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Abstract We apply the method of Hankel transforms to develop goodness-of-fit tests for gamma
distributions with given shape parameters and unknown rate parameters. We derive the limit-
ing null distribution of the test statistic as an integrated squared Gaussian process, obtain the
corresponding covariance operator and oscillation properties of its eigenfunctions, show that the
eigenvalues of the operator satisfy an interlacing property, and make applications to two data sets.
We prove consistency of the test, provide numerical power comparisons with alternative tests, study
the test statistic under several contiguous alternatives, and obtain the asymptotic distribution of
the test statistic for gamma alternatives with varying rate or shape parameters and for certain
contaminated gamma models. We investigate the approximate Bahadur slope of the test statis-
tic under local alternatives, and we establish the validity of the Wieand condition under which
approaches through the approximate Bahadur and the Pitman efficiencies are in accord.
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1 Introduction

The topic of goodness-of-fit testing has been intensely studied recently. Consequently, there exists a
comprehensive body of results developed, by Henze and other authors, using test statistics based on
integral transforms of Fourier, Laplace, Mellin, and related types, and making astute use of related
differential equations and distributional characterizations. The resulting test statistics have been
shown to be superior in various ways to classical goodness-of-fit statistics, notably in comparisons
of power, consistency, and in their behavior with respect to contiguous alternatives.

On reviewing the literature on goodness-of-fit tests we were motivated to develop such tests,
for multivariate exponential families, based on integral transforms, and the first step in such a
program is to derive such results for the classical gamma distributions. In this paper, we apply
Hankel transform methods to develop goodness-of-fit tests for gamma distributions with given
shape parameter α and unknown rate parameter. We remark that we were particularly fortuitous
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to have as a constant guide in our investigations the results of Baringhaus and Taherizadeh (2010)
and Taherizadeh (2009) for the exponential distributions.

The gamma distributions with known shape parameters arise in queueing theory (Allen, 1990),
ion channel activation (Kass, et al., 2014), the analysis of engineering equipment breakdowns
(Czaplicki, 2014; Sturgul, 2015), the calculation of insurance premiums for maritime commerce
(Postan and Poizner, 2013), and other areas, and goodness-of-fit tests for these distributions date
back to Pettitt (1978). For the case of unknown shape parameter, goodness-of-fit tests based on
empirical distribution functions were provided by D’Agostino and Stephens (1986) and numerous
other authors; in particular, Henze, Meintanis, and Ebner (2012) developed a test based on the
empirical Laplace transform and provided an extensive review of the literature.

Let X be a positive random variable with probability density function (p.d.f.) f(x); also, let Jν
be the Bessel function of the first kind of order ν, as defined in (2.1). For ν ≥ −1/2, the function

HX,ν(t) = Γ (ν + 1)
∫ ∞

0
(tx)−ν/2 Jν

(
2(tx)1/2) f(x) dx, (1.1)

t ≥ 0, is called the Hankel transform of order ν of X. For X ∼ Gamma(α, 1), a gamma distribution
with shape parameter α and scale parameter 1, we have HX,α−1(t) = e−t/α.

Let X1, . . . , Xn be independent, identically distributed (i.i.d.), positive, continuous random
variables with a distribution P. We wish to test the null hypothesis, H0 : P ∈ {Gamma(α, λ), λ >
0} against the alternative, H1 : P 6∈ {Gamma(α, λ), λ > 0}, where α is known. Since H0 does not
specify λ then X1, . . . , Xn cannot be used directly to conduct the test. Let Xn = n−1∑n

i=1 Xj be
the sample mean and set Yj = Xj/Xn, j = 1, . . . , n; under H0, the distribution of Y1, . . . , Yn does
not depend on λ, so we can base a test on them. Let P0 denote the distribution function of the
Gamma(α, 1) distribution. We define the empirical Hankel transform of order ν of Y1, . . . , Yn as

Hn,ν(t) = Γ (ν + 1)
n

n∑
j=1

(tYj)−ν/2Jν(2
√
tYj), (1.2)

t ≥ 0, and then the statistic for testing H0 against H1 is

T 2
n,α−1 = n

∫ ∞
0

[
Hn,α−1(t)− e−t/α

]2 dP0(t). (1.3)

As the Hankel transform is one-to-one we will infer from large values of T 2
n that Hn,α−1(t) differs

significantly from e−t/α, hence large values of T 2
n provide strong evidence against H0. Therefore,

we will obtain the distribution of T 2
n,α−1 and analyze its properties, e.g., consistency, behavior

under contiguous alternatives, efficiency, and compare its power with alternative tests.
We now summarize our results. We give in Section 2 basic results on the Bessel and related

special functions, and some properties and examples of Hankel transforms of some probability
distributions. In Section 3, we state the limiting null distribution of the statistic T 2

n as an integral
of the square of a centered Gaussian process Z.

We present in Section 4 properties of S, the covariance operator corresponding to Z, oscillation
properties of the eigenfunctions of S, and interlacing properties of the eigenvalues of S. In Section
5, we make applications to two data sets, assert the consistency of the test, and provide numerical
power comparisons with the Anderson-Darling and Cramér-von Mises statistics. In Section 6, we
consider the test statistic under various contiguous alternatives to H0. In particular, we state the
asymptotic distribution of T 2

n under gamma alternatives with varying rate or shape parameters
and for a class of contaminated gamma models.

In Section 7, we present the Bahadur and Pitman efficiency properties of the statistic T 2
n . We

investigate the approximate Bahadur slope of T 2
n under certain local alternatives and establish the

validity of the Wieand condition, under which the approaches through the approximate Bahadur
efficiency and the Pitman efficiency are in accord. In Section 8, we describe some open problems
and directions for future research, while Sections 9-11 are reserved for proofs or definitions.
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2 Bessel Functions and Hankel Transforms

Throughout the paper, all needed results on the classical special functions can be found in the
books by Erdélyi, et al. (1953) and Olver, et al. (2010), and we conform to their notation. Thus,

Γ (α) =
∫ ∞

0
xα−1e−xdx,

Re(α) > 0, is the gamma function, and for α ∈ C and k ∈ N0, the set of nonnegative integers, we
will make frequent use of the rising factorial, (α)k = α(α+ 1) · · · (α+ k − 1).

We write X ∼ Gamma(α, λ) whenever a random variable X is gamma-distributed with shape
parameter α > 0, rate parameter λ > 0, and p.d.f. f(x) = λα xα−1 e−λx/Γ (α), x > 0.

For ν ∈ R, −ν /∈ N, the Bessel function of the first kind of order ν is

Jν(z) =
∞∑
j=0

(−1)j

j!Γ (ν + 1 + j) (z/2)2j+ν , (2.1)

z ∈ C; see Erdélyi, et al. (1953, Chapter 7). In particular, the series (2.1) is continuous, converges
absolutely for all z, and converges uniformly on compact subsets of C.

The modified Bessel function of the first kind of order ν is defined for −ν /∈ N and x ∈ R as

Iν(x) =
∞∑
j=0

1
j!Γ (ν + 1 + j) (x/2)2j+ν , (2.2)

Let a, b ∈ R, where −b /∈ N0. The confluent hypergeometric function is defined as

1F1(a; b;x) =
∞∑
j=0

(a)j
(b)j

xj

j! . (2.3)

x ∈ R. We refer to Olver, et al. (2010, Chapter 13) for detailed accounts of this function. Especially,
we will make repeated use of Kummer’s formula:

1F1(a; b;x) = ex 1F1(b− a; b;−x). (2.4)

Let X be a positive random variable with probability density function f(x) and Hankel trans-
form HX,ν , as defined in (1.1). Then, HX,ν satisfies the following properties:

Lemma 1 For ν ≥ −1/2,
(i) |HX,ν(t)| ≤ 1 for all t ≥ 0.
(ii) HX,ν(0) = 1.
(iii) HX,ν(t) is a continuous function of t.

Example 1 Let X ∼ Gamma(α, λ), where α, λ > 0. For t ≥ 0, it follows from the definition (1.1)
of the Hankel transform that

HX,ν(t) = Γ (ν + 1)
Γ (α) λα

∫ ∞
0

(tx)−ν/2 Jν(2
√
tx)xα−1e−λx dx.

Writing (tx)−ν/2 Jν(2
√
tx) as a power series and integrating term-by-term, we obtain

HX,ν(t) = 1F1(α; ν + 1;−t/λ). (2.5)

For the case in which ν = α − 1, (2.5) reduces to HX,ν(t) = 1F1(α;α;−t/λ) = e−t/λ, t ≥ 0.
In particular, if α = 1, so that X has an exponential distribution with rate parameter λ, then
HX,0(t) = e−t/λ, t ≥ 0, as shown by Baringhaus and Taherizadeh (2010, Example 2.1).
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Example 2 Let Z ∼ Gamma(α, 1) independently of a positive random variable X. Then,

HXZ,ν(t) = EX
[

1F1(α; ν + 1;−tX)
]
,

t ≥ 0 . To prove this result, we again apply (1.1), and the independence of X and Z, obtaining

HXZ,ν(t) = EX EZ
[
Γ (ν + 1)(tXZ)−ν/2Jν

(
2(tXZ)1/2)].

Applying Example 1 to calculate the expectation with respect to Z, we obtain

HXZ,ν(t) = EX
[

1F1(α; ν + 1;−tX)
]
.

In particular, if ν = α−1 then HXZ,ν(t) = EX
[
e−tX

]
, the Laplace transform of X, a result shown

for ν = 0 in Baringhaus and Taherizadeh (2010, Example 2.2).

The following example, which provides the Hankel transform of a function related to the gamma
density, will be needed repeatedly in the sequel.

Example 3 Suppose that X ∼ Gamma(α, 1). Then, for t ≥ 0,

E
[
(tX/α)1−(α/2) Jα

(
2(tX/α)1/2)] = 1

Γ (α+ 1) t e
−t/α. (2.6)

Here again, we write (tX/α)1−(α/2) Jα
(
2(tX/α)1/2) as a power series in tX/α, integrate term-by-

term, and simplify the resulting series to obtain (2.6).

The next result constitutes a characterization of the gamma distributions using Hankel trans-
forms of arbitrary order ν, where ν ≥ −1/2. The result allows extension to the gamma case the
results of Baringhaus and Taherizadeh (2013) on a supremum norm test statistic.

Theorem 1 Let X be a positive random variable with Hankel transform HX,ν . If there exist ε > 0
and α > 0 such that HX,ν(t) = 1F1(α; ν + 1;−t) for all t ∈ [0, ε], then X ∼ Gamma(α, 1).

We refer to Hadjicosta (2019) for three proofs of this result.

3 The Distribution of the Test Statistic

Let X1, . . . , Xn be i.i.d., positive, continuous random variables with distribution P. We wish to
test the null hypothesis, H0 : P ∈ {Gamma(α, λ), λ > 0} against the alternative hypothesis,
H1 : P 6∈ {Gamma(α, λ), λ > 0}, where α is known. Using the empirical Hankel transform Hn,ν
given in (1.2), we define the test statistic

T 2
n,ν = n

∫ ∞
0

[
Hn,ν(t)− 1F1(α; ν + 1;−t/α)

]2 dP0(t). (3.1)

Under H0, E(X1) = α/λ and, for large n, Yj = Xj/Xn ' λXj/α, almost surely. By the Contin-
uous Mapping Theorem (Billingsley, 1968, p. 31), for each t ≥ 0 and for sufficiently large n, the
sequence of random variables (tYj)−ν/2Jν(2

√
tYj), j = 1, . . . , n, approximates the i.i.d. sequence

(λtXj/α)−ν/2Jν(2(λtXj/α)1/2), j = 1, . . . , n. Applying to (1.2) the Strong Law of Large Num-
bers we obtain, for large n, Hn,ν(t) ' HX1,ν(λt/α), almost surely. By Example 1 and the Hankel
Uniqueness Theorem 12, HX1,ν(λt/α) = 1F1(α; ν + 1;−t/α), t ≥ 0, if and only if H0 is valid.
Therefore, large values of T 2

n,ν provide strong evidence against H0.
We also remark that since the family of gamma distributions is scale-invariant then the test

statistic, as a function of X1, . . . , Xn, should satisfy the same property. Since Y1, . . . , Yn clearly are
scale-invariant in X1, . . . , Xn then the same holds for T 2

n,ν .
Henceforth, we set ν = α−1; since ν ≥ −1/2 then α ≥ 1/2. We also denote T 2

n,α−1 and Hn,α−1
by T 2

n and Hn, respectively. By Kummer’s formula (2.4), the statistic (3.1) reduces to (1.3).
We now evaluate the test statistic T 2

n for a given random sample.
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Proposition 1 The test statistic (1.3) is a V -statistic of order 2. Specifically,

T 2
n = 1

n

n∑
i=1

n∑
j=1

h(Yi, Yj)

where, for x, y ≥ 0,

h(x, y) = Γ (α) (xy)(1−α)/2 exp(−x− y) Iα−1
(
2(xy)1/2)

−
(

α

α+ 1

)α [
exp

(
− αx

α+ 1

)
+ exp

(
− αy

α+ 1

)]
+
(

α

α+ 2

)α
.

