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Abstract

Ageing is associated with the development of several chronic illnesses, including

cardiovascular diseases, diabetes and cancer. To understand the genetic compo-

nents driving cellular ageing in higher organisms, like ourselves, we study sim-

ple eukaryotic model systems which are more accessible and easier to manipulate

than higher eukaryotes. This is possible due to the remarkably conserved ageing

mechanisms that occurs between species. Here, we employ fission yeast one of the

simplest eukaryotic model organisms to study cellular ageing. In this work, we de-

coded the fission yeast deletion collection using our in-house developed pipeline,

developed an improved version of Bar-seq along with a custom-developed analysis

pipeline, determined a method for high-quality RNA extraction and RNA-seq from

long-term quiescent yeast cells, and finally, performed a high-throughput Bar-seq

screen to profile the chronological lifespan of our decoded strains. We describe bar-

code decoding of 94% of the gene deletions; validation of our Bar-seq developed

method; identification of ncRNAs as elements important for the cellular quiescence

maintenance; Bar-seq screening of the competitively grown decoded strains which

identified several long-lived and short-lived mutants following glucose-starvation

and cellular culture re-growth; and also, validation of the top hits using isogenic

cell cultures revealing eight novel gene deletions important for the early life main-

tenance, as well as ten novel gene deletion mutants with pro-ageing effects.

Overall, in addition to providing rich datasets, we describe several high-throughput

methods that can be used for future genome-wide studies, whereby the complemen-

tarity of genomics and transcriptomics can be coupled together to further advance

our understanding of the genetic factors underpinning cellular ageing in humans.



Impact Statement

This work describes new research methods and provides tools that can be used to

obtain high-quality data in a timely and cost-effective manner. Our characterisation

of the fission yeast deletion library strains is a valuable genetic resource allowing

for the high-throughput study of gene deletions to uncover their function. The data

obtained from using our developed tools has the potential to foster new research

projects and/or support future grant applications. The work derived from this thesis

is to be communicated internationally through a research publication as well as

through the local deposition of the thesis on the central public library.

The data obtained from our work helped us uncover new gene deletions that impact

yeast lifespan. Due to the translation potential from yeast to humans, our data has

clinical relevance and may facilitate therapeutic developments to promote healthy

ageing in humans. Because the gene deletions discovered from our work have been

shown to affect lifespan, the results are also relevant for public health and as sup-

porting material for policy making.

Finally, the work presented in this thesis can benefit not only individuals but entire

enterprises dedicated to the development of anti-ageing therapies in humans, thus

acting as a bridge fostering collaborations between academic and non-academic

institutions.
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Chapter 1

Introduction

1.1 Ageing: A general perspective
Ageing is a natural biological process which through its multi-factorial blueprint

leads to cellular and molecular damage accumulation over time, ultimately increas-

ing the risk of death (Gems and Partridge, 2013; Niccoli and Partridge, 2012).

Consequently, ageing is the main risk factor for developing many age-related ill-

nesses, including cardiovascular diseases, diabetes and cancer (Brooks and Mias,

2019; López-Otı́n et al., 2013). This intrinsic molecular clock intrigued humanity

for many decades, especially the scientific community, since this seemingly natural,

yet damaging process affects most living organisms including humans (Klass, 1983,

1977). To date several universal hallmarks of ageing have been described including,

altered intercellular communication, genomic instability, telomere attrition, epige-

netic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial

dysfunction, cellular senescence and stem cell exhaustion (López-Otı́n et al., 2013),

also depicted in (Figure 1.1). The expected rise in life expectancy throughout the

world (Oeppen and Vaupel, 2002) led to the extensive characterisation of some of

these ageing hallmarks (Barbosa et al., 2019; Rebelo-Marques et al., 2018). In

an effort to alleviate some of the expected socio-economic challenges posed by an

ever-increasing elderly population, ageing research laboratories devoted to devel-

oping therapeutics aimed at improving the life quality at old age are on the rise

(McCurry, 2015; Stratton, 2013).
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Figure 1.1: The nine hallmarks of ageing.
Summary of the current hallmarks of ageing; altered intercellular communication, genomic instabil-
ity, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mi-
tochondrial dysfunction, cellular senescence and stem cell exhaustion. Figure adapted from (López-
Otı́n et al., 2013).

Nevertheless, several studies using established laboratory model organisms, such

as yeast, nematodes, flies, mice and monkeys corroborated out current understand-

ing of ageing being plastic (Gems and Partridge, 2013; de Magalhães et al., 2012;

Fontana et al., 2010). The malleability of ageing allows for human interventions to

help promote healthy ageing. In fact, simple genetic interventions, such as gene

deletion/over-expression and environmental manipulations, including dietary re-

striction (DR) without malnutrition have shown to greatly influence both lifespan

and healthspan by delaying the onset of the age-associated pathologies, thus com-

pacting morbidity (Gems and Partridge, 2013; Fontana et al., 2010; Kenyon, 2010).

DR via the nutrient sensing pathway is one of the most studied mechanisms of

longevity, and highly conserved across a diverse range of species, including yeast,

worms, flies and mammals (Figure 1.2). Other than yeast which use the serine/thre-

onine kinases Tor, Sch9 and PKA to sense nutrients (Kaeberlein et al., 2005), nutri-

ent sensing via the Insulin Growth Factor (IGF)-1like receptor pathway is common



1.1. Ageing: A general perspective 22

to Caenorhabditis elegans (C. elegans), the fruit fly Drosophila melanogaster (D.

melanogaster), rodents and primates, collectively referred to as mammals (Fontana

et al., 2010). Target of Rapamycin (TOR), however, is universal across all of these

highly conserved nutrient sensing pathways, thus inhibition of TOR as a key reg-

ulator of longevity is a means for human intervention to promote healthy ageing

(Smith et al., 2016; Kenyon, 2010; Partridge, 2010). Pharmacological interventions

studies on yeast identified three TOR inhibiting drugs; resveratrol, rapamycin and

spermidine (Kaeberlein, 2010). The efficacy of these drugs toward improved lifes-

pan and healthspan has also been shown in mammalian systems (Madeo et al., 2018;

Bhullar and Hubbard, 2015; Neff et al., 2013). However, their beneficial effects in

humans remains elusive. Nonetheless, the use of yeasts as simple model organisms

to help uncover common drug targets that may one day work in humans should not

be dismissed but encouraged.

Figure 1.2: The conserved nutrient signaling pathway regulating longevity.
The nutrient signaling pathways known to promote longevity from yeast to mammals. Figure adapted
from (Fontana et al., 2010).
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1.2 A comparison of yeasts

Yeasts are single-celled eukaryotic fungi that grow either by budding or fission with-

out forming fruiting bodies (Buzzini et al., 2017). Yeasts can grow on a wide range

of carbon sources though glucose is their preferred source where cells grow by fer-

mentation (Malecki et al., 2016; Turcotte et al., 2010). Due to their ephemeral habi-

tat, yeasts can be found in rotten fruit, plant roots and exudates, nectar, sugar cane

etc (Jeffares, 2018; Buzzini et al., 2017). Generally, yeasts form symbiotic relation-

ships with their host but are equally capable of living on their own as well (Bähler

and Wood, 2006; Yanagida, 2002). To date there are over 500 known yeast species

that are grouped into two taxa: ascomycetes and basidiomycetes (Sipiczki, 2000).

Ascomycetes is by far the largest taxa encompassing, archaeascomycetes (fission

yeasts), hemiascomycetes (budding yeasts) and euascomycetes (filamentous yeasts)

(Forsburg and Rhind, 2006). Owed to their unique characteristics, yeasts can be

distinguished from other eukaryotes relatively easily. Fission yeasts, for example,

can be identified by several distinct features, such as closed mitosis, cell wall and

spore formation. The genomic diversity with classes of protoplast fusion (Sipiczki

et al., 1982), phenotypic features (Bridge and May, 1984), DNA re-association

and taxonomic characteristics (Martini, 1991) revealed three fission yeasts in to-

tal: Schizosaccharomyces pombe (S. pombe), Schizosaccharomyces japonicus (S.

japonicus) and Schizosaccharomyces octosporus (S. octosporus). However, S.

pombe is by far the most characterised fission yeast (Sipiczki, 2000).

In contrast to the budding yeast, Saccharomyces cerevisiae (S. cerevisiae) also

known as baker's yeast which was first introduced to science in the late 1800s (Duina

et al., 2014), S. pombe research began in the late 1940s (Fantes and Hoffman, 2016).

Their genome assembly distinguishes S. cerevisiae with approximately 6,000 genes

(Goffeau et al., 1996) and S. pombe with over 5,000 protein-coding genes (Wood

et al., 2002). Though despite the similarity in the number of genes, S. pombe di-

verged from budding yeast over 350 million years ago and shares more features with

higher eukaryotes than its counterpart (Hoffman et al., 2015). Moreover, compared

to S. cerevisiae which shows gene evolution and some degree of retained similarity
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to mammalian systems (Botstein et al., 1997), approximately 67% of the S. pombe

genes have human orthologs, thus S. pombe is a more advanced yeast model. In

addition, most of its molecular mechanisms resemble that of humans (Lock et al.,

2019; Wood et al., 2012), including, the mode of cell division and the regulation

of the cell cycle (Nurse, 1990), mRNA splicing machinery (Aravind et al., 2000),

RNA-interference proteins (Bühler et al., 2008), centromere proteins (Irelan et al.,

2001), mitochondria inheritance (Chiron et al., 2007) as well as stress response

pathways (Vivancos et al., 2006). Therefore, as an ageing model S. pombe not only

complements budding yeast research but provides unique insights into yeast cellular

ageing (Fruhmann et al., 2017).

1.3 Yeast: A model for human ageing
Much of our current understanding of ageing is owed to the contributions made from

laboratory studies using simple eukaryotic model organisms (Fontana et al., 2010).

While having distinct features, the age-associated mechanisms, pathways and dis-

eases are remarkably conserved across the animal kingdom (López-Otı́n et al., 2013;

Fontana et al., 2010; Kenyon, 2010; Tissenbaum and Guarente, 2002). For exam-

ple, yeasts are simple eukaryotic model organisms and due to their short lifespan,

typically of a few days, make an excellent model to study cellular ageing. Also, the

conserved gene function between yeast and humans enables for translation potential

from yeast ageing research to humans.

Yeasts are simple, yet powerful models, the genetic tractability of which contributed

to establishing the organism as a reliable ageing system (Zimmermann et al., 2018;

Janssens and Veenhoff, 2016; Longo et al., 2012; Roux et al., 2010; Kaeberlein

et al., 2007; Fabrizio and Longo, 2003; Longo and Finch, 2003). Ageing in yeast

can be performed either via replicative lifespan (RLS) studies, or chronological

lifespan (CLS) studies (Longo et al., 2012). While RLS is a measure of the num-

ber of cellular mitotic divisions, and thus a model for dividing cells (Longo et al.,

2012; Roux et al., 2010; Steinkraus et al., 2008; Barker and Walmsley, 1999), CLS

measures the viability of the non-dividing cells in the stationary phase once nu-
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trients have been depleted, and acts a post-mitotic model to study the ageing of

non-proliferating cells, such as fibroblasts (Longo et al., 2012; Fabrizio and Longo,

2003). Although until recently, the preferred yeast for ageing studies was S. cere-

visiae, S. pombe is fast emerging as a complementary and reliable system (Lin and

Austriaco, 2014; Roux et al., 2010, 2009, 2006). For example, due to the asymmet-

ric cell division RLS studies in S. cerevisiae have been well-established (Jo et al.,

2015; Wasko and Kaeberlein, 2014; Henderson and Gottschling, 2008). On the

other hand, RLS studies in organisms such as fission yeast due to symmetric divi-

sion (Longo et al., 2012) are more difficult to undertake. As a result, whether S.

pombe undergoes replicative ageing is currently a topic of controversy. While RLS

in fission yeast has been evidenced in the late 90s (Barker and Walmsley, 1999),

two recent studies concluded the lack of RLS in fission yeast (Spivey et al., 2016;

Nakaoka and Wakamoto, 2017), despite several publications showing that the two

S. pombe symmetrical daughter cells do age (Roux et al., 2010; Minois et al., 2006)

as a result of asymmetrical cytokinesis which leads to unequal partitioning of the

maternal damaged proteins (Erjavec et al., 2008). On the contrary, CLS studies

in S. pombe have always prevailed (Roux et al., 2009). The studies are typically

performed by growing the cell population cultures to the stationary phase and once

the cells have been depleted of nutrients, cell viability is measured using the stan-

dard colony forming units (CFUs) method (see Subsection 2.1.2). An example of

yeast cellular growth followed by chronological lifespan measurement is depicted

in (Figure 1.3).

The non-dividing stationary-phase model can be used to study two distinct cell-

cycle arrest states, both of which are involved in longevity, hence are important

and relevant to ageing research (Masuda et al., 2016; Yao, 2014; Aranda-Anzaldo,

2012; Yanagida, 2009; Su et al., 1996). One cell-cycle arrest state is the differ-

entiated G0-like state where cells, such as the fibroblasts resemble quiescence, a

state with minimal metabolic activity but retained proliferative ability (Roche et al.,

2017; Yao, 2014; Aranda-Anzaldo, 2012). The other cell-cycle arrest is the G2-

phase where cells age in a manner analogous to post-mitotic cells, including neu-
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Figure 1.3: Chronological lifespan in fission yeast.
During cellular growth (on the left) cells progress through the lag phase, exponential and stationary
phase. Chronological lifespan (on the right) measurements start once cellular growth ceases, con-
current with the cells being maintained in the stationary phase. Viability is measured from colony
forming units (CFUs) where the initial time point with 100% viability is the reference time point.
The viability of other time points is calculated as the relative difference to the reference time point.

rons (Aranda-Anzaldo, 2012) and quiescent stem cells (Roche et al., 2017). Both of

these states can be induced in a manner dependent on the environmental cues. For

example, the G0-like cell-cycle arrest can be induced by withdrawing the nitrogen

from the media (Yanagida, 2009; Su et al., 1996), while glucose removal from the

media triggers cellular arrest at the G2-phase of the cell-cycle (Masuda et al., 2016;

Aranda-Anzaldo, 2012).

However, in contrast to the glucose-starvation model where cells typically survive

for one week (Roux et al., 2006, 2009), quiescent cells can survive for several

months and the process is also reversible, as upon restoring the nitrogen level, the

cells revert from quiescence and re-enter the cell cycle (Marguerat et al., 2012;

Takeda et al., 2010; Yanagida, 2009; Mochida and Yanagida, 2005). Therefore, be-

yond simply being a well-established model organism, S. pombe also allows for a

plethora of ageing studies to be performed, providing a relatively inexpensive way

to study the interplay between genes and environment, and the effect on lifespan.
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1.3.1 S. pombe biology

The scientific history of fission yeast dates back to 1893 when the first strain was

isolated from the East African millet beer (Paul, 1893). Because of this, S. pombe

was commonly believed to have also originated from Africa though a recent study

found no evidence to support this (Jeffares, 2018). However, S. pombe taxonomy

is more clear as within the genus name ’Schizosaccharomyces’, ’Schizo...’ captures

the organism mode of division, ’...saccharomyces’ identifies it as a yeast and the

species name identifies the organism isolation origin as ’pombe’ translates into the

Swahili word for beer (Sipiczki, 2000).

Morphologically, the cells are cylindrical in shape, typically measuring between

3-4 µm in diameter and between 7-15 µm in length (Mitchison and Nurse, 1985).

Depending on the mating-type genes inherited from the mat cassette (Pc and Mc),

three mating cell types can be distinguished: h+, h- and h90 cells (Forsburg and

Rhind, 2006). Cells that carry both genes are known as homothallic (h90) cells,

whereas cells that carry only one gene type, either Pc or Mc, h+ and h- respec-

tively, are known as heterothallic cells (Nielsen, 2008; Forsburg and Rhind, 2006;

Mochida and Yanagida, 2005; Gómez and Forsburg, 2004). The cells can also be

distinguished by the DNA copy number (Forsburg and Rhind, 2006), where haploid

cells (e.g. one DNA copy) are more common than diploid cells (e.g. two DNA

copies) (Nielsen, 2008; Forsburg and Rhind, 2006).

Cellular division by binary fission which commonly occurs every 2-4 hours,

whereby the cells grow at the cell tips and split by medial fission to generate

two symmetrical daughter cells (Forsburg and Rhind, 2006; Mitchison and Nurse,

1985), can easily be influenced by the cell mating-type, media type and ploidy num-

ber. The life cycle and thus the mode of division of S. pombe can occur either by

mitosis or meiosis as shown in (Figure 1.4).
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Figure 1.4: S. pombe meiotic vs mitotic cycle.
Diploid or meiotic cells undergo sexual conjugation producing four spores. The spores germinate
forming new diploid cells that can re-enter and re-set the cycle. Haploid or mitotic cells grow in a
vegetative manner until growth ceases, re-setting the cycle. Figure adapted from (Forsburg, 2011a).

The mitotic cycle starts with haploid cells which grow vegetatively during the nor-

mal cell cycle phase until growth ceases causing the mitotic cycle to re-set (Piel and

Tran, 2009). In contrast, the meiotic cycle is triggered by nitrogen depletion in the

media, where in the presence of different mating cell types, diploid cells undergo

sexual differentiation by conjugation. Upon successful conjugation, a zygote is pro-

duced that splits into four genetically distinct spores, which in turn can sporulate,

hence re-setting the meiotic cycle (Hoffman et al., 2015; Nielsen, 2008; Forsburg

and Rhind, 2006).

1.3.2 S. pombe genome

Excluding the mitochondrial chromosome of 20 kilo bases (kb), the genome com-

prises of approximately 12.6 mega bases (Mb) compacted into three distinct chro-

mosomes (Wood et al., 2002; Lang et al., 1987; Smith et al., 1987) as shown in

(Figure 1.5).

Figure 1.5: S. pombe chromosomal architecture.
Figure adapted from (Mizuguchi et al., 2015).
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Genome assembly revealed 5,122 protein-coding genes, 1,522 non-coding RNAs,

short introns of around 100 bp, only present for 46% of the genes, an average gene

density of 1 gene for every 2,528 bp, and centromeric and telomeric sequence gaps

of 20 kb and 40-100 kb, respectively (Wood et al., 2012, 2002). In contrast to the

spontaneous mutation rates across the entire genome of 2.0×10-10 per site per gen-

eration, the spontaneous mutation rates of 1.7×10-10 per base in CpG rich-regions

are slightly lower (Behringer and Hall, 2016; Farlow et al., 2015). It emerged,

however, that the non-protein coding genes were biased for small insertions and

deletions, an observation concordant with S. pombe retained genetic variation pre-

viously described (Jeffares et al., 2015; Wood et al., 2002).

Accordingly, the genome has a minimal degree of gene redundancy where only

41% of the protein-coding genes show gene duplication (Kim et al., 2010; Wood

et al., 2002). Recent work applying the Markov model to analyse transposon inser-

tions across the non-coding/unannotated genome defined by UTRs, ncRNAs, and

nonessential coding regions showed that these regions incur depleted transposon in-

sertion, suggesting that approximately 91% of the non-encoding genome comprises

of functional elements (Grech et al., 2019). Retained gene function as a result of

little gene evolution led to over three-quarters of the protein-coding genes as non-

paralog genes, and roughly two-thirds of them have human orthologs (Lock et al.,

2019). As a result yeast chromosomal organisation, including large replication ori-

gins and conserved telomeric proteins (Wood et al., 2012, 2002) as well as a large

number of molecular mechanisms (Fruhmann et al., 2017) are highly resembled to

that of higher eukaryotes.
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1.4 Premise of the project

Although functional genomic techniques have been made available for a diverse

range of organisms, including gene deletion libraries in yeast (Giaever and Nis-

low, 2014), CRISPR-dCas9 in bacteria (Rousset et al., 2018) and RNA interference

(RNAi) libraries in worms, flies and mammals (Paddison et al., 2004), genome-

wide screen studies on longevity remain elusive. Of the few existing RNAi based

screens in C. elegans, D. melanogaster and mammals most focus on neural disease

(Buckingham et al., 2004; Paddison et al., 2004) with the exception for C. elegans

where a handful of longevity RNAi based genome-wide screens are available (Sinha

and Rae, 2016; E. Yanos et al., 2012; Lee et al., 2003). Notably, high-throughput

genome-wide longevity based screens in yeast are by far the most abundant, mainly

due to the emergence of the systematic non-essential gene deletion libraries, first

developed in S. cerevisiae (Giaever et al., 2002) and shortly followed in the fission

yeast, S. pombe (Kim et al., 2010). The availability of the gene deletion library

allowed for several functional genome-wide studies to be performed (Yang et al.,

2018; Garcı́a et al., 2016; Zhang et al., 2015; Li et al., 2014; Ucisik-Akkaya et al.,

2014; Li et al., 2013; Fang et al., 2012; Pan et al., 2012; Takeda et al., 2011; Calvo

et al., 2009; Deshpande et al., 2009; Kennedy et al., 2008). These, however, were

limited by performing solid media screens (Lie et al., 2018; Malecki et al., 2016;

Doi et al., 2015; Rallis et al., 2014, 2013), or culturing individual mutants in 96-well

plates (Sideri et al., 2015; Garay et al., 2014; Kim et al., 2014; Fabrizio et al., 2010;

Matecic et al., 2010; Powers et al., 2006).

However, this limitation was addressed by developing Bar-seq, an elegant method

which identifies individual mutants by the deep sequencing of their unique molec-

ular barcodes, herein referred to as uptag and dntag (Robinson et al., 2014; Smith

et al., 2009). Genome-wide Bar-seq screens in fission yeasts are limiting (Kim et al.,

2016; Robinson et al., 2014; Ucisik-Akkaya et al., 2014; Delneri, 2010; Han et al.,

2010) and deletion library screens for genes with pro-ageing effects are even more

lacking, as to date only one genome-wide Bar-seq screen in S. pombe exists (Sideri

et al., 2015). The bottleneck to performing Bar-seq despite several developed tools
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(Simpkins et al., 2019; Zhao et al., 2018; Lee et al., 2017; Mun et al., 2016) due

to specific experimental designs, is that currently no standard tool is available for

analysing Bar-seq data. Additionally, another layer of complexity is that the gene

deletion mutants must first be decoded prior to Bar-seq. Thus, to overcome these

limitations, in this work using insights from previously published work (Grech et al.,

2019; Sideri et al., 2015; Han et al., 2010; Smith et al., 2009) we develop methods to

first decode the mutant strains from the latest fission yeast deletion library collection

and validate our decoded strains by applying an improved version of Bar-seq.

