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Abstract

MPROVING AGRONOMICALLY IMPORTANT TRAITS, such as yield, is important in or-
I der to meet the ever growing demands of increased crop production. Knowledge of
the genes that have an effect on a given trait can be used to enhance genomic selection by
prediction of biologically interesting loci. Candidate genes that are strongly linked to a
desired trait can then be targeted by transformation or genome editing. This application
of prioritisation of genetic material can accelerate crop improvement. However, the applic-
ation of this is currently limited due to the lack of accurate annotations and methods to

integrate experimental data with evolutionary relationships.

Hierarchical orthologous groups (HOGs) provide nested groups of genes that enable the
comparison of highly diverged and similar species in a consistent manner. Over 2,250
species are included in the OMA project, resulting in over 600,000 HOGs. This thesis
provides the required methodology and a tool to exploit this rich source of information,
in the HOGPROP algorithm. The potential of this is then demonstrated in mining crop
genome data, from metabolic QTL studies and utilising Gene Ontology (GO) annotations
as well as ChEBI terms (Chemical Entities of Biological Interest) in order to prioritise

candidate causal genes.

Gauging the performance of the tool is also important. When considering GO annotations,
the CAFA series of community experiments has provided the most extensive benchmark-
ing to-date. However, this has not fully taken into account the incomplete knowledge of
protein function — the open world assumption (OWA). This will require extra negative
annotations, for which one such source has been identified based on expertly curated
gene phylogenies. These negative annotations are then utilised in the proposed, OWA-
compliant, improved framework for benchmarking. The results show that current bench-
marks tend to focus on the general terms, which means that conclusions are not merely

uninformative, but misleading.






Impact Statement

MPROVING AGRONOMICALLY IMPORTANT TRAITS, such as yield, is important in or-
I der to meet the ever growing demands of increased crop production. Knowledge of
the genes that influence traits can be used to prioritise different genetic material during
breeding processes and thereby accelerate crop improvement. The continuously increas-
ing availability of genomics and trait-association data present a unique opportunity for

computational identification of gene function.

Biological interpretation of omics data for crop species is hampered by the highly redund-
ant nature of plant genomes, originating from their complex history of duplication and
hybridisation events. With almost all genes being available in several copies on multiple
sub-genomes, the use of comparative genomics is essential in order to distil biological in-
formation from scattered data on single genes. Genes that have common ancestors, similar

expression patterns, or are physically close to each other may share biological function.

The vast majority of the current functional annotation of genes in crop species are projected
from the model plant Arabidopsis thaliana and thus inadequate for all aspects in species that
have changed since divergence — for instance, the monocot wheat diverged from A. thaliana
over 100 million years ago. Traditional methods to propagate functional knowledge across
evolutionary related genes are unable to deal with highly redundant genomes, which
makes them ill-suited to consider evolutionary close and distant species in a consistent
framework. In contrast, hierarchical orthologous groups (HOGs) enable the analysis of
related genes across multiple species in a precisely defined, consistent and interpretable
manner. This thesis provides a new reliable method to infer and propagate high-quality
functional data within and across multiple species, thereby fully exploiting existing omics

data to go above and beyond simple comparisons with A. thaliana.

Recent efforts to improve and benchmark computational gene function prediction methods

have led to the CAFA series of community experiments. These currently provide the



most comprehensive benchmark, with a time-delayed analysis leveraging newly curated,
experimentally supported annotations. However, there are fundamental problems which
remain unsolved. In particular, the inherent incompleteness of databases and lack of
negative annotations (“open world assumption”) limits current assessments of function
prediction accuracy. This thesis goes some way to solve this, by providing a benchmark
which permits for the open world assumption by providing a balanced test set such that
methods are only rewarded for predicting terms that can be disproved. Previously, this
has not been possible due to the relative paucity of negative experimental annotations. To
alleviate this issue, a large number of negative annotations are derived from expert-curated
annotations of protein families on phylogenetic trees. An assessment is also presented,
using this framework, of the two baseline methods from CAFA (one based on BLAST and
the other on annotation frequency), as well as two orthology methods. The results show
that the current benchmarks typically focus more on general terms and demonstrates how

this is not merely uninformative, but in fact misleading.
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Chapter 1

Introduction

MPROVING AGRONOMICALLY IMPORTANT TRAITS, such as yield, is important in or-
I der to meet the ever growing demands of increased crop production. Knowledge of
the genes that have an effect on a given trait can be used to enhance genomic selection by
prediction of biologically interesting loci (demonstrated in animal breeding [SCK+13],
however applicable to plants also). Candidate genes that are strongly linked to a desired
trait can then be targeted by transformation or genome editing. This application of priorit-
isation of genetic material can accelerate crop improvement. However, the application of
this is currently limited due to the lack of accurate annotations and methods to integrate

experimental data with evolutionary relationships.

Biological interpretation of “omics” data for crop species is restricted by the highly redund-
ant nature of plant genomes, originating from their complex history of duplication and
hybridisation events. With almost all genes being available in several copies on multiple
sub-genomes, the use of comparative genomics is essential in order to distil biological in-
formation from scattered data on single genes. Genes that have common ancestors, similar

expression patterns, or are physically close to each other may share biological function.

Furthermore, the vast majority of current functional annotation of genes in crop species
are projected from the dicot model plant Arabidopsis thaliana. Thus, these are inadequate
for all aspects in species that have changed since the divergence (for example, the monocot
wheat diverged from Arabidopsis thaliana over 100 million years ago). Traditional methods
to propagate functional knowledge across evolutionary related genes (for example, bid-
irectional BLAST hits or OrthoMCL) are unable to deal with highly redundant genomes,
which makes them ill-suited to consider evolutionary close and distant species in a consist-

ent framework. In contrast, there has been progress in the ability to compute hierarchical

23



24 Chapter 1. Introduction

orthologous groups (HOGs) [AGGD13; TGG+17] — nested groups of genes that evolved
from a common ancestral gene within each clade of interest — now enabling the compar-
ison of genes across multiple species in a precisely defined, consistent and interpretable

manner.

The increasing availability of both genomic and trait-association data presents a unique
opportunity for computational prediction of gene function. This thesis aims to utilise
HOGs in order to exploit this abundance of data, to predict function as well as to provide

methods in which to integrate many different types of data.

This chapter describes general concepts, methods and resources relevant to the work
presented in this thesis, before closing with the aims and an outline of the following

chapters.

1.1 Biological Function

There are two main schools of thought on how function should be defined [ Tho17]: “causal-
role function” and “selected-effect function”. The former, first proposed by Cummins
[Cum?75], focusses on describing function by how some entity contributes to some overall
capacity of the system in which it is contained. That is, the function of a part is relative to
some system. However, one problem with this is that there is no systematic way in order

to identify what the larger system should be, nor the relevant capacity of that system.

The second of the definitions, selected-effect, is derived from the aetiological definition of
function given by Wright [Wri73]. This defines the function of an entity as the answer to
why such an entity exists, in the first place. Similarly, this can be explained by which of
the effects were selected for during evolution [Mil89; Nea91]. This has the advantage that
function is derived from the history of its natural selection, which explicitly encorporates
evolution into the definition. This has the advantage over the causal-role definition in that
it does not require arbitrary decisions to define a containing system and capacities. This
issue means that under the causal-role definition there is no general rule for distinguishing

functional from accidental effects.
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Many biologists, however, have continually defended the causal-role definition. This is
particularly the case within the discipline of functional anatomy [ AL94 ], which emphasises
how anatomical parts function as parts of larger systems. As the selected trait can often be
difficult to infer, many believe that a lack of any hypothesis for such a trait should not hinder
the analysis of the mechanism in which an anatomical feature operates. As such, the search
for mechanisms of operation has more recently been offered as an alternative paradigm
[MDCO00]. This, just as in the causal-role definition, focusses on how parts contribute to
an overall system. However, it instead looks at how entities (such as proteins) perform
activities, or actions that can have casual effects on other activities. That is, a function is
simply an activity carried out as part of a larger mechanism. The subtle difference here is
that the activity holds the role of a particular function, instead of the entity itself having
a function. However, similar to the causal-role definition, no constraints are placed upon
the mechanism and so it receives similar criticism with regards to the arbitrary choice of

system.

The differences in these two main paradigms stem from the questions they are attempting
to address. Under the selected-effects definition, the question is regarding origins [Wri73]
— why does the entity exist? Whereas, for the causal-role definition the subject is operation
[Cum?75] — how does the entity contribute to the biological capacity of the organism to
which it belongs? In most biological research today, the focus is to understand the mech-
anisms by which biological systems operate, rather than explaining why the parts exist

altogether.

Molecular biologists [ AJL+02; Mon74] have defined function as specific, co-ordinated
activities which have the appearance of having been designed for a given purpose. That
apparent “purpose” is their function. The appearance of design, however, derives from nat-
ural selection and so many biologists favour describing these as biological “programmes”,
in order to avoid connotations of intentional design. These programmes are modular and
are present inside a nested hierarchy with other programmes. The lowest-level of such
programmes is the expression of a single macro-molecule — for example, a protein. The
DNA in the gene is translated into RNA, before being translated into the amino-acid chain

of the protein. As this adopts a particular structure then, by simply following physical
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laws, it is possible to determine how it will interact with other specific molecular entities.
At a higher-level, the functions of multiple proteins are executed in a coherent, regulated
manner, to accomplish a larger function. In order to discover selected-effects functions
then means to identify a coherent, regulated system of activities. However, causal-role
analyses, whilst they play a role in functional anatomy and molecular biology, are only
candidates for evolved biological functions until they have been related to survival and

reproduction.

1.2 Protein Function

Genes are contiguous regions of DNA which encode instructions for how a cell can produce
a particular macro-molecule, or potentially multiple different macro-molecules. These
gene-products (the macro-molecules) can be of two types: a non-coding RNA or, the most

common, a protein.

As the function of a given protein is often context-based and can be studied from differ-
ent aspects, ranging from its biochemical activity to the role of the protein in particular
pathways, cells, tissues and organisms. As such, the functional role of a protein can be
described in many different contexts. It can be explained in terms of: (i) the molecular
function of the protein, (ii) its role in a biological pathway and (iii) its cellular location.
Natural language annotations in databases and literature are too vague and unspecific to
accurately describe the function of proteins. This has led to the development of several

vocabularies for annotating protein function.

1.2.1 Representation of Functional Knowledge

Various protein annotation schemes have been developed [RO09; RHT00]. For instance,
some of the most popular are the Enzyme Commission (EC) numbers [ Web+92], Kyoto
Encyclopaedia of Genes and Genomes (KEGG) [KFT+17], the Riley scheme [Ril93], MIPS
Functional Catalogue (FUNCAT) [RZM+04] and the Gene Ontology (GO) [ABB+00;
Genl7; Gen18]. The EC and TC schemes for enzymes and transport proteins, have tradi-
tionally been used to annotate molecular function. Involvement in biological processes

or cellular pathways is, instead, annotated using the (KEGG), the Riley scheme or FUN-
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CAT. Many complementary schemes also exist, for example Reactome [FJM+18] provides
manually-curated biological pathways containing molecular details of cellular processes

as an ordered network of molecular transformations.

The Gene Ontology

The Gene Ontology (GO), on the other hand, aims to unify the annotation of gene-products
(for example, proteins), in a biologically meaningful way across all species [ ABB+00;
Genl7; Genl8]. A gene-product can be thought of as a molecular machine, performing
a chemical action (an activity). Further, the gene-products resulting from different genes
can combine into a larger molecular machine, called a macro-molecular complex. Each
concept within the GO relates to the activity of a gene-product or complex, as these are the
entities which undertake cellular processes. As a gene encodes a gene-product, it can be
considered the source of these activities and processes. However, as it does not perform
the activity itself when referring to “gene function” this is strictly speaking “gene-product

function”.

The GO defines a “universe” of possible functions which a gene may have, however it does
not make any claims about the function of any particular genes. These exist as annotations
— statements about the function of a particular gene. As biological knowledge is, typically,
grossly incomplete, the GO annotation format was designed to capture partial, incom-
plete statements about gene function. Typical annotations associate a single GO concept
(or “term”) with a single gene. Together, these statements provide a snapshot of current

biological knowledge.

This universe of functions is defined as three distinct aspects, representing key biological
domains that are shared by organisms: biological process, cellular component and molecular
function. In the molecular biology paradigm (as described in Section 1.1), a gene encodes
a gene-product, which carries out a molecular-level process or activity (molecular function)
in a specific location relative to the cell (cellular component). This particular molecular
process contributes to a larger biological objective (biological process) comprised of multiple

molecular-level processes.
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GO:0008150 Most General
biological
process

N

GO:0009987
cellular
process

N

GO:0001775
cell
activation

N

GO:0072537
fibroblast
activation

N

GO:0035733
hepatic stellate cell
activation Most Speciﬁc

Figure 1.1: Example of the GO term for hepatic stellate cell activation and
the parent terms (defined by the “is a” relationship) which are implied
by an association with it. The closer to the root term, the less specific
the GO term is. Whilst, the further away the more specific it is.

Each of these aspects are defined as directed acyclic graphs (DAGs), with each term (node
in graph) having defined relationships to one, or more, other terms in the same aspect.
The most common relationships are: “isa” / “can be”, “part of” / “has part” and “regqulates”
/ “regulated by”. A simple example can be seen in Figure 1.1, for the GO term for hepatic

stellate cell activation (GO:0035733). If a protein is associated with this term, the parent

terms (defined by the “is a” relationship, here) are also implied.

The GO is available as single Open Biomedical Ontologies (OBO) file, containing all three
aspects [GSHD17]. Itis also available in the newer Web Ontology Language (OWL) format,
which contains extra semantic information — for example, it contains links to other ontolo-

gies such as the ChEBI (Chemical Entities of Biological Importance) [HOD+15].

The GO consortium provides annotations in the Gene Annotation Format (GAF), as well
as the newer pair of formats: Gene-Product Association Data (GPAD) and Gene-Product

Information (GPI) [HHAF+14]. These new formats permit explicit relationship types
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Type \ Evidence Code \ Definition

- EXP Inferred from Experiment
= IDA Inferred from Direct Assay
% IPI Inferred from Physical Interaction
5 IMP Inferred from Mutant Phenotype
& 1GI Inferred from Genetic Interaction
= IEP Inferred from Expression Pattern
5 HTP Inferred from High Throughput Experiment
c = HDA Inferred from High Throughput Direct Assay
o0 2 HMP Inferred from High Throughput Mutant Phenotype
= é HGI Inferred from High Throughput Genetic Interaction
= HEP Inferred from High Throughput Expression Pattern
" IBA Inferred from Biological Aspect of Ancestor
% % IBD Inferred from Biological Aspect of Descendant
5 g IKR Inferred from Key Residues
o0 IRD Inferred from Rapid Divergence
= ISS Inferred from Sequence or structural Similarity
g ISO Inferred from Sequence Orthology
g ISA Inferred from Sequence Alignment
2. ISM Inferred from Sequence Model
g IGC Inferred from Genomic Context
U RCA Inferred from Reviewed Computational Analysis
Author TAS Traceable Author Statement
NAS Non-traceable Author Statement
Curator IC Traceable Author Statement
ND No Biological Data available
Elec. IEA Inferred from Electronic Annotation

Table 1.1: Evidence codes associated with GO annotations, to indicate
the support given to a particular association.

between a gene or gene-product and a GO term, as well as having the advantage that
entries with no annotations can also be expressed. Separate members of the GO consortium
provide annotations for their species of interest. The UniProt-GOA database [BDH+09]
is a central location to retrieve GO annotations. It provides experimental, electronic and

other curated annotations from many different sources.

Different knowledge regarding gene function may be established using different means,
which can be indicated by the evidence upon which the assertion is made. Both formats
in which the GO annotations are provided contain meta data, including evidence codes
[GSHD17]. The 26 codes (Table 1.1) indicate the support of the annotation to a particular
GO term. In the case of electronic annotations, a reference code is also required - specifying
which method produced the prediction. As the terms are nested, if multiple terms are
associated arising from a single source of evidence, typically only the most specific terms
will be associated with the gene-product as all parent terms are implied. Thus, annotation

data typically requires the propagation of GO terms towards the root of the ontology.
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Negative annotations also exist — that is, with a NOT-qualifier in the qualifier field. Very
few of these exist in practice, probably due to their considered unimportance, as well as
the increased burden of proof that a biological entity does not have a given function, rather

than it does.

The different GO concepts are designed to describe aspects (molecular activity, location
of the activity and the larger biological programme to which it is part) of the functions
that a gene evolved to perform — that is, selected-effect functions. GO concepts may not
always be applied in this way and as a side-effect a given GO annotation may or may not

be a statement about a selected-effect function.

Whilst all biological programmes (biological process) are necessarily carried out by mo-
lecular activities (molecular function), not all molecular activities contribute to a molecular
programme. Thus, GO annotations which refer to biological programmes can be con-
sidered to generally reflect selected-effect functions. That means — a molecular function
annotation cannot be automatically interpreted as a selected-effect function. However, as
most GO annotations are made from publications describing specific, small-scale molecu-
lar biology studies that focus on a particular biological programme, most GO annotations

are likely to refer to selected-effect functions.

Interpretation of GO annotations needs careful consideration, however. For example, the
“protein binding” (G0:0005515) term is commonly thought to be noise and not necessarily
part of any biological programme. Using the notion of information content, it is possible to
filter terms such as these out of analyses. Information content (IC) of a GO term is defined
asic(tiy) = —log, (P(ty)), that is, the logarithm of the probability (P(t;)) of the term — the
logarithm taken base 2, by convention. The probability of the term can be estimated as the
frequency of occurrences of the term, or its child terms, in a database of well-characterised
proteins (for example, UniProtKB/SwissProt [Unil8]). Thus, more specific terms (see

Figure 1.1) will receive a higher IC than more general terms, closer to the root.

The GO is a powerful tool, facilitating many protein analyses across diverse species due to
the consistent vocabulary that it contains [RO09]. One advantage is the ability to quant-

itatively compare the functional similarity between proteins, using semantic similarity
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measures. These measures are typically based on IC or the graph, or a combination of the

two [Pes17].

1.2.2 Unabated Growth of Protein Sequences

Over many decades there has been a painstaking approach to probe a range of functional
aspects of individual proteins. This approach cannot keep up with the next-generation
sequencing technologies, which can measure gene expression regulation, genomic organ-
isation and variation on a large scale [SHS13]. According to the GOLD database, hundreds
of thousands of genomes have already been sequenced, including close to ten thousand

eukaryotes [MSB+19].

This growth can also be seen in the proteins deposited to the UniProtKB (Figure 1.2).
Between 2005 and 2015, the number of protein sequences grew exponentially, whilst those
with experimental annotations grew linearly. It is the case that, at a molecular level, nearly
all biological knowledge is concentrated in a handful of model species and the human. Strik-
ingly, in UniProt-GOA [HSMM+15], over 80% of all GO annotations supported by direct
experimental evidence are concentrated in just seven species. Thus, for the overwhelming
majority of species, functional characterisation is almost entirely reliant on automated

computational methods [CJ17].

The unabated growth of new sequences will continue, if not accelerate further. Within
a decade, the Earth BioGenome consortium aims to sequence 1.5 million eukaryotic se-
quences [LRK+18]. Electronic annotations based on the subset of proteins with exper-
imentally verified annotations, has gone some way to make assertions on a substantial

fraction of the new sequences.

Recent developments in high-throughput experiments led to functional annotation of
whole genomes, now providing up to 25% of all experimental protein annotations. How-
ever, ithas been observed that this can lead to significant annotation biases [SRT+13] — they
provide particularly low information content compared to low or moderate-throughput
experiments and are typically biased towards a limited number of functional annotations.

Thus, these experiments can only provide a partial picture of the function of a protein.
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— deposited
electronically annotated
experimentally validated

Number of sequences

Figure 1.2: Functional annotation coverage of proteins in UniProtKB -
between 2005 and 2015 the number of protein sequences deposited in
UniProtKB grew exponentially (black), whilst those with experimental
annotations only grew linearly (green). However, electronic methods
have utilised these limited experimental annotations in order to make
assertions about a substantial fraction of the new sequences (orange).
Reproduction of [CJ17, Figure 1(a)]

Due to the biases involved, these are now tagged with separate high-throughput-specific

evidence codes (Table 1.1).

1.3 Orthology

With newly sequenced genomes, the first step is almost always to identify, within or across-
species, homologous regions — those which share common ancestry. Here, the focus is on
genes as evolutionary and functional entities. If genes are similar within, or between,
species it is clear that they must be evolutionarily related and share ancestry — that is, they
are are said to be homologues. It is important to distinguish between two distinct classes of
homologous genes [Fit70]: orthologous are pairs of genes that emerging after a speciation

event; whereas paralogues result from a gene duplication event within a genome.

As an example, consider the gene tree in Figure 1.3. Examples of orthologues, emerging
from a speciation event, are (x;,y1) or (xp,z1). Paralogues are those that result from a

duplication event — for example (x1,xz) or (x1,Y1).
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Example of strict orthologous group
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Hierarchical orthologous group
@_o @ o o)

Figure 1.3: Gene tree showing orthologous and paralogous
relationships. Also showing example of a strict orthologous group, as

well as the corresponding hierarchical orthologous group for this gene
tree. Adapted from [AD12, Figure 1] and [FGD19, Figure 1].

Fitch’s original definition [Fit70] gave orthology and paralogy as relationships between
two genes, depending on the type of initial evolutionary event that gave rise to the pair.
The implication of this is that subsequent events, for example the duplication of one and /
or the other gene would not alter the relationship. Such duplication can, however, mean
that a gene can have more than one orthologous counterpart in another species. That is,
orthology is not just a one-to-one relationship, but can also entail one-to-many, many-to-
one and many-to-many relationships. The gene-pair (x1,y1) is an example of a one-to-one
pair of orthologues, whereas (x», z1) is a many-to-one relationship. Paralogy, likewise, can
be split into in-paralogues and out-paralogues with reference to a speciation event. The
gene-pair (x1,Yz) are considered in-paralogues, with respect to the speciation event Sy, as
the duplication occurred after the speciation event. However, the same pair of proteins

are considered out-paralogues with respect to the speciation event S or S;.

1.3.1 Orthologous Groups

Moving beyond pairs of genes, it is possible to consider how orthology and paralogy apply

to more than two species. This is not straightforward, as if gene A is orthologous to gene
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B which, in turn, is orthologous to gene C, it is not possible to conclude that A and C are
orthologues. That s, orthology — as well as paralogy — are not transitive relationships. This
means that there is no straight-forward way to extrapolate pairwise relationships amongst
groups of genes or across species. In order to alleviate the difficulty in interpreting the
pairwise relationships, it is more common to use orthologous groups — these can be split

into two main types: “strict” orthologous groups, and “hierarchical” orthologous groups.

1.3.1.1 “Strict” Orthologous Groups

The first, strict groups, denote sets of genes for which every two members are orthologous.
These may be simply sets of one-to-one orthologues. However, so long as paralogues are
excluded from the group there is no reason to exclude other types of orthologue. For

example, in Figure 1.3, x; and y; can be grouped with z; in a strict orthologous group.

1.3.1.2 Hierarchical Orthologous Groups (HOGs)

Hierarchical orthologous groups (HOGs), the other main kind of grouping, is a group
of sets of genes arranged into a hierarchy, dependent on their location in the gene tree.
Each one of these sets (sub-HOGs) shares a single common ancestor, but genes can be a
member of more than one [AGGD13; TGG+17]. In the case of the OMA algorithm, these
sets are then nested into an overall HOG to identify sets of genes that have descended
from a common ancestral gene in a given ancestral species. In the example, as all genes
X1, X2, Y1, Y2 and z, descend from the same ancestral gene in the last common ancestor of
the three species (x, y and z) they are in a common HOG at that level. However, after the

duplication event, {x;,y1} and {x,,y»} are HOGs at the lower levels defined at S,.

In a slightly less abstract manner, consider the species and hypothetical gene tree in Fig-
ure 1.4a-b, then one possible question could be: “what gene sets exist at the taxonomic
level of mammals?” This group, showing two distinct sets of genes, can be seen in Fig-
ure 1.4c. Alternatively, if the interest was in both amphibians and mammals, the HOG
defines a single set of related genes (Figure 1.4d). This taxonomic scoping is the advant-
age of using HOGs over the flat, strict, orthologous groups. In this example, the gene tree

shown in Figure 1.4b has the same structure as the HOG. If, for example, there was a series
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Figure 1.4: Example of a hierarchical orthologous group (HOG).

of duplication events in the gene phylogeny, the OMA HOG inference algorithm would

not be able to infer the order of the duplication events [AGGD13].

To further illustrate the concept of hierarchical orthologous groups (HOGs), consider the
insulin gene within the mammals (Figure 1.5a). In the human there is one copy of the
gene, whilst in rodents there are two copies. The gene phylogeny in Figure 1.5¢ depicts
the relationships between these five genes — nodes with a star represent a duplication
event, whilst nodes labelled S; indicate speciation events. Here, S; corresponds to the

mammalian speciation and S, to the speciation of the rodents (Figure 1.5b).

In the ancestor of all mammals, there was only one copy of the insulin gene. Therefore,

all insulin genes in mammals are derived from this single gene, so all five genes should
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(a) The insulin gene in mammals — thereis (b) Species phylogeny of the mammals. S;
only a single copy in humans, whilst there  corresponds to the mammalian speciation
are two in the rodents. event, whilst S, is the speciation of the
rodents.

(c) Gene phylogeny of the insulin genes in (d) HOG defined at the level of the
human, mouse and rat. There are two mammals, at which point there was only
copies in the mouse and rat, which most one copy of the insulin gene.
likely occurred due to a duplication before
their most recent common ancestor.

(Mammalsi { Rodents }

(e) HOGs defined at the level of the (f) Nesting of the groups — the “hierarchy”
rodents, where there are two copies of the of the groups.
insulin gene due to a duplication. This
results in two HOGs.

Figure 1.5: Example of hierarchical orthologous groups (HOGs) for the
insulin gene in mammals (adapted from [Glo16]).
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be in a single HOG (Figure 1.5d) — including the human insulin gene. HOGs contain
both orthologues and paralogues. For example, INS_HUMAN and INS2_RAT are orthologues,
as they are related through the speciation event S;. INS2_MOUSE and INS2_RAT are also
orthologues, related via S,. There are also in-paralogues — those which duplicated since
the speciation event at which the HOG is defined. For example, INST_MOUSE and INS2_RAT

are in-paralogues relative to the mammals, so are in the same HOG at this level.

The duplication event results in both mice and rats having two insulin genes, suggesting
that their most recent common ancestor already had both copies. As each insulin gene
in the extant species can be traced back to one or the other copy, this defines two HOGs
at the level of the rodents (Figure 1.5e). At the rodents taxonomic level, INS1_MOUSE and
INS2_RAT are out-paralogues — those that diverged at a duplication before the speciation

event in question. This means that they are in different HOGs at this level.

The “hierarchical” nature of the framework results from the nesting of the groups, visible
in Figure 1.5f. When referring to the “insulin gene in mammals”, this corresponds to
the collection of members in the single insulin HOG defined at the level of all mammals.
Whilst this includes the two rodent copies, there is no differentiation made between them.
Instead, referring to the “two rodent copies” it is necessary to consider the differences

between them and so they are in separate HOGs at the level of the rodents.

1.3.1.3 Reconciled Gene Trees

As an alternative to orthologous groups, all necessary information to capture orthologous
relationships is present in reconciled gene trees (sometimes referred to as “labelled” gene
trees). These are rooted gene phylogenies in which the internal nodes have been labelled

as speciation or duplication events.

All orthology and paralogy relationships amongst extant genes can be deduced from the
label associated with their last common ancestor. That is, if their last common ancestor
is a speciation node, the genes are orthologues. If it is, instead, a duplication they are

paralogues.

Of course, it is also possible to directly map to a hierarchical orthologous group in order to
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query sets of genes defined as orthologous at a given taxonomic level. If the reconciled gene
trees are fully resolved (that is, they are strictly binary trees), then the order of duplication
events is also present as well as some quantification of sequence divergence — the branch

lengths.

1.3.2 Inference

Many orthology inference methods exist, however they can be classified into two main
types [AD12]: graph-based methods and tree-based methods. The former relies on graphs
with genes, or proteins, as the nodes and evolutionary relationships as the edges. Inference
is performed to ascertain whether the edge corresponds to an orthology or paralogy, before
clusters are built based on the graph. Tree-based methods, on the other hand, are based
on gene / species tree reconciliation — the process of annotating all splits in a given gene
tree with speciation and duplication events, given a particular phylogeny of the species
included in the analysis. From this tree, all pairs of orthologous and paralogous gene can
be derived: pairs which coalesce at a speciation node are orthologues, otherwise if they

split at a duplication node they are paralogues.

1.3.2.1 Tree-Based Methods

As already noted, tree-based orthology inference reconstruct a gene tree for a group of
homologous sequences before labelled the evolutionary events which occurred at each
internal node of the phylogeny. Traditionally this involves gene-tree / species-tree recon-
ciliation, undertaken using either a parsimony framework (for example, Forester [ ZE01]
or Notung [CDFCO00]) or a likelihood framework (for example, GSR [ASAL09] or Phyl-
dog [BSD+13]). Most reconciliation methods fix the species tree, but not all. Phyldog,
for instance, attempts to infer the species tree from the collection of gene trees. Notung
[CDFCO00], instead, explores the local neighbourhood will consider alternative topologies

for the species tree if the defined reconciliation score is improved.

More recently the method of species overlap has been developed. This labels any internal
node which has the same species represented in more than one sub-tree as a duplication

event [HCDDGO07; HSVNHO7]. This has the advantage of not making any assumptions
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about the underlying taxonomy of the species included. It is also more robust to the
topological diversity observed in gene trees, whereas the reconciliation methods tend to
introduce more duplication events in order to explain any departure from a given species

taxonomy [AD12].

A number of resources provide reconciled gene trees — for instance, PANTHER trees
[MPM+16] infers reconciliation for all PANTHER families using the GIGA algorithm
[TholO] — a gene / species reconciliation method. Similarly, EnsemblCompara infers
reconciled gene trees which relate all Ensembl genomes using the TreeBeST algorithm
[VSUV+09]. OrthoFinder [EK15; EK18] uses DLCpar [ WRBK14], in order to label the
gene trees it constructs. DLCpar searches for the most parsimonious reconciliation of the
gene-tree / species-tree, under a duplication-loss-(deep) coalescent (DLC) model, which
addresses incognruence between the gene and species trees. On the other hand, Meta-
PhOrs [PHCG10] and PhylomeDB [HCCGP+13] both use the species overlap approach.
For each reference species, PhylomeDB infers a gene tree starting from each protein (the

“seed”) and refers to the resulting set of trees as the phylome of that species.

1.3.2.2 Graph-Based Methods

Instead of using trees, graph based approaches are based on comparisons between pairs of
genes within, as well as between species. The basis of all graph methods is that, for pairs
of genes between two species, orthologues tend to be the least-diverged pair of sequences.
This is the case, due to the orthologues being a single gene up until the speciation event,
whilst paralogues are the result of earlier duplication events and so exhibit higher sequence

divergence.

The bi-directional best-hit (BBH) approach [OFD+99] was the first large-scale method
for orthology prediction. Under this scheme, pairs with the mutually highest alignment
scores are considered orthologous. A similar approach also exists based on phylogenetic

distance — reciprocal shortest distance (RSD) [WFHO3 ]

Both BBH and RSD miss many pairs, due to many-to-many orthology relationships [DD13].

InParanoid aims to alleviate this issue, by identifying many-to-many orthology relation-
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ships [SO15]. However, both BBH and RSD can also fail when the corresponding ortho-
logue has been lost in both species, leading to paralogues being incorrectly identified as
orthologues. The OMA algorithm introduced the use of a third-party species, which may

have retained both copies, to act as a “witness of non-orthology” [DCG+05].

