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Abstract

Solvency contagion risk is a key channel through which systemic risk can come

about. We introduce a model that accounts not only for losses transmitted after

banks default, but also for losses due to the fact that creditors revalue their expo-

sures when probabilities of default of their counterparties change. We apply the

model to run a series of simplified stress tests of the UK banking system from 2008

to 2016, based on two datasets of real interbank exposures between the seven major

UK banks. We show that risks due to solvency contagion decrease markedly from

the peak of the crisis, to the point of becoming negligible. We also characterise the

distributions of both vulnerabilities and systemic importances of individual banks,

thereby tracking the evolution of risk concentration.

JEL classification: C63, G01, G12, G21, G28, G33

Keywords: Financial networks; Systemic risk; Financial contagion; Macro-prudential

policy; Stress testing.

∗marco.bardoscia@bankofengland.co.uk
†Any views expressed are solely those of the author(s) and so cannot be taken to represent those of

the Bank of England or to state Bank of England policy.

1



1 Introduction

Financial institutions form interconnections in order to transfer and transform risk. But

during a crisis, such links become channels through which distress can spread, turning

an idiosyncratic shock into a systemic one. During the 2008 – 2009 financial crisis, one

of the most potent of these mechanisms was solvency contagion. Financial institutions

had lent large amounts of money to each other, both directly through interbank mar-

kets, and indirectly, through derivative markets. As institutions suffered losses, their

creditworthiness deteriorated. Their counterparties reassessed the value of those claims

and booked losses as a result. In this way, solvency shocks to one firm led quickly to

solvency shocks at other firms.

This type of contagion does not require a firm to default in order to spread losses.

Indeed, even at the peak of the crisis, there were very few occurrences of cascades of

outright defaults. Instead, the fall in the creditworthiness of banks’ counterparties was

enough to lead to losses as banks revalued exposures that were marked-to-market. The

Basel Commitee on Banking Supervision estimates that “roughly two-thirds of losses

attributed to counterparty credit risk were due to CVA losses1 and only about one-third

were due to actual defaults” (Basel Committee on Banking Supervision, 2011b).

Our contribution is twofold. First, we introduce a model for a forward-looking

valuation of banks’ equity in the presence of both ex-ante uncertainty on the value of

non-interbank assets and information asymmetry about interbank assets, i.e. about the

interconnectedness of other banks. The model provides a natural framework to describe

pre-default solvency contagion in a setting in which banks can default not only at a

fixed maturity, but at any point in time. This is consistent with post-crisis resolution

frameworks, according to which banks can be put into resolution if they breach their

minimum capital requirements. When a bank suffers an exogenous shock, its probability

of default increases. The bank’s counterparties then revalue its exposures to that bank.

Because the valuation is forward-looking, it occurs even if the shock was not large

enough to make the bank default, implying a reduction of the value in the interbank

assets of its counterparties. Finally, the fall in value of interbank assets of counterparties

is absorbed by their equity, resulting in pre-default contagion losses.

Second, we use our model to run a series of simplified stress tests, thereby showing

that solvency contagion risks have declined sharply in the UK banking system over the

period from 2008 to 2016. Scarcity of data on confidential interbank exposures means

that empirical studies of financial contagion are relatively rare. In this paper, we benefit

from access to two unique datasets of interbank exposures. This makes it, to the best

of our knowledge, the only post-crisis empirical study of solvency contagion in the UK

banking system. We also analyse two complementary aspects of how contagion losses

1Credit Valuation Adjustment (CVA) losses are precisely due to incorporating the risk that a coun-
terparty can default into the mark-to-market value of assets.
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are distributed across banks: the vulnerability of individual banks and their systemic

importance.

In most of the literature about stress testing and solvency contagion banks do not

perform a forward-looking valuation. In this setting, banks do not try to estimate

the probability of default of their counterparties, but they only observe whether they

have defaulted or not. Hence, by definition, contagion can only happen post-defaults.

The only form of uncertainty is about the liquidation value of interbank assets, and

therefore on the recovery rate of those assets. Eisenberg and Noe (2001) provide the

conceptual framework upon which most of the subsequent theoretical work is based.

They provide a set of general conditions under which recovery rates can be uniquely

determined endogenously. The model has been extended by Rogers and Veraart (2013)

to the case in which there are explicit bankruptcy costs, by Suzuki (2002)) to the case

in which banks have cross-holdings of equity, and by Fischer (2014) to the case in which

liabilities have an arbitrary structure of seniorities. Elsinger et al. (2006a,b) are among

the very few studies to explicitly account for the ex-ante uncertainty about the value of

non-interbank assets. They perform a Monte Carlo sampling of the possible realisations

of the financial system at maturity, to compute the solutions of the Eisenberg and

Noe model for each realisation, and finally to average over all the sampled realisations.

Our approach is based on the valuation framework introduced in Barucca et al. (2016)

instead and it differs from Elsinger et al. (2006a,b) in two important aspects. First, the

Monte Carlo sampling cannot be interpreted as a forward-looking valuation performed

by banks, because it can be performed only by an entity with full knowledge of all

interbank assets. In contrast, as in Barucca et al. (2016), we only require that banks have

knowledge of their own interbank assets and that market prices of equities incorporate

information about the updated valuations performed by all banks. Second, in Elsinger

et al. (2006a,b), but also in Barucca et al. (2016), banks can only default at a fixed

maturity, similarly to the Merton model (Merton, 1974). In our model, banks can default

at any point in time, which corresponds to computing probabilities of default with the

Black and Cox model (Black and Cox, 1976). As mentioned earlier, this is consistent

with post-crisis resolution frameworks. In fact, regulators continuously monitor banks’

capital and they can resolve, potentially at any point in time, a bank that breaches

their minimum capital requirements. Earlier models of pre-default solvency contagion

have been proposed in Battiston et al. (2012), Bardoscia et al. (2015, 2016, 2017), Fink

et al. (2016). In those papers valuations of banks’ equities are based on simple heuristic

rules, while in our approach they are grounded in structural models of credit risk. For

the sake of completeness we point out that pre-default contagion can occur in contexts

unrelated to direct solvency contagion, such dynamic clearing (Banerjee et al., 2018)

and fire sales (Cifuentes et al., 2005, Caccioli et al., 2014, Greenwood et al., 2015).

Empirical work on financial contagion has been hampered by the general lack of data

about bilateral exposures between financial institutions. A partial solution is to adopt
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reconstruction techniques to infer exposures when only limited aggregate information

about them is available. Such techniques have been pioneered in Upper and Worms

(2004) and further developed in Ha laj and Kok (2013), Anand et al. (2015), Cimini

et al. (2015), Gandy and Veraart (2016).

Most of the empirical papers using real interbank exposures are based on an even

simpler contagion mechanism than the one introduced in Eisenberg and Noe (2001).

Distress is propagated only through defaults, and the recovery rate is exogenous and in

most cases it is set to zero. This means that creditors lose the full face value of their

claims towards defaulted banks. That mechanism has been applied to several banking

systems: US (Furfine, 2003), Germany (Upper and Worms, 2004), UK (Wells, 2004),

Belgium (Degryse et al., 2007), Brazil (Cont et al., 2010), Italy (Mistrulli, 2011), EU

(Hüser et al., 2018).2 Notable exceptions are the aforementioned Elsinger et al. (2006a,b)

that extend the Eisenberg and Noe model by incorporating the ex-ante uncertainty

about non-interbank assets to study the Austrian and to the UK banking system.3

De Souza et al. (2016) adopt a mixed approach that consists in triggering contagion by

assuming selective defaults and in weighting contagion losses with the probabilities that

such triggering defaults occur. While probabilities of triggering defaults are estimated

with a mix of strategies (including the Merton model), contagion losses are computed

using DebtRank (Battiston et al., 2012). Both the previous empirical studies of the

UK banking system use pre-crisis data. Wells (2004) finds that, while idiosyncratic

shocks rarely cause cascades of defaults, they can be responsible for material losses to a

significant fraction of banks. Elsinger et al. (2006b) show that idiosyncratic shocks can

have a much lower impact than systematic shocks.

In the literature on systemic risk there is no widely accepted methodology to charac-

terise the systemic importance of an institution. Approaches based on loss distributions,

such as those proposed in Kurth and Tasche (2003), Glasserman (2005), Adrian and

Brunnermeier (2016), Acharya et al. (2013) are not feasible in our case, as our model

produces point estimates. Instead we perform a series of simple experiments in which

each bank is selectively removed from the banking system to assess its marginal contri-

bution to contagion losses. We check the robustness of our results also by performing

the Shapley decomposition of contagion losses (Tarashev et al., 2010).

We refer the reader interested in a more comprehensive account of the literature

on financial contagion to Glasserman and Young (2016), which provides an excellent

general review, and to Upper (2011), which focuses on summarising empirical results.

Here we only mention that, despite the abundance of works investigating the role that

the topology of the underlying network of contracts has on the propagation of distress,

there is little consensus, for example, as to whether more interconnected networks are

2Upper and Worms (2004) fully reconstruct bilateral exposures, while Degryse et al. (2007) and Wells
(2004) use reconstruction techniques to supplement partial data about actual bilateral exposures.

3In both cases bilateral exposures are partially reconstructed.
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more resilient or not (Allen and Gale, 2000, Freixas et al., 2000, Cifuentes et al., 2005).

More recent studies find that interconnectedness might have a non-monotonic impact

on resilience (Nier et al., 2007, Gai and Kapadia, 2010, Elliott et al., 2014) or point

towards an even more nuanced behaviour (Amini et al., 2013, Acemoglu et al., 2015,

Bardoscia et al., 2017). Glasserman and Young (2015) follow a different approach that

allows to give bounds on losses due to solvency contagion by using only information

about single institutions.