Our developed method to decode the deletion library mirrored the previously pub-

lished method used to characterise the budding yeast library (Smith et al., 2009)

where other than customising our own linker sequences with insights from (Grech

et al., 2019) the steps remained roughly the same, including DNA shearing, adaptor

ligation, gDNA and barcode-specific amplification using custom-designed primers

and library amplification to add the Illumina adaptors required for sequencing. Our

improved version of Bar-seq builds onto the previously described method (Han

et al., 2010; Sideri et al., 2015). The changes were initially implemented in the

uptag and dntag primer specific sequences which we custom-developed to include

”ATCG” and ”GTCA” for the forward and reverse sequences as standard bases to

help identify the start/end of the reads, followed by part of the Illumina adaptor

sequence, four Ns added as unique molecular identifier sequences and the U1/U2

and D2/D1 sequences flanking the uptag and the dntag barcodes, respectively. Ad-

ditionally, we also optimised the first PCR reaction used to amplify the barcodes

to help reduce PCR amplification bias, followed by product purification and library

amplification to add the Illumina adaptors required for sequencing.
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Overall project aim

Our project aim was the development of high-throughput methods to enable

genome-wide screening of the fission yeast genome to delineate the genetic factors

underlying cellular ageing in yeast. Our main focus was on identifying novel genes

with pro-ageing effects.

Specific objectives

• Barcode decoding of the fission yeast deletion library strains;

• Develop an improved Bar-seq method, including a robust analysis pipeline;

• Develop and implement a method for RNA-seq from long-term quiescence

cells;

• High-throughput chronological lifespan screening of the decoded strains

grown competitively in a pool;

• Independent chronological lifespan validation of the top hits.



Chapter 2

Materials & Methods

2.1 General Techniques

2.1.1 Cell media & culture

Fission yeast cells grow in liquid or solid, and on both rich Yeast Extract + supple-

ments (YES) media and minimal media or Edinburgh Minimal Medium (EMM),

(Formedium, Norfolk, UK). While the YES media used consisted of 0.5% w/v yeast

extract, 3.0% w/v glucose, plus 225 mg/l adenine, histidine, leucine, uracil and ly-

sine hydrochloride as supplements, the EMM media used was composed of 14.7

mM potassium hydrogen phthallate, 15.5 mM Na2HPO4, 93.5 mM NH4Cl, 2% w/v

glucose, 20 ml/l salts, 1 ml/l vitamins and 0.1 ml/l minerals as recommended (Fors-

burg, 2011b). The heterothallic 972 h- strain was the wild-type (wt) used through-

out. Fresh cell colonies were obtained by thawing the required stock on ice and

transferring a small quantity of biomass onto a solid YES agar plate using a ster-

ile inoculation loop. The plate was then incubated at 32°C for 2 days and fresh

colonies were formed. Pre-cultures were prepared from fresh cell colonies and un-

less stated otherwise, grown overnight (o/n) at 32°C with shaking at 170 rotations

per minute (rpm). Pre-cultures were used to inoculate the main cultures at the re-

quired optical density (OD), typically 0.15-0.20 OD600nm using a spectrophotome-

ter (Fisher Scientific, Leicestershire, UK) following the manufacturer's instructions.

The biochrome absorbs the scattered light emitted by cells at a wavelength of ap-

proximately 600 nm, thus estimating cell density.
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2.1.2 Colony Forming Units (CFUs)

Colony Forming Units (CFUs) were used to estimate cell viability within a culture

population. CFUs were prepared from cultures that reached saturation density, the

point at which the first measurements were taken and where 100% viability was

assumed. Saturation density is typically attained 2 days post-inoculation and can

be detected as no further changes in the OD of the culture. CFUs were prepared by

serially diluting the cells collected as a function of time and plating the dilutions on

solid media. The plates containing an even lawn of cells were incubated at 32°C

until colonies appeared. The number of colonies was used as an indirect measure

of cell survival as depicted in (Figure 2.1).

Figure 2.1: CFUs assay.
Culture aliquots of 20 µl were serially diluted ten-fold in 80 µl fresh media (1). The dilutions were
chosen appropriately to obtain between 50-150 colonies per dilution. Serial dilutions were plated
in volumes of 50 µl onto solid plates containing 2 mm (diameter) sterile glass beads for an even cell
spreading and incubated at 32°C until colonies appeared (2). Colonies were counted to generate a
viability curve which was used to estimate cell survival within a culture population over time (3).

2.1.3 Sample collection & storage

Collected samples were treated similarly before being stored at -80°C. Briefly, the

samples were centrifuged (Eppendorf, centrifuge model 5810R) for 5 min at 3,000

rpm. Cell pellets were re-suspended in 1 ml ice-cold 1×PBS (137 mM NaCl, 2.7

mM KCl, 10 mM Na2HPO4, 1.8 mM K2PO4, pH 7.4) and transferred into 2 ml

Sarstedt microtubes (Nümbrecht, Germany). Cells were centrifuged again with cell

pellets stored at -80°C until required for further processing.

2.1.4 Genomic DNA extraction

Cell pellets were thawed on ice and processed for DNA extraction using the Mas-

terPure Yeast DNA Purification Kit (Cambio, Cambridge, UK) and following the
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manufacturer's instructions. Briefly, the pellets were re-suspended in 300 µl Ly-

sis buffer with 3-5 µl of 20 µg/µl RNase A (Sigma-Aldrich, Haverhill, UK). The

cells were mechanically lysed by beating with 0.5 mm (diameter) glass beads (BSP,

Stratech Scientific, Ely, UK) at 6.5 MS for 40 s (QUICK PREP) in a FastPrep-24

Instrument (MP Biomedicals, Leicester, UK). The lysis process was repeated twice

with 5 min ice incubation intervals. The samples were further incubated for 1 h at

65°C and 150 µl MPC Protein Precipitation Reagent was added before centrifuging

(Eppendorf, centrifuge model 5427R) the cells for 10 min at 13,000 rpm. The su-

pernatant was transferred into 1.5 ml Sarstedt microtubes (Nümbrecht, Germany)

and processed with 500 µl isopropanol (Sigma-Aldrich, Haverhill, UK), centrifuged

for another 10 min and washed with 70% ethanol (Sigma-Aldrich, Haverhill, UK).

DNA was re-suspended in nuclease-free water (Qiagen, Manchester, UK) and stored

at 4°C until required for further processing.

2.1.5 Genomic DNA quantification & purification

Genomic DNA (gDNA) was quantified with an Invitrogen Qubit Fluorometer (Ther-

moFisher Scientific, Rochford, UK) and purified using the QIAquick PCR purifica-

tion kit (Qiagen, Manchester, UK) following the manufacturer's instructions.

2.1.6 qRT-PCR

RNA was quantified using NanoDropTM (ThermoFisher, Rochford, UK) before

being processed for DNA digestion and RNA column clean-up with TURBOTM

DNase (Invitrogen, UK) and PureLink RNA Mini Kit (ambion, UK) following the

manufacturer's instructions. The samples were diluted and processed for cDNA

synthesis using the InvitrogenTM SuperScriptTM II Reverse Transcriptase (Invitro-

gen, UK) following the manufacturer's instructions. qPCR was set-up with 20 ng/µl

cDNA template and SYBRTM Green quantitative Real Time-PCR (qRT-PCR) Kit

(Sigma-Aldrich, UK) as per the manufacturer's instructions. Samples were made in

triplicate with the relevant primers and negative controls. qRT-PCR was run using

the QuantStudio 6 Flex Real-Time PCR System (ThermoFisher Scientific, UK).
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2.1.7 Gel electrophoresis

UltraPureTM agarose (InvitrogenTM, Rochford, UK) was used to prepare agarose

gels at the required concentrations by following the manufacturer's instructions.

Ethidium bromide (0.625 mg/ml) (ThermoFisher Scientific, Rochford, UK) drops

were added prior to the gel setting to allow for band visualisation. Before running

the samples on the gel, the samples were mixed with the loading buffer (BioLine,

London, UK) as 1/2× sample volume prior to being loaded into the wells with the

relevant Hyperladder I-V marker (Bioline, London, UK). The gel was run for 30-60

min at 80-120 volts (V) or until bands separated clearly. The expected product size

was observed against the pre-loaded marker using the MultiDoc-It imaging system

(UVP) under UV-light. Pictures of the gels were attained with a Canon camera

(model PC1305) inbuilt in the gel doc station.

2.1.8 BioAnalyzer

The BioAnalyzer instrument (2100 BioAnalyzer, Agilent, UK) was used to check

for the library size and quality. Samples were prepared and run on the BioAnalyzer

as per the manufacturer's instructions.

2.2 Protocols

2.2.1 Deletion library strains pool generation

Three library pools of the latest fission yeast deletion collection obtained from

Bioneer (http://www.bioneer.com/) were independently generated in both

auxotroph and prototroph background. The prototroph deletion library strains were

constructed from the auxotroph collection using the method described previously

(Malecki and Bähler, 2016; Sideri et al., 2015). Independent copies of the aux-

otroph and the prototroph deletion library pools were generated using the method

described in (Figure 2.2).

 http://www.bioneer.com/
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Figure 2.2: Deletion library strains pool preparation.
The deletion collection was thawed at room temperature (1) and arrayed onto new plates containing
solid YES media using an automated handling robot (2). The plates were incubated at 32°C for 2
days to allow the colonies to grow. The array procedure was repeated to transfer some biomass of
the grown colonies onto selective plates (3). The plates were incubated for 2 more days and washed
with liquid YES media to pool the cells together. The pooled cells were collected into a falcon tube
(4) and aliquots of 500 µl were prepared and stored at -80°C (5).

The deletion library collection was thawed at room temperature and compacted onto

9×PlusPlates (Singer Instruments, Watchet, UK) in a format of 384 colonies per

plate using the RoToR robot (Singer Instruments, Watchet, UK). The strains were

grown on YES plates for 2 days at 32°C. Colonies were re-arrayed onto selective

YES plates supplemented with kanamycin (0.1 mg/ml) and grown for another 2

days at 32°C. Except for an auxotroph pool where the strains were independently

pooled together from each plate (used for a better representation of the mutants

in the pool during the barcode strain decoding), all the pools were generated by

pooling together the strains from all the plates. Colonies were pooled together by

washing the plates with 2×1 ml liquid YES medium and collecting the cells into 15

ml Greiner Bio-OneTM falcon tube (CELLSTARTM, Gloucestershire, UK) to which

50% (v/v) glycerol stock was added to a final concentration of 20% (v/v). Aliquots

of 500 µl in 1.5 ml Sarstedt microtubes (Nümbrecht, Germany) were made and

stored at -80°C until required for later use.
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2.2.2 RNA isolation from quiescent cells

The new RNA extraction protocol adapted from (Chan et al., 2007) included cell

pellet re-suspension in 500 µl extraction buffer (0.25 M NaCl, 0.05 M Tris-HCl (pH

7.5), 20 mM EDTA, 1% (w/v) SDS and 1% (w/v) PVP), mechanical rupture of the

cell wall using a FastPrep-24 InstrumentTM (MP BiomedicalsTM, Leicester, UK),

phenol:chloroform isoamyl alcohol (1:1 v/v) (Sigma-Aldrich, UK) extraction, cold

70 % (v/v) ethanol (EtOH) precipitation followed by 10 mM lithium chloride (LiCl)

precipitation, and finally total RNA re-suspension in nuclease-free water (Qiagen,

Manchester, UK). These steps are also depicted in (Figure 2.3).

Figure 2.3: The new RNA isolation method.
Wild-type cells were cultured in 500 ml EMM-N media to saturation density where 2×50 ml samples
were collected (1). The pellets were re-suspended in 600 µl extraction buffer and transferred into 2
ml safe-screw tubes (Nümbrecht, Germany) containing 0.4 mm glass beads (BSP, Stratech Scientific,
UK) and 500 µl chloroform:isomyl (24:1) (Sigma-Aldrich, UK), (2). Cell wall rupture was performed
with a FastPrep-24TM (MP BiomedicalsTM, Leicester, UK) using the ”QUICKPREP” program as 6.0
MS for 20 s (3). Cell suspension underwent two successive 500 µl phenol:chlorophorm extractions
followed by one EtOH and one LiCl precipitation (4 & 5). Total RNA was re-suspended in nuclease-
free water and stored at 20°C until required for further processing (6).

2.2.3 Library preparation

2.2.3.1 Barcode decoding of the deletion library strains

The protocol to decode the mutant strain barcodes was built with insights obtained

from previously published work (Grech et al., 2019; Sideri et al., 2015; Han et al.,

2010; Smith et al., 2009). Though, the basis of the procedure remained roughly the

same, several changes were made. These changes included determining the sonica-

tion parameters required for the DNA shearing, ligating adaptors to the end-repaired

DNA fragments using custom linkers, amplification and library preparation using

custom primers designed to enrich for the uptag and the dntag barcodes separately.
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We also increased the complexity of the libraries and reduced PCR amplification

bias. The former was achieved by performing two independent PCR reactions per

plate and the latter was performed using 5 PCR amplification cycles as these were

optimal to obtain enough amplicons while in retrospect minimising the PCR am-

plification bias. The barcodes were amplified from 1-2 µg of template DNA. The

library preparation steps are summarised below and depicted in (Figure 2.4).

Figure 2.4: Characterisation library preparation.
Extracted DNA was sheared to approximately 400 bp (1). Adaptors were ligated to the end-repaired
DNA fragments containing the barcode tag construct (2). The barcode tags were enriched using
custom designed primers (3) and libraries were generated upon the addition of the Illumina primers
(4). The R1 and R2 reads were paired-end sequenced using a MiSeq sequencing instrument. Note,
while R2 contains gDNA required for alignment to the genome, R1 contains the amplified barcode.

Step 1: DNA extraction, purification & quantification

Pellets were removed from -80°C and thawed at room temperature prior to being

processed for DNA extraction using the method previously described (see Subsec-

tion 2.1.4). The extracted DNA was purified and quantified prior to being run on

1% agarose gel using the methods previously described (see Subsection 2.1.5 and

Subsection 2.1.7).

Step 2: DNA shearing

gDNA was diluted to approximately 25 ng/µl in 100 µl of nuclease-free water (Qi-

agen, Manchester, UK) in 1.5 ml Bioruptor® microtubes (ATG Scientific, Oxford,

UK) and sheared to an average size of 400 base pairs (bp) using the Diagenode
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Bioruptor® (ATG Scientific, Oxford, UK) as per the manufacturer's instructions.

Shearing consisted of 7 cycles with intermittent 30 s shearing and 30 s rest. The

sheared samples were diluted four-fold and then BioAnalyzed as previously de-

scribed (see Subsection 2.1.8).

Step 3: End repair & linker ligation

Sheared DNA samples were split to treat each barcode reaction independently. End-

repair was performed using the NEBNext® End Repair Module (NEB, Hitchin,

UK). Linker1 and linker2 (see Table 2.1) were ligated using the NEBNext® Quick

Ligation Module (NEB, Hitchin, UK). The NEBNext® modules were used as per

the manufacturer's instructions. Following end-repair and linker ligation, the DNA

was purified and quantified with Qubit as previously described (see Subsection

2.1.5).

Step 4: Barcode & genomic enrichment

The barcode tags were enriched with the Phusion® High-Fidelity DNA polymerase

(NEB, Hitchin, UK) using a primer complementary to linker1 (Linker1, Table 2.1)

and a primer complementary to U2 (Uptag-Reverse, Table 2.1) and D2 (Dntag-

Reverse, Table 2.1) for the uptag and the dntag barcode tags respectively. The

thermocycler parameters used were 15 cycles of 10 s at 98°C, 45 s at 65°C, and 30

s at 72°C. PCR products were purified and quantified with Qubit using the methods

previously described (see Subsection 2.1.5).

Table 2.1: The list of primers used for decoding the deletion strains.

Oligo Sequence

Linker1
5’- TTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNN
CAGGCTACTCCGCTTAAGGGAC -3’

Linker2 5- GTCCCTTAAGCGGAGTAGCCTG/3AmMO/ -3

Uptag-Reverse
5’- CACGACGCTCTTCCGATCTAGTANNNN
GGGGACGAGGCAAGCTAAGATATC -3’

Dntag-Reverse
5’- CACGACGCTCTTCCGATCTAGTANNNN
CGCCATCCAGTGTCGAAAAGTATC -3’

The primers were custom designed and included part of the Illumina adaptor sequence (red), con-
stant bases (blue), N’s acting as unique molecular identifiers (UMIs) (bold) and the corresponding
U2/D2, uptag and dntag sequences, respectively.
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Step 5: Library generation

The PCR products were diluted ten-fold and used as a template for the second PCR

during which Illumina adaptors were added using the NEBNext® Multiplex Oligos

Illumina dual index kit (NEB, Hitchin, UK). The thermocycler parameters used were

10 cycles of 10 s at 98°C, 45 s at 65°C and 30 s at 72°C. The products were dual size

selected using the AMPure® XP beads (Beckman Coulter, UK) as per the manufac-

turer's instructions. The dual size selection included 0.5× sample volume followed

by 0.7× sample volume to remove fragments larger than 700 bp and lower than 200

bp, respectively. The samples were quantified with Qubit, diluted accordingly and

run on the BioAnalyzer using the methods previously described (see Subsection

2.1.5 and Subsection 2.1.8).

Step 6: Sequencing

Libraries were multiplexed and sequenced on a MiSeq Illumina sequencing instru-

ment as 75 bp paired-end reads with 165 cycles generating 30 million reads. The

architecture of the reads is depicted in (Figure 2.5).

Figure 2.5: Barcode decoding reads structure.
R1 for both uptag and dntag barcode tags share the same architecture: [AGTA]-[NNNN]-[24 bp
primer]-[20 bp barcode]-[23 bp primer]. However, the primer sequence (blue) is uptag and dntag
barcode specific. The constant U1/U2 and D2/D1 sequences that surround the uptag and the dntag
barcode are used to independently amplify the barcodes. R2 architecture [NNNNNNNNNN]-[22 bp
primer]-[43 bp gDNA] is the same for both uptag and dntag barcodes. Note that the constant AGTA
sequence was inbuilt into the primer sequence to easily identify the starting read site with the ’Ns’
acting as UMIs.
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2.2.3.2 Colony PCR to check for mutant strain gene deletions

Barcode decoding of the deletion library strains revealed 178 mutants for which no

barcode tags were found to be associated to their gene deletions. To determine if

these genes were successfully deleted, we selected ten mutants at random to verify

their deletions. Mutants were selected as one strain from each plate except for the

last plate (e.g. plate nine) from which two mutants were selected as this plate corre-

sponded to the largest number of undecoded mutants. The mutants were manually

selected from solid YES agar plates and independent colony PCRs were performed

as depicted in (Figure 2.6).

Figure 2.6: Mutant gene deletion validation by colony PCR.
Primers specific for each gene were designed upstream (cp5) and downstream (cp3) of the UTR
regions. Each side of the gene deletion was amplified by combining the gene specific primers with
the KanMX4 primers: cp5 with CPN1, and cp3 with CPC3. Amplifications spanning the entire genes
were also performed using the cp5 and cp3 primers.

Colony PCR for all the genes was performed with the TopTaq DNA polymerase

(Qiagen, Manchester, UK) using 35 cycles of 30 s at 94°C, 30 s at 52°C and 2 min at

72°C. The products were purified using the QIAquick PCR purification kit (Qiagen,

Manchester, UK) before being run on 1% agarose gel. The PCR products obtained

with the gene-specific primers (cp5 and cp3) were prepared as recommended for the

Sanger Lightrun and sent for Sanger sequencing using the CPN1 and CPC3 primers

(Eurofins, Genomics, UK). The primers used to verify for each gene deletion are

shown in (Table 2.2).
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Table 2.2: The list of primers used to verify mutant gene deletions.

Gene Plate Primer

SPAC23C4.16c 1
cp5: 5’-CCACGCTATGATGCGTAACT-3’
cp3: 5’-GCTTAAATTTTTGGATTAGA-3’

SPBC146.09c 2
cp5: 5’-TATTTTCTGTCACCATTAGT-3’
cp3: 5’-ACAAGATGATATGCATTTCA-3’

SPCC188.13c 3
cp5: 5’-ATAATAATATGTATATGCAA-3’
cp3: 5’-TTTGAAACAAACCTGAACCT-3’

SPAC24B11.06c 4
cp5: 5’-AAGCAAACACCACAATCTGT-3’
cp3: 5’-ACAGATTAGCATTATAAACC-3’

SPBC1D7.04 5
cp5: 5’-GTTCAACATCGCTAAATATA-3’
cp3: 5’-ATATACTAACAAGAACTGGT-3’

SPBC14F5.12c 6
cp5: 5’-TATGGCATTCAAATTCTTTT-3’
cp3: 5’-ATTATTTTATCAATATATCT-3’

SPCC1393.03 7
cp5: 5’-AAGCGATTGTGCAACGTAAC-3’
cp3: 5’-CTCTGTGTTACACTTCCATG-3’

SPAC15E1.04 8
cp5: 5’-AATGAGTTTATAAAAGTTTC-3’
cp3: 5’-ACGTCGGCAGCATTATGAAG-3’

SPBC3H7.07c 9.1
cp5: 5’-AGTACTTGTTGTCGTTTAAC-3’
cp3: 5’-TGAATACCTCTGAATATATA-3’

SPAC4F10.05c 9.2
cp5: 5’-TAACCTTAATGTTATTTAAG-3’
cp3: 5’-GAAAGCCCGCAAATTTACTG-3’

CPN1: 5’-CGTCTGTGAGGGGAGCGTTT-3’
CPC3: 5’-GGCTGGCCTGTTGAACAAGTCTGGA-3’
The 5’ and 3’ gene specific primers are denoted as cp5 and cp3. The KanMX4 oligo sequences are
denoted as CPN1 and CPC3, respectively.

2.2.3.3 Bar-seq

Genomic DNA was extracted using the method previously described (see Subsec-

tion 2.1.4) and processed into DNA libraries. The library generation procedure is

detailed below and depicted in (Figure 2.7).

Step 1: DNA extraction, purification & quantification

Samples were processed using the DNA extraction protocol described previously

(see Subsection 2.1.4). The DNA was purified, quantified and run on 1% agarose

gel using the methods previously described (see Subsection 2.1.5 and Subsection

2.1.7).
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Figure 2.7: Bar-seq library preparation.
The uptag and the dntag barcode tags were amplified using custom primers with 5 PCR cycles to
reduce PCR bias (1). The products were purified, diluted ten-fold and used as a template for the
second PCR (2). The libraries were generated upon addition of the Illumina adaptors (purple and
blue blocks) using 10 PCR cycles (3).

Step 2: Barcode enrichment

The uptag and the dntag barcodes were enriched from 125 ng of gDNA with bar-

code specific primers (see Table 2.3) and using the Phusion® High-Fidelity DNA

polymerase (NEB, Hitchin, UK) following the manufacturer's instructions. The ther-

mocycler parameters used were 5 cycles of 10 s at 98°C, 30 s at 60°C, and 30 s at

72°C.

Table 2.3: Bar-seq primers.

Primer Sequence

Forward.uptag
5’- TTCAGACGTGTGCTCTTCCGATCTGTCANNNN
CGCTCCCGCCTTACTTCGCATTTAAA -3’

Reverse.uptag
5- CACGACGCTCTTCCGATCTAGTANNNN
GGGGACGAGGCAAGCTAAGATATC -3

Forward.dntag
5’- CACGACGCTCTTCCGATCTAGTANNNN
CGCCATCCAGTGTCGAAAAGTATC -3’

Reverse.dntag
5’- TTCAGACGTGTGCTCTTCCGATCTGTCANNNN
TTGCGTTGCGTAGGGGGGATTTAAA -3’

The primers were custom-designed and included part of the Illumina adaptor sequence (red), 4
constant bases (blue), 4 N’s acting as UMIs (bold) and the corresponding U1/U2 and D2/D1, for
the uptag and the dntag barcodes, respectively.