(3.2)

Denote by L2 = L2(P0) the space of (equivalence classes of) Borel measurable functions f :
[0,∞) → C that are square-integrable with respect to P0, i.e.

∫∞
0 |f(t)|2 dP0(t) < ∞. The space

L2 is a separable Hilbert space when equipped with the inner product

〈f, g〉L2 =
∫ ∞

0
f(t) g(t) dP0(t),

and the corresponding norm, ‖f‖L2 = 〈f, f〉1/2
L2 , f, g ∈ L2. Moreover, it is well-known that the

normalized Laguerre polynomials {L(α−1)
n : n ∈ N0}, defined in Appendix 9, form an orthonormal

basis, i.e. a complete orthonormal system, for L2; see Szegö (1967, Chapter 5.7).
Define the stochastic process

Zn(t) = 1√
n

n∑
j=1

[
Γ (α)(tYj)(1−α)/2Jα−1(2

√
tYj)− e−t/α

]
, (3.3)

t ≥ 0. We will view Zn := {Zn(t), t ≥ 0} as a random element in L2 since, as we will observe in
Lemma 2 below, its sample paths are in L2. The proof of the following result follows directly from
the definition (1.3) of the statistic T 2

n and the observation that n1/2[Hn(t)− e−t/α
]
≡ Zn(t).

Lemma 2 The test statistic (1.3) can be written as

T 2
n =

∫ ∞
0

(
Zn(t)

)2 dP0(t) = ‖Zn‖2
L2 .

In particular, ‖Zn‖2
L2 <∞.

It is well-known that under H0, (Y1, . . . , Yn) has a Dirichlet distribution which does not depend
on λ. Therefore, without loss of generality, we will set λ = 1 in deriving the null distribution of T 2

n .

Theorem 2 Let X1, X2, . . . be i.i.d. Gamma(α, 1) random variables, where α ≥ 1/2, and let Zn :=
{Zn(t), t ≥ 0} be the stochastic process defined in (3.3). Then there exists a centered Gaussian
process Z := {Z(t), t ≥ 0}, with sample paths in L2 and with covariance function,

K(s, t) = e−(s+t)/α
[
Γ (α)(st/α2)(1−α)/2Iα−1

(
2
√
st/α

)
− α−3st− 1

]
, (3.4)

s, t ≥ 0, such that Zn
d−−→ Z in L2 as n→∞. Moreover,

T 2
n

d−−→
∫ ∞

0
[Z(t)]2 dP0(t).

Remark 1 The proof of Theorem 2 is by an approach similar to that of Baringhaus and Taher-
izadeh (2010) and is given in Section 10. As Y1, . . . , Yn are not independent, we cannot directly
apply a Central Limit Theorem to deduce that Zn → Z. Instead, we apply a standard method of
constructing auxiliary processes, Zn,1, Zn,2, and Zn,3, and then decomposing Zn − Z into a sum
of four parts, viz.,

Zn − Z = (Zn − Zn,1) + (Zn,1 − Zn,2) + (Zn,2 − Zn,3) + (Zn,3 − Z).

Next, we show that Zn − Zn,1, Zn,1 − Zn,2, and Zn,2 − Zn,3 each converge to 0 in probability,
in L2; then we apply a Central Limit Theorem to deduce that Zn,3

d−−→ Z in L2, and so we
obtain Zn

d−−→ Z in L2. Finally, we apply the Continuous Mapping Theorem to conclude that
‖Zn‖2

L2
d−−→ ‖Z‖2

L2 .
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4 Eigenvalues and Eigenfunctions of the Covariance Operator

The covariance operator S : L2 → L2 of the random element Z is defined for s ≥ 0 and f ∈ L2 by

Sf(s) =
∫ ∞

0
K(s, t)f(t) dP0(t),

where K(s, t) is the covariance function defined in equation (3.4). Let {δk : k ≥ 1} be the positive
eigenvalues, listed in non-increasing order, of S; also, let {χ2

1k : k ≥ 1} be i.i.d. χ2
1 random variables.

It follows from the Karhunen-Loève expansion of the Gaussian process Z(t) that the integrated
squared process,

∫∞
0 Z2(t) dP0(t), has the same distribution as

∑∞
k=1 δkχ

2
1k; see Le Mâıtre and

Knio (2010, Chapter 2). Therefore, under H0, T 2
n →

∑∞
k=1 δkχ

2
1k.

For s, t ≥ 0, let

K0(s, t) = e−(s+t)/αΓ (α)(st/α2)(1−α)/2Iα−1
(
2
√
st/α

)
, (4.1)

the first term in the covariance function defined in equation (3.4); by (10.12),

K0(s, t) =
∫ ∞

0
Γ (α)(sx/α)(1−α)/2Jα−1(2(sx/α)1/2)

× Γ (α)(tx/α)(1−α)/2Jα−1(2(tx/α)1/2) dP0(x).

We will find first the eigenvalues and eigenfunctions of the integral operator S0 : L2 → L2,
defined for s ≥ 0 and f in L2 by

S0f(s) =
∫ ∞

0
K0(s, t)f(t) dP0(t).

Before presenting the results on the eigenvalues and eigenfunctions of S0, we state for the sake
of completeness some preliminary definitions pertaining to (linear) operators on L2. Note that
these definitions are provided by Sunder (2015) or Young (1998).

An operator T : L2 → L2 is called symmetric (self-adjoint) if, for all f, g ∈ L2, 〈T f, g〉L2 =
〈f, T g〉L2 . A symmetric operator T is called positive if 〈T f, f〉L2 ≥ 0 for all f ∈ L2. An operator
T is called compact if for every bounded sequence {fk : k ∈ N} in L2, the sequence {T fk : k ∈ N}
has a convergent subsequence in L2. The set of eigenvalues of a compact operator is countable.

An operator T is Hilbert-Schmidt if for every orthonormal basis {fk : k ∈ N} in L2, the series∑∞
k=1 ‖T fk‖2

L2 converges. Each Hilbert-Schmidt operator is compact (Young, 1998, p. 93).
An operator T is of trace class if for every orthonormal basis {fk : k ∈ N} in L2, the series∑∞
k=1 ‖T fk‖L2 converges. An operator T is trace-class if and only if it is a product of two Hilbert-

Schmidt operators (Sunder, 2015, p. 74). Further, trace-class operators are Hilbert-Schmidt.
Recall that α ≥ 1/2. Throughout the remainder of the paper, we use the notation

β =
(α+ 4

α

)1/2
and bα =

(
1 + 1

2α(1− β)
)1/2

. (4.2)

We also set
ρk = ααb4k+2α

α , (4.3)

k ∈ N0, and for s ≥ 0,

L
(α−1)
k (s) = βα/2 exp((1− β)s/2)L(α−1)

k (βs), (4.4)

where L(α−1)
k (s) is the generalized Laguerre polynomial defined in (9.11).

Theorem 3 The set {(ρk,L(α−1)
k ) : k ∈ N0} is a complete enumeration of the eigenvalues and

eigenfunctions, respectively, of S0, and the eigenfunctions {L(α−1)
k : k ∈ N0} form an orthonormal

basis in L2. Moreover, S0 is positive and of trace-class.

For the proof of this result we refer to Hadjicosta (2019) or Hadjicosta and Richards (2018).
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Theorem 4 Let S : L2 → L2 be the covariance operator of the random element Z defined as

Sf(s) =
∫ ∞

0
K(s, t)f(t) dP0(t),

for all s ≥ 0 and for all functions f in L2, where K(s, t) is the covariance function defined in
equation (3.4). Then, S is positive and of trace-class.

The proof of this result is similar to the proof of Theorem 3, and the complete details are
provided by Hadjicosta (2019).

Recall that a non-trivial function f ∈ L2 is an eigenfunction of S if there exists an eigenvalue
δ ∈ C such that Sf = δf . As S is self-adjoint and positive, its eigenvalues are real and nonneg-
ative. In the next result, whose proof is given in Section 11, we find the positive eigenvalues and
corresponding eigenfunctions of S, and we will also show that 0 is not an eigenvalue of S.

Theorem 5 For δ ∈ R, δ 6= ρk for any k ∈ N, define the functions

A(δ) = 1− βα
∞∑
k=0

(α)k
k!(ρk − δ)

ρ2
k,

B(δ) = 1− αβα
∞∑
k=0

(α)k
k!(ρk − δ)

ρ2
k(b2

α − kβ)2,

and

D(δ) = α2βα
∞∑
k=0

(α)k
k!(ρk − δ)

ρ2
k(b2

α − kβ).

Then the positive eigenvalues of S are the positive roots of the function G(δ) := α3A(δ)B(δ) −
D2(δ). Also, the eigenfunction corresponding to an eigenvalue δ has the Fourier-Laguerre expansion

βα/2
∞∑
k=0

ρk
ρk − δ

( (α)k
k!

)1/2(
c1 + c2α

−1(b2
α − kβ)

)
L

(α−1)
k ,

where c1, c2 are not both equal to 0, α3c1A(δ) = c2D(δ), and c2B(δ) = c1D(δ).

In the previous result, we assumed that δ /∈ {ρk : k ∈ N0}. As stated in the following conjecture,
we believe that this assumption is valid for all α.

Conjecture 1 For δ an eigenvalue of the operator S, there is no l ∈ N0 such that δ = ρl.

Conjecture 2 There is no l ∈ N0 such that

αβα+2
∞∑
k=0
k 6=l

(α)k
k!

ρ2
k

ρk − ρl
(l − k)2 = 1 + α(b2

α − lβ)2. (4.5)

We will show in Appendix 11 that Conjecture 2 implies Conjecture 1.

Remark 2 Since bα < 1 then ρk < ρ0 for all k ≥ 1. Therefore, if l = 0 then each term in the sum
on the left-hand side of (4.5) is negative, hence the sum itself is negative. On the other hand, the
right-hand side clearly is positive. Therefore, the conjecture is valid if l = 0.

Conjecture 1 was proved by Taherizadeh (2009) for α = 1 and by Hadjicosta (2019) for α = 2.
In both cases, the left-hand side of (4.5) was shown to exceed the right-hand side, so we conjecture
that the same holds for all α. We have found that the method of proof for α = 1, 2 extends to all
integer α ≤ 10, however the method is inapplicable for integer α ≥ 11 or for non-integral α.
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A difficulty of the eigenvalues δk is that they have no closed form expression; hence there is
no simple formula for m, the number of terms in the truncated series

∑m
k=1 δkχ

2
1k that should be

used in practice to approximate the asymptotic distribution,
∑∞
k=1 δkχ

2
1k, of the test statistic T 2

n .
For α = 1, Baringhaus and Taherizadeh (2010) calculated several δk numerically and found

that the truncated sum
∑10
k=1 δk closely approximates the exact value of Tr(S); hence, the distri-

bution of the truncated sum,
∑10
k=1 δkχ

2
1k is a good approximation to the asymptotic distribution,∑∞

k=1 δkχ
2
1k, of T 2

n . This approach is feasible since, as S0 is of trace-class then by Brislawn (1991,
p. 237, Corollary 3.2), Tr(S0) can be calculated by integrating the kernel K0 or by evaluating the
sum of all eigenvalues ρk:∫ ∞

0
K0(s, s) dP0(s) = Tr(S0) =

∞∑
k=0

ρk = ααb2α
α (1− b4

α)−1. (4.6)

Since S also is of trace-class then, using (3.4), we obtain

∞∑
k=1

δk = Tr(S) =
∫ ∞

0
K(s, s) dP0(s) = αα

[ b2α
α

1− b4
α

− 1
(α+ 2)α

(
1 + (α+ 1)

(α+ 2)2

)]
. (4.7)

To determine for general α the number of terms in the truncated series
∑m
k=1 δkχ

2
1k that should

be used in practice to approximate the asymptotic distribution of T 2
n , we derive bounds for the δk

in terms of the ρk and then obtain a general formula for m as a function of α. In this regard, we
are reminded of the concept of a “scree plot” in principal component analysis; see Johnson and
Wichern (1998, p. 441), so we refer to the ratio (

∑m
k=1 δk)/Tr(S) as the m th scree ratio for T 2

n .
Since S is compact and positive then the set of all its eigenvalues is countable and contains only

nonnegative values (Young, 1998, p. 98, Theorem 8.12). To prove that the eigenvalues are positive
and also are simple, i.e., of multiplicity 1, we will apply the theory of total positivity; see Karlin
(1964). In what follows, we denote by det(aij) the r × r determinant with (i, j)th entry aij .

