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In the name of meritocracy, modern economies devote increasing
amounts of resources to quantifying and ranking the performance
of individuals and organizations. Rankings send out powerful
signals, which lead to identifying the actions of top performers
as the ‘best practices’ that others should also adopt. However,
several studies have shown that the imitation of best practices
often leads to a drop in performance. So, should those lagging
behind in a ranking imitate top performers or should they
instead pursue a strategy of their own? I tackle this question by
numerically simulating a stylized model of a society whose
agents seek to climb a ranking either by imitating the actions of
top performers or by randomly trying out different actions, i.e.
via serendipity. The model gives rise to a rich phenomenology,
showing that the imitation of top performers increases welfare
overall, but at the cost of higher inequality. Indeed, the
imitation of top performers turns out to be a self-defeating
strategy that consolidates the early advantage of a few lucky—
and not necessarily talented—winners, leading to a very
unequal, homogenized and effectively non-meritocratic society.
Conversely, serendipity favours meritocratic outcomes and
prevents rankings from freezing.
1. Introduction
Modern advanced economies devote ever-increasing amounts
of resources to quantifying and ranking the performance
of individuals, companies and institutions. The rationale
underpinning this trend is that of meritocracy: ranking performance
encourages to strive to be at the top, generating a virtuous cycle
which rewards top performers and incentivizes others to improve.

Based on such rationale, both ‘white-collar’ [1,2] and ‘blue-
collar’ [3] workers in a variety of sectors are nowadays
monitored and ranked based on their productivity. In many
work environments, this meritocratic paradigm is often
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implemented through public relative performance feedback (PRF) [4], which entails disclosing workers’

productivity metrics in order to promote the diffusion of the practices adopted by top performers.
Adopted by a large number of US corporations [5], PRF has measurably led to improvements in
productivity in a variety of workplaces (e.g. hospitals [4]), and has led to temporary improvements in
test results when applied to students in schools [6].

On the other hand, experimental research suggests that PRF may lead to more nuanced outcomes
under certain incentive schemes. Studies have shown that PRF may backfire in situations where
participants are compensated under tournament-like incentives akin to schemes that are in place in
many firms, where the top-performing employees receive a bonus [7]. Indeed, the cognitive costs
associated with a change of strategy to adopt best practices often lead to further improvement for a
minority of already excellent performers, and to a deterioration in performance for the rest of the
population [8].

Similar contradictions also arise at the aggregate level of organizations. For example, the academic
performance of higher education institutions is now measured and ranked in a variety of ways based,
e.g., on the ability to attract funding, student output, awards received, graduate employment, etc. [9].
Although all these indicators individually contribute to the quality and prestige of academic
institutions, their aggregation into rankings has attracted considerable controversy and criticism as a
driver of homogenization in higher education, as universities become more responsive to changes in
the rankings themselves than to their broader social responsibilities [10,11].

In line with the above considerations, a growing body of literature suggests that the outcomes of
ranking processes do not necessarily reflect the true value of the individuals or organizations being
ranked [12]. Arguably, such a disconnect between value and ranking is the by-product of the
interaction between three main factors: imitation, serendipity and reactivity.

As mentioned above in relation to PRF, the imitation of ‘best practices’ adopted by successful
individuals can backfire and exacerbate inequalities in performance. In fact, the disconnect between
value and success is a typical emergent property of collective decision systems, where individual
decisions are not made independently [13,14]. Experimental studies have indeed demonstrated that
the very same people or items can achieve markedly different levels of success in a ranking in
situations where individuals can observe and imitate the choices made by others (e.g. [15] for a
seminal example in an artificial cultural market). In such situations, the compound imitation of
choices typically results in a very skewed visibility distribution, which in turn leads to a few
dominant ‘hits’ ultimately capturing most of the attention, as is systematically the case for e.g. movies
[16], web pages [17] and even scientific papers [18].