The paper is organised as follows: in section 2 we introduce the modelling framework

based on valuation functions, in section 3 we describe the data used and explain how

to estimate the model parameters, in section 4 we present our results, while in section

5 we draw some conclusions and outline possible policy implications of our work.

2 Model

Our approach follows the general framework introduced in Barucca et al. (2016). We

will depart significantly from it in section 2.2, specifically when we introduce a different

dynamic for bank defaults. Our financial system consists of n banks, each represented

with a stylised balance sheet. The asset side of the balance sheet of bank i is divided

into external assets Aei (e.g. loans to households and corporates) and interbank assets

(e.g. claims on other banks, such as interbank loans). Similarly, the liability side is

comprised of external liabilities Lei (e.g. household and corporate deposits), interbank

liabilities (e.g. money borrowed on interbank markets), and equity Ei. Interbank assets

and liabilities represent obligations between banks. Interbank assets are represented

by the matrix A, whose element Aij is the value of the obligation of bank j to bank

i. The total interbank assets of bank i are simply
∑n

j=1Aij . Symmetrically, interbank

liabilities are represented by the matrix L whose element Lij is the value of the obligation

of bank i to bank j. The total interbank liabilities of bank i are
∑n

j=1 Lij . Given that

any interbank asset corresponds to an interbank liability (and vice versa), we have that

Aij = Lji, for all i and j. The diagonal elements of both matrices are equal to zero, i.e.

Aii = Lii = 0, for all i, simply meaning that a bank cannot have an obligation to itself.

The matrix of interbank assets A can be interpreted as the weighted adjacency

matrix of a network whose nodes represent n banks and whose edges represent bilateral

exposures between them. This approach is common to the vast majority of papers

modelling financial contagion, see e.g. Glasserman and Young (2016) for a comprehensive

review.

We assume that each bank does not know the composition of interbank assets and

liabilities of other banks. Aggregate quantities, such the external assets and liabilities

and total interbank assets and liabilities of all banks, are known to all banks instead.4

Such information asymmetry means that each bank is unable to work out in isolation the

4Indeed such aggregate quantities can be taken from financial statements, see section 3.
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value of its interbank assets. This is because the value of its interbank assets depends

on the solvency of its own counterparties. In turn, the solvency of those counterparties

depends on the value of their interbank assets, which depends on the solvency of their

own counterparties, and so on. In this way solvencies of all banks depend circularly on

the solvencies of all banks. Because each bank does not have any knowledge of what the

counterparties of other banks are, it is not able to determine by itself whether any other

bank is solvent, including its counterparties. It is worth remarking that this lack of

capability to determine autonomously the value of interbank assets does not depend on

the existence of an ex-ante (stochastic) uncertainty about the intrinsic value of interbank

assets, but rather on banks’ lack of complete knowledge about the underlying network

of obligations, i.e. about the interconnectedness of other banks. Moreover, the model

accounts for the ex-ante uncertainty about the value of external assets due to fact that

at time t banks perform a forward-looking valuation of their equities over an horizon

T − t, with t < T .

Each bank performs a risk-neutral valuation of its interbank assets, which is in turn

based on its risk-neutral valuation of the probability of default of its counterparties.

Because of the limited knowledge that each bank has about the network of obligations,

its initial valuation will account only for the probabilities of default of its direct coun-

terparties. Banks subsequently perform additional valuation rounds that allow them to

incorporate into their valuations, albeit only indirectly, probabilities of default of banks

that are not their direct counterparties.

We build the model in two steps. First, in section 2.1 we illustrate how banks

perform the valuation of their interbank assets collectively in the absence of any ex-ante

uncertainty on the value of external assets. Second, in section 2.2 we introduce the

uncertainty about the value of external assets.

2.1 Valuation of counterparty risk

At a given time T , the balance sheet identity for bank i reads:

Aei (T ) +

n∑
j=1

Aij(T ) = Lei (T ) +

n∑
j=1

Lij(T ) + Ei(T ) . (1)

A key observation is that in (1) interbank assets and liabilities have been taken at face

value. In other words, Ei(T ) is the equity implied by the assumption that all bank i’s

counterparties will make good on their obligations and that bank i will make good on

its obligations towards its own counterparties.

We assume that bank i evaluates how much its interbank assets and liabilities would

be worth if its counterparties defaulted. Let us denote such valuations with Ãij(T ) and

L̃ij(T ) respectively. By plugging those into (1), bank i works out Ẽi(T ), the value of
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its equity implied by those valuations:

Ẽi(T ) = Aei (T ) +
n∑
j=1

Ãij(T )− Lei (T )−
n∑
j=1

L̃ij(T ) . (2)

We assume that interbank liabilities are always taken at face value, i.e. that L̃ij(T ) =

Lij(T ). In other words, when banks recognize that their counterparties might not be

solvent they are not allowed to boost the valuations of their own equities by discounting

the corresponding interbank liabilities. This amounts to assuming that, when a bank

defaults, receivers will still try to recover the full (face) value of all obligations towards

that banks. Therefore, debtors cannot expect to be able to write off some of their

interbank liabilities towards the defaulted bank.

As regards interbank assets, we assume that valuations are made in the following

way:

Ãij(T ) = Aij(T )Vj(Ẽj(T )) (3a)

Vj(Ẽj(T )) =

1 for Ẽj(T ) ≥ 0

ρj(Ẽj(T )) for Ẽj(T ) < 0 ,
(3b)

with ρj(x) < 1, for all x. The functions Vj are called valuation functions. In other

words, if bank j is expected to be solvent, i.e. if the valuation of its equity is larger than

zero, then the interbank asset Aij(T ) is worth its face value. Otherwise, the interbank

asset Aij(T ) is worth less than its face value, where ρj is the recovery function of bank

j’s obligations, i.e. one minus its loss given default.

An important observation is that the valuation of bank i’s interbank asset towards j

depends on the valuation of bank j’s equity. In fact, by doing so, bank i is incorporating

the valuation of bank j’s interbank assets into the valuation of its own equity. If bank

i used the value of bank j’s equity implied by (1), it would be ignoring the possibility

that bank j’s counterparties could not make good on their own obligations towards j.

As both sides of the system of equations (2) (one equation for each bank) depend

on the vector Ẽ(T ), (2) is a set of fixed point equations for Ẽ(T ) and solutions of (2)

can be thought of as equilibria for valuations of equities. This means that in a financial

system in which valuations of interbank assets depend on valuations of counterparties’

equities, everybody’s (valuation of) equities depends self-consistently on everybody’s

(valuation of) equities.

In Barucca et al. (2016) it is shown that, by suitably choosing the recovery functions,

(2) is equivalent to contagion models previously proposed in the literature. For exam-

ple, by choosing exogenous recovery functions ρj(Ej(T )) = ρj one recovers the model

in Furfine (2003), Cont et al. (2013). Instead, by choosing the endogenous recovery

functions ρj(Ej(T )) =
(

1 +
Ej(T )

Lej(T )+
∑
k Ljk(T )

)+
one recovers the model in Eisenberg and

Noe (2001).
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While the solution of (2) is not necessarily unique, if valuation functions satisfy

certain conditions, there exists the greatest solution. The greatest solution is simul-

taneously optimal for all banks, in the sense that all banks attain the equity whose

value is maximal across all the solutions. In particular, in Barucca et al. (2016) it is

shown that if valuation functions are feasible, i.e. if they (i) take values in the inter-

val [0, 1], (ii) are non-decreasing functions of the valuation of equities, and (iii) are

continuous from above, then (2) admits the greatest solution. Moreover, in this case

the greatest solution can be easily computed iteratively by choosing as starting point

Ẽ(0)(T ) = E(T ), i.e. the vector of equities implied by (1) (where all interbank assets are

taken at their face value) and by repeatedly applying (2) to compute the subsequent

iterations Ẽ(1)(T ), Ẽ(2)(T ), . . ., until convergence is reached.

Such iterative procedure can be interpreted as banks collectively working out the

greatest solution. In practice, each bank would start from the baseline assumption that

its interbank assets are worth their face value, i.e. Ẽ(0)(T ) = E(T ). Eq. (3) would then

be used to compute an updated estimate for the valuation of interbank assets which,

when plugged into (2), would yield an updated estimate for the valuation of equities

Ẽ(1)(T ). Banks would then iterate those steps, every time plugging Ẽ(k−1)(T ) into (3)

to obtain a new estimate for the valuation of its interbank assets and using (2) to get

a new estimate Ẽ(k)(T ) of their valuation of equities, until convergence. It is worth

remarking that, in order to compute updated estimates for the valuation of interbank

assets and equities, banks do not need to learn the updated estimates of their own

counterparties’ equities, but only whether those updated estimates are positive or not.

This would happen if, for example, whenever a bank learned that the valuation of equity

worth were negative, it would make this piece of information public, or at least it would

inform its counterparties.

Valuation functions (3b) are clearly feasible as long as recovery functions are non-

decreasing and continuous from above. This is true, for example, for both the afore-

mentioned Furfine and Eisenberg and Noe valuation functions.

We now observe that the greatest solution for valuation functions of the form (3b)

can be easily computed when E(T ) ≥ 0, i.e. when equities taken at face value are all

larger than zero. In fact, since Ẽ
(0)
j (T ) ≥ 0, for all j, from (3b) we get Vj(Ẽ

(0)
j (T )) = 1,

for all j. Hence, Ẽ(1)(T ) = E(T ) = Ẽ(0)(T ), meaning that convergence is reached and

that the greatest solution is E(T ). As a consequence, for valuation functions of the form

(3b), the greatest solution can be different from the face value of equities only if there

is at least one bank whose equity, when taken at face value, is smaller than zero.

2.2 Ex-ante valuation

So far, we have assumed external assets and liabilities to be known with certainty.

