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Abstract 28 

We generated parietal cortex RNA-seq data from individuals with and without Alzheimer disease (AD; 29 
ncontrol = 13; nAD = 83) from the Knight ADRC. Using this and an independent (MSBB) AD RNA-seq dataset, 30 
we quantified cortical circular RNA (circRNA) expression in the context of AD. We identified significant 31 
associations between circRNA expression and AD diagnosis, clinical dementia severity, and 32 
neuropathological severity. We demonstrated that a majority of circRNA AD-associations are 33 
independent from changes in cognate linear mRNA expression or brain cell-type proportions. We found 34 
evidence for circRNA expression changes occurring early in pre-symptomatic AD, as well as in autosomal 35 
dominant AD. We also observed AD-associated circRNAs to co-express with known AD genes. Finally, we 36 
identified potential microRNA binding sites in AD-associated circRNAs for microRNAs that are predicted 37 
to target AD genes. Together, these results highlight the importance of analyzing non-linear RNAs and 38 
support future studies exploring the potential roles of circRNAs in AD pathogenesis.  39 
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Circular RNAs (circRNAs) are a class of RNAs that result from backsplicing events, in which the 3’ ends of 41 
transcripts are covalently spliced with the 5’ ends thereby forming continuous loops1,2. As RNA 42 
sequencing has become widespread, thousands of circRNAs have been identified across eukaryotes3–8. 43 
These studies have found circRNAs to be are highly expressed in the nervous system and enriched in 44 
synapses3,4,8–10. In the brain, circRNA expression can occur independently of linear transcript expression8, 45 
and may be a gene’s most highly expressed isoform3,8,10,11. Brain circRNAs are also regulated during 46 
development5,10,12 and in response to neuronal excitation8. CircRNAs accumulate in aging mouse4 and 47 
fly3 brains, possibly due to their lack of free hydroxyl ends conferring resistance to exonucleases. Much 48 
is still unknown regarding circRNA biology; for example, it was only recently demonstrated that circRNAs 49 
can be translated in vivo13,14. Thus far, the most well-established role of circRNAs is in microRNA (miRNA) 50 
regulation via sequestration15, leading to loss of function. 51 

Alzheimer disease (AD) is a progressive, neurodegenerative disorder and the most common cause of 52 
dementia, affecting millions worldwide16. AD is neuropathologically characterized by the accumulation 53 
of amyloid beta plaques and tau inclusions17,18 as well as widespread neuronal atrophy which results in 54 
dramatic cognitive impairment. Unfortunately, no effective preventative, palliative, or curative therapies 55 
currently exist for AD. 56 

Previous studies investigating linear transcriptomic (mainly mRNA) differences in the context of AD have 57 
yielded insight into the pathogenic mechanisms underlying this disease as well as potential therapeutic 58 
targets19–22. Similar analyses for circRNAs remain outstanding, although a single circRNA that regulates 59 
specific microRNAs and synaptic function23 – CDR1-AS – has been reported to be downregulated in AD 60 
brains24. Here, we conduct a circular transcriptome-wide analysis of circRNA differential expression in 61 
AD cases and their correlation with clinical and neuropathological AD severity measures. 62 

