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Abstract 23 

 24 

Decision-making biases can be systematic features of normal behaviour, or deficits underlying 25 
neuropsychiatric symptoms. We used behavioural psychophysics, spiking-circuit modelling and 26 
pharmacological manipulations to explore decision-making biases in health and disease. Monkeys 27 
performed an evidence integration task in which they showed a pro-variance bias (PVB): a preference 28 
to choose options with more variable evidence. The PVB was also present in a spiking circuit model, 29 
revealing a neural mechanism for this behaviour. Because NMDA receptor (NMDA-R) hypofunction is 30 
a leading hypothesis for neuropathology in schizophrenia, we simulated behavioural effects of NMDA-31 
R hypofunction onto either excitatory or inhibitory neurons in the model. These were tested 32 
experimentally using the NMDA-R antagonist ketamine, yielding changes in decision-making 33 
consistent with lowered cortical excitation/inhibition balance from NMDA-R hypofunction onto 34 
excitatory neurons. These results provide a circuit-level mechanism that bridges across explanatory 35 
scales, from the synaptic to the behavioural, in neuropsychiatric disorders where decision-making 36 
biases are prominent. 37 

Significance 38 

 39 

People can make apparently irrational decisions because of underlying features in their decision 40 
circuitry. Deficits in the same neural circuits may also underlie debilitating cognitive symptoms of 41 
neuropsychiatric patients. Here, we reveal a neural circuit mechanism explaining an irrationality 42 
frequently observed in healthy humans making binary choices – the pro-variance bias. Our circuit 43 
model could be perturbed by introducing deficits in either excitatory or inhibitory neuron function. 44 
These two perturbations made specific, dissociable predictions for the types of irrational decision-45 
making behaviour produced. We used the NMDA-R antagonist ketamine, an experimental model for 46 
schizophrenia, to test if these predictions were relevant to neuropsychiatric pathophysiology. The 47 
results were consistent with impaired excitatory neuron function, providing important new insights into 48 
the pathophysiology of schizophrenia.  49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/826214doi: bioRxiv preprint first posted online Oct. 31, 2019; 

http://dx.doi.org/10.1101/826214
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 61 

 62 
Schizophrenia is a debilitating neuropsychiatric disorder, associated with prominent deficits in 63 
cognitive function1-3. Despite being the focus of intensive research, the neural bases of its 64 
symptomatology remain poorly understood. Our current understanding of the pathophysiology of 65 
schizophrenia mainly focuses on disruptions at the synaptic level. One line of investigations implicates 66 
N-methyl-D-aspartate receptor (NMDA-R) dysfunction4-6, and NMDA-R antagonists have been used 67 
as a pharmacological model of schizophrenia. When administered to healthy volunteers, they 68 
transiently reproduce multiple aspects of the symptoms of schizophrenia, especially cognitive deficits7-69 
9. One interpretation of these observations is that NMDA-R hypofunction causes an imbalance of 70 
excitation and inhibition in cortical circuits5,10,11. However, linking these pathophysiological 71 
mechanisms to the cognitive impairment observed in patients has proved challenging.  72 

One difficulty is to carefully isolate which cognitive computations underlie neuropsychiatric symptoms. 73 
Working memory deficits in patients with schizophrenia have been well-characterised, which has 74 
facilitated preclinical research providing insights into potential pathophysiological mechanisms2,12. 75 
However, whether these working memory deficits reflect a more general impairment in other 76 
temporally extended cognitive processes in the symptomatology of schizophrenia remains an open 77 
question. One closely related cognitive process is evidence accumulation – the decision process 78 
whereby multiple samples of information are combined over time to form a categorical choice13. It has 79 
been extensively studied using the random-dot motion (RDM) task, where subjects must decide the 80 
net direction of a moving dots stimulus13,14. Patients with schizophrenia have impaired perceptual 81 
discrimination on the RDM task15-17, but the precise nature of this decision-making deficit is unclear. 82 
Previous studies have attributed it to an impaired representation of the sensory evidence in visual 83 
cortex15,18, yet circuit-level alterations affecting visual cortex are likely also present in downstream 84 
cortical association areas involved in evidence accumulation and decision-making. It is therefore 85 
important to characterise precisely whether and how the underlying process of evidence accumulation 86 
may be affected in schizophrenia. 87 

Recent research has advanced our understanding of how such evidence accumulation decisions are 88 
made in the healthy brain. Of particular relevance to psychiatric research, it has been possible to 89 
disentangle systematic biases in decision-making and reveal the mechanisms through which they 90 
occur. For instance, when choosing between two series of bars with distinct heights, people have a 91 
preference to choose the option where evidence is more broadly distributed across 92 
samples19,20. Although this “pro-variance bias” may appear irrational, and would not be captured by 93 
many normative decision-making models, it becomes the optimal strategy when the accumulation 94 
process is contaminated by noise19. These behaviours have presently been well-characterised using 95 
algorithmic level descriptions of decision formation. By extending this approach to psychiatric 96 
research, new insights could be gained into the decision making deficits in schizophrenia. However, in 97 
order to understand how these decision biases might be affected by NMDA-R hypofunction, a more 98 
mechanistic explanation is needed. 99 

An influential technique used to investigate evidence accumulation at the mechanistic level has been 100 
biophysically grounded computational modelling of cortical circuits21-23. Through strong recurrent 101 
connections between similarly tuned pyramidal neurons, and NMDA-R mediated synaptic 102 
transmission, these circuits can facilitate the integration of evidence across long timescales. Crucially, 103 
these neural circuit models bridge synaptic and behavioural levels of understanding, by predicting 104 
both choices and their underlying neural activity. These predictions reproduce key experimental 105 
phenomena, mirroring the behavioural and neurophysiological data recorded from macaque monkeys 106 
performing the RDM task21,24. Whether neural circuit models can provide a mechanistic 107 
implementation of the pro-variance bias, and other irrational aspects of evidence accumulation, is 108 
currently unknown. Circuit models also present a promising avenue to address the challenges of 109 
neuropsychiatric research due to their biophysically detailed mechanisms. By perturbing the circuit 110 
model at the synaptic level, specific behavioural and neural predictions can be made. Relevant to 111 
schizophrenia, NMDA-R hypofunction can be introduced to alter the balance between excitation and 112 
inhibition (E/I balance)25. Recent studies have used NMDA-R antagonists to validate model 113 
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predictions during working memory tasks25,26. While NMDA-R antagonists have been tested during 114 
various decision-making tasks27,28, the role of the NMDA-R in shaping the temporal process of 115 
evidence accumulation has not been characterised experimentally. 116 

Here we used a psychophysical behavioural task in macaque monkeys, in combination with spiking 117 
cortical circuit modelling and pharmacological manipulations, to gain new insights into decision-118 
making biases in both health and disease. We trained two subjects to perform a challenging decision-119 
making task requiring the combination of multiple samples of information with distinct magnitudes. 120 
Replicating observations from humans, monkeys showed a pro-variance bias. The pro-variance bias 121 
was also present in the spiking circuit model, revealing an explanation of how it may arise through 122 
neural dynamics. We then investigated the effects of NMDA-R hypofunction in the circuit model, by 123 
perturbing NMDA-R function at distinct synaptic sites. Perturbations could either raise or lower the E/I 124 
ratio, with each effect making dissociable predictions for evidence accumulation behaviour. These 125 
model predictions were tested experimentally by administering monkeys with a subanaesthetic dose 126 
of the NMDA-R antagonist ketamine (0.5mg/kg, intramuscular injection). Ketamine produced decision-127 
making deficits consistent with a lowering of the cortical E/I ratio. 128 

  129 
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Results 130 

 131 
To study evidence accumulation behaviour in non-human primates, we developed a novel two-132 
alternative perceptual decision-making task (Fig1a). Subjects were presented with two series of 133 
eight bars (evidence samples), one on either side of central fixation. Their task was to decide which 134 
evidence stream had the higher/lower average bar height, and indicate their choice contingent on a 135 
contextual cue shown at the start of the trial. The individual evidence samples were drawn from 136 
Gaussian distributions, which could have different variances for different options (Fig1b). This task 137 
design had several advantages over evidence accumulation paradigms previously employed with 138 
animal subjects. Subjects were given eight evidence samples with distinct magnitudes (Fig1c) – 139 
encouraging a temporal integration decision-making strategy. Precise experimental control of the 140 
stimuli facilitated analytical approaches probing the influence of evidence variability and time course 141 
on choice, and allowed us to design specific trials that attempted to induce systematic irrationalities in 142 
choice behaviour.  143 

 144 

Figure 1. An evidence-varying decision-making task for macaque monkeys. (A) Task design. Two streams of stimuli were 145 
presented to a monkey, both of which consisted of a sequence of eight samples of bars of varying heights. Depending on the 146 
contextual cue shown at the start of the trial, the monkey had to report the stream with either higher or lower mean height. On 147 
correct trials, the monkey was rewarded proportionally to the mean evidence for the correct stream; incorrect trials were not 148 
rewarded. The monkey was required to fixate centrally while the evidence was presented, indicated by the dashed red fixation 149 
zone (not visible to subject). (B) Generating process of each stimulus stream. The generating mean for each trial was chosen 150 
from a uniform distribution (see Methods), while the generating standard deviation was 12 and 24 for the narrow (brown) and 151 
broad (blue) streams respectively. (C) Example Trial. The bar heights in both streams varied over time. The dotted lines 152 
illustrate the mean of the eight stimuli for the narrow/broad streams. In this example, the narrow stream has a higher mean 153 
evidence strength, so is the correct choice. The narrow/broad streams are randomly assigned to the left/right options on 154 
different trials; in the example trial shown here (A and C), the narrow stream is assigned to the right option, the broad stream is 155 
assigned to the left option.  156 