Step 3: Library generation

The products were purified and quantified using the method previously described

(see Subsection 2.1.5). These were used as a template (0.8-3 ng) for the second
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PCR where libraries were prepared with the Illumina NEBNext® Multiplex Oligos

kit (NEB, Hitchin, UK) using 10 cycles of 10 s at 98°C, 30 s at 65°C, and 30 s at

72°C. The products were size selected using 1.4× AMPure® XP beads (Beckman

Coulter, UK) to remove fragments less than 150 bp. Samples were quantified and

BioAnalyzed using the methods previously described (see Subsection 2.1.5 and

Subsection 2.1.8).

Step 4: Sequencing

Libraries were multiplexed and sequenced on a MiSeq Illumina instrument as

paired-end reads of 75 bp with 165 cycles generating approximately 20 million

reads. The reads architecture was designed to aid with the data analysis. R1 and

R2 read architecture [XXXX]-[NNNN]-[primer]-[barcode]-[primer] is the same for

both uptag and dntag barcodes. Within the read architecture ’XXXX’ refers to 4

constant bases (e.g. AGTA and GTCA) inbuilt into the primer sequence to easily

detect the start of the read and ’NNNN’ refers to 4 bases introduced as UMIs to

help remove PCR duplicates. However, while the primer sequences U1/U2 for up-

tag and D2/D1 for dntag are constant, the barcode sequences vary from mutant to

mutant. This similarity in read architecture allows for the full R1/R2 read overlap.

This overlap is similar for both barcodes. An example of a dntag read assembly is

provided in (Figure 2.8).

Figure 2.8: Bar-seq read assembly: a dntag example.
The 75 bp paired-end reads are assembled using the full R1 and R2 read overlap (1 & 2). Only the
fully assembled reads of 86 bp are used for further processing. (3).
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2.2.3.4 RNA-seq

Strand specific mRNA libraries were prepared using a custom version of the Illu-

mina TruSeq Small RNA Sample Prep Kit previously described (Atkinson et al.,

2018). The procedure is detailed below and depicted in (Figure 2.9).

Figure 2.9: RNA library preparation.
Flowchart depicting the mRNA sample library preparation steps. Sample electropherograms were
also included.

Step 1: Total RNA & rRNA depletion

The cDNA samples were rRNA depleted using the Ribo-Zero rRNA Removal Kit

(Illumina, UK) and purified using the yeast RNeasy MiniElute kit (QIAGEN, UK)

following the manufacturer's instructions.

Step 2: mRNA fragmentation

mRNA fragmentation was carried out using the NEB mRNA Fragmentation proto-

col (NEB, England, UK). Samples were purified using the RNeasy MiniElute kit

(QIAGEN, UK) following the manufacturer's instructions.

Step 3: Phosphatase treatment

The mRNA fragments were treated with Antarctic Phosphatase (NEB, England,

UK) following the manufacturer's instructions before purifying the samples with

the RNeasy MiniElute kit (QIAGEN, UK).
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Step 4: Ligation of the 5’ and 3’ adaptors

Universal RNA 3’ and 5’ adaptors were ligated to the mRNA fragments using the

NEB next kit (NEB, England, UK) and following the manufacturer's instructions.

The ligated fragments were purified using the RNeasy MiniElute kit (QIAGEN,

UK).

Step 5: RT-PCR & amplification

RT-PCR was carried out using the Truseq Small RNA Library Prep Kit (Illumina,

England, UK) with SuperScriptTM II Reverse Transcriptase (Invitrogen, UK) fol-

lowing the manufacturer's instructions. PCR amplification was carried out using 15

cycles of 10 s at 98°C, 30 s at 60°C and 15 s at 72°C.

Step 6: cDNA library purification & sequencing

The cDNA libraries were purified using the AMPure® XP beads (Beckman Coulter,

UK) following the manufacturer's instructions. The products were quantified with

Qubit and BioAnalyzed using the methods previously described (see Subsection

2.1.5 and Subsection 2.1.7). Libraries were sequenced using the MiSeq Illumina

instrument as paired-end reads of 75 bp with 165 cycles generating 28 million reads.
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2.3 Data Analysis

2.3.1 Barcode decoding of the deletion library strains

BarSeqTools, our custom analysis pipeline was developed to process the sequence

data. The pipeline works by first recognising and extracting the read barcodes and

then annotating the extracted barcode sequences to their corresponding genes by

matching them to the reference database. The procedure is depicted in (Figure

2.10).

Figure 2.10: Barcode decoding analysis overview.
R1 reads were processed to extract the uptag and dntag barcode sequences. The extracted barcode
sequences were added into the R2 header to link the gDNA to its corresponding barcode sequence
(1). gDNA was mapped to the reference genome (2). The uniquely mapped reads containing the
barcode sequences were assigned to highly confident gene-barcode pairs (3).

An overview of how the pipeline works is shown in (Figure 2.11). For a detailed

step by step explanation of the analysis (see Subsection A.1).
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Figure 2.11: Barcode decoding pipeline.
The corresponding uptag and the dntag paired-end fastq files were separately merged into one large
R1 and one large R2 fastq file (1). R1 containing barcodes were extracted with Barcount using the
constant U1/U2 and D2/D1, uptag and dntag flanks, respectively (2). R1 reads now containing only
the barcode sequences were used to filter the R2 reads while replacing the R2 header information
with the extracted barcode sequences (3 & 4). These genomic sequences were then extracted and
filtered against the U2/D2 primer sequences (5). gDNA was mapped to the reference genome and
only uniquely mapped reads were annotated to the S. pombe's protein-coding genes (6). Merging
of the annotated S. pombe genes to the version 5.0 genes, linked the gDNA to the deleted gene co-
ordinates (7). The barcode tag sequences were extracted from the R2 header using BarSeqTools
(8). Barcode-consensuses from the extracted barcode sequences were generated, matched to the
extracted barcode sequences and only barcodes with less than two bp sequence mismatches were
used for further analysis (9). The frequency occurrence for each unique gene-barcode pair was
quantified (10). Similarly, the proportion each gene was associated with a barcode within a unique
gene-barcode pair was calculated (11). This process was also repeated from a barcode perspective
(12). Combining the frequency occurrence threshold of 10 with the calculated gene and barcode
proportion of 80% each, generated our list of high-confidence gene-barcode pairs (13). The gene
browser was used not only to validate these gene-barcode pairs but to visualise the remaining un-
decoded genes and where possible curate them manually (14). Automatically and manually curated
genes were combined, thus constructing the list of barcode decoded mutant strains (15).
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2.3.2 Bar-seq strain fitness comparison to colony screen

The data was analysed using Barcount, our in-house developed tool, the workflow

of which is presented below in (Figure 2.12).

Figure 2.12: Barcount workflow.
Barcount runs with a reference database and a read file (1). Reads in the sequence file are loaded
using the BioPython SeqIO module. The user can specify the read file format which will be passed
onto the ’SeqIOs.parse’ function with the default being fastq file format. Barcount then checks if the
read-length is within the upper and lower limits set by the user (this does not necessarily have to
be used simultaneously). Barcode sequences are found using the U1/U2 and D2/D1 flank sequences
(the user should provide flanks long enough not to appear at random). The algorithm first searches
for exact matches in the flank sequence, then allowing one mismatch, followed by one insertion
and one deletion. If both flanks are found, the sequence in-between is extracted as the barcode
sequence and compared to the reference database. If the database contains the exact barcode, this
is immediately assigned to the gene that matches that barcode. Otherwise, the Levenshtein distance
of the extracted barcode to all database barcodes is computed. The best match is selected and the
corresponding gene is assigned only if the matching distance is within the user-defined cut-off. If
there is a tie between two database entries, no barcode is assigned. If the ’rmdup’ filter is set, a hash
of the sequence is computed using the function ’Bio.SeqUtils.CheckSum.seguid’ which is checked
against a cache of previously seen hashes. However, this can increase the run-time of Barcount
so if required it might be worth considering alternative tools for this step. Finally, the UMIs are
identified by position. If two UMIs are present (–umiA position and –umiB position set), they are
concatenated and checked against a cache of previously seen UMIs. The cache is specific to each
database entry which means the maximum signal per gene is at 4length(UMI) any number below this
shows significant saturation (2). The main output generated are the stats and the raw count files (3).
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Bar-seq sequence analysis with Barcount included the following steps. R1 and R2

read assembly with PEAR (https://sco.h-its.org/exelixis/web/

software/pear/doc.html). The assembled reads were then processed in-

dependently with Barcount since the flanking sequences to extract the barcodes

were based on the U1/U2 and D2/D1 sequences that surround the uptag and dntag

barcodes. Therefore, a reference table for each barcode tag exists. Essentially, the

reference tables are the decoded uptag and dntag deleted genes. The minimum

number of files that Barcount can produce are the count and the stats file. Though

individual files for the extracted barcodes, the barcodes matched and unmatched to

the reference can also be generated. However, the stats and the count files are the

most important files, as the counts file contains the counts per gene and the stats file

provides the user with information about Barcount performance. An overview of

the analysis is provided in (Figure 2.13).

Figure 2.13: Bar-seq analysis.
After performing read assembly with PEAR (1), Barcount processes the assembled reads by com-
paring the barcode sequences to the reference database (2). The reference database contains the
barcode decoded genes segregated into separate uptag and dntag tables. The output obtained from
Barcount includes details about which barcode from the sample matched to the reference along with
the counts per gene for that barcode (3). Note, the numbers in the table are arbitrary. The maximum
number of barcode sequence mismatches allowed was three: one insertion, one deletion and one
substitution.

https://sco.h-its.org/exelixis/web/software/pear/doc.html
https://sco.h-its.org/exelixis/web/software/pear/doc.html
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2.3.3 RNA-seq of cellular quiescent cells

RNA libraries were sequenced on the MiSeq Illumina instrument as paired-end

reads of 75 bp with 165 cycles generating approximately 56 million reads. The reads

were analysed using the public Galaxy server (https://usegalaxy.org/)

following the steps depicted in (Figure 2.14).

Figure 2.14: RNA-seq analysis.
Flowchart highlights the steps and the packages used for the RNA-seq data analysis.

2.3.4 Chronological ageing of competitively grown decoded

strains

Following read assembly with PEAR, Barcount analysed the reads as outlined in

the figure above. The stats and the count files were further processed with R

(version 3.5.0). Count data were normalised for the sequencing depth and sam-

ple correlation plots were produced using the cor() function in R with the fol-

lowing parameters, method=”pearson” and use=”complete.obs”. DESeq2 package

(version 1.20.0) the recommended package for Bar-seq data analysis was used to

perform differential gene expression (DGE) analysis (Love et al., 2014). DGE

was performed on all the replicate time points at day 1 and day 6 for long-lived

gene deletion mutants, and day 1 and day 3 for the short-lived gene deletion

https://usegalaxy.org/
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mutants. Gene Ontology (GO) (http://geneontology.org/) using An-

GeLi (www.bahlerlab.info/AnGeLi) was performed for functional using

’Biological Process’ as the GO-term and the decoded genes as the background

gene list. KEGG mapper (https://www.genome.jp/kegg/tool/map_

pathway2.html) was further used on the differentially expressed gene list to

identify the genes annotated to KEGG pathways.

2.3.5 Isogenic strain growth to validate CLS lifespan

In order to facilitate chronological lifespan studies at a larger scale, we have estab-

lished a novel high-throughput colony forming unit assay which is much less labour-

and resource-intensive than the traditional assay and can be largely automated us-

ing robotics. The method along with the analysis pipeline is due for publishing

(Townsend et al., manuscript in prep.). Briefly, CLS of selected long-lived and

short-lived Bar-seq gene deletion mutants were independently validated by grow-

ing the strains in isogenic cultures and comparing their lifespan to the lifespans ob-

tained from the competitive pool growth. The validated mutants criteria used was

based on the fold-change (FC) and p-adjusted value, plus the gene characterisation

status i.e. unstudied genes. Thus, using eight mutants per group, the following

gene groups were selected: Bar-seq top long-lived, Bar-seq unexplored long-lived,

Bar-seq unexplored short-lived, day 10 and day 12 long-lived, and controls. Be-

sides the wild-type (wt) control, three known long-lived mutant controls, git3, pyp1

and tco89 and two known short-lived controls sdh1 and coq5 were added for direct

lifespan comparisons.

Mutant candidates were manually selected from fresh prototrophic cell colonies

grown on YES plates, re-streaked onto new YES plates and grown at 32°C for

2 days. The grown colonies were then used to set individual pre-cultures grown

in parallel in 20 ml YES (3% glucose) o/n at 32°C and 170 rpm. The following

morning, individual cultures of 20 ml YES (3% glucose) at 0.002 OD600nm were

prepared from the corresponding pre-cultures and grown at 32°C and 170 rpm to

saturation density. Once cultures reached saturation, the first time point (e.g. day 0)

(http://geneontology.org/)
www.bahlerlab.info/AnGeLi
https://www.genome.jp/kegg/tool/map_pathway2.html)
https://www.genome.jp/kegg/tool/map_pathway2.html)
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was collected, where 100% cell viability is assumed. Thereafter, samples aliquots of

150 µl were collected every two days and transferred into 96-well plates to serially

dilute the cells using the ASSIST PLUS liquid handling robot (INTEGRA, UK).

The dilutions were spotted as quadruple technical replicates on YES plates in a

384 format using the RoToR HAD robot (Singer Instruments, UK). The plates were

incubated at 32°C. After sufficient time to allow for growth, patterns of colonies

appear on the plate, and the pattern is indicative of the number of viable cells in the

ageing culture, akin to the traditional spot assay. These plates were then stored at

4°C to obtain colonies from all the time points before analysing the data.

To provide quantitative estimates of culture viability, images of plates are acquired

and analysed using a custom analysis pipeline. For the general script used for the

CLS mutant validation analysis (see Appendix C). Briefly, we have developed a

statistical model which, given the number of viable cells in a culture, will be able

predict probable patterns of colonies: given that a three-fold serial dilution has been

performed, the number of viable cells will exponentially decline in each well, al-

tering the probability that colonies will be present or absent at each dilution factor.

Based on the concentration of cells per droplet (the volume of liquid transferred by

the pinning robot) in each dilution factor, the number of viable cells pinned will

follow a Poisson distribution. This distribution can be thresholded (0 or >1), giving

the probability that at least one viable cell was pinned i.e. does a colony grow or

not. Given that each dilution factor was pinned multiple instances, the number of

times a colony grows for each dilution factor will hence follow a binomial distri-

bution. This statistical model can then be used to perform a maximum likelihood

estimation of the number of viable cells in the ageing culture based on the pattern of

colonies generated by that sample and thus provide quantitative information on the

lifespan of ageing cultures. An example of the statistical analysis used to estimate

the number of viable cells for one gene deletion mutant (i.e. vms1) is shown in

(Figure 2.15). However, the same principle applies to all of the analysed mutants.
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Figure 2.15: Example of the maximum likelihood estimation of the number of viable
cells of a mutant

Maximum likelihood estimation plots. Figure A shows the likelihood function. Blue dashed lines
indicate the maximum likelihood, and red dashed lines show the bounds of the confidence interval
for the desired probability. Figure B shows the expected number of cells per droplet at each dilution
based on the maximum likelihood estimate. The shaded green area shows the expected informative
region - i.e. the region in which there is reasonably probability that some positions will contain a
colony and some will not. Figure C shows the pattern of observed colonies. The blue line indicates
the expected distribution based on the maximum likelihood estimate. Figure D shows the likelihoods
of observing each particular data point (i.e. the number of colonies observed at a particular dilution)
for the maximum likelihood estimate. The red dashed line show the tolerance. If there any data
points for which the probability of observing them is less than the tolerance, then it is assumed that
something has gone wrong. In this case, the most troublesome data point will be excluded, and the
maximum likelihood estimation will be performed again.
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2.4 Data Repository
Raw fastq files for each of the experiments described in this thesis, the decoding

of the deletion strains, Bar-seq, RNA-seq and chronological lifespan experiments

were deposited on the Lab’s sequencing repository. For more information or to gain

access to these files please contact the lab (www.bahlerlab.info/).

Raw count data for each of the experiment presented in this thesis can be found

on GitHub (https://github.com/Catalina37/Experiments_data).

A master file compiling all the CLS screen results, including the outcome of the

validated mutants was compiled and can also be found by accessing the link above.

Our developed Barcount and BarSeqTools packages have also been made

available on GitHub (https://github.com/Catalina37/Barcount_

BarSeqTools_Pipelines).

www.bahlerlab.info/
https://github.com/Catalina37/Experiments_data
https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines
https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines


Chapter 3

Barcode decoding of the deletion

library strains

3.0.1 Background

Gene deletions are powerful genetic constructs that enable the study of gene func-

tion. Although systematic non-essential gene deletions first emerged in S. cere-

visiae (Giaever and Nislow, 2014; Giaever et al., 2002), the fission yeast systematic

non-essential gene deletion collection followed shortly thereafter (Kim et al., 2010).

Since first developed, several versions of the fission yeast deletion library have been

constructed in both haploid and diploid backgrounds, where with each version it-

eration more gene deletions have been added to the collection. These different

versions, however, are commercially available and can be purchased from Bioneer

(http://www.bioneer.com/).

For our work, we used the latest library known as version v5.0 deletion collection

comprising of 3,420 systematic non-essential gene deletions. This mutant strain

collection represents two-thirds of the fission yeast protein-coding genes and ap-

proximately 47% of these genes have human orthologs (Lock et al., 2019). The

way this collection was constructed is analogous to the methods used to generate

the S. cerevisiae deletion library collection (Kim et al., 2010; Giaever et al., 2002).

In addition to the auxotrophies for the following marker genes; ade6-M210 or ade6-

M216, ura4-D18 and leu1-32, the methods included targeted mutagenesis and ho-

 http://www.bioneer.com/
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mologous recombination. The two techniques were used to integrate the cassette

construct containing a selection marker gene, two unique molecular barcodes, and

two homology arms into the open reading frame (ORFs) of the gene of interest as

shown in (Figure 3.1).

Figure 3.1: Cassette construct used to delete the non-essential genes.
Non-essential genes were deleted by replacing the ORFs with a cassette composed of an antibiotic
marker gene, kanamycin (KanMX4), constant U1/U2 and D2/D1 sequences that surround the uptag
and the dntag barcodes, and two homology arms containing sequences specific for each gene. The
construct was approximately 1 kb in length, where the KanMX4 was roughly 780 bp, the U1/U2
sequences 26 bp and 24 bp, the D2/D1 sequences 24 bp and 26 bp, and the uptag and the dntag
barcodes approximately 20 bp each. The figure was adapted from (Kim et al., 2010).

However, the majority of the genome-wide deletion library studies are limited to

solid media screens (Giaever and Nislow, 2014; Wagih et al., 2013; Deutschbauer

et al., 2002) where the identification of the strain uptag and dntag barcodes corre-

sponding to the deleted gene can only be determined from the strains’ position on

the plate. This therefore limits the use of the deletion library collection to growing

the mutant strains in 96-well plates, or on solid media, as liquid cultures by pool-

ing the mutants together is currently not possible unless one decides to decode the

mutant strains. Recent strain barcode decoding on an early version of the budding

yeast deletion collection revealed that up to 30% of the mutants digressed from

the original design (Smith et al., 2009; Eason et al., 2004), thus raising possible

contentions about solid media screens. To date, fission yeast barcode decoding was

performed on two earlier versions of the deletion collection (Sideri et al., 2015; Han

et al., 2010). Thus to our knowledge the latest deletion library strains have not yet

been decoded, or at least not made publicly available despite a recent publication

reporting error rates within the barcode sequences (Lee et al., 2018). Here we set

out to decode the latest fission yeast deletion library mutant strains collection using

our in-house developed tools (see Subsection 2.2.3.1).



59

3.0.2 Experimental design

Analysis of our earlier attempts to decode the deletion collection strains (data not

shown) led to the generation of independent pool of strains from each plate to al-

low for better strain representation during PCR amplification. For details about

pool generation (see Subsection 2.2.1). Gene barcode decoding was initiated with

auxotrophic strain pool aliquots representative of each plate being cultured compet-

itively prior to preparing the collected samples into DNA libraries as depicted in

(Figure 3.2).

Figure 3.2: Barcode decoding experimental set-up.
Mutant strain pool aliquots from each plate were thawed on ice and cultured in parallel in 250 ml
(YES 3% glucose) o/n at 25°C with no shaking (1 & 2). The next morning, 2×2 ml sample aliquots
per culture were collected (3) which were then prepared into libraries (4). Note, the schematic
diagram represents only the process for one pool culture but all nine culture pools representative of
the total plates containing the deletion library strains were processed in parallel and treated in the
same manner.

In total, 36 libraries (9plates× 2repeats× 2barcodes) were prepared using the

method previously described (see Subsection 2.2.3.1). Libraries were sequenced

on a MiSeq Illumina instrument as paired-end reads of 75 bp with 165 cycles gen-

erating approximately 30 million reads. Reads analysis was performed using our

custom-developed analysis pipeline previously described (see Appendix A.1). Se-

quencing read depth per sample and barcode is provided in (Table 3.1).
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Table 3.1: Barcode decoding sample names and sequencing depth per barcode.

Sample name Uptag sequencing depth Dntag sequencing depth
Plate 1.rep1 6.14 2.42

Plate 1.rep2 0.05 1.96
Plate 2.rep1 0.63 3.24

Plate 2.rep2 2.87 2.45
Plate 3.rep1 2.68 3.54

Plate 3.rep2 1.70 2.44
Plate 4.rep1 2.26 4.78

Plate 4.rep2 0.01 1.66
Plate 5.rep1 1.73 3.35

Plate 5.rep2 1.31 2.19
Plate 6.rep1 3.50 1.64

Plate 6.rep2 2.73 2.34
Plate 7.rep1 2.31 3.39

Plate 7.rep2 3.66 2.58
Plate 8.rep1 2.36 3.27

Plate 8.rep2 2.39 2.41
Plate 9.rep1 2.51 5.30

Plate 9.rep2 3.39 2.35
Sample name denotes the plate number (e.g. plate 1-9) and the two repeats (e.g. rep1 and rep2) per
plate. Sequencing depth per sample and barcode (e.g. uptag and dntag) is presented for both reads
as a percentage of the total reads (30,706,556) that have passed the quality filter.

3.0.3 Decoded barcodes show a strong correlation

In total, approximately 22% more dntag than uptag reads were found, suggesting

that the dntag barcodes were more efficiently amplified than the uptag barcodes (see

Table 3.1). However, the disparity in the total number of reads did not influence the

analysis, and in fact, the uptag reads seem to have out-performed the dntag reads in

all the subsequent steps of the analysis as shown in (Figure 3.3).
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Figure 3.3: Dntag samples show higher read loss than uptag samples.
Percentage read loss for the uptag and the dntag samples at each analysis stage, including the total
number of reads (Total), the percentage of reads from which a barcode was extracted (Barcode), the
percentage of reads which mapped uniquely to the reference genome (Mapped), and the percentage
of uniquely mapped reads which mapped to the S. pombe protein-coding genes (Annotated).