Another issue with BBH and RSD is that they do not generalise to the concept of ortho-
logous groups. The COG database used “triangles” of pairwise orthologues, in order
to build multi-species orthologous groups [TGNKO00]. Whilst OrthoMCL uses Markov
clustering [LSR03], which uses an “inflation parameter” rather than defining the type, or

some evolutionary limit, of orthology which makes the groups difficult to interpret.

The main graph-based resources include, but are not limited to (in alphabetical order):
eggNOG [HCSF+16], HaMStR [ESH09], InParanoid / Hieranoid [SO15; KRLS17], OMA
[AGT+18], OrthoDB [ZTK+17], OrthoFinder [ EK15; EK18], Ortholnspector [LAS+15],
OrtholugeDB [WWLB13] and PANTHER [MPM+16].

1.3.2.3 Meta-Methods

A new type of orthology-inference, which utilises the results from other orthology infer-
ence methods has emerged. The idea of these meta-methods is that they can combine
several individual, distinct, methods in order to produce more robust orthology predic-
tions. This is all made possible due to the standardised formats (particularly OrthoXML
[SMSS11]) defined by the “Quest for Orthologs” community [ GDHJ+09].

Most of these methods assign a confidence score in given predicted orthology relation-
ships. The most basic would be to give more weight to orthology relationships which
are predicted by more methods. Examples of this include COMPARE [SGCMO07], DIOPT
[HFV+11], GET_HOMOLOGUES [CMV13] and HCOP [EWLB06]. When looking at the
performance of these methods, they necessarily must have a lower recall, despite having

achieved a higher precision, as they intersect the results of many methods.

However, additional post-processing has been used by some methods in order to build
upon a base set of orthologues found in several methods. This leads to orthologous re-

lationships being inferred for more sequences and so there is a possibility to improve
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performance. One example is MetaPhOrs [PHCG10], which integrates phylogenetic and
homology data across databases. In order to assign a confidence score, they use the num-
ber of independent sources in which an orthologous relationship exists, as well as the
consistency of orthology predictions. Another method, MOSAIC [MH15], uses an iterat-
ive graph-based optimisation algorithm. It increases the number of detected orthologues
1.6-fold, identifying those which were missed by the individual methods. Another ex-
ample is MARIO, which uses the intersection of the various orthology methods as seed

groups to add unassigned proteins using HMM profiles [PDL14].

Depending on the required application, different meta-approaches may be appropriate.
For instance, if users require high-confidence groups, methods which only combine by
intersecting the orthology relationships defined by individual methods are suitable. How-
ever, if recall is important and a higher-coverage is required, the methods which perform
post-processing on the results, possibly using machine-learning techniques, are better

fitted to the application.

1.3.2.4 Orthology Benchmarking

One focus of the “Quest for Orthologs” community is to provide benchmarking of the vari-
ous orthology inference methods [AB+16]. This enables better understanding of the
characteristics of each method. A battery of tests is performed on the predictions given
by the individual methods. This includes, but is not limited to: functional conservation,
gene neighbourhood conservation, species tree discordance and comparison with gold

standard gene trees.

The results of this benchmarking show that there is no one-method which solves the
problem of orthology perfectly. Different methods excel in different areas and so choosing

the best approach is highly dependent on the required application of orthology.

1.3.3 Applications to Automated Function Prediction

As homologous proteins tend to have similar structures and functions, inferring sequence
homology of an uncharacterised protein sequence to a sequence of characterised func-

tion can provide a simple mechanism for prediction. The assumption here is that the
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function has been conserved through evolution. The search for homologues is commonly
performed using BLAST [CCA+09] or PSI-BLAST [ AMS+97]. However, hidden Markov
model (HMM) methods, such as HMMER [Edd11], have increased sensitivity to remote
homologues which can increase coverage. New methods have also appeared recently, not-
ably DIAMOND [BXH15] and MMSeqs2 [SS17b |, which aim to speed up the sequence
search whilst maintaining the performance of BLAST. A database of well-annotated poten-
tial homologues, such as UniProtKB/SwissProt [Unil7a], as a starting point is required.
In the simplest setting, annotation transfer takes place from the lowest E-value (Expect
value, e) below some defined point (for example, e < €accept = 107%). By relaxing this
parameter (€accept — 1) more distant homologues can be detected, yet the precision shall

be negatively impacted.

There are also methods which combine the information for the top results through en-
richment of the GO terms assigned to the best hits. GOtcha [MBB04 ] and PFP [TMSD09 ]
are two examples of such methods. The first assigns weights to each term, taking into ac-
count statistical significance of any enrichment, based on the number of similar sequences
annotated to that term. The structure of the GO is then used to update the weights on
less specific terms. PFP instead uses PSI-BLAST, combining output from results with
very liberal E-values. Scores also incorporate co-occurrence statistics of GO terms in the

UniProtKB, so as not to over-predict.

Methods based on homology do not distinguish propagation from orthologues to that
from paralogues. The pre-conceived notion is that duplicated genes lack selective pressure
to maintain their original function. As such, any functional role is free to deviate from
the ancestor’s [GK13]. However, Nehrt et al. [NCRH11] found, using human and mouse
functional annotations, that paralogues appear more functionally similar than orthologues.
However, after controlling for confounding factors, Altenhoff et al. [ASRRD12] found
that the then-current experimental annotations did support the so-called “orthologue

conjecture”, but more weakly than expected.

The groups provided by the many orthology inference methods provide the basis for trans-

fer of GO annotations, under the assumption that members of an orthologous group are
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functionally equivalent. Some more sophisticated prediction algorithms based on ortho-
logous relationships have also been developed. For example, SIFTER [EJMBO05; EJSB11]
uses the gene phylogeny as a belief propagation network [Pea82] in order to propagate
molecular function GO terms, using a model of molecular function evolution on the edges
(branches). The eggNOG-Mapper [HCFC+17] enables users to functionally annotate
proteins by propagating from a restricted type of orthologues. To do this, it uses either
DIAMOND [BXH15] or HMMER [Edd11] to identify the closest orthologue in eggNOG
[HCSF+16] (the “seed” orthologue) before inferring one-to-one and one-to-many rela-
tionships. Another example is the phylogenetic annotation and inference tool (PAINT)
[GLLT11]. This is a semi-automated tool which enables curators to annotate the ancestral
states in PANTHER [MPM+16] gene families, before uncharacterised extant genes are

then annotated using function from common ancestors.

Phylogenetic profiling can also be used to predict function, using observed patterns
between multiple families. It postulates that co-evolving families are functionally entwined
and may, for instance, participate in the same biological process. Skunca et al. [SBK+13]
introduced a method based on decision trees in a random forest-like setting, with the
ability to handle multiple GO terms for each phylogenetic profile, using the orthologous

groups from OMA.

1.4 Sequence Alignment

Sequence alignment, as already discussed above, is central to the identification of homo-
logous proteins. Alignment is the procedure of comparing sequences in order to identify
regions of similarity by searching for characters arranged in the same order. In the case
of proteins, these characters represent the amino acids of which they are composed. Only
alignments between two sequences (pairwise) shall be introduced here. It is possible,
however, to compute the alignment of many sequences — a multiple sequence alignment

(MSA) — usually using some heuristic.

Aligned sequences can be represented in individual rows, where gaps have been inserted

such that identical or similar regions of the sequence are aligned in the columns. When
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sequences are homologous, gaps in an alignment indicate either insertions or deletions.
Mis-matches, on the other hand, are interpreted as point mutations at the nucleotide level
in one or more lineages since the sequences diverged. This means that as the sequences

become more distantly related, more gaps and mutations will be observed.

Two types of sequence alignment exist —local and global. Local alignments align regions of
the sequence which share the highest similarity, resulting in one or more sub-alignments.
This can be useful when aligning sequences of varying length, or when they share a con-
served region or domain. On the other hand, global alignments are useful to align similar
sequences of approximately the same length, as they provide an end-to-end alignment of

the sequences.

1.4.1 Substitution Matrices

Substitution matrices are used to compute a score for the matches and mis-matches in
the alignments. These contain scores, representing how likely it is for one amino acid to
mutate into another over a particular evolutionary time period. Common choices are the
BLOSUM substitution matrix 62 (BLOSUM62) [HH92] and the Point Accepted Mutation
matrix 250 (PAM250) [DO78].

The choice of substitution matrix can have a large effect on the output alignment, as as-
sumptions are made about the sequences in question. PAM matrices, for instance, were
calibrated based on 71 groups of closely related protein sequences, sharing at least 85%
similarity. BLOSUM matrices are based on observations in large set of conserved amino
acid blocks, derived from more than 500 protein families. This means that whilst the PAM
matrices were designed to track the evolutionary origins of proteins, the model underlying

the BLOSUM matrices is constructed to identify conserved domains.

There are some other common substitution matrices used for protein alignments, including

the JTT [JTT92], WAG [WGO01] and LG [LG08] matrices.
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1.4.2 Pairwise Alignments

The most basic method to compare two sequences is a so-called “dot matrix” analysis — a
visual, time-consuming approach. The two proteins are mapped along the first and second
dimensions of a matrix. The simplest visualisation colours individual cells if identical.
Thus, matching segments shall appear as diagonal lines across the matrix. This time-
consuming approach led to algorithms based on the dynamic programming approach
[SW81; NW70], to identify this optimal path, converting the boolean relational matrix
into a score matrix, in which the cells are scored according to the similarity of the pairs of

amino acids associated to them. The optimal path is then that with the highest score.

These approaches are named the Smith-Waterman algorithm [SW81] and Needleman-
Wunsch algorithm [NW?70], which generate local and global alignments respectively. In
both algorithms, a matrix is populated with scores according to the identities or similarities
of the residues associated with each cell by following a scoring scheme for matches, mis-
matches and gaps. These are then accumulated from the lower-right corner to the upper-
left corner. The highest-scoring path from the upper-left to lower-right is then traced,

representing the optimal pairwise alignment of the two sequences.

The two methods populate the score matrix differently. Consider two protein sequences,
A = aj,ay,..,an and B := by, by, ..., by, of length n and m, respectively. If the matrix
containing the scores is denoted H, with the score Hj; as that between a; and b;.. The first
row and column are initialised as 0, thatis Hyg = Hpy = 0forO< k< nand 0 <1l < m.
Then, the scoring matrix is filled in from upper-left to lower-right, using a different formula

for local and global alignments. For local [SW81], this is defined as

Hi_1;-1+s(ai, bj),

maxj>1(Hi—k; — W),
ngcal ‘= max {
maxi>1(Hij-1 — Wi,

0,
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and for global alignments [NW70], the minimum value of 0 is removed:

Hi 11+ s(ai, bj),
global
Hy = max {4 maxysq(Hiow; — Wi,

maxi>1(Hi ;-1 — Wi),

where s(aj, b;) is the score for aligning the characters a; and b; from some pre-defined
scoring system. Wy := kW, where W is the cost of a single gap. Thus, Wy is the penalty
for a gap of length k in sequence A and W is the penalty of a gap of length 1 in sequence
B. Instead of using linear gap penalties, an affine gap penalty can be used instead which
helps to avoid scattered small gaps. That is, Wy := ux 4 v for u,v > 0, where v is the gap

opening penalty and u the gap extension penalty.

1.5 Orthologous MAtrix (OMA) Project

As the algorithm [ DCG+05; RGD08] and output of the Orthologous MAtrix (OMA) pro-
ject are central to this thesis, this section briefly introduces the algorithm before describing

its current method of function prediction.

The OMA algorithm has been run on a large number of publicly available genomes, with
a database accessible via the OMA browser [ ASG+15; AGT+18]. With releases roughly
every six months, 2,288 genomes from across the tree of life are now included in the June
2019 release. A standalone version of the algorithm is also available [ALZ+19], enabling

the analysis of custom user data.

1.5.1 Algorithm

The algorithm starts with an all-against-all alignment of every protein sequence being
aligned against every other sequence — both within, and between species. The Smith-
Waterman algorithm [SW81] is used to perform local alignments using the Gonnet PAM
substitution matrices [GCB92]. For each alignment the matrix corresponding to the PAM
distance that maximises the score is selected, by using a maximum likelihood approach

[Gon%4 ], implemented in the Darwin programming environment [ GHKB00]. Alignments
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scoring below 198 (typically corresponding to E-value 1.3 x 10~ '¢), or where one sequence
is of length less than 60% of the longest, are filtered out and discarded as they are not
considered significant. Sequence shorter than 50 amino acids are filtered out at this stage,

as well.

These alignments are then filtered in order to identify stable pairs. That is, protein pairs
in two different organisms which both have each other as the best match. For the sake of
robustness, however, pairs are also retained when the score is not significantly lower than

the best match.

Verification of these stable pairs is then undertaken. Usually orthologues have a higher
similarity to paralogues, thus the majority of stable pairs will link two orthologous proteins.
However, a problem occurs if a corresponding orthologue of a particular protein has been
lost during evolution. This then leaves a stable pair to be formed between two paralogous
proteins, when these two proteins should belong to two individual orthologous groups.
As previously mentioned, the OMA algorithm makes use of a third-party species, which
may have retained both copies, in order to act as a “witness of non-orthology” and remove

these paralogous relationships from the stable pairs.

The verified pairs form an orthology graph, where proteins are represented by the ver-
tices and stable pairs as the edges. Construction of “strict” orthologous groups (“OMA
groups”), for which every pair of members is orthologous, is possible by identifying fully
connected subgraphs. This is performed using an iterative algorithm, searching and then

removing maximal cliques one-by-one, until no pairs remain.

Hierarchical orthologous groups (“OMA HOGs”) are also constructed from the orthology
graph of verified pairs. There is a one-to-one correspondence between connected compon-
ents of a perfect orthology graph and HOGs [ AGGD13], for a given taxonomy. However,
as the orthology graph is typically noisy, containing many errors, a heuristic approach
of a min-cut algorithm was proposed [AGGD13], to break down spurious orthologous
relationships before identifying the HOG as the connected component. This is performed
for every taxonomic range in a given reference species taxonomy, in a “top-down” man-

ner. More recently, an updated “bottom-up” algorithm was proposed in order to improve
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efficiency and to be more resilient to errors in the orthology graph. This starts, instead,
at the most specific taxonomic levels and incrementally merges them towards the root

[TGG+17].

1.5.2 Function Prediction using OMA Groups

The cliques of orthologues that OMA provides — OMA groups — have previously been
shown to be highly coherent in terms of functional annotations [SBK+13]. This makes
it possible to propagate GO annotations, from UniProt-GOA [BDH+09], as a means of
function prediction. GO terms with experimental evidence codes (EXP, IDA, IPI, IMP, IGI,
IEP) are propagated across OMA groups and predictions made available in the public
release. Essentially, when more than 50% of members have a particular annotation this is
propagated to the rest of the group. However, in order to avoid over-propagating clade-
specific terms there is a requirement that propagated terms be seen in at least one curated

annotation (literature-based) in the clade in question.

These groups have been used for function prediction in the OMA project for some time
[ASG+15]. This functionality is also available as part of the OMA standalone tool
[ALZ+19].

1.5.3 Available Output

The OMA browser [AGT+18] enables users to interact with the output of the database.
It also provides the output to download, for further analyses. The orthologous groups
are available in both flat files containing identifiers, as well as FASTA files containing the

sequences in each group.

The hierarchical orthologous groups (HOGs) are available, instead, as an OrthoXML
[SMSS11] file. A tool in order to query the OrthoXML has also been developed, PYHAM
[TPAD18]. This tool can infer events that occurred on particular ancestral branches of the
taxonomy used to construct the HOGs, returning novel, duplicated, lost and continuing

genes.

More recently, a REST API has been developed in order to allow users to interact with the
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OMA database direct from their programming environment, with native clients available

for both R and Python [KWAD19].

1.6 Alternative Methods of Automatic Function Prediction

There are many differing methods of function prediction. So far, the methods that have
been covered have been either based on the concept of homology, or more stringently using
orthologous and paralogous relationships. If sequence similarity is low, however, these

methods will not perform well.

Structural similarity of proteins has also been used in order to predict gene function.
Known 3-dimensional structures can be exploited in order to search for structural similar-
ities and predict binding sites and catalytic sites [JKZT14; PCD+15]. Modelling protein
structure is a complex topic. Instead, if previously characterised motifs or domains are
present, then this information can be used to build gene families. These can be repres-
ented by a “signature”, which can take several forms. For example, some are defined by
particular arrangements of multiple, potentially discontinuous, short linear motifs. Others
could be described using more general models of domain sequences — such as sequence

profiles [GMES7] which can be represented as hidden Markov models (HMMs) [Edd98].

The SUPERFAMILY [OSV+15] and CATH-Gene3D [SLC+15] databases store domain
assignments for known protein sequences, based on the SCOP [MBHC95] and CATH
[OM]+97] schemes to classify protein structure, respectively. SUPERFAMILY has a sis-
ter project, by the name of dcGO (domain-centric GO) [FG13]. This database includes
annotations to individual and multiple domains, with a batch query facility provided as
“dcGO Predictor”. In the case of CATH, the superfamilies have been split into functional
families (FunFams) which include genes with highly similar sequences, structures and
functions [DLS+15]. GO terms are then associated with each of these families. Matching
against these FunFams then provides predictions. The CATH-FunFHMMer web server

provides this as an automated search process for end users [DSL+15].

The SUPERFAMILY and CATH-Gene3D databases are two of the 14 distinct members in

the InterPro database [FAB+17]. InterPro combines these databases, integrating predict-
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ive information about protein function. Each of the members have their own biological
focus, with varying methods to produce signatures as well as matching queries. The
InterPro2GO mapping links protein families to the most specific GO terms which apply
to each of their members [BKL+12]. The InterProScan tool [JBC+14] enables users to
query sequences, which can be combined with InterPro2GO in order to provide GO term

predictions.

Methods also exist which build on machine learning principles — the sequences are first
transformed into a set of component features, before relating these to GO terms using
supervised machine learning. This type of method is able to predict when no characterised
homologous proteins can be identified. However, for each GO term (or set of GO terms),
sufficient training proteins are required in order to detect patterns in the feature sets.
For instance, methods can be built using the Protein Feature engineering toolkit (ProFet)
[OL15], in order to extract hundreds of these features representing biophysical as well as
sequence attributes. Features derived from alignments can also be used, such as similarity
measures, E-values, sequence coverage or even the scores from GOtcha [SBH10; CR11;

CBBJ13].

ProtFun [JGB+02; JGSB03] uses neural networks in order to transfer functional annotations
between human proteins, based on similarity of their biochemical attributes. Originally
the broad functional classes of the Riley scheme [Ril93] were used, more recently being
extended to a subset of GO terms. FFPred [LSOJ07; MPCJ13; CMCJ16], based on support
vector machines (SVMs), extends this approach by considering the strong correlation
between particular molecular functions and biological processes with the lengths and po-
sitions of disordered protein regions, whilst still considering many biochemical attributes
describing secondary structure, transmembrane helices, intrinsically disordered regions,

signal peptides and other motifs.
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More recently, a number of methods have been developed to integrate, potentially many,
heterogeneous data sources with the aim of providing predictions with higher confidence

[CR11; WBS12; CBBJ13] similar to that of the meta-methods of orthology inference.

CombFunc [WBS12] first uses multiple methods to predict GO terms separately before
combining using a support vector machine (SVM) to make the final predictions. The
individual methods used include sequence homology using BLAST / PSI-BLAST, domain-
based predictions using information from InterPro, as well as predictions from protein-
protein interactions and gene expression data. FunctionSpace [CBBJ13] proposes a single
framework in which information from many sources is combined — sequence, gene ex-
pression, protein-protein interaction data and annotations retrieved from text-mining
UniProtKB/Swiss-Prot entries. Information from all methods are combined in a prob-
abilistic manner to provide predictions, whilst accounting for the structure of the GO.
GOLabeler [ YZX+18], which excelled in the third CAFA challenge [Z]B+19], combines
data from five different sources using the “learning to rank” (LTR) framework. It uses
many different sequence features using the ProFet toolkit, as well as specific GO-term

derived features.

1.7 Assessing Automated Function Prediction

As the number of sequenced genomes rapidly grows, the majority of proteins are only
annotated computationally. Assessing the quality of these annotations is necessary, if they
are to be relied upon. To this end, the critical assessment of protein function annotation
(CAFA) experiment [RCO+13] was undertaken, with repeat experiments taking place
every few years [JOC+16; Z]B+19].

These primarily consist of three phases (Figure 1.6). The first is a prediction phase, when
a set of completely and mostly uncharacterised protein sequences are released as targets,
for many research groups to use their own prediction method. Predictions submitted can
include the confidence, « € (0, 1], a method has in its predictions. This is then followed by a
target accumulation phase for the test set, which requires enough experimental annotations

to accumulate in order to gauge function.
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to
prediction | !
Participants ! !
| Jan. 2014 | Sep. 2014 Mar. 2015
! Sep. 2013 T\ /T\ /T time
Organizers | | | 1
preparation | | annotation growth | assessment !
Launch Close Collect Release
CAFA2 submission benchmarks results
(100,816 targets) (126 models) (3,681 proteins)

Figure 1.6: Timeline of the second CAFA experiment. Predictions are
submitted based on many targets, before experimental annotations are
allowed to accumulate on these. Once enough sequences have
experimental annotations the benchmarking takes place. Reproduction
of [JOC+16, Figure 1]

This is then followed by an analysis stage, where various metrics are calculated in order
to gauge the performance of the entrants against two baseline methods. These are: the
naive predictor, which assigns confidence as the frequency of annotation of that term to
annotated proteins in a given database; the BLAST predictor, which defines the confid-
ence, for each GO term, as the maximum percentage identity to a sequence that has been
annotated with the term. Entries in UniProtKB/Swiss-Prot entries with experimentally

verified annotations are used for both of these baseline predictors.

The results of the second experiment showed that the top performing methods are outper-
forming the best methods from the first, demonstrating that automated function prediction

is improving. This was again verified in the third community challenge.

1.7.1 Metrics Used

The metrics used [JOC+16; Z]B+19] are the protein-centric Fmax and Smin, as well as the
term-based average area under the precision-recall curve (AUC). Perfect predictors would

have an Fp,,x score of 1.0 and Syn score of 0.

The first two are single-measure evaluations of precision-recall and remaining uncertainty-
misinformation curves. Both these curves are computed by varying the cut-off in confid-

ence (T € (0,1]) which methods assign.
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1.7.1.1 Precision-Recall

For each target, precision and recall is calculated for all cut-offs. Terms which overlap in
the prediction and truth sets are considered correct (true positive). True terms which are
not predicted as false negatives, whilst “over-predictions” are considered false positives.

This means that, for each target p € P, precision (pr) is computed as

2 L(tePy(t) AteTy)
pr, (1) = pr Cl ,

and recall (rc) as
D ltePp(t) AteT,)
\Tp! '

rcp (1) =

where 1 is the indicator function, t is an individual GO term and T, is the truth set for

protein p and Py, (1) is the set of predicted terms for protein p with confidence a > 7.

For an overall measure of precision and recall, these are then averaged to obtain

and

where 1 is the total number of targets and P = {p € P : |P,(1)| > 0} is the number on

which at least one prediction has been made with confidence « > .

The Frmax is the maximum F; score on the precision-recall curve. That is,

Finax = Max (Z . M) |
* pr(t) + re(T)

1.7.1.2 Remaining Uncertainty-Misinformation

Minimum semantic distance (Spin) is an information-theoretic based measure which was
introduced by Clark and Radivojac [CR13]. It aims to overcome some of the complexity

in the structure of the GO as well as biased and incomplete experimental annotation sets.
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Remaining
Uncertainty

Figure 1.7: Remaining uncertainty and misinformation, given
prediction terms p1, p2 and truth t;, t,. Adapted from [CR13, Figure 2].

It is based on a Bayesian network, structured according to the GO, in order to model the
prior probability of GO annotations. The remaining uncertainty in a protein’s annotation
is defined as the knowledge which is not supplied in the predictions, whilst the misin-
formation is the total information of the terms considered incorrect in the predictions (see

Figure 1.7).

Average remaining uncertainty (ru) is calculated as

ru(T) = % Y ) dat)l(t¢ Pp(t) AteTy),

peP t

and misinformation (mi) as

mi(T) =

DD iat)I(tePy(t) AtgTy),

peP t

for a given cut-off T, where n := |P| is the total number of targets, T, is the truth set for
protein p, P, () are the predicted terms for protein p with confidence « > T, and ia(t) is

the information accretion of GO term t.

This measure of information accretion is not the same as the information content defined
earlier. Instead, it is the amount of extra information obtained by adding the term to a

parent term, or set of parents terms, in an annotation.

The minimum semantic distance (Smin ) is the equivalent of Frax for remaining uncertainty-

misinformation curves. It is defined as the minimum distance from the origin to the curve
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and is also used by CAFA to rank the prediction methods. It is defined as

Smin = Min \/ru(’r)2 + mi(T)2.
T

1.7.1.3 Prediction Coverage

For each of the measures already described, Frnax and Smin, the coverage of predictions is

also reported to gauge how many predictions different methods make.

Benchmarks are reported in a “full” mode as well as a “reduced” mode where allowance

is made for a reduced coverage, for instance when calculating recall.

1.7.14 Average Area Under Curve (AUC)

The term-based average AUC is based on the area under the receiver operating character-

istic (ROC) curve for each term individually.

These are calculated for all terms that have at least 10 positive annotations, before the

average is then taken.

1.7.2 Open World Assumption

These benchmarking metrics do not account for the “open world assumption” (OWA)
[TWM+12; DvT13] underlying GO annotations. That is, functional characterisation
of most proteins is typically grossly incomplete, as both experimental annotations and
manual curation of annotations costly and onerous tasks. As such, absence of annotation
does not imply absence of function. This leads to a systematic over-estimation of false posit-
ive predictions, which may significantly affect the results reported in the CAFA challenges
[DvT13].

1.8 Overview

This section starts by posing some open problems, before describing the objectives of this

thesis. It then finishes with an outline of the remaining chapters.



56 Chapter 1. Introduction

1.8.1 Open Problems

Several open problems arise from the subjects discussed in the previous sections. Hier-
archical orthologous groups (HOGs) are more accurate depiction of evolution than “strict”
orthologous groups, as well as more scalable than reconciled gene trees. They have not
yet been used for functional annotation, unlike gene trees (for example, SIFTER [ E]MBO5;

EJSB11]). Therefore, one question is

1. How can hierarchical orthologous groups be used for function prediction? (for example, Gene

Ontology)

Further, the OMA algorithm requires an extensive, computationally intensive, all-against-
all alignment before constructing the HOGs. As there are more significant matches when
including closely related species, it can take longer than including distantly related species.

So, another question is

2. How can closely related species, for example cultivars, be projected onto hierarchical ortho-

logous groups?

Another arises in the benchmarking of predictors of functional annotations. The current
CAFA metrics do not account for the open world assumption (OWA) that functional char-

acterisation of most proteins is typically grossly incomplete. Thus, this poses the question

of

3. How can the benchmarking of function predictions account for the open world assumption of

incomplete knowledge?

1.8.2 Obijectives

Hierarchical orthologous groups (HOGs) provide a framework for comparing highly di-
verged and similar species in a consistent manner. The overall objective of this thesis is to
provide an algorithm, using the HOGs as a framework, to exploit the multitude of func-
tional and trait-associated data —both for function prediction (for example, Gene Ontology

terms), as well as when integrating multiple sources. It also aims to address the other
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open problems of efficient mapping of closely related species and addressing the issue of

the open world assumption in benchmarking.

The method of function prediction (HOGPROP) sits at the centre of the thesis. Paired with
the k-mer based method of efficient mapping makes it possible to predict on sequences
both already present in OMA, as well as closely related ones. This was necessary to submit
predictions to the CAFA challenges — some species are not in OMA, but a closely related

species is.

Overcoming the limitations of the current benchmarks is an overriding priority for the
community. Thus, the development of an OWA-compliant benchmark was necessary in
order to meet the objective of integrating the HOG-based predictions in the OMA database

in order to assess their precision more accurately.

Also, another objective was to further demonstrate the usefulness of the propagation al-
gorithm. One such application is ancestral gene ontology enrichment analyses. Another
is to provide a framework for integrating many sources of data. This can then be used, for

example, to prioritise candidates in QTL analyses.

An overview of the main thesis objectives is available in Figure 1.8.

1.8.3 Outline

The first subject of the thesis is the methods developed during this project. In Chapter
2, a fast function propagation method based on k-mers and the data pre-existing in the
OMA database shall be presented. This was also used in order to predict on targets from
the third CAFA experiment, which did not have an exact match (100% identity) in the
OMA database. This finds the closest homologous sequence in the database, providing an
efficient and accurate mapping for closely related sequences. If the closest homologue is a
member of a HOG, this can be used to query the HOG-based function predictions from
the OMA database.

Then, in Chapter 3, a propagation algorithm using the OMA HOGs (HOGPROP) is intro-
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Fast Function Propagation HOG Functional Propagation Algorithm
(k-mer Search) (HOGPROP)
Submission to Further Benchmarking
CAFA 3 (Accounting for the OWA)

V

Enable User Query of ) HOG-based Prediction
HOG-based Predictions Integration with the OMA Database

Ancestral Gene Ontology
Enrichment Analyses

Candidate Prioritisation in QTL Analyses
(QTLSearch)

Figure 1.8: Overview of the main thesis objectives and how these link
together.

duced. The benchmarking and parameter optimisation that was undertaken prior to the

third CAFA experiment will also be discussed.

Benchmarking is further explored in Chapter 4, where a framework utilising explicit neg-
ative annotations is introduced which accounts for the open world assumption (OWA).
However, as there are very few Gene Ontology annotations which are negatively qualified,
it was necessary to supplement these with an alternative source. One such procedure is

described, through derivation based on expertly annotated gene phylogenies.

Chapter 5 then describes how evolutionary distances can be fitted to the gene phylogenies,
implied by HOGs. This information can then be used in a multitude of studies. Their
relevance to the propagation algorithm (HOGPROP) is discussed, alongside how this

data could be integrated.

The subject will then change to applications of the propagation algorithm. In Chapter 6, a
method to undertake an ancestral gene ontology enrichment analysis shall be introduced.
This identifies any enrichment in the functional annotations of genes across a particular

branch in a taxonomy.
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Then, in Chapter 7 the propagation algorithm is adapted and repurposed to predict can-
didate causal genes in QTL studies by combining Gene Ontology annotations across many
species. This demonstrates how HOGs (and the propagation algorithm) can be used to

integrate many sources of data, in a consistent manner.

Chapter 8 then closes by giving an overview of this thesis and conclusions from the presen-

ted work.
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Chapter 2

Fast Function Propagation

The method presented in this chapter has been included in the OMA browser, with the
fast function propagation tool featuring in the peer-reviewed publication [AGT+18].
The fast approximate mapping and function propagation tools were also made avail-
able via the REST API [KWAD19]. However, the benchmarking analyses, including
comparisons with DIAMOND and MMSeqs2, are unpublished.

OMOLOGY SEARCH IS A HIGHLY ESTABLISHED TECHNIQUE for the propagation
H of functional annotations. This can be a time-consuming exercise, due to the com-
plexity of compiling reference databases and the long computation time of the homology
search. This chapter outlines work to provide a fast function propagation method using
currently available data in the OMA database. The method relies on a k-mer table which
is built from a suffix-array. This is then used to perform an initial k-mer mapping, before
refining the order with a small number of Smith-Waterman alignments. Functional charac-
terisation, in the form of Gene Ontology (GO) terms are then propagated from the closest

sequence.