 157 

 158 
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Two monkeys (Macaca mulatta) completed 29,726 trials (Monkey A: 10,748; Monkey H: 18,978). 159 
Despite the challenging nature of the task, subjects were able to perform it with high accuracy (Fig2a-160 
b). The precise control of the discrete stimuli allowed us to evaluate the impact of evidence presented 161 
at each time point on the final behavioural choice, via logistic regression (see Methods). Stimuli 162 
presented at a time point with a larger regression coefficient have a strong impact on the choice, 163 
relative to time points with smaller coefficients. We found that the subjects utilised all eight stimuli 164 
throughout the trial to inform their decision, and demonstrated a primacy bias such that early stimuli 165 
have stronger temporal weights than later stimuli (Fig2c-d). A primacy bias has been reported in prior 166 
studies in monkeys, and is consistent with a decision-making strategy of bounded evidence 167 
integration29-31. As it was clear both monkeys could accurately perform the task, all subsequent figures 168 
are presented with data collapsed across subjects for conciseness, but results separated by subjects 169 
are consistent (Supplementary Material). 170 

 171 

 172 

Figure 2.Subjects use evidence presented throughout the trial to guide their choices. (A-B) Choice accuracy plotted as a 173 
function of the amount of evidence in favour of the best option. Lines are a psychometric fit to the data. (C-D) Logistic 174 
regression coefficients reveal the contribution (weight) of all eight stimuli on subjects’ choices (see Methods). Although subjects 175 
used all eight stimuli to guide their choices, they weighed the initially presented evidence more strongly. All errorbars indicate 176 
the standard error.  177 

 178 
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   181 

Figure 3. Subjects show a pro-variance bias in their choices on Narrow-Broad Trials, mirroring previous findings in 182 
human subjects. (A) The narrow-broad trials include three types of conditions, where either the narrow stream is correct 183 
(brown), the broad stream is correct (blue), or the difference in mean evidence is small (grey, ‘Ambiguous’ trials). See Methods 184 
and Supplementary Fig. 1 for details of the generating process. (B-C) Monkey choice performance on Narrow-Broad trials. (B) 185 
Subjects were significantly more accurate on ‘Broad-correct’ trials (Chi-squared test, chi = 99.05, p < 1x10-10). Errorbars 186 
indicate the standard error. (C) Preference for the broad option on ‘Ambiguous’ trials. Subjects were significantly more likely to 187 
choose the broad option (Binomial test, p < 1x10-10). (D-E) Human choice performance on Narrow-Broad trials previously 188 
reported by Tsetsos et al. 201220. (D) Choice accuracy when either the narrow or the broad stream is correct, respectively. 189 
Subjects were more accurate on ‘Broad-correct’ trials. (E) Preference for the broad option on ‘Ambiguous’ trials. Subjects were 190 
more likely to choose the broad option.  191 

We next probed the influence of evidence variability on choice. We designed specific choice options 192 
with different levels of standard deviation across samples in an attempt to replicate the pro-variance 193 
bias previously reported for human subjects (see Methods)19,20. On each trial, one option was 194 
allocated a narrow distribution of bar heights, and the other a broad distribution. In different 195 
conditions, either the broad or narrow stimuli stream could be the correct choice (‘Broad Correct’ 196 
Trials or ‘Narrow Correct’ Trials), or there could be no clear correct answer (‘Ambiguous’ Trials) 197 
(Fig3a, Supplementary Fig. 1). If subjects chose optimally, and only the mean bar height influenced 198 
their choice, their accuracy would be the same in ‘Broad Correct’ and ‘Narrow Correct’ trials and they 199 
would be indifferent to the variance of the distributions in ‘Ambiguous’ trials. We show that our 200 
monkeys deviate from such behaviours. The monkeys are more accurate on ‘Broad Correct’ trials 201 
than on ‘Narrow Correct’ trials (Fig3b, Supplementary Fig. 1). Furthermore, in the ‘Ambiguous’ trials, 202 
the monkeys demonstrated a preference for the broadly distributed stream, which has greater 203 
variability across samples (Fig3c, Supplementary Fig. 1). Such a pro-variance bias pattern of 204 
decision behaviour is similar to what was found in human subjects19,20 (Fig3d-e).  205 

 206 
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To further probe the pro-variance bias, we studied choices from a larger pool of ‘Regular’ trials in 207 
which the mean evidences and variabilities of the two streams were set independently on each trial 208 
(Fig4a, b, Supplementary Fig. 2). ‘Regular' trials allowed us to explore the pro-variance bias across 209 
a greater range of choice difficulties (Fig4c) and quantitatively characterise its effect using regression 210 
analysis. On ‘Regular’ trials, subjects also demonstrated a preference for options with broadly 211 
distributed evidence. Regression analysis confirmed that evidence variability was a significant 212 
predictor of choice (Fig4d; see Methods). In addition, we defined the pro-variance bias (PVB) index 213 
as the ratio of the regression coefficient for evidence standard deviation over the regression 214 
coefficient for mean evidence. This acted as a unitless measure of the pro-variance bias over the 215 
subjects’ sensitivity to the net evidence for choice selectivity. A PVB index value of 0 thereby indicates 216 
no pro-variance bias, whereas a PVB index value of 1 indicates the subject is as sensitive to evidence 217 
standard deviation as they are to mean evidence.  The PVB index thus provides a quantitative 218 
measure of the pro-variance bias. From the ‘Regular’ trials, the PVB index across both monkeys was 219 
0.173 (Monkey A = 0.230; Monkey H = 0.138). 220 

 221 

 222 

Figure 4. Subjects show a pro-variance bias in their choices on regular trials. For these analyses, stimulus streams were 223 
divided into ‘Lower SD’ or ‘Higher SD’ options post-hoc, on a trial-wise basis. (A) On regular trials, the mean evidence of each 224 
stream was independent. (B) Each stream is sampled from either a narrow or a broad distribution, such that about 50% of the 225 
trials have one broad stream and one narrow stream, 25% of the trials have two broad streams, and 25% of the trials have two 226 
narrow streams. (C) Psychometric function when either the ‘Lower SD’ (brown) or ‘Higher SD’ (blue) stream is correct in the 227 
regular trials. (D) Regression analysis using the left-right differences of the mean and standard deviation of the stimuli evidence 228 
to predict left choice. The beta coefficients quantify the contribution of both statistics to the decision-making processes of the 229 
monkeys (Mean Evidence: t = 74.78, p < 10-10; Evidence Standard Deviation: t = 19.65, p < 10-10). Notably, a significantly 230 
positive evidence SD coefficient indicates the subjects preferred to choose options which were more variable across samples. 231 
Errorbars indicate the standard error. For data separated by subjects, see Supplementary Fig. 2. 232 

 233 

 234 
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Recent work has suggested that when traditional evidence accumulation tasks are performed, it is 237 
hard to dissociate whether subjects are combining information across samples, or whether 238 
conventional analyses may be disguising a simpler heuristic32,33. In particular, an alternative decision-239 
making strategy which does not involve temporal accumulation of evidence is to detect the single 240 
most extreme sample. Because the extreme sample will occur at different times in each trial, if a 241 
subject employed this strategy, the choice regression weights across time points would be distributed 242 
as in Fig2c,d. Therefore, it is possible for these findings to be mistakenly interpreted as reflecting 243 
evidence accumulation. We wanted to quantitatively confirm that subjects were using the strategy we 244 
envisioned when designing our task, namely evidence accumulation. Additionally, we wanted to 245 
further investigate the relative contributions of mean evidence and evidence variability on choices. A 246 
logistic regression approach probed the influence upon choice of mean evidence, evidence variability, 247 
first/last samples, and the most extreme samples within each stream (Supplementary Fig. 2e,h, see 248 
Methods). A cross-validation approach revealed choice was principally driven by the mean evidence, 249 
verifying that subjects performed the task using evidence accumulation (Supplementary Table 1, see 250 
Methods).  251 

Although this analysis revealed choices were not primarily driven by an ‘extreme sample detection’ 252 
decision strategy, another concern was whether partially employing this strategy could explain the 253 
pro-variance effect we observed. To address this, we compared the influence of ‘evidence variability’ 254 
versus the influence of ‘extreme samples’ on subjects’ choices. Cross-validation revealed that choices 255 
were better described by a model incorporating evidence variability, rather than the extreme sample 256 
values (Supplementary Table 2). We also demonstrated that including evidence variability as a co-257 
regressor improved the performance of all combinations of nested models (Supplementary Table 3). 258 
In summary, it can be concluded that although subjects integrated across samples, they were 259 
additionally influenced by sample variability.  260 

 261 

 262 
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Figure 5: Spiking cortical circuit model reproduces pro-variance bias. (A) Circuit model schematic. The model consists of 273 
two excitatory neural populations which receive separate inputs (IA and IB), each reflecting the momentary evidence for one of 274 
the two stimuli streams. Each population integrates evidence due to recurrent excitation, and competes with the other via lateral 275 
inhibition mediated by a population of interneurons. (B) Example firing rate trajectories of the two populations on a single trial 276 
where option A is chosen. (C, D) Narrow-Broad Trials. (C) The circuit model is significantly more accurate when the broad 277 
stream is correct, than when the narrow stream is correct (Chi-squared test, chi = 1981, p < 1x10-10). (D) On ‘Ambiguous trials’, 278 
the circuit model is significantly more likely to choose the broad option (Binomial test, p < 1x10-10). (E-G) Regular trials. (E) The 279 
psychometric function of the circuit model when either the ‘Lower SD’ (brown) or ‘Higher SD’ (blue) stream is correct, 280 
respectively. (F) Regression analysis of the circuit model choices on regular trials, using evidence mean and variability as 281 
predictors of choice. Both quantities contribute to the decision-making process of the circuit model (Mean Evidence: t = 129.50, 282 
p < 10-10; Evidence Standard Deviation: t =45.27, p < 10-10). (G) Regression coefficients of the stimuli at different time-steps, 283 
showing the time course of evidence integration. The circuit demonstrates a temporal profile which decays over time, similar to 284 
the monkeys. 285 

