≥L, so we don’t expect them to prevent the

cubic surface codes from having an error threshold. We could design a subroutine

to remove these errors once the main decoder has finished, as this problem maps

straightforwardly onto a minimum-weight matching problem. We expect that this

subroutine may improve the logical error probability but we would not expect it

alter the error threshold. Therefore, we leave this optimization to future work.

We expect our decoder to be robust against measurement errors because of

the similarity of the Sweep Rule CA to Toom’s rule. This robustness is similar in

spirit to the single-shot error correction property of codes such as the gauge colour

code (see Section 1.3.3). In regular single-shot error correction, we use metachecks

(consistency checks on the values of the stabilizers) to diagnose errors in the syn-

drome [51]. Hence, when a code has single-shot error correction, it is not necessary

to repeat stabilizer measurements O (d) times to deal with measurement errors. In

the case of our SweepRule decoder, we make no use of metachecks. Instead, we sim-

ply apply the decoder without worrying about incorrect measurement results and

we still observe a threshold. However, there seems to be a relationship between this

kind of resilience to measurement errors and the single-shot error correction studied

in [51]. In a 3D surface code, a loop of incorrect stabilizer outcomes of length l

3.2. X-error decoding 121

could be misdiagnosed as an error of size O
(
l2
)
(the area of the loop). We don’t

anticipate this causing problems for the decoder as long as l� L, where L is the

linear size of the lattice. We expect the probability of a length l loop of incorrect

stabilizer outcomes to be suppressed in the size of the loop, so we can ensure that

problematic loops are unlikely by increasing L. This relationship between faulty

stabilizer outcomes and the errors that could have caused them is essentially “good

soundness”, a property that is a prerequisite for single-shot error correction using

metachecks [51].

To test our intuition regarding resilience to measurement errors, we evaluated

the performance of the SweepRule decoder for an error model that incorporates un-

reliable stabilizer measurements. We used an error model where each physical qubit

of the code experiences a bit-flip error with probability p and stabilizer measurement

outcomes are also flipped with probability p. To evaluate the effectiveness of the

SweepRule decoder against this noise model, we estimate the error threshold of the

decoder as a function of the number of error correction cycles, where we define an

error correction cycle to be the following procedure:

1. Apply an X-error to each physical qubit independently with probability p.

2. Measure the Z-stabilizer generators perfectly to obtain the error syndrome.

3. Flip each stabilizer measurement outcome independently with probability p.

4. Apply the Sweep Rule simultaneously to each vertex of the lattice.

We simulate N error correction cycles, where can choose the sweep direction for

each cycle. To understand how well the decoder is suppressing errors during this

procedure, after the final cycle, we simulate reading out the information stored in

the surface code. As we discussed in Section 1.3.1, measurement errors during read-

out have the same effect as physical qubit errors just prior to readout. Therefore,

to simulate readout, we apply the bit-flip channel independently to each physical

qubit and then we compute the values of the stabilizer generators. We then apply

the Sweep Rule 32×L times, where L is the linear size of the surface code lat-

tice. Following this, if the state of the surface code is not in the codespace (the

+1 eigenspace of the stabilizer group) we record a failure, and otherwise we check

whether a logical operator was applied during the procedure. We refer to the two

122 Chapter 3. Decoding three-dimensional surface codes

phases of the decoding procedure as the error-suppression phase and the readout

phase.

Using the procedure detailed above, we estimated the error threshold as a func-

tion ofN (the number of error correction cycles) for cubic surface codes and rhombic-

dodecahedral surface codes. We expect the error threshold to decay to a constant

value, the sustainable threshold psus [102]. We used the following fitting function

for both code families:

pth(N) = psus

(
1−

(
1− pth(1)

psus

)
N−γ

)
, (3.35)

where γ is a parameter of the fit. We note that pth(1) is equal to the error threshold

when measurements are perfect. We observe a sustainable threshold of ≈ 1.70%

for cubic surface codes (Figure 3.11a) and a sustainable threshold of ≈ 2.15% for

rhombic-dodecahedral surface codes (Figure 3.11b).

There are a number of parameters that we optimized to improve the perfor-

mance of the decoder. The most important parameter is how often we change sweep

direction. During the error-suppression phase, we found that changing the sweep

direction after every ≈
√
L applications of the rule was the best strategy, as shown

in Figure 3.12. During the readout phase, we changed sweep direction after every L

applications of the Sweep Rule. The frequency with which we change sweep direc-

tion is different for the error suppression and the readout phase because the priority

for the decoder in each phase is different. In the error-suppression phase, our aim

is to keep the spread of errors under control. Therefore, we don’t want to sweep

in one direction for too long because then errors will build up in the parts of the

lattice that are problematic for this sweep direction (see Figure 3.4). On the other

hand, in the readout phase there are no additional errors during the application of

the rule, so our priority is to remove errors as fast as possible.

In Table 3.1, we compare the error thresholds for cubic surface codes (with

boundaries) that we observed using the SweepRule decoder with error thresholds

found using other decoders. We improve on the Toom’s rule decoder used in [44]

but our threshold value is lower than the threshold of a renormalization group (RG)

decoder developed by Duivenvoorden et al. [42]. However, as we mentioned in Sec-

tion 3.2, cellular automaton decoders are simple and parallelizable, which can be

3.2. X-error decoding 123

100 101 102 103 104
1.7 ·10−2

5 ·10−2

0.1

0.15

N

p
th

(N
)

1.7 1.8 1.9 2 2.1

·10−2

10−4

10−3

10−2

10−1

100

p

p
L

L = 10
L = 14
L = 18
L = 24
L = 32
L = 42

a)

100 101 102 103 104
2.1 ·10−2

5 ·10−2

0.1

0.15

0.2

N

p
th

(N
)

2 2.1 2.2 2.3

·10−2

10−3

10−2

10−1

100

p

p
L

L = 10
L = 14
L = 18
L = 24
L = 32
L = 42

b)

Figure 3.11: Plots showing the sustainable threshold of cubic surface codes (Figure 3.11a)
and rhombic-dodecahedral surface codes (Figure 3.11b). In each subfigure, we
plot the error threshold, pth, as a function of the number of error correction
cycles, N . An error correction cycle consists of a bit-flip channel applied
independently to every physical qubit, followed by an noisy measurement
of the stabilizer generators, and finished with an application of the Sweep
Rule simultaneously to all the vertices in the lattice. In both cases, the
error threshold decays to a constant value, the sustainable threshold (dashed
grey lines). We observe a sustainable threshold of ≈ 1.70% for cubic surface
codes (Figure 3.11a) and a sustainable threshold of ≈ 2.15% for rhombic-
dodecahedral surface codes. The blue line is the fit given in Equation 3.35,
which shows excellent agreement with the data. The inset plots give examples
of how we estimated the threshold for each data point in the main plots. In
each inset, we plot the probability of a logical error, pL, as a function of
the qubit and measurement error probability, p, for lattices of growing linear
size, L. The error threshold is the value of p where these curves intersect.
The data in this Figure were generated using ∼ 187,000 CPU hours. We
acknowledge use of UCL supercomputing facilities (https://www.ucl.ac.
uk/research-it-services/services/research-computing-platforms).

https://www.ucl.ac.uk/research-it-services/services/research-computing-platforms
https://www.ucl.ac.uk/research-it-services/services/research-computing-platforms

124 Chapter 3. Decoding three-dimensional surface codes

100 101

10−3

10−2

10−1

frequency

p
L L= 10

L= 14
L= 18
L= 24
L= 32
L= 42

Figure 3.12: A plot showing the effect of varying the frequency with which we change the
sweep direction during the error-suppression phase of decoding. We fix the
number of error correction cycles to be N = 1024, and we choose an error
probability p= 0.021 that is marginally below the error threshold. Then, for
rhombic-dodecahedral lattices with different linear sizes, L, we estimate the
logical error probability for different values of the frequency with which we
change the sweep direction. We choose frequency values that are (approxi-
mately) evenly-spaced on a log scale. We achieve the best performance using
frequencies ≈

√
L. We observe analogous behaviour in cubic surface codes.

Decoder Perfect measurements Unreliable measurements

Renormalization [42] 17.2% 7.3%
Toom’s Rule [44] 12% N/A

SweepRule 15.5% 1.7%

Table 3.1: Comparison of the error threshold of cubic surface codes against bit-flip noise
for different decoders.

an advantage when compared to decoding algorithms that require more involved

processing such as RG decoders. In addition, to deal with measurement errors,

Duivenvoorden et al. repeat the stabilizer measurements O (d) times before pro-

cessing the syndrome history to find a correction, which further complicates their

decoding procedure. We are not aware of any other error threshold results for

rhombic-dodecahedral surface codes, but we anticipate that an RG decoder could

be applied successfully to these codes.

Conclusion

In this Chapter, we have shown that 3D surface codes can effectively protect quan-

tum information. However, the protection these codes offer is not symmetric as

3.2. X-error decoding 125

they are better at protecting against X-errors (loop-like syndromes) than against

Z-errors (point-like syndromes). We showed that Z-errors can be decoded using the

minimum-weight matching algorithm, but that multiple rounds of stabilizer mea-

surement are required to deal with measurement errors. In contrast, X-errors in

3D surface codes can be corrected without repeating stabilizer measurements using

our SweepRule decoder. The error thresholds we observed are also higher for X-

errors than for Z-errors. However, we emphasize that the error thresholds in this

chapter should be treated as approximate values. To get a better estimate of the

error threshold, we would need to do a more detailed simulation where we take the

circuits used to measure the stabilizers into account.

We note that the structure of the two types of error is an artefact of our surface

code definition. If we exchange the definitions of the stabilizers, then X-errors would

have point-like syndromes and Z-errors would have loop-like syndromes. Therefore,

3D surface codes always offer asymmetric protection, but we have the freedom to

chose which type of error is better protected. Given this fact, surface codes may be

well-suited to qubit technologies where the noise is biased towards either bit-flips or

phase-flips e.g. [158, 159, 160].

It should be possible to improve on the decoders we have presented in this

Chapter. In the case of Z-errors, as we mentioned in Section 3.1, there are other 2D

surface code decoders that we could use in 3D codes if we want to prioritize speed.

For example, the Union-Find decoder has almost linear runtime [146]. Alternatively,

if we can construct a subsystem version of the 3D surface code in analogy to the

3D gauge colour code, then we may be able to correct Z-errors in a single shot i.e.

without needing to repeat stabilizer measurements.

The SweepRule decoder we described in Section 3.2 achieves single-shot error

correction of X-errors, but it has a lower threshold than an RG decoder (see Ta-

ble 3.1). One possible way to improve the performance of our decoder is to apply the

Sweep Rule multiple times between stabilizer measurements. If measurement is slow

compared to classical computation in a particular qubit technology (e.g. trapped-

ion qubits [161]), then the speed of the SweepRule decoder makes this strategy a

possibility. We expect there would be some kind of trade-off between the measure-

ment error probability and the optimal number of applications of the rule. We plan

126 Chapter 3. Decoding three-dimensional surface codes

to investigate this issue in future work. It would also be interesting to test the

performance of the SweepRule decoder against mode realistic noise models e.g. lo-

cally correlated errors. We expect that the decoder would still have a non-zero error

threshold for such an error model, but the value of the threshold may be smaller

than the threshold for independent bit-flip noise.

Finally, we expect the SweepRule decoder to be useful for other topological

codes. For example, Kubica and Delfosse recently showed that we can use surface

code decoders to decode colour codes [110]. Therefore, the SweepRule decoder could

be used to decode X-errors in 3D colour codes with boundaries. It would also be

interesting to see if we can extend the SweepRule decoder to hyperbolic surface codes.

These codes are not locally Euclidean, which implies that our threshold proof does

not work in this case. However, there is some evidence that local decoders perform

well in such codes [162, Section 6.4], so it is worth investigating the performance of

the SweepRule decoder in this context.