A standalone tool has been developed to perform the k-mer mapping and alignments.
This is suitable for both low-memory web-server applications, as well as speed-driven
standalone computation when it is possible to take full advantage of the massively multi-

core machines available today.

2.1 Requirement for Fast Function Prediction Methods

The current method for predicting function in the OMA database relies on propagation
through OMA orthologous groups (see Section 1.5.2). This has been implemented in

the OMA standalone tool [ALZ+19]. As the orthologous groups are improved when
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including more species, the functional prediction is also. However, this requires the all-

against-all alignments of the proteomes, which has quadratic time complexity.

The exponential growth in the number of new genomes sequenced (for example, in the
GOLD database [MSB+17]), shows that it is unlikely feasible to ever complete enough
all-against-all alignments to be able to predict on many of these genomes. This, alongside
the time consuming nature of experimental validation, highlights the requirement for a

fast method of automated function prediction.

Most phylogenomic databases, including the Orthologous MAtrix database (OMA), do
not provide a method for users to conveniently annotate large sets of protein sequences.
The EggNOG database [HCSF+16] recently introduced such a tool for functional assign-
ment. Their approach, outlined in [HCFC+17], maps sequences either through a DIA-
MOND search [BXH15], or via HMM profiles using HMMER [Edd11]. All gene ontology

terms are then transferred from this protein’s one-to-one and one-to-many orthologues.

Further, the EggNOG-mapper approach requires the storage of HMM profiles and / or
DIAMOND databases. In the approach presented here the sequences already stored in
the OMA database file shall be repurposed, requiring only additional indexes to be stored.
This was then used to update the sequence search functionality on the OMA website,

removing the requirement for legacy code.

2.2 Fast Homology Search

The fast homology search that has been developed is based on k-mer matches. This section
will outline the method for the pre-computation of the k-mer lookup table, as well as the
search algorithm. This has been implemented inside the (currently internal) PyYOMA

Python package, for interacting with the OMA database.

1. Pre-Computed Indexes

(a) Suffix array
Suffix arrays (occasionally known as PAT arrays [ GBYS92]) are a sorted array

of all suffixes of a particular string [MM93]. It is important to delimit the indi-
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Suffix \ Index (i) Suffix \ Index (i)
IIDVFSRYSG$ 0 $ 10
IDVFSRYSG$ 1 DVFSRYSG$ 2
DVFSRYSG$ 2 FSRYSG$ 4
VFSRYSG$ 3 G$ 9
FSRYSG$ 4 IDVFSRYSG$ 1
SRYSG$ 5 IIDVFSRYSG$ 0
RYSG$ 6 RYSG$ 6
YSG$ 7 SG$ 8
SG$ 8 SRYSG$ 5
G$ 9 VFSRYSG$ 3
$ 10 YSG$ 7
(a) All suffixes of the protein sequence. (b) Ordered suffixes of the protein sequence.

Table 2.1: Suffixes and ordered suffixes of the protein sequence
IIDVFSRYSG (excerpt of S100P_HUMAN) with delimiter denoted as $.

vidual sequences with a character which is unique and lexicographically smaller
than any character in the sequence. Here, “$” is used to denote the delimiter.
For example, the protein sequence IIDVFSRYSG would be broken down into the
suffixes seen in Table 2.1a. These would then be sorted into the order seen in

Table 2.1b. The suffix array would then be

10 2 49106 85 3 7.

Itis then possible to perform an efficient search for sub-strings (using the binary

search algorithm) using the suffix array as an index.

Currently, the OMA database contains over 14.6 million entries in the June 2019
release, however this is ever-expanding. After concatenation of the current
sequences, it requires over 4.3 x 10° indices to reference every position. As the
maximum unsigned 32 bit integer is 23 ~ 4.295 x 107, it is required to use a 64

bit integer in order to reference offsets inside the entire sequence buffer.

At the time, there was no Python library which could compute suffix arrays with
64 bit indices. An optimised C implementation of the induced sorting algorithm,

introduced in [NZC11], is available under the MIT license [Mor10].

As part of this work, this library was updated and tested with 64 bit indices.

It was then packaged inside a Python wrapper to create the PySAIS library
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(b)

[Warl7] — available to download from the Python Package Index (PyPI) — li-

censed under the MIT license.

Compute Lookup Table for k-mers

The protein sequences stored in OMA have an alphabet containing 21 charac-
ters — the 20 amino acids plus X to denote unknown, as in the standard IUPAC
alphabet. It is possible to think of the k-mers as an encoding of an integer in

base 21 using this AA alphabet sorted alphabetically to denote each numeral.

For example, this would mean that the 10-mer IIDVFSRYSG is an encoding
of the integer 5,829,799,935,146. Similarly, 53 can be encoded to the 10-mer

AAAAAAAADN.

This encoding can permit the bucketing of the k-mers —i.e., to form a lookup
table of k-mer — entries in the database. The most efficient method of storage
is to store the entry numbers in a single array with the offsets at which each
k-mer starts in another. In terms of computation, this is efficient as the database
is not updated dynamically. Instead, the indexes will be rebuilt with every

release.

The sensitivity of a k-mer frequency analysis can be adjusted by altering k.
However, storage space is also a factor in this decision. When k := 6 it is possible
to convert between AAAAAA — XXXXXX to 0 — 85,766, 121. The offset array required
for this can be stored in ~327MB, whereas that for k := 7 requires some ~6.7GB

and k := 8 would require more than 281GB!

To create this lookup table, the suffix array is used to sort an array containing
the entry numbers for each position. The offsets where each k-mer starts are
located on a scan of this entry array, sorted by k-mer . The two arrays of entry
numbers and k-mer start positions are then stored in a persistent manner as a
CArray!, made available in PyTables [AVP+17], enabling compression of the

two arrays.

ICArray is an implementation of chunked array storage in an HDF5 database file.
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Note, it is possible to directly search using the suffix array for k-mers efficiently.
However, this is large and most-likely requires memory-mapping. This can
be problematic in shared computing, as it is common for schedulers not to be
configured in the required manner?. Storing the suffix array using PyTables
and using a compression filter was severely detrimental to the performance.

Further, the lookup table is likely to require less than half the storage®.

2. Search

(a)

(b)

(c)

Exact-match

First, the implementation checks if there is an exact-match to the query sequence
in the database. This step also undergoes the same taxonomic filtering described
in step 2c. If there are any accepted exact matches, the rest of step 2 shall be
skipped. If multiple exact-matches are identified, one database entry is chosen

at random.

Pre-Filtering with k-mer Lookup

The k-mer lookup table, as previously defined, can be indexed by each k-mer in
the particular range. The query k-mer is decoded into its respective integer
(base 21), as already described. A list of entries with this k-mer can then be
loaded. This is repeated for every k-mer in the query sequence, with a table of

counts to the overlap with each relevant database entry stored.

It is also possible to filter based on the percentage coverage, of k-mer matches,
of the query sequence. This can further increase the speed of computation, by

removing low coverage matches.

Taxonomic Filtering (optional)
Given an NCBI taxonomic identifier (which appears inside the OMA tax-
onomy), the results of the k-mer lookup (or exact matches) can be filtered

to only include entries from species that are below this node in the taxonomy.

In Figure 2.1, the location of the rice genomes in the Viridiplantae is shown

2cgroups can be configured, with certain queue schedulers, to alleviate this issue somewhat.
3The number of entries in the OMA database is a long way from requiring 64 bit integers for reference.
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Viridiplantae

VOLCA - Green algae

ARATH - Arabidopsis thaliana
ORYLO)

ORYRU

, ORYSI
ORYSJ

[Oryza [Rices] | Rices
ORYBR }

ORYNI
BOP Clade ORYPU

ORYGL |

WHEAT - Bread Wheat

Figure 2.1: Location of rice genomes in the taxonomy of the Viridiplantae
(many internal levels and genomes missing). If a new rice genome is
being annotated, the “Oryza” node would likely be chosen as the
taxonomic limit. Leaf labels are UniProt / OMA species identifiers.

(many levels and genomes are missing that are present in the OMA taxonomy).
If a user input a new variety of, for example, Oryza sativa and did not want to
propagate annotations from non-rice genomes they could set the taxonomic
filter to the NCBI Taxon ID of the highlighted Oryza level (4527). However, this
could be relaxed to enable annotations from all other plant genomes by setting

it to that of Viriplanatae (33090).

(d) Smith-Waterman Alignment
The top n results (default n := 50), after any filtering, are aligned against
the query sequence. The Smith-Waterman alignment is performed using the
Striped Smith-Waterman implementation in scikit-bio, from the SSW Library
[ZLGM13]. A single mutation matrix is used, which is BLOSUM62 by default with
gap opening penalty of 11 and extension penalty of 1 (the default parameters
of blastp). A cut-off in the score of 50 was chosen, based on [Peal3], in order

to only identify homologous sequences.

3. Propagation
Any Gene Ontology annotations of the top result of the Smith-Waterman alignment,

or of an exact match, will be propagated to the query sequence.
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This implementation was integrated into the Python library for interacting with the OMA
browser database file. This has then been used to provide the functionality via the REST
API to the OMA database* [KWAD19]. It is also behind the web service now provided in
the OMA browser’. This enables a user to upload a FASTA formatted file containing their
protein sequences of interest. They will then receive the propagated gene ontology annota-
tions in GAF 2.1 format [GOC15; GSHD17]. As this takes some time, it is implemented

asynchronously — an email will be sent to the user when the results are available.

2.3 Case-Insensitive Identifier Search

This sequence search method, utilising the suffix array, has been re-purposed in order
to provide a case-insensitive identifier search in the web browser. Instead of building
the suffix array for a buffer of concatenated protein sequences, it is built for a buffer of

concatenated identifiers translated to either all upper or lower case.

Then, queries are converted to the same case as the index was built for. Taking all the
exact sub-string matches identified, when matching against the suffix array, these are then

ordered by the length of match and returned to the user with associated entry information.

2.4 Standalone Tool

A standalone tool was also developed, in order to demonstrate how this was implemented

in the OMA browser for a forthcoming publication.

This takes a user-selected set of proteomes (stored in FASTA format) and builds a database
containing the sequence and the indexes described above. In this tool, it is presumed that
exact-matches do not exist, so first the database is queried by k-mer lookup followed by

refinement using the Smith-Waterman alignments.

The standalone tool also has the ability to load the k-mer lookup table into memory,

whereas the browser queries this directly from disk. The focus of the standalone tool

4Documentation at https://omabrowser.org/api/docs#sequence-1list
5Web service available at https://omabrowser.org/oma/functions/
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Species | Version | Total No. Sequences | No. with Homologue
Oryza brachyantha (ORYBR) Ensembl Plants 21 31,307 31,306
Homo sapiens (HUMAN) Ensembl 86 30,709 30,545
Escherichia coli strain K12 (ECOLI) | Ensembl Fungi 38 4,140 4,134

Table 2.2: Species included in the benchmarking as query proteomes,
against the set of 55 plant species — a closely related rice, as well as two
outgroups — human and E. coli.

is more for speed, whereas in a lightweight server it is necessary to maintain low memory

consumption.

2.5 Benchmarking

The central step of the method of fast function propagation proposed in this chapter, is the
identification of the closest homologue in a particular set of species. It is only necessary
to consider whether the method identifies the same closest homologue as a gold standard

does in order to gauge the performance of the tool.

2.5.1 Data

From the December 2018 release of OMA, all but one of the 56 species below the Viridi-
plantae were used to build the database of subject protein sequences. The retained species,
Oryza brachyantha (ORYBR), was then queried against this database as an example of a
closely related species. To test the identification of the closest homologue in plants in more
distant species (outside of Viridiplantae) both human and Escherichia coli strain K12 (ECOLI)

were used.

As a gold standard for closest homologue, a full Smith-Waterman alignment was used.
The subject protein with the highest score was taken, for each of the query proteins. A
cut-off in the score of 50 was chosen, based on [Peal3], in order to identify the homologous
sequences. If multiple entries share the highest score, then if the comparison method scores
one of these as the top protein then it is considered correct. The number of sequences with

a homologue detected in the 55 plant species can be seen in Table 2.2.
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2.5.2 Parameter Optimisation
2.5.21 Method

Choosing the correct k is a trade-off between speed and accuracy — the same when choosing
the number of alignments necessary to refine the k-mer hits. To analyse the choice of these
parameters, the database and search was performed for k € {4,5, 6,7} and the number of

alignments as 50, 250 and 1000.

It is also possible to merge amino acids in the sequence — having an effect of increasing
the k-mer search space, without having to lookup the entries for multiple k-mers. Linclust
[SS17a] uses a reduced alphabet of 13 characters, instead of the usual 21. This was con-
structed iteratively, starting with the full alphabet and merging two characters at a time
which conserved the maximum mutual information, resulting in the merging of: (A,S, T),

(D,N), (E,Q), (FY), (I, V), (K R)and (L, M).

This reduced alphabet was implemented and included in the testing, with k € {6,7,8}.
Due to the reduced alphabet the k-mer size can be extended to 8 without having to use 64

bit integers.

All timing was undertaken on a GNU/Linux machine with four Intel Xeon E5-4620
(2.2GHz) (total 64 hardware threads) and 512GB RAM, making use of all hardware

threads available on the machine.

2.5.2.2 Results

Figure 2.2 shows the results for each of the three query species. It is clear that when
querying a more closely related species (ORYBR), as there have been less changes at the
sequence level, it is possible to recover more of the relationships using only a k-mer based
mapping. Further, the number of alignments that are performed to refine the matches
does not appear to have much of an effect on the proportion identified, as there is usually
a best hit within the first 50 hits of the k-mer mapping. The choice of k does not appear to

have much of an effect, nor the use of a reduced alphabet. The 4-mers do appear to reduce
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Proportion of Best Hits from Gold Standard Found

10 Oryza brachyantha (ORYBR) Homo sapiens (HUMAN) Escherichia coli (ECOLI)

0.8
0.6
4 5 6 7 6 7 8 4 5 6 7 6 7 8 4 5 6 7 6 7 8

Full Alphabet Reduced Alphabet Full Alphabet Reduced Alphabet Full Alphabet Reduced Alphabet
Alphabet and k-mer Size Alphabet and k-mer Size Alphabet and k-mer Size

Proportion of Best Hits Found

=]
o

mm= Only k-mer s Top 50 s Top 250 s Top 1000

Figure 2.2: Proportion of sequences with at least one best-hit identified,
when varying the k-mer size, number of alignments to refine the
matches and whether a reduced amino-acid alphabet was used. The
choice of k effects the proportion of best-hits identified in the outgroup
proteomes, more-so than in the rice species.

the proportion when looking at k-mer only mapping, indicating that there is much more

noise when mapping using a short word size.

However, when querying more distant species the proportion of best hits identified is
greatly reduced, with the number of alighments in order to refine the ordering having
a much greater impact. In Figure 2.3, the amount of user and CPU time as well as the
maximum memory usage during the search is shown. This indicates that whilst the extra
alignments do increase the proportion of best hits recovered, they do so at extreme cost.
The choice of k has more of an effect when querying the human and E. coli proteomes,
with the 4-mers recovering a lower proportion of the best hits identified again. Further,
when using this short word size, the user and CPU time is massively increased — likely

due to the increase in more distant proteins that are being aligned.

Comparing the full and reduced alphabets, the results are similar for k set to 5 vs 6, re-
spectively. The same is true for 6 vs 7, where the amount of storage saved by using the
reduced alphabet is approximately 88MB (down from ~327 MB). This means that the

overall change in maximum memory usage and time to search is minimal.
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Alphabet \ k \ Proportion of Best Hits Identified \ Rank
Full 4 81.9% 7
Full 5 84.1% 1
Full 6 83.8% 2
Full 7 83.4% 3
Reduced | 6 83.0% 5
Reduced | 7 83.1% 4
Reduced | 8 82.9% 6

Table 2.3: Proportion of best hits identified in ORYBR, when considering
the alignment scores of the top 50 hits from the k-mer mapping.

Parameter Choice

As the main use case is for mapping against close species, the results from ORYBR are most
relevant. Itis clear that performing alignments to refine the ordering is beneficial, however
the number of hits to align appears to have diminishing returns. Table 2.3 shows the actual
proportion of best hits identified when aligning the top 50 hits from the k-mer mapping
in ORYBR. The top-ranked parameter choice is using k = 5 with the full alphabet, however
when using k = 6 the proportion identified is just 0.3% lower. As such, the decreased
computation time (218.3s [User] / 10,518.32s [CPU] for k = 5; 185.26s [User] / 8,227.17s
[CPU] for k = 6) with only ~0.5GB extra RAM required at maximum memory usage

means that choosing k = 6 is a good balance between speed and accuracy.

2.5.3 Comparison Methods
Method

Three comparison methods were chosen: BLAST [CCA+09], as well as DIAMOND
[BXH15] and MMSeqs2 [SS17b]| which also utilise k-mer pre-filtering and reduced amino-
acid alphabets. As a gold standard, a full Smith-Waterman alignment of all pairs was
utilised. As the chosen “gold standard” does not correct for any compositional bias, any
corrective techniques were disabled in the comparison methods (see Table 2.4 for argu-

ments used).

The substitution matrix used and gap opening / extension penalties were normalised
across the methods, to the default for BLAST, DIAMOND and MMSeqs2. That is, substi-

tution matrix: BLOSUM62; gap open penalty: 11; gap extension penalty: 1.
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The raw alignment score was used in all methods, so as to order predictions. For each
query the top subject protein, or proteins in the case of ties, is tested against the gold

standard. If there is at least one protein in both sets, then it is considered correct.

Results

In Figure 2.4 are the results from each of the comparison methods, as a proportion of the
best hits identified in the gold-standard full Smith-Waterman alignment. BLAST performs
the best, however still misses off almost 20% of best hits in the case of HUMAN. More striking
is the number of hits that DIAMOND misses, even in its more sensitive modes. This is
still the case in ORYBR, where it identified between 65.4%-66.5% of the top hits dependent

on the sensitivity setting.

On the other hand, in ORYBR, the novel method (82.9% identified) and MMseqs2 (83.0%
/ 83.3% identified) in both sensitivity modes perform similarly. This shows that when
mapping onto a closely related species, the method presented here is performing as well

as the state-of-the-art of fast protein search tools.

When considering the timing of the different methods (Figure 2.5), it was clear that BLAST
is not an option for performing fast sequence placement. Therefore, BLAST is not included
in the timing plots, as it took: 11,060.03s (user) / 707,842.15s (CPU) for ORYBR; 13,190.17s
(user) / 844,171.03s (CPU) for HUMAN; and 916.77s (user) / 58,673.23s (CPU) for ECOLI.
The multi-threading feature of blastp is not as effective as splitting the query sequences
and searching using multiple instances (using GNU parallel [Tan11]). As such, user-time
is estimated as 1/64th of the CPU time. For instance, the method presented in this chapter

took 185.26s on ORYBR, which is 59.7x faster.

It is also important to consider the time to create the database for each of the methods (Fig-
ure 2.6). The method presented here takes the longest, due to the sequential suffix-array
computation. However, when considering CPU time instead of user-time, DIAMOND
takes a similar amount of time to this method, with MMseqs2 taking almost 2.5 times

as many CPU seconds. Turning to the maximum memory consumption, the method



76 Chapter 2. Fast Function Propagation

Method ‘ Version ‘ Command ‘ Arguments

BLAST [CCA+09] 2.6.0+ blastp -seg no -comp_based_stats false
DIAMOND [BXH15] | 0.9.24 diamond blastp | --comp-based-stats @

MMSeqs2 [SS17b] 9-d36de | mmseqs search | --comp-bias-corr @ --mask @

Table 2.4: Comparison methods used to gauge the performance of the
fast assignment method. Command / arguments listed are the
command at which the compositional bias was disabled and the
arguments used to do so.

Proportion of Best Hits from Gold Standard Found
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Figure 2.4: Proportion of sequences with at least one best-hit identified,
between the different methods chosen for comparison. The method
presented here is included with k = 6 using the full alphabet and
refining the top 50 k-mer hits with Smith-Waterman alignments. When
attempting to map the out-group proteomes, the performance of all
methods is lower — apart from BLAST which still recovers >80% of the
best hits from the gold standard.

presented here takes approximately the same amount of memory during database build

as MMseqs2 does during search.

2.6 Discussion and Conclusions

The method and tool presented in this chapter is for mapping protein sequences to the
closest homologous sequence, in a given database, before propagating functional char-
acterisation in the form of associations to GO terms. This is particularly useful when
considering closely related species, or different assemblies / releases, for which some
down stream-analyses have already been performed within a database. In this case, the
standalone tool has been shown to be similarly accurate as well as approximately the same

speed as MMseqs2 in standard mode (ORYBR against 55 plant species).
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Database Creation

User Time to Create Database CPU Time to Create Database Usage g{;ﬁ;}l’;}ﬁg[gpﬁgrgmution
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Figure 2.6: Time taken and maximum memory usage, when building
the database for the 55 plant species for each of the comparison
methods. MMSeqs2 takes >2x the CPU time to create the database,
however is much faster when considering user time. This is due to the
sequential algorithm to build the suffix-array included in the method
presented here.

However, it is important to consider why this method performs worse than others when
attempting to map more distant species. As the evolutionary distance increases between
the species, the more mutations will have occurred. Mutations such as insertions, deletions
and non-synonymous substitutions will remove the exact-matches which the k-mer based
mapping is based on. The reduced alphabet from Linclust that was investigated when
choosing the parameters did not show much improvement in the proportion of best hits
identified. However, the use of a reduced alphabet should have the same effect as looking
up multiple k-mers, widening the search space. Future studies could look into alternative
reduced alphabets, as this only shows that this choice of alphabet is not beneficial. It
may be that different reduced alphabets are more effective when varying the evolutionary

distance.

Further, in the gold standard set of homologous best-hits used, the only requirement to
be included was that the alignment score was greater than, or equal, to 50. As such, the

best-hit sequences are not necessarily of similar length to the query sequence.

When considering functional propagation, there is also a trade-off between speed and
accuracy — the method implemented in this chapter is much faster than the current method
for propagation through OMA groups, due to the lack of the requirement for all-against-all

alignments. However, it is error prone like many homology-based predictors [CJ17]. In
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particular, this method makes no distinction between orthologues and paralogues. This is
relevant as duplicated genes lack the selective pressure to maintain their original biological
role. As such, this leads to more mutations at the nucleotide-level which enables deviation

from their original function [GK13].

This projection method was used for the third CAFA community experiment [Z]B+19],
for two reasons. Firstly, some of the proteins in the CAFA targets did not exist in the
proteomes used in OMA (annotation mis-match). Further, some proteomes did not match
exactly to a single species in the OMA browser: the Xenopus laevis was mapped to Xenopus
tropicalis (XENTR, from Ensembl release 73); the Escherichia coli strain K12 was mapped to

any of the strains included below the given NCBI taxonomy ID (83333).

In the future, it is expected that by using a similar technique, fast mapping and placement
of anovel genome inside hierarchical orthologous groups (HOGs) will be possible. Pairing
this with ancestral predictions of function, using the algorithm described in Chapter 3,

will enable a more phylogenetically consistent approach.
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Chapter 3

Functional Propagation using

Hierarchical Orthologous Groups

The method presented in this chapter was used to submit predictions to the third CAFA
challenge [Z]B+19], as part of this work. The method description and parameter

optimisation are unpublished.

HE ALGORITHM BEHIND the Orthologous Matrix (OMA) project infers ortholog-
T ous genes among multiple genomes, using a pairwise optimal alignment of pro-
tein sequences [ DCG+05; RGDO08]. Using these orthologous relationships, two different
groupings are then performed — into OMA groups and hierarchical orthologous groups
(HOGs) [AGGD13; TGG+17]. These groups, as well as the current method for functional

propagation, were introduced in Section 1.5.

Whilst the current method of propagation uses the functionally-coherent OMA groups,
it has its shortcomings. Despite the popularity of using groups of orthologues to mean
the same genes in different species, it is not possible to flatten the evolution of genes into
simple groups. HOGs, instead, enable the comparison of highly diverged and similar
species in a consistent manner, but have not yet been exploited in the context of func-
tional inference. This chapter describes the work undertaken for this thesis to propagate

functional knowledge through these HOGs.

3.1 HOG Propagation (HOGPROP) Algorithm

Propagating functional annotations along gene phylogenies is a classical notion (for ex-
ample, [Eis98]). However, reconstructing large gene trees remains computationally de-

manding and error-prone. As a more scalable alternative, annotations can be propagated
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across hierarchical orthologous groups (HOGs) [SGS+14]. For instance, in the case of
Gene Ontology (GO) annotations, a subset (experimental and some electronic annotations
[based on [SAD12]]) are given a score dependent on their evidence code. These terms,
with scores, are then associated with the leaves of the hierarchical structure (genes), before

being pushed up and pulled down the hierarchy as can be seen in Figure 3.1.

The score decays across each edge, currently set at a fixed rate of 20%, with penalisation
when propagating over paralogous relationships of a double decay. Scores are combined
at each node (using summation) during the up-propagation, whilst the maximum score
is taken in the down-propagation. This is performed in an ontology-aware manner. That
is, when dealing with ontology-based knowledge, the score associated to a particular term

is also relevant to all less specific terms (parent terms) in the ontology.
Three combination methods are currently available:

e “Max” - taking the maximum of the scores;
e “Sum” — summation of the scores;

e “One-Max” — summation of the scores, with a maximum available score of 1.0.

After propagation, a score is available for every input annotation on all genes that are
members of a group. A basic algorithm, similar to this, was submitted to the second
CAFA experiment (team name “CBRG”), where it performed well under several criteria

[JOC+16].

3.2 Benchmarking of HOGPROP for CAFA 3

For benchmarking purposes, before submitting to the third CAFA challenge, the data from
the second challenge was used. The CAFA metrics of Frnax, Smin and average AUC were
used (see Section 1.7.1 for details). The latest version of input annotations and ontology
definition were taken from the time before submission to the second experiment. However,
the HOGs from the OMA release at the time of the third CAFA were used (May 2016), as
the quality increases with the more genomes included and these would be used for the

submission to the third CAFA.
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3.2.1 Input Annotation Filtering

Input annotations were taken from the UniProt-GOA, however these annotations have a
varying level of evidence to support them. Three input datasets were created — purely
experimental; experimental plus “trusted” electronic (IEA) annotations; experimental
plus “trusted” IEA and those coming from PAINT [GLLT11]. The filtered IEA annotations
are based on work by Skunca, Altenhoff and Dessimoz [SAD12] (see Appendix A for

details).

3.2.2 Transfer Rates

The decay rate over orthologue / paralogue nodes can be set independently. For bench-
marking before submitting to the third CAFA challenge, the rate of decay when entering
an orthologue node was set to 20%. The penalisation of propagation over the paralogous

relationships was then optimised. The transfer rate is

100 — doren
torth = 100

where d., has been set to 20%, i.e. 0.8. The paralogue transfer rate is then defined as

tpara = torth - (1 - %) ’

where p is the penalisation. This was varied from 0-100% in steps of 20%. That is, tpara

was set to 0.8 (0%), 0.64 (20%), 0.48 (40%), 0.32 (60%), 0.16 (20%) and 0 (100%).

3.2.3 Scoring Transformation

Each of the combination methods were tested. The Max and One-Max methods can simply
be rounded in order to ensure they are in the domain required for the CAFA scoring ((0, 1],
to two decimal places). However, the summation method does not. As the CAFA metrics
are taken at the maximum / minimum from the submission, this means that the scores
can be transformed in order to gain maximum resolution®. So, if the current annotations

are set at 1.00 then the predicted annotations have the remaining 99 slots available. If there

IThis is relevant to the Max and One-Max methods, also.
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are 99 or fewer scores then it is possible to have a one-to-one mapping to the CAFA score.

However, in the case of summation this was highly unlikely.

As such, an iterative procedure of binning into equal-width bins (from maximum to min-
imum score), with unused bins “deleted” and their score-slot pushed up towards 1.00.
The last bin was then divided into the remaining slots, until there were no slots left. As
there is a higher confidence in the predictions with a greater score, the lack of resolution

at the top is of less importance than increasing the resolution at the bottom.

It was later found that this binning process was not optimal for spreading the scores to
gain maximum resolution. Instead, the scores from each aspect can be fitted to a log skew-
norm distribution and the cumulative distribution function (CDF) of the fitted distribution
used to transform the scores. This results in an equal spread of scores into each of the bins,
resulting in higher resolution and better results (used later in Chapter 4 for the HOGPROP
methods).

3.2.4 Approximate Mapping

A number of the target sequences did not have an exact match to an entry in OMA. How-
ever, some had only a single amino acid difference due to the integration of genomic data
from different sources. Coverage of the targets in each test was a problem of the method
in the second CAFA. The k-mer approach described in Chapter 2 was used in order to
map sequences to the closest entry in the OMA database. This meant that some still did

not map to a HOG and as such there were still no predictions.

In Figure 3.2, the change in metrics based on performing the approximate mapping can
be seen. In this case, the input annotations were only experimental. When looking at
the scores that include the paralogue scaling, the Fnax increases around 0.035 / 0.04 for
the Biological Process (BP) / Cellular Component (CC) ontologies, respectively. For the

Molecular Function ontology (MF), it increased by around 0.65.

The increase in the average AUC is very small. The Spin has a different story. Especially

if normalised, as the Spin for BP terms is ~29 and on the CC and MF aspects it is < 10.
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Change in Benchmark Metrics with Approximate Mapping
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Figure 3.2: Change in metrics with approximate mapping, based on
predictions made using experimental-only input annotations.
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Change in Target Coverage
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Figure 3.3: Coverage of the benchmark proteins, when varying the
input annotations. All include predictions by approximate mapping,
apart from the experimental without approximate mapping (included
for reference).

Thus, the decrease in score is much more important than the relative increase seen in the

BP aspect.

The coverage of the benchmark proteins drastically increases through approximate map-

ping (Figure 3.3). However, when relaxing the filtering of the input annotations to include

“trusted” IEA terms then this increases further.

3.2.5 DParameter Choices

The predictions based on purely experimental input annotations were used to choose the
combination method. In Figure 3.4 the metrics are shown for each aspect of the GO, for
each of these methods. This shows that, in this situation, the metrics are fairly insensitive

to this choice. The “Max” method was chosen, however, because it had a slight advantage

in the Spin metric.

Then, using this combination function the paralogue decay scaling was chosen. The three
initial datasets, described in Section 3.2.1 were used, with the benchmark metrics being
computed on all. Results are shown in Figure 3.5. It is clear, as it was in the purely
experimental case, that propagating knowledge across duplication events (the paralogue
nodes) improves the scores in all situations. That is, the metrics are worse in all cases

when the paralogue decay scaling is set to 100%. However, with all other values both the
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Benchmark Metrics over Different Combination Methods
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Fmax and average AUC appear to be invariant. There is a very slight reduction in the Spin

for 20% paralogue decay for the BP and MF aspects. This value was chosen.

This is in agreement with the observations of Skunca et al. [SBK+13], where orthologous
and paralogous cliques were used to build phyletic profiles. It has also been observed
that the divergence between paralogues is not as strong as would be expected — Altenhoff
et al. [ASRRD12] found that the then-current experimental annotations did support the
so-called “orthologue conjecture” of orthologues having greater functional similarity than

paralogues, but more weakly than expected.

3.2.6 Comparison to Other CAFA 2 Submissions

Figure 3.6 shows the distributions of the metrics on all the submissions to the second CAFA
challenge. The position of the predictions from HOGPROP is shown on these plots, from
both the purely experimental and experimental plus “trusted” IEA input annotations. The
third input annotation set was not included, as the results are very similar. The CAFA

BLAST and naive methods are also overlaid.

Focussing on the predictions from the dataset including IEA, HOGPROP is achieving
around average in the Fnax results. However, it is slightly below average for average AUC
and well below average Spmin for BP and CC terms. However, it is amongst the best Syin

for MF terms.