Existing algorithmic-level proposals for generating a pro-variance bias in human decision-making rely 286 
on the disregarding of sensory information before it enters the accumulation process, depending on 287 
its salience19. To investigate a possible alternative basis for the pro-variance bias, at the level of 288 
neural implementation, we sought to characterise decision-making behaviour in a biophysically-289 
plausible spiking cortical circuit model (Fig5a, b, Supplementary Fig. 3)21,34. In the circuit 290 
architecture, two groups of excitatory pyramidal neurons are assigned to the left and right options, 291 
such that high activity in one group signals the response to the respective option. Excitatory neurons 292 
within each group are recurrently connected to each other via AMPA and NMDA receptors, and this 293 
recurrent excitation supports ramping activity and evidence accumulation. Both groups of excitatory 294 
neurons are jointly connected to a group of inhibitory interneurons, resulting in feedback inhibition and 295 
winner-take-all competition21,22. The two groups of excitatory neurons receive separate inputs - with 296 
each group receiving information about one of the two options (i.e. Group A receives IA reflecting the 297 
left option; Group B receives IB reflecting the right option). Specifically, we assume the bar heights 298 
from each stream are remapped, upstream of the simulated decision-making circuit, to evidence for 299 
the corresponding option depending on the cued context. Therefore, higher bars correspond to larger 300 
inputs in ‘ChooseHigh’ trials and smaller inputs in ‘ChooseLow’ trials. Combined together, this 301 
synaptic architecture endows the circuit model with decision-making functions.  302 
 303 
The spiking circuit model was tested with the same trial types as the monkey experiment. Importantly, 304 
not only can the circuit model perform the evidence accumulation task, it also demonstrated a pro-305 
variance bias comparable to the monkeys (Fig5c-f). Regression analysis showed that the circuit 306 
model utilises a strategy similar to the monkeys to solve the decision-making task (Supplementary 307 
Fig. 3b). The temporal process of evidence integration in the circuit model disproportionately 308 
weighted early stimuli over late stimuli (Fig5g), similar to the evidence integration patterns observed 309 
in both monkeys. However, the circuit model demonstrated an initial ramp-up in stimuli weights due to 310 
the time needed for it to reach an integrative state. 311 
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 312 
 313 
Figure 6: Mean-Field model explanation for pro-variance bias. (A) The mean-field model of the circuit, with two variables 314 
representing evidence for the two options. For simplicity, we assume one stream is narrow and one is broad, and label the 315 
populations receiving the inputs as N and B respectively. (B) Psychometric function of regular trials as in (Fig5E). (C) 316 
Regression analysis of the regular trial data as in (Fig5F) (mean: t = 143.42, p < 10-10; standard deviation: t =30.76, p < 10-10). 317 
(D) The mean-field model uses a generic firing rate profile (black), with zero firing rate at low inputs, then a near-linear 318 
response as input increases. Such profiles have an expansive non-linearity (with a positive second order derivative (grey)) that 319 
can generate pro-variance bias. (E-H) An explanation of the pro-variance bias using phase-plane analysis. (E) A momentarily 320 
strong stimulus from the broad stream will drive the model to choose broad (high ܵ஻, low ܵே). Blue and brown lines correspond 321 
to nullclines. (F) A momentarily weak stimulus in the broad stream will drive the model to choose narrow (high ܵே, low ܵ஻). (G) 322 
The net effect of one strong and one weak broad stimulus, compared with two average stimuli, is to drive the system to the 323 
broad choice. That is, a momentarily strong stimulus has an asymmetrically greater influence on the decision-making process 324 
than a momentarily weak stimulus, leading to pro-variance bias. (H) The net drive to the broad or narrow option when the broad 325 
stimulus is momentarily strong (red) or weak (blue), along the diagonal (ܵ஻ = ܵே in Fig6G). 326 

 327 
To understand the origin of the pro-variance bias in the spiking circuit, we mathematically reduced the 328 
circuit model to a mean-field model (Fig6a), which demonstrated similar decision-making behaviour to 329 
the spiking circuit (Fig6b, c, Supplementary Fig. 4). The mean-field model, with two variables 330 
representing the integrated evidence for the two choices, allowed phase-plane analysis to further 331 
investigate the pro-variance bias. A simplified case was considered where the broad and narrow 332 
streams have the same mean evidence, and the stimuli evidence varies over time in the broad stream 333 
but not the narrow stream (i.e. σ୒=0) (Fig6e-h). This example provides an intuitive explanation for the 334 
pro-variance bias: a momentarily strong stimulus has an asymmetrically greater influence upon the 335 
decision-making process than a momentarily weak stimulus. It can be shown that such asymmetry 336 
arises from the expansive non-linearities of the firing rate profiles (Fig6d). 337 

 338 
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An advantage of the circuit model over existing algorithmic level explanations of the pro-variance bias 355 
is it can be used to make testable behavioural predictions in response to different synaptic or cellular 356 
perturbations, including E/I imbalance. In turn, perturbation experiments can constrain and refine 357 
model components. Therefore, we studied the behavioural effects of distinct E/I perturbations, and 358 
upstream sensory deficit, on decision making and in particular, pro-variance bias (Fig7, 359 
Supplementary Fig. 5). Three perturbations were introduced to the circuit model: lowered E/I 360 
balance (via NMDA-R hypofunction on excitatory pyramidal neurons), elevated E/I balance (via 361 
NMDA-R hypofunction on inhibitory interneurons), or sensory deficit (as weakened scaling of external 362 
inputs to stimuli evidence) (Fig7a).  363 
 364 
While all circuit models were capable of performing the task (Fig7b-e), the choice accuracy of each 365 
perturbed model was reduced when compared to the control model. This was quantified by the 366 
regression coefficient of mean evidence (Fig7f). In addition, the regression coefficient for evidence 367 
standard deviation was reduced for each perturbed model in comparison to the control model, 368 
indicating a lesser influence of evidence variability on choice (Fig7g). Finally, in a dissociation 369 
between the three model perturbations, the PVB index was increased by lowered E/I, decreased by 370 
elevated E/I, and roughly unaltered by sensory deficits (Fig7h). Further regression analyses indicated 371 
no obvious shift in utilised strategies relative to the control model (Supplementary Fig. 5b). In 372 
addition, the temporal weightings were distinctly altered by the elevated- and lowered- E/I 373 
perturbations (Fig7i). The circuit model thus provided the basis of dissociable prediction by E/I-374 
balance perturbing pharmacological agents. 375 
 376 

 377 

Figure 7: Predictions for E/I perturbations of the Spiking Circuit Model. (A) Model perturbation schematic. Three potential 378 
perturbations are considered: lowered E/I (via NMDA-R hypofunction on excitatory pyramidal neurons), elevated E/I (via 379 
NMDA-R hypofunction on inhibitory interneurons), or sensory deficit (as weakened scaling of external inputs to stimuli 380 
evidence).(B-E) The regular-trial choice accuracy for each of the circuit perturbations (dark colour for when the ‘Higher SD’ 381 
stream is correct, light colour for when the ‘Lower SD’ stream is correct).(F-H) Regression analysis on the regular trial choices 382 
of the four models, using evidence mean and evidence variability to predict choice.(F) The mean evidence regression 383 
coefficients in the four models. Lowering E/I, elevating E/I, and inducing sensory deficits similarly reduce the coefficient, 384 
reflecting a drop in choice accuracy. (G) The evidence standard deviation regression coefficients in the four models. All three 385 
perturbations reduce the coefficient, but to a different extent. (H) The PVB index (ratio of evidence standard deviation 386 
coefficient over mean evidence coefficient) provides dissociable predictions for the perturbations. The lowered E/I circuit 387 
increases the PVB index relative to the control model (permutation test, p <10-5), while the elevated E/I circuit decreases the 388 
PVB index (permutation test, p <10-5). The PVB index is roughly maintained in the sensory deficit circuit (permutation test, p = 389 
0.695). The dashed line indicates the PVB index for the control circuit, * indicates p<10-5 when the PVB index is compared with 390 
the control circuit. (I) The regression weights of stimuli at different time-steps for the four models. 391 
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To explore these predictions experimentally, we collected behavioural data from both monkeys 392 
following the administration of a subanaesthetic dose (0.5mg/kg, intramuscular injection) of the 393 
NMDA-R antagonist ketamine (see Methods, Fig8, Supplementary Fig. 6). After a baseline period of 394 
the subjects performing the task, either ketamine or saline was injected intramuscularly (Monkey A: 395 
13 saline sessions, 15 ketamine sessions; Monkey H: 17 saline sessions, 18 ketamine sessions). 396 
Administering ketamine had behavioural effects for around 30 minutes in both subjects. The data 397 
collected during this period formed a behavioural database of 4142 completed trials (Monkey A: 2276; 398 
Monkey H: 1866). Following ketamine administration, subjects’ choice accuracy was markedly 399 
decreased (Fig8a), without a significant shift in their strategies (Supplementary Fig. 6, 400 
Supplementary Table 4). To understand the nature of this deficit, we studied the effect of drug 401 
administration on the pro-variance bias (Fig8b-f). Although subjects were less accurate following 402 
ketamine injection, they retained a pro-variance bias (Fig8c). Regression analysis confirmed 403 
ketamine caused choices to be substantially less driven by mean evidence (Fig8d), but still strongly 404 
influenced by the standard deviation of evidence across samples (Fig8e). The PVB index was 405 
significantly higher when ketamine was administered, than saline (permutation test p = 8x10-6, Fig8f). 406 
Of all the circuit model perturbations, this was only consistent with lowered E/I balance (Fig7h). 407 
Finally, we investigated the effect of ketamine on the time course of evidence weighting (Fig8g). It 408 
caused a general downward shift of the temporal weights; but had no strong effects on how each 409 
stimulus was weighted relative to the others in the stream. This shifting of the weights could reflect a 410 
sensory deficit, but given the results of the pro-variance analysis, collectively the behavioural effects 411 
of ketamine are most consistent with a lowering of E/I balance.  412 