Chapter 4

Fault-tolerant three-dimensional

surface code architectures

We can break down the problem of building a fault-tolerant quantum computer

into smaller problems. These problems are: reliably preparing encoded |0〉 states,

correcting errors that occur during the operation of the computer, implementing

a universal gate set fault-tolerantly and accurately measuring the encoded qubits

in the Z-basis. In this chapter, we combine the results of Chapters 2 and 3 to

show that we can accomplish these tasks using 3D surface codes. In Section 4.1,

we show how to implement the basic operations required in a quantum computer

using a single stack of surface codes. Then, in Section 4.2, we generalize the tech-

niques of lattice surgery [67] to 3D surface codes, showing how to transfer logical

qubits between codes in different stacks. Finally, in Section 4.3, we propose two

fault-tolerant quantum computing architectures based on 3D surface codes. After

detailing these architectures, we estimate their resource requirements and compare

these estimates with the requirements of the leading topological-code architectures.

Much of the material in this chapter originally appeared in [112], and was carried

out in collaboration with Dan Browne.

4.1 Fault-tolerance in a single stack
In this section, we explain how to do all of the basic operations required in a quantum

computer using 3D surface codes. The basic unit we consider is a stack of three 3D

surface codes defined on the same rectified cubic lattice. We defined a family of codes

with this structure in Section 2.1.3, and we reproduce an image showing showing

such a lattice in Figure 4.1.

128 Chapter 4. Fault-tolerant three-dimensional surface code architectures

Figure 4.1: A rectified cubic lattice that supports three surface codes. We recall that
each code, SCc, is indexed by the colour of its X-stabilizer generators, where
c ∈ {r,g,b}. The Z-stabilizer generators of SCc are associated with c′c′′-faces,
where c′ 6= c′′ 6= c. Each code in the stack has one logical qubit. Figure adapted
from Vasmer and Browne [112].

First, we consider fault-tolerant error correction. In Chapter 3, we described

decoders for correcting Z-errors (MWPM) and X-errors (SweepRule decoder) in

3D surface codes. We can correct each type of error independently because surface

codes are CSS codes. In the case of Z-errors, we dealt with measurement errors by

measuring the stabilizer generators O (d) times before applying a correction, where

d is the code distance. However, this is not necessary for X-errors. We showed that

one can apply the SweepRule decoder even when measurements are unreliable and

still observe an error threshold. Another approach to decoding X-errors when mea-

surements are unreliable is to use the metacheck structure of the code. Metachecks

are relations between the stabilizer generators, which allow us to tell if an observed

syndrome contains measurement errors [51]. For example, in 3D surface codes, we

know that valid X-error syndromes are loops of edges that are either closed or ter-

minate on the boundaries. Therefore, it is possible to repair invalid error syndromes

that contain broken loops (e.g. using MWPM), before applying a decoder. This is

the approach that was taken in [42] for decoding errors in 4D surface codes, which

is a similar problem to decoding X errors in 3D surface codes.

The second basic operation we consider is the preparation of encoded |0〉 states.

We can generalize the state preparation technique used in 2D surface codes [28]

4.1. Fault-tolerance in a single stack 129

(Section 1.3.1) to 3D surface codes. We briefly review this technique here. To

prepare an encoded |0〉 state fault-tolerantly, we prepare each of the physical qubits

in the |0〉 state, before performing d rounds of error correction (where d is the code

distance). In the case of the Z-errors, d rounds of error correction means measuring

the X-stabilizer generators d times before applying a correction computed using the

syndrome history. And for X-errors, d rounds of error correction means measuring

the Z-stabilizer generators d times and applying the Sweep Rule simultaneously to

each vertex after each measurement. This entire procedure takes O (d) time.

In contrast, we can fault-tolerantly prepare |+〉 states in O (1) time because

X-errors in 3D surface codes can be corrected in a single shot. The procedure we

use is essentially the state preparation procedure described by Dennis et al. for

perfect stabilizer measurements [28]. We begin by preparing all the physical qubits

in the |+〉 state, before measuring the Z-stabilizer generators. We can then use the

metacheck structure of code to repair the syndrome, before applying a correction

generated by a decoder. During this procedure, we may apply a logical X-operator,

but this does not matter because the physical qubits started in a +1 eigenstate of

X, and measuring the Z-stabilizers will not change this eigenvalue. We note that it

will not be possible to repair the syndrome perfectly, so there will be some residual

errors caused by imperfect measurements. However, we can make these errors small

as long as the measurement-error probability is smaller than the error threshold of

the syndrome-repair procedure. Given that repairing a faulty syndrome is essentially

a matching problem, it has been argued that the error threshold of this procedure

will be similar to the error threshold of decoding Z-errors in 3D surface codes [42],

which we estimated to be ≈ 2.9% (Figure 3.1).

The third basic operation required of a fault-tolerant quantum computer is

fault-tolerant measurement in the Z-basis. To do this, we generalize the fault-

tolerant measurement procedure used in 2D surface codes [28] to 3D surface codes.

Namely, to measure an encoded qubit in the Z-basis we simply measure all the

physical qubits in the Z-basis and compute the eigenvalues of the Z-stabilizers. We

then correct any X-errors implied by this syndrome (in practice, this means flipping

measurement results). Finally, we compute the value of a Z-operator using the

corrected measurement results. To measure an encoded qubit in the X-basis we do

130 Chapter 4. Fault-tolerant three-dimensional surface code architectures

the same procedure as explained above, except with X and Z interchanged. Both

these measurement procedures take O (1) time.

In Chapter 2, we showed how to implement a universal gate set in 3D surface

codes without using magic state distillation (MSD). We proved that the CCZ gate

is transversal for stacks of codes that are defined on rectified cubic lattices. We also

showed that the CZ gate is transversal in such codes, and we presented a simple

circuit for implementing a Hadamard gate that requires a single ancilla. We show

the same circuit again in Figure 4.2. We can use this circuit to implement a single-

qubit H-gate in a stack of three surface codes and to transfer a logical qubit between

different qubits in the same stack. We denote the circuit in Figure 4.2 by Hcc′ . This

circuit takes the state |ψ〉c to the stateH |ψ〉c′ , where the c and c′ subscripts label the

logical qubits of SCc and SCc′ , respectively. Consider the initial state |ψ〉r |+〉g |+〉b.

We can use sequences of Hcc′ circuits to transfer the state |ψ〉r from one code to

another or to perform a single-qubit H as follows:

|ψ〉r
Hrg−−→H |ψ〉g

Hgb−−→ |ψ〉b ,

|ψ〉r
Hrg−−→H |ψ〉g

Hgb−−→ |ψ〉b
Hbr−−→H |ψ〉r .

(4.1)

|ψ〉 • X •

|+〉 • H |ψ〉

Figure 4.2: A circuit that implements a H-gate using an ancilla prepared in the |+〉 state,
an X-basis measurement and CZ [78].

We have shown how to use 3D surface codes to implement the basic operations

that are required in a fault-tolerant quantum computer. However, in a full quantum

computing architecture, we need to be able to transfer logical qubits between surface

codes in different stacks (or between 3D surface codes and 2D surface codes). We

address this problem in the next section, where we generalize the techniques of lattice

surgery to 3D surface codes.

4.2 3D surface code lattice surgery
Lattice surgery is a code deformation technique that allows us to merge two surface

codes into a larger surface code or to split a surface code into two smaller surface

codes. It was introduced by Horsman et al. as a way to encode logical qubits in a

4.2. 3D surface code lattice surgery 131

large sheet of 2D surface code [67]. Lattice-surgery merges and splits can be used to

transfer qubits between codes or to implement CNOT gates. There are two types

of lattice surgery we can do in 3D surface codes: X-type and Z-type (corresponding

to rough and smooth lattice surgery in the language of [67]). We start by presenting

lattice surgery techniques for pairs of 3D surface codes before presenting a method

for doing lattice surgery on a 3D surface code and a 2D surface code.

4.2.1 3D/3D lattice surgery

We start with X-type lattice surgery. Consider two rectified cubic lattices with

boundaries (e.g. the lattice in Figure 4.1). Each lattice supports three surface codes,

SC(i)
c , where c ∈ {r,g,b} and i ∈ {1,2} indexes the two stacks. We can do an X-type

lattice-surgery merge between SC(1)
c and SC(2)

c by first aligning the c-boundaries

of the two stacks (we recall that a c-boundary is a rough boundary in SCc and a

smooth boundary in the other codes). We complete the merge by preparing a layer

of ancillas in the |0〉 state between the stacks and then measuring new X-stabilizers

that join the two lattices. This configuration of lattices is shown in Figure 4.3. The

product of the new X-stabilizers is X(1)
c ⊗X(2)

c , where X(i)
c is the logical operator of

the code SCc in stack i. There may also be new Z-stabilizers, which we add to the

stabilizer group and measure in subsequent rounds of error correction. In addition,

some Z-stabilizers on the boundaries where the merge took place may need to be

modified. The merge operation maps |ψ〉c⊗|φ〉c→ α |ψ〉c+(−1)mβX |ψ〉c, where m

is the outcome of the X(1)
c ⊗X(2)

c measurement and |φ〉c = α |0〉c+β |1〉c [67].

To make the above procedure fault-tolerant, we need to do O (d) rounds of error

correction. This allows us to be confident about the value of X(1)
c ⊗X(2)

c . We note

that any logical X-operator for either of the two initial codes is a valid logical X-

operator for the merged code. However, to form a logical Z-operator in the new code

we must join logical Z-operators from each of the initial codes into a single string

of Z-operators that starts and ends at opposite c-boundaries. We can implement

an X-type lattice-surgery split by measuring all the qubits in the layer where we

want to split the lattice in the Z-basis. This splits the single surface code into two

smaller surface codes. An X-type split performed on SCc implements the following

mapping: α′ |+〉c+β′ |−〉c→ α′ |++〉c+β′ |−−〉c [67].

Z-type lattice surgery is analogous to X-type lattice surgery. To perform a

132 Chapter 4. Fault-tolerant three-dimensional surface code architectures

Figure 4.3: Lattice surgery in 3D surface codes. Both of the initial stacks (non-faded
lattices) contain three surface codes. We prepare a layer of ancilla qubits
(vertices of the faded lattice) and measure new stabilizers (faces and cells of
the faded lattice) to merge codes of the same colour in separate stacks. To
undo a merge, we simply measure the layer of ancilla qubits in the relevant
basis. In this configuration, we can do X-type lattice surgery on SC(1)

g and
SC(2)

g , Z-type lattice surgery on SC(1)
b and SC(2)

b , and Z-type lattice surgery
on SC(1)

r and SC(2)
r . Figure adapted from Vasmer and Browne [112].

Z-type merge on SC(2)
c and SC(2)

c , we first align a c′-boundary of one stack with a c′-

boundary of the other (this aligns the smooth boundaries of the codes). We then add

a layer of ancilla qubits (all in the |+〉 state) and measure new Z-stabilizers that join

the two lattices. There may also be new X-stabilizers and modified X-stabilizers at

the join. The new Z-stabilizers (redundantly) tell us the value of Z(1)
c ⊗Z(2)

c . Unlike

X-type lattice surgery, we can do Z-type lattice surgery in O (1) time, as we can use

the MWPM syndrome-repair procedure to get an accurate estimate of Z(1)
c ⊗Z(2)

c

from a constant number of stabilizer measurements. This illustrates that codes with

single-shot error correction also have advantages when it comes to lattice surgery.

Any logical Z-operator of either original code is a valid logical Z-operator of the

merged code. However, the logical X-operators of the merged code are membranes

4.2. 3D surface code lattice surgery 133

of X-operators with boundaries that span the c′ and c′′-boundaries of the merged

lattice. We can implement a Z-type split by measuring a layer of SCc qubits in the

X-basis. Figure 4.3 shows an example of Z-type lattice surgery on two 3D surface

codes.

We note that we can simultaneously implement an X-type merge on the SCc
codes in different stacks, a Z-type merge on the SCc′ codes in different stacks and

a Z-type merge on the SCc′′ codes in different stacks. To do this we prepare a layer

of qubits between c-boundaries of the two stacks we want to merge. At every vertex

in the new layer we place three qubits (one for each pair of codes), prepared in the

state |0〉c |+〉c′ |+〉c′′ . We then modify the stabilizer groups of all three pairs of codes

at once as discussed in the previous paragraphs to merge the three pairs of codes

simultaneously. We can also invert this process to do a simultaneous split on all

three pairs of codes.