At the same time, serendipity is known to play an exceedingly important—yet often underplayed—
role in determining success. Serendipity refers to positive developments of events that occur in an
unplanned manner. Notable examples of serendipity are scientific discoveries that have occurred in
fortuitous ways, such as those of penicillin and X-rays. A number of studies have highlighted how
random events can lead to the aforementioned disconnect between an individual’s value (e.g. skills
and intelligence) and her level of success. For example, a recent simulation-based study has shown
how short-term success in an artificial society is most often achieved by the luckiest individuals rather
than the most talented ones [19], with real-world examples of similar dynamics having been found,
e.g. in financial markets [20,21], sports [22] and science [23].

In most cases, the tension between imitation and serendipity as different mechanisms to achieve
success in a ranking is driven by reactivity, which refers to changes in behaviour due to the awareness
of being observed (also referred to as the Hawthorne effect [24]). In this respect, quantifying and
ranking performance is a self-defeating process in situations where individuals can partially
manipulate the metrics according to which they are being ranked. This is encapsulated by the adage
known as Goodhart’s Law [25]: ‘when a measure becomes a target, it ceases to be a good measure’.
Examples of Goodhart’s Law in action abound in many contexts. For example, surgeons in the UK
reportedly try to avoid the most complex surgeries due to the introduction of public league tables
reporting success rates [26]. Similarly, school systems based on standardized testing are known to be
plagued by ‘teaching to the test’ practices, i.e. teachers devoting disproportionate amounts of time and
resources to subjects known to be frequently assessed in tests, preventing pupils from receiving a
broader education [27]. In recent years, academia has also been affected by similar practices due to the
constantly increasing emphasis being placed on citation-based bibliometric indicators to quantify the
impact of published research and rank researchers accordingly. Indeed, plenty of evidence relates such
practices to the empirically observed increase in self-citation rates [28,29] and exchange of citations
between co-authors [30].
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In contexts where individuals or institutions are ranked, reactivity provides a strong incentive to
imitate the actions of top performers. Yet, as mentioned above, this can easily backfire. So, what
should those lagging behind in a ranking do to climb closer to the top?

In the following, I propose a stylized model to contrast imitation and serendipity as competing
mechanisms in an artificial society whose agents are aware of being ranked based on their
performance, and try to climb the ranking by either imitating the past actions of better ranked agents,
or by trying their luck with the adoption of new actions that are presented to them at random. Within
this simplified setting, I will seek to determine whether the adoption of best practices from top
performers can always outperform luck, as one would intuitively expect. The model gives rise to a
rather rich dynamic, which unveils a negative feedback loop between the likelihood of climbing a
ranking and the attempt of doing so through the imitation of top performers. Indeed, I will show that
imitation is a largely self-defeating endeavour, which in most cases is vastly outperformed by serendipity.

The paper is organized as follows. In §2 I outline the model and provide some qualitative intuition on
its functioning and its main results. Section 3 is then devoted to outlining such results in detail, while §4
concludes the paper with a discussion on its implications.
c.open
sci.6:191255
2. The model
Let us consider N agents who repeatedly select which action to play among M possibilities. Each action
can in principle yield a pay-off up to a value πj∈ [0, 1] ( j = 1,…, M), but the agents’ ability to reap the
benefits of a particular action varies according to a matrix αij∈ [0, 1] (i = 1,…, N; j = 1,…, M) such that
the pay-off that agent i receives when adopting action j reads

Pij ¼ aijp j: (2:1)

In the following, and throughout the rest of the paper, I will assume both the πj’s and the αij’s to be
independent random variables drawn from a uniform distribution over [0, 1].

The pay-offs πj in the above definition capture the intrinsic potential profitability of the available
actions, whereas the factors αij capture the idiosyncrasies associated with the agents’ abilities to profit
from them due to e.g. different skill sets. For example, in an academic context the pay-offs πj would
quantify the overall potential for impact of a scientific field j, while αij would quantify the ability of a
specific researcher i to publish high-quality research in it.