  413 

Figure 8: Experimental effects of ketamine on evidence accumulation behaviour produce an increased pro-variance 414 
bias, consistent with lowered excitation-inhibition balance. (A) Mean percentage of correct choices across sessions made 415 
by monkeys relative to the injection of ketamine (red) or saline (blue). Shaded region denotes ‘on-drug’ trials (trials 5-30 416 
minutes after injection) which are used for analysis in the rest of the figure. (B, C) The psychometric function when either the 417 
‘Lower SD’ or ‘Higher SD’ streams are correct, with saline (B) or ketamine (C) injection. (D-F) Ketamine injection impairs the 418 
decision-making of the monkeys, in a manner consistent with the prediction of the lowered E/I circuit model. Dashed lines 419 
indicate pre-injection values in each plot. (D) The regression coefficient for mean evidence, under injection of saline or 420 
ketamine. Ketamine significantly reduces the coefficient (permutation test, p < 1x10-6), reflecting a drop in choice accuracy. (E) 421 
The evidence standard deviation regression coefficient, under injection of saline or ketamine. Ketamine does not significantly 422 
reduce the coefficient (permutation test, p = 0.152). (F) Ketamine increases the PVB index (permutation test, p = 8x10-6), 423 
consistent with the model prediction of the lowered E/I circuit. (G) The regression weights of stimuli at different time-steps, for 424 
the monkeys with saline or ketamine injection. Ketamine injection lowers and flattens the curve of temporal weights, consistent 425 
with the lowered E/I circuit model. Errorbars in (A) indicate the standard error mean, in all other panels errorbars indicate the 426 
standard error. For data separated by subjects, see Supplementary Fig. 6.  427 
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Discussion 428 

 429 

Previous studies have shown human participants exhibit choice irrationalities when options differ in 430 
the standard deviation of the evidence samples, preferring choice options drawn from a more variable 431 
distribution19,20. By utilising a behavioural task with precise experimenter control over the distributions 432 
of time-varying evidence, we show that macaque monkeys exhibit a similar pro-variance irrationality in 433 
their choices akin to human participants. This pro-variance bias was also present in a spiking circuit 434 
model, which demonstrated a neural mechanism for this behaviour. We then introduced perturbations 435 
at distinct synaptic sites of the circuit, which revealed dissociable predictions for the effects of NMDA-436 
R antagonism. Ketamine produced decision-making deficits consistent with a lowering of the cortical 437 
excitation-inhibition balance.  438 

Biophysically grounded neural circuit modelling is a powerful tool to link cellular level observations to 439 
behaviour. Previous studies have shown recurrent cortical circuit models reproduce normative 440 
decision-making and working memory behaviour, and replicate the corresponding neurophysiological 441 
activity21-26,35. However, whether they are also capable of reproducing idiosyncratic cognitive biases 442 
has not previously been explored. Here we demonstrated pro-variance and primacy biases in a 443 
spiking circuit model. The primacy bias results from the formation of attractor states before all of the 444 
evidence has been presented. This neural implementation for bounded evidence accumulation 445 
corresponds with previous algorithmic explanations29.           446 

The results from our spiking circuit modelling also provided a parsimonious explanation for the cause 447 
of the pro-variance bias within the evidence accumulation process. Specifically, strong evidence in 448 
favour of an option pushes the network towards an attractor state more so than symmetrically weak 449 
evidence pushes it away. In contrast, previous explanations for pro-variance bias proposed 450 
computations at the level of sensory processing upstream of evidence accumulation. In particular, a 451 
‘selective integration’ model proposed that information for the momentarily weaker option is discarded 452 
before it enters the evidence accumulation process19. Crucially, our circuit model generated 453 
dissociable predictions for the effects of NMDA-R hypofunction on the pro-variance bias (PVB) index 454 
that were tested by follow-up ketamine experiments. While it is still unclear where and how in the 455 
brain the selective integration process takes place, our modelling results suggest that purely sensory 456 
deficits may not capture the alterations in choice behaviour observed under ketamine, in contrast to 457 
E/I perturbations in decision-making circuits (Fig7h). Multiple complementary processes may 458 
simultaneously contribute to pro-variance bias during decision making, especially in complex 459 
behaviours over longer timescales. Future work will aim to contrast between these two models with 460 
neurophysiological data recorded while monkeys are performing this task.  461 

Our pharmacological intervention experimentally verified the significance of NMDA-R function for 462 
decision-making. In the spiking circuit model, NMDA-Rs expressed on pyramidal cells are necessary 463 
for reverberatory excitation, without which evidence cannot be accumulated and stable working 464 
memory activity cannot be maintained. NMDA-Rs on interneurons are necessary for maintaining 465 
background inhibition and preventing the circuit from reaching an attractor state prematurely21,25. By 466 
administering ketamine, an NMDA-R antagonist, specific short-term deficits in choice behaviour were 467 
induced, which were consistent with a lowering of the cortical excitation-inhibition balance in the 468 
circuit model. This suggests the NMDA-R antagonist we administered systemically was primarily 469 
acting to inhibit neurotransmission onto pyramidal cells.  470 

The physiological effects of NMDA-R antagonism on in vivo cortical circuits remains an unresolved 471 
question. A number of studies have proposed a net cortical disinhibition through NMDA-R 472 
hypofunction on inhibitory interneurons4,10,11,36. The disinhibition hypothesis is supported by studies 473 
finding NMDA-R antagonists mediate an increase in the firing of prefrontal cortical neurons, in 474 
rodents37,38 and monkeys39-42. On the other hand, the effects of NMDA-R antagonists on E/I balance 475 
may vary across neuronal sub-circuits within a brain area. For instance, in a working memory task, 476 
ketamine was found to increase spiking activity of response-selective cells, but decrease activity of 477 
the task-relevant delay-tuned cells in primate prefrontal cortex26. Such specificity might explain why 478 
several studies reported less conclusive effects of NMDA-R antagonists on overall prefrontal firing 479 
rates in monkeys26,43. In vitro work has also revealed the excitatory post-synaptic potentials (EPSPs) 480 
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of prefrontal pyramidal neurons are much more reliant on NMDA-R conductance than parvalbumin 481 
interneurons44. Other investigators combining neurophysiological recordings with modelling 482 
approaches have also concluded that the action of NMDA-R antagonists is primarily upon pyramidal 483 
cells26,45. Our present findings, integrating pharmacological manipulation of behaviour with 484 
biophysically-based spiking circuit modelling, suggest that the ketamine-induced behavioural biases 485 
are more consistent with a lowering of excitation-inhibition balance. Future work with 486 
electrophysiological recordings during the performance of our task, under pharmacological 487 
interventions, can potentially dissociate the effect of ketamine on E/I balance specifically in cortical 488 
neurons exhibiting decision-related signals. 489 

The minutes-long timescale of the NMDA-R mediated decision-making deficit we observed was also 490 
consistent with the psychotomimetic effects of subanaesthetic doses of ketamine in healthy 491 
humans7,11. As NMDA-R hypofunction is hypothesised to play a role in the pathophysiology of 492 
schizophrenia5,6,10,11, our findings have important clinical relevance. Previous studies have 493 
demonstrated impaired perceptual discrimination in patients with schizophrenia performing the 494 
random-dot motion (RDM) decision-making task15-17. Although the RDM has predominantly been used 495 
to study evidence accumulation13, previously this performance deficit in schizophrenia was interpreted 496 
as reflecting a diminished representation of sensory evidence in visual cortex15,18. Based on our task 497 
with precise temporal control of the stimuli, our findings suggest that NMDA-R antagonism alters the 498 
decision-making process in association cortical circuits. Dysfunction in these association circuits may 499 
therefore provide an important contribution to cognitive deficits - one that is potentially complementary 500 
to upstream sensory impairment. Crucially, our task uniquely allowed us to rigorously verify that the 501 
subjects used an accumulation strategy to guide their choices (cf. previous animal studies13,14,46-48), 502 
with these analyses suggesting the strategy our subjects employed was consistent with findings in 503 
human participants. This consistency further ensures our findings may translate across species, in 504 
particular to clinical populations. 505 
 506 
Another related line of schizophrenia research has shown a decision-making bias known as jumping 507 
to conclusions (JTC)49,50. The JTC has predominately been demonstrated in the ‘beads task’, a 508 
paradigm where participants are shown two jars of beads, one mostly pink and the other mostly green 509 
(typically 85%). The jars are hidden, and the participants are presented a sequence of beads drawn 510 
from a single jar. Following each draw, they are asked if they are ready to commit to a decision about 511 
which jar the beads are being drawn from. Patients with schizophrenia typically make decisions based 512 
on fewer beads than controls. Importantly, this JTC bias has been proposed as a mechanism for 513 
delusion formation. Based on the JTC literature, one plausible hypothesis for behavioural alteration 514 
under NMDA-R antagonism in our task may be a strong increase in the primacy bias, whereby only 515 
the initially presented bar samples would be used to guide the subjects’ decisions. However, following 516 
ketamine administration, we did not observe a strong primacy – instead all samples received roughly 517 
the same weighting. There are important differences between our task and the beads task. In our 518 
task, the stimulus presentation is shorter (2 seconds, compared to slower sampling across bead 519 
draws), and is of fixed duration rather than terminated by the subject’s choice, and therefore may not 520 
involve the perceived sampling cost of the beads task51.  521 