4.2.2 2D/3D lattice surgery

We can do Z-type lattice surgery on a 2D surface code and a 3D surface code using

procedures that are similar to 2D surface code lattice surgery. However, performing

X-type lattice surgery on a 2D surface code and a 3D surface code is more compli-

cated. This is because the dimension of the logical Z-operators in 2D surface codes

and 3D surface codes is the same whereas the dimension of the logical X-operators

is not. Therefore, we only discuss Z-type lattice surgery in this section.

We start with a 3D surface code stack and a 2D surface code sheet aligned such

that the 2D sheet is in the same plane as the bottom layer of the 3D stack (see

Figure 4.4). To do a lattice-surgery merge, we simply measure new Z-stabilizers

whose product is Z2D⊗Z3D (the tensor product of the logical Z-operators of the

codes). The X-stabilizers of both codes at the join will also be modified. Because

single-shot error correction is not possible with 2D surface codes, we need to do O (d)

rounds of error correction to ensure fault tolerance, where d is the code distance.

The effect of the Z-type merge on the logical operators is more interesting in the

2D/3D case than the 3D/3D case. The logical Z-operators of the original codes

are valid logical Z-operators of the merged code. However, logical X-operators of

the merged code are products of membrane operators in the 3D lattice and string

operators in the 2D lattice. This structure means that when decoding X-errors in

134 Chapter 4. Fault-tolerant three-dimensional surface code architectures

Figure 4.4: Z-type lattice surgery on 3D and 2D surface codes. We associate X-stabilizer
generators with b-faces and Z-stabilizer generators with r-faces in the 2D sur-
face code. In the stack we consider SCb (X-stabilizer generators associated
with b-cells and Z-stabilizer generators associated with rg-faces). The left
and right boundaries of the 2D surface code are smooth boundaries and the
left and right boundaries of the stack are r-boundaries (smooth boundaries in
SCb). To implement a lattice-surgery merge between the two codes we mea-
sure two new Z-stabilizers (faded r-faces), whose product is Z2D⊗Z3D. We
also merge the weight-two X-stabilizer on the left boundary of the 2D code
with the weight-three X-stabilizer associated with the bottom r-face on the
right boundary of the 3D code. This stabilizer is represented by the faded blue
face in the Figure. To undo the merge operation we return to measuring the
pre-merge stabilizers. Figure adapted from Vasmer and Browne [112].

the combined 2D and 3D codes, we would have to use a different decoder in each

code and combine their results. To implement a Z-type split we simply return to

measuring the pre-merge stabilizers. Finally, we note that the Z-type lattice surgery

operations we have described can also be used to do Z-type lattice surgery between

two 3D surface codes.

As we previously stated, we can use lattice surgery to implement CNOT gates

and to transfer qubits between different surface codes. This is because lattice surgery

allows us to measure products of encoded Pauli operators fault-tolerantly [67, 68]. A

Z-type lattice-surgery merge followed by a Z-type lattice surgery split is equivalent

to a logical Z ⊗Z measurement. Figure 4.5 shows a circuit that uses a Z ⊗Z

measurement to transfer a qubit from one surface code to another. We can also

measure X ⊗X fault-tolerantly by implementing an X-type lattice surgery merge

followed by a split. Measuring in both the X and Z-basis enables us to implement

a CNOT gate [67, 68], as shown in Figure 4.6. We can also use lattice surgery to

4.3. Architectures and overheads 135

|ψ〉
MZZ

Xa X •

|+〉 Z |ψ〉

Figure 4.5: A circuit that transfers a qubit |ψ〉 to an ancilla prepared in the |+〉 state using
a Z⊗Z measurement, which is denoted above byMZZ . The binary variable
a= (1−m)/2, where m ∈ {−1,1} is the outcome of the Z⊗Z measurement.

|ψ〉
MZZ

Za2

|+〉
MXX

X •

|φ〉 Xa1

Figure 4.6: A circuit that implements a CNOT gate with |ψ〉 as the control qubit and |φ〉
as the target qubit. MZZ denotes a Z⊗Z measurement and MXX denotes
a X ⊗X measurement. The binary variables a1 = (1−m1)/2 and a2 = (1−
m2)/2, where m1 ∈ {−1,1} and m2 ∈ {−1,1} are the outcomes of the Z⊗Z
and X⊗X measurements, respectively.

perform more complex (Clifford) gates [163, 68].

4.3 Architectures and overheads

As we discussed in Chapter 1, the large resource cost of MSD has motivated research

into alternative implementations of non-Clifford gates in topological codes. To rea-

son about the resource requirements of different architectures, we use a space-time

overhead metric. We say that an architecture that requires n physical qubits per

logical qubit and d rounds of stabilizer measurement per operation has a space-time

overhead of nd. We neglect the time cost of efficient classical computation, as we

are primarily interested in the quantum computing resources. Using the space-time

overhead metric allows us to compare the scaling of the resource costs of different

architectures without descending into highly detailed analyses of each architecture.

A 2D surface code architecture (e.g [15, 67, 70, 69]) using distance d codes

requires ≈ d2 physical qubits per logical qubit and O (d) rounds of stabilizer mea-

surement per operation. Therefore, the total space-time overhead of this architecture

is O
(
d3). The 3D gauge colour code architecture proposed by Bombín [101] requires

≈ d3 physical qubits per logical qubit, but only needs a constant number of rounds

of stabilizer measurement per operation. So this architecture also has a space-time

overhead of O
(
d3). Therefore, using the space-time overhead metric, a 2D sur-

face code architecture and a 3D gauge colour code architecture have comparable

136 Chapter 4. Fault-tolerant three-dimensional surface code architectures

resource costs. Clearly, the locality of the native gates (i.e. whether 3D connectiv-

ity is possible) in the physical system used to realize the qubits has a significant

impact on which architecture is preferable. But overall, given current qubit error

rates [103, 104], the 2D surface code’s superior error threshold gives it an advantage

over the gauge colour code. However, we note that 2D surface code architectures

have been heavily optimized over the past seventeen years whereas the gauge colour

code was only introduced relatively recently. Therefore, it seems unwise to dismiss

gauge colour code architectures at this stage.

In the remainder of this section, we propose two architectures that utilize 3D

surface codes and compare them with the architectures we discussed above. To

begin, we present an architecture that exclusively uses 3D surface codes to encode

logical qubits. And in our second proposal, we suggest using 3D surface codes

to produce magic states, before transferring these states into a 2D surface code

architecture where they can be used to implement non-Clifford gates.

4.3.1 Purely 3D architecture

Here, we present a fault-tolerant quantum computing architecture where every qubit

is encoded in a 3D surface code. The fact that we use 3D surface codes makes our

architecture unsuitable for qubit technologies with planarity constraints e.g. su-

perconducting qubits fabricated on 2D chips [103]. However, in other architectures

do not have the same constraints. For example, all-to-all coupling can be engi-

neered in ion trap qubits [104]. Our proposal seems like it may be well suited to a

networked architecture, where cells containing matter qubits are connected by pho-

tonic links [164, 165, 166, 167, 168, 169]. Alternatively, 3D codes are well suited to

ballistic linear optical architectures, because in such architectures the third dimen-

sion becomes the time dimension [170, 64, 171, 172, 173]. Finally, we recall from

Section 3.2.3 that 3D surface codes are well-suited to systems where the noise is bi-

ased (e.g. [158, 159, 160]) because the protection offered by the codes is asymmetric.

We emphasize that redefinition of the stabilizers allows us to choose which errors (X

or Z) have loop-like syndromes (single-shot decoding, higher threshold) or point-like

syndromes (multiple rounds of stabilizer measurement, lower threshold).

We now describe the structure of our architecture. Consider a large rectified

cubic lattice which we divide into “stacks” such that every stack is a rectified cubic

4.3. Architectures and overheads 137

Figure 4.7: The macro-structure of our purely-3D surface code architecture. We divide a
large rectified cubic lattice into equally-sized stacks such that every stack (in
the bulk) is adjacent to six other stacks. In the Figure, we show the stacks in
two out of the three dimensions of a 3×3×3 layout of distance-3 codes.

lattice with boundaries (see Figure 4.7). Each stack therefore has three logical

qubits and is adjacent to six other stacks. As we detailed in Section 4.1, we can do

fault-tolerant error correction, state preparation and measurement in each stack. In

addition, we can do lattice surgery on adjacent stacks. This allows us to transfer

logical qubits between different stacks. We use half the stacks to store information

(data qubits) and half as (encoded) ancillas, where the role of the stacks alternate.

This means that we can use lattice surgery to implement a CNOT gate between

any two data qubits which are adjacent to the same ancilla stack. If the two data

qubits are encoded in different colour surface codes, then we need to use two ancilla

qubits, otherwise we can use a single ancilla. The second ancilla is needed because

we can only do lattice surgery between codes of the same colour. CNOT gates allow

us to swap any two data qubits which are adjacent to the same ancilla stack.

As we showed in Section 4.1, we can implement the universal gate set

138 Chapter 4. Fault-tolerant three-dimensional surface code architectures

{CCZ,H,CZ} in a single stack without using MSD. Our implementations of CCZ

and CZ are transversal but, as we discussed in Section 4.1, to apply a H-gate to

a data qubit we need to use the other two data qubits in the stack as ancillas. To

avoid this, we implement the H-gate by the following method: first we transfer the

data qubit to an adjacent ancilla stack, then we use the procedure in Equation 4.1 to

apply the H-gate to the data qubit, before transferring it back to its original stack.

To summarize, in our architecture, we can swap arbitrary data qubits and

implement a universal gate set in each stack. CCZ gates can be performed in

parallel on all data qubits, CZ gates can be performed in parallel on two thirds of

the data qubits and H-gates can be performed in parallel on a third of the data

qubits. The CCZ gate, CZ gate and measurement can be done in O (1) time steps

(assuming fast classical computation), whereas the H-gate, |0〉 state preparation,

and error correction all require O (d) time steps. Each 3D surface code requires

≈ d3 physical qubits per logical qubit. Therefore, the space-time overhead of our

architecture is O
(
d4), which is larger than the space-time overhead of 2D surface

code architectures and the 3D gauge colour code architecture.

The reason for the larger space-time overhead of our architecture is that we

require O (d) rounds of stabilizer measurement for a subset of the operations we

want to implement. The main reason for this is that repeated stabilizer measure-

ments are required to correct Z-errors fault-tolerantly. Another disadvantage of

our architecture is that the error threshold of the 3D surface code is likely to be

smaller than the error threshold of the 2D surface code. The error threshold of

the 3D surface code is limited by the Z-error threshold, which we estimated to be

≈ 1.25%. This estimate is almost certainly too optimistic because we did not take

the stabilizer measurement circuits into account. We expect these circuits to in-

troduce more errors, especially for high-weight stabilizers such as those found in

tetrahedral-octahedral surface codes (see Figure 2.8). In future, we plan to investi-

gate the possibility of constructing “gauge 3D surface codes” that share some of the

properties of the gauge colour code. If such codes exist, it may be possible use them

in an architecture with O
(
d3) space-time overhead and single-shot error correction

which could be competitive with the pre-eminent topological code architectures.

4.3. Architectures and overheads 139

4.3.2 Hybrid 2D/3D architecture

The basic idea of our hybrid architecture is to use 3D surface codes to realize a non-

Clifford gate in a 2D surface code architecture, thereby eliminating the necessity

of doing MSD. We consider 2D surface code architectures where logical qubits are

encoded in patches of surface code and lattice surgery is used to couple qubits in

different patches e.g. [67, 68, 163, 70, 69]. The Clifford group can be implemented

fault-tolerantly with low overhead in such an architecture [68, 66]. To promote a

2D lattice-surgery architecture to universality, we use 3D surface codes as CCZ

state factories, where a CCZ state is defined to be |CCZ〉= CCZ |+ + +〉. We can

consume a CCZ state to apply a CCZ gate to three logical qubits using the Clifford

circuit shown in Figure 4.8. Therefore, the architecture we have just described fulfils

all the criteria of a fault-tolerant architecture, and the role of the 3D surface codes

is restricted to the area where they are most useful.

|0〉 H • • • • X |x〉

|0〉 H • • • X • |y〉

|0〉 H • • X • • (−1)xyz |z〉

|x〉 •

|y〉 •

|z〉 •

Figure 4.8: A circuit that consumes one CCZ state (dashed box) to implement a CCZ
gate on the bottom three qubits. We note that Ht×CNOTct×Ht = CZ,
where c and t refer to the control and target qubits. We constructed this
circuit using the methodology described in [78].