However, if T is in the future and if we want to perform a forward looking valuation
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at any time t < T , there will be some ex-ante uncertainty about the value of external

assets and liabilities. To model the ex-ante uncertainty about external assets we assume

that they follow geometric Brownian motions. Here we will discuss the case in which

external assets are independent, i.e. dAei (s) = µiA
e
i (s)ds + σiA

e
i (s)dWi(s), ∀i and for

s ∈ [t, T ] and in which other assets do not bear any interest. A more general case will

be discussed in Appendix A. We take external liabilities to be non-stochastic, but we

point out that we do so without any loss of generality.5

Given that Ae(T ) is a vector of random variables, from (2) also Ẽ(T ) is a vector

of random variables. We assume that no arbitrage opportunities exist, that the market

is complete, and that banks behave as risk-neutral investors. Therefore, they perform

the valuation of equities at t < T by computing their expectation under the (unique)

Equivalent Martingale Measure Q, conditional on the information available at time t,

i.e. conditional on the realisation at time t of the stochastic process followed by external

assets: Ẽ(t) ≡ EQ
[
Ẽ(T )|Ae(t)

]
.6,7

We now proceed to compute the conditional expectation of all terms in (2). External

assets are a martingale under the measure Q and EQ [Aei (T )|Ae(t)] = Aei (t). The only

stochastic dependence in interbank assets Ãij(T ) is in the valuation function. Addi-

tionally, since interbank assets do not bear any interest, Aij(t) = Aij(T ), ∀i, j. All

liability terms do not have any stochastic dependence and do not bear interest, hence:

Lej(t) = Lej(T ), and Lij(t) = Lij(T ), ∀i, j. By putting all together we have:

Ẽi(t) = Aei (t) +

n∑
j=1

Aij(t)EQ
[
Vj(Ẽj(T ))|Ae(t)

]
− Lei (t)−

n∑
j=1

Lij(t) , (4)

where we are left with the task to compute the conditional expectation of valuation

functions.

In Barucca et al. (2016) the conditional expectations of valuation functions in (4)

are computed under the assumption that the valuation functions in (3b) are those cor-

responding to the Eisenberg and Noe model, which are characterised by endogenous

recovery functions. As pointed out in Cont et al. (2013), models with such recovery

functions assume that banks’ assets are simultaneously liquidated without incurring in

any additional bankruptcy costs. This can lead to overestimating realised recovery rates

and therefore to overestimating equity valuations. Our approach is to use exogenous

recovery functions instead and to explore a range of values for the recovery rates ρj .

5In fact, one could easily consider the difference between external assets and external liabilities as a
single stochastic process and put the external liabilities equal to zero. This is the approach taken e.g. in
Eisenberg and Noe (2001), in which the cash flow can be interpreted as the difference between external
assets and external liabilities.

6In order to keep the notation light, we do not explicitly distinguish between random variables and
their values. For example, EQ [

Aej(T )|Aej(t)
]

is the expectation of the random variable Aej(T ) conditional
on the realisation of the random variable Aej(t).

7The assumption that non-stochastic assets and liabilities do not bear any interest is consistent with
a zero risk-free rate. For this reason no discounting factor appears in the conditional expectation.
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In particular, this allows us to investigate the worst-case scenario by setting all recov-

ery rates equal to zero. If recovery functions in (3b) are exogenous, the conditional

expectations of valuation functions in (4) read:

EQ [Vj(Ej(T ))|Ae(t)] = EQ
[
1Ẽj(T )≥0 + ρj1Ẽj(T )<0|A

e(t)
]

= EQ
[
1Ẽj(T )≥0|A

e(t)
]

+ ρjEQ
[
1Ẽj(T )<0|A

e(t)
]

= EQ
[
1Ẽj(T )≥0|A

e(t)
]

+ ρjEQ
[(

1− 1Ẽj(T )≥0
)
|Ae(t)

]
= ρj + (1− ρj)EQ

[
1Ẽj(T )≥0|A

e(t)
]
,

(5)

where the only conditional expectation left to compute is, by definition, the probability

that the valuation of bank j’s equity is positive at T , conditional on the value of external

assets at time t (see Appendix A for the explicit expression). The second line of (5)

means that the valuation of the interbank assets is the sum of two contributions, the

face value of the asset weighted by bank j’s survival probability, and the recovery rate

weighted by bank j’s probability of default.

In general, because valuation functions in (3b) depend only on Ẽ(T ), i.e. on the

valuations of equities at T , their conditional expectations in (2) depend only the condi-

tional distributions of Ẽ(T ), and not on their entire stochastic trajectories {Ẽ(s)}t≤s≤T .

Indeed, all trajectories such that Ẽj(T ) ≥ 0 contribute equally to the conditional expec-

tation in (3b), regardless on whether Ẽj(s) has become smaller than zero for s between

t and T . In other words, if the equity valuation of a bank becomes smaller than zero be-

fore T , that bank can “gamble for resurrection”, hoping that the stochastic fluctuations

of its external assets bring its equity valuation above zero at T .

However, in practice the post-crisis resolution framework(s) (Bank of England, 2014)

implies that banks’ equity levels are constantly monitored by regulators and, if they fall

below a certain buffer, banks can be put into resolution. Moreover, since banks are

reliant on their ability to roll-over their liabilities, banks with little equity would run

into problems in funding markets before they were truly insolvent. This was most clearly

demonstrated during the crisis by the failure of Northern Rock, and explained in Shin

(2009). As a consequence, in reality defaults can occur whenever equities become equal

to zero, which can happen at any point in time, including before T . Therefore, a more

realistic definition of default of bank j should depend not only on the valuation of its

equity at T , but on whether this has become negative at any time before T . We define

τj , the default time of bank j as:

τj = inf{s ∈ [t, T ] : Ẽj(s) < 0} , (6)

i.e. as the earliest time at which the valuation of its equity becomes negative.

We now want to capture the situation in which, if the valuation of bank j’s equity is
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positive until T , i.e. if τj > T , then bank j does not default and its interbank assets are

taken at face value. Conversely, if at any point in time before T (or at T ) bank j’s the

valuation of bank j’s equity is smaller than zero, i.e. if τj ≤ T ,then bank j defaults and

its interbank assets are discounted by the recovery rate. By using the same formalism

in Bielecki et al. (2004), Brigo and Tarenghi (2004), this corresponds to replacing the

conditional expectations in (4) with:

EQ [
1τj>T + ρj1τj≤T |Ae(t)

]
= EQ [

1τj>T + ρj
(
1− 1τj>T

)
|Ae(t)

]
= ρj + (1− ρj)EQ [

1τj>T |Ae(t)
]
.

(7)

It is worth noting that in both (5) and (7), if ρj were equal to one, the conditional

average of the valuation function would be identically equal to one, meaning that claims

towards bank j would never be re-evaluated, because its counterparties would always

expect to recover the full face value of their claims, even when bank j would default.

This would correspond to the situation in which all the proceeds from the liquidation of

bank j’s assets would be enough to pay back all its liabilities, effectively implying that

the liquidation process would not entail any additional bankruptcy costs. Ultimately

in our model the revaluation of interbank assets is triggered by the belief that the

liquidation process will entail non-zero bankruptcy costs, i.e. that recovery rates will be

smaller than one.

The problem of computing the survival probability in (7) has been solved first

in the context of credit structural models in Black and Cox (1976). In order to

use the result in Black and Cox (1976) we need to recast the condition Ẽj(s) in

terms of quantities known at time t. The starting point is (4) at time s: Ẽj(s) =

Aej(s) +
∑n

k=1 Ãjk(s) − Lej(s) −
∑n

k=1 Ljk(s). Now, let us imagine that bank i is

computing bank j’s survival probability in order to evaluate its interbank asset Aij .

In general, bank i has no knowledge of bank j’s own interbank assets, and there-

fore it is not able to compute the term
∑n

k=1 Ãjk(s) directly. Here we assume that

bank i is not attempting to perform a direct valuation of bank j’s interbank assets,

but only of its own interbank assets. In other words, the valuation of bank j’s in-

terbank assets enters into the valuation of bank i’s interbank assets only indirectly,

through the valuation of bank j’s equity. This corresponds to assuming that, when

evaluating bank j’s valuation function, bank i performs the following approximation:∑n
k=1 Ãjk(s) ≈

∑n
k=1 Ãjk(t) = Ẽj(t) − Aej(t) + Lej(t) +

∑n
k=1 Ljk(t). However, bank j

does not perform such an approximation and indeed it performs a valuation of its in-

terbank assets by computing the valuation function of its own counterparties. By using

the approximation we get: Ẽj(s) ≈ Ẽj(t) + Aej(s) − Aej(t), and therefore the survival

condition reads: Aej(s) ≥ Aej(t) − Ẽj(t), ∀s ∈ [t, T ]. We can now adapt the result in
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Black and Cox (1976) (see Appendix A):

EQ [
1τj>T |Ae(t)

]
=



0 for Ẽj(t) ≤ 0

N


log

Aej (t)

Ae
j
(t)−Ẽj(t)

−
σ2j (T−t)

2

σj
√

(T−t)



−
Aej (t)

Ae
j
(t)−Ẽj(t)

N

 log
Aej (t)−Ẽj(t)

Ae
j
(t)

−
σ2j (T−t)

2

σj
√

(T−t)


for 0 < Ẽj(t) < Aej(t)

1 for Ẽj(t) ≥ Aej(t)

,

(8)

where N is the cumulative distribution of a Gaussian random variable with mean equal

to zero and variance equal to one.