3.3 Conclusions

This chapter has introduced HOGPROP, an algorithm which uses the hierarchical ortho-
logous groups (HOGs) from the OMA project in order to predict Gene Ontology terms
associated with protein sequences. This was optimised, using the CAFA benchmarks on
the targets from the second CAFA. Whilst the propagation model through the structure

of the HOG is simple, this appears to be effective.

A future direction for this work could be to implement a probabilistic model based on
belief propagation networks, introduced by Pearl [Pea82]. A simple approach based on
this has been used in the first version of SIFTER [EJMB05]. This framework was then
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Benchmark Metrics with Different Input Annotations
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Figure 3.5: Benchmark metrics when varying the level of filtering on
the input annotations. This shows that the benchmarks overall improve
when given the “trusted” IEA annotations. The paralogue decay scaling

was chosen as 20%. The metrics appear to be fairly insensitive to this

changing. However, including the information from paralogous
sequences appears to increase the performance of the tool. Each of
these three filtered datasets were submitted to CAFA.
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extended, for their second version [EJSB11], to include extra parameters which were then
estimated using generalised expectation maximisation. There may be some computational
complexities when implementing this, as in the June 2019 release the largest HOG contains
over 100,000 proteins. This would also require distances to be fitted to the edges within
the HOG. Whilst the OMA algorithm estimates pairwise evolutionary distances, in order
to construct an orthology graph, not all pairs are computed that would be required to fit

distances to the HOG topology.

However, as previously mentioned, the CAFA metrics used in the benchmarking in this
chapter do not account for the open world assumption (OWA) (see Section 1.7.2). This
leads to systematic over-estimation of the false positives, resulting in a misleading bench-
mark. As such, the development of a benchmarking framework which accounts of the

OWA is of high importance.

The following chapter proposes such a framework, before comparing HOGPROP to two
baseline methods and GOtcha. Then, in Chapter 5, a method to fit distances to large

phylogenies containing polytomies, in the context of missing pairwise distances.



Chapter 4

Benchmarking Gene Ontology
Function Prediction Using

Negative Annotations

[ The work presented in this chapter is currently under peer review. ]

W ITH THE EVER-INCREASING humber and diversity of sequenced species, the chal-
lenge to characterise genes with functional information is ever more important.
In most species, this characterisation almost entirely relies on automated electronic meth-

ods. As such, it is critical to benchmark the various methods.

The CAFA series of community experiments provide the most comprehensive benchmark,
with a time-delayed analysis leveraging newly curated experimentally supported annota-
tions. However, the definition of a false positive in CAFA has not fully accounted for the
Open World Assumption (OWA), leading to systematic underestimation of precision. The

main reason for this limitation is the relative paucity of negative experimental annotations.

This chapter introduces a new, OWA-compliant benchmark based on a balanced test set
of positive and negative annotations. The negative annotations are derived from expert-
curated annotations of protein families on phylogenetic trees. This approach results in an
increase in the average information content (IC) of negative annotations. The benchmark
has been tested using the naive and BLAST baseline methods, as well as two orthology-
based methods. This new benchmark could complement existing ones in future CAFA

experiments.

93
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4.1 Motivation

According to the GOLD database, hundreds of thousands of genomes have already been
sequenced, including close to ten thousand eukaryotes [MSB+19]. Within one decade,
the Earth BioGenome consortium aims to sequence 1.5 million eukaryotic sequences
[LRK+18]. At a molecular level, however, nearly all biological knowledge is concentrated
in human and a handful of model species. Strikingly, in UniProt-GOA [HSMM+15], over
80% of all Gene Ontology annotations supported by direct experimental evidence are con-
centrated in just seven species. Thus, for the overwhelming majority of species, functional

characterisation is almost entirely reliant on automated computational methods [CJ17].

As such, it is critical to benchmark the various computational methods. The CAFA series
of community experiments have provided the most comprehensive benchmark, with a
time-delayed analysis leveraging new experimentally supported annotations [RCO+13;

JOC+16].

One major complication in assessing protein function predictions is that proteins typically
possess multiple “functions” (sensu Gene Ontology [Thol7]), and knowledge of these
functions, even for well-known genes in model species, is typically notably incomplete.
This incomplete state of knowledge is referred to as the “open world” assumption (OWA)
[TWM+12; SRS17]. To date, CAFA has not fully accounted for the open world assumption
(OWA), leading to systematic underestimation of precision [DvT13]. For example, con-
sider the human gene Serotonin N-acetyltransferase (SNAT_HUMAN) which controls the night
/ day rhythm of melatonin production in the pineal gland. A method, when this protein
had no GO annotations, might have predicted “circadian rhythm” (G0:0007623), “rhythmic
process” (GO:0048511) and “indolalkylamine biosynthetic process” (GO:0046219). Then, when
“circadian rhythm” and “rhythmic process” were associated with this gene, they would both
be considered true positives and “indolalkylamine biosynthetic process” as a false positive.
Several years later, however, this term was associated with this protein — contradicting
the assertion that it was a false positive and demonstrating the problem with assuming a

“closed world” of complete knowledge.
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Ideally, to be compliant with the OWA during benchmarking, explicit negative annotations
are required — those that state a particular gene does not have a particular function — thus
making it possible to classify computational predictions of the contrary as a false positive
[DvT13]. Yet currently, in UniProt-GOA, less than 2.5% of all experimentally annotated
proteins have a Gene Ontology annotation which is negatively qualified, indicated by the

use of the “NOT” tag in the qualifier field of a GAF file [GSHD17].

Furthermore, reasoning on ontologies when using negative annotations requires different
treatment than with positive annotations. Thus, the information content associated with
negative annotations needs to be computed differently. As is elaborated below, this has

not been accounted for in benchmarks to date.

This paper introduces an approach to derive a large number of negatively qualified an-
notations from expertly curated gene phylogenies. Utilising these, a framework for OWA-
compliant benchmarking was developed, based on a balanced test set of positive and
negative annotations. This benchmark has been tested on the naive and BLAST baseline
methods, GOtcha and an orthology-based method. This new benchmarking framework

could complement existing ones in future CAFA experiments.

4.2 Results

This section starts by highlighting the differences in benchmarking GO annotations with
explicit negative annotations, over the current practice. Then, a derived set of negative
annotations based on expertly curated gene phylogenies is presented. Next, the results of

a method comparison, using these derived negative annotations to benchmark, are given.

4.2.1 Benchmarking Gene Ontology Annotation with Explicit

Negative Annotations

A large amount of explicit negative annotations would help to address the Open World
Assumption (OWA) in benchmarking. Further, benchmarking using these negative annota-
tions requires different handling. It is customary to assess automated function predictors

in a protein-centric sense. That is, computing some measure of quality — for example,
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True True
v X ? v X ?
"Qs; v TP FP "S' v TP FP
& X FN & X FN
(a) Current benchmarks (b) Benchmarks using negative annotations

Table 4.1: Definitions of true positives, false positives and false
negatives (for a single GO term on a single protein) used in (a) current
benchmarks and (b) in this paper for no-knowledge targets. Current
benchmarks use the lack of annotation to a particular GO term in the
true annotations (symbol “?”) to compute the set of false positive GO
terms.

precision-recall — for each protein, with an average taken over the proteins tested. A set
of true annotations is required, that are not available to the predictor, in order to properly
assess the method. It is currently common-place to identify the false positive GO terms as
those that have been predicted, but not in the set of true annotations (Table 4.1 (a)). When
there are sufficient negative annotations in the true annotation set for a given protein, the

false positives can then be identified as overlapping with these (Table 4.1 (b)).

Furthermore, because different terms vary in their information content (IC) — for example,
a positive association with a term such as “root hair elongation” (G0:0048767) is more
informative than the more general term “growth” (GO:0040007) — it is common to compute
weighted precision-recall curves. For instance, Clark and Radivojac [CR13] proposed to
weight by the information accretion (see Section 4.4.1 for details) — an approach which
was subsequently implemented in CAFA 2 [JOC+16]. In order to compute the IC of GO
terms, the probability is required — this can be estimated using the empirical annotation

frequency of each term.

However, it is important to recognise that the information content of a single term is not
the same if it is negatively or positively qualified. For example, it is easier to show that
a gene should be annotated with the general metabolic process term (GO:0008152) than
a particular metabolic process, for instance lactose biosynthetic process (GO:0005989). On
the other hand, it is exceptionally challenging to show that a gene is not associated with
any metabolic process, in comparison to showing that it is not involved in a very specific

one. Thus, more general terms in the GO have a lower IC than more specific ones when
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a positive association is made. However, the inverse is true for negatives — general terms

have a greater IC than those that are more specific.

Hence, it is necessary to estimate the IC of negative annotations separately (for details,
see Section 4.4.1) — ensuring to propagate term counts to children instead of the parents,

unlike for positive annotations [GD17].

4.2.2 Deriving Negative Annotations from Curated Gene Phylogenies

Expert curators have annotated ancestral states in gene phylogenies with GO terms, using
the Phylogenetic Annotation and INference Tool (PAINT) [GLLT11] on PANTHER families
[MMT12]. These ancestral annotations are then propagated down the phylogeny to the
extant genes. Both positive and negative (thatis, “NOT”-qualified ) annotations are recorded

in ancestral states.

Considering an individual GO term, if a curator finds evidence that this term applies to
all members of the gene family then the root node shall be annotated (Figure 4.1 (a)).
However, if there is evidence that this function is not present in a particular sub-tree then a
negative annotation would be assigned to an internal node (coloured red here) (Figure 4.1
(b)). This implies that the gene in question has lost a particular function on the branch

leading to this node.

A curator might annotate an internal node with the term of interest, without propagating
it all the way to the root (Figure 4.1 (c)). This could be motivated, for example, by a lack
of experimental information outside of the sub-tree, or taxon-based constraints [ DDM10;
TMMT18]. Irrespective of the reason, an expert curator has deemed that there is currently
a lack of evidence to annotate the root node with this term. As such, it can be argued that

an automated predictor should be penalised for predicting such terms.

By scanning the PAINT annotations for such instances, it is possible to derive many pairs,
(p, 1), where p is a protein which is member of a family where an ancestral node, not in
its direct lineage, has been annotated to a GO term t. That is, p is not covered by a PAINT

annotation (positive or negative) for a GO term t, but other members of its family are.
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(a.) (b.)

(C.) ¢

Node Types

Collapsed Subtree
O Ancestral State

!

Annotation Type
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. Negative
Evidence

q/ Evidence of function
x Evidence of lack of function

Figure 4.1: Possible locations in an example gene phylogeny where a
curator can annotate a term in positive and negative way. Green and
red nodes indicate positive and negative annotations, respectively. The
propagated annotation on child nodes and the collapsed sub-trees are
shown in lighter colour. In (a) this shows a term for which there is
evidence on all sub-trees and, as such, the root node is positively
annotated with the term. Then, (b) shows that if there is instead lack of
evidence or evidence of lack of function in one of the sub-trees then the
annotator will negatively associate the node leading to this sub-tree,
however there are few such cases. If, instead, there is no information on
the left hand side of the tree, as in (c), the curator would annotate a
lower node than the root and leaving the left hand side (see question
mark) without annotation.
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The number of such pairs is shown in Figure 4.2 (a) for on each aspect of the Gene Ontology
— Biological Process (BP), Cellular Component (CC) and Molecular Function (MF). In the
database, only 11,633 proteins were covered by a negative annotation in UniProt-GOA -
consisting of 4,911 with BP annotations, 4,619 with CC and 5,068 with MF. After including
the derived negative annotations, this increased to 330,635 — 198,848 with BP, 268,831 with
CC and 192,307 with MF. This is more than the number of proteins with at least one
positive (non-IEA) annotation (323,438) as well as more than those with only at least
one CC positive (non-IEA) annotation (266,658). Further, when including these derived
negative annotations, there is an increase in average information content of the negative

annotations, as can be seen in Figure 4.2 (b).

4.2.3 Balanced Benchmarking

In general, approaches to benchmarking GO annotations recognise that some aspects of
function are easier to predict than others. Thus, they typically consider the Information
Content (IC) of each annotation. Furthermore, since the IC for the same term varies
whether it is associated positively or negatively with a given target (see above), this dif-
ference should also be taken into account. One such way to account for differences in IC
amongst annotations is by weighting predictions by their IC. However, this only works
up to a point: if there are no, or very few, annotations with high IC, the results will have a
very large variance and thus not be particularly informative. To avoid this, it is possible
to design a benchmark to test GO terms for which there are informative positive and neg-
ative examples. Henceforth, this design shall be referred to as a “weighted and balanced”

benchmark.

To investigate the two approaches (weighted-only, as well as weighted and balanced),
two test sets were generated that represent each case. For the weighted-only case, the test
set contains 2,992 distinct protein-pairs from each annotated gene family, consisting of a
protein with positive annotations (p.) and the other with negative (p_). True positive
and false negative terms are identified with the positive protein, p., and false positives
with p_. For the “weighted and balanced” case, proteins were chosen for every GO term

that has a positive and negative example within a protein family, resulting in 12,613 protein
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Figure 4.2: Resulting number of annotations (a.) and difference in
average information content (b.) when including the curated negative
annotations. (a.) shows the number of genes in PANTHER families
covered by PAINT, with at least one non-IEA annotation. Relatively few
(4,911 [BP], 4,619 [CC], 5,068 [MF]) were covered by a negative
annotation in the database, increasing to 198,848 (BP), 268,831 (CC)
and 192,307 (MF), with the curated negative annotations. For CC this is
more than the number of proteins with at least one positive (non-IEA)
annotation (266,658). (b.) displays the distribution of IC of negative
annotations on genes in PANTHER families covered by PAINT. An
increase in average IC of negative annotations is observed when
including the curated negatives.
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pairs (with associated GO term). In this case it is still necessary to weight, to account for
variation of information among GO terms for positive or negative annotations (Figure 4.3).

For details, see Section 4.4 .4.

For each of the benchmarks, separately, all annotations to the target proteins were hidden
during training, with all terms and proteins tested at the same time. Predictors for which
it was possible to provide custom training data were used: the two baseline methods
included in CAFA (naive and BLAST), GOtcha [MBB04] and HOGPROP (DessimozLab
in the third CAFA). All methods output a confidence score, x € (0,1]. By varying the
confidence cut-off (taking only annotations for which « > T), a precision-recall curve
was computed (for more details, see Section 4.4.4). For comparison to benchmarks under
the CWA, the positive example genes from the weighted-only benchmark were used in
order to identify false positives and weighting as in the CAFA weighted-precision recall

benchmark.

The results are shown across the three different aspects separately (rows) with the different
assessment methods in each column (Figure 4.4). The width of the curves represents the
average IC of the predictions which are used to calculate the precision measures. The
maximum Fy scores (Fmax) for each method, on each aspect, are available in Table 4.2 and

also displayed as points on the curves.

The closed world assumption (CWA) benchmark recapitulates some key observations
from the CAFA experiments [RCO+13; JOC+16]: naive, which only relies on background
term frequencies, performs especially well in Cellular Component terms — where most
annotations are relatively general. BLAST, also considered as a baseline approach, per-
forms worse than the non-baseline methods, even at stringent score cut-offs. Predictions
for Molecular Function and Cellular Component terms are generally more accurate than

for Biological Process.

However, besides the questionable discussed previously, the narrow lines in the plots
indicate that most terms considered in the CWA benchmark have low Information Content
(IC). This is particularly the case for the naive method, which inherently focuses on high

frequency (and thus low IC) terms.
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If explicit negative annotations are used instead, the picture changes markedly. However,
the first variant, which uses the weighted-only scheme, carries little information (Figure B.1
bottom row). Indeed, the naive predictor performs with 100% precision at low recall, even
better than in the CWA (Figure 4.4 left vs. middle column). This can however be explained
by the complete lack of negative annotations involving general terms, reflected in the very

low average IC of annotations (thin curve).

The weighted and balanced OWA benchmark provides more insight (Figure 4.4 bottom
row). In the second OWA benchmark, the test set consists of pairs of proteins, a positive
and negative example, for each GO term in each family containing both annotation types.

This tests a predictor’s ability to discriminate between homologous proteins.

With a balanced test set the naive predictor performs much worse than in conventional
CWA tests. This is because very general predictions, which are very easy to prove but near
impossible to disprove, are by design not considered here. In other words, when naive is
evaluated on testable predictions, it makes many mistakes, which is reflected in this OWA
benchmark. The recall is also markedly lower, which would be expected from a method

inherently limited to predicting only the most frequent terms.

Likewise, results obtained for the BLAST predictor make more sense than on conventional
CWA benchmarks: precision is very high where recall is low, but degrades steeply when
recall increases. This makes sense, as the confidence score is based on the percentage
sequence identity, high-precision-low-recall results are obtained when sequence identity
is close to 100%, and where one would expect functions to be highly conserved. Increasing

recall requires more permissive thresholds, which also results in more false positives.

One last finding of note is that GOtcha, a method which combines BLAST results, performs
particularly well under the CWA benchmark. For instance, on the Molecular Function
(MF) aspect, GOtcha achieves an Fpyax of 0.65 compared to the next best method of 0.58
(HOGPROP2). However, in the weighted and balanced OWA benchmark, it performs
worse than BLAST (Fmax of 0.52 vs 0.55 in MF). This large discrepancy appears to be
due to two main factors. First, the internal scoring scheme of GOtcha strongly favours

general terms. As seen with the naive predictor, predictions of general GO terms tend
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to be rewarded in conventional benchmarks. However, being practically impossible to
disprove, they are by design not considered in the balanced benchmark. Secondly, given
a target protein to be annotated, although GOtcha uses the E-values of BLAST matches
to the target to assess the relative plausibility of the GO annotations associated with each
match, it then normalises the scores obtained for each target by the maximum score of
that target. As a result, predictions for a target for which the best functionally annotated
BLAST match is, say, 100% identical could receive the same confidence as a prediction for
a target for which the best is only 40% identical. Indeed, by removing this normalisation,
a substantial improvement for GOtcha was observed in the weighted and balanced OWA

benchmark (Figure B.2).

4.3 Discussion and Conclusion

Current benchmarks make an assumption that proteins are fully annotated, by identifying
false positives as all the predicted terms which are not confirmed by experimentally backed
annotations. Instead, to account for the open world assumption (OWA), it is necessary to
utilise explicit negative annotations in order to assess GO predictions. The methodology
developed in this study provides the necessary framework to benchmark using negative

annotations.

To overcome the relative paucity of negative annotations (Figure 4.2), this study identified
a substantial source of negative annotations derived from the expertly curated annotation
of gene phylogenies in the PAINT project. After performing this procedure, when con-
sidering all genes which are members of families that have been annotated in PANTHER,
there is roughly the same number of genes that have at least one positive annotation to

that with at least one negative.

These derived negative annotations are of higher quality than negative electronic asser-
tions, however less so than those that have been performed manually by an expert. One
potential issue is that it requires annotators to carefully gauge the most appropriate level of
specificity of the term used in annotations. If a curator, in an abundance of caution, assigns

an overly general term to a subset of the gene family, the lack of this annotation will be
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Figure 4.3: Information content of individual terms when associated
positively vs negatively. There is a clear difference in the information
content between the two, which motivates the weighting and balancing
scheme used in this study.
CWA OWA Weighted-Only | OWA Weighted and Balanced
| Method Frax | T | AVgIC | Foax | T | Avg IC | Fox | T |  Avg. IC
Naive 025 | 0.14 2.96 0.59 | 0.01 4.73 0.14 | 0.01 7.09
BLAST 0.29 | 047 7.84 0.55 | 0.21 5.75 0.51 | 0.41 9.70
GOtcha 040 | 0.35 5.69 0.53 | 0.01 5.61 0.49 | 0.02 9.28
HOGPROP1 | 0.39 | 0.62 717 0.52 | 0.06 5.34 0.58 | 0.05 9.97
HOGPROP2 | 0.50 | 0.65 7.03 0.59 | 0.48 5.77 0.66 | 0.30 10.05
(a) Biological Process
CWA OWA Weighted-Only | OWA Weighted and Balanced
| Method Frax | T | AVgIC | Foax | T | Avg IC | Fox | T |  Avg IC
Naive 041 | 0.30 1.51 0.61 | 0.03 245 0.30 | 0.01 6.08
BLAST 0.40 | 043 5.49 0.61 | 0.20 3.72 0.53 | 0.38 791
GOtcha 0.55 | 0.41 3.40 0.58 | 0.01 3.56 051 | 0.04 7.69
HOGPROP1 | 0.53 | 0.70 5.44 0.60 | 0.01 3.47 0.62 | 0.14 8.30
HOGPROP2 | 0.61 | 0.65 5.66 0.70 | 0.01 3.73 0.69 | 0.37 8.43
(b) Cellular Component
CWA OWA Weighted-Only | OWA Weighted and Balanced
| Method Frax | T | AVgIC | Foax | T | Avg IC | Fox | T |  Avg. IC
Naive 0.36 | 0.15 2.02 0.56 | 0.01 4.42 0.09 | 0.01 7.04
BLAST 0.47 | 045 7.15 0.62 | 0.28 6.38 0.55 | 0.40 10.66
GOtcha 0.65 | 0.37 5.96 0.61 | 0.07 6.23 0.52 | 0.04 10.42
HOGPROP1 | 0.53 | 0.72 7.30 0.63 | 0.01 6.34 0.64 | 0.03 11.12
HOGPROP2 | 0.58 | 0.67 7.56 0.69 | 0.01 6.57 0.69 | 0.23 11.07

(¢) Molecular Function

Table 4.2: Cut-off and average information content at the point of the
maximum F; score (Fmax ), for each method on each aspect of the Gene
Ontology, as measured under the CWA, OWA weighted-only and OWA

weighted and balanced benchmarks.
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Figure 4.4: Precision-recall curves, for each aspect of the GO separately
(columns) with the line-width and colour altering based on the average
IC of the assessed predictions. (Top) benchmarking under the CWA —
identifying false positives using unknown knowledge; (Bottom)
weighted and balanced OWA-compliant benchmark, using positive and
negative examples for each GO term, for which they exist. The
thickness of the curves represents the average IC of the predictions
which are used to calculate the precision at that point. The maximum F;
score (Fmax) is shown as a point on each curve — values are available in
Table 4.2.
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interpreted by the derivation procedure as a negative annotation with high information
content. The procedure also presumes that any annotation placed lower than the root of
the phylogeny has been done so deliberately. Yet, there are plausible situations when this
may not be the case, such as when the underlying gene phylogeny is updated (for example,
between PANTHER releases) or the inclusion of new species without a thorough review
of each family. These potential pit-falls could be addressed by: (1) being cautious when
choosing which terms to derive negatives for; (2) utilising date stamps for when a family’s
annotation set was last approved by a curator. The former has been implemented by only
deriving negatives for GO terms with a positive IC greater than, or equal, to five — limiting
the negative annotations to more specific terms. The latter is more complex and could be

resolved in a future study.

There are, however, many cases where the derived negative annotations makes sense. One
such case is in the PANTHER family PTHR10686 (Figure 4.5). The root node of this family
has been annotated to transmembrane transport (GO:0055085). Then, further down at the
level of the Chordata, there is a duplication. One sub-family (green) has been annotated
to have the molecular function folic acid transmembrane transporter activity (GO:0008517),
whilst two other sub-families after the duplication have been annotated to have the mo-
lecular function thiamine transmembrane transporter activity (G0:0015234). It appears that
after this duplication, the function has specialised to transport either folic acid or thiamine.
In the weighted and balanced OWA benchmark, there were a number of tests performed
on GO terms for which there are positive and negative examples in this family. For ex-
ample, the thiamine transmembrane transporter activity (GO:0015234) was tested on the pro-
teins with UniProtKB IDs F6SXG7 (sub-family C) and F1IN2M7 (sub-family A) as positive
and negative examples, respectively. Likewise, folic acid transmembrane transproter activity
(G0:0008517) was tested on positive and negative examples F1PFN8 (sub-family A) and
F6SXG7 (sub-family C), respectively. At the Fmnax point, both these paired tests show that
none of the methods can correctly discriminate between these two GO terms on these se-
quences from the same gene family (see Section 4.3). Finally, another test was performed
on folate transmembrane transport (GO:0098838), with positive and negative examples of

F7EDM@ (sub-family A) and C3ZIU7 (not in labelled sub-families), respectively. At the Fpax
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point, both BLAST and HOGPROP?2 correctly discriminate between these closely related
proteins, whereas GOtcha and HOGPROP1 do not.

Despite the plethora of methods developed and submitted to the CAFA challenge, only
a few of them are available as standalone software. This makes it difficult to test them
on newly developed benchmarks, such as the one introduced here. Note that web-based
services, while convenient for end-users, are difficult to include in such a benchmark due
to the lack of control over the input — it is very important that the ontology definition and
existing protein annotations are carefully controlled during training, to avoid circularity

in evaluation.

Time-lapsed studies, such as CAFA, are by design less prone to this circular evaluation.
However, they require a steady supply of new annotations. For the derived negative
annotations introduced here, time-lapsed studies would require steady supply of gene
families newly annotated by PAINT or a similar curated approach. This may seem more
constraining than merely annotating individual gene targets using the literature. However,
family-wise annotation is also more consistent and scalable than the inconsistent process
of annotating individual targets; their value in benchmarking based on negative examples

is an additional incentive for this curation effort.

Directly curated, experimentally-backed negative annotations — from expert curators —
would be even more valuable than the derived negatives introduced here. Indeed, there is
a great interest within automated functional annotation methods for a high-quality source
of negative annotations, for both method-development and benchmarking. In particu-
lar, recent developments in, so-called, “deep learning” machine-learning methods show
promising results, but heavily rely on training sets consisting of both positive and negative

examples.

More specifically, this study also provides guidance to curation, by quantifying which indi-
vidual terms — positive or negative — are most valuable for benchmarking. Whilst positive
associations become more informative the further they are away from the root-terms, neg-
ative annotations are more informative the closer they are. Negating particularly general

terms may prove prohibitively difficult to experimentally validate. This also explains why
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transmembrane transport (GO:0055085)

folic acid transmembrane transporter activity
(G0:0008517)

' thiamine transmembrane transporter activity |

Euteleostomi

—%

Chordata
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Neopterygii Py
- ———— |
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Figure 4.5: Sub-family of PANTHER family PTHR10686 — the root term is annotated to transmembrane transport, whilst particular
sub-families have been annotated to folic acid transmembrane transporter activity and thiamine transmembrane transporter activity.
This implies that, for example, proteins outside of that annotated with folic acid transmembrane transporter activity (green) should

not be annotated with this term.
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only using general terms in a benchmark is not merely uninformative [GSHD17; Pes17;

CR13; §R817], but misleading.

When weighting by information content it is possible to correct for the difference in inform-
ation within and between protein annotation sets. It does not, however, provide a balanced
test — especially if only general terms are used. The balanced OWA-compliant benchmark
provides a balanced test set such that methods are only rewarded for predicting terms that
can be disproved. This, alongside the relatively low information content of annotations
considered in the benchmark under the closed world assumption, explains why the naive

predictor performs so well in CAFA.

Finally, this work highlights the importance of the methodological details underpinning
benchmarking. The absolute and relative performance of methods is enormously affected
by seemingly technical decisions. Overcoming the limitations of the current benchmarks

should be an overriding priority for the function prediction community.

4.4 Methods

44.1 Information Content Computation

Information content (IC) is estimated by computing the frequency of a particular GO term
in a given database of annotations. The IC that an individual term holds is then computed

as

ic(t) = —10g2(P[t]),
where t is a single GO term and P[t] is the empirical probability of observing said term.

The logarithm is taken base 2 by convention, with the units of information as Shannons or

bits [Sha48]. Then, the IC of a set of terms T, can be computed as

ic (T)=— 10g2(]P’[‘T]),
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where P[T] is estimated directly from the annotation matrix (P), taking into account for co-
occurrence of the annotations. As IC of positive and negative annotations is not equal, this
was computed separately, to account for the OWA. As such, analogously, the “negative”

IC of a term (t) and set of terms (7') can be calculated as

ic_ (t) = — logz(P[_'t])/

ic_(T) = —log,(P[~T1),

however P[—-T7], the prior probability of negative associations of the set of terms in T, would
be computed directly from the negative annotation matrix (N). Note, proteins were con-
sidered annotated if they had at least one annotation in at least one aspect of the GO, lower

than the root term, listed in the UniProt-GOA or the derived set of negative annotations.

Denote the sets of terms classified as true positive, false negative and false positive as
TP,FN, FP, respectively. In the OWA-compliant benchmarking framework, the weighted
metric representing each of these is computed by calculating the IC of the terms in each
set. For true positive and false negative terms, that is TP,, =ic(TP) and FN,, = ic(FN).

For false positives, this is instead calculated as FP,, = ic_(FP).

4.4.2 Curating Negative Annotations

Negative annotations were curated using the ancestral annotations from PAINT on PAN-
THER 13.1 families, provided in personal correspondence on 21st August 2018. At this
time, 5,664 PANTHER families contained annotations, for which it was possible to derive
at least one extra negative annotations on 2,894. In order not to make too general negative
assertions, only GO terms for which the “positive” IC was greater than 5 bits were used.
In particular, this was due to some erroneous annotations to more general terms in the

GO which were in the process of being removed.

PANTHER families were scanned for instances of proteins where an ancestral node, not
in its direct lineage, has been annotated to a particular GO term. That is, proteins which
are not covered by a PAINT annotation (positive or negative) for an individual GO term,

but other members of its family are.
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4.4.3 Comparison Prediction Methods

Two baseline methods were used, the naive and BLAST predictors used in CAFA 2
[JOC+16]. This was compared against GOtcha [MBB04 | and HOGPROP (DessimozLab in
CAFA 3). The benchmark set of proteins P was chosen subject to the routines described in
Section 4.4.4. All existing knowledge on these proteins was removed from the annotation
data provided to the methods. Each predictor outputs in the form (p, t, x), where p € P is

a protein identifier, t a GO term and o € (0, 1] the method’s confidence in its prediction.

4.4.3.1 Naive Predictor

The naive predictor assigns the same (t, ) for all p € P. The confidence score is the
frequency of annotation of the term to annotated proteins in the database. This is com-
puted using only experimentally verified annotations on proteins in UniProtKB/Swiss-Prot

[Unil7a; Unil8].

4.4.3.2 BLAST Predictor

For each term, the confidence is defined as the maximum percentage identity to a sequence
that has been annotated with this term. Again, only experimentally verified annotations

on proteins in UniProtKB/Swiss-Prot [Unil7a; Unil8] were used.

4.4.3.3 GOtcha

GOtcha [MBB04] is a more sophisticated predictor, utilising not only sequence homology
but also the structure of the GO whilst combining BLAST hits. Consider a target protein
p, GO term t and a set of of sequences associated with said term 8¢. Then, first an r-

score is computed as Ty = — ) log(e(p, s)) where e(p, s) represents the E-value of the

SESt
alignment between the target sequence p and sequence s. i-scores are then calculated
by dividing the r-scores by the score for the root term in the relevant aspect — that is,
it = T¢/Troot- GOtcha was included in the assessment of Clark and Radivojac [CR13] as

an example of a good predictor, performing better than the baseline methods.
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4434 HOGPROP

This was submitted to the third CAFA as DessimozLab and utilises the hierarchical ortho-
logous groups (HOGs) from the OMA project [AGT+18], with the same algorithm also
being applied to predicting potential causal genes in QTL experiments [ WDR18]. Two
variants are included in this paper - HOGPROP1 uses experimentally derived annotations
as well as a sub-set of the electronic annotations deemed to be “trusted” (see [WDR18]
for details); HOGPROP2 uses all annotations, except for electronic ones which are filtered

to only include the “trusted” ones.