Let us consider the creation of CCZ states using 3D surface codes in more

detail. The first step in the process is to prepare an encoded |+ + +〉 state, which

we can do fault-tolerantly in constant time, as we explained in Section 4.1. Next,

we transversally apply the CCZ gate which takes a single time step. Therefore,

producing CCZ states encoded in 3D surface codes requires O (1) rounds of stabilizer

measurement. We emphasize that the procedure for making CCZ states is simple, so

we expect that 3D surface code error correction would be easier in this context and

the value of the error threshold would be higher than in the purely 3D architecture

described in Section 4.3.1.

140 Chapter 4. Fault-tolerant three-dimensional surface code architectures

After producing CCZ states, we need to transfer them from the 3D surface

codes to the 2D surface code architectures. We can do this using lattice surgery

(as explained in Section 4.2.2) which takes time O (d). Alternatively, we can use a

dimensional jump [101] to transform a 3D surface code into a 2D surface code in

constant time. To perform such a jump, we measure all the physical qubits in the

X-basis, apart from the qubits on one of the boundaries. We use the measurement

outcomes to compute the value of the X-stabilizers, and we process this information

to find a correction, which we apply to the qubits on the boundary. This procedure

fault-tolerantly transforms a 3D surface code into a 2D surface code, as long as the

boundary of the 3D code has the structure of a 2D code. More specifically, we require

that if we restrict the stabilizer group of the 3D surface code to a boundary, then

we recover the stabilizer group of a 2D surface code defined on that boundary. The

codes in our family of stacked codes have this property, as we explain in Figure 4.9.

It is not possible to perform a dimensional jump to the same boundary for all

three codes in the stack. This may be a problem if the 2D surface codes in our

architecture all lie in the same plane as one of the boundaries of the 3D surface

code. For example, suppose the 2D surface code patches lie in the same plane as a

3D surface code boundary that supports dimensional jumps for SCg and SCr (e.g.

the boundary highlighted in Figure 4.9). To move a CCZ state from the 3D surface

code stack to the 2D surface code part of the architecture, we would first transfer the

SCg and SCr parts of the state via dimensional jumps. Next, we would prepare new

encoded |+〉 state ancillas in SCr and SCg, and use the circuit in Figure 4.2 to transfer

the SCb part of the CCZ state to SCr. Finally, we would use a dimensional jump

to finish transferring the CCZ state to the 2D surface code part of the architecture.

In the architecture we have just described we need ≈ d2 physical qubits per

logical qubit and O (d) rounds of stabilizer measurement for the 2D surface code

part. And in the CCZ factories we require O
(
d3) physical qubits and O (1) rounds

of error correction to produce each CCZ state. The total resource requirements of

our architecture are approximately
[
c2O

(
d2)+ c3O

(
d3)]× [c2O (d) + c3O (1)], where

c2 and c3 are the number of required 2D surface codes and 3D surface codes, respec-

tively. If we assume that the required number of 3D surface codes is a factor of ≈ d

smaller than the required number of 2D surface codes, then the overall resource re-

4.3. Architectures and overheads 141

a) b)

Figure 4.9: To perform a dimensional jump, we require that if we restrict the stabilizer
group of a 3D surface code to a boundary, then we recover the stabilizer group
of a 2D surface code defined on the boundary. Consider the front boundary of
the lattice. In Figure 4.9a, we highlight a subset of the stabilizers of SCg (non-
faded faces). We recall that this code has X-stabilizer generators associated
with g-cells and Z-stabilizer generators associated with rb-faces (faces shared
between r-cells and b-cells). By comparing this figure with the 2D surface code
shown in Figure 2.2, we see that the highlighted stabilizers are exactly the
stabilizers of a [[13,1,3]] 2D surface code. In Figure 4.9b, we highlight a subset
of the stabilizers of SCr. We recall that this code has X-stabilizer generators
associated with r-cells and Z-stabilizer generators associated with bg-faces.
In addition, we associate weight-four SCr X-stabilizers with the b-faces on
the front boundary. The highlighted X-stabilizers are exactly the stabilizers
of a [[13,1,3]] 2D surface code. And by taking products of the highlighted
Z-stabilizers, we can recover the Z-stabilizers of the same 2D surface code.

quirements of our architecture would be O
(
d3). This assumption is realistic because

a 3D surface code magic-state factory would produce magic states extremely quickly

which means that the spatial footprint of the factory would be small. The overhead

of MSD is estimated to also scale like O
(
d3), but with a significant constant hid-

den by the Big-O notation [86]. Therefore, depending on the physical systems used

to build the qubits, it may be beneficial to use 3D surface codes instead of MSD

to implement a non-Clifford gate in a 2D surface code architecture. However, to

conclusively answer the question of which approach is preferable, we would need to

perform a much more detailed analysis of the resource costs of both approaches. We

defer this analysis until future work.

We observe that it may be possible to combine 3D surface codes and MSD. For

example, we could use small 3D surface codes to produce noisy CCZ states which

142 Chapter 4. Fault-tolerant three-dimensional surface code architectures

could be fed into a MSD protocol (e.g. [72]). This may eliminate the need for the

multiple rounds of MSD that can be required, depending on the target error rate.

Finally, as we discussed in the previous section, the non-planarity of 3D surface

codes means that they are most likely to be useful for qubit technologies where

non-planar connectivity is relatively easy to engineer (e.g. ion-trap qubits [104] or

photonic qubits [173]).

Conclusion

In this chapter, we proposed two quantum computing architectures based on 3D

surface codes, and we evaluated their performance using a space-time metric. Out

of the two, the hybrid 2D/3D surface code architecture is the most promising, as in

this architecture we limit the role of the 3D surface codes to producing CCZ states,

which can be done in constant time (ignoring the cost of classical computation).

In addition, the error-correction problem is easier for 3D surface code CCZ-state

factories than in an architecture where all operations must be implemented using 3D

surface codes. We envisage using the CCZ states to implement the (non-Clifford)

CCZ gate in a 2D surface code architecture, thus achieving universality without

using MSD. Furthermore, in our hybrid architecture, we achieve the same space-time

overhead as 2D surface code architectures that use MSD to achieve universality.

Brown recently proposed a method for doing a CCZ gate in a 2D surface code

architecture that builds on the results in this thesis [174]. His method also relies on

a recent proposal by Bombín, who showed that it is possible to realize a 3D colour

code using only a constant thickness slice of 2D colour code [175]. Brown combined

the transversal CCZ in 3D surface codes (Section 2.2) with Bombín’s insight to

propose an architecture which is similar to our hybrid architecture. Specifically,

he considered a 2D surface code architecture where MSD has been replaced by a

simulation of a 3D surface code CCZ state factory using 2D surface codes. Brown’s

proposal is attractive because it allows us to use the processing power of 3D surface

codes in a 2D architecture. However, using a 2D surface code to simulate a 3D

surface code makes the decoding problem significantly more difficult. At present, it

is not clear what the error tolerance of Brown’s scheme is. We plan to investigate

this question in future work.

Chapter 5

Conclusion

Given current technology, there is no way of avoiding error-correction and fault-

tolerance if we want to build a quantum computer capable of running large-scale

quantum algorithms. However, the number of qubits required in the leading fault-

tolerant architectures is many orders of magnitude larger than the number of qubits

in the small quantum computers that are available today. Reducing the overhead of

fault-tolerance is, therefore, a central problem in the field of quantum computing.

In this thesis, we examined the question of whether using 3D surface codes al-

lows us to reduce the overhead of fault-tolerance. Firstly, we showed that 3D surface

codes have a noteworthy property when it comes to processing information: they

possess a transversal (non-Clifford) CCZ gate. Secondly, we studied the decoding

problem in 3D surface codes. We observed that 3D surface codes offer asymmetric

protection against errors. We adapted the SweepRule decoder to work for codes

with boundaries, and we showed that one can use this decoder to decode bit-flip

errors even if the error syndrome is unreliable. However, to decode phase-flip errors,

we needed to use a relatively complex (but still efficient) classical algorithm to pro-

cess the information from repeated stabilizer measurements. Thirdly, we proposed

two quantum computing architectures that utilize 3D surface codes. We provided a

method for implementing a universal and fault-tolerant gate-set in a single stack of

3D surface codes using transversal gates and Pauli measurements. And we gener-

alized lattice surgery to 3D surface codes, which enabled us to envisage a quantum

computing architecture where the basic building block is a stack of 3D surface codes.

In addition, we showed that one can use a 3D surface code to produce magic states

in a 2D surface code architecture (removing the need for MSD).

144 Chapter 5. Conclusion

We evaluated the overhead of our architectures using a space-time metric and

we compared these results with the overhead of two leading architectures: 2D surface

code architectures and gauge colour code architectures. We found that our purely 3D

architecture has a larger space-time overhead than the leading architectures. This is

because, unlike gauge colour codes, single-shot error correction of both bit-flip and

phase-flip errors is not possible in 3D surface codes. Despite this, we showed that

using 3D surface codes to produce magic states in a 2D surface code architecture

has a space-time overhead that is comparable to the leading architectures. This

result relies on two non-trivial properties of 3D surface codes: the transversality of

CCZ, and single-shot error correction of bit-flip errors. Consequently, the space-time

overhead of producing magic states using 3D surface codes is O
(
d3), where d is the

code distance. MSD protocols have been shown to have space-time requirements

with the same scaling [86] and significant constant factors hidden by the Big-O

notation. Therefore, there may be some parameter regimes where using 3D surface

codes to produce magic states is more efficient than using MSD.

A number of research questions follow naturally from this work. Firstly, given

the remarkable properties of the gauge colour code [49, 101, 50], it is logical to ask

whether a “gauge surface code” can be constructed. In 2D, such a code exists [176],

however, this code is in the same topological phase of the 2D surface code [176],

i.e. there exists a geometrically-local, constant-depth circuit that transforms any 2D

gauge surface code into a regular 2D surface code. This is in contrast to the gauge

colour code, which is not in the same topological phase as the 3D colour code. In

fact, understanding the properties of the gauge colour code Hamiltonian is still an

active area of research [177, 178]. We would like to construct a 3D gauge surface code

with low weight gauge operators and single-shot error correction of both bit-flip and

phase-flip errors. This in turn would enable us to reduce the space-time cost of our

3D surface code architecture. A 3D gauge surface code may also be interesting from

a condensed-matter perspective, and may be easier to analyse than the gauge colour

code because surface codes generically have less complex topological excitations than

colour codes.

In the conclusion of Chapter 4, we briefly discussed a recent proposal by

Brown [174] for implementing a CCZ gate in a 2D surface code architecture. Brown’s

145

work combines the results of Chapter 2 (published in [112]) with a recent proposal

by Bombín [175]. Brown envisages using 3D surface codes to produce CCZ states,

but with one of the spatial dimensions in a 3D surface code becoming the time di-

mension. Therefore, instead of building a full 3D surface code, it is only necessary to

build a constant thickness slice of it. This slice can then be used to move through the

3D surface code lattice in time, implementing a transversal CCZ gate at each time

step. It is natural to worry about the resilience of Brown’s CCZ implementation to

error, as we do not expect a family of constant thickness surface codes to have an

error threshold. However, Brown’s CCZ implementation is made fault-tolerant us-

ing a just-in-time (JIT) decoder (a concept also introduced by Bombín [175]), which

can correct errors using only a subset of the error syndrome of the full 3D code.