Crucially, there can be situations such that Pij > Pik and πj < πk, i.e. cases in which an agent i is better off
playing an action that is associated with a lower potential pay-off, but still yields a higher individual pay-
off to her (if αij≫ αik). In the same analogy used above, this would represent a researcher i whose
individual potential is much better fulfilled in a less impactful field.

At the beginning of time (t = 0) each agent starts out by playing a randomly selected action, but at any
later time step (t = 1,…, T) has the opportunity to change action depending on the pay-off she has
received in the latest round. Let us denote as P(t)

ij the pay-off agent i has received by playing action j
at time t. Let us define the pay-offs an agent has accumulated over time as the agent’s utility. This reads

ui(t) ¼
Xt

t0¼0

P(t0)
ij ¼

Xt

t0¼0

aijt0p jt0 (2:2)

and depends on the set of actions {p j0 , p j1 , . . . , p jt } she has played at each round.
At each time step t, the agents are ranked based on the utility they have accumulated up to that point

(i.e. ui1 (t) � ui2 (t) � . . . � uiN (t)), and use such ranking in order to decide whether to change their current
action or not. Namely:

(1) at each time step t each agent keeps playing the same action with probability equal to the last pay-off
she has received, i.e. P(t�1)

ij ;
(2) if an agent changes action, then with probability q∈ [0, 1] she copies the time t− 1 action of a

randomly selected agent among those ranked better than her, while with probability 1− q she
picks a new action at random.

The model’s dynamic is sketched in figure 1. Point (1) above captures the agents’ quest for actions that are
profitable to themselves. Indeed, an agent will drop a potentially highly profitable action (p j & 1) with
high probability when her ability to benefit from it is low (αij≪ 1). Point (2) instead describes the
probabilistic selection process with which the agents choose new actions. This depends on one
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Figure 1. Sketch of the model. At the beginning of a time step, agent i is playing action j, which awards a pay-off πj. With
probability equal to the individual pay-off Pij = αijπj (see equation (2.1)), the agent keeps playing the same action, and with
probability 1− Pij switches to a new action, which is determined either via imitation or via serendipity. With probability q, the
agent adopts the action being played by a (randomly selected) better ranked agent, while with probability 1− q the agent
selects a new action at random.
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parameter q∈ [0, 1], which quantifies to what extent the agents pay attention to the ranking and choose to
imitate the actions of their most successful peers. When q is large, the majority of action changes will be
aimed at imitating the actions of the most successful agents. Conversely, when q is small most agents will
select a random action when switching to a new one.

Figure 2 provides some initial intuition of the results we can expect from the model. The panels
illustrate agent trajectories in the space of possible actions for simulations of the model with N = 200,
M = 1000, T = 500. The pay-offs πj and the matrix elements αij are independent and identically
distributed variables drawn from a uniform distribution over [0, 1]. From left to right, the panels
correspond to q = 0.1 (a model where the agents’ action selection process is largely random), q = 0.5
and q = 0.9 (a model where the agents’ selection process is largely driven by the imitation of better
ranked agents), respectively. The top (bottom) panels show the trajectories of the top (bottom) 10
agents according to the final ranking at time T.

As it can be seen from the top panels, higher values of q lead to much higher stability in terms of the
actions played by the highest ranked agents. Indeed, for q = 0.1 no particular pattern is clearly discernible,
as the agents keep switching actions and do so mostly at random. On the other hand, for q = 0.9 the top 10
agents quickly lock in on the same action, and essentially keep playing it with very few interruptions.
Furthermore, the ranking makes sure that such interruptions are short-lived, as top-ranked agents
only have a handful of peers to look up to in the ranking, and these are all playing the same action
most of the time.