Our precise experimental paradigm and complementary modelling approach allowed us to 522 
meticulously quantify how monkeys weight time-varying evidence and robustly dissociate sensory and 523 
decision-making deficits – unlike prior studies using the RDM and beads tasks. Our approach can be 524 
readily applied to experimental and clinical studies to yield insights into the nature of cognitive deficits 525 
and their potential underlying E/I alterations in pharmacological manipulations and pathophysiologies 526 
across neuropsychiatric disorders, such as schizophrenia52,53 and autism52,54-56. Finally, our study 527 
highlights how precise task design, combined with computational modelling, can yield translational 528 
insights across species, including through pharmacological perturbations, and across levels of 529 
analysis, from synapses to cognition.  530 

 531 

 532 
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Methods 533 

 534 

Subjects 535 
 536 
Two adult male rhesus monkeys (M. mulatta), subjects A and H, were used. The subjects weighed 537 
12–13.3 kg, and both were ~6 years old at the start of the data collection period. We regulated 538 
their daily fluid intake to maintain motivation in the task. All experimental procedures were 539 
approved by the UCL Local Ethical Procedures Committee and the UK Home Office, and carried 540 
out in accordance with the UK Animals (Scientific Procedures) Act. 541 

Behavioural protocol 542 
 543 
Subjects sat head restrained in a primate behavioural chair facing a 19-inch computer screen 544 
(1,280 × 1024-px screen resolution, and 60-Hz refresh rate) in a dark room. The monitor was 545 
positioned 59.5 cm away from their eyes, with the height set so that the centre of the screen 546 
aligned with neutral eye level for the subject.  Eye position was tracked using an infrared camera 547 
(ISCAN ETL-200) sampled at 240 Hz. The behavioural paradigm was run in the MATLAB-based 548 
toolbox MonkeyLogic (http://www.monkeylogic.net/, Brown University)57-59. Eye position data was 549 
relayed to MonkeyLogic for use online during the task, and was recorded for subsequent offline 550 
analysis. Following successful trials, juice reward was delivered to the subject using a precision 551 
peristaltic pump (ISMATEC IPC). Subjects performed two types of behavioural sessions: standard 552 
and pharmacological. In pharmacological sessions, following a baseline period, either an NMDA-R 553 
antagonist (Ketamine) or saline was administered via intramuscular injection. Monkey A completed 554 
41 standard sessions, and 28 pharmacological sessions (15 ketamine; 13 saline). Monkey H 555 
completed 68 standard sessions, and 35 pharmacological sessions (18 ketamine; 17 saline).  556 

Injection protocol 557 
 558 
Typically, two pharmacological sessions were performed each week, at least 3 days apart. 559 
Subjects received either a saline or ketamine injection into the trapezius muscle while seated in 560 
the primate chair. Approximately 12 minutes into the session, local anaesthetic cream was applied 561 
to the muscle. At 28 minutes, the injection was administered. The task was briefly paused for this 562 
intervention (64.82 +/- 10.85 secs). Drug dose was determined through extensive piloting, and a 563 
review of the relevant literature26,60. The dose used was 0.5mg/kg.  564 

Task 565 
 566 
Subjects were trained to perform a two-alternative value-based decision-making task. A series of 567 
bars, each with different heights, were presented on the left and right-side of the computer monitor. 568 
Following a post-stimulus delay, subjects were rewarded for saccading towards the side with either 569 
the higher or lower average bar-height, depending upon a contextual cue displayed at the start of the 570 
trial (see Fig1a inset). The number of pairs of bars in each series was either four 571 
(‘ShortSampleTrial’) or eight (‘LongSampleTrial’) during trials in each standard behavioural 572 
session. In this report, we only consider the results from the eight sample trials, though similar 573 
results were obtained from the four sample trials. The number of bars was always six during 574 
pharmacological sessions. 575 
 576 
The bars were presented inside of fixed-height rectangular placeholders (width, 84px; height, 318px). 577 
The placeholders had a black border (thickness 9px), and a grey centre where the stimuli were 578 
presented (width, 66px; height, 300px). The bar heights could take discrete percentiles, occupying 579 
between 1% and 99% of the grey space. The height of the bar was indicated by a horizontal black line 580 
(thickness 6px). Beneath the black line, there was 45° grey gabor shading.    581 
 582 
An overview of the trial timings is outlined in Fig1a. Subjects initiated a trial by maintaining their 583 
gaze on a central, red fixation point for 750ms. After this fixation was completed, one of four 584 
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contextual cues (see Fig1a inset) was centrally presented for 350ms. Subjects had previously 585 
learned that two of these cues instructed to choose the side with the higher average bar-height 586 
(‘ChooseHighTrial’), and the other two instructed to choose the side with the lower average bar-587 
height (‘ChooseLowTrial’). Next, two black masks (width, 84px; height, 318px) were presented for 588 
200ms in the location of the forthcoming bar stimuli. These were positioned either side of the fixation 589 
spot (6° visual angle from centre). Each bar stimulus was presented for 200ms, followed by a 50ms 590 
inter-stimulus-interval where only the fixation point remained on the screen. Once all of the bar stimuli 591 
had been presented, the mask stimuli returned for a further 200ms. There was then a post stimulus 592 
delay (250-750ms, uniformly sampled across trials). Following this, the colour of the fixation point was 593 
changed to green (go cue), and two circular saccade targets appeared on each side of the screen 594 
where the bars had previously been presented. This cued the subject to indicate their choice by 595 
making a saccade to one of the targets. Once the subject reported their decision, there were two 596 
stages of feedback. Immediately following choice, the green go cue was extinguished, the contextual 597 
cue was re-presented centrally, along with the average bar heights of the two series of stimuli 598 
previously presented. The option the subject chose was indicated by a purple outline surrounding the 599 
relevant bar placeholder (width, 3.8°; height, 10°). Following 500ms, the second stage of feedback 600 
began. The correct answer was indicated by a white outline surrounding the bar placeholder (width, 601 
5.7°; height, 15°). On correct trials, the subject was rewarded for a length of time proportional to the 602 
average height of the chosen option (directly proportional on a ‘ChooseHighTrial’, negatively 603 
proportional on a ‘ChooseLowTrial’). On incorrect trials, there was no reward. Regardless of the 604 
reward amount, the second feedback stage lasted 1200ms. This was followed by an inter-trial-interval 605 
(1.946+/- 0.051 secs; for Standard Session, across all completed included trials). The inter-trial-606 
interval duration was longer on ‘ShortSampleTrials’ than ‘LongSampleTrials’, in order for the trials 607 
to be an equal duration, and facilitate a similar reward rate between the two conditions.  608 
 609 
Subjects were required to maintain central fixation from the fixation period until they indicated their 610 
choice. If the initial fixation period was not completed, or fixation was subsequently broken, the 611 
trial was aborted and the subject received a 3000ms timeout (Trials in standard sessions: Monkey 612 
A – 22.46%, Monkey H – 15.27%). On the following trial, the experimental condition was not 613 
repeated. If subjects failed to indicate their choice within 8000ms, a 5000ms timeout was initiated 614 
(Trials in standard sessions: Monkey A - 0%, Monkey H – 0%).  615 
 616 
Experimental conditions were blocked according to the contextual cue and evidence length. This 617 
produced four block types (ChooseHighShortSampleTrial (H4), ChooseHighLongSampleTrial (H8), 618 
ChooseLowShortSampleTrial (L4), ChooseLowLongSampleTrial (L8)). At the start of each 619 
session, subjects performed a short block of memory-guided saccades (MGS)61, completing 10 620 
trials. Data from these trials is not presented in this report. Following the MGS block, the first block 621 
of decision-making trials was selected at random. After the subject completed 15 trials in a block, 622 
a new block was selected without replacement. Each new block had to have either the same 623 
evidence length or the same contextual cue as the previous block. After all four blocks had been 624 
completed, there was another interval of MGS trials. A new evidence accumulation start block was 625 
then randomly selected. As there were four block types, and either the evidence length or the 626 
contextual cue had to be preserved across a block switch, there were two ‘sequences’ in which the 627 
blocks could transition (i.e. H4→H8→L8→L4; or H4→L4→L8→H8, if starting from H4). Following 628 
the intervening MGS trials, the blocks transitioned in the opposite sequence to those used 629 
previously, starting from the new randomly chosen block. This block switching protocol was 630 
continued throughout the session. At the start of each block, the background of the screen was 631 
changed for 5000ms to indicate the evidence length of the forthcoming block. A burgundy colour 632 
indicated an 8 sample block was beginning, a teal colour indicated a 4 sample block was 633 
beginning.   634 

Trial Generation 635 

The heights of the bars on each trial were precisely controlled. On the majority of trials (Regular 636 
Trials, Completed trials in standard sessions: Monkey A – 76.67%, Monkey H – 76.23%), the 637 
heights of each option were generated from independent Gaussian distributions (Fig4a, b). There 638 
were two levels of variance for the distributions, designated as ‘Narrow’ and ‘Broad’.  The mean of 639 
each distribution, μ, was calculated as μ = 50 + Z*σ, where Z ∼࣯(-0.25,0.25), and σ was either 12 or 640 
24 for narrow and broad stimuli streams. The individual bar heights were then determined by ∼ࣨ(μ, 641 
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σ).  The trial generation process was constrained so the samples reasonably reflected the generative 642 
parameters. These restrictions required bar heights to range from 1 to 99, and the actual σ for each 643 
stream to be no more than 4 from the generative value. On any given trial, subjects could be 644 
presented with two narrow streams, two broad streams, or one of each. The evidence variability was 645 
therefore independent between the two streams. For post-hoc analysis (Fig4) we defined one stream 646 
as the ‘Lower SD’ option on each trial, and the other the ‘Higher SD’ option, based upon the 647 
sampled/actual σ.  648 

A proportion of ‘irrationality trials’ were also specifically designed to elucidate the effects of evidence 649 
variability on choice, and whether subjects displayed primacy/recency biases20. These trials occurred 650 
in equal proportions within all four block types. Only one of these irrationality trial types was tested in 651 
each behavioural session.  652 