Brown proved that JIT decoding has an error threshold, but this value is very low

(p∼ 10−15), as is often the case with analytically-proven thresholds. At present, no

numerical estimates of the error threshold have been undertaken. If Brown’s scheme

has a high error threshold then it may be more advantageous than using MSD, even

for qubit technologies where 3D connectivity is problematic. Due to the fact that

our SweepRule decoder only needs to process information locally, we conjecture that

it would be suitable for JIT decoding. We plan to apply our decoder to this problem

in future work.

Finally, we can ask a more general question about the fundamental space-time

overhead of doing universal fault-tolerant quantum computation with topological

stabilizer codes. All of the schemes we are aware of have at best a space-time

overhead that scales like d3, where d is the code distance. It is logical to ask whether

this upper bound is also a lower bound. For 3D topological codes this is clearly the

case, as the best we can hope for using d3 qubits is operations that take constant

time. However, the situation is less clear for 2D topological codes, where the space

overhead is ≈ d2. It seems unlikely that we will be able to implement the required

operations in constant time, because doing this in 3D codes requires single-shot error

correction, which we know is not possible in 2D topological stabilizer codes [106,

105]. In future work, we plan to investigate the fundamental space-time overhead

of universal computation with topological codes more thoroughly. Such an analysis

should also allow us to compare more easily the overhead of the various topological

146 Chapter 5. Conclusion

code quantum computing architectures. This in turn would help us to answer the

question of which architecture is best suited to particular qubit technologies.

Appendix A

Proof of Lemma 1

Lemma 1 was required in the proof of the transversality of CCZ for 3D surface

codes. We restate it here:

Lemma 1. Given a finite set of binary vectors {aj}, the parity of their sum is equal

to the sum of their parities.

Proof. An equivalent statement of the Lemma 1 is that for any finite set of m binary

vectors {aj}, the following Equation holds:

m∑
j=1
|aj |− |

m∑
j=1

aj |= 2t, (A.1)

where t is a positive integer and |aj | denotes the Hamming weight of aj . We prove

Lemma 1 by induction. Consider the m= 2 case. We have

|a1 +a2|= |a1|+ |a2|−2O(a1,a2), (A.2)

where O(a,b) is the overlap of a and b i.e. the number of positions where both a

and b are equal to one. Rearranging, we obtain

|a1|+ |a2|− |a1 +a2|= 2O(a1,a2). (A.3)

148 Appendix A. Proof of Lemma 1

Now consider the inductive step from m to m+ 1:

|
m+1∑
j=1

aj |= |
m∑
j=1

aj |+ |am+1|−2O

 m∑
j=1

aj ,am+1


=

m∑
j=1
|aj |−2t+ |am+1|−2O

 m∑
j=1

aj ,am+1


=
m+1∑
j=1
|aj |−2

t+O
 m∑
j=1

aj ,am+1

 .
(A.4)

Bibliography

[1] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J. Comput., 26, 1484 (1997).

[2] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear

systems of equations. Phys. Rev. Lett., 103, 150502 (2009).

[3] M. Reiher, N. Wiebe, K. M. Svore et al. Elucidating reaction mechanisms on

quantum computers. Proc. Natl. Acad. Sci., 114, 7555 (2017).

[4] IBM announces advances to IBM Quantum systems & ecosystem. https:

//www-03.ibm.com/press/us/en/pressrelease/53374.wss. Accessed: 10-

08-2019.

[5] A preview of Bristlecone, Google’s new quantum processor. https://

ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.

html. Accessed: 10-08-2019.

[6] The Rigetti 128-qubit chip and what it means

for quantum. https://medium.com/rigetti/

the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea.

Accessed: 10-08-2019.

[7] C. Gidney and M. Ekerå. How to factor 2048 bit RSA integers in 8 hours

using 20 million noisy qubits. arXiv:1905.09749 (2019).

[8] A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys.,

303, 2 (2003).

[9] S. B. Bravyi and A. Y. Kitaev. Quantum codes on a lattice with boundary.

arXiv:quant-ph/9811052 (1998).

http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
https://www.pnas.org/content/114/29/7555
https://www.pnas.org/content/114/29/7555
https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
https://arxiv.org/abs/1905.09749
https://arxiv.org/abs/1905.09749
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://arxiv.org/abs/quant-ph/9811052

150 Bibliography

[10] M. H. Freedman and D. A. Meyer. Projective plane and planar quantum codes.

Found. Comput. Math., 1, 325 (2001).

[11] R. Raussendorf and J. Harrington. Fault-tolerant quantum computation with

high threshold in two dimensions. Phys. Rev. Lett., 98, 190504 (2007).

[12] A. G. Fowler, A. M. Stephens, and P. Groszkowski. High-threshold universal

quantum computation on the surface code. Phys. Rev. A, 80, 052312 (2009).

[13] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg. Surface code quantum

computing with error rates over 1%. Phys. Rev. A, 83, 020302 (2011).

[14] A. M. Stephens. Fault-tolerant thresholds for quantum error correction with

the surface code. Phys. Rev. A, 89, 022321 (2014).

[15] A. G. Fowler, M. Mariantoni, J. M. Martinis et al. Surface codes: Towards

practical large-scale quantum computation. Phys. Rev. A, 86, 032324 (2012).

[16] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum infor-

mation: 10th anniversary edition. Cambridge University Press, 10th edition

(2011).

[17] K. Kraus. States, effects and operations: fundamental notions of quantum

theory. Springer (1983).

[18] P. W. Shor. Scheme for reducing decoherence in quantum computer memory.

Phys. Rev. A, 52, R2493 (1995).

[19] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett.,

77, 793 (1996).

[20] L. Viola, E. Knill, and S. Lloyd. Dynamical decoupling of open quantum

systems. Phys. Rev. Lett., 82, 2417 (1999).

[21] D. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence-free subspaces for

quantum computation. Phys. Rev. Lett., 81, 2594 (1998).

[22] D. Gottesman. Stabilizer codes and quantum error correction. Ph.D. thesis,

Caltech (1997).

https://doi.org/10.1007/s102080010013
https://link.aps.org/doi/10.1103/PhysRevLett.98.190504
https://link.aps.org/doi/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevA.80.052312
http://dx.doi.org/10.1103/PhysRevA.80.052312
https://link.aps.org/doi/10.1103/PhysRevA.83.020302
https://link.aps.org/doi/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevA.89.022321
http://dx.doi.org/10.1103/PhysRevA.89.022321
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
https://link.aps.org/doi/10.1103/PhysRevLett.77.793
https://link.aps.org/doi/10.1103/PhysRevLett.82.2417
https://link.aps.org/doi/10.1103/PhysRevLett.82.2417
https://link.aps.org/doi/10.1103/PhysRevLett.81.2594
https://link.aps.org/doi/10.1103/PhysRevLett.81.2594
http://arxiv.org/abs/quant-ph/9705052

Bibliography 151

[23] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist.

Phys. Rev. A, 54, 1098 (1996).

[24] Z. Cai, M. A. Fogarty, S. Schaal et al. A silicon surface code architecture

resilient against leakage errors. arXiv:1904.10378 (2019).

[25] A. Steane. Multiple-particle interference and quantum error correction. Proc.

Royal Soc. Lond., Ser. A: Math. Phys. Eng. Sci., 452, 2551 (1996).

[26] M. B. Hastings. Trivial low energy states for commuting hamiltonians, and

the quantum PCP conjecture. Quantum Inf. Comput., 13, 393 (2013).

[27] N. Delfosse, P. Iyer, and D. Poulin. Generalized surface codes and packing of

logical qubits. arXiv:1606.07116 (2016).

[28] E. Dennis, A. Kitaev, A. Landahl et al. Topological quantum memory. J.

Math. Phys., 43, 4452 (2002).

[29] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the

quantum theory. Phys. Rev., 115, 485 (1959).

[30] W. Ehrenberg and R. E. Siday. The refractive index in electron optics and the

principles of dynamics. Proc. Phys. Soc., B, 62, 8 (1949).

[31] J. Edmonds. Paths, trees, and flowers. Can. J. Math., 17, 449 (1965).

[32] V. Kolmogorov. Blossom V: a new implementation of a minimum cost perfect

matching algorithm. Math. Program. Compuation, 1, 43 (2009).

[33] S. Bravyi and J. Haah. Quantum self-correction in the 3D cubic code model.

Phys. Rev. Lett., 111, 200501 (2013).

[34] A. G. Fowler. Proof of finite surface code threshold for matching. Phys. Rev.

Lett., 109, 180502 (2012).

[35] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg. Towards practical

classical processing for the surface code: Timing analysis. Phys. Rev. A, 86,

042313 (2012).

https://link.aps.org/doi/10.1103/PhysRevA.54.1098
https://arxiv.org/abs/1904.10378
https://arxiv.org/abs/1904.10378
http://dx.doi.org/10.1098/rspa.1996.0136
https://arxiv.org/abs/1606.07116
https://arxiv.org/abs/1606.07116
http://dx.doi.org/10.1063/1.1499754
https://link.aps.org/doi/10.1103/PhysRev.115.485
https://link.aps.org/doi/10.1103/PhysRev.115.485
http://dx.doi.org/10.1088/0370-1301/62/1/303
http://dx.doi.org/10.1088/0370-1301/62/1/303
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1103/PhysRevLett.111.200501
https://link.aps.org/doi/10.1103/PhysRevLett.109.180502
https://link.aps.org/doi/10.1103/PhysRevA.86.042313
https://link.aps.org/doi/10.1103/PhysRevA.86.042313

152 Bibliography

[36] A. A. Kovalev and L. P. Pryadko. Fault tolerance of quantum low-density

parity check codes with sublinear distance scaling. Phys. Rev. A, 87, 020304

(2013).

[37] C. Castelnovo and C. Chamon. Topological order in a three-dimensional toric

code at finite temperature. Phys. Rev. B, 78, 155120 (2008).

[38] Z. Nussinov and G. Ortiz. Autocorrelations and thermal fragility of anyonic

loops in topologically quantum ordered systems. Phys. Rev. B, 77, 064302

(2008).

[39] A. Kubica, F. Pastawski, and B. Yoshida. Unfolding the color code. New J.

Phys., 17, 083026 (2015).

[40] A. B. Aloshious and P. K. Sarvepalli. Projecting three-dimensional color codes

onto three-dimensional toric codes. Phys. Rev. A, 98, 012302 (2018).

[41] N. P. Breuckmann and X. Ni. Scalable Neural Network Decoders for Higher

Dimensional Quantum Codes. Quantum, 2, 68 (2018).

[42] K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal. Renormalization

group decoder for a four-dimensional toric code. IEEE Trans. Inf. Theory,

65, 2545 (2019).

[43] A. Kubica and J. Preskill. Cellular-automaton decoders with provable thresh-

olds for topological codes. Phys. Rev. Lett., 123, 020501 (2019).

[44] A. Kulkarni and P. K. Sarvepalli. Decoding the three-dimensional toric codes

and welded codes on cubic lattices. Phys. Rev. A, 100, 012311 (2019).

[45] P. Webster and S. D. Bartlett. Locality-preserving logical operators in topo-

logical stabilizer codes. Phys. Rev. A, 97, 012330 (2018).

[46] R. Alicki, M. Horodecki, P. Horodecki et al. On thermal stability of topological

qubit in Kitaev’s 4D model. Open Syst. Inf. Dyn., 17, 1 (2010).

[47] B. J. Brown, D. Loss, J. K. Pachos et al. Quantum memories at finite tem-

perature. Rev. Mod. Phys., 88, 045005 (2016).

https://link.aps.org/doi/10.1103/PhysRevA.87.020304
https://link.aps.org/doi/10.1103/PhysRevA.87.020304
https://link.aps.org/doi/10.1103/PhysRevB.78.155120
https://link.aps.org/doi/10.1103/PhysRevB.78.155120
https://link.aps.org/doi/10.1103/PhysRevB.77.064302
https://link.aps.org/doi/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1088/1367-2630/17/8/083026
https://link.aps.org/doi/10.1103/PhysRevA.98.012302
https://link.aps.org/doi/10.1103/PhysRevA.98.012302
https://doi.org/10.22331/q-2018-05-24-68
https://doi.org/10.22331/q-2018-05-24-68
http://dx.doi.org/10.1109/TIT.2018.2879937
http://dx.doi.org/10.1109/TIT.2018.2879937
https://link.aps.org/doi/10.1103/PhysRevLett.123.020501
https://link.aps.org/doi/10.1103/PhysRevLett.123.020501
https://link.aps.org/doi/10.1103/PhysRevA.100.012311
https://link.aps.org/doi/10.1103/PhysRevA.100.012311
http://dx.doi.org/10.1103/PhysRevA.97.012330
http://dx.doi.org/10.1103/PhysRevA.97.012330
http://dx.doi.org/10.1142/S1230161210000023
http://dx.doi.org/10.1142/S1230161210000023
https://link.aps.org/doi/10.1103/RevModPhys.88.045005
https://link.aps.org/doi/10.1103/RevModPhys.88.045005

Bibliography 153

[48] D. Poulin. Stabilizer formalism for operator quantum error correction. Phys.