The bottom panels show that the above effect trickles down all the way to the bottom of the ranking.
Indeed, it can be seen that for higher values of q even the lowest ranked agents tend to return to the action
played by the highest ranked ones, albeit in a much more noisy fashion. All in all, these examples begin
to highlight the presence of a clear feedback mechanism between the ranking and the level of attention
the agents pay to it when switching actions: the higher the value of q, the more frequently all agents will
turn to the ranking to make their decisions, regardless of their abilities. This mechanism dramatically
narrows the diversity of choices made by top-ranked agents, which in turn further narrows the
options of lower ranked agents when they turn to the ranking to decide which actions to adopt.

Before proceeding to detail the model’s results, it is important to acknowledge its main limitations. As
outlined above, the agents’ decision-making is based on two very simple rules, which mimic real-world
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Figure 2. From left to right panels show results of a single simulation run of the model for q = 0.1, q = 0.5 and q = 0.9,
respectively. Top (bottom) panels show the trajectories of the top (bottom) 10 agents based on the ranking at the final time
T = 500. The y-axis shows the numbers associated with the actions being adopted, which go from 1 to M = 1000 in no
particular order. As it can be seen, in the q = 0.5 simulation the top agents tend to lock in on action 186, while in the q = 0.9
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behaviour on an intuitive level but lack microfoundations. In addition, the model does not allow for
adaptive behaviour, in that the agents lack memory and therefore cannot learn from their past actions,
and the actions’ pay-offs remain constant, regardless of the number of agents playing them and their
position in the ranking. Therefore, the model is to be interpreted as a stylized representation of much
more complex dynamics. Nevertheless, as we will see in the following sections, the model’s strength
precisely lies in the simplicity of its assumptions, which allow to draw meaningful comparisons
between the model’s results and real-world outcomes.
3. Results
I will now turn to exploring the model’s results in greater detail. First, I will investigate how utility is
generated and distributed across the agents.
3.1. Utility and inequality
At any given time step we can define the total utility of the agents simply as U(t) ¼ PN

i¼1 ui(t), where the
utility of each agent is defined as per equation (2.2). Figure 3a shows the total utility U(T ) at the end of
simulations with N = 200, M = 1000, T = 500. As it can be seen, the total utility increases monotonically
with the parameter q up to q∼ 0.9, after which it declines slightly. At first glance, this would seem to
suggest that the agents are overall better off when changing actions based on the imitation of better
ranked individuals. Yet, the increase in total utility is not unequivocally positive.

Figure 3b shows the Gini coefficient for the distribution of the agents’ individual utility at the end
of simulations. A very well-known measure of inequality in a society, the Gini coefficient is usually
defined as

g(U(t)) ¼ 1
NU(t)

X

i,k

jui(t)� uk(t)j: (3:1)
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By construction, the Gini coefficient ranges from 0 for a perfectly equal society (ui(t) = uk(t), 8 i, k) to 1
for a completely unequal society where the entirety of the available utility is owned by a single agent
(ui(t) =U(t) and uk(t) = 0, 8 k = i). As shown in figure 3b, the Gini coefficient g(U(T )) at the end of
simulations increases monotonically with the parameter q, highlighting a steady increase in inequality.

The two above results together show that an increased attention towards the ranking drives towards
an overall increase in utility, although such utility gets increasingly concentrated in the hands of fewer
agents. In principle, this does not rule out that those at the bottom of the ranking might still be better
off in absolute terms, in which case higher inequality would be a more justifiable outcome. However,
figure 3c shows that the total utility accumulated by the bottom 10% of the population eventually
decreases for high values of q. Symmetrically, the total utility accumulated by the top 10% steadily
increases with q.