A subset of GO annotations (including some electronic annotations {based on [SAD12]})
are given a score dependent on their evidence code. These terms, with scores, are then
associated with the leaves of the hierarchical structure (genes), before being pushed up
and pulled down the hierarchy. The score decays across each edge (fixed rate of 20%),
with a penalty when propagating over paralogous relationships of a double decay. Scores
are combined at each node (using summation) during the up-propagation, whilst the

maximum score is taken during down-propagation.

44.4 Benchmarking

Two novel benchmarks were developed: the weighted-only, as well as weighted and bal-
anced. These differ in both the calculation of precision and recall and the manner in which

the test set is chosen.

Precision-recall curves were computed for both benchmarks, by varying the confidence

cut-off (T € (0,1]) that each method reports in its predictions.

Weighted-Only

The test set includes one pair of proteins per-family, for which it is possible to choose a
protein with positive annotations and one with negative annotations. This resulted in

2,292 protein-pairs used for this benchmark.

The protein pairs in the test set were chosen without stipulation on the depth or amount of

information that each gene has per-aspect or overall. Weighting is then required to correct
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the differences in IC — both within and between the positive and negative annotation sets.
To balance within, the IC of the terms inside the particular gene set (for example, true
positives) was used. Then, to balance between the positive and negative sets a normalised
measure is computed for each of the gene sets (for example, normalised true positive),
normalising by the total IC of the positive or negative example genes. Thatis, the weighted-

normalised measures for computing precision and recall are

~ Zm ici (TPR,) ~= Zm ict (FNg ) ~ Zp_ ic_(FP5 )
TPw:Z " (A+)'FNW:Z i (AT ) andFPW:—Z (A )
P+ TP py 1+ Ap, p_ i (Ap_

where TPF ,FNT are the sets of true positive and false negative GO terms for p. and FPJ
+ P+ P-
the false positive for p_, both with confidence cut-off . A;l is the truth set of positive

annotations for p., and A, _ is the truth set of negative annotations for p_.

In order to compare with a benchmark under the closed world assumption (CWA) (seen in
Figure 4.4 and Figure B.1), all proteins chosen for their positive annotations were used. The
CWA benchmark presented then corresponds to the weighted precision-recall benchmark

in CAFA [JOC+16].

Weighted and Balanced

The test set is chosen such that for each GO term included there is a positive and negative
example. For all families, for all GO terms with both positive and negative examples one
protein was chosen (at random) to be the positive example and another as the negative.

This resulted in 12,613 GO term and associated protein-pairs chosen.

Weighting is still required in order to correct for the difference in IC between positive and
negative terms (see Figure 4.3). The following definitions for weighted and normalised

true positive, false negative and false positive measures were used:

~v 2 1Fp() ies(t) st M IEN() ey (t) | et 3 IEp (1) i ()
=" ™ S M shc
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where

) 1 ift;e TP;_Jr
Tp(i) = '
0 ifty¢ TP;_+

and similarly,

1 iftie ]:]\1;4r 1 ift; e FPT_
Fn (i) = ©oand 1%p(1) = P
0 ifty¢ FN;i 0 ifty¢ FP;,

4.4.5 Materials

Here, the versions of each dataset and annotation pipeline are provided:

Datasets

e PAINT ancestral annotations from 21st August 2018 [GLLT11];

e PANTHER families from version 13.1 [MMT12];

Gene Ontology definition from 1st August 2018 [ ABB+00; Gen17; Gen18];

UniProt-GOA from 16th July 2018 (release 180) [BDH+09];
e OMA hierarchical orthologous groups (HOGs), December 2018 release [AGT+18];

For comparison methods, UniProtKB/Swiss-Prot release from August 2018 [Unil7a;
Unil8]

Software

e BLAST+ version 2.6.0+ [CCA+09];
e MATLAB scripts [Jial8] used in the evaluation of CAFA 2 [JOC+16].
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Chapter 5

Fitting Evolutionary Distances to

Hierarchical Orthologous Groups

ECONSTRUCTING LARGE GENE TREES remains computationally demanding and
R prone to errors. For this reason, analyses are typically limited to a few hundred
genomes. As a more scalable alternative, hierarchical orthologous groups (HOGs)! can
be used [SGS+14]. An individual HOG is a group of sets of genes arranged into a hier-
archy, dependent on their location in the gene tree. Each one of these sets shares a single
common ancestor, but genes can be a member of more than one set [AGGD13; TGG+17].

This enables the comparison of highly diverged and similar species in a consistent manner.

HOGs have been increasingly adopted: this hierarchical approach is used by several or-
thology databases including OrthoDB [ZTK+17], EggNOG [HCSF+16], HieranoidDB
[KRLS17], as well as OMA [AGT+18]. In OMA, for instance, the most recent release con-
tains over 600,000 HOGs with the largest containing over 100,000 members, across more

than 2,000 species.

Reconciled gene trees have been used in many studies: for example, they have been used
to recognise selective pressures acting on different areas of genomes [ WNK+09]; also, it
is possible to use them to assign Gene Ontology (GO) functional annotations to proteins
such as in SIFTER [EJMBO05; EJSB11]. However, the gene phylogeny implied by a HOG

does not provide branch lengths, which are necessary in both of these example analyses.

For more details on hierarchical orthologous groups, see Section 1.3.1.2.
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5.1 Evolutionary Distances in OMA

Instead of using the sequence similarity as a proxy of evolutionary distance when identify-
ing homologues, Wall, Fraser and Hirsh [WFHO03] proposed to use maximum likelihood
estimates of the evolutionary distance between sequence pairs. Building on this, Roth,
Gonnet and Dessimoz [RGD08] developed the OMA algorithm, showing how statistical
uncertainties in the estimation of the distances can be incorporated into the inference

strategy.

The first step is to perform alignments between all sequences using a full Smith-Waterman
alignment with a fixed PAM matrix (PAM224) in order to identify all homologous se-
quences. Secondly, significant alignments (those with a score > 85) are refined by search-
ing through all PAM distances for the scoring matrix which maximises the alignment score,
which are then used in order to compute the pairwise orthology graph. As such, the al-
gorithm does not generate maximum likelihood estimates for the evolutionary distance
between all pairs of sequences in the database. Later, when HOGs are inferred from the
pairwise orthologues, some distant homologues may be included in the same top-level
group. In the most recent releases a few families contain over 100,000 members, linking
many distant homologues, which means that there are many pairwise distances which

have not been computed — almost 65% in the June 2019 release.

5.2 Fitting Evolutionary Distances to HOGs

Due to the number and size of the HOGs, a method that utilises the existing pre-computed
distances would be well-suited to estimating the branch lengths on the implied gene phylo-
geny. When pairwise distances between extant genes are known, branch lengths can be
fitted using a least-squares method [BW98]. However, current software (for example,
ERaBLE [BGS+16]) does not permit for the polytomies which the HOG topologies typic-
ally contain, whilst also requiring the full pairwise distance matrices between all extant

genes.

Polytomies exist in HOGs for two reasons. Firstly, the first is that the HOG construction
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Cumulative Missing Pairs (84,709 HOGs)
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Figure 5.1: Cumulative proportion of missing pairs against size of HOG,
sorted by HOG size. Total number of missing pairs 10.68 x 10°. Over
80% of missing pairs are the result of the single largest HOG. Together,
the three largest are responsible for 88.17% of the missing pairs.

algorithms are unable to determine the order of duplication events. The second being
those that result from unresolved sections of the NCBI taxonomy which is used to provide

the order of speciation events.

Further, there are more than 16.4 x 10° pairwise distances that would be required to provide
a full pairwise distance matrix for every HOG. A large number (> 10.6 x 10°2) are filtered
out early, as they do not meet the alignment score threshold. Over 80% of missing pairs
are the result of the single largest HOG. Together, the three largest are responsible for
88.17% of the missing pairs. It is infeasible to estimate the remaining distances even if the
largest three HOGs were removed from any analyses, leaving more than 1.26 x 10” pairs
remaining. The all-against-all alignment and maximum likelihood evolutionary distance
estimation is the most computationally intensive part of the OMA algorithm, as of the
June 2019 release accumulating more than 9 million CPU hours (over 1,035 CPU years) in

the last 15 years.

25,765,402,573 of the 16,452,904,160 required are computed during the all-against-all stage of the OMA
algorithm. An additional 10,687,501,587 pairs would need to be computed (64.96% missing).
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5.3 Fitting Evolutionary Distances to Trees Containing

Polytomies

Let G be the set of genes in a given family and n := |G| the number of genes. Evolutionary
distances can be calculated between each of these genes and stored in a column vector,

denoted d € R™, where m = n?

(d12, d13, d1g, dp3, dog, d3g) 7.

>—+. For instance, suppose § = {g1, 92, 93, g4} then d =

A tree T, with the members of § as the leaves, can be encoded into a binary matrix A € {0, 1},
containing the shape of the tree: columns correspond to the branches of T and rows to
pairs of genes in §. For example, if branch k is in the path between gene i and j then

Aij,k =1

Then, if d denotes the vector of gene-to-gene distances and b the vector of branch lengths,

the relationship between them can be defined as a system of linear equations,

d = Ab. (5.1)

This is an over-determined system of linear equations, containing inconsistencies due to
errors in the encoded topology as well as in the estimates of evolutionary distance. A
least-squares approach can be used to find b which minimises the residual sum of squares.

The most simple is to use an ordinary least-squares (OLS) approach,

A

b =argmin||(Ab — d)||». (5.2)
b

Also, a further constraint is often added. That is, the branch lengths must be strictly greater
than, or equal to, zero. So, the problem becomes an optimisation problem — minimise Equa-
tion (5.2), subject to d > 0 — commonly termed the non-negative least-squares (NNLS)
problem,

b = argmin ||(Ab — d)|],. (5.3)
b=0
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The direct solution of Equation (5.2) is

b=(ATA) !4, (5.4)

although this is very expensive to compute due to the large matrix inversion and would

not necessarily solve Equation (5.3). It is possible to, instead, reformulate Equation (5.1)

as .
—
(ATA)b= A'Td, (5.5)
~——
=:H

which is then of the form Hb = f, where H is symmetric positive definite and a non-
negative constraint can quite easily be added to b in various approaches that exist to

solving such optimisation problems.

For instance, Lawson and Hanson [LH95] defined an active set method which solves the
Karush-Kuhn-Tucker conditions for the NNLS problem, which is included in the scipy
Python package. However, the NNLS problem becomes challenging if a large amount of
data needs to be processed, which makes the standard methods infeasible. The projected
Landweber method was proposed in order to deal with large NNLS problems [JEK+06],
however Franc, Hlava¢ and Navara [FHNO5 | showed that a sequential co-ordinate-wise
algorithm performed better. This algorithm is an adapted form of the classical Gauss-
Seidel method of successive displacement, with a requirement at each step for the elements

to be greater than or equal to zero.

The tree topology encoded in A is typically sparse. No implementation existed that enabled
the large amount of data and exploited this sparsity existed — especially that could be

integrated into the existing Python pipeline.

As such, the algorithm stated by [FHNO5] (here termed Non-Negative Gauss-Seidel
[NNGS]) was implemented in Python taking full advantage of the sparsity of A. The
Numba JIT compiler was also used, which has been shown to approach the speed of C or
FORTRAN code [LPS15]. The adapted algorithm for fitting branch lengths is available in
Algorithm 5.1.
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Algorithm 5.1: Non-Negative Gauss-Seidel for Topology Branch Fitting

Input: A (binary topological matrix) and d (gene-to-gene distances)

Output: b (branch length estimates)

/* Form SPD matrix and RHS containing constraints */
H:=(ATA);

f:=ATd;

/* Initialise */
x0).=0; /* Initial guess */
u®.=f; /* Initial direction x/
e:=10"°; /* Choose convergence criteria */

while not converged do

converged := True;

fork:=1tondo
/* Estimate update */

(t)

xl(jﬂ) ‘= max (0,xl(<t) — ﬁt,k>;
/* Direction update (Note, H=[hy,---,h]) */
a1 — (8 (X](:H) _ x](:)) hy;
/* Convergence check */
if (x](:H) — x]((t)) > € then converged := False;

As Franc, Hlava¢ and Navara [FHNO5] noted, they were unable to prove convergence of
this method. However, they found that it converged quickly in practice for their problem

in computer vision. This appears to be the case here, as well.

5.4 Fitting with Missing Distances

As not all pairwise distances are computed during the OMA pipeline, given the large
number of extra (> 10 x 10”) alignments required to complete this it is infeasible to do
s0. The system defined in Equation (5.1) is over-determined. However, the equations
are not necessarily consistent due to errors which occur along the pipeline. For instance,
errors may occur during the sequencing and assembly of the genomes, as well as in the
hierarchical clustering. To maintain the scalability of HOGs in these large analyses, it
was necessary to investigate any additional error incurred when fitting with incomplete

pairwise distances.
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In order to ensure that the matrix A does not become singular when sub-sampling the
gene-pairs, it would be advantageous to identify a basis of A. Ideally this would contain
pairs for which the distances are already computed, or at least the majority are. However,
this is a complex problem and further work is required in order to choose an optimal set

of gene pairs.

For now, an (almost) minimal spanning set can be identified. Polytomies in the topology
are resolved before identifying a set of 2n — 3 gene pairs (where n is the number of genes
in a given HOG). Extra gene pairs can then be added, in order to add further constraints

to the least squares fitting.

5.4.1 Error Analysis
Method

To gauge the error induced by reducing the number of pairs over each branch, a sample
of 52 HOGs with no missing pairwise evolutionary gene distances was used. An (almost)
minimal spanning set of pairs was chosen for each HOG, as described in the previous

section.

Extra pairs were then added at random such that a minimum number of k pairs passes
through each branch, before running the non-negative least squares algorithm. This was

done for k from 10 to 100 in steps of 10. For each k, the process was performed 10 times.

The error was calculated using the branch lengths resulting from fitting using all of the

pairwise distances. The normalised root-mean-squared error (RMSE) was computed,

RMSE = —— li (&-—&“”)2 (5.6)
= ‘|)2H2 ni:l i i 7 .

where X denotes the vector of branch lengths from the “full” pairwise distance fitting, with

%i and fcik) being the i-th branch length in the “full” and reduced estimated, respectively.
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Results

Figure 5.2 shows the error induced by reducing the number of pairwise distances. All
52 HOGs that were used are included within each bar. It is clear that as the minimum
number of pairs per-branch increases, the error decreases. However, this starts to plateau
at around k = 60 with an error between ~ 0.09 and 0.15, for this dataset. In Figure 5.4, the
error is plotted against proportion of pairs used for fitting the branch lengths. This shows
that as the proportion of the full constraints increases the error drops. If a user can accept
some degree of error and their use case is, instead, interested in the order of the branches,

then reducing the number of pairs used during the fitting may be of interest.

The extra pairs, on top of the base reduced pairs, are chosen at random and discarded if
they do not increase the required number of pairs on a particular branch. The number
of pairs grows linearly with k, as can be seen in Figure 5.5 (confidence interval of 95%
displayed). The reduction in the number of constraints also speeds up the iterative solver,
as can be seen in Figure 5.3. When the fewest pairs were used this could result in more

than 50x speed-up.

5.5 Conclusions

This chapter has shown that evolutionary distances can be fitted to hierarchical orthologous
groups. Previously there was no such tool that could fit distances to such large topologies
including polytomies. Further, investigating the error induced by reducing the number
of pairs used during the least-squares process shows that if a small amount of error is

acceptable then the number of pairs in the tree can be decreased.

Fitting evolutionary distances to the hierarchical orthologous groups enables a multitude
of new analyses to be performed. In particular, it would be possible to utilise these in the
HOGPROP algorithm for functional annotation, proposed in Chapter 3. This could be as
simple as being able to discriminate between the different branches after a duplication
event, with the assumption that the function would diverge with the observed increase in

evolutionary distance. A more complex approach could be implemented, instead, similar
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Error Induced by Reducing Pairs
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Figure 5.2: Error incurred on branch lengths, on a set of 52 HOGs,
when reducing the number of pairwise distances used vs. fitting with
all of the pairs, measured as normalised RMSE. The number of pairs is
varied by choosing at random, such that a minimum number (k) pairs
passes through each branch, and performed 10 times to take an average
of the error induced with k pairs for a given HOG.
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Figure 5.3: Speed-up on a set of 52 HOGs when reducing the number of
pairwise distances used in estimating the branch lengths vs. fitting with
all of the pairs. The number of pairs is varied by choosing at random,
such that a minimum number (k) pairs passes through each branch,
and performed 10 times to take an average for each HOG.
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Error Induced by Reducing Pairs
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Figure 5.4: Density plot of the error incurred on branch lengths, on a set

of 52 HOGs, based on the proportion of pairs used when reducing the

number of pairwise distances vs. fitting with the all pairs, measured as
normalised RMSE. Same data as in Figure 5.2.
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Figure 5.5: Proportion of pairs chosen on each HOG for each
sub-sample based against the minimum to choose for each edge (k).
The number of pairs grows linearly with k, however the variability is
much higher the more pairs per-branch chosen.
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to that of SIFTER [EJMBO05; EJSB11] — using a belief propagation network model, intro-
duced by Pearl [Pea82].
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Chapter 6

Ancestral Gene Ontology

Enrichment Analyses

HE BIOLOGICAL INTERPRETATION of gene sets which have some common property
T of interest is typically accomplished by undertaking Gene Ontology (GO) enrich-
ment analyses. For example, if a set of genes were either up- or down-regulated in a
particular experiment, a GO enrichment study could indicate likely biological processes

or molecular functions involved.

The hierarchical orthologous groups (HOGs) from OMA provide a framework for identi-
fying genes related through evolutionary events. Using the annotations provided by HO-
GPROP, (introduced in Chapter 3) an enrichment study can be performed on, for example,

the genes that were lost over a particular branch in the tree of life.

This chapter starts by describing the methods for undertaking a GO enrichment analysis.
Then a case study is presented, performing an ancestral GO enrichment analysis with a

dataset from a study on the barn owl (Tyto alba).

6.1 Performing Gene Ontology Enrichment Analyses

This section includes reference to a book chapter [WD17] written as work towards
this thesis, as well as to a co-authored paper presenting the GOATOOLS Python
library [KZP+18] to perform GO enrichment analyses.

One of the most common analyses performed with GO annotations is an enrichment (or
depletion) analyses — that is, to find over- and under-represented terms in a given gene-set

(e.g., novel genes in a given species) in comparison to a background gene-set (e.g., all genes
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in a given species). Fisher’s exact test is commonly used to perform these GO enrichment
analyses. Multiple testing correction is often required due to the nested nature of GO
terms. However, there are alternative methods that take into account the relationship of

GO terms.

One such approach is the topology-based algorithms developed by Alexa, Rahnenfiihrer
and Lengauer [ARL06]. These are the elim and weight algorithms, which calculate a score
for the term depending on the relevance of child terms. Another method is the parent-child
approach, which is based on Fisher’s exact test. The probability of an individual term
being over-represented is instead conditioned on properties of the “parent” terms of the

term in question [GBRV07].

Early in this project, a contribution was made to the Gene Ontology Handbook [D517].
This chapter! [WD17] provides a tutorial on how to use the GO within the Python pro-

gramming language.

This tutorial entails querying the GO graph, retrieving annotations, performing gene en-
richment analyses and computing basic semantic similarity between GO terms. This work
used GOATOOLS [KZP+18] — a Python library for GO analyses, which enables enables users
to parse the GO, read annotation files and compute over- and under-represented terms
using Fisher’s exact test (also permitting for multiple correction testing). There are al-
ternative libraries available to perform similar analyses, such as topGO for R. topGO also

provides the parent-child, weight, elim and a hybrid method based on weight and elim.

However, at the time of writing this contribution, the GOATOOLS library was in a more basic

state than it is today. This lead to contributions to the code base and tutorials of GOATOOLS.

6.2 Ancestral Gene Ontology Enrichment Analyses

The work presented in this section shall be included in a forthcoming publication, fo-
cussing on the Tyto alba (Barn owl) genome sequenced at the University of Lausanne,
Switzerland.

IThis chapter has been included in Appendix C.
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Using the HOGs provided by OMA, the location can be identified of the origination, du-
plication and loss of genes over a particular branch in the taxonomy. A GO enrichment
study can then be performed in order to identify if each of these sets of genes are associated

with, for example, gain in a particular biological functions.

6.2.1 Motivation

Tyto alba (barn owl) was sequenced and assembled through a collaboration of research
groups at the Department of Ecology and Evolution at the University of Lausanne, Switzer-
land. After gene prediction, it was deemed interesting to identify the genes that were

gained, duplicated and lost and compute any functional enrichment present.

6.2.2 Method

The OMA algorithm (using the OMA standalone tool [ALZ+19]) was run with two al-
ternative novel assemblies of a newly sequenced barn owl (Tyto alba), from Europe, as well
as a previously sequenced North American individual, from the BGI [ZLL+14]. An array
of 11 other avian species and three model species, as an out-group, were also included in
the analysis. These species, with the location of Tyto alba, can be seen in the phylogeny
shown in Figure 6.1. This array of species aids the construction of the HOGs, whilst the
inclusion of extra model species aids the propagation of functional annotations in more

conserved families.

There are, however, few functional annotations to the existing Tyto alba assembly. Any pro-
teins, with annotations, that matched with 100% identity, had their annotations propagated
to the novel assemblies. Furthermore, the HOGPROP algorithm outlined in Chapter 3 was
used for further functional annotation. This work was undertaken before the extensive
benchmarking in Chapter 4, so a conservative approach to the HOGPROP score cut-off was
used. A raw-score of higher than 0.7 was taken from the summation method, with a score
decay of 15% used. For instance, this would result in prediction if a single sister-protein
was annotated with a particular term (with a score of 0.7225). As input annotations, exper-

imental and some filtered? electronic annotations were included from the UniProt-GOA

2Described in Chapter 3, listed in Appendix A.
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database. The April 2017 release of the UniProt-GOA database was used for this analysis,
with the GO definition file from the 28th April 2017.

The gene-sets, implied by the HOGs, that represent changes on the branch to the three
Tyto alba assemblies (highlighted branch in Figure 6.1) were computed — comprising of
novel, duplicated, lost and same. These were then used, individually, as foreground sets
in GO enrichment / depletion studies. As a background set, the set of all extant genes in
the Tyto alba was used, except in the case of the lost genes where the set of all extant genes
at the next level up in the tree was used (in Haliaeetus leucocephalus, Haliaeetus albicilla and

Cathartes aura).

The analyses were performed using the topGO package for R. The p-values for both the
parentchild and weight@1 were used, with a cut-off of 0.05 (under both methods) taken

to be significant in order to provide high-confidence results.

6.2.3 Results

Full results of the GO enrichment analysis, for each gene-set and aspect of the GO, are
available in Appendix D (Tables D.1 to D.12). These tables contain p-values for both the
weight@1 and parentchild methods from topGO, however only parentchild p-values are

stated here.

There are many enriched terms for each of the gene-sets. For example, phototransduction
(G0:0007602) is significantly enriched in the lost genes (0.002) and less so in the duplicated
gene-set (0.047). Photoreceptor activity (GO:0009881) is also significantly enriched in the
lost gene-set (0.003), likewise with kidney development (0.018). The duplicated genes are

also enriched in the term “olfactory receptor activity” (G0:0004984) (< 0.001).

The genes associated with these light-sensing related terms may be interesting to investig-
ate further, as Barn owls are part of a small number of totally nocturnal, non-echolocatory,

flying birds [Mar82] (unlike the closest other species included in this analysis).

There is likely further interesting insight from the results of this analysis, for instance

many of the gene-sets are enriched in one or more metabolic processes (novel — “meta-
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bolic process” [GO:008152], “carbohydrate metabolic process” [GO:0005975]; duplicated
— “glutamine metabolic process” [G0:0006541]) and the novel gene-set is enriched in the

term for autophagy (G0O:0006914).

6.2.4 Further Analysis of Lost Gene-Set

Multiple cases of gene fragments being present in the genome, but not in the proteome
were identified after this analysis was performed. To provide a more robust analysis, it

was important to categorise the witnesses of gene-loss into three categories:

1. Present in the annotation of the genome as a protein-coding gene, as:
(a) non-fragment;
(b) fragment.
2. Present in the genome but not in the annotation, as:
(a) non-fragment;
(b) fragment.

3. Not found in either.

In order to find those in category one, a single (protein) BLAST database was built using
the three Tyto alba proteomes uses for the OMA computation. Sequences from each of
the other species were then queried against this using blastp from the BLAST+ package
[CCA+09]. Hits including sequences of less than 50 amino acids long were filtered out.
Significant hits taken as those with E-value < 107°. In order to classify whether the hit
was fragmentary or not, query and database sequence alignment coverage was checked.
If the coverage for both query and database sequences was > 60%, the hit was labelled
as non-fragmentary. However, for < 60% coverage for either query or database sequence

and it was classified as a fragment.

When sorting the rest between category two and three, two (DNA) BLAST databases were
built for each of the BGI and DEE assembled genomes. The protein sequences of the
witnesses of gene loss, from each of the other avian species, were then queried against
these two databases using tblastn. No short sequences (< 50 amino acids) would be

present, as OMA pre-filters these out. Again, significant hits were taken as those with
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Description Genes HOGs Top-Level HOGs
1a — Full in proteome 3,988 2,356 2,172
1b — Fragment in proteome 1,846 1,375 1,347
2a — Full in genome 211 129 125
2b — Fragment in genome 106 79 78
3 —Not found in either 67 48 42

Table 6.1: Categorisation of the witnesses of gene loss.

Description Genes HOGs Top-Level HOGs
Full in proteome (diff. best hit) 3,450 1,834 1,650
Full in proteome (same best hit) 538 522 522
Full in proteome (total) 3,988 2,356 2,172

Table 6.2: Sub-categorisation of witnesses of gene loss, present in full in
the proteome.

E-value < 107%. Only query sequence alignment coverage was filtered to decide if hits

were fragmentary or not, using the same cut-off of 60%.

The full results of this categorisation can be seen in Table 6.1. Most of the witnesses were
placed in category 1a and 1b. Relatively few (around 5%) were in category two, with only

67 ending up in the third category.

Currently the only certain gene losses are those in category three — not found in either
the genome or proteome. However, the first category (containing many of the so-called
witnesses of gene loss) underwent further sub-division, in order to classify further prob-
able genuine gene losses. To do this, a reciprocal BLAST was undertaken on the protein
sequences. That is, all Tyto alba protein sequences queried against three databases for

each of the other species at the next level (Haliaeetus leucocephalus, Haliaeetus albicilla and

Description Genes HOGs Top-Level HOGs
Fragment in proteome (diff. best hit) 1,396 927 899
Fragment in proteome (same best hit) 450 448 448
Fragment in proteome (total) 1,846 1,375 1,347

Table 6.3: Sub-categorisation of witnesses of gene loss, present as a
fragment in the proteome.
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Cathartes aura). If the non-owl sequence matches a gene in Tyto alba, but the owl gene has
a better match back to the other species, it is an indication that the orthologue was lost in
Tyto alba. However, careful counting is required — if a HOG has any extant sequence with
the same best hit to a Tyto alba sequence, it is included in the “same best hit” category:.
Results for those found full in the proteome are shown in Table 6.2 and fragments in the

proteome shown in Table 6.3.

The GO enrichment analysis was then re-run with the extant genes that are members of:
category one, with different best-hits; category three (“not found in either”). The full

results from this analysis can also be found in Appendix D (Tables D.13 to D.15).

After this filtering, there are many more significant terms. Some of the previous terms re-
lated to light-sensing are not present. However, “olfactory receptor activity” (GO:0004984)
is now present (< 0.001). There are now terms such as “post-embryonic development”
(G0:0009791) and “heart development” (GO:0007507) which are very significant (both <
0.001).

6.3 Conclusions

This chapter has introduced ancestral Gene Ontology (GO) enrichment analyses, using
the functional predictions from the HOGPROP algorithm. In the case-study, many light-
sensing related biological process and molecular function terms were significantly en-
riched. This is understandable, as the barn owl is a totally nocturnal and non-echolocatory
flying bird. This demonstrates that performing a GO enrichment study on sets of genes

related through evolutionary events can identify possible drivers of genetic adaptation.



Chapter 7

Prioritising Candidate Genes Causing
QTL using Hierarchical Orthologous
Groups

The work presented in this chapter was presented in the proceedings track of ECCB
2018 and published in Bioinformatics: Warwick Vesztrocy, Dessimoz and Redestig
[WDR18]

KEY GOAL IN PLANT BIOTECHNOLOGY APPLICATIONS is the identification of
A genes associated to particular phenotypic traits (for example: yield, fruit size,
root length). Quantitative Trait Loci (QTL) studies identify genomic regions associated
with a trait of interest. However, to infer potential causal genes in these regions, each of
which can contain hundreds of genes, this data is usually intersected with prior functional
knowledge of the genes. This process is however laborious, particularly if the experi-
ment is performed in a non-model species, and the statistical significance of the inferred

candidates is typically unknown.

This chapter introduces QTLSearch, a method and software tool to search for candidate
causal genes in QTL studies by combining Gene Ontology annotations across many species,
leveraging hierarchical orthologous groups (HOGs). The usefulness of this approach
is demonstrated by re-analysing two metabolic QTL studies: one in Arabidopsis thaliana,
the other in Oryza sativa subsp. indica. Even after controlling for statistical significance,
QTLSearch inferred potential causal genes for more QTL than BLAST-based functional

propagation against UniProtKB/Swiss-Prot, and for more QTL than in the original studies.
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QTLSearch is distributed under the LGPLv3 license. It is available to install from the

Python Package Index (as qtlsearch), with the source available from

https://bitbucket.org/alex-warwickvesztrocy/qtlsearch.

7.1 Introduction

Identification of variants of genes that are linked to differences in phenotypic traits is a
first step in many plant biotechnology applications. By creating mapping populations,
characterising and genotyping the individuals of these, it is often possible to find trait-
associated regions of chromosomes — so-called Quantitative Trait Loci (QTL). However, a
single QTL can typically contain hundreds, if not thousands, of genes. Thus, from a single
study; it is rarely straight-forward to pinpoint the causal gene (if there is one at all) and

multiple evidence is typically required.

Wide QTL can be broken down by performing additional experiments using higher-
resolution genetic maps. A faster complementary approach is to annotate the genes in the
target species with known associations to the trait of interest (for example, involvement
in relevant pathways or biological processes), and searching for overlap with the genes
inside a given QTL [LSM+09; GCG+13; CDT+12; BNSPD14]. This approach has aided
the identification of several verified causal genes — for example, the AT5G50950 fumarase

[LMS+08; BRL+11] — demonstrating its merit.

Propagating gene-function annotations across and within species whilst taking evolu-
tionary distance into account, alongside ensuring to control for chance co-occurrence, is
difficult. This is particularly the case for non-model species that may have little or no cur-
ated annotations available. Currently, there are no dedicated tools to facilitate this analysis,

potentially leading important insight to be missed.

This paper presents QTLSearch —a method and tool which aims to recommend genes that
are plausible candidates for causing an observed QTL, by identifying the intersection of
those associated with a given trait based on an evolutionary analysis and one or more QTL

analyses (Figure 7.1). That is, QTLSearch is a method for integrating data from public re-
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sources (for example, as Gene Ontology annotations) with the genomic regions identified
during a QTL experiment. Gene families, in the form of hierarchical orthologous groups
(HOGs) from the Orthologous MAtrix project (OMA) [AGT+18], enable reasoning over
complex nested homologies in a consistent framework. By integrating functional inference
with homology mapping, it is possible to differentiate the confidence in orthologous and

paralogous relationships when propagating functional knowledge.