Rev. Lett., 95, 230504 (2005).

[49] H. Bombín. Single-shot fault-tolerant quantum error correction. Phys. Rev.

X, 5, 031043 (2015).

[50] H. Bombín. Resilience to time-correlated noise in quantum computation. Phys.

Rev. X, 6, 041034 (2016).

[51] E. Campbell. A theory of single-shot error correction for adversarial noise.

Quantum Sci. Technol., 4, 025006 (2019).

[52] P. W. Shor. Fault-tolerant quantum computation. In Proc. 37th Annu. Symp.

Found. Comput. Sci., pages 56–65. IEEE (1996).

[53] D. P. DiVincenzo and P. Aliferis. Effective fault-tolerant quantum computation

with slow measurements. Phys. Rev. Lett., 98, 020501 (2007).

[54] A. M. Steane. Active stabilization, quantum computation, and quantum state

synthesis. Phys. Rev. Lett., 78, 2252 (1997).

[55] A. M. Steane. Fast fault-tolerant filtering of quantum codewords. arXiv:quant-

ph/0202036 (2002).

[56] E. Knill. Scalable quantum computing in the presence of large detected-error

rates. Phys. Rev. A, 71, 042322 (2005).

[57] R. Chao and B. W. Reichardt. Quantum error correction with only two extra

qubits. Phys. Rev. Lett., 121, 050502 (2018).

[58] A. Y. Kitaev. Quantum computations: algorithms and error correction. Russ.

Math. Survey, 52, 1191 (1997).

[59] A. Y. Kitaev, A. Shen, and M. N. Vyalyi. Classical and quantum computation.

47. American Mathematical Society (2002).

[60] G. Nebe, E. M. Rains, and N. J. A. Sloane. The invariants of the Clifford

groups. Des. Codes Cryptogr., 24, 99 (2001).

https://link.aps.org/doi/10.1103/PhysRevLett.95.230504
http://dx.doi.org/10.1103/PhysRevX.5.031043
https://link.aps.org/doi/10.1103/PhysRevX.6.041034
http://dx.doi.org/10.1088/2058-9565/aafc8f
http://dx.doi.org/10.1109/SFCS.1996.548464
http://dx.doi.org/10.1109/SFCS.1996.548464
http://dx.doi.org/10.1109/SFCS.1996.548464
https://link.aps.org/doi/10.1103/PhysRevLett.98.020501
https://link.aps.org/doi/10.1103/PhysRevLett.98.020501
https://link.aps.org/doi/10.1103/PhysRevLett.78.2252
https://link.aps.org/doi/10.1103/PhysRevLett.78.2252
https://arxiv.org/abs/quant-ph/0202036
https://link.aps.org/doi/10.1103/PhysRevA.71.042322
https://link.aps.org/doi/10.1103/PhysRevA.71.042322
https://link.aps.org/doi/10.1103/PhysRevLett.121.050502
https://link.aps.org/doi/10.1103/PhysRevLett.121.050502
http://dx.doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1023/A:1011233615437
https://doi.org/10.1023/A:1011233615437

154 Bibliography

[61] Y. Shi. Both Toffoli and controlled-NOT need little help to do universal quan-

tum computing. Quantum Inf. Comput., 3, 84 (2003).

[62] B. Eastin and E. Knill. Restrictions on transversal encoded quantum gate

sets. Phys. Rev. Lett., 102, 110502 (2009).

[63] P. Faist, S. Nezami, V. V. Albert et al. Continuous symmetries and approxi-

mate quantum error correction. arXiv:1902.07714 (2019).

[64] R. Raussendorf, J. Harrington, and K. Goyal. A fault-tolerant one-way quan-

tum computer. Ann. Phys., 321, 2242 (2006).

[65] H. Bombin. Topological order with a twist: Ising anyons from an abelian

model. Phys. Rev. Lett., 105, 030403 (2010).

[66] B. J. Brown, K. Laubscher, M. S. Kesselring et al. Poking holes and cutting

corners to achieve Clifford gates with the surface code. Phys. Rev. X, 7, 021029

(2017).

[67] C. Horsman, A. G. Fowler, S. Devitt et al. Surface code quantum computing

by lattice surgery. New J. Phys., 14, 123011 (2012).

[68] D. Litinski and F. v. Oppen. Lattice surgery with a twist: Simplifying Clifford

gates of surface codes. Quantum, 2, 62 (2018).

[69] D. Litinski. A game of surface codes: Large-scale quantum computing with

lattice surgery. Quantum, 3, 128 (2019).

[70] A. G. Fowler and C. Gidney. Low overhead quantum computation using lattice

surgery. arXiv:1808.06709 (2018).

[71] S. Bravyi and J. Haah. Magic-state distillation with low overhead. Phys. Rev.

A, 86, 052329 (2012).

[72] A. Paetznick and B. W. Reichardt. Universal fault-tolerant quantum compu-

tation with only transversal gates and error correction. Phys. Rev. Lett., 111,

090505 (2013).

[73] S. Bravyi and A. Kitaev. Universal quantum computation with ideal Clifford

gates and noisy ancillas. Phys. Rev. A, 71, 022316 (2005).

http://dl.acm.org/citation.cfm?id=2011508.2011515
http://dl.acm.org/citation.cfm?id=2011508.2011515
https://link.aps.org/doi/10.1103/PhysRevLett.102.110502
https://link.aps.org/doi/10.1103/PhysRevLett.102.110502
https://arxiv.org/abs/1902.07714
https://arxiv.org/abs/1902.07714
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
https://link.aps.org/doi/10.1103/PhysRevLett.105.030403
https://link.aps.org/doi/10.1103/PhysRevLett.105.030403
https://link.aps.org/doi/10.1103/PhysRevX.7.021029
https://link.aps.org/doi/10.1103/PhysRevX.7.021029
http://dx.doi.org/10.1088/1367-2630/14/12/123011
http://dx.doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
https://arxiv.org/abs/1808.06709
https://arxiv.org/abs/1808.06709
http://dx.doi.org/10.1103/PhysRevA.86.052329
http://dx.doi.org/10.1103/PhysRevLett.111.090505
http://dx.doi.org/10.1103/PhysRevLett.111.090505
https://link.aps.org/doi/10.1103/PhysRevA.71.022316
https://link.aps.org/doi/10.1103/PhysRevA.71.022316

Bibliography 155

[74] E. T. Campbell and M. Howard. Unified framework for magic state distillation

and multiqubit gate synthesis with reduced resource cost. Phys. Rev. A, 95,

022316 (2017).

[75] E. T. Campbell and M. Howard. Unifying gate synthesis and magic state

distillation. Phys. Rev. Lett., 118, 060501 (2017).

[76] J. Haah and M. B. Hastings. Codes and protocols for distilling T , controlled-S,

and Toffoli gates. Quantum, 2, 71 (2018).

[77] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal

quantum computation using teleportation and single-qubit operations. Nature,

402, 390 (1999).

[78] X. Zhou, D. W. Leung, and I. L. Chuang. Methodology for quantum logic

gate construction. Phys. Rev. A, 62, 052316 (2000).

[79] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with con-

stant error rate. In Proc. 29th Annual IEEE Symp. on the Theory of Computer

Science (STOC’97), pages 176–188. ACM (1997).

[80] A. Y. Kitaev. Quantum computations: algorithms and error correction. Rus-

sian Math. Surveys, 52, 1191 (1997).

[81] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation:

error models and thresholds. Proc. Royal Soc. Lond., Ser. A: Math. Phys.

Eng. Sci., 454, 365 (1998).

[82] D. Aharonov, A. Kitaev, and J. Preskill. Fault-tolerant quantum computation

with long-range correlated noise. Phys. Rev. Lett., 96, 050504 (2006).

[83] P. Aliferis and J. Preskill. Fault-tolerant quantum computation against biased

noise. Phys. Rev. A, 78, 052331 (2008).

[84] H. K. Ng and J. Preskill. Fault-tolerant quantum computation versus gaussian

noise. Phys. Rev. A, 79, 032318 (2009).

[85] J. Preskill. Sufficient condition on noise correlations for scalable quantum

computing. Quantum Inf. Comput., 13, 181 (2013).

https://link.aps.org/doi/10.1103/PhysRevA.95.022316
https://link.aps.org/doi/10.1103/PhysRevA.95.022316
https://link.aps.org/doi/10.1103/PhysRevLett.118.060501
https://link.aps.org/doi/10.1103/PhysRevLett.118.060501
https://doi.org/10.22331/q-2018-06-07-71
https://doi.org/10.22331/q-2018-06-07-71
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
http://dx.doi.org/10.1103/PhysRevA.62.052316
http://dx.doi.org/10.1103/PhysRevA.62.052316
https://arxiv.org/abs/quant-ph/9611025
https://arxiv.org/abs/quant-ph/9611025
https://arxiv.org/abs/quant-ph/9611025
https://arxiv.org/abs/quant-ph/9611025
http://www.turpion.org/php/full/getFT.phtml/rm_52_1191.pdf?journal_id=rm&paper_id=2155&agree=on&tpdfn=rm_52_1191&x=86&y=9
http://dx.doi.org/10.1098/rspa.1998.0166
http://dx.doi.org/10.1098/rspa.1998.0166
https://link.aps.org/doi/10.1103/PhysRevLett.96.050504
https://link.aps.org/doi/10.1103/PhysRevLett.96.050504
https://link.aps.org/doi/10.1103/PhysRevA.78.052331
https://link.aps.org/doi/10.1103/PhysRevA.78.052331
https://link.aps.org/doi/10.1103/PhysRevA.79.032318
https://link.aps.org/doi/10.1103/PhysRevA.79.032318
https://arxiv.org/abs/1207.6131
https://arxiv.org/abs/1207.6131

156 Bibliography

[86] J. O’Gorman and E. T. Campbell. Quantum computation with realistic magic-

state factories. Phys. Rev. A, 95, 032338 (2017).

[87] M. B. Hastings and J. Haah. Distillation with sublogarithmic overhead. Phys.

Rev. Lett., 120, 050504 (2018).

[88] S. Bravyi and R. König. Classification of topologically protected gates for local

stabilizer codes. Phys. Rev. Lett., 110, 170503 (2013).

[89] F. Pastawski and B. Yoshida. Fault-tolerant logical gates in quantum error-

correcting codes. Phys. Rev. A, 91, 012305 (2015).

[90] T. Jochym-O’Connor, A. Kubica, and T. J. Yoder. Disjointness of stabilizer

codes and limitations on fault-tolerant logical gates. Phys. Rev. X, 8, 021047

(2018).

[91] B. Yoshida. Topological color code and symmetry-protected topological

phases. Phys. Rev. B, 91, 245131 (2015).

[92] M. Beverland, O. Buerschaper, R. König et al. Protected gates for topological

quantum field theories. J. Math. Phys., 57 (2016).

[93] H. Bombín and M. A. Martin-Delgado. Topological quantum distillation. Phys.

Rev. Lett., 97, 180501 (2006).

[94] H. Bombín and M. A. Martin-Delgado. Topological computation without

braiding. Phys. Rev. Lett., 98, 160502 (2007).

[95] H. Bombin and M. A. Martin-Delgado. Exact topological quantum order in

D = 3 and beyond: Branyons and brane-net condensates. Phys. Rev. B, 75,

075103 (2007).