We found that a large proportion of the successfully mapped reads to the library

deletion genes were sub-optimal frequency annotations, described as unique gene-

barcode pairs with occurrences lower than ten as shown in (Figure 3.4). Further-

more, the exclusion of these sub-optimal gene-barcode pair frequencies from the

analysis resulted in unique gene-barcode pairs which were more likely to be gen-

uine gene-barcode mappings than annotations that occurred by chance alone.
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Figure 3.4: The exclusion of sub-optimal gene-barcode pairs frequency.
Unique gene-barcode pairs vs occurrence frequency revealed several gene-barcode pairs that were
too low to be considered as true mappings. These pairs were observed for both uptag and dntag
barcodes and were removed by setting the minimum frequency at ten.

To delineate which of these gene-barcode pairs were genuine mappings, and to

examine the strength between these unique interactions, we decided to calculate the

gene and barcode proportions between the pairs. For more details (see Appendix

A.1). Distribution of these gene and barcode proportions for both uptag and dntag

showed a distinct cluster of gene-barcode pairs. This allowed us to set a threshold

of 80% for each of these proportions, and by combining this with the minimum

gene-barcode pair frequency of ten, we were able to select high-confidence unique

gene-barcode pairs as shown in (Figure 3.5).
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Figure 3.5: Automatic high-confidence gene-barcode pairs selection.
Unique gene-barcode pairs were selected for both uptag (A) and dntag (B) by combining the gene
and the barcode proportions at 80% with the minimum gene-barcode pair frequency at ten. These
thresholds were selected to obtained strong interactions reflective of true mappings between the
gene-barcode pairs.
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The chances that the selected high-confidence gene-barcode pairs were erroneous

was highly unlikely, as the dual gene and barcode proportion of 80% each could

not be serendipitous. Therefore, we were confident that the selected pairs were gen-

uine interactions. We found that of these high-confidence gene-barcode pairs 2,791

genes and 2,890 genes were decoded with an uptag and a dntag respectively, the

counts of which were also found to correlate (R2=0.57, p-val= 2.2E-16) as shown

in (Figure 3.6).

Figure 3.6: Uptag and dntag barcode decoded genes show a strong correlation.
Uptag and dntag gene counts correlation of the high-confidence gene-barcode pairs, with R2=0.57
and p-value of 2.2E-16.

Furthermore, the genuine interaction of these high-confidence gene-barcode pairs

was confirmed by visualising the decoded genes using our custom-developed gene

browser. For more details (see Appendix A.1). In addition, the gene browser was

also used to visualise the remaining genes and where possible these were manually

decoded.



65

3.0.4 We successfully decoded 94% of the library gene deletions

From combining the manually and the automatically characterised genes, we were

able to decode 3,206 genes or 94% of the library strains in total. Of these, 3,011

genes were decoded with both barcodes, 96 were decoded with only the uptag bar-

code, and 99 were decoded with only the dntag barcode. The remaining 214 genes

were undecoded and comprised of 36 duplicate genes (e.g. genes that shared the

same barcode) and 178 no barcode genes (e.g. genes with no identifiable barcodes).

The characterisation of the deletion library is shown in (Figure 3.7).

Figure 3.7: Barcode decoding of 94% of the library gene deletions.
We successfully decoded 94% of library collection gene deletions. Of these, 88% were genes decoded
with both barcodes, 3% were genes decoded with either uptag or dntag and 6% of genes remained
undecoded. Library refers to the version 5.0 deletion genes.

We found that among the 36 duplicate genes eight were indeterminable as these

genes shared the same barcodes in equal proportions (see Figure A.3), thus we were

unable to determine which barcodes corresponded to which genes. A closer investi-

gation revealed that while four of these were telomeric genes (SPBPB10D8.05c,

SPBPB10D8.04c, SPBPB10D8.06c and SPBPB10D8.07c) residing on chromo-

some II, another set of four genes were identified as long terminal repeat (LTR)

genes (SPBC1348.01, SPAC750.06c, SPAC212.04c and SPBPB2B2.19c) with the
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former two residing on chromosome I and the latter two genes residing on chromo-

some II. Subsequently, these genes were found to be annotated as either ’telomeric’

or ’tandem duplication’ and as a result were not investigated further but led us to

treat these deletions with caution.

3.0.5 Not all verified mutants showed successful gene deletions

Intrigued by the fact that 178 genes representing 5% of the library gene deletions

remained undecoded, we decided to investigate further. Initially, we speculated that

perhaps these were low fitness genes which might have been under-represented in

the pool or perhaps the genes were telomeric or LTR genes. To our surprise, all of

these speculations were incorrect as we found no fitness correlation, neither for the

decoded nor for the undecoded genes as shown in (Figure 3.8).

Figure 3.8: Decoded and undecoded genes show no fitness correlation.
Fitness correlation for the decoded and the undecoded genes. Only genes for which fitness data
was available were plotted against all the fitness data genes (fitness). Gene fitness information was
obtained from the data previously described (Malecki et al., 2016).
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Similarly, no bias in the position of the undecoded genes along the chromosomes

was found as shown in (Figure 3.9).

Figure 3.9: Undecoded genes are neither telomeric nor LTR genes.
The chromosomal position of the undecoded genes shows no region bias around neither the telomeres
(dark grey) nor the centromeres (red).

Unsatisfied by these findings, we decided to examine whether there was a possible

bias between the decoded genes and the plate from which they originated. Since

this validation was easy to perform, we also checked the duplicate genes for the

same bias. To our surprise, we found that while up to 75% of the undecoded genes

originated from plate nine, there was no obvious bias observed for the duplicate

genes as shown in (Figure 3.10).
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Figure 3.10: Possible mutant position bias for the undecoded but not for the duplicate
genes.

The number of genes per plate for both duplicate and undecoded genes.

To further confirm whether the source of the mutants from different plates, espe-

cially plate nine influenced our ability to decode the strains, we constructed a new

pool containing all the undecoded genes, all the duplicate genes and the genes de-

coded with only one barcode. For details about pool generation (see Subsection

2.2.1). We noticed that during the manual selection of the mutants, the strains from

plate nine showed a modest biomass, suggesting that these were not low fitness

gene deletions and that our analysis was not biased against the characterisation of

the strains with origin from plate nine.

This was because despite modest sequencing depth (2.1 and 1.7 million for up-

tag and dntag reads respectively), we found that most of the reads mapped to

genes previously decoded with one barcode. The analysis revealed only 20 addi-

tional decoded genes and confirmed our previous findings of duplicate and unde-
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coded genes. Rather than questioning our analysis which was validated through

our second gene decoding attempt, we decided to focus on the deletion of the un-

decoded genes. Therefore, we verified the deletion of ten random strains repre-

senting genes from each plate. Because plate nine contained the most undecoded

genes, two genes instead of one were randomly selected. The other genes were

selected as one gene at random from each plate. Out of ten validated strains, we

confirmed the successful deletion of the strains with origin from plate 5, 6 and 7.

The strains with origin from plate 1, 8, 9.1 and 9.2 did not produce any primer

specific products suggesting unsuccessful deletions. Other than the plate 3 strain

which arguably produced a product using the gene specific primers and the cas-

sette primers, the strains with origin from plate 2 and 4 did not produce products

across the three amplifications described (Figure 3.11), hence rendering the strains

as inconclusive. These results were confirmed by Sanger sequencing using the

CPN1 and CPC3 primers, and the raw data with supplementary information can

be accessed here (https://github.com/Catalina37/Experiments_

data/tree/master/Bioneer_DeletionMutants_SangerSeq). The

extent of this finding was not investigated further but raised concerns about the

nature of these gene deletions.

Figure 3.11: PCR analysis of the validated deletion strains hints at tenuous deletions.
PCR products of the ten target genes checked for their deletion. The target genes were independently
amplified using the gene-specific UTR primers (A), 5’ UTR gene primer (cp5) combined with the 3’
cassette primer (CPN1) (B), and the 3’ UTR gene primer (cp3) combined with the 5’ cassette primer
(CPC3) (C), where Bioline Hyperladder I was the marker used to determined fragment size. Note
that the numbers refer to the plate origin of the target genes. The target genes and the primers used
are listed in (Table 2.2).

https://github.com/Catalina37/Experiments_data/tree/master/Bioneer_DeletionMutants_SangerSeq
https://github.com/Catalina37/Experiments_data/tree/master/Bioneer_DeletionMutants_SangerSeq
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3.0.6 Our barcodes matched to previously decoded barcodes

Both the uptag and the dntag barcodes of the decoded genes were validated by com-

paring their sequences to the barcode sequences decoded from the previous deletion

library versions; version 1.0 (Han et al., 2010) and version 2.0 (Sideri et al., 2015).

Among the common decoded genes, over 87% of the uptag and the dntag barcode

sequences were perfect matches to the barcode sequences decoded in the previous

versions. However, most of the remaining genes with barcode sequences that did

not match either version 1.0 or version 2.0 barcodes was due to different barcode

sequence lengths. The proportion of the respective barcode sequence matches to the

aforementioned versions was 12.2% and 12.5% for uptag and dntag, respectively,

and 10.6% and 10.7% for uptag and dntag barcodes, respectively. Unlike the pro-

posed barcode length of 20 bp (Kim et al., 2010), we found that the uptag and the

dntag barcode sequences varied in length between 13-22 bp as shown in (Figure

3.12).

Our data was consistent with the findings obtained independently by Lee et al.,

2018, a report which found barcode sequence mutations introduced during Sanger

sequencing (Lee et al., 2018). This base mutation accumulation within the bar-

code sequences may have therefore contributed to the difference in barcode lengths,

thus explaining the mismatches between our decoded barcodes and the barcodes

decoded in the previous library versions. Even so, there were also entire barcode

mismatches between the versions, likely as a result of the barcode sequence changes

that occurred upon upgrading to new deletion library versions.
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Figure 3.12: The barcode decoded sequences vary in length.
Barcode equence lengths for the decoded genes were found to vary from 13-22 bp for uptag and
14-23 bp for dntag. However, most of the barcodes were 20 bp in length.



Chapter 4

Bar-seq strain fitness comparison to

colony screen

4.0.1 Background

First proposed over two decades ago, Barcode sequencing (Bar-seq) is a molecular

cell tagging technique developed to facilitate the tracking of cells across time and

space (Walsh and Cepko, 1988). Its ability to study thousands of cells simultane-

ously while collecting information at the individual cell level led to the application

of Bar-seq to several areas of expertise with developmental biology (Kebschull and

Zador, 2018) and gene function (Smith et al., 2009) being two such examples. The

first time gene function analysis was carried out in yeast using Bar-seq, dates back

to the generation of the budding yeast deletion library strain collection (Han et al.,

2010; Kim et al., 2010; Smith et al., 2009). Because of its high-throughput power,

Bar-seq has successfully been applied to several model organisms including yeast

(Smith et al., 2009; Giaever et al., 2002), wasps (Cruaud et al., 2017) and plants

(Wilkinson et al., 2017).

In fission yeast alone, Bar-seq was used to perform several genome-wide studies

(Kim et al., 2016; Robinson et al., 2014; Ucisik-Akkaya et al., 2014; Delneri, 2010).

This was possible because of the constant U1/U2 and D2/D1 sequences surround-

ing the uptag and the dntag barcodes respectively. These sequences were used to

amplify the two barcodes separately, thus allowing the study of the deletion strains
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in parallel. Without Bar-seq, this study would be carried out using the standard

CFUs method (see Subsection 2.1.2), an otherwise laborious and impractical task.

The application of Bar-seq to profile the deletion strains was previously described

in both fission (Robinson et al., 2014) and budding yeast (Smith et al., 2016) using

the method depicted in (Figure 4.1). Though one major drawback of these Bar-seq

studies was data irreproducibility. Although there are several data analysis tools

available (Simpkins et al., 2019; Zhao et al., 2018; Lee et al., 2017; Mun et al.,

2016) their use typically require a specific design and author correspondence can

often be challenging. Unsurprisingly, the data reproducibility bottleneck is mainly

caused by the lack of a standard Bar-seq data analysis tool and the experimental

differences that exist across laboratories.

Figure 4.1: Bar-seq profiling of the decoded strains grown competitively in a pool.
Strains are cultured together and grown competitively in a pool to saturation density (1). Samples
are collected while simultaneously plating CFUs as a function of time throughout the course of the
experiment (2). Collected samples are then processed to obtain the barcode abundance for each
strain which acts as a proxy for fitness (3). This enables high fitness strains (light orange) to easily
be distinguished from low fitness strains (light blue).

In this work, we set to improve Bar-seq and custom-develop a robust data analysis

pipeline. As proof-of-principle we apply Bar-seq to identify mitochondrial-protein

encoding gene deletion mutants. Solid screening on the deletion collection has pre-

viously been performed using the same deletion collection which we characterised

(Malecki and Bähler, 2016), thus direct comparison of our Bar-seq results to the

solid screen results would allow the simultaneous validation of both our developed

Bar-seq analysis method and our decoded deletion library strains. Bar-seq screen

was performed by culturing the decoded strains on both glucose and glycerol me-

dia. When cultured in glucose the mutants grow by fermentation, but when cultured
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in glycerol only mutants that can undergo respiration would be able to grow. Mu-

tant growth on these two media types therefore allows for the identification of the

mitochondrial-protein encoding gene deletion mutants as these mutants would be

able to grow on glucose but not on glycerol.

4.0.2 Experimental design

Three independent pools containing the auxotrophic deletion library strains pre-

pared using the method previously described (see Subsection 2.2.1) were grown

competitively in parallel, and in either glucose or glycerol media. These cultures

were grown in a BioLector® plate (m2plabs, GmbH, Baesweiler, Germany) to sat-

uration as shown in (Figure 4.2).

Figure 4.2: Bar-seq proof-of-principle experimental set-up.
Aliquots of 500 µl representing each auxotroph pool (e.g pool I, II and III) were thawed on ice (1)
and the cells re-suspended in 250 ml YES medium (3% glucose) as independent cultures grown o/n
at 25°C and no shaking (2). The following morning, the first time point (e.g. T0 ) culture aliquots
of 1 ml were collected from each pre-culture before inoculating the cultures in a 48-well microtiter
plate at 0.20 OD600nm in a total volume of 1.4 ml in either glucose (Glu) or glycerol (Gly) media.
Cultures were grown in a BioLector® plate at 32°C to saturation density where 2× 1 ml samples
aliquots were collected (indicated by dotted lines) (3). Each pool was cultured in triplicate (e.g. R1,
R2 and R3 repeats) with wild-type added as a control. Note, only two repeats (e.g. R1 and R2) were
used for further processing.

In total, 36 DNA libraries (3CollectionTimepoints × 3pools × 2repeats ×

2barcodes) were prepared using the method previously described (see Section

2.2.3.3). Libraries were sequenced on a MiSeq Illumina instrument as paired-end
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reads of 75 bp with 165 cycles generating approximately 20 million reads. Reads

were analysed using our custom-developed Barcount package described previously

(see Subsection 2.3.2). Sequencing read depth per sample and barcode is provided

in (Table 4.1).

Table 4.1: Bar-seq strain fitness comparison sample names and sequencing depth per
barcode.

Sample name Uptag sequencing depth Dntag sequencing depth
T0.I.rep1 2.03 2.19
T0.I.rep2 1.78 2.07

T0.II.rep1 1.88 1.69
T0.II.rep2 2.40 1.66

T0.III.rep1 3.60 1.73
T0.III.rep2 1.84 2.37

Glu.I.rep1 2.96 2.00
Glu.I.rep2 2.00 2.16

Glu.II.rep1 3.10 1.54
Glu.II.rep2 2.14 1.85

Glu.III.rep1 1.54 1.67
Glu.III.rep2 2.10 1.95

Gly.I.rep1 2.50 2.22
Gly.I.rep2 2.07 2.16

Gly.II.rep1 2.36 1.91
Gly.II.rep2 1.80 1.93

Gly.III.rep1 1.86 1.33
Gly.III.rep2 2.75 2.01

Sample names denote the media type ’Glu’ and ’Gly’ for glucose and glycerol, the three independent
pools( e.g. pool I, II and III), and the two independent experimental repeats (e.g. rep1 and rep2).
Sequencing depth per sample and barcode (e.g. uptag and dntag) is presented for both reads as a
percentage of the total reads (20,317,552) that have passed the quality filter.
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4.0.3 Bar-seq detected 94% of the decoded genes

We found that the average read assembly for both uptag and dntag samples was 81%

as shown in (Figure 4.3 A). However, the percentage of the assembled reads with

barcodes that matched to the reference barcode database was higher for the uptag

than for the dntag samples as shown in (Figure 4.3 B). This difference probably

arose as a result of lower mutation rates within the uptag than the dntag barcode

sequences. Although the lowest barcode matching efficiency was for a dntag sample

(e.g. Gly.III.rep2), over 85% of the assembled reads contained barcodes which

matched successfully to the reference barcode database, thus providing adequate

sequencing depth.

Figure 4.3: Uptag barcodes match to the reference barcodes with higher efficiency than
the dntag barcodes.

The percentage of reads post-read assembly for each barcode per sample (A) with the proportion of
assembled-reads that match to the reference barcode database (B).
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Further examination of the sample gene counts showed the expected uptag and

dntag counts correlation as depicted in (Figure 4.4).

Figure 4.4: Uptag and dntag gene counts show a good correlation.
Correlations between uptag and dntag gene count for the following samples: T0, Glu and Gly, only
for one repeat and one pool. Note, similarly strong correlations were also observed for the rest of
the samples though these were not shown.

4.0.4 Bar-seq identified 112 mitochondrial protein-coding genes

Because the uptag and the dntag gene counts showed strong correlations for all

the samples, we were able to streamline the analysis by combining the uptag and

the dntag counts per gene for each sample. Following the combination of the up-

tag and the dntag gene counts, we identified 3,008 genes, or 94% of the decoded

strains. However, sample count correlation analysis revealed that the T0 samples

were introducing bias across the repeats (Figure 4.5 A) and that while removing

them eliminated this bias, the batch effect between the pools persisted (Figure 4.5

B). However, the observed pool batch effect might have been caused by prepar-

ing pool II and pool III from the same deletion library working stock, while pool

I was constructed from a previous library working-stock. Additionally, the differ-

ence might have also been caused by the difference in mutants represented within

the pools which would have arisen during pool generation (see Subsection 2.2.1).

Analysis of the glucose/glycerol gene count ratio on the 3,008 decoded genes using

the recommended Bar-seq data analysis package, DESeq2 which accounts for batch

effects (Robinson et al., 2014) identified 112 high glucose/glycerol gene count ratio
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and 36 low glucose/glycerol gene count ratio shown in (Figure 4.6).

Figure 4.5: Sample barcodes and gene counts show good correlations.
Sample gene count correlations show strong T0 bias (A). Removing T0 samples revealed the expected
correlation between the glucose and glycerol samples, plus the remaining batch effect between the
pools (B).

4.0.5 Bar-seq out-performed the colony screen

Despite the difference in the Bar-seq and the colony screen methods, the two screens

correlated (R2= 0.33, p<2.2E-16) as shown in (Figure 4.7 A). By comparing the

112 mitochondrial protein-encoding genes identified with Bar-seq and the 204 mi-

tochondrial protein-encoding genes obtained with the colony screen, we discovered

57 genes (p<5.47E-51) in common (Figure 4.7 B).

We next compared the number of Bar-seq and colony screen genes to deter-

mine which method was more efficient at identifying mutant strains defective

in mitochondria genes. The analysis was carried out with AnGeLi, a pub-

lic database (http://bahlerweb.cs.ucl.ac.uk/cgi-bin/GLA/GLA_

input) containing information about the fission yeast gene function and molec-

ular processes. Gene ontology (GO) analysis was performed using the ’Cellular

Component’ as our GO-term and the list of our decoded genes as the background

gene list. We found that compared to the colony screen genes (p<4.7E-16), Bar-seq

detected approximately two-fold more mitochondrial genes (p<1.1E-30), suggest-

ing that Bar-seq was more sensitive at identifying mitochondrial protein-encoding

http://bahlerweb.cs.ucl.ac.uk/cgi-bin/GLA/GLA_input
http://bahlerweb.cs.ucl.ac.uk/cgi-bin/GLA/GLA_input
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Figure 4.6: Bar-seq identified 112 mitochondrial protein-encoding genes.
Glucose/glycerol gene count analysis identified 112 high glucose/glycerol gene count ratio gene
deletions (orange), or mitochondrial protein-encoding genes, and 36 low glucose/glycerol gene
count ratio (dark blue). The genes were selected based on log2FC=±1 and p-adj<0.05.

Figure 4.7: Bar-seq and colony screens show good correlation.
Correlation between Bar-seq expressed as log2 fold-changes and colony screen expressed as log10
glucose/glycerol ratio (A). Gene comparison between the screens revealed 57 common genes (B).
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defective mutants than the colony screen (Figure 4.8).

Figure 4.8: Bar-seq vs colony screen of the mitochondrial protein-encoding gene
enrichment.

Bar-seq identified more and higher statistically significant mitochondrial protein-coding genes than
the colony screen.

Further functional analysis was performed using the Gene Set Enrichment Anal-

ysis (GSEA) package previously described (Chen et al., 2018). The results were

similarly encouraging and revealed that Bar-seq not only identified genes involved

in several molecular processes but identified genes involved in processes not previ-

ously detected with the colony screen as shown in (Figure 4.9).
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Figure 4.9: Bar-seq was more efficient at identifying respiratory defective mutants than
the colony screen.

Bar-seq identified new genes with molecular processes not previously found with the colony screen.



Chapter 5

RNA-seq of cellular quiescent cells

5.0.1 Background

Improvements in sequencing technologies allow for genome-wide sequencing at a

relatively low cost. Combining this sequencing advantage with the fission yeast ge-

netic tractability, we sought to optimise an RNA-seq method to investigate the qui-

escence of old yeast cells. RNA-seq of long-term quiescent cells would provide in-

sights into the transcriptional changes that occur during cellular quiescence. These

would complement the genomic analyses obtained with Bar-seq, thus presenting an

opportunity with the potential to unravel new links between the molecular factors

underlying ageing. As such, we planned for the future use of Bar-seq on quiescent

cells though our efforts to date focused on establishing an RNA-seq method for old

yeast cells. This was because while in yeast quiescence can easily be induced by

growing and ageing cell populations in EMM-N, the isolation of high-quality RNA

from aged cells up until now proved challenging due to the instability and degrada-

tion of RNA. Here, we establish a new RNA protocol that allows for high-quality

RNA isolation from long-term quiescent cells suitable for RNA-seq.

5.0.2 Experimental design

To confirm the extraction of high-quality RNA from old quiescent cells, we prepared

independent wild-type cell cultures as per the method described in (Figure 5.1).