Narrow-broad trials (Completed trials in standard sessions: Monkey A – 14.87%, Monkey H – 653 
15.78%) probed the effect of evidence variability on choice20. Within this category of trials, there were 654 
three conditions (Fig3a). In each, the bar heights of one alternative were associated with a narrow 655 
Gaussian distribution (∼ࣨ(μN, 12)), and the bar heights from the other with a broad Gaussian 656 
distribution (∼ࣨ(μB, 24)). In the first two conditions, ‘Narrow Correct’ (μN ∼࣯(48, 60), μB = μN – 8) and 657 
‘Broad Correct’ (μB ∼࣯(48, 60), μN = μB – 8), there was a clear correct answer. In the third condition, 658 
‘Ambiguous’ (μB ∼࣯(44, 56), μN = μB), there was only small evidence in favour of the correct answer. 659 
In all of these conditions, the generated samples had to be within 4 of the generating σ. Furthermore, 660 
on ‘Narrow Correct’ and ‘Broad Correct’ trials the difference between the mean evidence of the 661 
intended correct and incorrect stream had to range from +2 to +14. On the ‘Ambiguous’ trials, the 662 
mean evidence in favour of one option over the other was constrained to be <4. A visualisation of the 663 
net evidence in each of these trial types is displayed (Fig3a). For the purposes of illustration, the 664 
probability density was smoothed by a sliding window of ±1, within the generating constraints 665 
described above (‘Narrow Correct’ and ‘Broad Correct’ trials have net evidence for correct option 666 
within [2, 14]; ‘Ambiguous’ trials have net evidence within [-4, 4]). A very small number of trials were 667 
excluded from this visualisation, because their net evidence fell marginally outside the constraints. 668 
This was because bar heights were rounded to the nearest integer (due to the limited number of 669 
pixels on the computer monitor) after the generating procedure and the plot reflects the presented bar 670 
heights.       671 

Half-half trials (Completed trials in standard sessions: Monkey A – 8.46%, Monkey H – 8.00%) 672 
probed the effect of temporal weighting biases on choice20. The heights of each option were 673 
generated using the same Gaussian distribution (X∼ࣨ(μHH, 12), where μHH ∼࣯(40, 60)). This 674 
distribution was truncated to form two distributions: XHigh {mean(X)- 0.5*SD(X),∞}, and XLow {-∞, 675 
mean(X)+ 0.5*SD(X)}. On each trial, one option was designated ‘HighFirst’ – where the first half of bar 676 
heights was drawn from XHigh and the second half of bar heights drawn from XLow. This process was 677 
also constrained so that the mean of samples drawn from XHigh had to be at least 7.5 greater than 678 
those taken from XLow. The other option was ‘LowFirst’, where the samples were drawn from the two 679 
distributions in the reverse order.  680 

 681 

Task Modifications for Pharmacological Sessions 682 
 683 
Minor adjustments were made to the task during the pharmacological sessions to maximise trial 684 
counts available for statistical analysis. Trial length was fixed to 6 pairs of samples. The block was 685 
switched between ‘ChooseHigh6Sample’ and ‘ChooseLow6Sample’ after 30 completed trials, without 686 
intervening MGS trials. From our pilot data, it was clear ketamine reduced choice accuracy. In order 687 
to maintain subject motivation, the most difficult ‘Regular’ and ‘HalfHalf’ trials were not presented. 688 
Following the trial generation procedures described above, in pharmacological sessions these trials 689 
were additionally required to have >4 mean difference in evidence strength. Of the ‘Narrow-Broad’ 690 
trials, only ‘Ambiguous’ conditions were used; but no further constraints were applied to these trials. In 691 
some sessions, a small number of control trials were used, in which the bar heights for each option 692 
were fixed across all of the samples. All analyses utilised ‘Regular’, ‘Half-Half’, and ‘Narrow-Broad’ 693 
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trials. Monkey H did not always complete sufficient trials once ketamine was administered. Sessions 694 
where the number of completed trials was fewer than the minimum recorded in the saline sessions 695 
were discarded (6 of 18 sessions). Following ketamine administration, Monkey A did not complete 696 
fewer trials in any session than the minimum recorded in a saline session.  697 

Behavioural Data Analysis 698 
 699 
To assess decision-making accuracy during standard sessions, we initially fitted a psychometric 700 
function14,29 to subjects’ choices pooled across ‘Regular’ and ‘Narrow-Broad’ trials (Fig2a, b). This 701 
defines the choice accuracy (ܲ) as a function of the difference in mean evidence in favour of the 702 
correct choice (evidence strength,ݔ): 703 

(ݔ)ܲ = 0.5 + 0.5 ቆ1 − ݌ݔ݁ ൬− ቀ௫ఈቁఉ൰ቇ    (1) 704 

where α and β are respectively the discrimination threshold and order of the psychometric function, 705 
and ݁݌ݔ is the exponential function. To illustrate the effect of pro-variance bias, we also fitted a three-706 
parameter psychometric function to the subjects’ probability to choose the higher SD option ( ுܲௌ஽) in 707 
the ‘Regular’ trials, as a function of the difference in mean evidence in favour of the higher SD option 708 
on each trial (ݔுௌ஽): 709 

ுܲௌ஽(ݔுௌ஽) = 0.5 + ுௌ஽ݔ) ݊݃݅ݏ 0.5 + ቆ1 (ߜ − ݌ݔ݁ ൬− ቀ|௫ಹೄವ ା ఋ|ఈ ቁఉ൰ቇ  (2) 710 

where ߜ is the psychometric function shift, and ݊݃݅ݏ returns 1 and -1 for positive and negative inputs 711 
respectively. 712 

In both cases, the psychometric function is fitted using the method of maximum-likelihood estimation 713 
(MLE), with the estimator 714 ∑ ൣ૤௜ ∗ ൫ܲ(x)൯݃݋݈ + (1 − ૤௜) ∗ ൫1݃݋݈ − ܲ(x)൯൧௜     (3) 715 

(and similarly for ுܲௌ஽ & ݔுௌ஽), where ݅ is summed across trials. ૤௜ = 1 if the correct (higher SD) 716 
option is chosen in trial ݅ and 0 otherwise. 717 

The temporal weights of stimuli were calculated using logistic regression. This function defined the 718 
probability (PL) of choosing the left option:     719 ln ቀ ௉ಽଵି ௉ಽቁ = ଴ᇱߚ   +  ∑ ௡ᇱߚ ௡ܮ) −௡଼ୀଵ ܴ௡)    (4) 720 

where ߚ଴ᇱ  is a bias term, ߚ௡ᇱ  reflects the weighting given to the nth pair of stimuli, ܮ௡ and ܴ௡ reflect the 721 
evidence for the left and right option at each time point.   722 

Regression analysis was used to probe the influence of evidence mean, and evidence variability on 723 
choice during the ‘Regular’ trials (Fig4d, 5f, 6c, 7f-h, 8d-f, Supp2d,g, Supp6c,h). This function 724 
defined the probability (PL) of choosing the left option:     725 ln ቀ ௉ಽଵି ௉ಽቁ = ଴ߚ   + ଵߚ  ൫݉݁ܽ݊(ܮ) − ݉݁ܽ݊(ܴ)൯ + (ܮ)݀ݐݏଶ ൫ߚ  −  ൯   (5) 726(ܴ)݀ݐݏ

where ߚ଴ is a bias term, ߚଵ reflects the influence of evidence mean, and ߚଶ reflects the influence of 727 
standard deviation of evidence (evidence variability).  728 

 729 

 730 

 731 

 732 
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This approach was extended to probe other potential influences on the decision-making process. An 733 
expanded regression model was defined as follows: 734  ln ൬ ௅ܲ1 −  ௅ܲ൰ = ଴ߚ   + ଵߚ  ൫݉݁ܽ݊(ܮ)൯ + ൯(ܮ)݀ݐݏଶ ൫ߚ  + ൯(ܮ)ݔܽܯଷ ൫ߚ   + ൯(ܮ)݊݅ܯସ ൫ߚ  + (ଵܮ) ହߚ   (଼ܮ) ଺ߚ +

଻ ൫݉݁ܽ݊(ܴ)൯ߚ +  + ൯(ܴ)݀ݐݏ൫ ଼ߚ  ൯(ܴ)ݔܽܯଽ ൫ߚ + ൯(ܴ)݊݅ܯଵ଴ ൫ߚ +  + ଵଵ (ܴଵ)ߚ  +  ଵଶ (଼ܴ)  (6) 735ߚ 

where ߚ଴ is a bias term, ߚଵ reflects the influence of evidence mean of the left samples, ߚଶ reflects the 736 
influence of evidence variability of the left samples, ߚଷ reflects the influence of the maximum left 737 
sample, ߚସ reflects the influence of the minimum left sample, ߚହ reflects the influence of the first left 738 
sample, ߚ଺ reflects the influence of the last left sample. ߚ଻ to ߚଵଶ reflect the same attributes for 739 
samples on the right side of the screen. Due to strong correlations among evidence standard 740 
deviation, maximum, and minimum, the regression model without  ߚଶ and ଼ߚ is used to evaluate the 741 
contribution of regressors other than evidence mean and standard deviation to the decision making 742 
process (FigSupp 2e,h, Supp 3b, Supp 4b, Supp 5b, Supp 6d,i). 743 

The goodness-of-fit of various regression models with combinations of the predictors in the full model 744 
(equation 6) were compared using a 10-fold cross-validation procedure (Supplementary Tables 1-4). 745 
Trials were initially divided into 10 groups. Data from 9 of the groups was used to train each 746 
regression model and calculate regression coefficients. The likelihood of the subjects’ choices in the 747 
left-out group (testing group), given the regression coefficients, could then be determined. The log-748 
likelihood was then summed across these left-out trials. This process was repeated so that each of 749 
the 10 groups acted as the testing group. The whole cross-validation procedure was performed 100 750 
times, and the average log-likelihood values were taken.   751 