[96] A. J. Landahl, J. T. Anderson, and P. R. Rice. Fault-tolerant quantum com-

puting with color codes. arXiv:1108.5738 (2011).

[97] H. Bombín. Gauge color codes: optimal transversal gates and gauge fixing in

topological stabilizer codes. New J. Phys., 17, 083002 (2015).

[98] A. Kubica and M. E. Beverland. Universal transversal gates with color codes:

A simplified approach. Phys. Rev. A, 91, 032330 (2015).

http://link.aps.org/doi/10.1103/PhysRevA.95.032338
http://link.aps.org/doi/10.1103/PhysRevA.95.032338
https://link.aps.org/doi/10.1103/PhysRevLett.120.050504
http://dx.doi.org/10.1103/PhysRevLett.110.170503
http://dx.doi.org/10.1103/PhysRevLett.110.170503
https://link.aps.org/doi/10.1103/PhysRevA.91.012305
https://link.aps.org/doi/10.1103/PhysRevA.91.012305
https://link.aps.org/doi/10.1103/PhysRevX.8.021047
https://link.aps.org/doi/10.1103/PhysRevX.8.021047
https://link.aps.org/doi/10.1103/PhysRevB.91.245131
https://link.aps.org/doi/10.1103/PhysRevB.91.245131
https://www.microsoft.com/en-us/research/publication/protected-gates-for-topological-quantum-field-theories/
https://www.microsoft.com/en-us/research/publication/protected-gates-for-topological-quantum-field-theories/
http://dx.doi.org/10.1103/PhysRevLett.97.180501
http://dx.doi.org/10.1103/PhysRevLett.98.160502
http://dx.doi.org/10.1103/PhysRevLett.98.160502
https://link.aps.org/doi/10.1103/PhysRevB.75.075103
https://link.aps.org/doi/10.1103/PhysRevB.75.075103
https://arxiv.org/abs/1108.5738
https://arxiv.org/abs/1108.5738
http://dx.doi.org/10.1088/1367-2630/17/8/083002
http://dx.doi.org/10.1088/1367-2630/17/8/083002
http://dx.doi.org/10.1103/PhysRevA.91.032330
http://dx.doi.org/10.1103/PhysRevA.91.032330

Bibliography 157

[99] F. H. E. Watson, E. T. Campbell, H. Anwar et al. Qudit color codes and

gauge color codes in all spatial dimensions. Phys. Rev. A, 92, 022312 (2015).

[100] D. S. Wang, A. G. Fowler, C. D. Hill et al. Graphical algorithms and threshold

error rates for the 2D colour code. Quantumt Inf. Comput., 10, 780 (2010).

[101] H. Bombín. Dimensional jump in quantum error correction. New J. Phys.,

18, 043038 (2016).

[102] B. J. Brown, N. H. Nickerson, and D. E. Browne. Fault-tolerant error correc-

tion with the gauge color code. Nat. Commun., 7, 12302 (2016).

[103] R. Barends, J. Kelly, A. Megrant et al. Superconducting quantum circuits at

the surface code threshold for fault tolerance. Nature, 508, 500 (2014).

[104] K. Wright, K. Beck, S. Debnath et al. Benchmarking an 11-qubit quantum

computer. arXiv:1903.08181 (2019).

[105] H. Bombín, G. Duclos-Cianci, and D. Poulin. Universal topological phase of

two-dimensional stabilizer codes. New J. Phys., 14, 073048 (2012).

[106] B. Yoshida. Classification of quantum phases and topology of logical operators

in an exactly solved model of quantum codes. Ann. Phys., 326, 15 (2011).

January 2011 Special Issue.

[107] H. Bombín. Structure of 2D topological stabilizer codes. Commun. Math.

Phys., 327, 387 (2014).

[108] A. B. Aloshious, A. N. Bhagoji, and P. K. Sarvepalli. On the local equiva-

lence of 2D color codes and surface codes with applications. arXiv:1804.00866

(2018).

[109] N. Delfosse. Decoding color codes by projection onto surface codes. Phys. Rev.

A, 89, 012317 (2014).

[110] A. Kubica and N. Delfosse. Efficient color code decoders in d≥ 2 dimensions

from toric code decoders. arXiv:1905.07393 (2019).

[111] J. E. Moussa. Transversal clifford gates on folded surface codes. Phys. Rev.

A, 94, 042316 (2016).

https://link.aps.org/doi/10.1103/PhysRevA.92.022312
https://link.aps.org/doi/10.1103/PhysRevA.92.022312
https://arxiv.org/abs/0907.1708
https://arxiv.org/abs/0907.1708
http://dx.doi.org/10.1088/1367-2630/18/4/043038
http://dx.doi.org/10.1038/ncomms12302
http://dx.doi.org/10.1038/ncomms12302
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
https://arxiv.org/abs/1903.08181
https://arxiv.org/abs/1903.08181
http://dx.doi.org/10.1088/1367-2630/14/7/073048
http://dx.doi.org/10.1088/1367-2630/14/7/073048
http://www.sciencedirect.com/science/article/pii/S0003491610001867
http://www.sciencedirect.com/science/article/pii/S0003491610001867
http://dx.doi.org/10.1007/s00220-014-1893-4
https://arxiv.org/abs/quant-ph/0010117
https://arxiv.org/abs/quant-ph/0010117
http://dx.doi.org/10.1103/PhysRevA.89.012317
https://arxiv.org/abs/1905.07393
https://arxiv.org/abs/1905.07393
https://link.aps.org/doi/10.1103/PhysRevA.94.042316

158 Bibliography

[112] M. Vasmer and D. E. Browne. Three-dimensional surface codes: Transversal

gates and fault-tolerant architectures. Phys. Rev. A, 100, 012312 (2019).

[113] H. S. M. Coxeter. Regular polytopes. Dover Publications, Inc., 3 edition (1973).

[114] X.-G. Wen. Quantum orders in an exact soluble model. Phys. Rev. Lett., 90,

016803 (2003).

[115] J. T. Anderson. Homological stabilizer codes. Ann. Phys., 330, 1 (2013).

[116] Y. Tomita and K. M. Svore. Low-distance surface codes under realistic quan-

tum noise. Phys. Rev. A, 90, 062320 (2014).

[117] T. J. Yoder and I. H. Kim. The surface code with a twist. Quantum, 1, 2

(2017).

[118] M. Li, D. Miller, M. Newman et al. 2d compass codes. Phys. Rev. X, 9, 021041

(2019).

[119] R. Webb. Stella: polyhedron navigator. Symmetry: Culture and Science, 11,

231 (2000).

[120] J. H. Conway, H. Burgiel, and C. Goodman-Strauss. The symmetries of things.

AK Peters/CRC Press (2016).

[121] A. Kubica (2018). Private communication.

[122] D. Bacon. Operator quantum error-correcting subsystems for self-correcting

quantum memories. Phys. Rev. A, 73, 012340 (2006).

[123] B. Criger and B. Terhal. Noise thresholds for the [[4, 2, 2]]-concatenated toric

code. Quantum Inf. Comput., 16, 1261 (2016).

[124] E. Cambpell. The smallest interesting colour code. https://earltcampbell.

com/2016/09/26/the-smallest-interesting-colour-code/ (2016). Ac-

cessed: 17-07-2019.

[125] W. Wijthoff. A relation between the polytopes of the C600-family. Koninklijke

Nederlandse Akademie van Wetenschappen, Proc. Ser. B Phys. Sci., 20, 966

(1918).

https://link.aps.org/doi/10.1103/PhysRevA.100.012312
https://link.aps.org/doi/10.1103/PhysRevA.100.012312
https://link.aps.org/doi/10.1103/PhysRevLett.90.016803
http://dx.doi.org/10.1016/j.aop.2012.11.007
http://dx.doi.org/10.1103/PhysRevA.90.062320
http://dx.doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.22331/q-2017-04-25-2
https://link.aps.org/doi/10.1103/PhysRevX.9.021041
https://www.software3d.com/PolyNav/PolyNavigator.php
https://link.aps.org/doi/10.1103/PhysRevA.73.012340
https://link.aps.org/doi/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.26421/QIC16.15-16
http://dx.doi.org/10.26421/QIC16.15-16
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/

Bibliography 159

[126] C. Vuillot and N. P. Breuckmann. Quantum pin codes. arXiv:1906.11394

(2019).

[127] M. H. Freedman, D. A. Meyer, and F. Luo. Z2-systolic freedom and quantum

codes. Mathematics of quantum computation, Chapman & Hall/CRC, pages

287–320 (2002).

[128] L. Guth and A. Lubotzky. Quantum error correcting codes and 4-dimensional

arithmetic hyperbolic manifolds. J. Math. Phys., 55, 082202 (2014).

[129] N. P. Breuckmann and B. M. Terhal. Constructions and noise threshold of

hyperbolic surface codes. IEEE Trans. Inf. Theory, 62, 3731 (2016).

[130] N. P. Breuckmann, C. Vuillot, E. Campbell et al. Hyperbolic and semi-

hyperbolic surface codes for quantum storage. Quantum Sci. Technol., 2,

035007 (2017).

[131] V. Londe and A. Leverrier. Golden codes: quantum LDPC codes built from

regular tessellations of hyperbolic 4-manifolds. Quantum Inf. Comput., 19,

0361 (2019).

[132] J. E. Humphreys. Reflection groups and Coxeter groups. Cambridge University

Press (1992).

[133] H. G. Katzgraber, H. Bombin, and M. A. Martin-Delgado. Error threshold

for color codes and random three-body Ising models. Phys. Rev. Lett., 103,

090501 (2009).

[134] A. Kubica, M. E. Beverland, F. Brandão et al. Three-dimensional color code

thresholds via statistical-mechanical mapping. Phys. Rev. Lett., 120, 180501

(2018).

[135] C. T. Chubb and S. T. Flammia. Statistical mechanical models for quantum

codes with correlated noise. arXiv:1809.10704 (2018).

[136] T. Ohno, G. Arakawa, I. Ichinose et al. Phase structure of the random-

plaquette Z2 gauge model: accuracy threshold for a toric quantum memory.

Nucl. Phys. B, 697, 462 (2004).

https://arxiv.org/abs/1906.11394
https://www.taylorfrancis.com/books/e/9780429122798/chapters/10.1201/9781420035377-13
https://www.taylorfrancis.com/books/e/9780429122798/chapters/10.1201/9781420035377-13
https://doi.org/10.1063/1.4891487
https://doi.org/10.1063/1.4891487
http://dx.doi.org/10.1109/TIT.2016.2555700
http://dx.doi.org/10.1109/TIT.2016.2555700
https://doi.org/10.1088%2F2058-9565%2Faa7d3b
https://doi.org/10.1088%2F2058-9565%2Faa7d3b
http://dx.doi.org/10.26421/QIC19.5-6
http://dx.doi.org/10.26421/QIC19.5-6
https://link.aps.org/doi/10.1103/PhysRevLett.103.090501
https://link.aps.org/doi/10.1103/PhysRevLett.103.090501
https://link.aps.org/doi/10.1103/PhysRevLett.120.180501
https://link.aps.org/doi/10.1103/PhysRevLett.120.180501
https://arxiv.org/abs/1809.10704
https://arxiv.org/abs/1809.10704
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.003
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.003

160 Bibliography

[137] Y. Ozeki and N. Ito. Multicritical dynamics for the ±J Ising model. J. Phys.

A: Math. Gen., 31, 5451 (1998).

[138] M. Hasenbusch, F. P. Toldin, A. Pelissetto et al. Magnetic-glassy multicritical

behavior of the three-dimensional ±J Ising model. Phys. Rev. B, 76, 184202

(2007).

[139] D. S. Wang, A. G. Fowler, A. M. Stephens et al. Threshold error rates for the

toric and surface codes. Quantum Inf. Comput., 10, 456 (2010).

[140] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network struc-

ture, dynamics, and function using networkx. In Proc. 7th Python Sci. Conf.

(SciPy2008), pages 11–15 (2008).

[141] C. Wang, J. Harrington, and J. Preskill. Confinement-Higgs transition in a

disordered gauge theory and the accuracy threshold for quantum memory.