Two technical repeats per time points; exponential, day 0, 2, 4 and 21 days old

quiescence samples were processed for RNA isolation using the method previously
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described (see Subsection 2.2.2). qPCR was prepared for all the samples, though

only 2 days and and 21 days old quiescent samples were prepared into RNA libraries

using the method previously described (see Subsection 2.2.3.4). Libraries were

sequenced on a MiSeq Illumina instrument as paired-end reads of 75 bp with 165

cycles generating 28 million reads. The reads were analysed using the standard

DESeq2 package as previously described (see Subsection 2.3.3). Sequencing depth

per sample and barcode is provided in (Table 5.1).

Figure 5.1: Quiescence cells culture set-up.
Fresh wild-type cell colonies were used to set-up three independent pre-cultures in 50 ml EMM
medium with o/n growth at 32°C and 170 RPM (1). The following morning, cell pellets from each
pre-culture were re-suspended in 500 ml EMM-N medium at 0.18 OD600nm and grown at 32°C and
170 RPM to saturation density, the point at which cells enter quiescence and where the first collection
time point (e.g. day 0) was collected (2). Samples of 2×50 ml aliquots were collected ( red asterisks)
at the following time points: exponential, day 0, 2, 4 and 21 days with subsequent CFUs which were
used to obtain population cell viability (3). Note, quiescent cultures were maintained for 21 days by
replacing the EMM-N medium once/week for the first week and twice/week after that to replenish
the media glucose levels.

Table 5.1: RNA-seq quiescent sample names and sequencing depth per barcode.

Sample name Sequencing depth
Day2.rep1 14.2
Day2.rep2 14.4

Day21.rep1 15.8
Day21.rep2 12.4

The sample names denote the number of days spent in quiescence (e.g. day 2 and day 21 refers to 2
days and and 21 days old quiescence samples, respectively) and the two repeats (e.g. rep1 and rep2)
per sample. Sample sequencing depth is expressed in millions.
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5.0.3 The new RNA isolation protocol preserves RNA

The adaptation of an RNA extraction protocol previously described in plants (Chan

et al., 2007) enabled us to circumvent the challenge of high-quality RNA extrac-

tion from long-term quiescent cells. We next tested the protocol by comparing

RNA integrity from 4 days old quiescence samples treated with both the new and

the standard protocol, and found that the quiescent samples treated with the new

protocol showed a higher RNA integrity than the sample treated with the standard

protocol as shown in (Figure 5.2).

Figure 5.2: The new RNA protocol preserves RNA integrity.
Samples treated with the standard RNA isolation protocol showed a lower RNA integrity number
(RIN) (A) than the samples isolated with the new protocol (B) as determined by the two ribosomal
subunits, 18S and 28S respectively. Note that the RIN values can be between 0-10, where 0 represents
the lowest and 10 the highest integrity, thus defining RNA stability. Y-axis defined as [FU] denotes
the peak fluorescence measured as ’Height threshold’. X-axis defined as [s] denotes the size of the
rRNA peaks and corresponds to the time of their detection.

Unlike the old protocol, the new protocol contained polyvinylpyrrolidone (PVP), a

chemical thought to bind to phenolic compounds which are then eliminated during

EtOH precipitation. In addition to one cold 70 % (v/v) EtOH precipitation, 10 mM

LiCl precipitation is also required. LiCl precipitation is thought to remove cDNA

synthesis inhibitors and increase RNA stability (Chan et al., 2007). Therefore, these

differences contributed to the RNA integrity maintenance with the knock-on effect

of improved cDNA synthesis. Although cDNA synthesis efficiency was higher for

the quiescent samples treated with the new protocol, the underlying issue of gDNA

contamination was also present in these samples, albeit much less than for the sam-

ples treated with the old protocol, and in both cases higher for actin than the cdc2
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primer as illustrated in (Figure 5.3).

Figure 5.3: Samples treated with the new protocol show higher cDNA synthesis
efficiency.

cDNA synthesis comparison between wild-type quiescent cells treated with both RNA isolation meth-
ods showed higher cDNA synthesis and less gDNA contamination for samples treated with the new
protocol (New.Q4) than the samples treated with the standard protocol (Standard.Q4), where ’Q4’
refers to the number of days in quiescence. qPCR was performed using actin and cdc2 primers with
exponentially growing cells used as a control. Internal controls lacking the reverse transcriptase
enzyme were also prepared.

5.0.4 Quiescent cells gene enrichment shows ncRNA regulation

Given that the new protocol proved effective at extracting high-quality RNA from

quiescent cells, we tested the method by extracting RNA from 2 days and 21 days

old quiescent cells. RIN and cDNA synthesis were both efficient, thus we processed

the samples into RNA libraries using the method previously described (see Subsec-

tion 2.2.3.4). As over 85% of the reads mapped successfully to the genome, we per-

formed differential gene expression (DGE) analysis using the recommended RNA-

seq data analysis package, DESeq2. DGE analysis between 2 days and 21 days

old quiescent samples revealed 292 up-regulated and 272 down-regulated genes as

shown in (Figure 5.4). Of these, 43.8% and 49.0% were genes with predicted and
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unknown functions, while the remaining genes were genes with known functions.

We found that within the down-regulated genes with predicted function 22 were in-

tergenic ribosomal RNAs (rRNAs), 9 were noncoding RNAs (ncRNAs) and 2 were

anti-sense RNAs. Also, within the up-regulated genes with predicted function, we

found only 1 intergenic RNA and 2 ncRNAs.

Figure 5.4: Differential gene expression of long-term quiescent cells.
Differential gene expression of 2 days and 21 days old quiescent cells revealed 292 up-regulated
(orange) and 272 down-regulated (dark blue) genes. Within the up-regulated and the down-regulated
genes, we highlighted (green) the 5 and the 41 ncRNAs respectively. Genes were selected based on
log2FC=±1 and p-adj<0.05.

We next examined the up-regulated and the down-regulated genes for GO enrich-

ment, a standard procedure used to obtain the functional and molecular processes of

the genes provided in the query list (Bitton et al., 2015). We performed this using

AnGeLi with the ’Biological Process’ as our GO-term and all the ’protein-coding

genes’ as the background gene list. We found that while the up-regulated genes

were mainly enriched for ”rRNA processing” (p<5.29E-18), ”ribosome biogene-
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sis” (p<1.57E-16) and ”ncRNA processing” (p<4.17E-13), the only enrichment

obtained for the down-regulated genes was ”import across the plasma membrane”

(p<7.10E-4) with significant under-enrichment for ”cellular component organiza-

tion or biogenesis” (p<3.85E-05, data not shown). Surprised by this, we inves-

tigated further and found that 20.6% of the down-regulated genes were omitted

from the analysis as these represented different RNAs not yet characterised. These

RNAs were: 41 ncRNAs, 4 small nuclear RNAs (snRNAs), 4 small nucleolar RNAs

(snoRNAs), 2 tRNAs, 4 pseudogenes and 1 rRNA. In contrast, the up-regulated

genes contained only 5 ncRNAs which were also omitted from the analysis. These

ncRNAs were also depicted in (see Figure 5.4).

To gain additional information about these genes, we continued our functional anal-

ysis using GO-slim, a comprehensive database available on PomBase that sum-

marises the biological function of yeast genes (Wood et al., 2019; Lock et al., 2019).

We found that while 15.3% and 8.90% of the down-regulated and the up-regulated

genes, respectively, did not have any slim annotations, several statistical significant

categories (p<0.01) were found as shown in (Figure 5.5).

Figure 5.5: Ribosome biogenesis and trans-membrane transport are the main RNA-seq
GO-slim signatures.

Up-regulated and down-regulated GO-slim categories defined at p<0.01.
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Advancing with our analysis, we also used KEGG (https://www.genome.

jp/kegg/tool/map_pathway2.html), a publicly available database that

contains the molecular pathway genes of different organisms, including the fission

yeast genes. Although several pathways were found, we arbitrarily present only the

top 5 enriched pathways for each gene category as depicted in (Figure 5.6).

Figure 5.6: Metabolic pathway genes seem to play a role in long-term cellular
quiescence.

Top 5 up-regulated and down-regulated KEGG gene enrichment pathways.

As expected, we found consistency between the enrichment analyses performed

with the GO-term, GO-slim and KEGG. This comprehensive enrichment analysis

enabled the identification of distinct functional pathway signatures for each gene

category. These included ribosome biogenesis and trans-membrane transport as

central transcriptional up-regulation and down-regulation, respectively, required for

the maintenance of long-term cellular quiescence in yeast.

https://www.genome.jp/kegg/tool/map_pathway2.html
https://www.genome.jp/kegg/tool/map_pathway2.html


Chapter 6

Chronological ageing of

competitively grown decoded strains

6.0.1 Background

Studying ageing in a high-throughput fashion to determine genome-lifespan rela-

tionships, mainly due to the lack of tools remained a subject not very well explored.

This scarcity of high-throughput studies to identify genes important for ageing, mo-

tivated us to apply Bar-seq to profile the chronological lifespan of our decoded

strains. We anticipated that the results obtained from this high-throughput study

would improve our understanding of which gene deletions are important for cel-

lular ageing, especially since 47% of these systematic gene deletions have human

orthologs (Lock et al., 2019). Because the methods to perform such genome-wide

studies are not very well defined, screening for gene deletions relevant for lifespan

regulation are almost non-existent, even in budding yeast (Fabrizio et al., 2010) with

Bar-seq studies in fission yeast being just as elusive.

To our knowledge, however, only one fission yeast Bar-seq study was previously

performed. Unlike our screen, this study used version 3.0 of the deletion library to

screen for gene deletion mutants with pro-ageing effects following long-term quies-

cence survival (Sideri et al., 2015). Since during quiescence cells arrest at a G0-like

cell-cycle phase and during the glucose-starvation model cells arrest at the G2-phase

of the cell-cycle, the mechanisms responsible for life extension, thus are different
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and so the gene candidates obtained from these two models are likely very different

also. Therefore, our glucose-starvation screen will not only be complementary to

the quiescence screen but will provide new insights about gene deletions important

for cellular ageing. Furthermore, the difference in methods, where we use our im-

proved Bar-seq and our custom-developed data analysis pipeline, in addition to the

most up-to-date fission yeast deletion library comprising approximately 400 more

strains than the previous library, should further substantiate the significance of our

chronological lifespan Bar-seq screen.

6.0.2 Experimental design

Three independent prototroph deletion library pools made using the method pre-

viously described (see Subsection 2.2.1) were grown in parallel and cultured as

described in (Figure 6.1).

Figure 6.1: Chronological ageing experimental set-up.
Prototroph deletion library pool aliquots of 500 µl were used to prepare individual pre-cultures in
250 ml YES (3% glucose) grown in parallel o/n at 25°C with no shaking (1). The following morning,
T0 samples were collected from each culture. The pre-cultures were then used to inoculate cultures
at 0.18 OD600nm in 150 ml YES (3% glucose) and grown at 32°C and 170 RPM to saturation density,
during which exponential samples were also collected. Following saturation density, the first time
point (e.g. day 1) where 100% viability is assumed was collected. Subsequent sample collections,
CFUs and culture re-growths were prepared daily and where possible at the same time (2). Culture
re-growths were prepared at 0.18 OD600nm in 50 ml YES (3% glucose) and grown under the same
conditions as the main cultures to saturation density where samples were collected (3). Note, sample
collection was made as 2×20 aliquots.

In total, 96 libraries (7collectionTimePoints× 3pools× 2cultures× 2barcodes)

plus T0 and exponential samples per pool and barcode were prepared using the

method previously described (see Subsection 2.2.3.3). Libraries were sequenced

first, on a NextSeq, and then on a MiSeq Illumina instrument as paired-end reads



91

of 75 bp using 165 cycles. NextSeq was unsuccessful due to low library complex-

ity, hence MiSeq was run on selected samples to obtain enough reads for all the

samples. The reads were analysed with Barcount, our custom-developed Bar-seq

analysis pipeline previously described (see Subsection 2.3.2). Reads per sample

and barcode from both runs were combined and are shown in (Table 6.1).

Table 6.1: Chronological lifespan sample names and sequencing depth per barcode.

Sample name Uptag St Dntag St Uptag RG.St Dntag RG.St
T0.I 0.27 0.72 - -
T0.II 0.52 0.38 - -
T0.III 0.39 0.44 - -
Exp.I 0.55 0.33 - -
Exp.II 0.42 0.36 - -
Exp.III 0.26 0.58 - -
Day1.I 0.28 0.63 0.33 0.61
Day1.II 0.27 0.71 0.42 0.61
Day1.III 0.24 0.47 0.29 0.63
Day3.I 0.22 0.76 0.55 0.39
Day3.II 0.51 0.49 0.41 0.44
Day3.III 0.22 0.42 0.44 0.26
Day4.I 0.20 0.39 0.49 0.68
Day4.II 0.46 0.35 0.65 0.35
Day4.III 0.28 0.31 0.48 0.33
Day6.I 0.30 0.77 0.22 0.27
Day6.II 0.14 0.67 0.64 0.28
Day6.III 0.27 0.39 0.24 0.30
Day8.I 0.32 0.49 0.27 0.72
Day8.II 0.43 0.50 0.55 0.43
Day8.III 0.24 0.75 0.13 0.05
Day10.I 0.23 0.26 0.04 0.10
Day10.II 0.31 0.45 0.12 0.18
Day10.III 0.29 0.54 0.11 0.07
Day12.I 0.27 0.45 0.29 0.30
Day12.II 0.35 0.33 0.13 0.21
Day12.III 0.21 0.39 0.12 0.13

Sample names denote the collection time points where ’T0’ stands for pre-culture cells, ’Exp.’ for
exponential cells, days 1-12 stand for the days spent in the stationary phase, and I, II and III are the
three pool replicates. ’St’ and ’RG.St’ stand for samples collected at the stationary and the re-growth
stationary phase. Reads per million were provided for each sample time point at the stationary and
the re-growth stationary for each barcode. Note, there were only one T0 and exponential sample
collection per pool. These reads were added under the barcodes of the stationary culture.
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6.0.3 Chronological ageing with Bar-seq requires culture re-

growth

In our pool experiments, we found consistency in the population viability with our

previous observations, where the viability of the pool declined at a faster rate com-

pared to the rate of decline observed for the wild-type cell cultures (Figure 6.2).

Figure 6.2: Competitive strain pool growth shows reduced cell viability.
Population viability curves for the wild-type and the decoded strains cultures. Percentage viability
calculated for each of the three biological pools and the two wild-type repeats is shown on a log
scale.

Chronological ageing studies from budding yeast (Fabrizio et al., 2010; Matecic

et al., 2010) included cellular re-growth before DNA extraction to avoid bias from

the dead cells. Our preliminary chronological ageing data on wild-type cells also

showed that the DNA of the dead cells is maintained for several days following cell

necrosis. For an explanation of this finding (see Figure 6.4). However, to avoid this

DNA bias, we also performed cellular culture re-growths, and found that during

the culture re-growth the time taken by the cells to saturate the cultures positively

correlated with the time the cells spent in the stationary phase of the aged culture

(data not shown). This observation seemed sensible as the number of viable cells
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over time is expected to decrease linearly with the population viability, and thus the

remaining cells would take longer to saturate the same volume of culture not only

because there are fewer cells, but due to delayed signalling as a result of cells being

more dispersed.

We next examined the reads and found that both the read assembly and their uptag

and dntag barcode matching to the reference barcode database was more efficient

for the stationary growth samples than the stationary re-growth samples as shown

in (Figure 6.3).

Although among the assembled reads for the re-growth samples, one sample (e.g.

Day8.III) in particular stood out as having the lowest read assembly efficiency, 80%

of these reads contained barcodes that matched successfully to the reference barcode

database. The opposite relationship of high read assembly and low dntag barcode

matching to the reference barcode database was observed for yet another re-growth

sample (e.g. Day8.II). However, we found that the number of gene counts for both

of these samples was high enough to sequence each gene over 200 times, and thus

twice the recommended sequencing depth (Han et al., 2010).

Since we found that the DNA of the dead cells is maintained for several days follow-

ing cell necrosis even when 99% of the cells lost viability as shown in (Figure 6.4

A), we wondered whether this phenomenon featured in our data. Indeed, we found

that while the total number of genes for the stationary growth samples remained

constant throughout the time points, the re-growth samples showed the expected

decrease in the total number of genes; a phenomenon consistent across the time

points, but only up to day 6 as shown in (Figure 6.4 B).
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Figure 6.3: Uptag reads matched more efficiently to the reference barcode database
than the dntag reads.

Percentage of assembled reads and the proportion of the reads which matched to the reference bar-
codes for the stationary growth (A) and the stationary re-growth samples (B).
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Figure 6.4: DNA persistence following cell death impacts the sequencing depth.
DNA maintenance following cell death (A) and the total number of post-filtered genes with at least
5 counts for the stationary growth (St) and the stationary re-growth samples (RG.St), (B). DNA level
and cell viability were based on three biological repeats. DNA level and cell viability were measured
using a Qubit instrument and the CFUs method, respectively.

Contrary to our expectation, we found that relative to the day 6 samples, day 8, 10

and 12 re-growth samples showed a slightly higher and roughly constant number

of genes. We discovered that this was caused by an increase in the DNA carryover

where more volume of mainly dead cells was inoculated to compensate for the few

surviving cells at the later time points. Consequently, the DNA of these cells was

amplified and sequenced, hence contributing to the increase in the total number of

genes observed for samples a day 8, 10 and 12.

Consistent with this finding, the raw gene counts across the time points for both

the stationary and the re-growth stationary samples recapitulated the phenomenon

(Figure 6.5 and Figure 6.6). Considering that the number of viable cells is expected

to decrease linearly with the decrease in population viability and that only a few

surviving cells that display a fitness advantage will dominate the culture, a decrease

in the total gene number as a function of time is expected, thus supporting our

observation. Analysis of the stationary samples whereby the total number of genes

across the collected time points remains unchanged, or in other words, analysis of

these saturated samples would lead to very subtle differences which in reality may

actually be large changes. Therefore, Bar-seq barcode abundance obtained from the
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stationary growth samples would be misleading, hence the re-growth data is more

suitable for the analysis over the stationary growth data.

Figure 6.5: Over time the growth samples show no change in gene counts.
Sample gene counts for the stationary growth samples with no overall change in the gene num-
ber. Day 1-12 represent the days spent in the stationary phase while I,II and III refers to the pool
replicates.

Figure 6.6: Over time the re-growth samples show a decrease in gene counts.
Sample gene counts for the stationary re-growth samples with a downward trend in the gene number
throughout the time points. Day 1-12 represent the days spent in the stationary phase while I,II and
III refers to the pool replicates.
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6.0.4 Re-growth data analysis identified more short-lived than

long-lived mutants

Similar to our previous finding, gene count sample correlations showed sample sim-

ilarities across time points, but only up to day 6 as the later time points (e.g. day 8,

10 and 12) were too different from the early time points (e.g. day 1, 3, 4 and 6) as

shown in (Figure 6.7).

Figure 6.7: Chronologically aged re-growth samples show strong correlations but only
up to day 6.

Gene count correlation between the re-growth samples time points was calculated using the cor()
function and plotted with the heatmap.2 package using R (version 3.5.0).

Given that the later time points (e.g. day 8, 10 and 12 samples) were too different

from the rest of the samples, we decided to investigate further. We found that at

these time points the number of reads was lower than the number of inoculated
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cells as shown in (Table 6.2). Therefore, inclusion of these samples in the analysis

due to the large discrepancy in the number of genes between the early time points

where there are thousands of genes, and the later time points where there are only

tens of genes, would result in genes with over-inflated p-values, hence no true hits

would be produced. Also, no available statistical packages can model this type of

data, thus day 8, 10 and 12 samples were excluded from further analysis.

Table 6.2: The number of cells used to inoculate the re-growth cultures.

Pool Time point CFUs/ml Inoculate/ml Live cells

I
II
III

1
1
1

5.30E+07
5.70E+07
6.00E+06

0.65
0.71
0.71

34,700,000
40,400,000
4,250,000

I
II
III

3
3
3

9.00E+07
9.20E+07
4.00E+07

0.86
0.82
0.82

77,700,000
75,300,000
32,700,000

I
II
III

4
4
4

5.20E+04
1.78E+05
1.80E+04

0.86
0.79
0.79

4,490,000
14,100,000
1,430,000

I
II
III

6
6
6

1.66E+02
2.06E+02
7.60E+01

0.83
0.91
1.00

13,800
18,700
7,600

I
II
III

8
8
8

1,280
1,080
260

1.05
0.83
0.95

1,340
900
247

I
II
III

10
10
10

120
80
20

0.95
1.05
1.05

114
84
21

I
II
III

12
12
12

60
20
20

0.90
0.95
0.95

54
19
19

Since day 1 re-growth samples were most similar to the rest of the re-growth sam-

ples, day 1 samples were the reference time point used for the Bar-seq barcode

abundance analysis. The analysis was performed using the recommended Bar-seq

data analysis package, DESeq2 (version 1.20.0), where we identified 3,110 genes

or 97% of the decoded strains in total. The long-lived mutants were identified using

the relative difference between the day 1 and day 6 samples as well as using the

time course approach for day 1, 3, 4 and 6 samples. Since day 3 was the latest
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time point relevant for the identification of short-lived mutants, these were identi-

fied using only the relative difference between the day 1 and the day 3 samples. The

Bar-seq barcode abundance analysis results are shown in (Figure 6.8).

Figure 6.8: The relative difference method was more suitable over the time course
analysis.

The long-lived mutants were obtained using the relative difference at day 1 and day 6 samples (A)
and the time course approach between day 1, 3, 4 and day 6 samples (B). The short-lived mutants
were identified only by using the relative difference between day 1 and day 3 samples (C). DESeq2
analysis was performed on raw gene counts with genes selected at log2FC=±2 and p-adj <0.01.

In comparison to the relative difference, the number of long-lived mutants obtained

from the time course analysis was two-fold higher. However, the relative difference

analysis was more suitable for the identification of the long-lived mutants as all

of these mutants were also included in the list of the long-lived genes obtained

with the time course approach, albeit with more stringent statistics and overall the

same biology. Therefore, the relative difference method was used to identify the

168 long-lived and the 441 short-lived mutants detected from our chronological

lifespan Bar-seq screen. The difference in the gene number between the short-

lived and the long-lived mutants reflects the expected higher number of deleterious

over advantageous gene deletions, thus supporting our Bar-seq barcode abundance

analysis and the relative difference method used to identify the short-lived and the

long-lived mutants.
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6.0.5 Enrichment of differentially expressed genes suggests the

identification of age-relevant genes

To identify the molecular processes the differentially expressed genes were enriched

for, we performed GO analysis using the ’Biological Process’ as the GO-term and

our decoded genes as the background gene list. The processes were selected based

on the statistical significance of p<0.001 and p<0.005 for the short-lived and the

long-lived mutants, respectively, as shown in (Figure 6.10). This statistical signif-

icance was selected to ensure the inclusion of as many processes as possible while

retaining a high level of statistical power. However, because this selection resulted

in a few molecularly enriched processes, we further queried our genes for molecular

pathway enrichment using KEGG, the results of which are shown in (Figure 6.11).

Figure 6.9: Long-lived GO-term enrichment.
The biological processes of the long-lived genes obtained as a result of GO enrichment analysis
performed with 3,824 two-sided Fishers exact tests and corrected according to FDR with an alpha
of 0.01.
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Figure 6.10: Short-lived genes GO-term enrichment.
The biological processes of the short-lived genes obtained as a result of GO enrichment analysis
performed with 3,824 two-sided Fishers exact tests and corrected according to FDR with an alpha
of 0.01.