To initially explore the time course of drug effects on decision-making, we plotted choice accuracy 752 
(combined across ‘Regular’, ‘Half-Half’ and ‘Narrow-Broad’ trials) relative to drug administration 753 
(Fig8a). Trials were binned relative to the time of injection. Within each session, choice accuracy was 754 
estimated at every minute, using a 6-minute window around the bin centre. Accuracy was then 755 
averaged across sessions. To further probe the influence of drug administration on decision-making, 756 
we defined an analysis window based upon the time course of behavioural effects. All trials before the 757 
time of injection were classified as ‘pre-drug’. All trials beginning 5-30 minutes after injection were 758 
defined as ‘on-drug’ trials. These trials were then analysed using the same methods as described for 759 
the Standard sessions.    760 

To quantify the effect of ketamine administration on the PVB index (Fig 8f, FigSupp 6c,h), we 761 
performed a permutation test. Trials collected during ketamine administration were compared with 762 
those collected during saline administration. The test statistic was calculated as the difference 763 
between the PVB index in ketamine and saline conditions. For each permutation, trials from the two 764 
sets of data were pooled together, before two shuffled sets with the same number of trials as the 765 
original ketamine and saline data were extracted. Next, the PVB index was computed in each 766 
permuted set, and the difference between the two PVB indices calculated. The difference measure for 767 
each permutation was used to build a null distribution with 1000000 entries. The difference measure 768 
from the true data was compared with the null distribution to calculate a p-value.  769 

Spiking Circuit Model 770 
 771 
A biophysically-based spiking circuit model was used to replicate decision making dynamics in a local 772 
association cortical microcircuit. The model was based on21, but with minor modifications from a 773 
previous study34. The current model had one extra change in the input representation of the stimulus, 774 
described in detail below. 775 

The circuit model consisted of ாܰ = 1600 excitatory pyramidal neurons and ூܰ = 400 inhibitory 776 
interneurons, all simulated as leaky integrate-and-fire neurons. All neurons were recurrently 777 
connected to each other, with NMDA and AMPA conductances mediating excitatory connections, and 778 
GABAA conductances mediating inhibitory connections. All neurons also received background inputs, 779 
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while selective groups of excitatory neurons (see below) received stimulus inputs. Both background 780 
and stimulus inputs were mediated by AMPA conductances with Poisson spike trains.  781 

Within the population of excitatory neurons were two non-overlapping groups of size ாܰ,ீ = 240. 782 
Neurons within the two groups received separate inputs reflecting the left and right stimuli streams. 783 
Neurons in the same group preferentially connected to each other (with a multiplicative factor ݓା > 1 784 
to the connection strength), allowing integration of the stimulus input. The connection strength to any 785 
other excitatory neurons was reduced by a factor ିݓ < 1 in a manner which preserved the total 786 
connection strength. Due to lateral inhibition mediated by interneurons, excitatory neurons in the two 787 
different groups competed with each other. Inhibitory neurons, as well as excitatory neurons not in the 788 
two groups, were insensitive to the presented stimuli and were non-selective toward either choices or 789 
the respective neuron groups. 790 

Momentary stimuli bar evidences were modelled as Poisson inputs (from an upstream sensory area) 791 
to the two groups of excitatory neurons (Fig5a). The mean rate of Poisson input for any group, 792 ,ߤ 
linearly scaled with the corresponding stimulus evidence: 793 ߤ = ଴ߤ + ᇱ(ℎߤ − 50)     (7) 794 

where ℎ ∈ ሾ0,100ሿ represented the momentary stimulus evidence, equal to the bar height in 795 
ChooseHigh trials, and 100 minus bar height in ChooseLow trials. ߤ଴ =  was the input strength 796 ݖܪ30
when ℎ = 50, and ߤᇱ =  For simplicity, we assumed each bar stimulus lasted 250ms, rather than 797 .ݖܪ1
200ms with a subsequent 50ms inter-stimuli interval as in the experiment.  798 

The circuit model simulation outputs spike data for the two excitatory populations, which are then 799 
converted to population activity smoothened with a 0.001s time-step via a casual exponential filter. In 800 
particular, for each spike of a given neuron, the histogram-bins corresponding to times before that 801 
spike receives no weight, while the histogram-bins corresponding to times after the spike receives a 802 

weight of 
ଵதfilter exp ቀ ି୼௧ఛfilterቁ, where Δݐ is the time of the histogram-bin after the spike, and ߬filter=20ms. 803 

From the population activity of the two excitatory populations, a choice is selected 2s after stimulus 804 
offset, based on the population with higher activity. Stimulus inputs in general drive categorical, 805 
winner-take-all competitions such that the winning population will ramp up its activity until a high 806 
attractor state (>30Hz, in comparison to approximately 1.5Hz baseline firing rate), while suppressing 807 
the activity of the other population below baseline via lateral inhibition (Fig5b). It is also possible that 808 
neither population reaches the high-activity state. Both populations, remaining at the spontaneous 809 
state, will have similarly low activities, such that the decision readout is random.  810 

In addition to the control model, three perturbed spiking circuit models were considered25,34: lowered 811 
E/I balance, elevated E/I balance, and sensory deficit. E/I perturbations were implemented through 812 
hypofunction of NDMARs (Fig7a), as this is a leading hypothesis in the pathophysiology of 813 
schizophrenia4,5,10. NMDA-R antagonists such as ketamine also provide a leading pharmacological 814 
model of schizophrenia7,11. NMDA-R hypofunction on excitatory neurons (reduced ܩா→ா) resulted in 815 
lowered E/I ratio, whereas NMDA-R hypofunction on interneurons (reduced ܩா→ூ) resulted in elevated 816 
E/I ratio due to disinhibition34. Sensory deficit was implemented as weakened scaling of external 817 
inputs to stimuli evidence, resulting in reduced ߤ′. For the exact parameters, the lowered E/I model 818 
reduced ܩா→ா by 1.75%, the elevated E/I model reduced ܩா→ூ by 3.5%, and the sensory deficit model 819 
had ߤ′ =  820 .ݖܪ0.74

Each of the four circuit models completed 94,000 ‘Regular’ trials, where both streams are narrow in 821 
25% of the trials, both streams are broad in 25% of the trials, and one stream is narrow and one is 822 
broad in 50% of the trials. All trials were generated identically as in standard session experiments. 823 
The control model also completed 47,000 standard session Narrow-Broad trials. The same 824 
permutation test described earlier for comparing PVB index between ketamine and saline conditions 825 
was also used to quantify whether various perturbed circuit models have different PVB indices relative 826 
to the control model (Fig 7h).  827 

 828 
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Mean Field Model 829 
 830 
The current spiking circuit model was mathematically reduced to a mean-field model, as outlined in62, 831 
in the same manner as from21 to22. The mean-field model consisted of two variables, namely the 832 
NMDA-R gating variables of the two groups of excitatory neurons, which represented the integrated 833 
evidence for the two choices. Using phase-plane analysis, the mean-field model provided an intuitive 834 
explanation for the pro-variance bias (see Fig6).  835 

The mean-field model completed 94,000 standard session ‘Regular’ trials, in the same manner as the 836 
circuit models.  837 

Code and Data Availability 838 

 839 

Stimuli generation and data analysis for the experiment were performed in MATLAB. The spiking 840 
circuit model was implemented using the Python-based Brian2 neural simulator63, with a simulations 841 
time step of 0.02ms. Further analyses for both experimental and model data were completed using 842 
custom-written Python and MATLAB codes. All codes are available from the authors upon reasonable 843 
request.    844 
 845 

  846 
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Supplementary Figures 1012 

  1013 

Supplementary Figure 1. Extra Information on Narrow-Broad Trials: (A) The generating process of the narrow-correct 1014 
trials, for each narrow (brown) and broad (blue) stimuli sample. A full stream sequentially presents 8 such stimuli, each for 1015 
200ms with a 50ms inter-sample interval in between. In each trial where the narrow choice is correct, the generating mean of 1016 
the narrow stream,ߤே, is uniformly sampled from [48,60]. The generating mean of the broad stream, ߤ஻, is then set to be ߤே −1017 8. For all trials, the generating standard deviation of the narrow and broad streams are ߪே = ஻ߪ ,12 = 24 respectively. The lines 1018 
above the distributions denote the ranges of ߤே and ߤ஻. The particular values of ߤே and ߤ஻ in this figure are shown for one trial, 1019 
and chosen arbitrarily for illustration purpose. Given the generating means and standard deviations in a trial, a sequence of 8 1020 
stimuli samples are generated from a Gaussian process with certain constraints, for each of the narrow and broad options (See 1021 
Methods). (B) Sampled distribution of the mean evidence of the narrow and broad streams, across all trials for both monkeys 1022 
where the narrow option is correct. (C, D) Same as (A, B) but for broad-correct trials. Here, ߤ஻ is uniformly sampled from 1023 
[48,60], and ߤே is set to be ߤ஻ − 8. (E, F) Same as (A, B) but for ambiguous trials. Here, ߤேand ߤ஻ are equal and uniformly 1024 
sampled from [44, 56]. (G) The accuracy of Monkey A in the narrow-correct and broad-correct trials. Monkey A was significantly 1025 
more accurate on ‘Broad-correct’ trials (Chi-squared test, chi = 38.39, p = 5.80x10-10). Errorbars show the standard error. (H) 1026 
The probability for Monkey A to choose the broad option in ambiguous trials. Monkey A was significantly more likely to choose 1027 
the broad option (Binomial test, p < 1x10-10). (I) Same as (G) but for Monkey H (Chi-squared test, chi = 59.46, p < 1x10-10). (J) 1028 
Same as (H) but for Monkey H (Binomial test, p = 3.00x10-6). 1029 
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 1032 