Proposition 2 The eigenvalues {δk : k ≥ 1} of S and the eigenvalues {ρk : k ≥ 0} of S0 are
positive and simple. In particular, S and S0 are injective. Further, the corresponding eigenfunctions
{φk : k ≥ 1} of S satisfy the oscillation property,

(−1)r(r−1)/2 det
(
φi(sj)

)
≥ 0 (4.8)

for all r ≥ 1 and 0 ≤ s1 < · · · < sr < ∞, and the same property holds for the eigenfunctions
{Lk : k ≥ 0} of S0.

We now state an interlacing property of the eigenvalues δk and ρk.

Proposition 3 For k ≥ 1, ρk−1 ≥ δk ≥ ρk+1. In particular, δk = O(ρk) as k →∞.

Remark 3 The preceding result yields the inequalities ρ0 ≥ δ1 ≥ ρ2 ≥ δ3 ≥ · · · and ρ1 ≥ δ2 ≥
ρ3 ≥ δ4 ≥ · · · . For the case in which α = 1, we have observed from the tables of eigenvalues
computed by Taherizadeh (2009, p. 28, 54) that the eigenvalues ρk and δk satisfy the stronger,
strict interlacing property, ρk > δk > ρk+1 for all k ≥ 1, and we therefore conjecture that the
strict interlacing property holds for general α. We have not been able to resolve this conjecture
using general Hilbert space operator-theoretic methods or using specific properties of the Bessel
functions, and it appears that more powerful methods are needed to resolve the problem.

There is also the issue of choosing the value of m so that the mth scree ratio of T 2
n exceeds

1−ε, where 0 < ε < 1. Applying the interlacing inequalities for δk, we obtain
∑m
k=1 δk ≥

∑m+1
k=2 ρk.

Since Tr(S0) > Tr(S), we advise that m be chosen so that

m+1∑
k=0

ρk ≥ (1− ε)Tr(S0).
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Table 1 Values of the lower bound on m for the scree ratio of T 2
n .

α 0.5 0.75 1 3 5 10 20 50
m 15 12 10 6 4 3 2 1

This leads to a value for m that is readily applicable. Substituting ρk = ααb4k+2α
α , evaluating in

closed form the resulting geometric series, and substituting for Tr(S0) from (4.6), we obtain

ααb2α
α

1− b4(m+2)
α

1− b4
α

=
m+1∑
k=0

ρk ≥ (1− ε)Tr(S0) = (1− ε)ααb2α
α

1
1− b4

α

.

Solving this inequality for m, we obtain

m ≥ log ε
4 log bα

− 2. (4.9)

We illustrate this bound by calculating it for various values of α. For ε = 10−10, which represents
accuracy to ten decimal places, this results in the values displayed in Table 1.

5 Applications, Consistency of the Test, and Numerical Power Calculations

The first data set (Hogg and Tanis, 2009, p. 155) consists of n = 25 waiting times (in seconds)
for a Geiger counter to observe 100 alpha-particles emitted by barium-133. As noted by Hogg and
Tanis (2009, p. 464), a Kolmogorov-Smirnov test that the data were drawn from a Gamma(α =
100, λ = 14.7) distribution failed to reject that hypothesis at the 10% level of significance.

We apply the statistic T 2
n to test H0, the null hypothesis that the data are drawn from a gamma

distribution with α = 100 and unspecified λ. The observed value of T 2
n is 6.301× 10−10.

We used the limiting null distribution of T 2
n to estimate T 2

n ; 0.05. For α = 100, it follows from
Table 1 that only one eigenvalue is needed to approximate accurately the asymptotic distribution
of T 2

n ; therefore, T 2
n ≈ δ1χ

2
1. By (4.7), we obtain δ1 ' Tr(S) = 6.722× 10−6. Therefore, T 2

n ; 0.05 '
δ1χ

2
1 ; 0.05, where χ2

1 ; 0.05 is the 95th percentile of the χ2
1 distribution, so we obtain T 2

n ; 0.05 =
2.582 × 10−5. As this critical value exceeds the observed value of T 2

n , we fail to reject the null
hypothesis that the waiting times are drawn from a Gamma(α = 100, λ) distribution.

As an alternative approach, we conducted a simulation study to approximate T 2
n ; 0.05 , the 95th

percentile of the null distribution of T 2
n . We generated 10, 000 random samples of size n = 25

from the Gamma(100, 1) distribution, calculated the value of T 2
n for each sample, and recorded

the 95th percentile of all 10,000 simulated values of T 2
n . We repeated this process ten times,

finally approximating T 2
n ; 0.05 as the 20%-trimmed mean of all 10 simulated 95th percentiles, viz.,

T 2
n ; 0.05 = 2.368 × 10−5. Since this critical value exceeds the observed value of T 2

n then we fail to
reject the null hypothesis at the 5% level of significance. Moreover, we derived from our simulation
study an approximate P-value of 0.99 for the test.

The second data set, given by Barlow and Campo (1975), provides n = 107 failure times
(in hours) for the right rear brakes on a sample of tractors. The data were analyzed recently by
Cuparić, Milošević and Obradović (2018), where the null hypothesis of exponentiality was rejected.

To test the hypothesis that the data are drawn from a gamma-distributed population, we
assume for illustrative purposes that α = 2.3. This value was obtained by setting the maximum
likelihood estimate of the mode of the Gamma(α, λ) density, viz., (α−1)X̄n/α, equal to a mode of
the histogram, and solving the resulting equation for α. Then the observed value of T 2

n is 0.0053.
For α = 2.3, it follows from (4.9) that T 2

n ≈
∑7
k=1 δkχ

2
1k. We calculated the δk numerically as

the positive roots of the function G(δ) in Theorem 5, and then we applied the results of Imhof
(1961) or Kotz, Johnson, and Boyd (1967) to derive the distribution of

∑7
k=1 δkχ

2
1k and carry out

the test. A one-term approximation (Kotz, Johnson, and Boyd, 1967, Eqs. (71), (79)),

P
( m∑
k=1

δkχ
2
1k ≥ t

)
' P

(
χ2
m ≥ 2t/(δ1 + δm)

)
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Table 2 The outcome of testing the tractor brakes data with numerous values of α.

α 1.0 1.8 2.3 3 5 8
Observed T 2

n 0.6965 0.0162 0.0053 0.0534 0.1977 0.3180
T 2

n ; 0.05 0.1406 0.0559 0.0356 0.0228 0.0088 0.0037
T 2

∞ ; 0.05 0.1420 0.0576 0.0376 0.0235 0.0091 0.0037
P-value 0.0000 0.3013 0.4702 0.0026 0.0000 0.0000

is well-known to be accurate for other problems (see Gupta and Richards (1983)) and leads to an
explicit formula, T 2

n ; 0.05 ' 1
2 (δ1 + δm)χ2

m ; 0.05, for an approximate critical value of T 2
n .

As an alternative to calculating δ1, . . . , δM , we can apply the interlacing inequalities in Propo-
sition 3 to obtain a stochastic upper bound,

∑M
k=1 δkχ

2
1k ≤

∑M−1
k=0 ρkχ

2
1k. By applying results of

Kotz, Johnson, and Boyd (1967, loc. cit.) or Imhof (1961) to approximate the critical values of this
upper bound, we obtain a conservative test of H0, i.e., with a level of significance at most 5%.

By performing a simulation study as for the previous data set, we obtained the approximation,
T 2
n ; 0.05 = 0.0356, which exceeds the observed value of the test statistic. Also, by applying the results

of Imhof (1961), the limiting critical value derived from
∑7
k=1 δkχ

2
1k, denoted by T 2

∞ ; 0.05, equals
0.0376. Therefore, we fail to reject the null hypothesis at the 5% level of significance. Moreover,
the simulation study provided an approximate P-value of 0.47.

Since it was assumed for illustrative purposes that α = 2.3, we repeated the test for several
values of α, obtaining the results in Table 2. We note that the null hypothesis is rejected for the
case in which α = 1 where, under the null hypothesis, the data are exponentially distributed;
hence, we deduce in this case the same conclusion as Cuparić, Milošević and Obradović (2018).

With regard to the consistency of the test statistic, we now provide a result that the test is
consistent against any fixed alternative distribution.

Theorem 6 Let X1, X2, . . . be a sequence of positive, i.i.d., random variables with finite mean µ.
Let γ ∈ (0, 1) denote the level of significance of the test and cn,γ be the (1− γ)-quantile of the test
statistic T 2

n under H0. If X1, X2, . . . are not Gamma-distributed then

lim
n→∞

P (T 2
n > cn,γ) = 1.

With regard to a proof of this result, if we define

Λ :=
∫ ∞

0

(
E[Γ (α)(tX1/µ)(1−α)/2Jα−1(2(tX1/µ)1/2)]− e−t/α

)2
dP0(t),

then the essential part of the proof is to establish that n−1T 2
n

p−→ Λ. The extensive details required
to prove this limit are provided by Hadjicosta (2019) or Hadjicosta and Richards (2018).

Remark 4 By applying Theorem 1 of Baringhaus, Ebner, and Henze (2017) we also find that, under
fixed alternatives to the null hypothesis, n1/2(n−1T 2

n − Λ) d−→ N(0, σ2) as n → ∞, where σ2 is a
constant that is determined from the alternative distribution.

Turning to numerical calculations of the power of the test, we provide in Table 3 simulated
critical values for various n and four levels of significance, denoted by γ, for α = 2, 5, 10. The
last row of Table 3 is derived using the approximate limiting null distribution

∑7
k=1 δkχ

2
1k and the

method of Imhof (1961) for calculating the distribution of such linear combinations. The eigenvalues
{δk} are calculated numerically, by applying the results of Theorem 5, using the Newton-Raphson
method in the software R (R Development Core Team, 2007). All other entries in Table 3 are
calculated as the 20%-trimmed mean of 10 simulated (1 − γ)-percentiles, each based on 10000
replications. The values in the table indicate that, as α increases, the critical points converge more
rapidly; in particular, for α = 10 and n ≥ 20, the 90th and higher percentiles equal, to three
decimal places, the limiting percentiles.

Next, we compare the power of the new test with the Cramér-von Mises (C2) and Anderson-
Darling (A2) tests. We conducted a Monte Carlo study with 5000 replications at a 5% significance



Integral Transform Methods in Goodness-of-Fit Testing, I: The Gamma Distributions 11

Table 3 Critical values of T 2
n for α = 2, 5, 10.

α = 2 α = 5 α = 10
n 1− γ 1− γ 1− γ

0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99
20 0.032 0.044 0.056 0.075 0.006 0.008 0.011 0.015 0.002 0.002 0.003 0.004
50 0.033 0.046 0.059 0.078 0.006 0.009 0.011 0.015 0.002 0.002 0.003 0.004
80 0.033 0.046 0.060 0.079 0.006 0.009 0.011 0.015 0.002 0.002 0.003 0.004
100 0.033 0.046 0.060 0.079 0.006 0.009 0.012 0.015 0.002 0.002 0.003 0.004
∞ 0.033 0.048 0.063 0.080 0.006 0.009 0.012 0.016 0.002 0.002 0.003 0.004

level for n = 20, 50. The critical values of C2 and A2 are calculated in the same way as for T 2
n , viz.,

as the 20%-trimmed mean of 10 simulated 95%-percentiles, each based on 10000 replications. In
Tables 4, 5, and 6, we present for α = 2, 5, 10 the percentage points of 5000 Monte Carlo samples
found to be significant. An asterisk denotes a power of 100%, and we list in boldface the most
powerful test in each case. For θ > 0 and x > 0, the alternative distributions considered are the:
Gamma(α): Gamma distribution with shape parameter α and rate parameter 1.
Weibull(θ): Weibull distribution with density function θxθ−1 exp(−xθ).
LIFR(θ): Linear Increasing Failure Rate distribution with density function (1+θx) exp[−x− 1

2θx
2].

LN(θ): Lognormal distribution with density function (θx)−1(2π)−1/2 exp[(− log x)2/2θ2].
IG(θ): Inverse Gaussian distribution with density function (θ/2πx3)1/2 exp[−θ(x− 1)2/2x].
GO(θ): Gompertz distribution with density function θex+θ exp(−θex).
Rayleigh(θ): Rayleigh distribution with density function (x/θ) exp[−x2/2θ].
These distributions were chosen from among numerous alternatives for which calculations were
done by several authors, e.g., Baringhaus and Taherizadeh (2010), Henze, Meintanis, and Ebner
(2012), and Taherizadeh (2009).