In summary, the results presented in this section show that when imitation becomes the prevalent
strategy, society as a whole becomes ‘richer’. Yet, this is entirely driven by a much faster accumulation
of utility in the higher layers of the ranking, whereas those at the bottom eventually accumulate less
utility than they would if their actions were chosen at random.
3.2. Meritocracy and homogenization
The results of the previous section show that when the agents pay more attention to the ranking, the
inequalities between them increase. Yet, such an outcome would surely look more acceptable if it
somehow reflected an underlying meritocratic dynamic, according to which the ‘best’ agents are those
who accumulate more utility. In order to verify whether this is indeed the case, I introduce two
measures of the agents’ intrinsic potential ability—which I refer to as fitness—based on the utility they
would be able to extract if they selected actions based on two predetermined strategies. The first one
is the average pay-off an agent would receive by playing all actions uniformly at random

f
avg
i ¼ 1

M

XM

j¼1

Pij ¼ 1
M

XM

j¼1

aijp j: (3:2)

It should be noted that the above does not correspond to the average pay-off an agent receives when
q = 0, as even in that case agents preferentially play profitable actions and therefore do not sample the
action space uniformly. The second fitness measure I consider is instead the highest pay-off an agent
can extract by playing her most profitable action, i.e.,

fmax
i ¼ Pij� , (3:3)

where j* is such that Pij* > Pij, 8j = j�:
The two above measures capture different aspects. The former considers agents with a more

diversified portfolio of skills as the fittest, whereas the latter singles out those agents who excel at one
specific action, regardless of their skills when playing other actions.
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Figure 4a shows the Kendall rank correlation coefficient [31] between the ranking of the agents in terms
of utility and the two above measures of fitness. The Kendall coefficient is defined in the range [− 1, 1], and
quantifies the similarity between two ranked lists of objects bymeasuring the fraction of concordant pairs in
the two lists (a pair is said to be concordant whenever e.g.favg

i . f
avg
k and ui > uk). Two observations can be

made. First, unless q is very low, utility systematically tends to correlatemorewith ϕmax thanwith ϕavg, i.e. as
soon as the ranking is relied upon to inform the agents’ decisions, then the agents who are rewarded the
most tend to be those excelling in a single action (typically one associated with some of the highest
pay-offs) rather than those who are consistently good at playing several actions.

Second, both correlations decrease with higher values of q. The correlation between utility and ϕavg

does so monotonically, whereas the correlation between utility and ϕmax decreases after reaching a
maximum value around q≈ 0.3. Such a decrease signals that the more the agents pay attention to the
ranking, the less such ranking reflects the actual agents’ skills, substantially reducing meritocracy.

The dynamics induced by the ranking also have consequences on society’s homogeneity in terms of
the number of actions played by the agents. Let us denote the fraction of actions being adopted across the
agent population at any given time as d(t) ¼ M�1 PM

j¼1 1(p j, t), where the indicator function is such that
1(πj, t) = 1 if at least one agent is playing action j at time t and 1(πj, t) = 0 otherwise. Clearly, we have
δ(t)∈ [1/M; min (1, N/M )], where the lower bound corresponds to all agents playing the same action,
while the upper bound is attained when each agent is playing a different action.

Figure 4b shows that homogeneity increases with q by reporting the average value of δ(T ), i.e. the
average fraction of actions being played at the end of a simulation. As it can be seen, when the
ranking plays no role in the agents’ decisions (q = 0), the agents already discard a very large fraction
of the available actions. Intuitively, this naturally happens through the agents’ random search for
higher pay-offs: once an agent randomly ‘stumbles upon’ a highly rewarding action, she will keep
playing it over multiple consecutive rounds with high probability. In contrast, with higher q the
agents will increasingly tend to imitate the choices of their better ranked peers, ultimately shrinking
the space of adopted actions to its bare minimum when q→ 1.
3.3. Ranking dynamics
How stable are the rankings produced by the model? In this section I address this question by studying
changes in the agents’ ranking position. Namely, I consider the fraction mi(t) of agents occupying a lower
position than a certain agent i in the ranking at a given time t, i.e.