This method takes existing functional annotations (in an ontology-aware manner). As
such, traits measured in QTL experiments need to be mapped to relevant terms. For
instance, if the trait of interest was an abundance of the metabolite Galactose, this could be
mapped to the Gene Ontology (GO) term for “Galactose bio-synthetic process” (GO:0046369),
as well as to the ChEBI term for Galactose (CHEBI : 28260). Existing gene annotations to this
GO and ChEBI term would then be mapped to the trait and propagated through HOGs,
using the HOGPROP algorithm.

This propagated knowledge is then used to find genes, with an evidence trail, that are
located in QTL for a given trait and homologous with another gene, possibly in a different

species, that via functional annotations is known to be associated with that same trait.

While QTLSearch is applicable to any type of QTL studies, this chapter shall demonstrate
the usefulness of this method, using two metabolic QTL studies in Oryza sativa subsp.
indica from Gong et al. [GCG+13] and Arabidopsis thaliana from Lisec et al. [LSM+09], each
reporting several QTL for a large number of metabolite abundances (phenotypic traits).
This shows that QTLSearch can find some similar results to those found in the more manual
efforts, reported in the original studies. Furthermore, it also provides additional insight

which was not reported in those studies.

7.2 Methods

QTLSearch is underpinned by the HOGPROP algorithm, which uses the hierarchical or-
thologous groups (HOGs) from the Orthologous MAtrix project (OMA) [AGT+18] in
order to predict Gene Ontology (GO) terms. The framework has been extended to permit

propagation of general gene-labels (traits), resulting in a per-label score for each gene. A
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Genes
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with a given MOSt associated with
trait based on Likely trait based on
breeding Causal evolutionary
experiments Cranies analysis

(QTL analysis)

Trait-relevant
QTL experiment gene annotations
(Genomic regions (UniProt-GOA, ChEBI,
associated to traits) Trait Ontology)

HOGPROP

Mapping Gene evolutionary
Traits s relevant terms relationships across model

(GO, ChEBI) and non-model species
- (OMA Hierarchical
Orthologous Groups)

Most likely causal
genes based on
combination of QTL
analysis and prior
knowledge propagated
across gene families

Figure 7.1: Conceptual overview of QTLSearch — to identify the most
likely causal genes, by identifying the intersection of genes associated
with a given trait based on an evolutionary analysis and QTL analyses.
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high-level description of the HOGPROP algorithm is available in Chapter 3, Section 3.1.
This section describes the adaptions required to the HOGPROP algorithm in order to im-
plement QTLSearch, before describing the datasets used in this study and the method of

comparison.

7.2.1 Required Adaptations to the Original HOGPROP Algorithm

This section will look at each of the adaptations required, in turn, to re-purpose the HOG-

PROP algorithm to search for trait-associated genes.

7.2.1.1 Scoring

Let a single QTL be defined simply by its co-ordinates. That is, the triple (C, s, e), where s
and e denote the start and end positions on the chromosome (C) of the QTL, respectively.

If a chromosome is of n genes in length, it shall be denoted as a set of n genes. That is,

C={gi:1<i<n}.

The genes that lie completely, or partially, within a QTL are then defined as

Q(Cs,e) ={gi:gi€C,s < g™, e> gtarty,
where gt and g$"d are the start and end positions of gene g;.

Then, let the score associated to a particular gene at time t be denoted as 8. Initially (i.e.,
att = 0), each gene within a QTL is associated with the trait of interest with a uniform
scoring, of

1

0 . -
Sa. = Tgp

Functional annotations can be given as input to the HOGPROP algorithm with varying
initial scores. For example, in the case of the UniProt-GOA, experimentally derived annota-

tions are currently initialised with a score of 1.0, whilst “trusted” electronic annotations

(based on [SAD12], see Table A.1) are given a score of 0.95.

For each QTL, individually, these scores are associated with the genes, at the leaves of the
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Metabolite GO Term ChEBI Term

Serine GO:0006564 CHEBI:17822
Glucose G0:0006094 CHEBI:17234
Inositol G0:0006021 CHEBI:24848

Fructose G0:0046370 CHEBI:24848
Galactose GO:0046369 CHEBI:28260
Glycine G0:0006545 CHEBI:15428

Table 7.1: The six metabolites and their mapped GO and ChEBI terms
used to find the distribution of finding at least one spurious candidate
in Arabidopsis thaliana.

HOGs. The scores are then propagated up and down the hierarchy, after-which (i.e., at

t = 1) the observed score increase for each gene in the QTL,

1
_gl _ g0 _gl _ L
Asgi o 891 891 - 891 |Q|’
is stored. This reflects the uniform probability of causal trait-association under the as-
sumption that variation in a single gene is resulting in the observed QTL. This then gives

an ordering to the genes in a particular QTL, to which extent they are associated with the

trait of interest.

7.2.1.2 Controlling for Significance

A large QTL has a much greater chance to randomly overlap with genes with direct an-
notations, or have a close homologue with a relevant labelling. The narrower a QTL is,
the smaller the chance of a spurious coincidence between a QTL and genes annotated as

relevant for a given trait.

In order to illustrate this issue, genes in Arabidopsis thaliana (Ensembl Plants 20 / TAIR10)
were annotated with association of the abundance of six metabolites (the traits) using
annotations to the GO and cross references between UniProtKB and ChEBI terms, listed in
Table 7.1. Looking at every possible sliding window, for window sizes varying from just 5
genes up to 2500 genes, the number of times at least one gene is associated with the trait
was computed. It shows that for typical QTL lengths, the probability of finding at least

one spurious candidate can be substantial (Figure 7.2).
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Figure 7.2: Probability of finding at least one spurious candidate in
Arabidopsis thaliana, for six metabolites, as a function of QTL length (left
y-axis). In the background, histogram of the distribution of QTL
lengths reported in [LSM+09] (right y-axis).

To account for this, QTLSearch can compute an empirical distribution of score increases
per QTL-trait pairing, through the randomisation of the co-ordinates of the QTL. The
sampling of the co-ordinates is based on gene-count — both the chromosome and location
on the locus are sampled. This feature gives the ability to report empirical p-values, which
enable the control of significance. If the p-value estimation is enabled, by default the

number of resamples is set to 1,000.

When the aim of the QTL study is to search for candidate genes for a given trait among sev-
eral QTL, itadditionally becomes important to correct for the increase of false positive gene-
trait associations. While the distribution of score-increases under the null-hypothesis de-
pends strongly on the distribution and number of trait-associated genes, both of which are
fixed, the tests become dependent meaning correction for multiple testing is not straight-
forward. Leaving the investigation of a more suitable approach for a future study, tests
reported here are corrected for falsely reporting at least one significant gene-trait associ-
ation, i.e. the smallest p-value from each QTL, using Benjamini-Hochberg false discovery

rate adjusted p-values' [BH95]. The unadjusted shall be denoted as p, with those adjusted

as PBH-

IBenjamini-Hochberg false discovery rate adjusted p-values (pgu) were computed using the p.adjust
function in the R programming environment.



146 Chapter 7. Prioritising Candidate Genes Causing QTL using HOGs

Author Reported ~ Mapped to GO / ChEBI

Dataset Species Metabolites QTL Metabolites QTL
Lisecet al.  Arabidopsis thaliana 50 141 35 107
Gong et al.  Oryza sativa subsp. indica 302 1,260 121 638

Table 7.2: Statistics of the number of QTL that could be mapped to GO
and / or ChEBI terms from the two datasets in Arabidopsis thaliana and
Oryza sativa subsp. indica [LSM+09; GCG+13].

7.2.1.3 Software Package

QTLSearch is implemented as a Python package and is freely distributed under the LG-
PLv3 license, requiring Python 3.6 or later. It has been published on the Python Package

Index (PyPI). Thus, it is installable using pip by issuing the command

pip install gtlsearch

The source code is available from

https://bitbucket.org/alex-warwickvesztrocy/qtlsearch.

As the software has been published under an open-source license, it is possible to add

extra parsers for alternative data-sources with relative ease.

7.2.2 Datasets

To demonstrate the usefulness of QTLSearch, two datasets from metabolic QTL studies
[LSM+09; GCG+13] have been used. The dataset from Lisec et al. contains 141 QTL (with
full co-ordinates) linked to 50 different metabolites in Arabidopsis thaliana, whilst the Gong
et al. dataset consists of 1,260 QTL linked to the abundance of 302 metabolites in Oryza
sativa subsp. indica. However, co-ordinates (as well as the authors’” predictions) were

based on Oryza sativa subsp. japonica.

Hierarchical orthologous groups (HOGs) were taken from the September 2014 release of

OMA, so that the MSU version 6 of Oryza sativa subsp. japonica was included. The UniProt-
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GOA [BDH+09] release from February 2018 was used, alongside the Gene Ontology
definition from 25th March 2018 [ ABB+00; Gen17]. External references from the ChEBI
to UniProt entries were taken on 28th March 2018 [HOD+15].

QTLSearch requires a mapping of the GO and ChEBI terms to map to the trait of interest, in
this case the relevant metabolites. For initial scores originating from functional annotations
in the UniProt-GOA database, initial scores are set at 1.0 for experimentally derived an-
notations and 0.95 for certain electronic annotations? Those arising from a cross-reference
to the ChEBI are included with an initial score of 1.0. Genes with multiple sources are

given the maximum of the initial scores.

Many of the metabolites measured in the studies could not straight-forwardly be mapped
toa GO term, so some were mapped to more general (however, still relevant) terms. ChEBI
associations were only included when an exact match to the compound was possible. For
the mapping between metabolic traits and GO and / or ChEBI terms used, see Tables E.1
and E.2. Table 7.2 shows the proportion of metabolites and QTL that have been mapped

from each of the studies.

7.2.3 Comparison Method — Naive BLAST

As well as comparing QTLSearch to the candidates that the respective authors repor-
ted, a comparison in performance was made to a naive BLAST method. This takes the
protein sequence for every gene inside the QTL and performs a BLAST against the en-
tire UniProtKB/Swiss-Prot database (February 2018 release [Unil7a]), using the NCBI
BLAST+ tool [CCA+09] and the GNU Parallel tool in order to exploit parallelism in the
search [Tan11].

Candidate genes are predicted, as potentially causal to the abundance of a metabolite, if
any of the top 10 hits, with an E-value of below 107 has a GO annotation (in the UniProt-
GOA database [BDH+09] [February 2018 release]) or cross-reference to a relevant ChEBI

term, which is included in the mapping of metabolite to GO / ChEBI terms. Other e-value

2Electronic annotations (IEA evidence code) are filtered based on [SAD12]. See Table A.1 for filtering
used.
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cut-offs (1073,1072,10712?) gave similar results in this study. Further, the GO annotations

are filtered to the same level as for QTLSearch.

7.3 Results

To illustrate the usefulness of QTLSearch, data from two previous metabolic QTL studies
was re-analysed — one in Arabidopsis thaliana [LSM+09], the other in Oryza sativa subsp.
indica [GCG+13] - in which candidate causal genes were identified for a subset of the
QTL using ad hoc methods. First, aggregate results are presented, before looking at an

example from each of these datasets.

7.3.1 Number of Predictions

Lisec et al. identified 141 QTL. For 67 of these, they inferred at least one candidate gene. In
comparison, QTLSearch was able to identify at least one candidate gene for 76 QTL with
peu < 0.01 (85 forp < 0.01), and a further 29 QTL when relaxing the significance to ppy <
0.05 (20 for p < 0.05) — see Figure 7.3. However, the BLAST against UniProtKB/Swiss-Prot
identified a candidate gene for 72 QTL. The limiting factor for QTLSearch was the number
of metabolites which could be associated to Gene Ontology or ChEBI terms (available for

107 of the 141 QTL).

In the study by Gong et al., 1,260 QTL were identified with the authors inferring at least
one candidate gene for 142 QTL. This lower proportion was likely due to the practical
difficulties of analysing a much larger set of QTL using a labour-intensive ad hoc approach.
By contrast, on this dataset, QTLSearch identified candidate genes for substantially more
QTL than the original study (259 with pgy < 0.01 [360 for p < 0.01] and 518 with ppy <
0.05 [same for p < 0.01]; Figure 7.3). The naive BLAST search also performed much better
for this dataset (338 QTL), finding candidate genes for a comparable number of QTL as
QTLSearch, albeit without control for significance. Again, the limiting factor lies in the
number of metabolites that could be associated with GO terms, which capped the number

of QTL possible to predict using these methods to 638 out of 1,260.
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Figure 7.3: Proportion of QTL with at least one candidate from Lisec et
al. (left) and Gong et al. (right) for each method.
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7.3.2 Overlap in Predictions with Original Studies

An assessment of the overlap between predictions from the original studies and the two
automated approaches was also performed (Figure 7.4). Authors of both studies gave
multiple candidates for a subset of the QTL they reported. Here, the overlap is determined
based on if a method predicted at least one of these. However, both QTLSearch and the

BLAST method may have predicted more candidate genes than this.

When looking at the Lisec et al. dataset, both QTLSearch and BLAST find a candidate for
the majority of the QTL, with QTLSearch finding a candidate for all when relaxing to the
5% level. BLAST agrees with the authors for half of the QTL. However, there is substantial

disagreement in the predicted candidate genes for both methods.

As for the Gong et al. dataset, the authors reported either one or two candidates per QTL,
with many having two candidates. QTLSearch only finds a candidate for just over half of
the QTL which Gong et al. gave a prediction, at the 1% level (Figure 7.4). The proportion
increases to roughly two thirds at the 5% level. There is also substantial disagreement in
the predicted candidate genes. A similar picture emerges when comparing the BLAST

results to the original authors’ predictions.

7.3.3 Examples
Example from Lisec et al.

In the dataset from Lisec ef al., there is a QTL associated with the abundance of Galactose
which is approximately 2.3 Mbp in length, containing just 13 genes. This particular meta-
bolite was associated with both the “Galactose bio-synthetic process” (GO:0046369) GO term,

as well as to the ChEBI term for Galactose (CHEBI :28260).

There were no predictions for this particular QTL from the authors, however QTLSearch
finds two results with p < 0.01 — see Table 7.3. The first of these (ARATH16826) has a
direct annotation in the ChEBI and is also found by the naive BLAST method described
in Section 7.2.3. The second, ARATH16587, is not. This OMA identifier maps to the Uni-

ProtKB entry Q9SBA7, which has a recommended protein name of “Sugar transport protein
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Figure 7.4: Overlap with the candidate genes reported by Lisec et al.
(left) and Gong et al. (right), for QTLSearch (at 1% and 5% significance
levels) and the naive BLAST method.
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QTLSearch Direct Found by  Author
OMA ID Increase  p-value Annotation BLAST  Candidate
ARATH16826 0.996764 0.003126 ChEBI v X
ARATH16587 0.375134 0.003916 X X X

Table 7.3: Table of significantly associated genes for a QTL in the Lisec
et al. dataset, associated with Galactose.

QTLSearch Direct Found by = Author
OMA ID Increase  p-value  Annotation BLAST  Candidate
ORYSJ56351 1.980263 0.000021 X X X
ORYSJ56362 1.494041 0.000048 UniProt-GOA X v
ORYSJ56358 0.638598 0.000260 X v X
ORYSJ56359 0.638598 0.000260 X v v
ORYSJ56355 0.541781 0.000418 X v X

Table 7.4: Significantly associated genes for a QTL in the Gong et al.
dataset, associated with Chrysoeriol c-hexoside.

8” [Unil7b]. Figure 7.5 shows a visualisation of the propagation from ARATH09154, which

leads to the increase in score for ARATH16587.

Example from Gong et al.

Gong et al. associated a region approximately 1.03Mbp in length, containing 146 genes
with the abundance of Chrysoeriol c-hexoside (a flavanoid). As the GO is not particularly

detailed in this area, this was associated with the generic “Flavonoid biosynthetic process’

(G0:0009813) GO term.

All candidate causal genes, reported by QTLSearch (with p < 0.01) are located in the same
hierarchical orthologous group (HOG) (H0G:@164195) — see Table 7.4. These are all listed
as “Chalcone and stilbene synthases” in their relevant UniProtKB entries [Unil7a], which

catalyse the first committed step in the flavonoid synthesis pathway [TYSN+07].

Only three of these five were fount by the naive BLAST method, with only one having a

direct annotation in UniProt-GOA.
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7.4 Discussion

QTLSearch provides a method for identifying the intersection of genes associated with a
given trait based on an evolutionary analysis and QTL analyses. The hierarchical ortholog-
ous groups (HOGs) from OMA are at the centre of this, providing a consistent framework
to reason over complex nested homologies. Instead of the potentially painstaking manual
efforts usually required, QTLSearch provides a prioritised list of candidate genes causing

the QTL by integrating annotation data, potentially from many sources.

It is clear that QTLSearch has the ability to predict potentially causal genes for many of the
QTL reported in the studies used, especially when accepting at the nominal 5% significance
level. Despite this, the naive BLAST method (described in Section 7.2.3) appears to overlap
further with the candidates predicted by Lisec et al. However, BLAST is simply a search
to the most similar gene, whereas QTLSearch is able to take into account the fine-grained
evolutionary history encoded inside the HOGs. When more than one gene is predicted
by QTLSearch, this enables the ordering of these based on the evidence trail. Further, the
BLAST method does not take into account the probability of homology with genes with a

direct annotation, shown in Section 7.2.1.2 to be more of an issue than may be expected.

For both of the datasets, QTLSearch predicts at least one candidate gene for more QTL
than the naive BLAST method. Experimental validation of these would be costly. However,

the examples shown in Section 7.3.3 give plausibility to the results.

QTLSearch heavily relies on the existence of functional annotations and a map between
these and the metabolites in question. Functional annotations can either be direct annota-
tions to the species in the QTL analysis, or to closely related species. However, if there are
no high-quality experimental annotations it is unlikely that either method will give useful

results.

When considering the Lisec et al. dataset, it rapidly became clear that there were too few
Gene Ontology (GO) annotations at an acceptable level of evidence. This motivated the
inclusion of the ChEBI as an additional source of information. The mapping performed

between ChEBI and the metabolites that was adopted is however keyword-based and thus
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quite coarse. For instance, many of the cross-references from ChEBI for Serine are likely to
be to serine protein kinase, which would be irrelevant to the question at hand. Refining the
mapping should improve further the performance of QTLSearch for the metabolite QTL
use-case. Similarly, it would be possible to extend the framework to include biological
pathway information from databases such as Reactome [FJM+18] or KEGG [KFT+17],
possibly in an automated manner. However, this inclusion of knowledge from the ChEBI
has meant that rather than simply loading GO annotations, the parser has been designed
to be modular. Due to the open-source license, this enables easier inclusion of annotations

from further sources.

Looking beyond metabolite QTL studies, agronomical or physiological traits, for plants or
animals alike, could also be analysed using QTLSearch by generating databases of genes
that are associated with traits using, for example, the Trait Ontology (TO) [SMS+12],
before searching for co-incidence between QTL and genes homologous to genes in those

lists.

Here, just as in the metabolite QTL setting, the use of ontologies is attractive. Instead
of manually having to keep track of the relationship between terms, for example, “kernel
size” and “fruit size” or “branched chain amino acid biosynthesis” and “valine biosynthesis”,
the ontology provides the necessary “is a” relationships in order to directly use both

annotations in an appropriate manner.

Likewise, this framework could also accommodate additional types of data, such as gene
expression data. In the context of human genetics, several tools have been recently intro-
duced to integrate expression alongside annotations [ ARP+14; WTBP17; SEZ+17]. These
frameworks, however, do not naturally extend to other species. For plants, the possibility
to include gene expression data is particularly interesting as it provides a straight-forward
means to add prior knowledge to the nature of the causal gene(s). For example, via a
grafting experiment it may be known that the sought gene is expressed in a given tissue,
and are therefore searching for genes in a QTL for given trait and annotated to certain

biological processes and expressed in that tissue.

One limitation of QTLSearch that hampers the use of continuous data such as gene ex-
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pression is that the current scoring mechanism in the propagation algorithm is not prob-
abilistic, and as such the confidence values propagated along the hierarchical orthologous
groups (HOGs) are not directly interpretable. Adoption of a probabilistic method similar
to [EJSB11] is planned. Meanwhile, results from the second CAFA [JOC+16], as well as
preliminary results from the third CAFA, have shown that the current scoring method is

competitive in the field of GO prediction.

Another limitation lies in the relatively high computational cost of estimating p-values,
which is currently implemented as a permutation test. The runtime scales approximately
linearly with the number of resamples required (default of 1,000). This means that most
of the time is spent on computing the empirical distribution. It may be possible to para-
meterise this, which would greatly decrease runtime. Meanwhile, it is possible to skip
computation of the empirical distribution, which will still result in an ordered list of can-

didates.

Nevertheless, already in its current form, QTLSearch is a compelling alternative to the ad
hoc approaches of typical QTL studies in plants. A fully automated framework also has

clear advantages in terms of reproducibility.
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Chapter 8

Conclusions

ENTRAL TO THIS THESIS is HOGPROP, the function prediction algorithm intro-
C duced in Chapter 3, which propagates functional annotations through the hier-
archical orthologous groups (HOGs) of the OMA project. This method was originally
designed to predict Gene Ontology terms (GO) for associated protein sequences, with
predictions submitted to the third CAFA challenge. Before submission the CAFA metrics,
using data from the second CAFA, parameters were optimised — the decay in score through
a duplication event (paralogue node), as well as the combination function (for example,
summation). It was found that propagating functional annotations from paralogues im-

proved all metrics, but more so when only experimental annotations were used.

When considering the targets for the third CAFA, there were two cases where proteins
did not exist in the OMA database. For some species, there is an annotation mis-match
between the proteome included in the OMA database and that used to generate the CAFA
targets. Also, one species was ambiguously defined (Escherichia coli strain K12) and one
was not included (Xenopus laevis), but a closely related species was (Xenopus tropicalis).
So as to predict on targets from these species, a projection method was developed and
proposed in Chapter 2, consisting of an initial k-mer filtering before refining the order of
the matches with Smith-Waterman alignments. This method was also integrated into the
back-end of the OMA database, in order to provide fast protein search and GO prediction
tools to the front-end user. To showcase how this was integrated, a standalone package to
provide the homology search was developed. Benchmarking shows that when mapping a
closely related species this is similarly accurate, as well as approximately the same speed,

as MMSeqs2 in standard mode.

In Chapter 4, a framework for benchmarking under the open world assumption (OWA)

159
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was introduced, based on a balanced set of positive and negative examples for GO terms.
Current benchmarks make an assumption that proteins are fully annotated, by identify-
ing false positives as all the predicted terms which are not confirmed by experimentally
backed annotations, resulting in a systematic over-estimation of false positive predictions.
As such, this work was not just important to benchmark HOGPROP, but also for the wider
community. The framework relies on a large set of negatively qualified annotations. In
order to overcome the relative paucity of negative annotations, a substantial number were
derived from the expertly curated annotation of gene phylogenies in the PAINT project.
The balanced OWA-compliant benchmark provides a balanced test set such that methods
are only rewarded for predicting terms that can be disproved. This, alongside the rel-
atively low information content of annotations considered in the benchmark under the
closed world assumption, explains why the naive baseline predictor (based only on term
frequency) performs so well in CAFA. It also demonstrates how it is necessary to avoid

only using general terms as the results are not merely uninformative, but misleading.

Whilst the propagation model introduced in Chapter 3 is simple, it appears to be effective.
Nevertheless, inspired by SIFTER, a future direction would be to implement a probabilistic
model based on belief propagation networks. This would, however, require there to be
some distance defined between each of the evolutionary events in the gene phylogenies
implied by the HOGs. To this end, Chapter 5 presents a method — using a least-squares
approach - to fit evolutionary distances to such large phylogenies, possibly containing
many polytomies, from the pairwise distances already computed in the OMA algorithm.
The method can also make further allowances for the likely missing pairs, which were
below the cut-off in the OMA all-against-all alignments. It was shown that when reducing

the proportion of pairs used in the fitting process, only a small relative error is incurred.

The subject then turned to applications of the HOGPROP algorithm. The first, presented
in Chapter 6, is an ancestral Gene Ontology (GO) enrichment analysis. This demonstrated
that an enrichment study could be performed on ancestral genomes — for example, on the
genes that were lost over a particular branch in the tree of life. The case study considered
the barn owl (Tyto alba), showing that many light-sensing related biological process and

molecular function GO terms were significantly enriched. This is understandable, as the
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barn owl is a totally nocturnal and non-echolocatory flying bird. This demonstrates that
performing a GO enrichment study on sets of genes related through evolutionary events

can identify possible drivers of genetic adaptation.

Chapter 7 then presented a method (QTLSearch) which demonstrated how HOGs can be
used in order to exploit the multitude of functional and trait-associated data. This is an ad-
aptation of the HOGPROP algorithm, in order to provide a tool to integrate many sources
of data in order to prioritising candidate genes which caused QTL. This is demonstrated
with the re-analysis of two studies, each of which reported several QTL for a large number
of metabolite abundances (phenotypic traits) in two different species. QTLSearch found
similar results to those found in the more manual efforts, reported in the original studies.
This means that it is a compelling alternative to the ad hoc approaches of typical QTL stud-
ies in plants. It also provides additional insight which was not reported in those studies,

with the fully automated framework also having a clear advantage in its reproducibility.

This thesis has shown how the HOGs from the OMA project can be used as a framework in
order to exploit the increasing availability of both genomic and trait-association data. They
have been used to predict function, as well as to provide a method in which to integrate
many different types of data. In the future, the method developed to estimate branch
lengths could be used to extend the propagation method, by implementing a probabilistic

model based on belief propagation networks.

The problem of benchmarking under the open world assumption of incomplete knowledge
has also been addressed. This required a large source of negative annotations, which were
generated from expertly annotated gene phylogenies. In this balanced benchmark, meth-
ods are no longer rewarded for predicting terms that can be disproved. This framework
is now ready for other sources of negative annotations, or can be used in a time-lapsed
study with a steady supply of gene families newly annotated by PAINT or a similar curated

approach.
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Appendix A

Gene Ontology Annotation Filtering

HIS APPENDIX CONTAINS A TABLE of the GO evidence codes used in HOGPROP /
T QTLSearch. IBA / IBD evidence codes (from PAINT) were also used in QTLSearch.
Relatively few existed in the release used for the pre-CAFA 3 benchmarking performed
in Chapter 3, nevertheless these were included in the testing. They were not, however,
included in the training set for the methods included in the benchmarking using negative

examples derived from the PAINT annotations, due to circularity.

Table A.1: Filtering of GO evidence codes, based on Skunca, Altenhoff

and Dessimoz [SAD12] with the addition of IBA / IBD evidence codes.

Those listed are included as initial functional knowledge in HOGPROP
/ QTLSearch.

Evidence Reference Code Initial

Code (if relevant) Score Description
EXP 1.0 Inferred from Experimental
IDA 1.0 Inferred from Direct Assay
IPI 1.0 Inferred from Physical Interaction
MP 1.0 Inferred from Mutant Phenotype
IGI 1.0 Inferred from Genetic Interaction
IEP 1.0 Inferred from Expression Pattern
IBA 0.95 Inferred from Biological aspect of
Ancestor
IBD 0.95 Inferred from Biological aspect of
Descendant
Gene Ontology annotation through
1IEA 2 0.95 association of InterPro records with
GO terms.
[EA 3 0.95 Gene Ontology annotation based on

Enzyme Commission mapping.

Continued on next page
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Appendix A. Gene Ontology Annotation Filtering

Table A.1 - continued from previous page

Evidence
Code

Reference Code
(if relevant)

Initial
Score

Description

IEA

IEA

IEA

IEA

IEA

IEA

IEA

IEA

IEA

23

37

38

39

40

42

45

46

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

Gene Ontology annotation based on
Swiss-Prot keyword mapping.

Gene Ontology annotation based on
Swiss-Prot Subcellular Location
vocabulary mapping.

Gene Ontology annotation based on
manual assignment of UniProtKB
keywords in UniProtKB/Swiss-Prot
entries.

Gene Ontology annotation based on
automatic assignment of UniProtKB
keywords in UniProtKB/TrEMBL
entries.

Gene Ontology annotation based on
the manual assignment of
UniProtKB Subcellular Location
terms in UniProtKB/Swiss-Prot
entries.

Gene Ontology annotation based on
the automatic assignment of
UniProtKB Subcellular Location
terms in UniProtKB/TrEMBL
entries.

Gene Ontology annotation through
association of InterPro records with
GO terms, accompanied by
conservative changes to GO terms
applied by UniProt.

Gene Ontology annotation based on
UniProtKB/TrEMBL entries
keyword mapping, accompanied by
conservative changes to GO terms
applied by UniProt.

Gene Ontology annotation based on
UniProtKB/TrEMBL Subcellular
Location vocabulary mapping,
accompanied by conservative
changes to GO terms applied by
UniProt.




Appendix B

Supplementary Plots for Chapter 4

T HIS APPENDIX CONTAINS SUPPLEMENTARY PLOTs for Chapter 4 — the results of:

the weighted-only benchmark; disabling score normalisation in GOtcha.

B.1 Weighted Only Benchmark (Closed World Assumption)

Figure B.1 contains the results for the weighted-only benchmark, as described in Sec-

tion 4.4.4.

B.2 GOtcha Score Normalisation

GOtcha [MBB04] performs normalisation to the scores (r-scores), in order to achieve a
relative score (i-scores) for each GO term (Section 4.4.3.3). However, this means that
scores are not comparable between target proteins. By disabling this normalisation the
performance is improved in the weighted and balanced OWA benchmark. However, it still

does not perform as well as the BLAST baseline method.
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Figure B.1: Precision-recall curves, for each aspect of the GO separately
(columns) with the line-width and colour altering based on the average
IC of the assessed predictions. (Top) benchmarking under the
CWA—identifying false positives using unknown knowledge; (Bottom)
weighted OWA-compliant benchmark. The thickness of the curves
represents the average IC of the predictions which are used to calculate
the precision at that point. The maximum F; score (Fnax) is shown as a
point on each curve — values are available in Table 4.2.



B.2. GOtcha Score Normalisation 187
Precision-Recall
Biological Process Cellular Component Molecular Function
1.0 a

0.8 §w§
og S
£ 06 £
) S =
‘B I X
=
2
£ 04 [ $3
| B
(| =
‘ 1S3

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall Recall
Methods Average IC Scale
Naive ~ —— GOtcha —— HOGPROP2 1 2 3 4 5 & T oo
——— BLAST -~ HOGPROP1 = (GOtcha (no norm.)

Figure B.2: Precision-recall curves, for each aspect of the GO separately
(columns) with the line-width and colour altering based on the average
IC of the assessed predictions. Weighted OWA-compliant benchmark,
including GOtcha with score normalisation disabled and a
log-skew-norm transformation of the scores used instead (as for
HOGPROP). The thickness of the curves represents the average IC of
the predictions which are used to calculate the precision at that point.
The maximum Fy score (Fmax) is shown as a point on each curve.
GOtcha without normalisation achieved 0.51 on BP (t = 0.60), 0.52 on
CC (1 =0.45) and 0.54 on MF (t = 0.57). The values for the other
methods are available in Table 4.2.
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Appendix C

A Gene Ontology Tutorial in Python

This appendix is a reproduction of the peer-reviewed book chapter [IWD17]. ]

T

HE FOLLOWING PAGES CONTAIN THE Gene Ontology tutorial for the Python pro-

gramming language [WD17], originally written as a contribution to the gene onto-

logy handbook [DS17].

Abstract

This chapter is a tutorial on using Gene Ontology resources in the Python programming language.
This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene
enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of
the tutorial, including solutions, is available at http://gohandbook.org.

Key words Gene Ontology, Tutorial, Python

1 Introduction

One of the main goals of developing a formal ontology is to facili-
tate computational analysis. The purpose of this chapter is to pro-
vide a hands-on introduction to handling GO terms and GO
annotations in Python. This tutorial also shows how Python can be
used to perform GO term enrichment analyses, as well as how to
compute the similarity between GO terms.