In the case of the Gompertz distributions, the test based on A2 is the most powerful of the
three for all tabulated n and α, and the test based on T 2

n is the next most powerful. For α = 2 and
n = 20, we see from Table 4 that the test based on T 2

n is at least as powerful as the tests based on
C2 and A2 for 17 of the 26 alternatives considered. The tables for α = 2 and n = 50 also indicate
that the test based on T 2

n is comparable in power to the other two tests. Therefore, for small values
of α, the new test is a serious competitor to the classical tests, irrespective of the size of n.

For large α and small n, Tables 5 and 6 indicate that the test based on T 2
n is more powerful

than the tests based on C2 and A2 for the majority of alternatives considered here. If n is large
then T 2

n becomes less superior to the other two tests; this is a consequence of the consistency of
each test, which implies that, as n→∞, the powers of all three tests converge to 1.

6 Contiguous Alternatives to the Null Hypothesis

For n ∈ N, let Xn1, . . . , Xnn be a triangular array of row-wise independent random variables. As
usual, let P0 = Gamma(α, 1), α ≥ 1/2, and let Qn1 be a probability measure dominated by P0.
We wish to test the null hypothesis

H0 : The marginal distribution of each Xni, i = 1, . . . , n, is P0

against the alternative

H1 : The marginal distribution of each Xni, i = 1, . . . , n, is Qn1.

We write the Radon-Nikodym derivative of Qn1 with respect to P0 in the form dQn1/dP0 =
1 + n−1/2hn, and then we will need the following

Assumptions 7 We assume that:

(A1) The functions {hn : n ∈ N} form a sequence of P0-integrable functions converging pointwise,
P0-almost everywhere, to a function h, and
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Table 4 Percentage points of 5000 Monte Carlo samples found to be significant at 5% level of significance; α = 2.

n = 20

Distribution T 2
n C2 A2

Gamma(1) 62 48 64
Gamma(1.5) 18 12 18
Gamma(2) 5 5 5
Gamma(2.5) 9 8 7
Gamma(3) 19 18 13
Gamma(3.5) 33 29 26
Gamma(4) 48 42 40
Weibull(1) 62 47 67
Weibull(2) 27 28 24
Weibull(2.5) 73 70 64
Weibull(3) 96 93 91
LIFR(0.02) 61 46 64
LIFR(0.05) 56 41 62
LIFR(0.1) 53 36 58
LN(0.8) 21 19 20
LN(0.9) 39 34 37
LN(1) 60 52 55
LN(1.5) 98 96 97
IG(0.5) 81 76 78
IG(1) 32 31 30
IG(1.5) 10 13 10
IG(3) 31 31 29
IG(3.5) 47 44 43
IG(4) 61 56 57
GO(2) 24 17 35
GO(4) 38 25 47
Rayleigh(1) 27 27 22

n = 50

Distribution T 2
n C2 A2

Gamma(1) 93 85 94
Gamma(1.5) 33 22 33
Gamma(2) 5 5 5
Gamma(2.5) 16 15 13
Gamma(3) 46 40 39
Gamma(3.5) 77 65 67
Gamma(4) 92 85 87
Weibull(1) 92 85 94
Weibull(2) 69 63 61
Weibull(2.5) 99 99 99
Weibull(3) ∗ ∗ ∗
LIFR(0.02) 92 83 92
LIFR(0.05) 89 80 91
LIFR(0.1) 86 74 89
LN(0.8) 35 38 36
LN(0.9) 71 66 66
LN(1) 91 88 88
LN(1.5) ∗ ∗ ∗
IG(0.5) 99 99 99
IG(1) 61 63 60
IG(1.5) 13 23 20
IG(3) 68 69 78
IG(3.5) 88 88 92
IG(4) 97 96 97
GO(2) 44 39 63
GO(4) 69 57 79
Rayleigh(1) 69 61 59

Table 5 Percentage points of 5000 Monte Carlo samples found to be significant at 5% level of significance; α = 5.

n = 20

Distribution T 2
n C2 A2

Gamma(4) 15 9 13
Gamma(4.5) 9 7 7
Gamma(5) 5 5 5
Gamma(6) 7 7 6
Gamma(7) 13 12 10
Gamma(8) 23 19 17
Gamma(10) 47 37 35
Weibull(3) 15 17 15
Weibull(4) 65 62 59
Weibull(5) 94 93 92
LIFR(2) 94 72 93
LIFR(4) 88 60 87
LN(0.5) 18 13 16
LN(0.7) 83 63 76
LN(0.9) 98 92 97
LN(1) 99 96 99
IG(2) 71 53 65
IG(2.5) 49 36 43
IG(3) 31 22 27
GO(2) 79 54 84
GO(4) 54 35 67
Rayleigh(1) 32 15 33

n = 50

Distribution T 2
n C2 A2

Gamma(4) 23 13 21
Gamma(4.5) 9 6 9
Gamma(5) 5 5 5
Gamma(6) 11 11 10
Gamma(7) 30 25 25
Gamma(8) 55 44 48
Gamma(10) 91 79 82
Weibull(3) 31 41 38
Weibull(4) 98 98 98
Weibull(5) ∗ ∗ ∗
LIFR(2) ∗ 98 ∗
LIFR(4) ∗ 95 ∗
LN(0.5) 27 25 26
LN(0.7) 99 95 98
LN(0.9) ∗ ∗ ∗
LN(1) ∗ ∗ ∗
IG(2) 95 89 94
IG(2.5) 81 72 76
IG(3) 55 49 52
GO(2) 98 92 99
GO(4) 82 75 95
Rayleigh(1) 56 33 59

(A2) supn∈NEP0 |hn|4 <∞.
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Table 6 Percentage points of 5000 Monte Carlo samples found to be significant at 5% level of significance; α = 10.

n = 20

Distribution T 2
n C2 A2

Gamma(5) 68 37 58
Gamma(8) 16 8 13
Gamma(10) 5 5 5
Gamma(12) 7 7 5
Gamma(15) 19 14 12
Gamma(20) 48 36 32
Weibull(5) 38 37 34
Weibull(6) 72 70 67
Weibull(7) 91 90 90
LIFR(50) 98 81 96
LIFR(100) 97 78 96
LN(0.2) 73 59 57
LN(0.4) 42 23 33
LN(0.6) 97 86 95
IG(4) 79 55 70
IG(5) 59 37 48
IG(6) 39 24 32
IG(7) 23 14 19
IG(8) 14 10 11
GO(10) 82 57 83
GO(20) 59 42 67
Rayleigh(1) 94 68 91

n = 50

Distribution T 2
n C2 A2

Gamma(5) 96 72 89
Gamma(8) 28 13 20
Gamma(10) 5 5 5
Gamma(12) 16 10 9
Gamma(15) 52 31 34
Gamma(20) 93 76 82
Weibull(5) 80 81 80
Weibull(6) 99 99 99
Weibull(7) ∗ ∗ ∗
LIFR(50) ∗ 99 ∗
LIFR(100) ∗ 99 ∗
LN(0.2) ∗ 97 98
LN(0.4) 73 50 61
LN(0.6) ∗ 99 ∗
IG(4) 99 91 96
IG(5) 90 72 82
IG(6) 69 47 59
IG(7) 43 29 33
IG(8) 23 15 18
GO(10) 98 93 99
GO(20) 84 81 93
Rayleigh(1) ∗ 97 ∗

Since
∫

(dQn1/dP0) dP0 = 1 then we also have
∫
hn dP0 = 0, for all n ∈ N. Denote the indicator

function of an event A by I(A). By applying (A2), we deduce the uniform integrability of |hn|2:

lim
k→∞

sup
n∈N

EP0

(
|hn|2I(|hn|2 > k)

)
= lim
k→∞

sup
n∈N

∫
|hn|2 I(|hn|2 > k) dP0

≤ lim
k→∞

k−1 sup
n∈N

EP0 |hn|4 = 0.

By Bauer (1981, p. 95, Theorem 2.11.4), the P0-almost everywhere convergence of hn to h implies
the P0-stochastic convergence of hn to h. Again by Bauer (1981, p. 104, Theorem 2.12.4), the
uniform integrability of h2

n together with the P0-stochastic convergence of hn to h imply the
convergence of hn in mean square, viz.

lim
n→∞

∫
|hn − h|2 dP0 = 0.

By the triangle and the Cauchy-Schwarz inequalities,

0 ≤ lim
n→∞

∣∣∣ ∫ (hn − h)dP0

∣∣∣ ≤ lim
n→∞

∫
|hn − h|dP0 ≤ lim

n→∞

(∫
|hn − h|2 dP0

)1/2
= 0,

therefore
lim
n→∞

∫
hn dP0 =

∫
h dP0 = 0.

Hadjicosta (2019) has shown that Assumptions 7 hold for several contiguous alternatives, e.g.,

(1) Gamma alternatives with shape parameter α ≥ 1/2 and rate parameter λn = 1 + n−1/2.
(2) Gamma alternatives with shape parameter αn = α+ n−1/2 and rate parameter 1.
(3) Contaminated models, Qn1 = (1− n−1/2)P0 + n−1/2P1, where the probability measure P1 is

dominated by P0 and
∫

(dP1/dP0)4 dP0 <∞.

Let P n = P0⊗ · · · ⊗P0 and Qn = Qn1⊗ · · · ⊗Qn1, where P0 = Gamma(α, 1), α ≥ 1/2, be the
n-fold product probability measures of P0 and Qn1 respectively.
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Theorem 8 Let Xn1, . . . , Xnn, n ∈ N, be a triangular array of positive row-wise i.i.d. random
variables, where Xnj ≡ Xj, j = 1, . . . , n. We assume that the distribution of Xnj is Qn1 for every
j = 1, . . . , n. Further, let Zn := {Zn(t), t ≥ 0} be a stochastic process with

Zn(t) = 1√
n

n∑
j=1

[
Γ (α)(tXnj/X̄n)(1−α)/2Jα−1

(
2(tXnj/X̄n)1/2)− e−t/α],

t ≥ 0. Under Assumptions 7, there exists a centered Gaussian process Z := {Z(t), t ≥ 0} with
sample paths in L2 and the covariance function K(s, t) in (3.4), and a function

c(t) =
∫ ∞

0

[
Γ (α)(tx/α)(1−α)/2Jα−1(2(tx/α)1/2) + α−2te−t/α x

]
h(x) dP0(x),

t ≥ 0, such that Zn
d−→ Z + c in L2. Moreover, as n→∞,

T 2
n

d−→
∫ ∞

0

(
Z(t) + c(t)

)2 dP0(t).

A detailed proof of this theorem is provided by Hadjicosta (2019) who followed the approach
of Taherizadeh (2009, pp. 79–91).

7 The Efficiency of the Test

Let X1, X2, . . . be i.i.d., positive random variables with a distribution P that is indexed by a
parameter θ ∈ Θ := (−η, η) or Θ := [0, η), for some η > 0. We represent H0 by Θ0 = {0} and
H1 by Θ1 = Θ \ {0}. In Section 3, we showed that T 2

n is scale-invariant, i.e. it does not depend
on the unknown rate parameter λ. Under the null hypothesis, we assume that X1, X2, . . . are
i.i.d., positive P0-distributed random variables; further, under the local alternative, represented by
θ ∈ Θ1, we assume that X1, X2, . . . are i.i.d., positive Pθ-distributed random variables.

The Radon-Nikodym derivative of Pθ with respect to P0 is dPθ/dP0 = 1 + θhθ. We assume
that as θ → 0, the function hθ converges to some function h in L2. Since

∫
(dPθ/dP0) dP0 = 1,

we obtain
∫∞

0 hθ(x) dP0(x) = 0, for θ ∈ Θ1. Further, we shall assume that for θ ∈ Θ1,∫ ∞
0

xhθ(x) dP0(x) = 0. (7.1)

Let Θ0 and Θ1 be null and alternative parameter spaces, respectively, and {Un : n ∈ N} be
a sequence of test statistics. For θ ∈ Θ0, Fn(t) = Pθ(Un < t), t ∈ R, is the null distribution of
Un, and the level attained by Un is Ln := 1− Fn(Un). For θ ∈ Θ1, the exact Bahadur slope of the
sequence {Un : n ∈ N} is

c(θ) = −2 lim
n→∞

n−1 logLn,

whenever the limit exists (almost surely). For θ ∈ Θ0, this limit exists with c(θ) = 0.
For a sequence {Uj,n : n ∈ N} of test statistics with exact Bahadur slope cj(θ), j = 1, 2, the

exact Bahadur asymptotic relative efficiency of {U1,n : n ∈ N} with respect to {U2,n : n ∈ N} is
eB1,2(θ) = c1(θ)/c2(θ), θ ∈ Θ1. If eB1,2(θ) > 1, then we prefer the sequence {U1,n : n ∈ N}.