From (8) we can see that the expectation on the right-hand side of (7) is a func-

tion of Ẽj(t), the equity valuation of bank j at time t. Indeed, one can show that,

as a function of Ẽj(t), such expectation is itself a feasible valuation function (see Ap-

pendix B, where we also prove that the expectation on the right-hand side of (7) is

a feasible valuation function). As a result, (4) also admits a greatest solution, which

analogously to the greatest solution of (2) is computed iteratively by choosing the eq-

uities implied by taking interbank assets at their face value, i.e. Ẽ(0)(t) = E(t) ≡
Aei (t) +

∑n
j=1Aij(t) − Lei (t) +

∑n
j=1 Lij(t). Also in this case it is possible to interpret

the iterative procedure as banks collectively working out the greatest solution, but with

an important difference. Indeed here, in order to compute updated estimates for the

valuation of interbank assets and equities, banks need to promptly learn the updated

estimates of the equities of their counterparties, not only whether those are positive

or not. This would happen for example if markets were efficient, in the sense that, as

banks would update their estimates of valuation of equities, prices of equity and debt

would incorporate the information about the creditworthiness of counterparties.8

We refer to the model with valuation functions equal to the conditional expectations

in (7) as to the exogenous Black and Cox network valuation model, because it features

exogenous recovery functions and the default dynamics of the Black and Cox model, i.e.

banks can default at any point in time. While most results in section 4 are based on

this model, we will make comparisons with two additional models of ex-ante network

valuation. First, the model in Barucca et al. (2016), which we refer to as the endogenous

8Strictly speaking, the market price of the equity should reflect the fact that equity holders have
limited liability, meaning that the equity cannot become negative However, in our model equities can
be negative and indeed they should be thought of as the value of the net worth (assets minus liabilities),
rather than as the payoff of shareholders. Nevertheless, the implied market value of such net worths
can be inferred by observing market prices of both equity and debt. Indeed, at maturity, by denoting
with A and L the face values of assets and liabilities, the value of equity is max(A − L, 0), while
the value of debt is min(L,A). Given that the net worth is defined as N = A − L, one has that
N = max(A−L, 0) + min(L,A)−L. Before maturity, the identity still holds by replacing all the terms
with their conditional expectations.
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Merton network valuation model, because it features endogenous recovery functions (à

la Eisenberg and Noe) and the default dynamics of the Merton model, i.e. banks can

default only at T . Second, the model with valuation functions equal to the conditional

expectations in (5), which we refer to as the exogenous Merton network valuation model,

because it features exogenous recovery functions and the default dynamics of the Merton

model.

2.3 Shocks

In section 4 we will apply the model by carrying out simplified stress test exercises. The

basic idea is to assume again that an exogenous shock hits external assets:

Ae(t)→ Ae(t) + ∆Ae , (9)

where ∆Aei < 0, for all i. Shocks to external assets will be absorbed by equity in the

first instance generating the equity loss ∆Eshock = ∆Ae.9 In order to compute the

additional losses due to the revaluation of interbank assets one simply has to compute

the fixed point Ẽ∗(t) of (4) using the post-shock vector of equities as starting point.

The total loss will therefore include two contributions, the exogenous shock ∆Eshock

and the losses due to the contagion mechanism, i.e. ∆Econt = Ẽ(0)(t)−E∗(t).

An important observation is that, for valuation functions of the form (3b), i.e. in

absence of ex-ante uncertainty (and therefore of a forward-looking valuation), if post-

shock equities are all positive, then Ẽ(0)(t) = E∗(t) (see end of section 2.1). This means

that, if shocks to external assets are less than the equity taken at face value for all

banks, losses due to the contagion will be equal to zero. In other words, losses due to

the contagion can be larger than zero only if the exogenous shock is so large that it is

sufficient alone to put at least one bank in default. As shown by our results in section

4, this does not apply to valuation functions discussed in section 2.2, which can imply

losses due to the contagion also for smaller exogenous shocks.

Interestingly, the losses due to contagion can be further decomposed by means of the

following observation. Ẽ(1)(t), i.e. the vector of valuations of equities computed after

iterating (4) once, incorporates the valuations performed by each bank of its own direct

counterparties. Ẽ(2)(t), the vector of valuations of equities computed after iterating (4)

twice, captures subsequent revaluations performed by each bank’s counterparties of their

own counterparties. As a consequence, by measuring Ẽ(1)(t) one can isolate the effects

of direct losses, i.e. the losses caused by direct counterparties, from the losses genuinely

caused by additional rounds of contagion propagation, i.e. by the amplification due to

the network contribution.

9Even though in principle the shock in external assets could be larger than the equity, we always
have |∆Aej | < Ej(t). In fact, since our main purpose is to study contagion mechanisms, we are not
interested in the case in which the exogenous shock alone is sufficient to make banks default.
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In summary, by denoting the vector of equities before the exogenous shock hits with

Epre-shock(t), there are three different contributions to the total losses:

∆Eshock = Epre-shock(t)− Ẽ(0)(t) (10a)

∆Edirect = Ẽ(0)(t)− Ẽ(1)(t) (10b)

∆Eamp = Ẽ(1)(t)− Ẽ∗(t) , (10c)

while the losses due to contagion are simply ∆Econt = ∆Edirect + ∆Eamp.

3 Data

Here we consider a subset of the UK banking system composed of the banks that

have been consistently part of the concurrent stress test carried out by the Bank of

England.10 Those banks provide approximately 80% of the regulated lending to the UK

real economy (Bank of England, 2017). From (4) we can see that, in order to compute

the fixed point for the vector of equity, one needs external assets and liabilities of all

banks, the matrix of interbank assets, and possibly the additional parameters on which

valuation functions depend.

3.1 Balance sheets

We use two different sources for interbank assets. The first is regulatory data on large

exposures that banks have to their counterparties. Banks were required to calculate and

report the maximum loss that they would suffer if a counterparty (or group of connected

counterparties) failed to meet their obligations. A “large exposure” was defined as any

exposure that exceeded 10% of the bank’s capital resources (total Tier 1 and Tier 2

capital after deductions). Banks were prohibited from having exposures greater than

25% of capital resources (Basel Committee on Banking Supervision, 2014), although

exceptions were made for certain counterparties. Due to the aforementioned threshold,

these data will tend to underestimate interconnectedness. Nevertheless, they represent

the only data about mutual exposures between UK banks that go back until before the

peak of the crisis. We can see that, while this entails that the exposures reported are

likely to be the output of some valuation performed by the banks, their definition is

consistent with (4), given that the maximum loss is realised precisely when the valuation

function is equal to zero. Large exposures were collected every quarter from 2008 Q2

to 2013 Q4. The second data source covers every quarter in the period from 2014

Q4 to 2016 Q4. It includes exposures between those seven banks across several asset

classes: fixed income (unsecured and subordinated debt securities), securities financing

transactions (repo, reverse repo, securities lending and borrowing), and derivatives. In

10The banks are: Barclays, HSBC, Lloyds Banking Group, Nationwide Building Society, The Royal
Bank of Scotland Group, Santander UK, and Standard Chartered.
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order to match the definition of the first dataset as closely as possible, we aggregate

across all asset classes. In contrast to the “large exposures” data there is no reporting

threshold, which allows us to have a more complete picture of the network.

The matrix of interbank liabilities is obtained by transposing the matrix of interbank

assets. External liabilities are equal to the difference between total liabilities and inter-

bank liabilities. Total liabilities are obtained from banks’ published accounts in their

annual and interim reports. Analogously, external assets are equal to the difference

between total assets and interbank assets, also obtained from the annual and interim

reports. The starting level of equity is computed as total assets minus total liabilities,

i.e. through (1), which corresponds to the accounting definition of equity. As a conse-

quence, while the time series for interbank assets and liabilities is updated quarterly,

the time series for external assets and liabilities and for initial equities is updated only

half-yearly.

In figure 1 we show initial equities, totals assets, and leverage (total assets divided

by initial equities) for all banks and throughout the whole period under consideration.

Moreover (in four bottom panels), we show average, minimum, and maximum of some

network metrics computed from interbank exposures, where we highlight the gap be-

tween the two datasets. The out-degree of bank i is the number of its creditors, while

its in-degree is the number of its debtors. Those can be taken as simple measures of

how interconnected the banking system is. We can see that in the period relative to

the first dataset (with a threshold on exposures) the number of counterparties declines,

which might be due to some exposures falling below the reporting threshold. In the

period relative to the second dataset (without a threshold on exposures) the banking

system is almost fully-connected.11 However, degrees do not account for the size of

interbank exposures. The out-strength of bank i is simply
∑

j Aij(t), i.e. the sum of

its interbank assets and it is the simplest network metric that accounts for the size of

interbank exposures. A network metric specific to financial networks is the interbank

leverage (see e.g. Bardoscia et al. (2015, 2017)). The interbank leverage of bank i is

equal to
∑

j Aij(t)/Ei(t), i.e. to the leverage restricted to interbank assets. Both inter-

bank assets and interbank leverages consistently decline throughout the period under

consideration.

3.2 Parameters

The additional parameters needed to compute valuation functions, as we can see from

(7) and from (8), are the recovery rates, the forward-looking time horizon, and the

volatility of external assets. We choose a homogeneous recovery rate across banks, i.e.

ρi = ρ, ∀i. We mainly use either ρ = 0, which leads to an upper bound on the losses,

or ρ = 0.6. In fact, actual recovery rates of banks are around 0.56 and 0.57 (see e.g.

11The maximum out-degree and in-degree is equal to n − 1 = 6. We also note that the average
out-degree is always equal to the average in-degree.
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Figure 1: Summary statistics of balance sheets and model parameters. For the four
bottom panels solid lines represent the average across banks, while colored regions
extend between minima and maxima across banks. The gap in four bottom panels
corresponds to the gap between the two datasets used for interbank exposures.
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Jackson and Pernoud (2019) and references therein (James, 1991, Branch, 2002, Acharya

et al., 2007, Davydenko et al., 2012)). As an additional sensitivity check, for aggregate

contagion losses we scan a broader range of recovery rates.