This tutorial uses Python, but other popular languages com-
monly used to perform GO analyses include Java, R, Perl, and
Matlab. The Gene Ontology consortium website maintains a list of
software libraries, accessible from

ftp:/ /ftp.geneontology.org/pub/go/www,/GO.tools_by_type.
software.shtml

An interactive version of this tutorial, with model solutions to
all the questions, is available from the book homepage at http://
gohandbook.org.

2 Querying the Gene Ontology

A fundamental first step is to retrieve the Gene Ontology and anal-
yse that structure (Chap. 3 [1]).

189



190 Appendix C. A Gene Ontology Tutorial in Python

One convenient Python package available to query the GO is
GOATOOLS [2]. This package can read the GO structure stored
in OBO format, which is available from the GO website (see
Chap. 11 [3]). After loading this file, it is possible to traverse the
GO structure, search for particular GO terms, and find out which
other terms they are related to and how.

This package is available on the Python Package Index (PyPI),
a standard repository of python libraries. As such, it is possible to
install it locally using the command!:

pip install goatools

The GOATOOLS package contains the functions necessary to
parse the GO in OBO format, to query it, and to visualise the
ontology. Using the function obo parser.GODag() from
GOATOOLS, the GO file can be loaded. Each GO term in the
resulting object is an instance of the GOTerm class, which contains
many useful attributes, such as:

e GOTerm.name: textual definition;

* GOTerm.namespace: the ontology the term belongs to (i.e.,
Molecular Function [ MF], Biological Process [ BP], or Cellular
Component [CC]);

* GOTerm.parents: list of parent terms;

* GOTerm.children: list of children terms;

®* GOTerm. level: shortest distance to the root node;

Exercise 2.1

Download the GO basic file in OBO format (go-basic.obo), and
load the GO using the function obo parser.GODag () from
GOATOOLS. Using this library, answer the following questions:

(a) What is the name of the GO term GO: 004852772
(b) What are the immediate parent(s) of the term GO:00485277?
(c) What are the immediate children of the term GO: 00485272

(d) Recursively find all the parent and child terms of the term
GO:0048527. Hint: use your solutions to the previous two ques-
tions, with a recursive loop.

(e¢) How many GO terms have the word “growt/” in their name?

(f) What is the deepest common ancestor term of GO: 0048527 and
GO:00971787?

(g) Which GO terms regulate GO: 0007124 (pseudohyphal growth)?
Hint: load the relationship tags and look for terms which define
regulation.

1 . . . . .
GOATOOLS version 0.6.4 was used to write this tutorial and the exercises.
To install this exact version, use pip install goatools==0.6.4
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Fig. 1 Selected parts of the Gene Ontology can be visualised using the GOATOOLS library [2]

Exercise 2.2
Using the visualisation function in the GOATOOLS library, answer the
following questions:

(a) Produce a figure similar to that in Fig. 1, for the GO term
GO:0097190. From the visualisation, what is the name of this term?

(b) Using this figure, what is the most specific term that is in the parent
terms of both GO: 0097191 (extrinsic apoptotic signalling pathway)
and GO:0038034 (signal transduction in absence of ligand)? This is
also referred to as the lowest common ancestor (see Chap. 12 [4]).

Furthermore, other tag-value lines such as the “relation-
ships” can be loaded with an optional argument of, e.g.,
optional attrs=['relationship'].

The GOATOOLS library also includes functions to visualise the
GO graph. For instance, it is possible to depict the location of a par-
ticular GO term in the ontology using the method GOTerm.draw_
lineage (). For example, the plot in Fig. 1 showing the lineage of
the GO term GO: 0048527 was created using this function.

As an alternative to GOATOOLS and OBO files, it is possible
to retrieve information relating to a specific term from a web ser-
vice. One such service is the EMBL-EBI QuickGO resource (see
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Chap. 11;[3, 5]), which can provide descriptive information about
GO terms in OBO-XML format. It is possible to request this
OBO-XML file over HTTP, using a URL of the form

http://www.ebi.ac.uk/QuickGO/GTerm?id=<GO_ID>&
format=oboxml

where <GO_ID> is replaced with the GO identifier for the term of
interest. In Source Code 2.1, an example function to automate this
in Python is listed, which uses the urllib library to request the OBO-
XML and the xmltodict library to parse the XML into an easy to use
dictionary structure. Both libraries are available to install using pip,
if required. Note that the future library was used to ensure that the
function is both Python 2 and 3 compatible.

The dictionary structure that is returned can vary based on what
information is available in the database. One example of an informa-
tion-rich term is GO:0043065. A visualisation of the dictionary

Fig. 2 \Visualisation of the keys in the hierarchical dictionary structure returned by
get oboxml ('GO:0043065")

Source Code 2.1. get_oboxml () function for Python 2 and 3.
from future.standard library import install aliases
install aliases()

from urllib.request import urlopen

import xmltodict

def get oboxml (go_ id) :

nmmnn
This function retrieves the OBO-XML for a
given Gene Ontology term, using EMBL-EBI's
QuickGO browser.
Input: go id - a wvalid Gene Ontology 1ID,
e.g. GO:0048527.

mmnn

quickgo url= "http://ebi.ac.uk/QuickGO/GTerm?id="+

go_id+"&format=oboxml"

oboxml = urlopen(quickgo url)

# Check the response

if (oboxml.getcode () == 200) :
obodict = xmltodict.parse (oboxml.read())
return obodict

else:
raise ValueError ("Couldn't receive OBOXML
from QuickGO. Check URL and try again.")
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structure for this term, created with the visualisedictionary
package available from PyPI (using pip), has been included in Fig. 2.
The main advantage of using a web service, such as QuickGO,
is that there is no requirement to download and parse the entire
Gene Ontology structure; only the information required is retrieved.
This is therefore more efficient if only a few particular terms are
involved in an analysis. By contrast, for analyses involving many
terms, the file-based approach described above is more suitable.

Exercise 2.3
Using the function get _oboxml (), listed in Source Code 2.1, answer
the following questions:

(a) Find the name and description of the GO term GO: 0048527 (lat-
eral root development). Hint: print out the dictionary returned by
the function and study its structure, or use the visualisation in Fig. 2.

(b) Look at the difference in the OBO-XML output for the GO terms
G0:00048527 (lateral root development) and GO:0097178
(ruffle assembly), then generate a table of the synonymous rela-
tionships of the term GO:0097178.

3 Retrieving GO Annotations

This section looks at manipulating the Gene Association File
(GAF) standard, using a parser from the BioPython package [6].

Firstly, a GAF file, which contains GO annotations, shall be
downloaded from the UniProt-GOA database [7]. Their website
(https: / /www.ebi.ac.uk/GOA /downloads) lists a number of vari-
ants. For this tutorial the reduced GAF file containing only the gene
association data for Arabidopsis thaliana is going to be used.

Annotations from GAF files can be loaded into a Python diction-
ary using an iterator from the BioPython package (Bio.UniProt.
GOA.gafiterator). Source Code 3.1 shows a simple example
of this being used, in order to print out the protein ID for each
annotation.

Source Code 3.1
from Bio.UniProt.GOA import gafiterator
import gzip

# filename = <LOCATION OF GAF FILE>
filename = 'gene association.goa arabidopsis.gz'

with gzip.open(filename, 'rt') as fp:
for annotation in gafiterator (fp) :
# Output annotated protein ID

print (annotation['DB_Object ID'])
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Recall that the latest GAF standard, version 2.1, has 17 tab-
delimited fields, which are described in detail in Chap. 3 [1]. Some
of them include:

* 'DB': the protein database;

* 'DB Object ID': protein ID;

e 'Qualifier’':annotation qualifier (such as NOT);
e 'GO_ID': GO term;

e 'Evidence': evidence code.

Exercise 3.1

(a) Find the total number of annotations for Arabidopsis thaliana with
NOT qualifiers. What is this as a percentage of the total number of
annotations for this species?

(b) How many genes (of Arabidopsis thaliana) have the annotation
GO:0048527 (lateral root development)?

(c) Generate a list of annotated proteins which have the word “growth”
in their name.

(d) There are 21 evidence codes used in the Gene Ontology project.
As discussed in Chap. 3 [1], many of these are inferred, either by
curators or automatically. Find the counts of each evidence code in
the Arabidopsis thaliana annotation file.

4 GO Enrichment or Depletion Analysis

As discussed in detail in Chap. 13 [8] one of the most common
analyses performed on GO data is an enrichment (or depletion)
analysis. In this tutorial, the GOEnrichmentStudy () function
available in the GOATOOLS library (which has been seen in sec-
tion 2) will be used.

The GOEnrichmentStudy () function requires the follow-
ing arguments:

1. the background set of terms (also known as the “population
set”), passed as a list of GO term IDs;

2. associations between proteins IDs and GO term IDs, passed as
a dictionary with protein IDs as the keys and sets of associated
GO terms as the values;

3. the Gene Ontology structure, i.e., the output by the obo
parser () function from GOATOOLS;

4. whether annotations should be propagated to all parent terms,
(defined in terms of is_a tags, only), indicated by setting the
optional boolean parameter propagate counts to True
(default) or False;
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5. the significance level, indicated by setting the optional parameter
alpha to the desired cut-off (default: 0.05);

6. the foreground set of terms (also known as “study set”), indi-
cated by setting the parameter study to a list of GO term IDs;

7. the list of method(s) to be used to assess significance, indicated
by setting the parameter methods to a list containing one or
several of these elements:

(a) "bonferroni": Fisher’s exact test with Bonferroni cor-
rection for multiple testing;

(b) "sidak": Fisher’s exact test with Sidék correction for mul-
tiple testing;

(¢) "holm": Fisher’s exact test with Holm—Bonferroni correc-
tion for multiple testing;

(d) "£dr": Fisher’s exact test, controlling the false discovery
rate (see Chap. 13 [8]).

The function returns the list of over-represented and under-
represented GO terms in the population set, compared to the
background set.

Exercise 4.1
Perform an enrichment analysis using the list of genes with the “growth”
keyword from exercise 3.1.c. Use the Arabidopsis thaliana annotation
set as background, also from exercise 3.1, and the GO structure from
exercise 2.1.

(a) Which GO term is most significantly enriched or depleted? Does
this make sense?

(b) How many terms are enriched, when using the Bonferroni cor-
rected p-value<0.01?

(c) How many terms are enriched, when using the false discovery rate
(a.k.a. g-value)<0.01?

5 Computing Basic Semantic Similarities Between GO Terms

In this section, the focus is on computing semantic similarity
between GO terms, based on ideas presented in detail in Chap. 12
[4]. Semantic similarity measures enable us to quantify the func-
tional similarity of genes annotated with GO terms.

Recall that semantic similarity measures are broadly separated
in two categories: graph-based and information-theoretic measures.
The former relies only on the structure of the Gene Ontology
graph, whilst the latter also accounts for the information content
of the terms.

One graph-based measure of semantic similarity, presented in
Chap. 12 [4], is the inverse of the number of edges separating two
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terms. It is possible to compute the minimum number of edges
separating two terms (#, %) by first finding the deepest common
ancestor (#pca). Then the difference in depth between each term
and the deepest common ancestor can be used to calculate the
minimum distance between the terms. i.c.,

min_ distance (t1 ,1,)=depth(z, ) + depth (tz) —2 X depth (tDC A )

Further, one example of an information-theoretic measure (see
Chap. 12 [4]) is Resnik’s similarity measure—the information con-
tent of the most informative common ancestor of the two terms in
question. The information content of a term is defined as the nega-
tive logarithm of its probability, which can be estimated from the
frequency of the term in the annotation database of choice.

Exercise 5.1

(a) GO:0048364 (root development) and GO:0044707 (single-
multicellular organism process) are two GO terms taken from Fig. 1.
Calculate the semantic similarity between them based on the inverse
of the semantic distance (number of branches separating them).

(b) Calculate the information content (IC) of the GO term
G0:0048364 (root development), based on the frequency of
observation in Arabidopsis thaliana.

(c) Calculate the Resnik similarity measure between the same two
terms as in part a.
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Appendix D

Ancestral Gene Ontology Enrichment

Analysis Results

HIS APPENDIX CONTAINS THE RESULTS from the ancestral Gene Ontology enrich-

ment analysis presented in chapter 6.

D.1 Novel Genes — GO Enrichment Analysis

Table D.1: Significantly enriched (p < 0.05) Gene Ontology terms in
the Biological Process aspect, for the novel gene-set.

Weight01 Parent-Child

GO Term Description (Fisher) (Fisher)
G0: 0008152 metabolic process 0.012 < 0.001
G0:0007264 small GTPase mediated signal transduction 0.008 < 0.001
G0: 0051301 cell division < 0.001 < 0.001
G0:0005975 carbohydrate metabolic process < 0.001 < 0.001
G0:0006914 autophagy 0.007 < 0.001
G0: 0006412 translation 0.003 0.001
G0:0006260 DNA replication 0.007 0.003
G0:0051726 regulation of cell cycle 0.025 0.003
G0:0006413 translational initiation 0.013 0.021
G0:0006099 tricarboxylic acid cycle 0.018 0.027
G0:0006811 ion transport 0.006 0.044

Table D.2: Significantly enriched (p < 0.05) Gene Ontology terms in
the Cellular Component aspect, for the novel gene-set.

Weight0l  Parent-Child

T D .
GO Term escription (Fisher) (Fisher)
G0:0070062 extracellular exosome < 0.001 < 0.001
G0:0045211 postsynaptic membrane 0.028 < 0.001
G0:0005794 Golgi apparatus 0.021 < 0.001
G0:0014069 postsynaptic density 0.042 < 0.001

Continued on next page
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Table D.2 - continued from previous page

GO Term Description Weight01 Parent-Child

(Fisher) (Fisher)
G0:0048471 perinuclear region of cytoplasm 0.018 0.004
G0: 0005578 proteinaceous extracellular matrix 0.001 0.004
G0:0005789 endoplasmic reticulum membrane 0.033 0.007
G0: 0005743 mitochondrial inner membrane 0.008 0.008

Table D.3: Significantly enriched (p < 0.05) Gene Ontology terms in
the Molecular Function aspect, for the novel gene-set.

GO Term Description Weight01 Parent-Child

(Fisher) (Fisher)
G0:0016301 kinase activity < 0.001 < 0.001
G0:0016746 transferase activity, transferring acyl groups 0.030 < 0.001
G0:0016491 oxidoreductase activity 0.003 < 0.001
G0: 0003676 nucleic acid binding 0.011 < 0.001
G0:0003735 structural constituent of ribosome 0.012 < 0.001
G0:0005525 GTP binding 0.003 < 0.001
G0: 0042803 protein homodimerization activity 0.005 < 0.001
G0:0005516 calmodulin binding 0.002 0.003
G0:0043565 sequence-specific DNA binding 0.005 0.007
G0:0016887 ATPase activity 0.003 0.008
G0:0005102 receptor binding 0.002 0.008
G0: 0008146 sulfotransferase activity < 0.001 0.013
G0:0004722 protein serine/threonine phosphatase activity 0.002 0.016
G0:0003723 RNA binding 0.025 0.020
G0: 0000287 magnesium ion binding 0.017 0.028
G0:0003684 damaged DNA binding 0.017 0.040

D.2 Gene Duplications — GO Enrichment Analysis

Table D.4: Significantly enriched (p < 0.05) Gene Ontology terms in
the Biological Process aspect, for the duplicated gene-set.

Weight01 Parent-Child

GO Term Description (Fisher) (Fisher)
G0:0018026 peptidyl-lysine monomethylation < 0.001 < 0.001
60:0007216 G-protein coupled glutamate receptor signaling < 0.001 < 0.001
pathway
G0: 0006426 glycyl-tRNA aminoacylation < 0.001 < 0.001
G0:0051865 protein autoubiquitination < 0.001 < 0.001
G0:0051262 protein tetramerization < 0.001 < 0.001
G0:0007340 acrosome reaction 0.003 < 0.001
G0:0018298 protein-chromophore linkage < 0.001 < 0.001
G0:0032324 molybdopterin cofactor biosynthetic process < 0.001 < 0.001

Continued on next page
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Table D.4 — continued from previous page
Weight01 ~ Parent-Child
GO Term Description (Fis%ler) (Fisher)
G0: 0006541 glutamine metabolic process < 0.001 < 0.001
G0: 0006406 mRNA export from nucleus 0.002 0.001
G0:0097056 selenocysteinyl-tRNA (Sec) biosynthetic process 0.002 0.002
G0:0000289 nuclear-transcribed mRNA poly(A) tail shortening < 0.001 0.002
G0:0046951 ketone body biosynthetic process 0.004 0.004
G0:0060070 canonical Wnt signaling pathway 0.003 0.004
G0:0055070 copper ion homeostasis < 0.001 0.005
G0:0033209 tumor necrosis factor-mediated signaling pathway < 0.001 0.006
G0: 0006626 protein targeting to mitochondrion 0.003 0.006
G0:0055117 regulation of cardiac muscle contraction < 0.001 0.008
G0:0071482 cellular response to light stimulus < 0.001 0.011
G0:0017158 regulation of calcium ion-dependent exocytosis 0.002 0.012
G0: 0044571 [2Fe-2S] cluster assembly < 0.001 0.013
G0:0007172 signal complex assembly 0.009 0.015
G0: 0006777 Mo-molybdopterin cofactor biosynthetic process 0.013 0.015
G0:0050796 regulation of insulin secretion < 0.001 0.015
G0:0046416 D-amino acid metabolic process 0.007 0.016
G0: 0002027 regulation of heart rate 0.007 0.017
G0:0015893 drug transport 0.017 0.020
G0: 0006289 nucleotide-excision repair 0.004 0.021
G0: 0008360 regulation of cell shape 0.013 0.032
G0:0007250 activation of NF-kappaB-inducing kinase activity 0.002 0.033
60: 0007205 protein kiﬁase ;—activating G-protein coupled 0.013 0.033
receptor signaling pathway
G0: 0005981 regulation of glycogen catabolic process < 0.001 0.036
G0: 0006779 porphyrin-containing compound biosynthetic process 0.011 0.036
GO:0006836 neurotransmitter transport 0.023 0.037
G0: 0007214 gamma-aminobutyric acid signaling pathway 0.015 0.038
G0:0030513 positive regulation of BMP signaling pathway 0.004 0.044
G0:0007602 phototransduction 0.038 0.047
Table D.5: Significantly enriched (p < 0.05) Gene Ontology terms in
the Cellular Component aspect, for the duplicated gene-set.
Weight01 Parent-Child
GO Term Description (Fis(o;er) (Fisher)
G0: 0000786 nucleosome < 0.001 < 0.001
G0:0005829 cytosol < 0.001 < 0.001
G0:0019898 extrinsic component of membrane 0.025 < 0.001
G0:0016459 myosin complex < 0.001 < 0.001
G0: 0005834 heterotrimeric G-protein complex < 0.001 < 0.001
GO:0000164 protein phosphatase type 1 complex < 0.001 < 0.001
G0:0031251 PAN complex < 0.001 0.001
G0: 0005669 transcription factor TFIID complex 0.003 0.005
G0:0017119 Golgi transport complex 0.018 0.005
G0:0008021 synaptic vesicle 0.014 0.027
G0:0042734 presynaptic membrane 0.018 0.030

Continued on next page
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Table D.5 - continued from previous page

Weight01 Parent-Child

T Descripti
GO Term escription (Fisher) (Fisher)

G0:0016012 sarcoglycan complex 0.018 0.032

Table D.6: Significantly enriched (p < 0.05) Gene Ontology terms in
the Molecular Function aspect, for the duplicated gene-set.

Weight01 Parent-Child

GO Term Description (Fisher) (Fisher)
G0:0004984 olfactory receptor activity < 0.001 < 0.001
G0: 0046982 protein heterodimerization activity < 0.001 < 0.001
G0:0004820 glycine-tRNA ligase activity < 0.001 < 0.001
G0: 0004871 signal transducer activity < 0.001 < 0.001
G0: 0005125 cytokine activity 0.037 < 0.001
G0:0004519 endonuclease activity 0.022 < 0.001
G0: 0008504 monoamine transmembrane transporter activity < 0.001 < 0.001
G0:0003951 NAD+ kinase activity < 0.001 < 0.001
G0:0003883 CTP synthase activity 0.003 0.001
G0:0001604 urotensin II receptor activity 0.018 0.001
G0:0009881 photoreceptor activity < 0.001 0.001
G0:0005509 calcium ion binding 0.008 0.001
G0: 0008195 phosphatidate phosphatase activity 0.004 0.003
G0: 0016785 transferase activity, transferring selenium-containing 0.003 0.004
groups
G0:0004252 serine-type endopeptidase activity 0.020 0.004
G0:0008013 beta-catenin binding 0.007 0.006
G0:0003774 motor activity < 0.001 0.007
G0:0004109 coproporphyrinogen oxidase activity < 0.001 0.009
G0:0051015 actin filament binding 0.003 0.009
G0: 0003697 single-stranded DNA binding 0.004 0.009
G0:0008158 hedgehog receptor activity 0.005 0.010
G0:0004523 RNA-DNA hybrid ribonuclease activity < 0.001 0.011
G0: 0004359 glutaminase activity < 0.001 0.012
G0:0015238 drug transmembrane transporter activity 0.018 0.015
G0: 0004791 thioredoxin-disulfide reductase activity 0.018 0.015
G0:0004067 asparaginase activity < 0.001 0.017
G0:0004996 thyroid-stimulating hormone receptor activity 0.003 0.018
60: 0004579 dolichyl—diphosphOf)l-igosaccharide—protein < 0.001 0.018
glycotransferase activity
G0:0031071 cysteine desulfurase activity < 0.001 0.018
G0: 0008092 cytoskeletal protein binding 0.021 0.021
G0:0004143 diacylglycerol kinase activity 0.019 0.026
G0:0016300 tRNA (uracil) methyltransferase activity 0.005 0.026
oxidoreductase activity, acting on single donors with
G0:0016702 incorporation of molecular oxygen, incorporation of 0.011 0.031
two atoms of oxygen
G0:0008349 MAP kinase kinase kinase kinase activity 0.013 0.033
G0:0016934 extracellular-glycine-gated chloride channel activity 0.036 0.035

Continued on next page
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Table D.6 — continued from previous page

Weight01l  Parent-Child

T Descripti
GO Term escription (Fisher) (Fisher)

G0: 0008897 holo-[acyl-carrier-protein] synthase activity < 0.001 0.036
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D.3 Gene Losses — GO Enrichment Analysis

Table D.7: Significantly enriched (p < 0.05) Gene Ontology terms in
the Biological Process aspect, for the lost gene-set.

Weight01 Parent-Child

GO Term Description (Fisher) (Fisher)
GO: 0007602 phototransduction < 0.001 0.002
G0:0018298 protein-chromophore linkage 0.003 0.004
G0:0034767 positive regulation of ion transmembrane transport 0.011 0.008
G0: 0001822 kidney development 0.019 0.018
G0:0015701 bicarbonate transport 0.011 0.042
GO: 0035385 Roundabout signaling pathway 0.041 0.047

Table D.8: Significantly enriched (p < 0.05) Gene Ontology terms in
the Cellular Component aspect, for the lost gene-set.

Weight01 Parent-Child

T D o
GO Term escription (Fisher) (Fisher)
G0:0036064 ciliary basal body < 0.001 < 0.001
G0:0005604 basement membrane 0.003 0.015
G0:0005814 centriole 0.045 0.035

Table D.9: Significantly enriched (p < 0.05) Gene Ontology terms in
the Molecular Function aspect, for the lost gene-set.

Weight01 Parent-Child

GO T Descripti

em escription (Fisher) (Fisher)
G0:0009881 photoreceptor activity 0.002 0.003
G0:0038021 leptin receptor activity 0.004 0.012
G0: 0048040 UDP-glucuronate decarboxylase activity 0.004 0.023
G0:0050429 calcium-dependent phospholipase C activity 0.007 0.039

D.4 Continuing Genes — GO Enrichment Analysis

Table D.10: Significantly enriched (p < 0.05) Gene Ontology terms in
the Biological Process aspect, for the continuing gene-set.

GO Term Description Weight01 Parent-Child

(Fisher) (Fisher)
G0: 0008152 metabolic process 0.012 < 0.001
G0: 0007264 small GTPase mediated signal transduction 0.008 < 0.001
G0:0051301 cell division < 0.001 < 0.001

Continued on next page
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Table D.10 - continued from previous page

Weight01 Parent-Child
GO Term Description (Fisier) (Fisher)
G0: 0005975 carbohydrate metabolic process < 0.001 < 0.001
G0:0006914 autophagy 0.007 < 0.001
G0:0006412 translation 0.003 0.001
G0: 0006260 DNA replication 0.007 0.003
G0:0051726 regulation of cell cycle 0.025 0.003
G0:0006413 translational initiation 0.013 0.021
G0: 0006099 tricarboxylic acid cycle 0.018 0.027
G0:0006811 ion transport 0.006 0.044

Table D.11: Significantly enriched (p < 0.05) Gene Ontology terms in
the Cellular Component aspect, for the continuing gene-set.

Weight01 Parent-Child
GO Term Description (Fisier) (Fisher)
G0:0070062 extracellular exosome < 0.001 < 0.001
G0:0045211 postsynaptic membrane 0.028 < 0.001
G0: 0005794 Golgi apparatus 0.021 < 0.001
G0:0014069 postsynaptic density 0.042 < 0.001
G0:0048471 perinuclear region of cytoplasm 0.018 0.004
G0: 0005578 proteinaceous extracellular matrix 0.001 0.004
G0:0005789 endoplasmic reticulum membrane 0.033 0.007
G0: 0005743 mitochondrial inner membrane 0.008 0.008

Table D.12: Significantly enriched (p < 0.05) Gene Ontology terms in
the Molecular Function aspect, for the continuing gene-set.

Weight01 Parent-Child
GO Term Description (Fis%‘ler) (Fisher)
G0:0016301 kinase activity < 0.001 < 0.001
G0:0016746 transferase activity, transferring acyl groups 0.030 < 0.001
G0:0016491 oxidoreductase activity 0.003 < 0.001
G0: 0003676 nucleic acid binding 0.011 < 0.001
G0:0003735 structural constituent of ribosome 0.012 < 0.001
G0:0005525 GTP binding 0.003 < 0.001
G0:0042803 protein homodimerization activity 0.005 < 0.001
G0:0005516 calmodulin binding 0.002 0.003
G0:0043565 sequence-specific DNA binding 0.005 0.007
G0:0016887 ATPase activity 0.003 0.008
G0:0005102 receptor binding 0.002 0.008
G0: 0008146 sulfotransferase activity < 0.001 0.013
G0:0004722 protein serine/threonine phosphatase activity 0.002 0.016
G0:0003723 RNA binding 0.025 0.020
G0: 0000287 magnesium ion binding 0.017 0.028
GO:0003684 damaged DNA binding 0.017 0.040
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D.5 Lost Genes after Filtering — GO Enrichment Analysis

This section contains the results of the GO enrichment analysis for the lost gene-set, after

filtering out possible errors in the assembly and post-processing, as described in section

6.2.4.
Table D.13: Significantly enriched (p < 0.05) Gene Ontology terms in
the Biological Process aspect, for the lost gene-set after filtering.
Weight01 Parent-Child

GO Term Description (Fis%ler) (Fisher)
G0: 0009791 post-embryonic development < 0.001 < 0.001
G0:0001649 osteoblast differentiation < 0.001 < 0.001
G0:0043524 negative regulation of neuron apoptotic process < 0.001 < 0.001
G0: 0007507 heart development < 0.001 < 0.001
G0:0051321 meiotic cell cycle < 0.001 < 0.001
GO: 0008406 gonad development 0.040 < 0.001
G0:0070269 pyroptosis < 0.001 < 0.001
G0:0071222 cellular response to lipopolysaccharide < 0.001 < 0.001
G0: 0001570 vasculogenesis < 0.001 < 0.001
G0:0070374 positive regulation of ERK1 and ERK2 cascade < 0.001 < 0.001
G0:0006836 neurotransmitter transport < 0.001 < 0.001
G0:0019915 lipid storage < 0.001 < 0.001
G0:0007218 neuropeptide signaling pathway < 0.001 < 0.001
G0:0060055 angiogenesis involved in wound healing < 0.001 < 0.001
G0:0042423 catecholamine biosynthetic process < 0.001 < 0.001
GO:0006665 sphingolipid metabolic process < 0.001 < 0.001
G0: 0006334 nucleosome assembly < 0.001 < 0.001
G0: 0006355 regulation of transcription, DNA-templated < 0.001 < 0.001
G0:0007269 neurotransmitter secretion < 0.001 < 0.001
G0: 0006099 tricarboxylic acid cycle < 0.001 < 0.001
G0:0045900 negative regulation of translational elongation 0.002 < 0.001
G0:0009396 folic acid-containing compound biosynthetic process 0.003 < 0.001
G0:0032729 positive regulation of interferon-gamma production < 0.001 < 0.001
G0:0070098 chemokine-mediated signaling pathway < 0.001 < 0.001
G0:0006426 glycyl-tRNA aminoacylation 0.002 < 0.001
G0:0016540 protein autoprocessing 0.002 < 0.001
G0:0006468 protein phosphorylation 0.002 < 0.001
G0:0007585 respiratory gaseous exchange < 0.001 < 0.001
G0: 0006888 ER to Golgi vesicle-mediated transport < 0.001 < 0.001
G0:0019882 antigen processing and presentation < 0.001 < 0.001
G0: 0002407 dendritic cell chemotaxis < 0.001 < 0.001
G0:0043550 regulation of lipid kinase activity 0.002 < 0.001
G0:0006700 C21-steroid hormone biosynthetic process 0.001 0.001

G0:0018298 protein-chromophore linkage < 0.001 0.001

G0: 0045943 positive regulation of transcription from RNA < 0.001 0.001

polymerase I promoter
G0:0070527 platelet aggregation < 0.001 0.001
G0:0090398 cellular senescence 0.010 0.001

Continued on next page
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Table D.13 - continued from previous page
Weight01 ~ Parent-Child
GO Term Description (Fis%ler) (Fisher)
G0:0018107 peptidyl-threonine phosphorylation < 0.001 0.001
G0:0072661 protein targeting to plasma membrane < 0.001 0.002
G0:0045494 photoreceptor cell maintenance 0.001 0.002
G0:0055117 regulation of cardiac muscle contraction < 0.001 0.002
G0:0006898 receptor-mediated endocytosis 0.016 0.002
G0:0006839 mitochondrial transport 0.029 0.003
G0:0034767 positive regulation of ion transmembrane transport 0.002 0.003
G0: 0035554 calcium-mediated signaling using intracellular <0.001 0.004
calcium source
G0:1902476 chloride transmembrane transport 0.002 0.004
G0: 0008219 cell death 0.003 0.005
G0: 0007229 integrin-mediated signaling pathway < 0.001 0.005
G0:0090286 cytoskeletal anchoring at nuclear membrane 0.013 0.006
G0:0006270 DNA replication initiation 0.011 0.006
G0: 0006541 glutamine metabolic process 0.032 0.006
G0:0031122 cytoplasmic microtubule organization 0.032 0.008
G0:0015689 molybdate ion transport 0.002 0.008
G0:0042744 hydrogen peroxide catabolic process 0.010 0.009
G0:0006260 DNA replication 0.013 0.009
G0:0043966 histone H3 acetylation 0.003 0.010
G0:0019510 S-adenosylhomocysteine catabolic process 0.001 0.010
G0:0006909 phagocytosis 0.007 0.011
G0:0009615 response to virus 0.003 0.011
GO: 2000813 negafive regulation of barbed-end actin filament 0.021 0.012
capping
G0:0042254 ribosome biogenesis < 0.001 0.014
G0:0006013 mannose metabolic process 0.011 0.015
GO0 9042787 pr(.)teiflhubiquitination qulved in ‘ 0.048 0.016
ubiquitin-dependent protein catabolic process
G0:1902475 L-alpha-amino acid transmembrane transport 0.002 0.016
G0:0061436 establishment of skin barrier < 0.001 0.017
G0:0030514 negative regulation of BMP signaling pathway 0.022 0.018
G0:0000038 very long-chain fatty acid metabolic process 0.030 0.018
G0:0000289 nuclear-transcribed mRNA poly(A) tail shortening 0.001 0.019
G0:0006626 protein targeting to mitochondrion 0.022 0.020
G0: 0000737 DNA catabolic process, endonucleolytic 0.005 0.020
PO negative regulation of canonical Wnt signaling 0.041 0.021
pathway
G0: 0044571 [2Fe-2S] cluster assembly 0.001 0.022
60:0032786 positivg regulation of DNA-templated transcription, 0.013 0.024
elongation
G0:0035458 cellular response to interferon-beta < 0.001 0.024
G0:0061337 cardiac conduction < 0.001 0.025
G0:0015908 fatty acid transport 0.026 0.026
G0: 0007172 signal complex assembly 0.022 0.029
G0:0030433 ubiquitin-dependent ERAD pathway 0.027 0.029
G0: 0045766 positive regulation of angiogenesis 0.007 0.035

Continued on next page
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Table D.13 - continued from previous page

GO Term Description Weight01 Parent-Child

(Fisher) (Fisher)
G0: 2000042 negative regulation 9f d(?uble-strand break repair via 0.048 0.036
homologous recombination
G0:0015914 phospholipid transport 0.034 0.037
G0: 0006427 histidyl-tRNA aminoacylation 0.048 0.038
G0:0030501 positive regulation of bone mineralization 0.002 0.038
G0:0071025 RNA surveillance 0.013 0.044
G0:0019229 regulation of vasoconstriction 0.017 0.044
G0:0048266 behavioral response to pain < 0.001 0.048

Table D.14: Significantly enriched (p < 0.05) Gene Ontology terms in
the Cellular Component aspect, for the lost gene-set after filtering.