In general, it is difficult to calculate the exact Bahadur slope (Bahadur, 1971, Theorem 7.2),
so we investigate the approximate Bahadur slope. We note that Bahadur (1967) showed that
for Θ0 = {θ0}, the approximate Bahadur slope is close to the exact Bahadur slope for θ in a
neighborhood of θ0, i.e., under local alternatives.

To obtain the approximate Bahadur slope of our test statistic T 2
n under local alternatives, we

need to show that the sequence {Tn : n ∈ N} is a standard sequence (Bahadur, 1960, Section 2).

Theorem 9 The sequence of test statistics {Tn : n ∈ N} is a standard sequence. The approximate
Bahadur slope of the test is c(a)(θ) := δ−1

1 b2(θ), where δ1 is the largest eigenvalue of S and

b2(θ) = θ2
∫ ∞

0

[ ∫ ∞
0

Γ (α)(tx/α)(1−α)/2Jα−1(2(tx/α)1/2)hθ(x) dP0(x)
]2

dP0(t). (7.2)
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Table 7 Limiting approximate Bahadur slopes for the contaminated gamma models.

k 2 3 4 5 6
cT 0.149 0.284 0.373 0.433 0.477

Moreover,

lim
θ→0

c(a)(θ)
θ2 = δ−1

1

∫ ∞
0

[ ∫ ∞
0

Γ (α)(tx/α)(1−α)/2Jα−1(2(tx/α)1/2)h(x) dP0(x)
]2

dP0(t). (7.3)

A complete proof of this result is given by Hadjicosta (2019) following the approach of Taher-
izadeh (2009, p. 98, Theorem 5.4).

If we write the squared term in (7.3) as a product of two integrals, one in x and one in y,
interchange the order of integration, and apply Weber’s integral (10.1), then (7.3) reduces to

lim
θ→0

c(a)(θ)
θ2 = δ−1

1

∫ ∞
0

∫ ∞
0

Γ (α)(xy/α2)(1−α)/2e−(x+y)/αIα−1(2(xy/α2)1/2)h(x)h(y)dP0(x)dP0(y),

and a similar result holds for (7.2). These expressions provide an alternative way to calculate the
approximate Bahadur slope of the test.

We now obtain the limiting approximate Bahadur slope for several alternatives. In the follow-
ing calculations, we will take α = 2 as the general case can be treated similarly. Consider the
contaminated models Pθ = (1− θ)P0 + θP1, where P1 is a probability measure dominated by P0;
for α = 1, these alternatives were considered earlier by Baringhaus and Taherizadeh (2010). It is
straightforward to verify that assumption (7.1) is satisfied if

∫
xdP1(x) =

∫
xdP0(x) = 2. Also,

hθ = (dP1/dP0)− 1. By (7.3), the limiting Bahadur slope of the sequence {Tn : n ∈ N} is

cT := lim
θ→0

c(a)(θ)
θ2 = δ−1

1

∫ ∞
0

(
HP1(t/2)− e−t/2)2 dP0(t),

where HP1 denotes the Hankel transform of P1. Further, by applying the results of Theorem 5 for
calculating the eigenvalues of S, we obtain δ−1

1 = 83.242.
Consider the contaminated gamma models Pθ = (1 − θ)P0 + θ ·Gamma(2k, k), k ∈ N, k ≥ 2.

By equation (2.5) and Kummer’s formula (2.4), we obtain

HGamma(2k,k)(t/2) = 1F1(2k; 2;−t/2k) = e−t/2k
1F1(2− 2k; 2; t/2k).

In Table 7, we provide the limiting approximate Bahadur slopes for k = 2, 3, 4, 5, 6.
Next, consider the contaminated model Pθ = (1 − θ)P0 + θ · U(0, 4), where U(0, 4) denotes

the uniform distribution on the interval (0, 4). By Olver, et al. (2010, (10.22.9)), HU(0,4)(t/2) =
(1− J0((8t)1/2)/(2t) and the limiting approximate slope equals 0.018.

Wieand (1976) showed that if two standard sequences {U1,n : n ∈ N} and {U2,n : n ∈ N} satisfy
an additional criterion, now called Wieand’s condition, then the limiting approximate Bahadur
efficiency is in accord with the limiting Pitman efficiency, as the level of significance decreases to
0. In the next theorem, we state that Wieand’s condition is valid for our sequence of test statistics
{Tn : n ∈ N}. The proof of this theorem is omitted; we refer to Hadjicosta (2019) or Hadjicosta
and Richards (2018) for full details.

Theorem 10 The sequence {Tn : n ∈ N} satisfies Wieand’s condition: There exists a constant
θ∗ > 0 such that for any ε > 0 and γ ∈ (0, 1), there exists a constant C > 0 such that, for any
θ ∈ Θ1 ∩ (−θ∗, θ∗) and n > C/b2(θ), P (|n−1/2Tn − b(θ)| < εb(θ)) > 1− γ.

8 Concluding Remarks

In constructing the test statistic T 2
n in (1.3), we set ν = α− 1. In this case, the test statistic has a

relatively simple expression as a V -statistic, so the test can be carried out in a straightforward way.
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The resulting test statistic also is consistent, has good power performance, and extensive results
can be obtained for the eigenvalues and eigenfunctions of the corresponding covariance operator.

For general ν, the calculations in the proof of Proposition 1 can be extended. However, the final
expression for the resulting V -statistic will be more complicated, for it will involve the generalized
hypergeometric series. Under H0, we will again obtain T 2

n
d−→
∑∞
k=1 δkχ

2
1k, but the eigenfunctions

of the corresponding covariance operator will be more complex and may be unavailable.
We remark that there are many choices, other than P0, for the weight measure. Our choice of

P0 is motivated by classical tests, such as the Anderson-Darling and Cramér-von Mises statistics,
for which the weight measure is determined by H0. In the gamma case, the orthogonal polynomials
for P0 are well-known; however, this may not hold for more general weight measures. We note that
Henze, Meintanis, and Ebner (2012) and Taherizadeh (2009, p. 65) provided results for weight
measures w of the form dw(t) = e−βtdP0(t), where β is a “tuning parameter;” similar results for
the testing problem considered in this paper can be obtained using our methods.

The entries in Table 2 reflect the dependency of T 2
n on the value of α. This raises the problem

of extending our results to the case in which α is unknown. This problem appears to be formidable;
if we replace each α in (3.2) with a suitable estimator α̂, then parametric bootstrap procedures
can be used to estimate the resulting critical values and the power of the test. However, it may be
more difficult to derive the analytical properties of the test statistic.

If α̂ is scale-invariant, the results of Henze, Meintanis, and Ebner (2012) lead us to believe
that, under certain regularity conditions, the asymptotic distribution of the resulting statistic can
be obtained. However, the comments of Henze, Meintanis, and Ebner (2012, Remark 2.3) also
apply to our problem, viz., a finite-sample implementation of the test will require knowledge of
the value of α which, however, is unknown. We also note that there is a substantial literature on
the problem of inserting a parameter estimator into a V -statistic; cf., de Wet and Randles (1987),
Leucht and Neumann (2013), and Matsui and Takemura (2008); it is an open problem to apply
those approaches to our test statistic.
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9 Appendix: Bessel Functions and Hankel Transforms

For the special case in which ν = − 1
2 , it follows from (2.1) that, for x ∈ R,

x1/2 J−1/2(x) =
( 2
π

)1/2
cosx, (9.1)

For ν > −1/2, the Bessel function is also given by the Poisson integral,

Jν(x) = (x/2)ν

π1/2 Γ
(
ν + 1

2
) ∫ π

0
cos(x cos θ)(sin θ)2ν dθ, (9.2)

x ∈ R; see Erdélyi, et al. (1953, 7.12(9)), Olver, et al. (2010, (10.9.4)). This result can be proved
by expanding cos(x cos θ) as a power series in x cos(θ) and integrating term-by-term.

The Bessel function Jν also satisfies the inequality,

|Jν(z)| ≤ 1
Γ (ν + 1) |z/2|

ν exp(Im(z)), (9.3)

ν ≥ −1/2, z ∈ C; see Erdélyi, et al. (1953, 7.3.2(4)) or Olver, et al. (2010, (10.14.4)).
Henceforth, we assume that ν ≥ −1/2. For t, x ≥ 0, we set z = 2(tx)1/2 in (9.3) to obtain∣∣(tx)−ν/2Jν

(
2(tx)1/2)∣∣ ≤ 1

Γ (ν + 1) . (9.4)

Although the next two results may be known, we were unable to find them in the literature.

Lemma 3 For ν ≥ −1/2 and t ≥ 0,∣∣t−νJν+1(t)
∣∣ ≤ 1

2νπ1/2Γ
(
ν + 3

2
) . (9.5)

Proof. By Olver, et al. (2010, (10.6.6)),

t−νJν+1(t) = −
(
t−νJν(t)

)′
, (9.6)

t ≥ 0. For ν > −1/2, it follows by differentiating the Poisson integral (9.2) that

2νπ1/2Γ
(
ν + 1

2
)
|t−νJν+1(t)| =

∣∣∣∣ ∫ π

0
cos θ sin(t cos θ) (sin θ)2ν dθ

∣∣∣∣
≤
∫ π

0
| cos θ| |(sin θ)2ν | dθ.

By a substitution, s = sin2 θ, the latter integral reduces to a beta integral,∫ 1

0
sa−1(1− s)b−1 ds = Γ (a)Γ (b)

Γ (a+ b) ,

a, b > 0. This produces (9.5).
For ν = −1/2, it follows from (9.6) and (9.1) that

t1/2J1/2(t) = (2/π)1/2 sin t; (9.7)

cf. Olver, et al. (2010, (10.16.1)). Then, |t1/2J1/2(t)| ≤ (2/π)1/2, as stated in (9.5). ut
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Remark 5 Substituting ν = 0 in Lemma 3, we obtain |J1(t)| ≤ 2/π, t ≥ 0. This bound is sharper
than a bound given in Olver, et al. (2010, (10.14.1)), viz., |J1(t)| ≤ 2−1/2, t ≥ 0.

Lemma 4 For ν ≥ −1/2, the function t−νJν+1(t), t ≥ 0, is Lipschitz continuous, satisfying for
u, v ∈ R, the inequality∣∣u−νJν+1(u)− v−νJν+1(v)

∣∣ ≤ 1
2ν+1Γ (ν + 2) |u− v|. (9.8)

Proof. For ν > −1/2 we apply (9.6), (9.2), and the triangle inequality to obtain

2νπ1/2Γ
(
ν + 1

2
) ∣∣u−νJν+1(u)− v−νJν+1(v)

∣∣
≤
∫ π

0
| sin(u cos θ)− sin(v cos θ)| | cos θ| (sin θ)2ν dθ.

By a well-known trigonometric identity, and the inequality | sin t| ≤ |t|, t ∈ R,

| sin(u cos θ)− sin(v cos θ)| = 2
∣∣ sin ( 1

2 (u− v) cos θ
)

cos
( 1

2 (u+ v) cos θ
)∣∣

≤ |u− v| | cos θ|
∣∣ cos

( 1
2 (u+ v) cos θ

)∣∣
≤ |u− v| | cos θ|. (9.9)

Therefore,

∣∣u−νJν+1(u)− v−νJν+1(v)
∣∣ ≤ 2

2νπ1/2Γ
(
ν + 1

2
) |u− v| ∫ π/2

0
(cos θ)2 (sin θ)2ν dθ.

Substituting t = sin2 θ reduces the latter integral to a beta integral, and then we obtain (9.8).
For ν = −1/2, we apply (9.7) to obtain∣∣u1/2J1/2(u)− v1/2J1/2(v)

∣∣ = (2/π)1/2 | sin u− sin v| ≤ (2/π)1/2 |u− v|,

the latter inequality following from (9.9) with θ = 0. Then, we obtain (9.8) for ν = −1/2. ut
As regards the modified Bessel function Iν , defined in (2.2), with i =

√
−1 we find from (2.1)

that Iν(x) = i−ν Jν(ix), x ∈ R; hence, by (9.3),

|Γ (ν + 1) (x/2)−ν Iν(x)| ≤ 1. (9.10)

For n ∈ N0 and α > 0, the (generalized) Laguerre polynomial of order α− 1 and degree n is

L(α−1)
n (x) = (α)n

n! 1F1(−n;α;x) =
n∑
k=0

(α+ k)n−k
(n− k)!