mi(t) ¼ 1
N � 1

X

j=i

Q(ui(t)� u j(t)), (3:4)

where Θ( · ) denotes Heaviside’s step function (i.e. Θ(x) = 1 for x > 0, and Θ(x) = 0 otherwise), and quantify
agent i’s change in ranking position over a time interval as Δmi (t, t + Δt) =mi(t + Δt)−mi(t) [32].
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The panels in figure 5 show the time evolution of the above quantity averaged over different
simulations with N = 200 and M = 1000. In all four panels, changes in the ranking position as defined
in equation (3.4) are computed over time lags of Δt = 100 time steps, and the different panels refer to
snapshots taken at time steps t = 100, 200, 300, 400. The solid lines represent averages, whereas the
shaded regions represent 90% confidence level intervals, and each panel shows the results obtained
for q = 0.1 and q = 0.9.

As it can be seen, at the beginning of its time evolution the ranking changes substantially, regardless
of the agents’ preferences when switching actions. Indeed, the downward trend in the top-left panel of
figure 5 shows that agents that happen to start at the top of the ranking typically lose ground during
early stages of the model’s dynamics, whereas agents initially at the bottom tend to climb up.
However, as the dynamics continue the agents’ preferences become increasingly important, leading to
very different outcomes.

When random choices are prevalent (q = 0.1), the model still allows for considerable changes in
the ranking in the long run. On average, the position of most agents in the ranking does not
change dramatically, and agents at the top rapidly consolidate their position, but large fluctuations
still take place in the central and bottom parts of the ranking, allowing agents with less utility to
climb up. Conversely, when the agents mostly imitate better ranked agents (q = 0.9), the ranking
essentially freezes.

The above result highlights once more the negative feedback between rankings and active efforts to
climb them based on the imitation of actions adopted by those at the top. Once the model has produced
some early ‘winners’, they will keep their position at the top of the ranking, and any effort made by lower
ranked agents to beat them through imitation will only backfire. The only mitigation to this outcome is
serendipity (low q), i.e. a random search for more profitable actions, which prevents lower ranked agents
from becoming perpetual ‘losers’.

As a final remark, it should be noted that all of the above results are robust with respect to changes in
the model’s parameter specifications. That is, the model’s behaviour as a function of q is qualitatively
unaffected by changes in the values of N and M.
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4. Discussion

This paper puts forward a stylized framework to model the emergence of a divide between the fitness of
an agent and her position in a ranking according to a measure of performance. This is done by
simultaneously accounting for three well-documented mechanisms. First, the agents’ attempts at
climbing the ranking account for reactivity, i.e. the awareness of being observed and changing
behaviour accordingly. Second, the imitation of ‘best practices’ and most successful strategies is
encoded in the agents’ imitation of the actions adopted by top-ranked peers. Third, serendipity
partially determines the agents’ chances when they search for more profitable actions.

The combination of the three above factors gives rise to a fairly rich phenomenology, which
allows to study the trade-off between imitation and serendipity as different strategies to climb a
ranking. In a nutshell, such a trade-off can be summarized as follows. Attempting to climb a ranking
by imitating the actions of those at the top is a self-defeating strategy that further consolidates the
early advantage of a few lucky—and not necessarily talented—winners. Attempts based on
serendipity, i.e. on a random search for more profitable actions, have instead a mitigating effect on
these outcomes.

A number of considerations can be made on the above. First, it is interesting to notice how the model
highlights the existence of a negative feedback loop between the attempt to ‘enforce’ meritocracy by
means of a ranking process and the actual possibility of achieving it. The model’s dynamic is such
that it always creates some lucky winners, i.e. those agents who happen to stumble on a profitable
action early on in the model’s time evolution and keep playing it over several rounds with high
probability. As shown in figure 4a, this is a general feature of the model, as there is always a weakly
positive correlation between the success achieved by the agents and their overall fitness (echoing the
findings of [19]). Yet, when decisions are largely driven by the ranking, most agents will seek to
imitate the actions of the early lucky winners, with the only result of widening inequality (figure 3)
and ultimately reducing their own chances of climbing the ranking (figure 5).