Weight01 Parent-Child

GO Term Description (Fisher) (Fisher)
G0:0005829 cytosol < 0.001 < 0.001
G0:0031225 anchored component of membrane < 0.001 < 0.001
G0:0030496 midbody < 0.001 < 0.001
G0: 0009986 cell surface < 0.001 < 0.001
G0: 0005758 mitochondrial intermembrane space < 0.001 < 0.001
G0:0016529 sarcoplasmic reticulum < 0.001 < 0.001
G0:0070062 extracellular exosome < 0.001 < 0.001
G0:0016324 apical plasma membrane < 0.001 < 0.001
G0:0048471 perinuclear region of cytoplasm < 0.001 < 0.001
G0: 0000777 condensed chromosome kinetochore < 0.001 < 0.001
G0: 0005741 mitochondrial outer membrane < 0.001 < 0.001
GO0: 0005654 nucleoplasm < 0.001 < 0.001
GO: 0005886 plasma membrane < 0.001 < 0.001
G0: 0005635 nuclear envelope < 0.001 < 0.001
G0:0043209 myelin sheath < 0.001 < 0.001
G0:0016459 myosin complex < 0.001 < 0.001
G0: 0009897 external side of plasma membrane < 0.001 < 0.001
G0:0032580 Golgi cisterna membrane < 0.001 < 0.001
G0: 0005634 nucleus < 0.001 < 0.001
G0:0043025 neuronal cell body < 0.001 < 0.001
G0:0016323 basolateral plasma membrane < 0.001 < 0.001
G0: 0005730 nucleolus < 0.001 < 0.001
G0:0005739 mitochondrion < 0.001 < 0.001
G0:0015629 actin cytoskeleton < 0.001 < 0.001
G0:0014069 postsynaptic density < 0.001 < 0.001
G0:0030027 lamellipodium < 0.001 < 0.001
G0: 0055037 recycling endosome < 0.001 < 0.001
G0:0016363 nuclear matrix < 0.001 < 0.001
G0:0005887 integral component of plasma membrane 0.026 < 0.001
G0: 0031901 early endosome membrane < 0.001 < 0.001
G0:0005811 lipid particle < 0.001 < 0.001
G0:0005759 mitochondrial matrix < 0.001 < 0.001
G0:0005813 centrosome < 0.001 < 0.001

Continued on next page
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Table D.14 - continued from previous page
Weight01 ~ Parent-Child
GO Term Description (Fis%ler) (Fisher)
G0: 0001669 acrosomal vesicle < 0.001 < 0.001
G0: 0005769 early endosome 0.029 < 0.001
G0:0001518 voltage-gated sodium channel complex < 0.001 < 0.001
G0:0030018 Z disc < 0.001 < 0.001
G0: 0045095 keratin filament 0.005 0.001
G0:0030688 preribosome, small subunit precursor < 0.001 0.001
G0:0070469 respiratory chain 0.001 0.001
G0:0031105 septin complex < 0.001 0.001
G0:0031251 PAN complex 0.001 0.001
G0: 0042555 MCM complex 0.001 0.002
G0:1904813 ficolin-1-rich granule lumen < 0.001 0.003
G0: 0000930 gamma-tubulin complex 0.002 0.003
G0:0017119 Golgi transport complex 0.001 0.003
G0:0014731 spectrin-associated cytoskeleton < 0.001 0.004
G0: 0005581 collagen trimer 0.001 0.005
GO:0043204 perikaryon < 0.001 0.008
G0:0016605 PML body < 0.001 0.012
G0:0030175 filopodium < 0.001 0.013
G0:0030426 growth cone 0.001 0.014
G0:0032587 ruffle membrane 0.001 0.014
G0:0043197 dendritic spine < 0.001 0.017
G0:0000164 protein phosphatase type 1 complex 0.013 0.017
G0: 0005881 cytoplasmic microtubule 0.015 0.019
G0:0016514 SWI/SNF complex < 0.001 0.027
G0:0033588 Elongator holoenzyme complex 0.023 0.028
G0: 0070772 PAS complex 0.002 0.032
G0:0030008 TRAPP complex 0.028 0.034
G0:0034993 LINC complex 0.018 0.036
G0:0045211 postsynaptic membrane < 0.001 0.042
G0:0005743 mitochondrial inner membrane < 0.001 0.043
G0:0072487 MSL complex 0.049 0.048
Table D.15: Significantly enriched (p < 0.05) Gene Ontology terms in
the Molecular Function aspect, for the lost gene-set after filtering.
Weight01 Parent-Child
GO Term Description (Fis%ler) (Fisher)
G0:0016503 pheromone receptor activity < 0.001 < 0.001
G0: 0005516 calmodulin binding < 0.001 < 0.001
G0:0004984 olfactory receptor activity < 0.001 < 0.001
G0:0051082 unfolded protein binding < 0.001 < 0.001
G0:0051117 ATPase binding < 0.001 < 0.001
G0:0042826 histone deacetylase binding < 0.001 < 0.001
G0: 0005149 interleukin-1 receptor binding < 0.001 < 0.001
G0:0008022 protein C-terminus binding < 0.001 < 0.001
G0:0017124 SH3 domain binding < 0.001 < 0.001
G0: 0004252 serine-type endopeptidase activity < 0.001 < 0.001

Continued on next page
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Table D.15 - continued from previous page

GO Term Description Weight01 Parent-Child

(Fisher) (Fisher)
G0: 0005509 calcium ion binding < 0.001 < 0.001
G0: 0008083 growth factor activity < 0.001 < 0.001
G0:0031418 L-ascorbic acid binding < 0.001 < 0.001
G0: 0042803 protein homodimerization activity < 0.001 < 0.001
G0:0004722 protein serine/threonine phosphatase activity < 0.001 < 0.001
G0:0043565 sequence-specific DNA binding 0.031 < 0.001
G0: 0005200 structural constituent of cytoskeleton < 0.001 < 0.001
G0:0046983 protein dimerization activity 0.018 < 0.001
G0: 0008321 Ral guanyl-nucleotide exchange factor activity < 0.001 < 0.001
G0: 0000287 magnesium ion binding < 0.001 < 0.001
G0:0004348 glucosylceramidase activity < 0.001 < 0.001
G0:0005178 integrin binding < 0.001 < 0.001
G0:0005212 structural constituent of eye lens < 0.001 < 0.001
60: 0016901 oxidoreductaée activity,‘ ac.ting on the CH-OH group 0.036 < 0.001
of donors, quinone or similar compound as acceptor
GO:0004047 aminomethyltransferase activity 0.003 < 0.001
G0:0004820 glycine-tRNA ligase activity 0.002 < 0.001
transcriptional repressor activity, RNA polymerase II
G0:0001227 transcription regulatory region sequence-specific 0.015 < 0.001
binding
G0:0004990 oxytocin receptor activity 0.007 < 0.001
G0:0005525 GTP binding < 0.001 < 0.001
G0: 0004326 tetrahydrofolylpolyglutamate synthase activity 0.001 0.002
GO:0004721 phosphoprotein phosphatase activity 0.037 0.002
G0:0004126 cytidine deaminase activity 0.003 0.002
G0: 0003682 chromatin binding < 0.001 0.002
G0:0004511 tyrosine 3-monooxygenase activity < 0.001 0.002
G0:0004713 protein tyrosine kinase activity < 0.001 0.002
G0: 0004004 ATP-dependent RNA helicase activity 0.003 0.003
G0:0051015 actin filament binding < 0.001 0.003
G0: 0004012 phospholipid-translocating ATPase activity 0.034 0.004
G0:0003774 motor activity < 0.001 0.004
G0:0008349 MAP kinase kinase kinase kinase activity 0.012 0.004
G0: 0004359 glutaminase activity 0.014 0.005
60: 0030144 alpha-l,6—mamosylglycoPr0tein N 0.016 0.005
6-beta-N-acetylglucosaminyltransferase activity
G0: 0031071 cysteine desulfurase activity 0.001 0.006
G0:0030507 spectrin binding 0.002 0.006
G0: 0004016 adenylate cyclase activity 0.016 0.006
G0:0005030 neurotrophin receptor activity 0.006 0.006
G0:0008158 hedgehog receptor activity 0.006 0.006
G0: 0004843 thiol-dependent ubiquitin-specific protease activity 0.050 0.007
G0: 0005506 iron ion binding < 0.001 0.007
G0:0008017 microtubule binding < 0.001 0.008
G0: 0001609 G-protein coupled adenosine receptor activity 0.006 0.009
GO:0004996 thyroid-stimulating hormone receptor activity 0.002 0.009
G0:0015098 molybdate ion transmembrane transporter activity 0.003 0.009
G0:0046982 protein heterodimerization activity < 0.001 0.010

Continued on next page
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Table D.15 - continued from previous page
Weight01 ~ Parent-Child
GO Term Description (Fis%ler) (Fisher)
G0:0004181 metallocarboxypeptidase activity < 0.001 0.010
oxidoreductase activity, acting on paired donors, with
00016712 incorporatio& or reduction of molecular oxygen, 0.007 0.012
reduced flavin or flavoprotein as one donor, and
incorporation of one atom of oxygen
G0:0043395 heparan sulfate proteoglycan binding 0.016 0.013
G0:0030246 carbohydrate binding 0.003 0.016
G0: 9004579 dolichyl—diphospho'ol.igosaccharide-protein <0.001 0.018
glycotransferase activity
G0:0001594 trace-amine receptor activity 0.006 0.020
G0:0003708 retinoic acid receptor activity 0.020 0.021
G0:0019825 oxygen binding 0.015 0.022
transcriptional repressor activity, RNA polymerase II
G0:0001078 core promoter proximal region sequence-specific < 0.001 0.023
binding
G0:0030429 kynureninase activity < 0.001 0.024
G0:0008430 selenium binding 0.020 0.025
GO: 0004030 aldehyde dehydrogenase [NAD(P)+] activity 0.030 0.026
G0:0017147 Wnt-protein binding 0.023 0.026
G0:0004329 formate-tetrahydrofolate ligase activity 0.012 0.030
G0:0008113 peptide-methionine (S)-S-oxide reductase activity 0.014 0.032
G0:0004712 protein serine/threonine/tyrosine kinase activity 0.015 0.032
G0:0003735 structural constituent of ribosome 0.002 0.036
G0:0004672 protein kinase activity < 0.001 0.039
G0:0008237 metallopeptidase activity 0.040 0.040
G0: 0008093 cytoskeletal adaptor activity 0.016 0.042
GO0: 0008386 chc?le.sterol monooxygenase (side-chain-cleaving) 0.001 0.045
activity
PP RNA pf)lyr.rlerase II distal enhancer sequence-specific < 0.001 0.048
DNA binding
G0: 0038062 protein tyrosine kinase collagen receptor activity 0.023 0.048
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Appendix E

Trait Mappings

T

E.1 Trait Mappings from Lisec et al. [LSM+09]

HIS APPENDIX CONTAINS TABLES OF THE TRAIT MAPPINGS

required to

QTLSearch on each of the datasets, as described in Chapter 7.

Table E.1: Mapping from metabolite to GO and / or ChEBI terms for
the dataset from Lisec et al. [LSM+09].

use

GO ChEBI
Trait Term Name Term Name
amma- amma-
4-aminobutyric & . L & . )
d G0:0009449  aminobutyric acid CHEBI: 16865 aminobutyric
aci
biosynthetic process acid
itamin E
alpha-tocopherol ~ G0:0010189 V, . CHEBI:22470 alpha-tocopherol
biosynthetic process
. . L-ascorbic acid . .
ascorbic acid G0:0019853 . . CHEBI: 22652 ascorbic acid
biosynthetic process
. . aspartate . .
aspartic acid G0:0006532 . . CHEBI:22660 aspartic acid
biosynthetic process
beta-alanine
beta-alanine G0:0019483 . ! . CHEBI: 16958 beta-alanine
biosynthetic process
. cellobiose metabolic .
cellobiose G0:2000891 CHEBI:17057 cellobiose
process
cholesterol
cholesterol G0: 0006695 . . CHEBI:16113 cholesterol
biosynthetic process
. . citrulline metabolic . .
citrulline G0:0000052 CHEBI:18211 citrulline
process
fructose biosynthetic
fructose G0:0046370 u 108y ! CHEBI: 28757 fructose
process
fructose fructose biosynthetic
G0: 0046370 CHEBI: 88003 fructose 6-phosphate
6-phosphate process
sterol biosynthetic
fucosterol G0:0016126 CHEBI: 27865 fucosterol
process
. D-galactonate N
galactonic acid G0:0034192 . CHEBI: 24149 galactonic acid
metabolic process
alactose
galactose G0:0046369 O CHEBI:28260 galactose

biosynthetic process

Continued on next page
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Table E.1 - continued from previous page
GO ChEBI
Trait Term Name Term Name
glucose G0:0006094  gluconeogenesis CHEBI:17234 glucose
glucose . D-glucose
G0:0006094  gluconeogenesis CHEBI: 14314
6-phosphate 6-phosphate
1 1 bi theti
glycerol G0:0006114 55 CrONPIOSYIEICHC  cyent 17754 glycerol
process
glycerol G0: 0006114 glycerol biosynthetic
3-phosphate process
. glycine biosynthetic .
glycine G0: 0006545 CHEBI: 15428 glycine
process
. 4-hydroxyproline .
hydroxyproline G0:0019472 . i CHEBI:24741 hydroxyproline
biosynthetic process
L inositol biosynthetic L
inositol G0:0006021 CHEBI: 24848 inositol
process
lysine biosynthetic
lysine G0:0009085 o< DlOoYMHICH CHEBI:25094 lysine
process
L L-methionine L
methionine G0:0071265 . . CHEBI:16811 methionine
biosynthetic process
o . nicotinate . .
nicotinic acid G0:1901849 . . CHEBI:15940 nicotinic acid
biosynthetic process
L-phenylalani
phenylalanine G0:0009094 Py @ dnne CHEBI:28044 phenylalanine
biosynthetic process
L-proline
proline G0:0055129 .p . CHEBI:26271 proline
biosynthetic process
) raffinose biosynthetic )
raffinose G0: 0033529 CHEBI: 16634 raffinose
process
o salicylic acid T
salicylic acid G0:0009697 ] . CHEBI: 16914 salicylic acid
biosynthetic process
L-serine bi theti
serine G0:0006564 oo c DOSYMEICUC R 17822 serine
process
sinapate biosynthetic
sinapic acid (cis) ~ G0:0033497 P Y CHEBI:76350 cis-sinapic acid
process
sinapic acid sinapate biosynthetic . . .
GO:0033497 CHEBI:15714 trans-sinapic acid
(trans) process
sucrose biosynthetic
sucrose GO:0005986 CHEBI:17992 sucrose
process
threonine
threonine G0:0009088 . ! . CHEBI: 26986 threonine
biosynthetic process
trehalose
trehalose G0:0005992 . . CHEBI: 27082 trehalose
biosynthetic process
. tyrosine biosynthetic .
tyrosine G0: 0006571 CHEBI: 18186 tyrosine
process
D-xylose biosynthetic
xylose G0:0042842 CHEBI: 18222 xylose

process
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E.2 Trait Mappings from Gong et al. [GCG+13]

Table E.2: Mapping from metabolite to GO and / or ChEBI terms for
the dataset from Gong et al. [GCG+13].

GO ChEBI
Trait Term Name Term Name
(+)- terpenoid (65)-
G0:0016114 CHEBI:4372
dehydrovomifoliol biosynthetic process dehydrovomifoliol
(+)-threo-9,10- (S5,5)-9,10-

dihydroxystearic ~ GO:

acid
12-

hydroxyarachidonic GO:

acid
16-hydroxy-

hexadecanoic GO:

acid

2”,6”-0-
diacetyloninin
24-

GO:

hydroxytetracosanoidG0:

acid

3,4,
5’-dihydrotricetin
o-hexosyl-o-
hexoside

3, 5, 7-trihydroxy-

6-methoxy-4'- GO:

prenyloxyflavone
3-
ketosphinganine
4’-o-
methylpuerarin
4-geranyloxy-5-

GO:

GO:

methyl GO:

coumarin
5-caffeoylquinic
acid methyl ester
5-hydroxy-1-
tryptophan
6,8-dihydroxy-5,7-
dimethoxycoumarin
6-
prenylnaringenin
9,10-epoxy-18-
hydroxy-
octadecanoic

acid

GO:

GO:

GO:

GO:

GO:

0006633

0006633

0006633

0009813

0006633

0009813

0009813

0006633

0009813

0009805

0009699

0000162

G0:0009805

0009813

0006633

fatty acid
biosynthetic process

fatty acid
biosynthetic process

fatty acid
biosynthetic process

flavonoid
biosynthetic process

fatty acid
biosynthetic process

flavonoid
biosynthetic process

flavonoid
biosynthetic process

fatty acid
biosynthetic process
flavonoid
biosynthetic process

coumarin
biosynthetic process

phenylpropanoid
biosynthetic process
tryptophan
biosynthetic process
coumarin
biosynthetic process
flavonoid
biosynthetic process

fatty acid
biosynthetic process

CHEBI:49254

CHEBI:19138

CHEBI:55328

CHEBI:76930

CHEBI:17780

CHEBI: 27566

dihydroxyoctadecanoic
acid

12-HETE

juniperic acid

omega-
hydroxytetracosanoic
acid

5-hydroxy-L-
tryptophan

6-prenylnaringenin

Continued on next page
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Table E.2 — continued from previous page

GO ChEBI
Trait Term Name Term Name
fatt id
akd 2b1 60:0006633 . 0 CC
biosynthetic process
. phenol biosynthetic .
acetosyringone G0:0072391 CHEBI: 2404 acetosyringone
process
. phenol biosynthetic .
acteoside G0:0072391 CHEBI: 132853 acteoside
process
- flavonoid
aliarin GO:0009813 ) .
biosynthetic process
N a id
apigenin 60:0009813 - onoid CHEBI:131755 apigenin C-pentoside
c-pentoside biosynthetic process
o flavonoid 1
axillarin G0:0009813 . . CHEBI: 2941 axillarin
biosynthetic process
. flavonoid
ayanin G0:0009813 . .
biosynthetic process
-h ]-c-
CTREXOSYIC flavonoid
pentosyl- (G0:0009813 ) .
. ) biosynthetic process
apigenin
c-hexosyl-
igeni fl id
apigenin 60:0009813 .avon01 .
o- biosynthetic process
caffeoylhexoside
c-hexosyl-
apigenin flavonoid
G0:0009813 . .
o-hexosyl-o- biosynthetic process
hexoside
c-hexosyl-
apigenin flavonoid
o-hexosyl-o- G0:0009813 . .
biosynthetic process
hexosyl-o-
hexoside
c-hexosyl-
apigenin flavonoid
G0:0009813 . .
o-p- biosynthetic process
coumaroylhexoside
-h l-chrysi
c-hexosyl-chrysin flavonoid
o 60:0009813 biosynthetic process
feruloylhexoside Y P
c-hexosyl-
chrysoeriol flavonoid
G0:0009813 . .
o-p- biosynthetic process
coumaroylhexoside
c-hexosyl-
chrysoeriol flavonoid
G0:0009813 . .
o- biosynthetic process
feruloylhexoside
-h 1-
¢ exosy. flavonoid
chrysoeriol G0:0009813 biosvnthetic process
o-hexoside Y P

Continued on next page
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Table E.2 — continued from previous page

GO ChEBI
Trait Term Name Term Name
c-hexosyl-luteolin flavonoid
. G0:0009813 . .
o-hexoside biosynthetic process
-h l-luteoli
c-hexosyl-luteolin flavonoid
o-p- G0:0009813 . .
) biosynthetic process
coumaroylhexoside
-h l-luteoli fl id
c exosy. uteolin - 0813 .avor101 .
o-pentoside biosynthetic process
c-hexosyl- flavonoid
. G0:0009813 , ,
methylchrysoeriol biosynthetic process
c-hexosyl-

i i fl id
naringenin 60: 0009813 favon01 .
o-hexosyl-o- biosynthetic process
hexoside
c-hexosyl-
naringenin flavonoid

G0:0009813 . .
o-p- biosynthetic process
coumaroylhexoside
c-pentosyl-

igni fl id
apeignin 60: 0009813 favon01 .

o- biosynthetic process
feruloylhexoside
— t 1-
pigonin Go:0009813  avonoid
plgenin ’ biosynthetic process
o-rutinoside
c-pentosyl-
apigenin flavonoid
G0:0009813 . .
o- biosynthetic process
caffeoylhexoside
- t -
¢ P n o.syl flavonoid
apigenin 60:0009813 biosynthetic process
o-hexoside Y P
c-pentosyl-
L a id
apigenin 60:0009813 |« onoC
o-p- biosynthetic process
coumaroylhexoside
c-pentosyl-
chrysoeriol flavonoid
G0:0009813 ) .
o- biosynthetic process
feruloylhexoside
-pentosyl-
“pent OS},I flavonoid
chrysoeriol G0:0009813 biosvnthetic brocess
o-hexoside Y P
- t 1-
epen .osy flavonoid
luteolin G0:0009813 biosvnthetic process
o-hexoside Y P
-rh 1-
: ri aeI:;osy Go:00og73 Lavonoid
o?hixosi de ’ biosynthetic process
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Trait Term Name Term Name
flavonoid
cafestol G0:0009813 . . CHEBI: 3291 cafestol
biosynthetic process
t bi theti
caohuoside d 60:0046246 Do D OSYIEREHC
process
chryso-obtusin-o- flavonoid
. G0:0009813 . .
hexoside biosynthetic process
chrysoeriol flavonoid
. G0:0009813 . .
5-o-hexoside biosynthetic process
h iol fl i
e rysoer19 GO: 0089813 falvonmd ‘
7-o0-hexoside biosynthetic process
h iol fl id
c rysoe.rlo 60:0009813 .avon01 .
c-hexoside biosynthetic process
chr iol
ysoe.rlo flavonoid
c-hexoside G0:0009813 ) .
o biosynthetic process
derivative
chrysoeriol o- flavonoid
. G0:0009813 . .
malonyhexoside biosynthetic process
chrysoeriol flavonoid
s G0:0009813 ,
o-rutinoside biosynthetic process
. purine nucleoside .
crotonoside G0:0042451 . . CHEBI: 3927 Crotonoside
biosynthetic process
anthocyanin-
cyanidin containing
. G0:0009718
3-o-pentoside compound
biosynthetic process
. terpene biosynthetic .
cymarin G0:0046246 CHEBI:4037 Cymarin
process
daidzein flavonoid
. G0:0009813 . .
o-hexoside biosynthetic process
anthocyanin-
delphinidin containing
. G0:0009718
o-hexoside compound
biosynthetic process
. nucleoside
deoxyguanosine G0:0009163 ) .
biosynthetic process
h hos- i heti
fzp emeranthos CO: 0046246 terpene blosynt etic
ide process
icatechi fl id
epica ec. in 60:0009813 .avon01 .
o-hexoside biosynthetic process
eriodictyol flavonoid
: G0:0009813 . .
c-hexoside biosynthetic process
fructose fructose biosynthetic
. G0:0046370
1,6-diphosphate process
ibberellin
gibberellinal2  GO:0009686 o m CHEBI:30088  gibberellin A12
biosynthetic process
ibberellin ibberellin A15
gibberellinal5 ~ G0:0009686 ©. , CHEBI:29590 & ¢
biosynthetic process (diacid form)
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GO ChEBI
Trait Term Name Term Name
. i
gibberellina53  G0:0009686 & Ccrelin CHEBI:27433  gibberellin A53
biosynthetic process
kaempferol flavonoid
L. G0:0009813 , , CHEBI: 28499 kaempferol
derivative biosynthetic process
fl id
kievitone 60:0009813 ol CHEBT:16832  kievitone
biosynthetic process
. heti
kolavic acid Go:0046246  CTPeNe blosynthetic
process
1 lipi
Ipc(l-acyl 12:1)  Go:0045017 SYcerolipid
biosynthetic process
L lysophos-
lpc(l-acyl 141)  Go:0045017 Bycerolipid CHEBI:67054  phatidylcholine
biosynthetic process
14:1
lysophos-
1 lipid
Ipc(l-acyl 160)  GO:0045017 & YT IPX CHEBI:64563  phatidylcholine
biosynthetic process
16:0
lysophos-
1 lipid
Ipc(l-acyl 16:1)  GO:0045017 & YT PX CHEBI:64560  phatidylcholine
biosynthetic process
16:1
lysophos-
1 lipid
Ipc(l-acyl 162)  GO:0045017 & YT PX CHEBI:67055  phatidylcholine
biosynthetic process
16:2
lysophos-
1 lipid
Ipc(l-acyl 18:0)  GO:0045017 & YT PX CHEBI:64561  phatidylcholine
biosynthetic process
18:0
lysophos-
1 lipid
Ipc(l-acyl 182)  GO:0045017 & YCrOPX CHEBI:64549  phatidylcholine
biosynthetic process
18:2
lysophos-
1 lipi
Ipc(l-acyl 20:4)  Go:0045017 SYcerolipid CHEBI:64568  phatidylcholine
biosynthetic process
20:4
lpc(l-acyl 24:4)  Go:0045017 Bycerolipid
biosynthetic process
cellular amino acid
leu-ala-gly-lys G0: 0006520 ]
metabolic process
1lul i i
leu-pro Go:006520 CClwlaraminoacid o por Jaces eupro
metabolic process
n2, n2- 00009163 nucleoside
dimethyguanosine ’ biosynthetic process
nicotianamine  G0:0030418 | conanamine CHEBT:25520  nicotianamine
biosynthetic process
cellular amino acid
o-acetyl-l-serine G0:0006520 ) CHEBI: 17981 O-acetyl-L-serine
metabolic process
o . flavonoid
malonylhexoside G0:0009813 . .
derivative biosynthetic process
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GO ChEBI
Trait Term Name Term Name
o flavonoid
\¢
methylchrysoeriol ~ G0:0009813 . .
. biosynthetic process
o-hexoside
o flavonoid
\¢
methylquercetin G0:0009813 ) .
: biosynthetic process
o-hexoside
o-methylapigenin flavonoid
. G0:0009813 . .
c-hexoside biosynthetic process
-methylapigeni fl id
o-me y.aplgemn 60:0009813 évono1 ‘
c-pentoside biosynthetic process
O_
. . flavonoid
methylnaringenin ~ GO:0009813 . .
] biosynthetic process
c-pentoside
terpene biosynthetic
phytocassane a G0:0046246 CHEBI:72664  (+)-phytocassane A
process
terpene biosynthetic
phytocassane ¢ G0:0046246 CHEBI: 72668  (+4)-phytocassane C
process
teroid bi theti
polygodial 60:0006694 o oo CIOSYIEREUC oyeRT 8305 Polygodial
process
) . flavonoid
spinacetin G0:0009813 . .
biosynthetic process
succinyladen- adenosine
) 4 G0:0046086 . . CHEBI: 71169 succinyladenosine
osine biosynthetic process
sucrose biosynthetic
sucrose GO: 0005986 CHEBI:17992 sucrose
process
tricin
flavonoid
4-0-(syringyl co:0000813 | U
iosynthetic process
alcohol)ether Y p
tricin
4’-0-(syringyl fl id
o-(syringy 60:0009813 - onoid
alcohol)ether biosynthetic process
o-hexoside
tricin
4’-0-(syringyl fl i
o-(syringy 60: 0009813 .avon01d .
alcohol)ether biosynthetic process
derivative
tricin G0: 0009813 flavonoid
5-o-hexoside ’ biosynthetic process
tricin GO- 0009813 flavonoid
7-o0-hexoside ’ biosynthetic process
tricin o-hexosid fl id
r1c1.n 0. exoside . 00813 .avono1 .
derivative biosynthetic process
tricin o-hexosyl-o- flavonoid
. G0:0009813 . .
hexoside biosynthetic process
tricin o- 60: 0009813 flavonoid
malonylhexoside ’ biosynthetic process
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GO ChEBI
Trait Term Name Term Name
tricin o- a id
avonoi
malonylhexoside G0:0009813 . .
. biosynthetic process
derivative
trici
riem flavonoid
o-rhamnosyl-o- G0:0009813 . .
i biosynthetic process
malonylhexoside
. L flavonoid
tricin o-rutinoside  G0:0009813 . .
biosynthetic process
L a .
tI:lCln o . 03009813 §v0n01d .
sinapoylpentoside biosynthetic process
- . flavonoid
tricin derivative G0:0009813 . .
biosynthetic process
tricin-o-glucoside flavonoid
. G0:0009813 . .
derivative biosynthetic process
tricin-o-hexoside flavonoid
. . G0:0009813 . .
derivative biosynthetic process
) . vitamin A . .
vitamin a G0:0035238 . . CHEBI: 12777 vitamin A
biosynthetic process
iboflavi
vitamin b2 G0:0009231 L ol CHEBI:17015  riboflavin
biosynthetic process
di-c,c-hexosyl- flavonoid
T G0:0009813 . ,
apigenin biosynthetic process
di-c,c-h 1-
! C ¢ -exosy flavonoid
apigenin G0:0009813 . .
o biosynthetic process
derivative
di-c,c-hexosyl- flavonoid
R G0:0009813 . .
chrysoeriol biosynthetic process
di-c,c-hexosyl- flavonoid
. G0:0009813 . .
luteolin biosynthetic process
di-c,c-pentosyl- fl id
i c C Pen oSy 60: 0009813 .avor101 .
apigenin biosynthetic process
di-c,c-pentosyl- flavonoid
. G0:0009813 . .
luteolin biosynthetic process
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