(−x)k

k! ,

x ∈ R; see Olver, et al. (2010, Chapter 18) or Szegö (1967, Chapter 5). The normalized (generalized)
Laguerre polynomial of order α− 1 and degree n is defined by

L(α−1)
n (x) :=

(
n!

(α)n

)1/2
L(α−1)
n (x), (9.11)

x ∈ R. It is well-known (see Olver, et al. (2010, Chapter 18.3) or Szegö (1967, Chapter 5.1)) that
the polynomials L(α−1)

n are orthonormal with respect to the Gamma(α, 1) distribution:∫ ∞
0
L(α−1)
n (x)L(α−1)

m (x)x
α−1e−x

Γ (α) dx =
{

1, if n = m

0, if n 6= m

Lemma 5 For v > 0 and α > 0,∫ ∞
0

xαe−vxL(α−1)
n (x) dx = Γ (α+ n)

n! (v − 1)n−1v−(α+n+1)(α(v − 1)− n
)
.
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Proof. Starting with the known integral (Olver, et al., 2010, (18.17.34)),∫ ∞
0

xα−1e−vxL(α−1)
n (x) dx = Γ (α+ n)

n! (v − 1)n v−(α+n),

we differentiate each side with respect to v and simplify the outcome to obtain the result. ut
Proof of Lemma 1. (i) By (9.4) for Jν(x), Γ (ν+1)

∣∣(tx)−ν/2Jν(2
√
tx)
∣∣ ≤ 1 for all x, t > 0. Therefore,

by the triangle inequality, |HX,ν(t)| ≤ 1.
(ii) It follows from the series expansion (2.1) that

Γ (ν + 1)(tx)−ν/2Jν
(
2(tx)1/2)∣∣∣

t=0
= 1,

for all x, so we obtain HX,ν(0) = 1.
(iii) As the function (tx)−ν/2Jν(2

√
tx) is a power series in tx, it is continuous in t ≥ 0 for every

fixed x ≥ 0. As it is also bounded, then Γ (ν+1)(tx)−ν/2Jν(2
√
tx)f(x) is bounded by the Lebesgue

integrable function f(x) for all x, t ≥ 0. Therefore, the conclusion follows from the Dominated
Convergence Theorem. ut

The following Hankel transform inversion theorem is a classical result that can be obtained
from many sources, e.g., Sneddon (1972, p. 309, Theorem 1).

Theorem 11 (Hankel Inversion) Let X be a positive, continuous random variable with proba-
bility density function f(x) and Hankel transform HX,ν . For x > 0,

f(x) = 1
Γ (ν + 1)

∫ ∞
0

(tx)ν/2Jν(2
√
tx) HX,ν(t) dt,

As a consequence of the inversion formula, we obtain the uniqueness of the Hankel transform.

Theorem 12 (Hankel Uniqueness) Let X and Y be positive random variables with correspond-
ing Hankel transforms HX,ν and HY,ν . Then HX,ν = HY,ν if and only if X d= Y .

The next result, on the continuity of the Hankel transform, is analogous to Theorem 2.3 of
Baringhaus and Taherizadeh (2010). Therefore, we will omit the proof.

Theorem 13 (Hankel Continuity) Let {Xn, n ∈ N} be a sequence of positive random variables
with corresponding Hankel transforms {Hn, n ∈ N}. If there exists a positive random variable X,
with Hankel transform H, such that Xn

d−→ X, then for all t ≥ 0,

lim
n→∞

Hn(t) = H(t) (9.12)

Conversely, suppose there exists H : [0,∞) → R such that H(0) = 1, H is continuous at 0, and
(9.12) holds. Then H is the Hankel transform of a positive random variable X, and Xn

d−→ X.

10 Appendix: The Test Statistic

Proof of Proposition 1. By squaring the integrand in (1.3), there are three terms to be calculated.
First,

n

∫ ∞
0
H2
n(t) dP0(t) = 1

n

∫ ∞
0

( n∑
i=1

Γ (α)(Yit)(1−α)/2 Jα−1(2
√
tYi)

)2
dP0(t)

= Γ (α)
n

n∑
i=1

n∑
j=1

(YiYj)(1−α)/2
∫ ∞

0
Jα−1(2

√
tYi)Jα−1(2

√
tYj)e−t dt.

These integrals are of the form of Weber’s exponential integral (Olver, et al., 2010, (10.22.67)):∫ ∞
0

exp(−pt) Jν(2
√
at) Jν(2

√
bt) dt = p−1 exp

(
− (a+ b)/p

)
Iν(2
√
ab
/
p), (10.1)
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valid for ν > −1 and a, b, p > 0. Simplifying the resulting expressions, we obtain

n

∫ ∞
0
H2
n(t) dP0(t) = Γ (α)

n

n∑
i=1

n∑
j=1

(YiYj)(1−α)/2 exp(−Yi − Yj) Iα−1
(
2(YiYj)1/2).

Second, by proceeding as in Example 1, it is straightforward to deduce

2n
∫ ∞

0
Hn(t) e−t/α dP0(t) = 2

n∑
i=1

(1 + α−1)−α e−αYi/(α+1)

≡ 1
n

n∑
i=1

n∑
j=1

(
α

α+ 1

)α [
e−αYi/(α+1) + e−αYj/(α+1)

]
.

Third, we have a gamma integral:

n

∫ ∞
0

e−2t/α dP0(t) = n

(
α

α+ 2

)α
= 1
n

n∑
i=1

n∑
j=1

(
α

α+ 2

)α
.

Collecting together all three terms, we obtain the desired result. ut

Proof of Theorem 2. By (9.6), (s1−αJα−1(s))′ = −s1−αJα(s). Therefore, the Taylor expansion of
order 1 of the function s1−αJα−1(s), at a point s0, is

s1−αJα−1(s) = s1−α
0 Jα−1(s0) + (s0 − s)u1−αJα(u),

where u lies between s and s0. Setting s = 2(tYj)1/2 and s0 = 2(tXj/α)1/2, we obtain

21−α(tYj)(1−α)/2 Jα−1
(
2(tYj)1/2) = 21−α(tXj/α)(1−α)/2Jα−1

(
2(tXj/α)1/2)

+ 2
[
(tXj/α)1/2 − (tYj)1/2]u1−α

j Jα(uj),
(10.2)

where uj lies between 2(tYj)1/2and 2(tXj/α)1/2. Define

Wn = α−1/2 −X−1/2
n = Xn − α

(αXn)1/2(α1/2 +X
1/2
n )

; (10.3)

then
(tXj/α)1/2 − (tYj)1/2 = (tXj/α)1/2 − (tXj/Xn)1/2 = Wn (tXj)1/2,

and (10.2) reduces to

21−α(tYj)(1−α)/2 Jα−1
(
2(tYj)1/2)

= 21−α(tXj/α)(1−α)/2 Jα−1
(
2(tXj/α)1/2)+ 2Wn (tXj)1/2 u1−α

j Jα(uj). (10.4)

Multiplying both sides of (10.4) by 2α−1, adding and subtracting the term

2(tXj)1/2Wn (tXj/α)(1−α)/2 Jα
(
2(tXj/α)1/2)

on the right-hand side, and then simplifying the result, we obtain

(tYj)(1−α)/2Jα−1
(
2(tYj)1/2)

= (tXj/α)(1−α)/2 Jα−1
(
2(tXj/α)1/2)

+ 2α1/2 Wn (tXj/α)1−(α/2) Jα
(
2(tXj/α)1/2)

+ 2αWn (tXj)1/2
(
u1−α
j Jα(uj)−

(
2(tXj/α)1/2)1−α

Jα
(
2(tXj/α)1/2)).

(10.5)
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Define the processes Zn,1(t), Zn,2(t), and Zn,3(t), t ≥ 0, by

Zn,1(t) = 1√
n

n∑
j=1

[
Γ (α) (tXj/α)(1−α)/2 Jα−1

(
2(tXj/α)1/2)

+ 2Γ (α)α1/2 Wn (tXj/α)1−(α/2) Jα
(
2(tXj/α)1/2)− e−t/α],

Zn,2(t) = 1√
n

n∑
j=1

[
Γ (α) (tXj/α)(1−α)/2 Jα−1

(
2(tXj/α)1/2)+ 2α−1/2 Wn te

−t/α − e−t/α
]
,

Zn,3(t) = 1√
n

n∑
j=1

[
Γ (α) (tXj/α)(1−α)/2 Jα−1

(
2(tXj/α)1/2)+ α−2(Xj − α) te−t/α − e−t/α

]
.

We will show that

Zn,3
d−→ Z in L2, (10.6)

‖Zn − Zn,1‖L2
p−→ 0, (10.7)

‖Zn,1 − Zn,2‖L2
p−→ 0, (10.8)

‖Zn,2 − Zn,3‖L2
p−→ 0. (10.9)

To establish (10.6), let

Zn,3,j(t) := Γ (α) (tXj/α)(1−α)/2 Jα−1
(
2(tXj/α)1/2)+ α−2(Xj − α)te−t/α − e−t/α, (10.10)

t ≥ 0, j = 1, . . . , n. Since Xj ∼ Gamma(α, 1) then E(Xj − α) = 0; also, by Example 1,

E
[
Γ (α)(tXj/α)(1−α)/2Jα−1

(
2(tXj/α)1/2)] = e−t/α.

Therefore E(Zn,3,j(t)) = 0, t ≥ 0 and j = 1, . . . , n, and Zn,3,1, . . . , Zn,3,n clearly are i.i.d. random
elements in L2. Applying the Cauchy-Schwarz inequality and (9.4), we obtain E(‖Zn,3,1‖2

L2) <∞.
Thus, by the Central Limit Theorem in L2 (Ledoux and Talagrand, 1991, p. 281),

Zn,3 = 1√
n

n∑
j=1

Zn,3,j
d−→ Z,

where Z := (Z(t), t ≥ 0) is a centered Gaussian random element in L2. This proves (10.6) and
shows that Z has the same covariance operator as Zn,3,1.

It is well-known that the covariance operator of the random element Zn,3,1 is uniquely deter-
mined by the covariance function of the stochastic process Zn,3,1(t) (Gı̄khman and Skorokhod,
1980, pp. 218-219). We now show that the function K(s, t) in (3.4) is the covariance function of
Zn,3,1. Noting that E[Zn,3,1(t)] = 0 for all t, we obtain

K(s, t) = Cov
[
Zn,3,1(s), Zn,3,1(t)

]
= Cov

[
Zn,3,1(s) + e−s/α, Zn,3,1(t) + e−t/α

]
= E

[(
Zn,3,1(s) + e−s/α

)(
Zn,3,1(t) + e−t/α

)]
− e−(s+t)/α.

By (10.10),

E
(
Zn,3,1(s) + e−s/α

)(
Zn,3,1(t) + e−t/α

)
= E

[
Γ (α) (sX1/α)(1−α)/2 Jα−1

(
2(sX1/α)1/2)+ α−2(X1 − α)se−s/α

]
×
[
Γ (α) (tX1/α)(1−α)/2 Jα−1

(
2(tX1/α)1/2)+ α−2(X1 − α)te−t/α

]
,

(10.11)

so the calculation of K(s, t) reduces to evaluating the four terms obtained by expanding the product
on the right-hand side of (10.11).

The first term in the product in (10.11) is evaluated using Weber’s integral (10.1):

E [Γ (α)]2(sX1/α)(1−α)/2(tX1/α)(1−α)/2Jα−1(2(sX1/α)1/2)Jα−1(2(tX1/α)1/2)

= Γ (α)(st/α2)(1−α)/2e−(s+t)/αIα−1(2
√
st/α). (10.12)
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The second term in the product in (10.11) is a Hankel transform of the type in Example 1,

E
[
Γ (α)(sX1/α)(1−α)/2Jα−1(2(sX1/α)1/2)α−2(X1 − α)te−t/α

]
= −α−3st exp

(
− (s+ t)/α

)
,

and the third term in the product is the same as the second term but with s and t interchanged.
The fourth term in the product in (10.11) is

E
[
α−4(X1 − α)2ste−(s+t)/α] = α−4ste−(s+t)/α Var (X1) = α−3ste−(s+t)/α.