In this respect, it is interesting to observe that serendipity plays the role of a double-edged sword in
the model. On the one hand, it hampers meritocracy by endowing a lucky minority of agents with an
early—yet permanent—competitive advantage. On the other hand, when the parameter q is low, it
partially restores meritocracy by favouring upward mobility in the ranking and a higher correlation
between fitness and ranking outcomes. Put differently, luck will always generate some disconnect
between intrinsic skills and measured performance, but attempts to overcome this by means of a
ranking process will typically make things worse for those lagging behind.

From the perspective of society as a whole, the attention paid to rankings has a number of effects. As
already mentioned, when the agents seek to climb the ranking through the imitation of others, they
ultimately generate higher inequality, lower meritocracy and reduced chances of climbing a ranking
(see [33] for similar findings in the context of financial wealth accumulation). Furthermore, the
imitation mechanism drastically reduces the diversity of the actions played by the agents, resulting in
an almost complete homogenization of society (figure 4b). Interestingly, this echoes evidence from
financial markets, where analysts often prefer to imitate each other’s forecasts rather than
independently coming up with their own [34].

Finally, what lessons can be learned from the above model in the context of academic research and
higher education? At the level of individual researchers, the model’s results are in line with empirical
evidence from publication data, which reveals that the first papers in a novel field—regardless of their
content—often tend to attract citations at a higher rate than the papers following them [35]. In this
respect, quoting [35], ‘the scientist who wants to become famous is better off—by a wide margin—
writing a modest paper in next year’s hottest field than an outstanding paper in this year’s’.
Paraphrasing this in the context of the model, those who aim to become top-cited scientists in their
field have much better chances of doing it by serendipitously pursuing their own research agendas
rather than by imitating those of already well-established scientists.

At the broader level of institutions, instead, the model sheds some light on the causes of the increased
homogenization of the higher education landscape, which indeed has been often associated with the
ever-increasing emphasis placed on university rankings [10,11]. As shown in figure 4b, the more the
agents’ decisions are driven by the imitation of their top-ranked peers, the less the space of possible
actions is explored, and all agents end up playing just a handful of actions, regardless of their
profitability.

In this respect, as a data-rich and ranking-driven environment, academia represents the ideal
laboratory in which to test the model’s predictions in future work. Indeed, the analysis of citation
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data easily allows to quantify the similarity of research outputs [36] and to follow individual career

trajectories across a discipline’s research space (e.g. [37]). These basic ingredients would allow to
compare the impact achieved by ‘trend-followers’ who actively seek to publish in mainstream fields as
opposed to serendipitous researchers who mostly follow their interests. Similarly, aggregating such
data would allow to quantify the performance of academic institutions in relation to their strategic
behaviour.

In conclusion, this paper puts forward a framework to model the interplay between imitation and
serendipity in situations where individuals or organizations are ranked (and aware of being ranked)
based on some quantitative metric of performance. As mentioned above, the model is a deliberately
stylized representation of the real-world dynamics of such situations and clearly has a number of
limitations, which extensions of the present work will seek to overcome. Most importantly, future
extensions will allow the agents to retain some memory of their previous choices and to learn from
them, in order to adapt their preferences for imitation or serendipity accordingly. Also, it should be
noted that the model’s dynamics would not lead to significant changes if studied on a network of
interactions (as opposed to the well-mixed population case considered here), due to the fact that the
imitation of actions would be able to diffuse throughout it regardless of its specific topology. In this
respect, future extensions of the model should make it more consistent with the available evidence
that network structures alone can determine ranking outcomes [38].

Nevertheless, the model’s strength lies precisely in the clarity and simplicity of the assumptions
made, and in the fact that these are enough to generate rich dynamics which qualitatively resemble
real-world observations. Hopefully the model presented in this paper will contribute to reflect on the
importance that we collectively place on rankings, and on the unintended consequences they may
have on our societies.
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