We fix the forward-looking time horizon T−t to one year in most of our experiments.

This is consistent with the time interval between concurrent stress tests run both by the

Bank of England and the Federal Reserve. For a sensitivity check on the forward-looking

time horizon, see Appendix D. In order to estimate the volatility of external assets, we

follow the standard approach used in the Merton model and its generalisations, which

consists in assuming that equities follow the same stochastic process as the external

assets (albeit with a different volatility). We refer readers interested in the details to

Appendix C. Equity volatilities for all banks and throughout the whole period under

consideration are shown in figure 1.

4 Results

4.1 Valuation functions

In figure 2 we plot the calibrated valuation functions for all banks, for 2008 Q3 and

2015 Q1, and for ρ = 0. In the top panels valuation functions are plotted as functions

of equity levels, whereas in the bottom panels they are plotted as functions of equities

relative to the initial equity of each bank.

In both cases the right endpoints of all curves correspond to Epre-shock(t), the starting

(unshocked) values of equities as computed from (1). In absence of equity shocks we

have that Ẽ(0)(t) = Epre-shock(t). As a consequence, Vj(Ẽ(0)(t)) is the discount factor

that bank j’s creditors initially apply to their interbank assets towards bank j, absent

any equity shock. We can see that in 2015 Q1 the right endpoint of valuation functions

is close to one for all banks. Hence, absent any equity shock, the initial valuation

of all interbank assets will be very close to their face value. In contrast, in 2008 Q3

the right endpoint of valuation functions is materially smaller than one for all banks.

For example, the right endpoint of the RBS’ valuation function is approximately 0.57,

meaning that its creditors initially discount their interbank assets towards RBS by 43%.

If equity shocks are non-zero, then Ẽ(0)(t) = Epre-shock(t)−∆Eshock. Because valuation

functions are non-decreasing, any equity shock will push initial valuations of interbank

assets further down. Still, in 2015 Q1 most banks would need to suffer a very large shock

to their equities to switch into the regime in which valuation functions are materially

smaller than one. For example, HSBC would need to lose about 50% of its initial equity.

Since valuation functions are discount factors for interbank assets, the slopes of

curves in the top panel of figure 2 can be interpreted as the additional discount in

percentage points applied to interbank assets of a bank hit by an additional equity

shock of £1bn. In 2008 Q3 RBS’s valuation function is approximately linear, meaning
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Figure 2: Valuation functions for interbank assets as function of equities (top panels)
and as a function of equities relative to initial unshocked equities (bottom panels), both
in 2008 Q3 (left panels) and in 2015 Q1 (rights panel), ρ = 0. The parameters of
valuation functions have been calibrated by using data from banks’ annual reports and
by estimating volatilities of banks’ equities from market prices of their stocks.

that any additional equity shock of £1bn (about 1% of its initial equity) translates

into an additional devaluation of the interbank assets held by its creditors of about

55 basis points. Lloyds is in a similar situation and any additional equity shock of

£1bn (about 8.5% of its initial equity) corresponds to an additional devaluation of the

interbank assets held by its creditors of about 542 basis points. In 2015 Q1 for most

banks the slope of valuation functions is close to zero for a large range of equity shocks.

For example, even if HSBC suffered an exogenous equity shock of £75bn (about 50%

of its initial equity) the slope of its valuation function would be still small, meaning

that to any additional equity shock of £1bn it would correspond a very small additional

devaluation of the interbank assets held by its creditors.

Moreover, from figure 2 we can see that valuation functions are generally concave.

This means that, for a given additional equity shock, the marginal variation in the

discount factor applied to interbank assets is larger when that additional shock is applied

to smaller initial equities. This is also in line with the intuition that the impact of a

shock on a well-capitalised bank will be smaller than the impact of the same shock on
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Figure 3: Break down of aggregate losses for a range of homogeneous shocks across
banks. Balance sheets and exposures from 2008 Q4, recovery rate ρ = 0 (left) and
ρ = 0.6 (right).

a poorly-capitalised bank.

Finally, from the bottom panels of figure 2 we can see how different banks respond to

the same relative equity shock. When all banks are subject to the same relative equity

shock, the ranking of valuation functions from top to bottom corresponds to ranking

banks from the ones whose creditors will discount their interbank assets towards them

the least to those whose creditors will discount their interbank assets towards them the

most.

4.2 Aggregate contagion losses

In the remainder of section 4 we carry out simplified stress test exercises. This use of the

model can be thought of as a macro-prudential “overlay” on top of a micro-prudential

stress test. The initial losses firms suffer should be interpreted as the results of the

individual banks’ stress test that do not include losses due to contagion. We then use

our model to compute the additional losses due to contagion within the system.

We start by exploring the effect of a broad range of shocks. We shock external

assets such that the corresponding relative loss of equity ∆Eshock
i /Epre-shock

i (t) is the

same across all banks. In figure 3 we break down the different contributions in (10)

to total losses for 2008, for two different values of the exogenous recovery rate ρ. The

green line is simply the aggregate initial equity
∑

iE
pre-shock
i (t). For a given value

of the shock, the distance between the green and the orange line corresponds to the

aggregate exogenous shock
∑

i ∆Eshock
i , the distance between the orange and the blue

line corresponds to the aggregate losses caused by direct exposures
∑

i ∆Edirect
i , while

the distance between the blue and the purple line corresponds to the aggregate losses

caused by additional rounds of contagion
∑

i ∆Eamp
i . For ρ = 0 losses due to contagion

can be as large as losses due to the exogenous shock. For ρ = 0.6, while smaller,

they are still sizeable. From figure 3 we also see that there are losses due to contagion
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Figure 4: Aggregate losses due to contagion from 2008 to 2016. Relative equity shocks
are the same for all banks (30%, 50%, 70%), recovery rates are ρ = 0 (top left), 0.4 (top
right), 0.6 (bottom left), and 0.8 (bottom right).

even without any exogenous shock to equities. This happens because, the valuation of

interbank assets in the absence of a shock does not necessarily correspond to the face

value of interbank assets, i.e. Vj(Epre-shock
j (t)) might be strictly smaller than one, as for

example in the left panel of figure 2.

Figure 4 shows that aggregate losses due to contagion (corresponding to the dif-

ference between the orange line and the purple line in figure 3) decreased significantly

from 2008 to 2016. This result is qualitatively robust to changes of the equity shock

or of the recovery rate. It is worth reminding the reader that from 2008 to 2013 our

dataset contains only exposures that exceed 10% of bank’s capital and that, as a con-

sequence, across this period exposures – and hence the effect of contagion – might be

underestimated. However, even where we use a more granular dataset, from 2014 to

2016, the contagion losses increase only marginally, suggesting that the overall trend in

contagious losses is not an artefact of the aforementioned threshold.

In order to better gauge the size of aggregate contagion losses in figure 5 we measure

them relative to (aggregate) initial equity shock. In the period between 2008 and 2009

contagion losses can be as large as, or even larger than, the shock in initial equity. As the

initial equity shock increases, contagion losses will increase as well, when measured in
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Figure 5: Aggregate losses due to contagion from 2008 to 2016 relative to the initial
equity shock. Relative equity shocks are the same for all banks (30%, 50%, 70%),
recovery rates are ρ = 0 (top left), 0.4 (top right), 0.6 (bottom left), and 0.8 (bottom
right).

absolute terms. However, when measured relative to the initial equity shock, contagion

losses might either increase or decrease, depending on whether they dependence on the

initial equity shock is super-linear or sub-linear. This happens indeed in the period

between 2008 and 2009, when smaller shocks imply larger contagion losses measured

relative the to initial equity shock.

We now compare the exogenous Black and Cox model, on which all the results hith-

erto presented were based on, with the exogenous Merton model and with the endoge-

nous Merton model. We remind the reader that models without ex-ante uncertainty,

i.e. models based on valuation functions of the form (3b), such as Eisenberg and Noe

(2001), yield contagion losses equal to zero unless the relative equity shock is larger

than 100% (see section 2.3). By comparing figure 4 with figure 6, we can see that

the endogenous Merton model yields markedly smaller aggregate contagion losses than

all the models with exogenous recovery rates. Furthermore, at a given recovery rate,

models with default dynamics à la Merton yield smaller aggregate contagion losses than

the model with default dynamics à la Black and Cox. This in indeed expected since,

as explained in section 2.2, banks default more easily with default dynamics à la Black
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Figure 6: Aggregate losses due to contagion from 2008 to 2016 both in absolute terms
(left panels) and relative to the initial equity shock (right panels) for different models.
From top to bottom: endogenous Merton model, exogenous Merton model with ρ = 0.6,
exogenous Merton model with ρ = 0.

and Cox. From figures 5 and 6 we can see that similar results hold for contagion losses

when measured relative to the initial equity shock.

In the following subsection we analyse how contagion losses are distributed across

banks. The share of contagion losses of a bank will tell us how vulnerable that bank

is, while its individual contribution to contagion losses will tell us how systemically

important it is.
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4.3 Distribution of contagion losses

We now analyse how aggregate contagion losses are distributed across banks. In order

to do so, for bank i we define its share of contagion losses:

ci =
∆Econt

i∑
i ∆Econt

i

(11)

and we rank them from the largest to the smallest, so that c[1] is the largest share of

contagion losses, c[2] is the second largest, and so on. We then define the k-th cumulative

share of contagion losses as:

C0 = 0 , Ck =
k∑
i=1

c[i] for k > 0 . (12)

Ck is simply the sum of the k-th largest shares of contagion losses. For example, C1 = 0.4

means that the bank with the largest share of contagion losses is contributing 40% of the

aggregate contagion losses. C2 = 0.6 means that the banks with the two largest share

of contagion losses are contributing 60% of the aggregate contagion losses. A simple

way to visualise how contagion losses are concentrated is to plot the cumulative shares

of contagion losses C0, C1, C2, . . . , Cn against the fraction of banks 0, 1/n, 2/n, . . . , 1. In

fact, if contagion losses are equally distributed across all banks, i.e. ci = 1/n, ∀i, from

(12) we have that Ck = k/n, ∀k. As a consequence, the curve of cumulative shares of

contagion losses is a straight line with slope equal to one and intercept equal to zero.