Combining all four terms, we obtain (3.4).
To establish (10.7), we begin by showing that

(
√
nWn)2 =

( √
n(Xn − α)

(αXn)1/2(α1/2 +X
1/2
n )

)2
d−→ χ2

1/4α2,

where χ2
1 denotes a chi-square random variable with one degree of freedom. By the Central Limit

Theorem,
√
n(Xn−α) d−→ N (0, α), and by the Law of Large Numbers and the Continuous Mapping

Theorem, (αXn)1/2(α1/2+X1/2
n ) p−→ 2α3/2. By Slutsky’s theorem (Chow and Teicher, 1988, p. 249),

√
nWn

d−→ N (0, 1
4α
−2), hence (

√
nWn)2 d−→ χ2

1/4α2.
By the Taylor expansion in (10.5),

Zn − Zn,1 = Γ (α)√
n

n∑
j=1

[
(tYj)(1−α)/2Jα−1(2(tYj)1/2)− (tXj/α)(1−α)/2Jα−1(2(tXj/α)1/2)

− 2α1/2 Wn (tXj/α)1−(α/2) Jα
(
2(tXj/α)1/2)]

= 2αΓ (α)
n

(
√
nWn)

n∑
j=1

(tXj)1/2
[
u1−α
j Jα(uj)−

(
2(tXj/α)1/2)1−α

Jα
(
2(tXj/α)1/2)].

Define

Vn := 1
n2

∫ ∞
0

[ n∑
j=1

(tXj)1/2
(
u1−α
j Jα(uj)−

(
2(tXj/α)1/2)1−α

Jα
(
2(tXj/α)1/2))]2

dP0(t).

Then, ‖Zn − Zn,1‖2
L2 = 4α[Γ (α)]2(

√
nWn)2 Vn. By the Cauchy-Schwarz inequality,

Vn ≤
1
n

∫ ∞
0

t

n∑
j=1

Xj

∣∣u1−α
j Jα(uj)−

(
2(tXj/α)1/2)1−α

Jα
(
2(tXj/α)1/2)∣∣2 dP0(t).

Recall that uj lies between 2(tYj)1/2 and 2(tXj/α)1/2, so we can write

uj = 2(1− θn,j,t)(tXj/α)1/2 + 2θn,j,t(tYj)1/2 = 2(tXj)1/2(α−1/2 + θn,j,t(X
−1/2
n − α−1/2)

)
,

where θn,j,t ∈ [0, 1]. By Lemma 4, the Lipschitz property of the Bessel functions,

4α[Γ (α+ 1)]2
∣∣u1−α
j Jα(uj)−

(
2(tXj/α)1/2)1−α

Jα
(
2(tXj/α)1/2)∣∣2
≤
∣∣uj − 2(tXj/α)1/2∣∣2

=
∣∣2(tXj)1/2θn,j,t(X

−1/2
n − α−1/2)

∣∣2
≤ 4tXj (X−1/2

n − α−1/2)2,

since θn,j,t ∈ [0, 1]. Therefore,

Vn ≤
1

4α−1[Γ (α+ 1)]2
( 1
n

n∑
j=1

X2
j

)
(X−1/2

n − α−1/2)2
∫ ∞

0
t2 dP0(t).

By the Law of Large Numbers, (X−1/2
n − α−1/2)2 p−→ 0 and n−1∑n

j=1 X
2
j

p−→ E(X2
1 ) = α(α + 1),

so it follows that Vn
p−→ 0. By Slutsky’s theorem, ‖Zn − Zn,1‖2

L2 = 4α[Γ (α)]2(
√
nWn)2 · Vn

d−→ 0,
therefore ‖Zn − Zn,1‖L2

p−→ 0, as asserted in (10.7).
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To establish (10.8), define

∆j(t) := Γ (α)(tXj/α)1−(α/2)Jα
(
2(tXj/α)1/2)− α−1te−t/α,

t ≥ 0, j = 1, . . . , n. Then it is straightforward to verify that

Zn,1 − Zn,2 = 2α1/2
√
n

Wn

n∑
j=1

∆j(t)

and therefore

‖Zn,1 − Zn,2‖2
L2 = (2α1/2Wn)2

∫ ∞
0

[ 1√
n

n∑
j=1

∆j(t)
]2

dP0(t). (10.13)

By the Law of Large Numbers, Wn
p−→ 0. Also, as shown in Example 3,

E
[
Γ (α)(tXj/α)1−(α/2)Jα

(
2(tXj/α)1/2)] = α−1te−t/α;

hence E(∆j(t)) = 0, t ≥ 0, j = 1, . . . , n. Also, ∆1(t), . . . ,∆n(t) are i.i.d. random elements in L2.
We now show that E(‖∆1‖2

L2) <∞. We have

E(‖∆1‖2
L2) = E

∫ ∞
0

∆2
1(t) dP0(t)

= E

∫ ∞
0

[
Γ (α)(tX1/α)1−(α/2)Jα

(
2(tX1/α)1/2)− α−1te−t/α

]2 dP0(t).

To show that E(‖∆1‖2
L2) <∞ it suffices, by the Cauchy-Schwarz inequality, to prove that

E

∫ ∞
0

[
Γ (α)(tX1/α)1−(α/2) Jα

(
2(tX1/α)1/2)]2 dP0(t) < ∞ (10.14)

and
E

∫ ∞
0

(α−1te−t/α)2 dP0(t) < ∞. (10.15)

To establish (10.14), we apply the inequality (9.5) to obtain

|Jα
(
2(tX1/α)1/2)| ≤ (tX1/α)−(1−α)/2/π1/2Γ (α+ 1

2 ),

for t ≥ 0. Therefore,

E

∫ ∞
0

[
Γ (α)(tX1/α)1−(α/2) Jα

(
2(tX1/α)1/2)]2 dP0(t)

≤
( Γ (α)
π1/2Γ (α+ 1

2 )

)2
E(X1/α)

∫ ∞
0

t dP0(t) <∞.

As for (10.15), that expectation is a convergent gamma integral. Hence, E(‖∆1‖2
L2) <∞.

By the Central Limit Theorem in L2, n−1/2∑n
j=1 ∆j(t) converges to a centered Gaussian

random element in L2. Thus, by the Continuous Mapping Theorem,∥∥∥ 1√
n

n∑
j=1

∆j(t)
∥∥∥2

L2
:=
∫ ∞

0

[ 1√
n

n∑
j=1

∆j(t)
]2

dP0(t)

converges in distribution to a random variable which has finite variance. Since Wn
p−→ 0 then by

(10.13) and Slutsky’s Theorem, we obtain ‖Zn,1 − Zn,2‖2
L2

d−→ 0; therefore, ‖Zn,1 − Zn,2‖L2
p−→ 0.

To prove (10.9), we observe that

Zn,2 − Zn,3 = 1√
n

n∑
j=1

(
2α−1/2Wnte

−t/α − α−2(Xj − α)te−t/α
)

= te−t/α
√
n(Xn − α)Rn,
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where
Rn = 2

αX
1/2
n (α1/2 +X

1/2
n )
− 1
α2 .

Therefore,

‖Zn,2 − Zn,3‖2
L2 =

[√
n(Xn − α)Rn

]2 ∫ ∞
0

(te−t/α)2 dP0(t).

As noted earlier,
∫∞

0 (te−t/α)2 dP0(t) < ∞. Also, by the Central Limit Theorem,
√
n(Xn − α) d−→

N (0, α); and by the Law of Large Numbers, Rn
p−→ 0. By Slutsky’s theorem,

[√
n(Xn−α)Rn

]2 d−→ 0;
hence

[√
n(Xn − α)Rn

]2 p−→ 0, and therefore ‖Zn,2 − Zn,3‖L2
p−→ 0.

Finally, by the Continuous Mapping Theorem in L2, ‖Zn‖2
L2

d−→ ‖Z‖2
L2 , i.e.

T 2
n =

∫ ∞
0

Z2
n(t) dP0(t) d−→

∫ ∞
0

Z2(t) dP0(t).

The proof now is complete. ut

11 Appendix: Eigenvalues and Eigenfunctions of the Covariance Operator

Proof of Theorem 5. Since the set {L(α−1)
k : k ∈ N0} is an orthonormal basis for L2, the eigenfunc-

tion φ ∈ L2 corresponding to an eigenvalue δ can be written as

φ =
∞∑
k=0
〈φ,L(α−1)

k 〉L2L
(α−1)
k .

We restrict ourselves temporarily to eigenfunctions for which this series is pointwise convergent.
Substituting this series into the equation Sφ = δφ, we obtain∫ ∞

0
K(s, t)

∞∑
k=0
〈φ,L(α−1)

k 〉L2L
(α−1)
k (t) dP0(t) = δ

∞∑
k=0
〈φ,L(α−1)

k 〉L2L
(α−1)
k (s). (11.1)

Substituting the covariance function K(s, t) in the left-hand side of (11.1), writing K in terms of
K0, and assuming that we can interchange the order of integration and summation, we obtain

δ

∞∑
k=0
〈φ,L(α−1)

k 〉L2L
(α−1)
k (s)

=
∞∑
k=0
〈φ,L(α−1)

k 〉L2

∫ ∞
0

[
K0(s, t)− e−(s+t)/α(α−3st+ 1)

]
L

(α−1)
k (t) dP0(t). (11.2)

By Theorem 3, ∫ ∞
0

K0(s, t)L(α−1)
k (t) dP0(t) = ρkL

(α−1)
k (s).

On writing L(α−1)
k in terms of L(α−1)

k , the generalized Laguerre polynomial, applying the well-
known formula (Olver, et al., 2010, (18.17.34)) for the Laplace transform of L(α−1)

k , and making
use of (4.2) and (4.3), we obtain

〈e−t/α,L(α−1)
k 〉L2 :=

∫ ∞
0

e−t/αL
(α−1)
k (t) dP0(t) =

( (α)k
k!

)1/2
βα/2ρk. (11.3)

Again writing L(α−1)
k in terms of L(α−1)

k , applying Lemma 5, and (4.2) and (4.3), we obtain

〈te−t/α,L(α−1)
k 〉L2 :=

∫ ∞
0

te−t/αL
(α−1)
k (t) dP0(t) =

( (α)k
k!

)1/2
α2βα/2ρk(b2

α − kβ). (11.4)
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In summary, (11.2) reduces to

δ

∞∑
k=0
〈φ,L(α−1)

k 〉L2L
(α−1)
k (s)

=
∞∑
k=0

ρk〈φ,L(α−1)
k 〉L2

[
L

(α−1)
k (s)− e−s/α

( (α)k
k!

)1/2
βα/2(α−1s(b2

α − kβ) + 1
)]
. (11.5)

By applying (11.3), we also obtain the Fourier-Laguerre expansion of e−s/α with respect to the
orthonormal basis {L(α−1)

k : k ∈ N0}; indeed,

e−s/α =
∞∑
k=0
〈e−s/α,L(α−1)

k 〉L2L
(α−1)
k (s) = βα/2

∞∑
k=0

( (α)k
k!

)1/2
ρkL

(α−1)
k (s).

Similarly, by applying (11.4), we have

se−s/α =
∞∑
k=0
〈se−s/α,L(α−1)

k 〉L2L
(α−1)
k (s) = α2βα/2

∞∑
k=0

( (α)k
k!

)1/2
ρk(b2

α − kβ)L(α−1)
k (s),

Let

c1 =
∫ ∞

0
e−t/αφ(t) dP0(t) = βα/2

∞∑
k=0
〈φ,L(α−1)

k 〉L2

( (α)k
k!

)1/2
ρk, (11.6)

and

c2 =
∫ ∞

0
te−t/αφ(t) dP0(t) = α2βα/2

∞∑
k=0
〈φ,L(α−1)

k 〉L2

( (α)k
k!

)1/2
ρk(b2

α − kβ). (11.7)

Combining (11.5)-(11.7), we find that (11.1) reduces to

δ

∞∑
k=0
〈φ,L(α−1)

k 〉L2L
(α−1)
k (s)

=
∞∑
k=0

ρk

[
〈φ,L(α−1)

k 〉L2 − βα/2
( (α)k
k!

)1/2(
c1 + c2α

−1(b2
α − kβ)

)]
L

(α−1)
k (s), (11.8)

and now comparing the coefficients of L(α−1)
k (s), we obtain

δ 〈φ,L(α−1)
k 〉L2 = ρk

[
〈φ,L(α−1)

k 〉L2 − βα/2
( (α)k
k!

)1/2(
c1 + c2α

−1(b2
α − kβ)

)]
, (11.9)

for all k ∈ N0. Since we have assumed that δ 6= ρk for any k then we can solve this equation for
〈φ,L(α−1)

k 〉L2 to obtain

〈φ,L(α−1)
k 〉L2 = βα/2 ρk

ρk − δ

( (α)k
k!

