Inter-channel Interference in Non-linear Frequency-division Multiplexed Networks on Fibre Links with Lumped Amplification

Xianhe Yangzhang, Domaniç Lavery and Polina Bayvel

University College London, Torrington Place, London WC1E 7JE, United Kingdom

There has been some interest in the Non-linear Frequency-Division Multiplexing (NFDM) in optical fibre communication systems, because it promises interference-free or weak-interference between channels in an optical routed network [1]. NFDM scheme uses Non-linear Fourier Transform (NFT) to bring a time-domain signal into the non-linear frequency domain (NFD), where the spectra evolve in a linear manner during signal propagation in the fibre channel. The successful application of NFT relies heavily on the "channel's integrability" that is only fulfilled by an ideal distribution-Raman amplification. However, most of the optical fibre links are amplified by Erbium-doped fibre amplifiers (EDFAs). The impact of the non-integrability in NFDM networks is unclear. In such a network, one key device is the Non-linear Add-drop Multiplexer (NADM) that adds or drops channels in the NFD [2]. Simulating such device that processes many channels simultaneously is still difficult due to a high complexity and inaccuracy of the current INFT-NFT algorithm. To get around this difficulty, we adopt a different approach to estimate the inter-channel interference (ICI) in NFDM networks.

The optical fibre channel model of concern is a multi-span dual-polarisation (DP) dispersion unmanaged fibre link, which can be described by the Manakov equation as in (1)

$$\frac{\partial \vec{Q}}{\partial z} + \frac{\alpha}{2}\vec{Q} + \frac{j\beta_2}{2}\frac{\partial^2 \vec{Q}}{\partial t^2} - j\frac{8}{9}\gamma\vec{Q} \left\|\vec{Q}\right\|^2 = 0, \quad (1) \quad \frac{\partial \vec{Q}_{pa}}{\partial z} + \frac{j\beta_2}{2}\frac{\partial^2 \vec{Q}_{pa}}{\partial t^2} - j\frac{8}{9}\gamma_a\vec{Q}_{pa} \left\|\vec{Q}_{pa}\right\|^2 = 0. \quad (2)$$

where $\vec{Q}(t,z) = [Q_1(t,z) Q_2(t,z)]$ is the complex envelope of the DP-signal as a function of time t and distance z along the fibre. Other parameters are listed in the table in Fig. 1. To apply NFT, we approximate (1) with the socalled path-averaged Manakov equation as written in (2), where $\gamma_a = \gamma(1 - e^{-\alpha L_{sp}})/(\alpha L_{sp})$. After each EDFA at $z = ML_{sp}, M = 1, 2, ..., N_{sp}, \vec{Q_{pa}}(t,z)$ approximates $\vec{Q}(t,z)$ with small error. We first clarify the concepts of different digital back-propagation (DBP) schemes, as DBP is the main tool in our estimation. The single-channel DBP (SC-DBP) refers to the process of filtering the channel of interest (COI) and solving (1) to recover $\vec{Q}(0,t)$ (input) from the filtered boundary condition $\vec{Q}(z,t)$ (output), using SSFM with fine step size (0.1 km). The EDFAs are replaced with attenuators of the opposite gain. The path-averaged DBP (PA-DBP) refers to the process of solving (2) to recover $\vec{Q}(0,t)$ from the boundary condition $\vec{Q}(z,t)$, using SSFM with fine step size (0.1 km). We compare two *noiseless* Wavelength-Division Multiplexed (WDM) systems illustrated in Fig. 1(a)(b) using DP 32-QAM Nyquist signal of 50 GHz bandwidth with equalisation: 1) full-band PA-DBP followed by matched filter, 2) matched filter followed by SC-DBP. In single-channel scenario, if viewed as a equalisation scheme, the combination of NFT, back-rotation in the NFD, and INFT is somewhat equivalent to the PA-DBP. Therefore, we consider the residual distortion in the system of Fig. 1(a) as a rough estimate of the ICI in NFDM networks.

Fig. 1. (a)(b) Simulation diagram of noiseless non-integrable models. MF for matched filter. (c) Residual distortion of SC-DBP (In the legend preceded by total bandwidth and followed by number of channels) and PA-DBP systems.

The estimated ICI in NFDM is weaker than ICI in WDM with SC-DBP when N_{ch} is larger than 25.

References

- 1. M. I. Yousefi et al., "Linear and nonlinear frequency-division multiplexing," in ECOC, Sept 2016.
- 2. M. I. Yousefi et al., "Linear and nonlinear frequency-division multiplexing," arXiv:1603.04389v3, May 2016.