Conversely, if all contagion losses are concentrated in one bank, we have that c[1] = 1

and c[i] = 0, ∀i > 1. Hence, while C0 = 0, for k > 1 we have that Ck = 1 and the curve

of cumulative shares of contagion losses is a straight line. In between those two extreme

cases, the more concave the curve, the more concentrated the contagion losses are. In

this respect it is possible to draw an analogy between a curve of cumulative shares

of contagion losses and the inverse of a Lorenz curve representing the distribution of

income (or wealth).12

In figure 7 we plot the cumulative shares of contagion losses for a selection of periods

in our data. We can see that the distribution of contagion losses differs from period

to period. In 2009 Q2 about 80% of contagion losses are split approximately evenly

among three banks and the remaining 20% among four banks. The situation appears to

be markedly different in 2011 Q2, when one bank accounts for about 65% of contagion

losses, while the remaining losses are split approximately evenly among five banks. In

2012 Q2 only four banks have material shares of contagion losses, while in 2015 Q4

those are more evenly distributed.

12In both cases the curves corresponding to zero concentration are straight lines with slope equal to
one and intercept equal to zero. However, the more convex a Lorenz curve is, the more unequal the
distribution is.
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Figure 7: Cumulative shares of contagion losses for a selection of periods in our data.
Relative equity shocks are 50% for all banks, recovery rate ρ = 0. To enhance readability
on the x axis we show the number of banks rather than the fraction of banks.

The share of contagion losses of one bank tells us how vulnerable that bank is relative

to the other banks in system, but it does not tell us anything about how dangerous that

bank is. In other words, it is a measure of the percentage of losses that a bank might

suffer, but not of its systemic importance, which is related to the losses that it is respon-

sible for. A simple way to quantify the marginal contribution of bank i is to compute

the difference between the aggregate contagion losses of the banking sub-system that

does not include bank i, i.e. B\{i} and the aggregate contagion losses of the full banking

system B. We denote such difference with φi =
∑

i ∆Econt
i (B \ {i}) −

∑
i ∆Econt

i (B).

Banking sub-systems are built simply by converting to external assets all interbank

assets corresponding to interbank liabilities of the bank removed and by converting to
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external liabilities all interbank liabilities corresponding to interbank assets of the bank

removed. The removal of one bank here can be quite easily interpreted as that bank

never being part of the banking system in the first place, or also as that bank defaulting

and being liquidated so that all their counterparties recover the full value of their inter-

bank assets, which are then reinvested as external assets. In analogy with the share to

contagion losses, we can then define the contributions to contagion losses of bank i:

si =
φi∑
i φi

(13)

and the corresponding cumulative contributions to contagion losses S0, S1, S2, . . . , Sn.

We explicitly point out that the sum of all contributions to contagion losses is not

necessarily equal to the aggregate contagion losses, i.e. in general
∑

i φi 6=
∑

i ∆Econt
i .

This problem can be addressed by following the approach used in Tarashev et al. (2010)

and adopted also in Gauthier et al. (2012), Huang et al. (2012), i.e. by performing a

Shapley decomposition of contagion losses (see Appendix E). Results are completely

analogous to those obtained by using the contributions to contagion losses φi.

In figure 8 we plot the cumulative contributions to contagion losses for a selection

of periods in our data. Also in this case the distribution of contributions to contagion

losses changes from period to period. In 2009 Q2 three banks contribute approximately

equally to 70% of contagion losses, two banks contribute to an additional 20%, while

the remaining losses are evenly split between two banks. In 2014 Q4 four banks con-

tribute approximately equally to more than 80% of contagion losses, while three banks

contribute evenly to the remaining contagion losses. In 2015 Q3 contributions are more

evenly distributed. In 2015 Q4 three banks contribute approximately equally to about

70% of contagion losses, while four banks contribute evenly to the remaining contagion

losses.

An effective way to track concentration over time is to measure the area under the

curves (AUCs) of both cumulative shares of and cumulative contributions to contagion

losses. When the concentration is minimal, the curves are straight lines with slope one

and intercept zero and the AUC is equal to 1/2. When the concentration is maximal,

the curves are straight lines with slope zero and intercept one, except for the first

point, which is always (0, 0). Therefore, the AUC is equal to 1 − 1/2n. However, for

convenience, we prefer to normalise the AUC such that its minimal value is zero and its

maximal value is one. In this way the AUC becomes analogous to the Gini coefficient

for the income (or wealth) distribution.

In figure 9 we show the AUCs for every quarter in our data. A comparison with

figure 4 reveals that concentration is maximal when aggregate losses are small, signalling

that contagion is limited both in its overall effects and in its extent. However, we point

out that such temporary increase in concentration may be an artefact of the reporting

threshold that affects interbank exposures up to 2013 Q4. In fact, as interbank exposures
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Figure 8: Cumulative contributions to contagion losses for a selection of periods in our
data. Relative equity shocks are 50% for all banks, recovery rate ρ = 0. To enhance
readability on the x axis we show the number of banks rather than the fraction of banks.

decline from 2008 to 2013, only fewer and fewer may have been large enough to be

reported. As a consequence, contagion losses would remain confined to the subset of

the banking system which is connected by the surviving exposures, naturally resulting

in an increase in the concentration of contagion losses. Nevertheless, independently on

that observation, from figure 9 we can see that concentrations of both shares of and

contributions to contagion losses behave similarly, signalling that vulnerabilities and

systemic importances of banks are correlated.

In order to further support this point, in figure 10 we plot shares of contagion losses

on one axis and contribution to contagion losses on the other axis, thereby showing
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Figure 9: Concentration of shares of and contribution to contagion losses for a selection
of periods in our data. The minimal concentration is attained at zero and the maximal
at one. Relative equity shocks are 50% for all banks, recovery rate ρ = 0 (left) and
ρ = 0.6 (right). The two segments correspond to our two datasets (see section 3).

how those two aspects are interrelated at the level of single banks. Banks lying on the

45 degree line are equally vulnerable and dangerous. Banks below the 45 degree line

are relatively more vulnerable than dangerous, and vice versa for banks above the line.

The area in bottom right corner corresponds to banks that experience large losses, but

that cause small losses. They would be relatively expensive to bail out, and the benefit

would be marginal. Conversely, the area in the top left corner corresponds to banks

that experience small losses, but that cause large losses. They would be relatively easy

to bail out, and the benefit would be large. In practice, in almost all cases banks are

fairly close to the 45 degree line and deviate only marginally from it, mostly ruling out

such corner cases. We avoid periods corresponding to the peak in figure 9, as in this

region the increase in concentration may be an artefact of the reporting threshold on

interbank exposures up to 2013 Q4.

4.4 Bank of England’s stress test

The Bank of England runs an annual concurrent stress test of seven major UK banks.

We refer the reader to Bank of England (2015b) for a comprehensive account of the Bank

of England’s approach to stress testing. The stress test scenario is published every year

and it mainly consists of projections of key macroeconomic variables and asset prices.

It is designed to capture tail risks and it is calibrated to be countercyclical. This means

that, for example, during a housing boom the scenario might include a severe negative

shock to house prices. Banks participating in the stress test use their own risk models

to project the impact of the scenario on their balance sheets and ultimately on their

capital ratios. The Bank of England then uses a range of models and analysis to adjust

banks’ submissions in order to improve consistency across banks, before the final stress

test results are published at the end of the year.
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Figure 10: Shares of contagion losses vs contribution to contagion losses for individual
banks. Relative equity shocks are 50% for all banks, recovery rate ρ = 0.

In this section we take such projected impact on banks’ usable capital, which we

define as the buffer of regulatory capital that banks hold over and above their capital

requirements, as our exogenous shock to banks’ equity. We then input this shock to

our model to calculate any additional contagion losses. We conduct this exercise for

the shocks implied by the Bank of England’s concurrent stress tests for the years 2015,

2016, and 2017.

From 2014, regulators introduced Common Equity Tier 1 (CET1) as the primary

measure of regulatory capital, and banks may be put into resolution if their level of

CET1 falls below the minimal amount13 that regulators require them to hold (Bank of

13We use the international minimum standard capital requirement as set out in Basel 3, which corre-
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England, 2014), i.e. if their usable capital becomes equal to zero. Interpreting the equity

of our model as the usable capital is therefore consistent with the fact that in our model

banks default as soon their equity becomes equal to zero. In this case external assets

must be computed by inverting (1), after the initial usable capital has been specified.

The Bank of England’s stess tests are performed using the balance sheets of the final

quarter of the previous year as their starting point. In this case it makes perfect sense to

use the regulatory interpretation of equity. In fact, each year the stress test consists in

assuming a given macroeconomic stress scenario and in projecting the amount of usable

capital for each bank under the assumed stress scenario. The starting point, year by

year and bank by bank, is the actual value of usable capital, which we interpret as the

pre-shock value of equity Epre-shock(t). In the stress scenario, usable capital falls both

because asset values fall (e.g. banks make credit losses) and this affects capital directly,

and because risk-weighted asset rise, which increases a banks’ capital requirements. In

order to estimate the additional potential losses due to solvency contagion, we use the

projected amount of remaining usable capital for each bank envisaged by the results of

stress tests as the post-shock equity E(0)(t) of our model.14 More specifically, within

the time horizon of the projection, we take the post-shock value of usable capital from

the point when each bank is most vulnerable, i.e. when its ratio between CET1 and risk

weighted assets is the smallest.15

Both the usable capital and the shocks implied by the stress tests for all banks are

listed in table 1. We use ρ = 0, which allows us to give upper bounds for the case

in which interbank exposures are unsecured. We report aggregate contagion losses in

table 2. Those are fairly small for all years, reaching a maximum of 3.5% of the shock

to initial equities in 2015.