)1/2(
c1 + c2α

−1(b2
α − kβ)

)
. (11.10)

Substituting (11.10) into (11.6), we get

c1 = c1β
α
∞∑
k=0

(α)k
k!(ρk − δ)

ρ2
k + c2α

−1βα
∞∑
k=0

(α)k
k!(ρk − δ)

ρ2
k(b2

α − kβ)

= c1
(
1−A(δ)

)
+ c2α

−3D(δ);

therefore,
α3c1A(δ) = c2D(δ). (11.11)

Similarly, by substituting (11.10) into (11.7), we obtain

c2 = c1α
2βα

∞∑
k=0

(α)k
k!(ρk − δ)

ρ2
k(b2

α − kβ) + c2αβ
α
∞∑
k=0

(α)k
k!(ρk − δ)

ρ2
k(b2

α − kβ)2

= c1D(δ) + c2
(
1−B(δ)

)
;
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hence,
c2B(δ) = c1D(δ). (11.12)

Suppose c1 = c2 = 0; then it follows from (11.10) that 〈φ,L(α−1)
k 〉L2 = 0 for all k and so φ = 0,

which is a contradiction since φ is a non-trivial eigenfunction. Hence, c1 and c2 cannot be both
equal to 0. Combining (11.11) and (11.12), and using the fact that c1, c2 are not both 0, it is
straightforward to deduce that α3A(δ)B(δ) = D2(δ). Therefore, if δ is a positive eigenvalue of S
then it is a positive root of the function G(δ) = α3A(δ)B(δ)−D2(δ).

Conversely, suppose that δ is a positive root of G(δ) with δ 6= ρk for any k ∈ N0. Define

γk := βα/2
( (α)k
k!

)1/2 ρk
ρk − δ

(
c1 + c2α

−1(b2
α − kβ)

)
, (11.13)

k ∈ N0, where c1 and c2 are real constants that are not both equal to 0 and which satisfy (11.11)
and (11.12). That such constants exist can be shown by following a case-by-case argument similar
to Taherizadeh (2009, p. 48); for example, if D(δ) 6= 0, A(δ) 6= 0, and B(δ) 6= 0, then we can choose
c2 to be any non-zero number and then set c1 = c2B(δ)/D(δ).

Define

φ̃(s) :=
∞∑
k=0

γkL
(α−1)
k (s), (11.14)

s ≥ 0. By applying the ratio test, we find that
∑∞
k=0 γ

2
k <∞; therefore, φ̃ ∈ L2.

To show also that (11.14) converges pointwise, we apply (9.11), (4.4), and a Laguerre polynomial
inequality (Erdélyi, et al., 1953, p. 207) to obtain

∣∣L(α−1)
k (s)

∣∣ = βα/2 exp((1− β)s/2)
( k!

(α)k

)1/2
|L(α−1)
k (βs)|

≤


βα/2

[
2
( k!

(α)k

)1/2
−
( (α)k
k!

)1/2]
es/2, 1/2 ≤ α < 1

βα/2
( (α)k
k!

)1/2
es/2, α ≥ 1

(11.15)

for s ≥ 0. Thus, to establish that (11.14) pointwise converges pointwise, we need to show that

∞∑
k=0

( (α)k
k!

)1/2
|γk| <∞ and

∞∑
k=0

( k!
(α)k

)1/2
|γk| <∞. (11.16)

However, the convergence of each of these series follows from the ratio test.
Next, we justify the interchange of summation and integration in our calculations. By a corollary

to Theorem 16.7 in Billingsley (1979, p. 224), we need to verify that

∞∑
k=0
|γk|

∫ ∞
0

K(s, t) |L(α−1)
k (t)| dP0(t) <∞. (11.17)

By (9.10) and (4.1),

0 ≤ K0(s, t) ≤ exp(−(s+ t)/α) exp(2
√
st/α) = exp(−(

√
s−
√
t)2/α) ≤ 1. (11.18)

By the triangle inequality and by (11.18), we have

0 ≤ K(s, t) ≤ K0(s, t) + (α−3st+ 1) exp(−(s+ t)/α) ≤ 2 + α−3st,

s, t ≥ 0. Thus, to prove (11.17), we need to establish that

∞∑
k=0
|γk|

∫ ∞
0

(2 + α−3st) |L(α−1)
k (t)| dP0(t) <∞.
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By applying the bound (11.15), we see that it suffices to prove that

∞∑
k=0

( (α)k
k!

)1/2
|γk|

∫ ∞
0

tj dP0(t) <∞

and
∞∑
k=0

( k!
(α)k

)1/2
|γk|

∫ ∞
0

tj dP0(t) <∞,

j = 0, 1. As these integrals are finite, the convergence of both series follows from (11.16).
To calculate Sφ̃(s) from (11.14), we follow the same steps as before to obtain

Sφ̃(s) =
∫ ∞

0
K(s, t)

∞∑
k=0

γkL
(α−1)
k (t) dP0(t)

=
∞∑
k=0

ρkγkL
(α−1)
k (s)− c1β

α/2
∞∑
k=0

( (α)k
k!

)1/2
ρkL

(α−1)
k (s)

− c2α
−1βα/2

∞∑
k=0

( (α)k
k!

)1/2
ρk(b2

α − kβ)L(α−1)
k (s).

By the definition (11.13) of γk, and noting that

ρk
ρk − δ

− 1 = δ

ρk − δ
,

we have

Sφ̃(s) = βα/2
∞∑
k=0

[ ρk
ρk − δ

− 1
]( (α)k

k!

)1/2
ρk(c1 + c2α

−1(b2
α − kβ))L(α−1)

k (s)

= βα/2δ

∞∑
k=0

ρk
ρk − δ

( (α)k
k!

)1/2
(c1 + c2α

−1(b2
α − kβ))L(α−1)

k (s)

= δ

∞∑
k=0

γkL
(α−1)
k (s) = δφ̃(s).

Therefore, δ is an eigenvalue of S with corresponding eigenfunction φ̃. ut

A proof that Conjecture 2 implies Conjecture 1. Suppose there exists l ∈ N0 such that δ = ρl.
Substituting k = l in (11.9) and simplifying the outcome, we obtain

c1 = c2α
−1(lβ − b2

α). (11.19)

Substituting δ = ρl in (11.8), applying (11.19), and cancelling common terms in (11.8), we obtain

〈φ,L(α−1)
k 〉L2 = c2 α

−1β(2+α)/2
( (α)k
k!

)1/2 l − k
ρk − ρl

ρk, (11.20)

for k 6= l. Substituting this result for the inner product into (11.6), we obtain

c1 = βα/2
[ ∞∑
k=0
k 6=l

〈φ,L(α−1)
k 〉L2

( (α)k
k!

)1/2
ρk + 〈φ,L(α−1)

l 〉L2

( (α)l
l!

)1/2
ρl

]

= βα/2
[ ∞∑
k=0
k 6=l

c2 α
−1β(2+α)/2 (α)k

k!
l − k
ρk − ρl

ρ2
k + 〈φ,L(α−1)

l 〉L2

( (α)l
l!

)1/2
ρl

]
.
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Similarly, substituting (11.20) into (11.7), we obtain

c2 = α2βα/2
[ ∞∑
k=0
k 6=l

〈φ,L(α−1)
k 〉L2

( (α)k
k!

)1/2
ρk(b2

α − kβ) + 〈φ,L(α−1)
l 〉L2

( (α)l
l!

)1/2
ρl(b2

α − lβ)
]

= α2βα/2
[
c2 α

−1β(2+α)/2
∞∑
k=0
k 6=l

(α)k
k!

l − k
ρk − ρl

ρ2
k(b2

α − kβ) + 〈φ,L(α−1)
l 〉L2

( (α)l
l!

)1/2
ρl(b2

α − lβ)
]
.

On simplifying the above expressions and substituting for c1 from (11.19), we obtain

βα/2
( (α)l
l!

)1/2
ρl〈φ,L(α−1)

l 〉L2 = c2

[
α−1(lβ − b2

α)− α−1βα+1
∞∑
k=0
k 6=l

(α)k
k!

l − k
ρk − ρl

ρ2
k

]
, (11.21)

and

α2βα/2
( (α)l
l!

)1/2
ρl(b2

α − lβ)〈φ,L(α−1)
l 〉L2 = c2

[
1− αβα+1

∞∑
k=0
k 6=l

(α)k
k!

l − k
ρk − ρl

ρ2
k(b2

α − kβ)
]
. (11.22)

Suppose that c2 = 0 then it follows from (11.19) that c1 = 0, which contradicts the earlier
observation that c1 and c2 are not both zero; therefore, c2 6= 0. Also, by (4.2), b2

α < 1 < β, so
b2
α − kβ 6= 0 for all k ∈ N0. Solving (11.21) and (11.22) for the inner product 〈φ,L(α−1)

l 〉L2 and
equating the two expressions, we obtain

1− αβα+1
∞∑
k=0
k 6=l

(α)k
k!

l − k
ρk − ρl

ρ2
k(b2

α − kβ) = α(b2
α − lβ)

[
(lβ − b2

α)− βα+1
∞∑
k=0
k 6=l

(α)k
k!

l − k
ρk − ρl

ρ2
k

]
.

Simplifying the above equation, we obtain (4.5). ut

A C∞ kernel K : R2 → R is extended totally positive (ETP) if for all r ≥ 1, all s1 ≥ · · · ≥ sr,
all t1 ≥ · · · ≥ tr, there holds

det
(
K(si, tj)

)∏
1≤i<j≤r(si − sj)(ti − tj)

> 0, (11.23)

where instances of equality for the variables si and tj are to be understood as limiting cases, and
then L’Hospital’s rule is to be used to evaluate this ratio.

Proof of Proposition 2. By (3.4), the kernel K(s, t) is of the form

K(s, t) = e−(s+t)/αs2t2
∞∑
k=0

cks
ktk,

where the coefficients ck are positive for all k = 0, 1, 2, . . .. Therefore,

det
(
K(si, tj)

)
= det

(
e−(si+tj)/αs2

i t
2
j

∞∑
k=0

cks
k
i t
k
j

)
=
( r∏
i=1

e−(si+ti)/αs2
i t

2
i

)
· det

( ∞∑
k=0

cks
k
i t
k
j

)
.

By Karlin (1964, p. 101) the series
∑∞
k=0 cks

ktk is ETP so, by (11.23), K(s, t) is ETP.
In the case of K0, we have

K0(s, t) = e−(s+t)/α
∞∑
k=0

cks
ktk,

where ck > 0 for all k. Then it follows by a similar argument that K0(s, t) is ETP.
By a result of Karlin (1964), the eigenvalues of an integral operator are simple and positive if

the kernel of the operator is ETP. Therefore, the eigenvalues of S and S0 are simple and positive.
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In particular, 0 is not an eigenvalue of S or S0, so both operators are injective. Also, the oscillation
property (4.8) follows from Karlin (1964, Theorem 3). ut
Proof of Proposition 3. Define the kernels k0(s, t) = −e−(s+t)/α and k1(s, t) = −e−(s+t)/αα−3st,
s, t ≥ 0. Also, define on L2 the corresponding integral operators,

Ujf(s) =
∫ ∞

0
kj(s, t)f(t)dP0(t),

j = 0, 1, s ≥ 0. Then it follows from (3.4) that S = S0 + U0 + U1.
Each Uj clearly is self-adjoint and of rank one, i.e., the range of Uj is a one-dimensional subspace

of L2. Also, S0 + U0 is compact and self-adjoint and its kernel, K0 + k0, is of the form

K0(s, t) + k0(s, t) = e−(s+t)/αst

∞∑
j=0

cjs
jtj ,

where cj > 0 for all j. Arguing as in the proof of Proposition 2, we find that the eigenvalues of
S0 + U0 are simple and positive; hence, S0 + U0 is injective.

Let ωk, k ≥ 1, be the eigenvalues of S0 + U0, where ω1 > ω2 > · · · . Since S0 is compact,
self-adjoint, and injective, and since U0 is self-adjoint and of rank one then, by Hochstadt (1973)
or Dancis and Davis (1987), the eigenvalues of S0 and S0 + U0 are interlaced: ρk−1 ≥ ωk ≥ ρk
for all k ≥ 1. Also, there is exactly one eigenvalue of S0 + U0 in one of the intervals [ρk, ρk−1),
(ρk, ρk−1), or (ρk, ρk−1].

Since U1 is self-adjoint and of rank one then by Hochstadt’s theorem, the eigenvalues of S0 +U0
and S0 + U0 + U1 ≡ S are interlaced: ωk ≥ δk ≥ ωk+1 for all k ≥ 1. Also, there is exactly one
eigenvalue of S in one of the intervals [ωk+1, ωk), (ωk+1, ωk), or (ωk+1, ωk].

Combining these interlacing results, we obtain ρk−1 ≥ δk ≥ ρk+1, k ≥ 1. Also, since ρk =
ααb4k+2α

α then, by the interlacing inequalities, δk = O(b4k
α ), hence δk = O(ρk). ut
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