Supplementary Figure 2. Extra information on Regular Trials: In the regular-trials, each of the two streams is randomly 1033 
chosen to be either narrow (ߤே ∈ ሾ47,53ሿ, ேߪ = 12), or broad (ߤ஻ ∈ ሾ44,56ሿ, ஻ߪ = 24), then divided into ‘Lower SD’ or ‘Higher SD’ 1034 
options post-hoc, depending on the sampled standard deviation of evidence relative to the other option. (A) The distribution of 1035 
the mean evidence of ‘Lower SD’ and ‘Higher SD’ streams, across all regular trials for both monkeys. (B) The distribution of the 1036 
evidence variability of ‘Lower SD’ and ‘Higher SD’ streams, across all regular trials for both monkeys. (C) The psychometric 1037 
function of Monkey A when either the ‘Lower SD’ (brown) or ‘Higher SD’ (blue) stream is correct. (D) A regression model using 1038 
evidence mean and variability to predict the animals’ choices. Each regressor is the left-right difference of the mean and 1039 
standard deviation of the evidence streams. This shows that both statistics are utilised by Monkey A to solve the task (Mean 1040 
Evidence: t = 45.90, p < 10-10; Evidence Standard Deviation: t = 16.68, p < 10-10). (E) A regression model including the mean, 1041 
maximum, minimum, first, and last evidence values of both the left and right streams as regressors, in order to evaluate the 1042 
contribution of each quantity and the possibility that the monkey is utilising strategies alternative to evidence integration and 1043 
pro-variance bias. Evidently, Monkey A mainly relies on temporal integration to solve the task, as indicated by a strong mean 1044 
evidence coefficient in both regression models. See also Supplementary Tables 1-3 for cross-validation analysis comparing 1045 
regression models including various combinations of these predictors. (F-H) Same as (C-E) but for Monkey H. The statistics of 1046 
the regression model in (G) are (Mean Evidence: t = 58.88, p < 10-10; Evidence Standard Deviation: t = 12.08, p < 10-10). 1047 
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  1059 

Supplementary Figure 3: Extended regression results on the circuit model performance: (A) Circuit model schematic. 1060 
The model consists of two excitatory populations which receive separate inputs, reflecting evidence for the two stimuli streams. 1061 
Each population integrates evidence due to recurrent excitation, and competes with the other due to lateral inhibition. (B) 1062 
Regression analysis of the regular trial circuit model data, using the mean, maximum, minimum, first, and last evidence values 1063 
of both the left and right streams, in order to evaluate the possibility of decision-making strategies alternative to evidence 1064 
integration and pro-variance bias. Similar to the monkeys, the circuit model mainly relies on mean evidence to solve the task. 1065 
See also Supplementary Tables 1-3 for cross-validation analysis comparing regression models including various 1066 
combinations of these predictors. 1067 
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 1069 

Supplementary Figure 4: Extended regression results on the mean-field model performance: (A) The mean-field model 1070 
consists of two variables which represent the accumulated evidence for the two choice options. The two variables demonstrate 1071 
self-excitation and mutual inhibition. (B) Regression model on the regular trial model data, using the mean, maximum, 1072 
minimum, first, and last evidence values of both the left and right streams, in order to evaluate the possibility of decision-making 1073 
strategies alternative to evidence integration and pro-variance bias. Similar to the monkeys, the model mainly relies on mean 1074 
evidence to solve the task. 1075 
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 1077 

Supplementary Figure 5: Extra information on Model excitation-inhibition (E/I) perturbations not influencing decision-1078 
making strategy: (A) Model perturbation schematic. Three potential perturbations are considered: lowered E/I (via NMDA-R 1079 
hypofunction on excitatory pyramidal neurons), elevated E/I (via NMDA-R hypofunction on inhibitory interneurons), or sensory 1080 
deficit (as weakened scaling of external inputs to stimuli evidence). (B) The regression model using mean, maximum, minimum, 1081 
first, and last evidence values of each of the left and right streams as regressors, for the four models. Each bar shows the 1082 
average of the left and right regressors of the corresponding variable. None of the perturbed models demonstrate a significant 1083 
shift in decision-making strategies. The elevated E/I circuit has a larger first evidence regression coefficient, due to over-1084 
emphasis of early stimuli (Fig7i). 1085 
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 1086 

Supplementary Figure 6: Extra information on ketamine experiments: (A) Mean percentage of correct choices across 1087 
sessions made by Monkey A relative to the injection of ketamine (red) or saline (blue). (B) The psychometric function of 1088 
Monkey A when either the ‘Lower SD’ or ‘Higher SD’ streams are correct with saline (left) or ketamine (right) injection. (C) 1089 
Ketamine injection impairs the behaviour of Monkey A, in a manner consistent with the prediction of the lowered E/I circuit 1090 
model. Dashed lines indicate pre-injection values in each plot. (Left) The regression coefficient for mean evidence, under 1091 
injection of saline or ketamine. Ketamine significantly reduces the coefficient (permutation test p < 1x10-6), reflecting a drop in 1092 
choice accuracy. (Middle) The regression coefficient for evidence standard deviation, under injection of saline or ketamine. 1093 
Ketamine significantly reduces the coefficient (permutation test p = 4.98x10-3), but to a lesser extent than that of the mean 1094 
evidence regression coefficient. (Right) Ketamine increases the PVB index (permutation test p = 1.16x10-3), consistent with the 1095 
model prediction of the lowered E/I circuit. (D) The regression model using mean, maximum, minimum, first, and last evidence 1096 
values of each of the left and right streams as regressors, under injection of saline or ketamine. Each bar shows the average of 1097 
the left and right regressors of the corresponding variable. Ketamine injection does not alter decision-making strategies. (E) 1098 
The regression weights of stimuli at different time-steps, for Monkey A with saline or ketamine injection. Ketamine injection 1099 
lowers and flattens the curve of temporal weights, consistent with the lowered E/I circuit model. (F-J) Same as (A-E) but for 1100 
Monkey H. (E) Ketamine significantly reduces the regression coefficient for mean evidence (permutation test p < 1x10-6), does 1101 
not significantly reduce the regression coefficient for evidence standard deviation (permutation test p =0.871), and significantly 1102 
increases the PVB index (permutation test p = 5.92x10-3). 1103 
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Supplementary Tables  1104 

 1105 

 Mean First & Last SD Max & Min 
Monkey A 990 66.8 15.1 -1.33 
Monkey H 1270 61.0 6.82 5.38 
Circuit Model 6170 1860 96.9 42.5 
 1106 
Supplementary Table 1: Difference in log-likelihood of Full regression model (mean, SD, max, min, first, last of evidence 1107 
values; equation 6 in Methods) vs reduced model, for each monkey and the circuit model. Log-likelihood values were 1108 
calculated using a cross-validation procedure (see Methods). Column label refers to the removed regressor. Positive values 1109 
indicate the full regression model performs better. Values depend on the number of completed trials, which differed both 1110 
between subjects and the circuit model. For both monkeys and the circuit model, mean evidence is clearly the most important 1111 
driver of choice behaviour, followed by first and last evidence samples which reflects the primacy bias. Finally, evidence 1112 
standard deviation (SD) has a stronger effect than maximum and minimum evidence samples (Max & Min). 1113 

 1114 

 Mean Mean & First & Last 
Monkey A 15.2 16.4 
Monkey H 1.81 1.44 
Circuit Model 54.5 56.7 
 1115 
Supplementary Table 2: Difference in log-likelihood of regression models including either evidence standard deviation (SD) or 1116 
both maximum and minimum evidence (Max & Min) as regressors, for each monkey and the circuit model. Log-likelihood 1117 
values were calculated using a cross-validation procedure (see Methods). Column label refers to the regressors additional to 1118 
either SD or Max & Min. Positive values indicate the regression model with SD performs better than that with Max & Min. 1119 
Values depend on the number of completed trials, which differed both between subjects and the circuit model.  Regardless of 1120 
whether first and last evidence sample regressors are included, the models with standard deviation of evidence have higher 1121 
log-likelihoods than the models with maximum and minimum evidence samples, indicating a better explanation of the data by 1122 
standard deviation than by maximum and minimum evidence samples. 1123 

 1124 

 Mean Mean, First, & Last Mean, Max, & Min Mean, Max, Min, 
First, & Last 

Monkey A 189 200 15.3 15.1 
Monkey H 74.8 75.5 5.84 6.82 
Circuit Model 1000 1070 97.1 96.9 
 1125 
Supplementary Table 3: Increase in log-likelihood of various regression models (regressors in column labels) due to inclusion 1126 
of evidence standard deviation as a regressor, for each monkey and the circuit model. Log-likelihood values were calculated 1127 
using a cross-validation procedure (see Methods). Values depend on the number of completed trials, which differed both 1128 
between subjects and the circuit model.  Positive values across the table indicates the evidence standard deviation regressor 1129 
robustly improves model performance for all models examined. 1130 

 1131 

 Mean Mean & First & Last 
Monkey A Saline 4.93 4.80 
Monkey A Ketamine 2.91 2.69 
Monkey H Saline 1.77 1.66 
Monkey H Ketamine 2.50 2.23 
 1132 

Supplementary Table 4: Difference in log-likelihood of regression models including either evidence standard deviation (SD) or 1133 
both maximum and minimum evidence (Max & Min) as regressors, for each monkey with saline or ketamine injection. Log-1134 
likelihood values were calculated using a cross-validation procedure (see Methods). Column label refers to the regressors 1135 
additional to either SD or Max & Min. Positive values indicate the regression model with SD performs better than that with Max 1136 
& Min. Values depend on the number of completed trials, which differed across conditions.  Regardless of whether first and last 1137 
evidence sample regressors are included, the models with standard deviation of evidence have higher log-likelihoods than the 1138 
models with maximum and minimum evidence samples, indicating a better explanation of the data by standard deviation than 1139 
by maximum and minimum evidence samples. In particular, under ketamine injection, monkeys did not switch their strategy to 1140 
primarily use maximum and minimum evidence samples (over standard deviation of evidence) to guide their choice.  1141 
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