Figure 6.11: Long-lived and short-lived genes KEGG enrichment.
Metabolic pathway enrichment of the long-lived (A) and the short-lived (B) gene deletion strains.
The top association pathways were defined by at least 3 and 6 genes for the long-lived and the
short-lived genes, respectively.
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The GO-term and the KEGG enrichment were both complimentary and in agree-

ment. For example, while the main enriched biological processes for the long-

lived mutants were catabolic metabolism, signalling response and genome re-

organisation, KEGG showed metabolic enrichment for pathways such as, RNA

degradation and protein processing, MAPK signalling and cell cycle; all of which

are associated with processes known to promote lifespan (Smith et al., 2018; Slack,

2017; Borbolis and Syntichaki, 2015; Okuyama et al., 2010). A similarly strong res-

onance between GO-term and KEGG enrichment was also observed for the short-

lived mutants. For instance, while the main biological processes represented the

biosynthesis of molecular components, KEGG showed enrichment for amino acid

metabolism and secondary metabolites. These processes seem to reflect the mu-

tants desire for anabolism similar to the ’live fast die young’ concept representative

of short-lived cells (Jimenez et al., 2015). This finding thus suggests identification

of relevant gene candidates.

Furthermore, we found that the relative difference between the short-lived anno-

tated and unannotated KEGG genes was two-fold higher than the relative differ-

ence between the long-lived annotated and unannotated KEGG genes as shown in

(Figure 6.12). Therefore, more long-lived gene deletions lack KEGG annotations

than short-lived genes, implying that our long-lived gene deletions corresponded to

genes with unknown function, not previously explored or studied. Indeed, 41.5%

and 42.3% of the short-lived and long-lived gene deletions respectively, were genes

with predicted and unknown functions, hence supporting the idea that our Bar-seq

analysis identified relevant age-associated genes, and possibly novel gene candi-

dates as well.
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Figure 6.12: The long-lived deleted genes have fewer KEGG annotations than the
short-lived deleted genes.

The number of long-lived and short-lived genes with and without KEGG annotations.



Chapter 7

Isogenic strain growth to validate

CLS lifespan

7.0.1 Background

The CLS of the top short-lived and the long-lived gene deletion mutants obtained

from our Bar-seq analysis were validated by growing the mutants in isogenic cul-

tures. Since our focus was on the identification of gene deletions with pro-ageing

effects most of the validated mutant strains were long-lived. The gene candidates

were selected based on statistical significance described by fold-change (FC) and p-

adjusted values, plus novelty criteria defined by unexplored, or unstudied gene char-

acterisations obtained from PomBase (https://www.pombase.org/). Ap-

plying the above criteria, two groups of eight long-lived gene deletion mutants were

made: ”Bar-seq top long-lived” and ”Bar-seq unexplored long-lived”, as mutants

defined by top FC and p-adjusted values, and a modest FC and p-values and unex-

plored genes, respectively. As for the short-lived candidates, we decided to select

eight mutants with the top FC and unexplored gene status. This group was referred

to as ”Bar-seq unexplored short-lived”. Because fewer genes than the number of

reads prevented the use of the day 10 and day 12 samples in the Bar-seq barcode

abundance analysis, we also selected the top two/three mutants from each pool to in-

clude in our validation assay. These two groups of eight mutants each were referred

to as day 10 and day 12 long-lived mutants.

https://www.pombase.org/
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In addition to these groups, we also included another group of six genes which

apart from the wild-type, included three long-lived controls and two short-lived

controls. Git3 (G-protein coupled receptor), pyp1 (MAPK tyrosine phosphatase)

and tco89 (TORC1 subunit) were the long-lived controls and sdh1 (TCA, succinate

dehydrogenase gene) and coq5 (mitochondrial, c-methyltransferase gene) were the

short-lived controls.

7.0.2 Experimental design

In total, we assayed the CLS of 48 mutants in parallel. These were divided into six

plates of eight mutants each, including, Bar-seq top long-lived, Bar-seq unexplored

long-lived, Bar-seq unexplored short-lived, day 10 long-lived, day 12 long-lived and

controls. The lifespan of each mutant was determined using the method described in

(Figure 7.1). For details about the method and the analysis (see Subsection 2.3.5).

Figure 7.1: Mutant CLS validation experimental set-up.
A prototroph deletion library was thawed and arrayed onto 9×384 PlusPlates (Singer Instruments,
Watchet, UK) containing YES medium. The plates were incubated for 2 days at 32°C prior to man-
ually selecting the mutants of interest (except for the wild-type which was obtained from an inde-
pendent glycerol stock) to set-up individual pre-cultures in 50 ml flasks containing 20 ml YES (3%
glucose) grown o/n at 32°C and 170 RPM. These were then used to inoculate cells at 0.002 OD600nm
in 50 ml flasks containing 20 ml YES media (3% glucose) and grown at 32°C and 170 RPM to satu-
ration density, where the first time point (e.g. day 0) was collected (1). Sample collection consisted
of 150 µl aliquots from each culture with cells transferred into the first well of a fresh 96-well Corn-
ing® plate (Sigma-Aldrich, Dorset, UK). The plates were then passed onto the ASSIST PLUS liquid
handling robot (INTEGRA, Berkshire, UK) to serially dilute the cells as 50 µl in a total volume of
150 µl fresh YES medium (2). The dilutions were plated using the RoToR HAD robot (Singer Instru-
ments, Watchet, UK) as four independent technical replicate spots onto 384-PlusPlates containing
solid YES (3). The plates were then incubated upside-down at 32°C until colonies appeared. These
were then stored at 4°C until the colonies from the plates across the time points were ready to be
scanned using the Epson Perfection V800 Photo scanner (ice technologies, London, UK). Colonies
were analysed using a custom-script (Townsend et al., manuscript in prep.) generating viability
curves as colony forming units per droplet for each strain at each time point (4). The steps were
repeated for each mutant culture every two days and up to day 12 (e.g. day 0, 2, 4, 6, 8, 10 and 12).
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7.0.3 Of the Bar-seq validated mutants, 90% showed the ex-

pected lifespan observed from the competitive pool growth

Out of the 48 validated mutants, only 30 were Bar-seq derived comprising both the

short-lived and the long-lived mutants. The remaining 18 validated mutants were

not found in our Bar-seq analysis as these included the 16 strains from day 10 and

day 12 samples, the wild-type which does not have any molecular barcodes and the

tco89 long-lived control mutant. Despite being one of the decoded genes identified

in the Bar-seq screen, the tco89 mutant was abundant enough at day 3 not to be

included as a short-lived mutant, while its minimal abundance at day 6 prevented

it from being selected as a long-lived candidate. Therefore, even though tco89 is

a known long-lived mutant, hence its use as a long-lived control in our validation

assay, it was not a long-lived mutant identified by our Bar-seq analysis.

To compare our lifespans, other than the wild-type control, we also included con-

trol sets of known short and long survival fission yeast cells. These allowed us to

compare the short-lived and long-lived sets of genes directly and independently to

the wild-type. We found that while the wild-type lifespan in our assay was con-

sistent with previous results obtained independently and using the same method,

both control types displayed the expected lifespans (Figure 7.2 A). For instance,

in comparison to the wild-type, the coq5 and the sdh1 short-lived control mutants

showed lower lifespans, while relative to the wild-type, the pyp1, the tco89 and the

git3 long-lived controls showed higher lifespans. This finding and the fact that both

control types exhibited the expected lifespan phenotype relative to the wild-type,

suggests that the wild-type relative to the mutants in the pool shows an average

lifespan, thus enabling direct mutant to wild-type comparisons.

Furthermore, all of the Bar-seq short-lived validated strains displayed the expected

short lifespan phenotype when compared to the wild-type, thus providing 100%

lifespan consistency with the lifespan obtained from growing the mutants competi-

tively in a pool as shown in (Figure 7.2 B).
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Figure 7.2: All validated control and Bar-seq short-lived mutants display the expected
lifespan phenotype.

CLS of the validated controls (A) and Bar-seq short-lived mutants (B). Mutants lifespan curves were
defined as the number of colony forming units per droplet at each time point.

Of the validated long-lived mutants, we found that while 100% of the Bar-seq top

long-lived mutants recapitulated the lifespan observed from growing the mutants

in competition, only 75% of the Bar-seq unexplored long-lived validated mutants

showed the expected long life phenotype as depicted in (Figure 7.3). For the long-

lived Bar-seq mutant list, including the CLS validated mutants (see Table D.1).

Figure 7.3: Validated Bar-seq top and unexplored long-lived mutants show 100% and
75% lifespan recapitulation to the competitively grown mutants.

Individually validated unexplored (A) and top (B) long-lived Bar-seq mutants with CLS lifespan
curves defined as the number of colony forming units per droplet at each time point.

The results, therefore, show that 90% of the Bar-seq validated mutants displayed

the expected lifespans, thus confirming our Bar-seq analysis.
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7.0.4 Only 25% of day 10 and day 12 long-lived mutants showed

the expected lifespan observed from the competitive pool

growth

Of the 16 validated strains representing the top mutants that dominated the growth

cultures at day 10 and day 12, in comparison to the wild-type, only two mutants

from each time point showed the expected long lifespan phenotype as observed

from the competitive pool growth. Therefore, 75% of these mutants showed the

opposite lifespan to the one expected (Figure 7.4).

Figure 7.4: Most of the validated day 10 and day 12 long-lived mutants show lifespans
opposite to what was observed from the competitive pool growth.

Individually validated day 10 (A) and day 12 (B) long-lived mutants with CLS lifespan curves defined
as the number of colony forming units per droplet at each time point.

7.0.5 Validation of the top 10 long-lived mutants distinguishes

several novel longevity genes

The top long-lived mutants were pooled together to compare their lifespans relative

to the wild-type and each other. The selection was based on the mutant lifespans

greater than the wild-type, the pyp1 and the tco89 long-lived controls. These top 10

mutants included 5 genes (jac1, dad1, pub3, git11 and cyp4) from the Bar-seq top

long-lived list, 3 genes (vms1, SPBC16E9.19 and SPCC1494.08c) from the Bar-seq

unexplored long-lived mutant list, with gmf1 and aim21 gene from day 10 and day

12 samples, respectively.
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Analysis of these 10 long-lived candidates revealed 7 genes (vms1, jac1,

SPBC16E9.19, SPCC1494.08c, gmf1, cyp4, and pub3) with identifiable human

orthologs (Lock et al., 2019). We also found that the functional impairment of

either cyp4, a peptidyl-prolyl cis-trans isomerase or pub3, a predicted HECT-type

ubiquitin-protein ligase E3 has reportedly been linked to the development of os-

teogenesis imperfecta type 2, 3, 4 and 9 and kidney disease in humans (Rappaport

et al., 2017). Additionally, CLS comparison between the top 10 mutants revealed

three genes (jac1, vms1 and SPBC16E9.19) with absolute maximum lifespans as

shown in (Figure 7.5).

Figure 7.5: Comparison of long-lived mutants with top lifespans revealed novel
longevity genes.

Lifespan curves of the top validated long-lived mutants with CLS greater than the wild-type, pyp1
and tco89 long-lived controls.

The predicted function of these genes included, a mitochondrial Fe-S cluster as-

sembly co-chaperone (jac1), a predicted ER-associated ubiquitin-dependent protein

with function in protein catabolism (vms1) and a predicted proteasome assembly
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chaperone (SPBC16E9.19), (Lock et al., 2019). Since the function of neither of

these genes, nor the remaining top long-lived validated genes has not been previ-

ously annotated as ageing relevant genes, and given that at least some genes (e.g.

jac1 and vms1) were previously shown to be implicated in processes associated

with ageing in S. cerevisiae (Matecic et al., 2010; Nielson et al., 2017; Voisine

et al., 2001) demonstrates that our Bar-seq screen included novel pro-ageing genes

conserved across the yeast species. This conservation, at least for the (jac1) gene,

extends to humans also (Dutkiewicz and Nowak, 2018), a conservation which may

also be relevant for the remaining novel pro-ageing genes discovered in our CLS

screen. Therefore, our Bar-seq screen provides a rich dataset which can be used to

advance further CLS studies.



Chapter 8

Discussion

This chapter continues with a global discussion of the decoded fission yeast library

strains, the importance of Bar-seq and RNA-seq, the chronological lifespan genes

obtained from the re-growth data analysis of the competitively grown strains, and

the validation of our top chronological lifespan hits. Future directions will also be

described.

8.1 The fission yeast library decoded genes

8.1.1 Comparison of our decoded genes to previous versions

shows that our characterisation was the most successful

The high-throughput sequence analysis of the deletion library strains with our

custom-developed pipeline led to the characterisation of 3,206 strains, or 94% of

the genes decoded with at least one barcode. Compared to the decoded genes of

previously characterised deletion libraries with 2,560 strains, or 90% of gene dele-

tions (Han et al., 2010) and 2,473 strains, or 82% of gene deletions (Sideri et al.,

2015), our characterised deletion library, consisted of 1.3 times more decoded genes

on average. Additionally, while we characterised 3,011 genes with both barcodes,

the number of decoded genes characterised with both barcodes was 2,235 and 1,871

for version 1.0 (Han et al., 2010) and version 2.0 (Sideri et al., 2015), respectively.

Therefore, unlike the previous versions of the deletion library characterisations we

successfully decoded the highest number of genes and most of our strains have been

decoded for both barcodes.
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8.1.2 One-fifth of the undecoded genes represent genes with

multiple copies and most are likely unsuccessful gene dele-

tions

Despite the successful characterisation for most of the gene deletions in the library,

214 genes, or approximately 6% of the strains remained undecoded. In compari-

son to the number of undecoded genes from the previous library characterisations,

to date these represent the lowest number of undecoded genes. It seems however,

that the identification of genes which share the same barcodes and thus cannot be

characterised is a common challenge also previously experienced during the char-

acterisation of the earlier deletion library version (Han et al., 2010).

We found that within the 214 undecoded genes 36 were identified as duplicate genes

and 178 as genes with no identifiable barcodes. Of the duplicate genes only half

were found to have multiple copies. Thus, the other half likely represent cases of

gene deletions with the same barcodes. Among the 178 genes with no identifiable

barcodes only 35 were found to have more than one copy. The remainder were

single-copy genes. The remaining genes with unidentifiable barcodes may include

strains with low biomass, their absence from the pool, or loss of cell revival capacity.

During the selection process for the strains used in our second re-characterisation

attempt we found modest size colonies for most of these strains, thus the aforemen-

tioned explanations are unlikely the reason behind our identification of the unde-

coded genes. However, our ability to confirm three gene deletions out of the ten

validated, together with a similarly low gene deletion validation rate previously de-

scribed (Sideri et al., 2015) points at the 178 genes with no identifiable barcodes as

likely examples of unsuccessful deletions.



8.2. Bar-seq & RNA-seq 113

8.2 Bar-seq & RNA-seq

8.2.1 Genome-wide analysis with Bar-seq distinguishes the

method as a powerful genetic tool

Successful establishment of Bar-seq in budding yeast (Smith et al., 2009) led to

the adaptation of the method to bacterial systems (Wetmore et al., 2015; Hobbs

et al., 2010). Further improvements to the technique yielded the development of

transposon pools available for a diverse range of organisms, including human cells

(Mesarich et al., 2017; Brutinel and Gralnick, 2012; Carette et al., 2011; Gallagher

et al., 2011). Because Bar-seq works by the deep sequencing of cellular molecular

barcodes, fission yeast deletion library collection genome-wide analyses are limited

to either study on solid media, or liquid growth in 96-well plates. Despite this limi-

tation, numerous genome-wide screens were performed, including screens on spore

formation (Ucisik-Akkaya et al., 2014), mating phenotype (Li et al., 2013), DNA

damage response (Pan et al., 2012; Deshpande et al., 2009), catalase expression

(Garcı́a et al., 2016), sensitivity to ionising radiation (Li et al., 2014), drug sensi-

tivity (Yang et al., 2018; Doi et al., 2015; Calvo et al., 2009; Kennedy et al., 2008),

anti-fungal and anti-cancer drug target screens (Zhang et al., 2015; Fang et al.,

2012; Takeda et al., 2011) and mutant fitness profiling (Lie et al., 2018; Malecki

and Bähler, 2016; Sideri et al., 2015; Rallis et al., 2014; Roux et al., 2009).

Comparing our Bar-seq result with the solid screen result previously described

where the aim was to screen for mitochondria defective mutants (Malecki

and Bähler, 2016), we found that Bar-seq was more sensitive at identifying

mitochondrial-protein encoding genes than the colony screen. Our identification

of biologically relevant genes not previously identified with the colony screen sup-

ported our Bar-seq analysis approach, including its custom-developed pipeline.

Therefore, this proof-of-principle experiment not only validated our upgraded ver-

sion of Bar-seq and its custom-developed pipeline but also the fission yeast decoded

library strains.
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8.2.2 Transcriptomic analysis renders regulation of ncRNAs as

important elements required for quiescence maintenance

The independence of the cellular barcoding from the experimental conditions en-

ables Bar-seq application to genome-wide transcriptomic studies. The fundamen-

tals of the method were also successfully adapted for RNA molecules (Kebschull

and Zador, 2018). However, to combine the transcriptomics of long-term quiescent

cells with the genomics of chronologically aged yeast cells, we focused on estab-

lishing an effective RNA-seq method to overcome the bottleneck of RNA instability

to perform RNA-seq on long-term quiescent cells.

Our analysis on wild-type long-term quiescent cells distinguished several types of

RNA molecules, and specifically, several ncRNAs with a putative role for long-term

quiescence maintenance by fine-tuning the down-regulation of metabolic genes.

This interesting finding highlights ncRNAs’ importance in cellular metabolic con-

trol. In light of gaining further functional insight the ncRNAs were compared to the

ncRNAs previously described (Atkinson et al., 2018). However, no further infor-

mation was derived from this comparison.

8.2.3 Bar-seq whole-genome analyses & RNA-seq transcrip-

tomic analyses are highly complementary

To gain a comprehensive understanding of the genetic elements underlying cellular

ageing in yeast and the factors that drive their expression, genomics and transcrip-

tomics integrative analyses is required. However, our work has helped bridge these

two worlds together through our established and validated Bar-seq and RNA-seq

methods, both of which can be carried out in a relatively fast and cost-effective

manner. The two powerful genetic tools complement each other well and their ap-

plication to future parallel functional profiling of non-essential gene deletions can

provide new insights and exciting avenues to better investigate the molecular factors

that contribute to the complexity of ageing.
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8.3 Chronological lifespan of competitively grown

decoded strains

8.3.1 Comparison of long-lived mutants to published data

Chronological lifespan (CLS) studies on the fission yeast gene deletion mutants are

lacking, and to date only one cellular Bar-seq quiescence study (Sideri et al., 2015)

and one study that uses the standard glucose-starvation model (Lie et al., 2018)

exists. In addition to CLS studies, fission deletion collection was also used for

chemical genomics screens (Doi et al., 2015; Rallis et al., 2014, 2013). A summary

table describing the screens conducted with the Bioneer library and the number of

the CLS genes overlapping with the genes identified from the previously described

screens is presented in (Table 8.1).

Table 8.1: Long-lived CLS gene overlap with the previously described Bioneer library
screens.

Deletion mutants tested for Gene no. Ref.
Total Overlap

Torin1 sensitivity 139 8 Lie et al., 2018
Rapamycin sensitivity 59 2 Doi et al., 2015
Long-term quiescence fitness 103 9 Sideri et al., 2015
Rapamycin & caffeine resistance 726 21 Rallis et al., 2014,2013

Note that the total gene number overlap comes from comparing our 168 long-lived CLS genes with
the CLS genes identified from the referenced screens. For details about the overlapped genes (see
Table D.1).

While CLS quiescence studies using the budding yeast library are similarly scarce

(Li et al., 2015), there are several studies performed using the CLS glucose-

starvation model (Smith et al., 2016; Garay et al., 2014; Fabrizio et al., 2010; Mate-

cic et al., 2010; Powers et al., 2006).

Comparison to budding yeast data

Despite differences in methods, comparison of our long-lived gene deletion mu-

tants to the mutants obtained from the budding yeast studies showed some degree

of similarity. The methods previously used to determine cell survival varied from

plating the stationary-phase cells on solid media and using cell colony as a measure

of fitness (Smith et al., 2016), pooling stationary-phase growths to determine fitness
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using either DNA microarrays (Fabrizio et al., 2010; Matecic et al., 2010) or RNA

microarrays (Kim et al., 2014) to individual growth on plates using either optical

density (Powers et al., 2006) or CFUs (Garay et al., 2014). Although two studies

showed no gene orthologs (Fabrizio et al., 2010; Powers et al., 2006), we identified

one ortholog each (sgp1, rps402 and swc3) from the following studies (Smith et al.,

2016; Garay et al., 2014; Matecic et al., 2010). We also found three ortholog gene

deletions (SPBC9B6.03, SPACUNK4.15 and ogm1) common between our list of

long-lived mutants and the long-lived quiescent mutants identified using the RNA

microarrays method (Kim et al., 2014).

Comparison to fission yeast data

The comparison of our long-lived gene deletion mutants to the fission yeast mu-

tants previously described (Lie et al., 2018) revealed eight common gene deletions

(vps71, sen1, pex1, mug161, pub3, gim3, pac10 and nfs1). Notably, pub3 was

among the list of our CLS validated mutants. Our validation confirmed that the

CLS of the pub3 gene deletion mutant cultured individually recapitulated the lifes-

pan observed from the competitive mutant pool growth, and that pub3 CLS was

greater than the wild-type and both the pyp1 and the tco89 long-lived controls.

We next compared our list of long-lived mutants to the mutants identified from the

drug screens previously described (Doi et al., 2015; Rallis et al., 2014, 2013) and

found one (SPBP4H10.16c), two (ctu1 and ypa1) and four common gene deletions

(SPCPB16A4.06c, mfs3, SPAC1002.17c and SPACUNK4.15), respectively. The

comparison of our long-lived mutants to the fission yeast mutants identified from

the only high-throughput Bar-seq CLS screen revealed nine common genes (pyp1,

swc3, alg12, tea4, ppk33, ctu1, mug161, clg1 and SPBC1921.04c). We noticed that

the pyp1 gene deletion mutant was a long-lived controls used in our validation as-

say and relative to the wild-type, the mutant displayed the expected long lifespan

phenotype. As well as the two common genes (swc3 and ctu1) between the screens

described above, we found that the genes were budding yeast orthologs with the

latter gene also described as a rapamycin-sensitive gene deletion (Matecic et al.,

2010; Doi et al., 2015). Interestingly, the deletion and mutation of the clg1 gene
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was also previously associated with mutant lifespan extension (Chen et al., 2013).

While the SPBC1921.04c gene common between the quiescence-model and our

glucose-starvation model evaded our validation assay, its lifespan was confirmed in-

dependently by the quiescence validation assay previously described (Sideri et al.,

2015). The fact that the lifespan of the pyp1 and the SPBC1921.04c genes was

validated independently, and the genes were identified as long-lived in both our

glucose-starvation model and the quiescence-model, suggests that the mutant lifes-

pan is robust and independent of the ageing model used.