Ann. Phys., 303, 31 (2003).

[142] N. Delfosse and J. Tillich. A decoding algorithm for CSS codes using the X/Z

correlations. In 2014 IEEE Int. Symp. Inf. Theory, pages 1071–1075 (2014).

[143] G. Duclos-Cianci and D. Poulin. Fast decoders for topological quantum codes.

Phys. Rev. Lett., 104, 050504 (2010).

[144] M. Herold, E. T. Campbell, J. Eisert et al. Cellular-automaton decoders for

topological quantum memories. Npj Quantum Inf., 1, 15010 (2015). Article.

[145] M. Herold, M. J. Kastoryano, E. T. Campbell et al. Cellular automaton

decoders of topological quantum memories in the fault tolerant setting. New

J. Phys., 19, 063012 (2017).

[146] N. Delfosse and N. H. Nickerson. Almost-linear time decoding algorithm for

topological codes. arXiv:1709.06218 (2017).

[147] A. L. Toom. Stable and attractive trajectories in multicomponent systems.

Adv. Probab., 6, 549 (1980).

[148] C. H. Bennett and G. Grinstein. Role of irreversibility in stabilizing complex

and nonergodic behavior in locally interacting discrete systems. Phys. Rev.

Lett., 55, 657 (1985).

http://dx.doi.org/10.1088/0305-4470/31/24/007
https://link.aps.org/doi/10.1103/PhysRevB.76.184202
https://link.aps.org/doi/10.1103/PhysRevB.76.184202
http://www.rintonpress.com/xxqic10/qic-10-56/0456-0469.pdf
http://www.rintonpress.com/xxqic10/qic-10-56/0456-0469.pdf
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-08-05495
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-08-05495
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-08-05495
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-08-05495
http://www.sciencedirect.com/science/article/pii/S0003491602000192
http://www.sciencedirect.com/science/article/pii/S0003491602000192
http://dx.doi.org/10.1109/ISIT.2014.6874997
http://dx.doi.org/10.1109/ISIT.2014.6874997
http://dx.doi.org/10.1109/ISIT.2014.6874997
https://link.aps.org/doi/10.1103/PhysRevLett.104.050504
https://doi.org/10.1038/npjqi.2015.10
https://doi.org/10.1038/npjqi.2015.10
http://dx.doi.org/10.1088/1367-2630/aa7099
http://dx.doi.org/10.1088/1367-2630/aa7099
https://arxiv.org/abs/1709.06218
https://arxiv.org/abs/1709.06218
https://link.aps.org/doi/10.1103/PhysRevLett.55.657
https://link.aps.org/doi/10.1103/PhysRevLett.55.657

Bibliography 161

[149] G. Grinstein. Can complex structures be generically stable in a noisy world?

IBM J. Res. Dev., 48, 5 (2004).

[150] J. W. Harrington. Analysis of quantum error-correcting codes: symplectic

lattice codes and toric codes. Ph.D. thesis, Caltech (2004).

[151] N. P. Breuckmann, K. Duivenvoorden, D. Michels et al. Local decoders for

the 2D and 4D toric code. Quantum Inf. Comput., 17, 0181 (2017).

[152] G. Dauphinais and D. Poulin. Fault-tolerant quantum error correction for

non-abelian anyons. Commun. Math. Phys., 355, 519 (2017).

[153] F. Pastawski, L. Clemente, and J. I. Cirac. Quantum memories based on

engineered dissipation. Phys. Rev. A, 83, 012304 (2011).

[154] A. Kubica. The ABCs of the color code: A study of topological quantum codes

as toy models for fault-tolerant quantum computation and quantum phases of

matter . Ph.D. thesis, Caltech (2018).

[155] P. Gács and J. Reif. A simple three-dimensional real-time reliable cellular

array. J. Comput. Syst. Sci., 36, 125 (1988).

[156] J. Van Den Berg and H. Kesten. Inequalities with applications to percolation

and reliability. Journal of Applied Probability, 22, 556 (1985).

[157] O. Fawzi, A. Grospellier, and A. Leverrier. Constant overhead quantum fault-

tolerance with quantum expander codes. In 2018 IEEE 59th Annu. Symp.

Found. Comput. Sci. (FOCS), pages 743–754 (2018).

[158] P. Aliferis, F. Brito, D. P. DiVincenzo et al. Fault-tolerant computing with

biased-noise superconducting qubits: a case study. New J. Phys., 11, 013061

(2009).

[159] M. D. Shulman, O. E. Dial, S. P. Harvey et al. Demonstration of entanglement

of electrostatically coupled singlet-triplet qubits. Science, 336, 202 (2012).

[160] D. Nigg, M. Mueller, E. A. Martinez et al. Quantum computations on a

topologically encoded qubit. Science, 345, 302 (2014).

http://dx.doi.org/10.1147/rd.481.0005
http://resolver.caltech.edu/CaltechETD:etd-05122004-113132
http://resolver.caltech.edu/CaltechETD:etd-05122004-113132
https://arxiv.org/abs/1609.00510
https://arxiv.org/abs/1609.00510
https://doi.org/10.1007/s00220-017-2923-9
https://doi.org/10.1007/s00220-017-2923-9
https://link.aps.org/doi/10.1103/PhysRevA.83.012304
https://link.aps.org/doi/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.7907/059V-MG69
http://dx.doi.org/10.7907/059V-MG69
http://dx.doi.org/10.7907/059V-MG69
http://dx.doi.org/10.1016/0022-0000(88)90024-4
http://dx.doi.org/10.1016/0022-0000(88)90024-4
http://dx.doi.org/10.2307/3213860
http://dx.doi.org/10.2307/3213860
http://dx.doi.org/10.1109/FOCS.2018.00076
http://dx.doi.org/10.1109/FOCS.2018.00076
http://dx.doi.org/10.1109/FOCS.2018.00076
http://dx.doi.org/10.1109/FOCS.2018.00076
http://dx.doi.org/10.1088/1367-2630/11/1/013061
http://dx.doi.org/10.1088/1367-2630/11/1/013061
http://dx.doi.org/10.1126/science.1217692
http://dx.doi.org/10.1126/science.1217692
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742

162 Bibliography

[161] S. Crain, C. Cahall, G. Vrijsen et al. High-speed, low-crosstalk detection

of a trapped 171Yb+ ion ancilla qubit using superconducting nanowire single

photon detectors. arXiv:1902.04059 (2019).

[162] N. P. Breuckmann. Homological quantum codes beyond the toric code. Ph.D.

thesis, RWTH Aachen (2018).

[163] D. Herr, F. Nori, and S. J. Devitt. Lattice surgery translation for quantum

computation. New J. Phys., 19, 013034 (2017).

[164] S. D. Barrett and P. Kok. Efficient high-fidelity quantum computation using

matter qubits and linear optics. Phys. Rev. A, 71, 060310 (2005).

[165] K. Fujii, T. Yamamoto, M. Koashi et al. A distributed architecture for scal-

able quantum computation with realistically noisy devices. arXiv:1202.6588

(2012).

[166] N. H. Nickerson, Y. Li, and S. C. Benjamin. Topological quantum computing

with a very noisy network and local error rates approaching one percent. Nat.

Commun., 4, 1756 (2013).

[167] C. Monroe, R. Raussendorf, A. Ruthven et al. Large-scale modular quantum-

computer architecture with atomic memory and photonic interconnects. Phys.

Rev. A, 89, 022317 (2014).

[168] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin. Freely scalable quan-

tum technologies using cells of 5-to-50 qubits with very lossy and noisy pho-

tonic links. Phys. Rev. X, 4, 041041 (2014).

[169] N. Kalb, A. A. Reiserer, P. C. Humphreys et al. Entanglement distillation

between solid-state quantum network nodes. Science, 356, 928 (2017).

[170] K. Kieling, T. Rudolph, and J. Eisert. Percolation, renormalization, and quan-

tum computing with nondeterministic gates. Phys. Rev. Lett., 99, 130501

(2007).

[171] M. Gimeno-Segovia, P. Shadbolt, D. E. Browne et al. From three-photon

Greenberger-Horne-Zeilinger states to ballistic universal quantum computa-

tion. Phys. Rev. Lett., 115, 020502 (2015).

https://arxiv.org/abs/1902.04059
https://arxiv.org/abs/1902.04059
https://arxiv.org/abs/1902.04059
http://arxiv.org/abs/1802.01520
http://dx.doi.org/10.1088/1367-2630/aa5709
http://dx.doi.org/10.1088/1367-2630/aa5709
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://arxiv.org/abs/1202.6588
http://arxiv.org/abs/1202.6588
http://dx.doi.org/10.1038/ncomms2773
http://dx.doi.org/10.1038/ncomms2773
http://dx.doi.org/10.1103/PhysRevA.89.022317
http://dx.doi.org/10.1103/PhysRevA.89.022317
http://dx.doi.org/10.1103/PhysRevX.4.041041
http://dx.doi.org/10.1103/PhysRevX.4.041041
http://dx.doi.org/10.1103/PhysRevX.4.041041
https://science.sciencemag.org/content/356/6341/928
https://science.sciencemag.org/content/356/6341/928
https://link.aps.org/doi/10.1103/PhysRevLett.99.130501
https://link.aps.org/doi/10.1103/PhysRevLett.99.130501
https://link.aps.org/doi/10.1103/PhysRevLett.115.020502
https://link.aps.org/doi/10.1103/PhysRevLett.115.020502
https://link.aps.org/doi/10.1103/PhysRevLett.115.020502

Bibliography 163

[172] C. Sun, M. T. Wade, Y. Lee et al. Single-chip microprocessor that communi-

cates directly using light. Nature, 528, 534 (2015).

[173] T. Rudolph. Why I am optimistic about the silicon-photonic route to quantum

computing. APL Photonics, 2, 030901 (2017).

[174] B. J. Brown. A fault-tolerant non-Clifford gate for the surface code in two

dimensions. arXiv:1903.11634 (2019).

[175] H. Bombin. 2D quantum computation with 3D topological codes.

arXiv:1810.09571 (2018).

[176] S. Bravyi, G. Duclos-Cianci, D. Poulin et al. Subsystem surface codes with

three-qubit check operators. Quantum Inf. Comput., 13, 963 (2013).

[177] S. Burton. Spectra of gauge code hamiltonians. arXiv:1801.03243 (2018).

[178] S. Roberts and S. D. Bartlett. Symmetry-protected self-correcting quantum

memories. arXiv:1805.01474 (2018).

https://doi.org/10.1038/nature16454
https://doi.org/10.1038/nature16454
https://doi.org/10.1063/1.4976737
https://doi.org/10.1063/1.4976737
https://arxiv.org/abs/1903.11634
https://arxiv.org/abs/1903.11634
https://arxiv.org/abs/1810.09571
https://arxiv.org/abs/1207.1443
https://arxiv.org/abs/1207.1443
https://arxiv.org/abs/1801.03243
https://arxiv.org/abs/1805.01474
https://arxiv.org/abs/1805.01474

	Introduction
	Quantum information and quantum errors
	Protecting quantum information
	Surface codes
	Subsystem codes

	Processing encoded quantum information
	Fault-tolerance with 2D surface codes
	Restrictions on non-Clifford gates in topological codes
	Colour codes

	Transversal gates in three-dimensional surface codes
	The rectified picture
	The rotated picture
	Rectifying 3D surface codes
	A family of 3D surface codes with boundaries

	Transversal CCZ
	Transversal CZ
	Universal gate set

	Generalizations of the rectified picture
	Transforming surface codes into colour codes
	Codes from Coxeter diagrams

	Decoding three-dimensional surface codes
	Z-error decoding
	X-error decoding
	Sweep Rule with boundaries
	Proof of error threshold
	Numerical error threshold estimates

	Fault-tolerant three-dimensional surface code architectures
	Fault-tolerance in a single stack
	3D surface code lattice surgery
	3D/3D lattice surgery
	2D/3D lattice surgery

	Architectures and overheads
	Purely 3D architecture
	Hybrid 2D/3D architecture

	Conclusion
	Appendices
	Proof of Lemma 1
	Bibliography