RESULTS 63 

Study Design  64 

Our study design included calling and quantifying circRNA counts in two independent RNA-seq datasets 65 
derived from neuropathologically-confirmed17,25 AD case and control brain tissues. In our discovery 66 
dataset, we generated 150nt paired-end, rRNA depleted, RNA-sequencing (RNA-seq) data from frozen 67 
parietal cortex tissue donated by 96 individuals (13 controls and 83 AD cases). These individuals were 68 
assessed at the Knight Alzheimer Disease Research Center (Knight ADRC) at Washington University 69 
School of Medicine and their demographic, clinical severity, and neuropathological information is 70 
presented in Supplementary Table 1. For replication, we leveraged an independent, publicly-available 71 
Advanced Medicine Partnership for AD: Mount Sinai Brain Bank (MSBB) dataset (syn3157743)26. In brief, 72 
the MSBB dataset includes 100nt single-end rRNA-depleted RNA-seq data derived from 195 samples (40 73 
controls, 89 definite AD, 31 probable AD, and 35 possible AD) of inferior frontal gyrus tissue (Brodmann 74 
area (BM) 44) as well as data derived from three additional cortical regions (frontal pole (BM10), 75 
superior temporal gyrus (BM22), and parahippocampal gyrus (BM36)). Demographic, clinical severity, 76 
and neuropathological information for all individuals in the MSBB dataset, separated by cortical region, 77 
is presented in Supplementary Tables 2-5.  78 
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We used STAR software27 in chimeric read detection mode to align the reads from both RNA-seq 79 
datasets to the GENCODE28 annotated human reference genome (GRCh38). Chimeric reads were further 80 
processed and filtered using DCC software29 to identify backsplice junctions. Finally, we collapsed 81 
backsplice junction counts onto their linear gene of origin to generate a set of high-confidence circRNA 82 
counts for downstream analyses (ONLINE METHODS). Using this pipeline, we called 3,547 circRNAs in 83 
the discovery dataset and an average of 3,924 circRNAs in the four regions of the replication dataset 84 
(Supplementary Table 6). We focused replication analyses primarily on the BM44-derived data, as we 85 
observed the largest overlap between the circRNAs called in this region and the parietal dataset 86 
(Supplementary Figure 1), though analyses in the other cortical regions yielded similar results.  87 

We performed circRNA differential expression analyses for neuropathological AD case-control status as 88 
well as correlation with AD quantitative traits: Braak score and clinical dementia rating at 89 
expiration/death (CDR) using DESeq2 software30. Braak score is a neuropathological measure of AD 90 
severity determined by the number and distribution of neurofibrillary tau tangles throughout the 91 
brain18. Braak scores range from 0 (absent, at most incidental tau tangles) to 6 (severe, extensive tau 92 
tangles in neocortical areas). CDR is a clinical measure of cognitive impairment with a range from 0 (no 93 
dementia) to 3 (severe dementia)31. These quantitative measures capture different aspects of the 94 
pathological mechanisms underlying AD and consequently are not perfectly correlated with each other 95 
nor AD case status (Supplementary Figure 2). Thus, we analyzed each trait separately, modeling the 96 
ordinal measures as continuous variables. We adjusted all analyses for post mortem interval (PMI), RNA 97 
quality as measured by median transcript integrity number (TIN)32, age at death (AOD), batch, sex, and 98 
genetic ancestry as represented by the first two principal components derived from genetic data 99 
(ONLINE METHODS). We extended our circRNA analyses to pre-symptomatic and autosomal dominant 100 
AD (Supplementary Tables 1-5) to investigate if circRNA expression changes occurred before symptom 101 
onset and whether these changes were restricted to sporadic AD. Finally, we investigated the AD-102 
relevance and potential disease-influencing mechanisms of AD-associated circRNAs through relative 103 
importance, network co-expression, and microRNA binding site prediction analyses. 104 

 105 

Discovery analysis to identify AD differentially expressed circRNAs 106 

In the circular-transcriptome-wide discovery analysis (nCDR = 96, nBraak = 86, ncontrol = 13, nAD = 83), we 107 
identified 31 circRNAs significantly correlated with CDR passing a false discovery rate (FDR) of 0.05 108 
(Supplementary Table 7). The most significantly correlated circRNA, was circHOMER1 (log2 fold change: -109 
0.28 per unit of CDR, p-value: 8.22×10-12). circCDR1-AS (log2 fold change: 0.17 per unit of CDR, p-value: 110 
3.18 × 10-02) was only nominally correlated with CDR, but, in contrast to the previous report24, we 111 
observed its expression to be upregulated with increasing dementia severity. 112 