5 Conclusions

Stress testing has become firmly established as one pillar of the post-crisis regulatory

framework. Indeed, it is one of the key tools that regulators employ to set banks’

capital. A modern, comprehensive approach to stress testing cannot consider banks

in isolation. Instead it should attempt to model the channels through which shocks

could propagate from one bank to another, possibly resulting in a systemic crisis. Here

we introduce a model for one of those channels, solvency contagion. Importantly, we

account not only for losses due to outright defaults of banks, but also for losses due

to the revaluation of interbank assets performed by creditors when the probability of

sponds to 4.5% of risk weighted assets Basel Committee on Banking Supervision (2011a).
14This method of using the stress test results published by the Bank of England will not be possible

in the future, as the stress test results will include losses due to solvency contagion as well.
15The values of CET1 and risk weighted assets can be found in the Annex 1 of Bank of England

(2015a, 2016, 2017) under the columns “Actual” (pre-shock) and “Minimum stressed ratio (after the
impact of ‘strategic’ management actions)” (post-shock).
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2015 2016 2017

Usable Shock Shock Usable Shock Shock Usable Shock Shock
capital capital capital
(£m) (£m) (%) (£m) (£m) (%) (£m) (£m) (%)

Barclays 22 910 −10 890 −47.5 24 890 −9 890 −39.7 28 530 −14 960 −52.4
HSBC 49 855 −20 100 −44.7 54 520 −12 650 −23.2 63 635 −45 441 −71.4
Lloyds 20 200 −8 090 −40.0 18 965 −5 675 −29.9 19 280 −9 980 −51.8
Nationwide 5 635 375 6.6 6 425 −355 −5.5 6 470 −755 −11.7
RBS 23 980 −18 750 −78.2 27 065 −21 540 −79.6 20 740 −13 150 −63.4
Santander UK 6 110 −1 195 −19.6 6 130 −1 225 −20.0 6 040 −1 135 −18.8
Std Chartered 20 610 −10 385 −79.0 16 820 −11 475 −68.2 20 145 −7 370 −36.6

Table 1: Usable capital and shocks to the usable capital implied by the Bank of Eng-
land’s concurrent stress tests. Both usable capital and shocks have been computed as
explained in section 3 using data from the Annex 1 of Bank of England (2015a, 2016,
2017). Years refer to the year in which the stress tests have been carried out. Stress
tests are performed by using balance sheets of the final quarter of the previous year.

Contagion losses Contagion losses /
(£m) Initial equity shock

2015 2 397 0.035
2016 919 0.015
2017 1 006 0.011

Table 2: Contagion losses using shocks implied by the Bank of England’s concurrent
stress tests (see table 1). We report contagion losses also measured relative to the
aggregate shock to initial equities.

default of their counterparties change. The model can be thought as an “overlay” on

top of traditional micro-prudential stress test in which banks are stressed in isolation.

From this perspective, results of a micro-prudential stress test are exogenous shocks

taken as inputs by the model.

By using the model in conjunction with data on bilateral exposures between the

seven largest UK banks we show that solvency contagion risk in the UK banking system

has declined markedly since the financial crisis. We demonstrate this effect both for

homogeneous shocks across all banks and for the shocks implied Bank of England’s

concurrent stress tests for the years 2015, 2016, and 2017.

We also show how to track the concentration of contagion losses, in terms both of

vulnerabilities and systemic importance of individual banks. Classifying banks in terms

of those two dimensions could prove especially valuable for regulators. For example, it

would allow to identify those banks that are not particularly vulnerable, but that might

be highly systemically important, potentially pointing to specific intervention strategies.

Finally, the decomposition of the change of contagion losses into key drivers, such as

initial equity and in interbank assets, could suggest optimal system-wide policies, such

as the implementation of additional capital buffers or capping on interbank exposures.

Interestingly, such decomposition might give some indication on whether risks related
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to solvency contagion have genuinely reduced or simply shifted. Loosely speaking, we

can imagine that targeting a given expected return will imply a corresponding risk level

(or vice versa). Increasing the capital means that, all other things equal, the expected

return is mechanically reduced. From this perspective, a negative contribution to the

change in contagion losses due to an increase in capital can be interpreted as a genuine

reduction of the risk. Conversely, when a bank swaps interbank assets for external

assets naturally risk shifts from credit risk to another form of risk that depends on the

underlying external assets.

Future research could extend the analysis in two key directions. First, whilst our

results show that the risk arising from solvency contagion in the UK does not appear

to be substantial at the moment, in reality this risk will interact with other channels

of contagion. Such interactions could mutually reinforce effects that would have been

small on their own. From a policy perspective, our model should be therefore used

within a suite of models that target a wide variety of possible channels of contagion

(Halaj, 2018). Second, by its nature, financial system interconnectedness is a global

phenomenon, and has the potential to transmit risks across borders. However, we are

currently able to conduct analysis only on the subset of the UK interbank network for

which we have data. Access to global data through data-sharing initiatives with foreign

regulators would facilitate more accurate assessment of the extent of solvency contagion

risk facing the UK financial system. For the cases in which exposures would not be

available, network reconstruction techniques could be employed to fill the gaps in data.
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Source code. The simulations have been performed by using an implementation of the

NEVA framework, which we make available here: https://github.com/marcobardoscia/

neva.

Appendices

A General model

Let us now assume that there is a risk-free asset, yielding a (continuously compounded)

instantaneous risk-free rate r and that non-stochastic assets and liabilities yield r:

Aij(T ) = er(T−t)Aij(t) (A.1a)

Li(T ) = er(T−t)Li(t) (A.1b)

for all i and j, where for brevity we have introduced the total liabilities Li(s) = Lei (s) +∑n
j=1 Lij(s), ∀i, s. Now Ẽ(t) must include discount factors:

Ẽ(t) ≡ e−r(T−t)EQ
[
Ẽ(T )|Ae(t)

]
. (A.2)

By plugging (2) in the equation above, we must compute three conditional expectations.

For external assets:

e−r(T−t)EQ [Aei (T )|Ae(t)] = Aei (t) , (A.3)

because under the measure Q external assets have a drift term rds. For liabilities

(interbank plus external):

e−r(T−t)EQ [Li(T )|Ae(t)] = e−r(T−t)Li(T ) = Li(t) . (A.4)

For interbank assets:

e−r(T−t)EQ
[
Aij(T )Vj(Ẽj(T ))|Ae(t)

]
= e−r(T−t)Aij(T )EQ

[
Vj(Ẽj(T ))|Ae(t)

]
= Aij(t)EQ

[
Vj(Ẽj(T ))|Ae(t)

]
,

(A.5)

and we are left with the conditional expected value of the valuation function to compute.

We start from valuation functions (7), i.e. from the exogenous Black and Cox model.

Similarly to the case in which r = 0, when evaluating bank j’s valuation function, bank

i performs the following approximation:
∑n

k=1 Ãjk(s) ≈
∑n

k=1 Ãjk(t)e
r(s−t). In other

words, while bank i is still not able to account for the valuation of the interbank assets

of bank j’s counterparties, it can correctly track the risk-free increase of those assets.
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Thus, for all s between t and T , i will estimate j’s equity in the following way:

Ẽj(s) = Aej(s) +
∑
k

Ãjk(s)− Lj(s)

≈ Aej(s)− Lj(s) + er(s−t)
∑
k

Ãjk(t)

= Aej(s)− Lj(s) + er(s−t)
[
Ẽj(t)−Aej(t) + Lj(t)

]
= Aej(s) +

[
Ẽj(t)−Aej(t)

]
er(s−t) .

(A.6)

From (A.6) we can write the survival condition for bank j:

Aej(s) ≥
[
Aej(t)− Ẽj(t)

]
er(s−t) ∀ s ∈ [t, T ] . (A.7)

If Ẽj(t) < 0, bank j has already defaulted, and by definition its survival probability

must be equal to zero. If Aej(t) ≤ Ẽj(t), then (A.7) is always satisfied and the survival

probability is equal to one. Hence we focus on the case 0 < Ẽj(t) < Aej(t). In order to

adapt the survival probability (7) in Black and Cox (1976) we re-express our survival

condition as Aej(s) ≥
[
Aej(t)− Ẽj(t)

]
er(T−t)e−r(T−s), which has the same form of the

re-organisation boundary in Black and Cox (1976) with C =
[
Aej(t)− Ẽj(t)

]
er(T−t) and

γ = r. The survival condition also maps into the condition V (s) ≥ K in Black and Cox

(1976) by taking V (s) = Aej(s) and K = C. Finally, a = 0 in our case, as no dividends

are paid. After algebraic manipulations, (7) in Black and Cox (1976) yields (8), which

is independent on the value of r. Together with (A.3), (A.5), and (A.4), this means

that all the equations of the model do not change in the case in which r > 0.