Our list of long-lived gene deletion mutants do not show the expected slow

growth-lifespan relationship

We were curious about whether our long-lived mutants recapitulated the slow-

growth phenotype ubiquitous for long-lived mutants as previously described (Rallis

et al., 2014). Comparison of our long-lived gene deletions to the slow-growth long-

lived annotated genes from PomBase (Lock et al., 2019) revealed only 25 common

genes (p<0.02) of no statistical significance. However, this was not surprising as

42.3% of the long-lived gene deletions identified were genes with unknown func-

tions. Therefore, these genes may still have the expected slow-growth lifespan rela-

tionship though not yet characterised as such.

8.3.2 Comparison of short-lived mutants to published data

The comparison of our short-lived mutants to the literature data distinguished sev-

eral gene deletion mutants common between the studies. Reassuringly, more mutant

gene deletions with similar lifespans were found for the comparison between our list

of short-lived mutants and the fission yeast data than budding yeast data. For ex-

ample, from the fission yeast data we found 38 common genes (Rallis et al., 2013)

and only 10 genes from the budding yeast data; six genes (sgf29, ada2, pex14, gcn5,

did2 and gid8) from (Smith et al., 2016), three genes (SPAC227.17c, upf2 and kgd1)

from (Matecic et al., 2010) and only one gene (ubp14) from (Garay et al., 2014).
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Some of our short-lived mutants were found to have the opposite lifespan when

compared to published fission yeast data

To our surprise, several gene deletions previously described as long-lived corre-

sponded to our list of 441 short-lived gene deletion mutants identified from the

Bar-seq analysis of the re-growth data. These included 16 lifespan-opposing genes,

half obtained by screening the deletion mutants for rapamycin sensitivity/resistance

(Doi et al., 2015) and included the following genes (pro1, csk1, elp1, php5, etr1,

asc1, kgd1 and SPCC16C4.10). Unlike the first four genes which had both a modest

FC and p-values though not high enough to be included in our lifespan validation

assay, the FC and p-values of the latter four genes (except for the etr1 gene which

had a high FC but low p-value) were among the lowest in the list of our short-lived

gene deletion mutants, thus also evaded our validation assay.

The other half of the lifespan-opposing gene deletions emerged from the dele-

tion library Bar-seq screen for long-lived mutants following revival from long-term

quiescence (Sideri et al., 2015). From the re-growth screen, we found only six

genes in common to our list of short-lived gene deletion mutants (hrp3, rsv2, zhf1,

rei1, SPBC56F2.05c and SPAC9.02c) and two gene deletion mutants (abp2 and

SPAC8E11.05c) from the standard screen. Because cell re-growth before Bar-seq

analysis was an alternative CLS screen, Sideri et al., 2015 did not include any of

these genes in the validation screen. This was despite the SPBC56F2.05c gene, a

predicted transcription factor involved in DNA transcription regulation showing the

highest lifespan score among all the re-growth genes (Sideri et al., 2015). Inter-

estingly, this gene in our screen had a considerably low FC and p-value, thus also

evaded our validation assay. However, we found that only the SPAC8E11.05c gene

that encodes a conserved fungal protein associated with clathrin-coated vesicles

(predicted) has had its long lifespan validated and confirmed (Sideri et al., 2015).

In our screen, however, neither abp2 nor SPAC8E11.05c had high FC and p-values,

hence these too were excluded from our validation assay.
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Other than the experimental difference and the tools used to analyse the data, the

CLS difference between the mutants identified in our Bar-seq screen and the colony

drug screen resulted from the fact that in comparison to the colony screen, Bar-seq

is a more robust and effective method. Because both studies applied Bar-seq to iden-

tify the competitively grown mutants, the same argument cannot be used to explain

the opposite mutant lifespan phenotype observed between our screen and Sideri’s

screen. The CLS variation likely arose from the analysis method because while

the previously published study used the time course approach to compute lifespan

scores (Sideri et al., 2015), we instead used DESeq2 and rather than using the time

course approach, due to the nature of our data, we used the relative difference anal-

ysis method. Additionally, our analysis was performed only on the re-growth data,

which was not the case for the previously discussed study (Sideri et al., 2015).

8.4 Validation of top mutants

8.4.1 Validation of short-lived mutants uncovered eight novel

genes important for the maintenance of early life

Apart from high FC and p-values, the short-lived gene deletion mutants selected

for CLS validation were also gene deletions not previously studied, thus genes

with unknown functions. We found that out of the eight validated mutants all had

short lifespans relative to the wild-type, thus the validated mutant lifespan recapit-

ulated the lifespan observed from the Bar-seq analysis. Although the dbp7 and the

SPAC1952.09c genes have previously been associated with a decreased growth phe-

notype when cultured on galactose and glycerol media (Malecki et al., 2016), our

eight short-lived validated genes (SPAC26H5.07c, tea5, oct1, dbp7, wtf13, alg14

and SPAC1952.09c) are neither well-explored nor previously reported as short-lived

mutants. Therefore, we propose these gene deletions which we identified from our

Bar-seq screen as novel candidates with roles in the maintenance of early life.
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8.4.2 Most of the validated long-lived mutants that saturated the

re-growth cultures are likely cooperative cells

To identify as many novel longevity genes, and because we had to exclude the later

time points (e.g. day 10 and day 12 samples) from the differential expression analy-

sis, we also included the top mutants from each of the time points in our validation.

The considerably lower number of mutants than reads observed for these samples

led to their exclusion from the analysis. However, since the wild-type is not molec-

ularly tagged, we do not know exactly where the wild-type lifespan is relative to the

mutants in the pools, so theoretically any comparison to the wild-type alone would

not be accurate. Therefore, in our validation, we included known short-lived and

long-lived controls and because their CLS resided on either side of the wild-type

confirmed that relative to the mutants in the pool, the wild-type CLS is represen-

tative of the average pool lifespan, thus allowing for a direct mutant to wild-type

comparison.

Therefore, our finding that only four out of the 16 validated mutants obtained from

day 10 and day 12 samples showed the expected long lifespan phenotype and that

despite their culture dominance, the remaining 14 mutants are short-lived, suggests

that their short-lifespans might be due to different reasons other than interfering

with ageing per say. However, one plausible explanation of why these gene dele-

tions did not show extended lifespans as expected from the competitive pool growth

might be that these mutant cells are cooperative. This means that these mutants

show a growth advantage in the stationary phase (GASP) only when cultured het-

erogeneously, as only in the presence of other cell types these mutants can act as

’scavengers’ feeding on the nutrients released by the ’fast-dying’ cells. Notewor-

thy, the GASP phenotype was also previously described in bacteria (Bacun-Druzina

et al., 2007).
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8.4.3 The validation of the long-lived mutants uncovered ten

novel pro-ageing genes

The comparison between our top validated long-lived mutants with similar lifes-

pans between the individually vs the competitively grown mutants, distinguished

several mutants with lifespans considerably longer than both the wild-type and two

of our long-lived controls. The genes identified were (vms1, jac1, SPBC16E9.19,

git11, aim21, pub3, cyp4, SPCC1494.08c, gmf1 and dad1). Although all, but three

genes (git11, aim21 and dad1) have identifiable human orthologs, none of the genes

were previously associated with any lifespan phenotype, let alone annotated as gene

deletions with pro-ageing effects. However, phenotypic data is available for two of

these genes (vms1 and cyp4) which were previously phenotyped as slow growers

when cultured in minimal media and glycerol media (Malecki et al., 2016; Sideri

et al., 2015) but their phenotype in glucose media is currently unknown.

Out of the ten novel pro-ageing genes, three showed incredibly long lifespans

with related function in protein catabolism, mitochondria degradation and bio-

genesis

Three out of these ten gene deletion mutants emerged as interesting candidates with

CLS greater than the lifespan of any other validated mutant. Their function iden-

tifies them as a predicted proteasome assembly chaperone (SPBC16E9.19), a pre-

dicted ATPase complex subunit involved in ER-associated ubiquitin-dependent pro-

tein with a role in catabolism (vms1) and a mitochondrial (2Fe-2S) cluster assembly

co-chaperone (jac1), (Lock et al., 2019). The dual role of the vms1 gene in both

mitochondria function and protein degradation (Heo et al., 2010; Wallace, 2005)

links jac1 and SPBC16E9.19 gene function. Functional impairment of the HSCB

gene, the human ortholog of jac1 leads to fatal diseases in humans (Dutkiewicz and

Nowak, 2018; Voisine et al., 2001). Unlike in the budding yeast, the deletion of

the fission yeast jac1 gene, similar to that of humans was previously reported to be

lethal (Delewski et al., 2016). However, identification of the jac1 deletion in our

screen shows otherwise. Contrary to the report where the jac1 gene deletion mutant

grown on EMM media was found to be lethal (Delewski et al., 2016), the jac1 gene
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deletion in our screen was in a haploid background with the mutant cultured in rich

YES media. Therefore, this finding suggests that the jac1 gene deletion lethality is

dependent on the environmental conditions, and this phenomenon might be true for

other mutants also.

However, the fact that the jac1 and the vms1 genes are involved in maintaining the

critical roles of mitochondria biogenesis, function and degradation, the dysfunction

of which is associated with many age-related diseases in humans, such as cancer

and neurodegenerative diseases mark these gene candidates highly intriguing (Wal-

lace, 2005). The predicted function with no previous link to longevity and preserved

functional conservation led us to propose these 10 gene deletions as novel longevity

candidates discovered from our Bar-seq screen. Providing their relevance to hu-

mans, studying them may unlock some of the conundrums underpinning human

cellular ageing.
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8.5 Future Directions
A future study could include Sanger sequencing of the 178 undecoded and the 36

duplicate gene deletion mutants. This study will confirm both the deletion of these

mutants and their barcode sequences.

The established and validated Bar-seq method, including its robust analysis pipeline

allows for future high-throughput genome-wide studies in a fast and affordable man-

ner. Future Bar-seq studies include calorific restriction, genetic drug targeting and

global genetic-phenotypic relationships such as synthetic-genetic-arrays (SGAs) as

well as studies requiring the testing of several experimental conditions simultane-

ously, a task that would otherwise be laborious and impractical.

One study which would have helped our re-growth analysis would have been the

pooling of cell colonies formed at each time point before Bar-seq analysis and com-

paring the data with the data obtained from the liquid cultures. Additionally, despite

the validation of our 48 mutants revealing new gene candidates with roles in ageing,

a future study would include the validation of more genes. Also, the mutants which

upon validation were found to show the opposite lifespan, and thus were suggested

to be cooperative could prompt a future study validating their cooperativity.

Finally, an interesting future direction would be the follow-up of our proposed novel

longevity gene candidates. One such experiment could test for the effect of certain

lifespan extension drugs, such as rapamycin on the lifespan of these mutants. These

attractive experiments could help delineate the mechanistic details of these genes/-

drugs. Since these genes have identifiable human orthologs and their gene function

impairment leads to human diseases, a similarly daring, yet attractive experiment

could be the follow-up of these genes in mammalian systems. This study would be

instrumental not only for providing insights relevant for mechanistic conservation

but may also reveal new drug-targets important to human ageing.
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Concluding Remarks

Up to 67% of the fission yeast genes have identifiable human orthologs. This re-

markable conservation is also shown across the fission yeast deletion library, where

47% of the 3,420 gene deletions have human orthologs. Since gene deletions are

an example of genetic interventions shown to improve the lifespan of several organ-

isms, the deletion library is a valuable resource for ageing studies, thus allowing for

translation potential from yeast to humans.

Our work established and validated two complementary methods, Bar-seq and

RNA-seq. To the best of our knowledge, the integration of both of these power-

ful genetic tools to gain genomic and transcriptomic data from aged cells has not

been attempted before, though we now provide the necessary resources to enable

this study. Therefore, the coupling of both of these methods can help characterise

in more depth the molecular factors underlying yeast cellular ageing.

Bar-seq analysis of the data obtained from screening the fission yeast decoded genes

grown competitively in a pool generated a rich data-set worthy of further explo-

ration. Validation of top hits uncovered novel genes with roles in the maintenance of

early life and genes with pro-ageing effects. The fact that these genes have human

orthologs and their impairment influence human diseases marks them as perfect

candidates for further study.



Appendix A

Deletion library barcode strain

decoding analysis pipeline

A.1 Analysis
A custom pipeline to analyse the characterisation reads was custom developed as a

result of a successful collaboration with two talented PhD students in the lab. BarSe-

qTools, an R package used to characterise the deletion library has been made avail-

able and can be accessed from this public Git repository (https://github.

com/Catalina37/Barcount_BarSeqTools_Pipelines). Step by step

details of the analysis are provided below.

Step 1: Reads filtering

R1 and R2 reads were separately combined into one large R1 and one large R2

fastq file for both uptag and dntag samples, enabling the streamlining of the uptag

and the dntag files which were analysed separately. The barcode sequences were

extracted using the pre-defined U1/U2 and D2/D1 uptag and dntag flank sequences

defined as 5’-CAAGCTAAGATATC-3’(U1), 5’-TTTAAATGCGAAGTAA-3’(U2),

5’-TTTAAAATCCCCCCTA-3’(D2) and 5’-AGTGTCGAAAAGTATC-3’(D1).

Three base pair mismatches were allowed within each flank sequence, and these

were one deletion, one substitution and one insertion, thus enabling for barcode

sequence extraction flexibility, irrespective of the barcode sequence length, which

as a result of sequencing error rates within the barcode sequences were found to

https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines
https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines
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vary between 13-23 bp in length, a phenomenon also previously described (Lee

et al., 2018; Smith et al., 2009). R2 reads were then filtered based on the previously

filtered R1 reads to match the read header information, thus selecting only for the

R2 reads that correspond to the R1 barcodes.

Step 2: R2 customisation

The prerequisite to decoding the version 5.0 genes is the association between each

barcode and a small part of the genomic region which can be used to map to the ref-

erence genome, thus linking the genomic coordinates to the corresponding barcode

sequences. We meet this prerequisite by removing the index sequence from the R2

header and replaceing it with the barcode sequence extracted in step 1. Therefore,

we retained the R2 header information required for alignment to the genome while

tethering the gDNA to its corresponding barcode sequence.

Step 3: gDNA extraction & processing

The gDNA sequences of 43 bp in length were trimmed from the R2 reads using the

fastx trimmer (http://hannonlab.cshl.edu/fastx_toolkit/), and

then filtered against the U2/D2 primer sequences, as the reads were found to con-

tain part of the primer sequence. Given that the U2 and D2 sequences were directly

adjacent to the barcodes and immediately downstream of the gDNA region, these

were likely added during DNA shearing.

Step 4: Genome mapping

The gDNA sequences obtained from step 3 were mapped to the S. pombe genome

using Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml). Only the uniquely mapped reads were considered for further

analysis.

Step 5: Gene annotation

The uniquely aligned reads from step 4 were annotated to the S. pombe genes us-

ing Bedtools (https://bedtools.readthedocs.io/en/latest/). The

protein-coding genes genomic coordinates were matched to the version 5.0 genes,

thus extracting the genes coordinates required for further analysis.

http://hannonlab.cshl.edu/fastx_toolkit/)
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://bedtools.readthedocs.io/en/latest/
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Step 6: Barcode consensus generation

BarSeqTools was used to extract the barcode sequences previously added into the

R2 header. These were then quantified each time they were annotated to a gene,

thus forming unique gene-barcode pairs. Pairs which occurred ≤ 2 were omitted

from further analysis to reduce the data processing time. The remaining barcodes

were then used to generate barcode consensuses, by forming different variants of a

barcode defined by the number of base-pair mismatches allowed from the original

barcode sequence, thus grouping barcodes with similar sequences. Therefore, the

base-pair mismatches within the barcode consensuses can be used to select for a

barcode consensus sequence with a specific number of mutations from the original

sequence.

Step 7: Barcode consensus matching

The barcode consensuses defined by three allowed base-pair mismatches were

matched to the sequences of the extracted barcodes. Therefore, only the barcode se-

quences with three or fewer mismatches to the initially extracted barcode sequences

were processed further.

Step 8: Gene-barcode pair frequency

BarSeqTools was used to calculate the frequency or the occurrence for each unique

gene-barcode pair. This measure quantified the number of times each gene was

associated with a unique barcode sequence, thus a unique gene-barcode pair.

Step 9: Gene-barcode pair proportion

BarSeqTools was also used to calculate the proportion, defined by a percentage for

each gene and barcode separately within a unique gene-barcode pair. This was cal-

culated as the relative gene/barcode proportions within a unique gene-barcode pair.

These gene-centric and barcode-centric proportions can be used to define the strin-

gency of the gene-barcode pair strength, thus selecting for unique-barcode pairs.
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Step 10: High-confident gene-barcode pairs selection

High-confidence unique gene-barcode pairs were selected by combining the gene

and barcode proportions as 80% each with the minimum unique gene-barcode pair

frequency of 10, generated from step 9 and 8, respectively.

Step 11: Gene browser

As part of our analysis, we developed a gene browser, also incorporated in the

BarSeqTools package. The browser comprises of several tracks: a chromosomal

track, two gene tracks, one for the protein-coding genes and one for the dele-

tion library genes, and a barcode track where the uptag and the dntag associated

reads, defined by genomic coordinates, are on the upper and the lower track,

respectively. The barcode read coordinates aligning to the version 5.0 gene ge-

nomic coordinates and the uptag and dntag barcodes residing downstream and

upstream of the deleted gene, enable easy gene characterisation with the visual

gene browser. Besides, the different colours for each barcode sequence, the gene

browser highlights the gene of interest in black while the neighbouring genes are

coloured in grey. An interaction network is also used to display the proportion

between the gene and its associated barcode/s. Furthermore, the gene browser is

interactive with adjustable visualisation parameters for each track and the query

gene. Several pre-requisite files are required to use the gene browser, including the

gene annotation files, the calculated aggregation files, the automatically decoded

genes and the version 5.0 reference genes. However, these pre-requisites have

been made available and can be accessed from this public Git repository (https:

//github.com/Catalina37/Barcount_BarSeqTools_Pipelines/

tree/master/BioneerV5.0_Characterisation/Browser).

The gene browser was extremely useful not only for visualising and cross-validating

the automatically selected gene-barcode pairs but also for the manual gene charac-

terisation. The subsequent figures represent examples of the different gene-barcode

pairs observed in the gene browser, including unique gene-barcode pairs (Figure

A.1), duplicate genes (Figure A.2), dubious genes (Figure A.3) and genes with no

identifiable barcodes (Figure A.4).

https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines/tree/master/BioneerV5.0_Characterisation/Browser
https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines/tree/master/BioneerV5.0_Characterisation/Browser
https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines/tree/master/BioneerV5.0_Characterisation/Browser
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Figure A.1: Gene-browser example of a fully decoded gene.
Each barcode tag maps uniquely to each gene.

Figure A.2: Gene browser example of duplicate genes.
The barcode tag shared between two genes. The network indicates the proportion with which the
barcode tag maps to each unique gene.
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Figure A.3: Gene browser example of dubious genes.
Each barcode tag is mapping in nearly equal proportions over the four different genes rendering
them as dubious, thus indeterminate genes.

Figure A.4: Gene browser example of genes with no identifiable barcodes.
The absence of barcode tags around the query gene renders it as undecoded.
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A.2 Script

The script used for the characterisation sequence data analysis, developed in collab-

oration with StJohn Townsend and Stephan Kamrad, two talented PhD students in

the lab is provided below.

1−−−

2 T i t l e : ” D e l e t i o n L i b r a r y C h a r a c t e r i z a t i o n : S c r i p t ”

3−−−

4# Load t h e custom b u i l t R package c a l l e d BarSeqTools .

5# A l l o f t h e custom−b u i l t s c r i p t s a r e embeded w i t h i n BarSeqTools .

6 l i b r a r y ( BarSeqTools )

7

8# ###### Sample P r e p a r a t i o n #######

9# 1 . S e t working d i r e c t o r y , one f o r u p t a g and one f o r d n t a g f i l e s

10 se twd ( ” ˜ / Desktop / Cat BionnerV5 Recharc May18−77598553 / FASTQ

G e n e r a t i o n 2018−05−22 07 28 46Z−96698246 / u p t a g / ” )

11 se twd ( ” ˜ / Desktop / Cat BionnerV5 Recharc May18−77598553 / FASTQ

G e n e r a t i o n 2018−05−22 07 28 46Z−96698246 / d n t a g / ” )

12

13# 2 . Combine a l l u p t a g and d n t a g R1 and R2 f a s t q f i l e s

14# u p t a g

15 sys tem ( ” c a t * / *R1* > upTagsR1 . f a s t q ” )

16 sys tem ( ” c a t * / *R2* > upTagsR2 . f a s t q ” )

17# d n t a g

18 sys tem ( ” c a t * / *R1* > dnTagsR1 . f a s t q ” )

19 sys tem ( ” c a t * / *R2* > dnTagsR2 . f a s t q ” )

20

21# 3 . Load MAGIC: cutsom−b u i l t s c r i p t l i n k i n g b a r c o d e s & genomic

s e q u e n c e s t o g e t h e r

22MAGIC( ” upTagsR1 . f a s t q ” , ” upTagsR2 . f a s t q ” , ” up ” )

23MAGIC( ” dnTagsR1 . f a s t q ” , ” dnTagsR2 . f a s t q ” , ” dn ” )

24

25# ###### Sample a n a l y s i s i s pe r fo rmed wi th B a r c o u n t #######

26# 1 . S e t working d i r e c t o r y f o r B a r c o u n t a n a l y s i s

27 se twd ( ” ˜ / Desktop / Cat BionnerV5 Recharc May18−77598553 / FASTQ

G e n e r a t i o n 2018−05−22 07 28 46Z−96698246 / up dn UniqueMatches / ” )
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28

29# 2 . E x t r a c t b a r c o d e s from bed f i l e s & save as csv

30ExtractBarcodefromBEDTOOL ( ” u p B e d t o o l s . Unique . bed ” , ” upTags . Unq . csv

” )

31ExtractBarcodefromBEDTOOL ( ” d n B e d t o o l s . Unique . bed ” , ” dnTags . Unq . csv

” )

32

33# 3 . Name & l o a d t h e cvs f i l e s

34upTags <− r e a d . csv ( ” upTags . Unq . csv ” )

35dnTags <− r e a d . csv ( ” dnTags . Unq . csv ” )

36

37# 4 . Load package & c o u n t b a r c o d e p r e s e n c e and s e q u e n c e l e n g t h

38 l i b r a r y ( p l y r )

39

40 upTagsCount <− ddp ly ( upTags , . ( t a g ) , summarise , n= l e n g t h ( t a g ) )

41 dnTagsCount <− ddp ly ( dnTags , . ( t a g ) , summarise , n= l e n g t h ( t a g ) )

42# F i l e s a r e t o o l a r g e f o r R t o p r o c e s s , d i s c a r d r e a d s .