From (A.7) we can see that the survival condition for bank j depends only on one

stochastic process, i.e. dAej(s), the stochastic process of bank j’s external assets. As a

consequence, the survival probability in (7) and the valuation function itself will not

depend on the stochastic process of external assets of any other bank. This means that

the valuation function (7) of bank j does not change regardless on whether the stochastic

processes of external assets are independent or not. Ultimately, (A.7) is a consequence

of the approximation
∑n

k=1 Ãjk(s) ≈
∑n

k=1 Ãjk(t)e
r(s−t), which itself descends from

having assumed that banks only have knowledge of their own interbank assets, and

therefore that they do not know whether the equity valuations of those counterparties

are affected by valuations of interbank assets of those counterparties towards other

banks (which would be indirect counterparties for them). This implies that banks are

not able to account for potential correlations between external assets.

The case of valuation functions (5), i.e. of the exogenous Merton model is sim-

pler. In this case the survival condition applies only to time T and the approx-

imation analogous to the one made for the exogenous Black and Cox model reads:∑n
k=1 Ãjk(T ) ≈

∑n
k=1 Ãjk(t)e

r(T−t). The corresponding survival condition is: Aej(T ) ≥
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[
Aej(t)− Ẽj(t)

]
er(T−t). If Aej(t) ≤ Ẽj(t), the survival condition is always satisfied and

the survival probability is equal to one. For Ẽj(t) < Aej(t), based on the survival condi-

tion, the survival probability is simply the survival probability of the standard Merton

model with liabilities equal to C =
[
Aej(t)− Ẽj(t)

]
er(T−t), assets equal to external

assets Aej(s), and no dividends. Hence:

EQ
[
1Ẽj(T )≥0|A

e(t)
]

=


N


log

Aej (t)

Ae
j
(t)−Ẽj(t)

−
σ2j (T−t)

2

σj
√

(T−t)

 for Ẽj(t) < Aej(t)

1 for Ẽj(t) ≥ Aej(t)

. (A.8)

The discussion above on the potential correlations between external assets for the

exogenous Black and Cox model applies to the exogenous Merton model as well.

B Feasible valuation functions

Following the definition in Barucca et al. (2016), in order to show that (7) is a feasible

valuation function we need to show that: (i) it takes values in the interval [0, 1], (ii)

is non-decreasing, and (iii) is continuous from above. In order to prove (i) we simply

note that, since EQ [
1τj>T |Ae(t)

]
is the expectation of an indicator function, it must

be between zero and one. Hence, (7) must be between ρj and one.

In order to prove (ii) it is sufficient to prove that EQ [
1τj>T |Ae(t)

]
is a non-decreasing

function of Ẽj(t). Also, we can restrict ourselves to the interval 0 < Ẽj(t) < Aej(t), in

which EQ [
1τj>T |Ae(t)

]
is not constant. By introducing the notation x =

Aej(t)

Aej(t)−Ẽj(t)

and y =
σ2
j (T−t)

2 we can re-write (8) in that interval as:

EQ [
1τj>T |Ae(t)

]
= N

[
log x− y√

2y

]
− xN

[
− log x+ y√

2y

]
= N

[
log x− y√

2y

]
− x

(
1−N

[
log x+ y√

2y

])
= N

[
log x− y√

2y

]
+ xN

[
log x+ y√

2y

]
− x

with x > 1 and y > 0. We now compute its derivative with respect to Ẽj(t):

∂x

∂Ẽj(t)

 1√
2yx

e
− 1

2

(
log x−y√

2y

)2
√

2π
+

1√
2y

e
− 1

2

(
log x+y√

2y

)2
√

2π
+N

[
log x+ y√

2y

]
− 1

 .
By noting that ∂x

∂Ẽj(t)
=

Aej(t)

(Aej(t)−Ẽj(t))2
is always positive, we have that EQ [

1τj>T |Ae(t)
]
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is an increasing function of Ẽj(t) as long as:

1√
2yx

e
− 1

2

(
log x−y√

2y

)2
√

2π
+

1√
2y

e
− 1

2

(
log x+y√

2y

)2
√

2π
+N

[
log x+ y√

2y

]
− 1 > 0 ,

which, by introducing z = 1/x and after algebraic manipulations reduces to:

e
− 1

2

(
− log z+y√

2y

)2
√
πy

+N
[
− log z + y√

2y

]
− 1 > 0 ,

with 0 < z < 1. Indeed, we numerically check that the equation above holds in the

full range of z and up to values of y sufficiently large to include the largest volatility

observed in our sample.

In order to prove (iii) it is sufficient to prove that EQ [
1τj>T |Ae(t)

]
is a continuous

function of Ẽj(t) from above. Indeed, it is possible to prove that EQ [
1τj>T |Ae(t)

]
is con-

tinuous, i.e. both from above and from below. From (8) we can see that EQ [
1τj>T |Ae(t)

]
can only be discontinuous either in Ẽj(t) = 0 or in Ẽj(t) = Aej(t). It is immedi-

ate to show that limẼj(t)→0− E
Q [
1τj>T |Ae(t)

]
= 0, implying that EQ [

1τj>T |Ae(t)
]

is

continuous in zero. In order to prove the continuity in Aej(t), we compute the limit

Ẽj(t)→ Aej(t)
+:

lim
Ẽj(t)→Aej(t)+

EQ [
1τj>T |Ae(t)

]
= lim

z→0+
N
[
− log z − y√

2y

]
− lim
z→0+

1

z
N
[

log z − y√
2y

]
= 1− lim

z→0+

1

2
√
πyz

e
− 1

4y
log2 z− y

4

= 1 ,

where we have applied L’Hôpital’s rule to proceed from the first to the second line.

All the steps above can be replicated to prove that also (5) is a feasible valuation

function. Also in this case EQ
[
1Ẽj(T )≥0|A

e(t)
]

is the expectation of an indicator func-

tion, and therefore it must be between zero and one. Hence, also the right-hand-side

of (5) must be between ρj and one, thereby proving (i). From (A.8), since N is an

increasing function of its argument, it is also an increasing function of Ẽj(t), thereby

proving (ii). Finally, the limit limẼj(t)→Aej(t)+
EQ [

1τj>T |Ae(t)
]

= 1 readily implies that

EQ
[
1Ẽj(T )≥0|A

e(t)
]

is a continuous function of Ẽj(t), thereby proving (iii).

C Volatility of external assets

In order to estimate the volatility of external assets we adapt the standard approach

followed in credit structural models to estimate the volatility of total assets. We assume

that (valuations of) equities follow geometric Brownian motion, albeit with different
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drifts and volatilities than external assets, i.e. dẼj(s) = µEj Ẽj(s)ds + σEj Ẽj(s)dWj(s),

∀ j. Because from (4) the (valuation of) bank j’s equity depends explicitly on bank j’s

external assets it is possible, via Ito’s lemma, to derive a general relationship between

the volatility of bank j’s equity and the volatility of bank j’s external assets at time t:

σjA
e
j(t)

∂Ẽj(t)

∂Aej(t)
= σEj Ẽj(t) ∀j .

From (4) we see that Ẽj(t) depends explicitly on Aej(t) only through the first term, i.e.

∂Ẽj(t)/∂A
e
j(t) = 1, which implies:

σj =
Ẽj(t)

Aej(t)
σEj ∀j . (A.9)

For external assets and equities we use the value implied by the banks’ balance sheets,

as explained in section 3, while σEj , the volatility of bank j’s equity is estimated for

each quarter as follows. We compute the daily log-returns using closing prices of bank

j shares for the latest 30 working days of the quarter under consideration. We use

closing prices instead of market capitalisations to in order to avoid outliers due to

events such as buy-backs. We then compute daily volatilities as the standard deviation

of the time series of daily log-returns. Daily volatilities are annualised by multiplying

daily volatilities by the square root of the number of working days in one year (250). A

notable exception is Nationwide, which is not publicly traded. Given the similar asset

portfolio of the two banks, we set the volatility of Nationwide’s external assets equal

to Lloyds’. The volatility of Nationwide’s equity (as shown in figure 1) is then simply

obtained by inverting (A.9).

D Forward-looking time horizon

In figure A.1 we explore the role of the forward-looking time horizon T−t. By comparing

it with figures 4 and 5 we can see that the qualitative behaviour of aggregate contagion

losses does not change, both when measured in absolute terms and when measured

relative to the (aggregate) initial equity shock. However, a shorter time horizon slightly

enhances the differences between peaks and troughs in aggregate contagion losses, while

a longer time horizon slightly diminishes such differences.

E Shapley decomposition of contagion losses

Shapley values are a standard way to attribute quotas of the total payoff to individual

players participating in a cooperative game (Shapley, 1953). In order to identify the

contribution to contagion losses of one bank with its Shapley value, we consider banks
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to be players in a game whose total payoff is equal to the aggregate contagion losses. In

practice, in order to compute φsi , the Shapley value of bank i, one has to compute the

difference between contagion losses of any banking sub-system S that does not contain

bank i and contagion losses of the same subset to which bank i has been added, and to

suitably average that difference over all such possible banking sub-systems:

φsi =
∑
S:i/∈S

|S|!(|B| − |S| − 1|!)
|B|!

[
∆Econt

i (S)−∆Econt
i (S ∪ {i})

]
,

Remarkably, the sum of all Shapley values is equal to the total payoff, i.e. to aggregate

contagion losses. As a robustness check we have computed Shapley values of all banks

and checked that the resulting contribution to contagion losses are completely analogous

to those obtained by using the definition of contributions to contagion losses in section

4.3. However, because Shapley values involve an average over all the possible banking

sub-systems, in our opinion they are not as easily interpretable as the contributions to

contagion losses φi in section 4.3, and therefore we only present results relative to the

latter.
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Figure A.1: Aggregate losses due to contagion from 2008 to 2016 both in absolute terms
(left panels) and relative to the initial equity shock (right panels) for different forward-
looking time horizons. From top to bottom: T − t = 6 months and ρ = 0.0, T − t = 6
months and ρ = 0.6, T − t = 2 years and ρ = 0.0, and T − t = 2 years and ρ = 0.6.
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