43

44# 5 . D i s c a r d b a r c o d e s a p p e a r i n g <=2 t o a un iq ue gene

45upTagsUncommon <− upTagsCount $ t a g [ upTagsCount $n<=2]

46dnTagsUncommon <− dnTagsCount $ t a g [ dnTagsCount $n<=2]

47

48# 6 . F i l t e r f o r t h e b a r c o d e r e a d s mapped t o a un iq ue gene >2

49upTags <− upTags[−which ( upTags $ t a g %i n% upTagsUncommon ) , ]

50dnTags <− dnTags[−which ( dnTags $ t a g %i n% dnTagsUncommon ) , ]

51

52# 7 . C r e a t e b a r c o d e c o n s e n s u s by a l l o w i n g 2 bp mismatches

53 upConsensus <− c r e a t e C o n s e n s u s ( upTags $ tag , 2 , ” upTags . pdf ” )

54 dnConsensus <− c r e a t e C o n s e n s u s ( dnTags $ tag , 2 , ” dnTags . pdf ” )

55

56# 8 . P l o t t h e d i s t r i b u t i o n o f t h e c r e a t e d b a r c o d e c o n s e n s u s e s

57 h i s t ( upConsensus $n , b r e a k s =1500 , x l im =c ( 0 , 1 0 0 0 0 ) , y l im =c ( 0 , 100) ,

main=” Uptags ” , x l a b =” Frequency of Consensus Barcode ” )

58 h i s t ( dnConsensus $n , b r e a k s =1500 , x l im =c ( 0 , 1 0 0 0 0 ) , y l im =c ( 0 , 100) ,

main=” Dntags ” , x l a b =” Frequency of Consensus Barcode ” )

59
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60# 9 . Match b a r c o d e s t o genes based on t h e b a r c o d e c o n s e n u s e s and

a c t u a l b a r c o d e s

61# Max d i f f e r e n c e a l l o w e d i s 3 bp mismatches

62upTags <− matchBarcodes ( upTags , t ag , upConsensus $ b a r c o d e C o n s e n s u s )

63dnTags <− matchBarcodes ( dnTags , t ag , dnConsensus $ b a r c o d e C o n s e n s u s )

64

65# 1 0 . Wr i t e o u t t h e s e t a b l e s a s csv

66 w r i t e . c sv ( upTags , ” upTags . csv ” , row . names = F )

67 w r i t e . c sv ( dnTags , ” dnTags . csv ” , row . names = F )

68

69# 1 1 . C a l c u l a t e t h e number o f mismatches between c o n s e n s u s & a c t u a l

b a r c o d e s

70 t a b l e ( upTags $ nMismatches )

71 t a b l e ( dnTags $ nMismatches )

72

73# 1 2 . C a l c u l a t e t h e f r e q u e n c y f o r each gene−b a r c o d e c o n s e n s u s

74 upTagsFreq <− c a l c u l a t e F r e q u e n c y ( upTags , t a g BestMatch , gene )

75 dnTagsFreq <− c a l c u l a t e F r e q u e n c y ( dnTags , t a g BestMatch , gene )

76

77# 1 3 . C a l c u l a t e a g g r e g a t i o n f o r each gene−b a r c o d e c o n s e n s u s as

f o l l o w s :

78# − each un iq ue gene a g a i n s t e v e r y b e s t b a r c o d e c o n s e n s u s

79# − each un iq ue b e s t b a r c o d e c o n s e n s u s a g a i n s t e v e r y gene

80upTagsAgg <− a g g r e g a t e P r o p o r t i o n s ( upTagsFreq , t a g BestMatch , gene )

81dnTagsAgg <− a g g r e g a t e P r o p o r t i o n s ( dnTagsFreq , t a g BestMatch , gene )

82

83# 1 4 . Wr i t e o u t t h e s e t a b l e s a s csv

84 w r i t e . c sv ( upTagsAgg , ” upTagsAgg . csv ” , row . names = F )

85 w r i t e . c sv ( dnTagsAgg , ” dnTagsAgg . csv ” , row . names = F )

86

87# 1 5 . C r e a t e s a f e gene−b a r c o d e s wi th t h e h i g h e s t f r e q u e n c y

o c c u r a n c e based on :

88# − min 10 o c c u r e n c e s f o r each gene l i n k e d t o t h a t p a r t i c u l a r

b a r c o d e

89# − min 80% of t h e t ime f o r which t h a t gene i s l i n k e d t o t h a t

b a r c o d e
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90 minFreq <− 10

91 m i n P r o p o r t i o n <− 0 . 8

92

93# 1 6 . Wr i t e a f u n c t i o n t o v i s u a l i s e t h e s e two c u t o f f s

94 p l o t S a f e s <− f u n c t i o n ( tagsAgg , y , minFreq , m i n P r o p o r t i o n , y lab ,

main ) {

95 p l o t ( tagsAgg $ f r e q , tagsAgg [ [ y ] ] , cex = 0 . 1 , c o l = i f e l s e ( tagsAgg $

f r e q>minFreq & tagsAgg [ [ y ]]> m i n P r o p o r t i o n , ” Blue ” , ” Black ” ) ,

x l a b =” Barcode−Gene Frequency ” , y l a b = ylab , main=main )

96 a b l i n e ( h= m i n P r o p o r t i o n , c o l =”Red” )

97 a b l i n e ( v=minFreq , c o l =”Red” )

98}

99

100### P l o t t o v i s u a l i s e t h e u p t a g s a f e l i s t

101 p a r ( mfrow=c ( 1 , 2 ) )

102 p l o t S a f e s ( upTagsAgg , ” b a r c o d e P r o p o r t i o n ” , minFreq , m i n P r o p o r t i o n ,

” P r o p o r t i o n o f Barcode i n Barcode−Gene P a i r ” , main=”Up Tags ” )

103 p l o t S a f e s ( upTagsAgg , ” g e n e P r o p o r t i o n ” , minFreq , m i n P r o p o r t i o n , ”

P r o p o r t i o n o f Gene i n Barcode−Gene P a i r ” , main=”Up Tags ” )

104

105### P l o t t o v i s u a l i s e t h e d n t a g s a f e l i s t

106 p a r ( mfrow=c ( 1 , 2 ) )

107 p l o t S a f e s ( dnTagsAgg , ” b a r c o d e P r o p o r t i o n ” , minFreq , m i n P r o p o r t i o n ,

” P r o p o r t i o n o f Barcode i n Barcode−Gene P a i r ” , main=”Dn Tags ” )

108 p l o t S a f e s ( dnTagsAgg , ” g e n e P r o p o r t i o n ” , minFreq , m i n P r o p o r t i o n , ”

P r o p o r t i o n o f Gene i n Barcode−Gene P a i r ” , main=”Dn Tags ” )

109

110# 1 7 . S u b s e t t h e s e a u t o m a t i c a l l y d e t e c t e d gene−b a r c o d e p a i r s

111 upTagsSafe <− s u b s e t ( upTagsAgg , upTagsAgg$ f r e q >=minFreq &

upTagsAgg$ b a r c o d e P r o p o r t i o n >=m i n P r o p o r t i o n & upTagsAgg$

g e n e P r o p o r t i o n >=m i n P r o p o r t i o n )

112 dnTagsSafe <− s u b s e t ( dnTagsAgg , dnTagsAgg$ f r e q >=minFreq &

dnTagsAgg$ b a r c o d e P r o p o r t i o n >=m i n P r o p o r t i o n & dnTagsAgg$

g e n e P r o p o r t i o n >=m i n P r o p o r t i o n )

113
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114# 1 8 . Save t h e s u t o m a t i c a l l y d e t e c t e d genes by w r i t i n g t h e s e t a b l e s

o u t a s csv

115 upTagsSafe $Method <− ” a u t o ”

116 dnTagsSafe $Method <− ” a u t o ”

117

118 w r i t e . c sv ( dnTagsSafe , ” dnTagsAutoSafe . csv ” , row . names = F )

119 w r i t e . c sv ( upTagsSafe , ” upTagsAutoSafe . csv ” , row . names = F )

120

121# ###### A n a l y s i s Q u a l i t y Check #######

122# 1 . I d e n t i f y t h e number o f s a f e genes , un iq ue genes and un iq ue

b a r c o d e s

123# u p t a g

124nrow ( upTagsSafe )

125 l e n g t h ( u n i qu e ( upTagsSafe $ b a r c o d e ) )

126 l e n g t h ( u n i qu e ( upTagsSafe $ gene ) )

127

128# d n t a g

129nrow ( dnTagsSafe )

130 l e n g t h ( u n i qu e ( dnTagsSafe $ b a r c o d e ) )

131 l e n g t h ( u n i qu e ( dnTagsSafe $ gene ) )

132

133# ###### Gene Browser #######

134# 1 . Load t h e p r e r e q u i s i t e s f o r r u n n i n g t h e Gene Browser

135myTxDb <− makeTxDbFromBiomart ( b i o m a r t = ” f u n g i mar t ” , d a t a s e t = ”

spombe eg gene ” , h o s t =” f u n g i . ensembl . o rg ” )

136 o p t i o n s ( ucscChromosomeNames=FALSE)

137

138# 2 . S e t d i r e c t o r y

139 se twd ( ” ˜ / Desktop / Cat BionnerV5 Recharc May18−77598553 / FASTQ

G e n e r a t i o n 2018−05−22 07 28 46Z−96698246 / up dn UniqueMatches / ” )

140

141# 3 . Load t h e dependency f i l e s t o v i s u a l i s e t h e genes o f i n t e r e s t

142 Bah le rBa rcodeBrowse r ( ” upTags . csv ” , ” dnTags . csv ” , ” upTagsAgg . csv ” ,

” dnTagsAgg . csv ” , ” upTagsAutoSafe . c sv ” , ” dnTagsAutoSafe . c sv ” , ”

upTagsManualSafe . csv ” , ” dnTagsManualSafe . c sv ” , myTxDb )



Appendix B

Bar-seq analysis pipeline

Barcount, a stand-alone python script used to analyse Bar-seq data was developed

in collaboration with Stephan Kamrad, a PhD student in the lab. The package

was made available to download and can be accessed from this public Git repos-

itory (https://github.com/Catalina37/Barcount_BarSeqTools_

Pipelines/tree/master/BarSeq).

B.1 Script
The script with the steps used to analyse the Bar-seq sequence data is provided

below.

1# ! / b i n / bash

2

3# 1 . Unzip t h e f a s t q . compressed f i l e s

4 f o r f i n * / * . gz ; do echo ” $f ” ; done

5 f o r f i n * / * . gz ; do gu nz ip ” ${ f }” ; done

6

7

8# 2 . F u l l o v e r l a p R1 & R2 f a s t q assembly wi th PEAR

9R1=( $ ( l s −d * / * R1 001 . f a s t q ) )

10R2=( $ ( l s −d * / * R2 001 . f a s t q ) )

11

12 o u t p u t =( ${R1 [@] / R1 001 . f a s t q / PEAR} )

13 l e n g t h =${#R1 [@]}

14 l e n g t h =$ ( ( $ l e n g t h −1) )

15

https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines/tree/master/BarSeq
https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines/tree/master/BarSeq
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16 f o r ( ( i =0 ; i<=$ l e n g t h ; i ++) ) ; do echo $ i ; echo ${R1 [ $ i ] } ; echo ${R2 [

$ i ] } ; echo ${ o u t p u t [ $ i ] } ; done

17 f o r ( ( num=0;num<=$ l e n g t h ; num++) ) ; do echo $num ; p e a r −n 86 −m 86 −

f ${R1 [ $num ]} −r ${R2 [ $num ]} −o ${ o u t p u t [ $num ]} > ${ o u t p u t [ $num

]} l o g ; done

18

19

20# 3 . Remove e v e r y o t h e r f i l e from t h e PEAR assembly a n a l y s i s e x c e p t

t h e as sembled f i l e

21 f o r f i n * / * 0 0 1 . f a s t q ; do echo ” $ f ” ; done

22 f o r f i n * / * 0 0 1 . f a s t q ; do rm ” $f ” ; done

23

24 f o r f i n * / *PEAR . unassembled * . f a s t q ; do echo ” $f ” ; done

25 f o r f i n * / *PEAR . unassembled * . f a s t q ; do rm ” $f ” ; done

26

27 f o r f i n * / * d i s c a r d e d . f a s t q ; do echo ” $f ” ; done

28 f o r f i n * / * d i s c a r d e d . f a s t q ; do rm ” $f ” ; done

29

30

31# 4 . Run b a r c o u n t on d n t a g

32 f o r f i n * / * dn * . a s sembled . f a s t q ; do b a r c o u n t −− f a s t q ” $ f ” −−

f l a n k i n g l e f t AGTATC −− f l a n k i n g r i g h t TTTAAA −−

m a x d i s t a n c e f l a n k s 1 −−m a x d i s t a n c e b a r c o d e 3 −−b a r c o d e t a b l e

/ home / ucb tomi / d n t a g r e f e r e n c e . csv −−debug −−

s a v e e x t r a c t e d b a r c o d e s −−v e r b o s e −−u m i A p o s i t i o n ” 4 : 8 ” −−

u m i B p o s i t i o n ” −8:−4” −−o u t ” ${ f } B a r c o d e f i l t e r ” ; done

33

34

35# 5 . Run b a r c o u n t on u p t a g

36 f o r f i n * / * up * . a s sembled . f a s t q ; do b a r c o u n t −− f a s t q ” $ f ” −−

f l a n k i n g l e f t GATATC −− f l a n k i n g r i g h t TTTAAA −−

m a x d i s t a n c e f l a n k s 1 −−m a x d i s t a n c e b a r c o d e 3 −−b a r c o d e t a b l e

/ home / ucb tomi / u p t a g r e f e r e n c e . csv −−debug −−

s a v e e x t r a c t e d b a r c o d e s −−v e r b o s e −−u m i A p o s i t i o n ” 4 : 8 ” −−

u m i B p o s i t i o n ” −8:−4” −−o u t ” ${ f } B a r c o d e f i l t e r ” ; done
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CLS lifespan validation script

C.1 Script
The maximum likelihood script with the steps used to estimate the number of viable

cells for the CLS validated mutants.

1# F o l l o w i n g i n s t a l l a t i o n o f t h e DeadOrAlive package , l o a d l i b r a r y

2 l i b r a r y ( DeadOrAlive )

3 l i b r a r y ( p a r a l l e l )

4

5# I n i t i a l i s e p a r a l l e l comput ing e n v i r o n m e n t

6no c o r e s <− 2

7 c l <− m a k e C l u s t e r ( no c o r e s )

8

9# Get t h e d i r e c t o r y t o be p r o c e s s e d

10 d i r <− ” ˜ / Desktop / r e g r o w t h / V a l i d a t i o n D a t a / Cat V a l i d a t i o n / 20190527

c a t V a l i d a t i o n / ”

11

12# Get a l l f i l e s

13 f i l e s <− l i s t . f i l e s ( d i r , ” \\ . j p g ” )

14

15# E x t r a c t image number from t h e f i l e

16imageNo <− u n l i s t ( r e g m a t c h e s ( f i l e s , r e g e x e c ( ”\\d+ c a t V a l i d a t i o n \\ .

j p g ” , f i l e s ) ) )

17imageNo <− as . numer ic ( sub ( ” c a t V a l i d a t i o n \\ . j p g ” , ” ” , imageNo ) )

18

19# Get r e f e r e n c e p l a t e s and remove from l i s t o f f i l e s



C.1. Script 139

20 r e f e r e n c e P l a t e s <− f i l e s [ imageNo%i n%c ( 1 , 2 , 3 , 4 ) ]

21imageNo <− imageNo [ f i l e s%i n%r e f e r e n c e P l a t e s ==F ]

22 f i l e s <− f i l e s [ f i l e s%i n%r e f e r e n c e P l a t e s ==F ]

23

24# S p l i t t h e images based on s c a n n e r p o s i t i o n

25 pos1 <− f i l e s [ imageNo%%4==1]

26 pos2 <− f i l e s [ imageNo%%4==2]

27 pos3 <− f i l e s [ imageNo%%4==3]

28 pos4 <− f i l e s [ imageNo%%4==0]

29

30# S e t up p a r a l l e l e n v i r o n m e n t

31 c l u s t e r E x p o r t ( c l , c ( ” d i r ” , ” r e f e r e n c e P l a t e s ” , ” pos1 ” , ” pos2 ” , ”

pos3 ” , ” pos4 ” ) )

32 c l u s t e r E v a l Q ( c l , l i b r a r y ( DeadOrAlive ) )

33

34#Run c o l o n y T h r e s h o l d wi th each s c a n n e r p o s i t i o n on a d i f f e r e n t

worker

35 p a r S a p p l y ( c l , 1 : 4 , f u n c t i o n ( x ) {

36 c o l o n y T h r e s h o l d ( d i r = d i r , f i l e F o r m a t =” j p g ” , f i l e s = g e t ( p a s t e 0 ( ” pos

” , x ) ) , r e f e r e n c e = r e f e r e n c e P l a t e s [ x ] , i n v e r s e =T )

37} )

38

39# Get t h e d i r e c t o r y t o be p r o c e s s e d

40 d i r <− ” ˜ / Desktop / r e g r o w t h / V a l i d a t i o n D a t a / Cat V a l i d a t i o n / Cat /

20190527 c a t V a l i d a t i o n / ”

41

42# Get a l l f i l e s

43 f i l e s <− l i s t . f i l e s ( d i r , ” \\ . j p g ” )

44

45# E x t r a c t image number from t h e f i l e

46imageNo <− u n l i s t ( r e g m a t c h e s ( f i l e s , r e g e x e c ( ”\\d+ c a t V a l i d a t i o n \\ .

j p g ” , f i l e s ) ) )

47imageNo <− as . numer ic ( sub ( ” c a t V a l i d a t i o n \\ . j p g ” , ” ” , imageNo ) )

48

49# Get r e f e r e n c e p l a t e s and remove from l i s t o f f i l e s

50 r e f e r e n c e P l a t e s <− f i l e s [ imageNo%i n%c ( 3 5 , 3 6 , 3 7 , 3 8 ) ]
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51 r e f e r e n c e P l a t e s <− r e f e r e n c e P l a t e s [ c ( 3 , 4 , 1 , 2 ) ]

52imageNo <− imageNo [ f i l e s%i n%r e f e r e n c e P l a t e s ==F ]

53 f i l e s <− f i l e s [ f i l e s%i n%r e f e r e n c e P l a t e s ==F ]

54

55# S p l i t t h e images based on s c a n n e r p o s i t i o n

56 pos1 <− f i l e s [ imageNo%%4==1]

57 pos2 <− f i l e s [ imageNo%%4==2]

58 pos3 <− f i l e s [ imageNo%%4==3]

59 pos4 <− f i l e s [ imageNo%%4==0]

60

61# S e t up p a r a l l e l e n v i r o n m e n t

62 c l u s t e r E x p o r t ( c l , c ( ” d i r ” , ” r e f e r e n c e P l a t e s ” , ” pos1 ” , ” pos2 ” , ”

pos3 ” , ” pos4 ” ) )

63 c l u s t e r E v a l Q ( c l , l i b r a r y ( DeadOrAlive ) )

64

65#Run c o l o n y T h r e s h o l d wi th each s c a n n e r p o s i t i o n on a d i f f e r e n t

worker

66 p a r S a p p l y ( c l , 1 : 4 , f u n c t i o n ( x ) {

67 c o l o n y T h r e s h o l d ( d i r = d i r , f i l e F o r m a t =” j p g ” , f i l e s = g e t ( p a s t e 0 ( ” pos

” , x ) ) , r e f e r e n c e = r e f e r e n c e P l a t e s [ x ] , i n v e r s e =T )

68} )

69

70# Stop t h e c l u s t e r when e v e r y t h i n g i s done

71 s t o p C l u s t e r ( c l )

72

73# S e t working d i r e c t o r y

74 se twd ( ” ˜ / Desktop / r e g r o w t h / V a l i d a t i o n D a t a / ” )

75

76# E x t r a c t co l on y v e c t o r s

77 myColonyVectors <− e x t r a c t C o l o n y V e c t o r s ( ” Cat V a l i d a t i o n / 20190527

c a t V a l i d a t i o n / Image A n a l y s i s / ” , ” ˜ / Desktop / r e g r o w t h /

V a l i d a t i o n D a t a / p l a t e R e f e r e n c e F i l e . c sv ” , ” ˜ / Desktop / r e g r o w t h /

V a l i d a t i o n D a t a / s a m p l e R e f e r e n c e F i l e . c sv ” )

78 myColonyVectors2 <− e x t r a c t C o l o n y V e c t o r s ( ” Cat V a l i d a t i o n / Cat /

20190527 c a t V a l i d a t i o n / Image A n a l y s i s / ” , ” ˜ / Desktop / r e g r o w t h /

V a l i d a t i o n D a t a / p l a t e R e f e r e n c e F i l e 2 . csv ” , ” ˜ / Desktop / r e g r o w t h /
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V a l i d a t i o n D a t a / s a m p l e R e f e r e n c e F i l e . c sv ” )

79 myColonyVectors <− c ( myColonyVectors , myColonyVectors2 )

80

81# Per form MLE

82CFUsMLE<− a n a l y s e C o l o n y V e c t o r s ( myColonyVectors , d i l u t i o n =3 , t a b l e .

name = ”CFUsMLE . csv ” , markdown . name = ”CFUsMLE . h tml ” )

83

84# P l o t e s t i m a t e d number o f l i v e c e l l s p e r mutan t and t i m e p o i n t

85 se twd ( ” ˜ / Desktop / r e g r o w t h / V a l i d a t i o n D a t a / ” )

86CFUsMLE <− r e a d . csv ( ”CFUsMLE . csv ” , s t r i n g s A s F a c t o r s = F )

87 t a b l e (CFUsMLE$ T o t a l E x c l u s i o n s )

88CFUsMLE <− CFUsMLE[−which (CFUsMLE$ T o t a l E x c l u s i o n s >1) , ]

89

90 l i b r a r y ( g g p l o t 2 )

91g <− g g p l o t (CFUsMLE, a e s ( Time , C o l o n y F o r m i n g U n i t s P e r D r o p l e t , g roup

=Sample , c o l o r =Sample ) ) + geom p o i n t ( ) + geom l i n e ( ) + s c a l e y

log10 ( ) + theme ( l e g e n d . p o s i t i o n = ” none ” )

92g



Appendix D

List of the long-lived mutants

Provided below is the 168 long-lived gene deletions identified from the CLS Bar-

seq screen, including the mutants selected for CLS validation as well as the gene

product description as shown in (Table D.1).
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Note that the #1, #2, #3, #4 and #5 labelled genes refer to (Lie et al., 2018; Doi et al., 2015; Sideri

et al., 2015; Rallis et al., 2014, 2013) and denote the CLS genes common to the previously published

deletion screens as referenced.
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Rieger, M., Schäfer, M., Müller-Auer, S., Gabel, C., Fuchs, M., Fritzc, C., Holzer,

E., Moestl, D., Hilbert, H., Borzym, K., Langer, I., Beck, A., Lehrach, H., Rein-

hardt, R., Pohl, T. M., Eger, P., Zimmermann, W., Wedler, H., Wambutt, R.,

Purnelle, B., Goffeau, A., Cadieu, E., Dréano, S., Gloux, S., Lelaure, V., Mottier,
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