We also identified circRNAs significantly associated with the two other complementary AD traits: Braak 113 
score (nine circRNAs passed FDR, Supplementary Table 8) and neuropathological AD versus control 114 
status (nine circRNAs passed FDR; Supplementary Table 9). These analyses yielded both AD trait-specific 115 
associations as well as circRNAs that were consistently associated across all AD traits investigated. Three 116 
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circRNAs passed FDR correction for all three analyses. For example, in addition to the CDR-association, 117 
circHOMER1 was also significantly associated with Braak score (p-value: 1.19×10-07) and AD versus 118 
control status (p-value: 2.76×10-06). In general, circRNAs associated with one AD trait were also, at least, 119 
nominally associated (p-value < 0.05) with the remaining two traits. We validated our RNA-seq findings 120 
for five circRNAs using an orthogonal qPCR approach with 13 discovery dataset RNA samples (ncontrol = 3, 121 
nPreSympAD = 3, nAD = 7). We demonstrate a strong correlation between RNA-seq-derived counts for the 122 
five circRNA transcripts and the GAPDH-normalized deltaCt values (median absolute correlation: 0.64, 123 
Supplementary Figure 3). Importantly, we also observe consistent direction of effect, thereby validating 124 
our RNA-seq results (Supplementary Figure 3). Altogether, we identified 37 circRNAs in the discovery 125 
analysis of the parietal cortex dataset that were significantly associated with at least one AD trait 126 
(Supplementary Figure 4).  127 

 128 

Replication and meta-analysis of circRNA differential expression using an independent AD dataset  129 

We performed replication analyses in the MSBB BM44 dataset (nCDR = 195, nBraak = 188, ncontrol = 40, nDefinite 130 
AD = 89).  Twenty-seven of the 31 circRNAs that were correlated with CDR in the discovery dataset also 131 
showed, at minimum, a nominal p-value, with the same directions of effect and comparable effect sizes 132 
(effect size Pearson correlation: 0.97, p-value: 1.69×10-17, Supplementary Table 10). For example, we 133 
replicated decreasing circHOMER1 expression with increasing dementia severity (log2 fold change:     -134 
0.13 per unit of CDR, p-value: 2.27×10-09). A meta-analysis of the discovery and replication results 135 
revealed a total of 148 circRNAs that were significantly correlated with CDR after FDR correction 136 
(Supplementary Table 11), with 33 passing the stringent gene-based, Bonferroni multiple test correction 137 
of 5×10-06 (Table 1), including cirHOMER1 (p-value: 2.21×10-18) and circCDR1-AS (p-value: 2.83×10-08). 138 

Similarly, five of the nine circRNAs that were correlated with Braak score in the discovery dataset 139 
replicated in the MSBB dataset (effect size Pearson correlation: 0.99, p-value: 9.29×10-06, Supplementary 140 
Table 12). A total of 33 circRNAs were significantly associated with Braak score after FDR correction in 141 
the meta-analysis (Supplementary Table 13). Finally, five of nine circRNAs associated with AD case-142 
control status replicated in the MSBB dataset (effect size Pearson correlation: 0.99, p-value: 6.12×10-05, 143 
Supplementary Table 14) and 75 circRNAs associated with AD case-control status after FDR correction 144 
(Supplementary Table 15) in the meta-analysis.  145 

Overall, we identified 164 circRNAs that were significantly associated with at least one AD trait in the 146 
meta-analyses (Figure 1). Twenty-eight of these circRNAs, including circHOMER1 and circCORO1C, were 147 
significantly associated with all three traits investigated (Supplementary Figure 5). Nine cross-trait 148 
circRNA-associations had p-values passing the gene-based stringent threshold of 5×10-06 (Table 1).  149 
Altogether, these results support a consistent, replicable, and highly significant association between 150 
changes in circRNA expression and AD traits.  151 

 152 
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AD-associated changes in circRNA expression demonstrate independence from AD-associated changes 153 
in their cognate linear mRNAs and AD-associated changes in estimated brain cell-type proportions.  154 

Circular and their cognate linear mRNAs can demonstrate independent expression8, but some level of 155 
correlation is expected given the shared genomic origin and biogenesis machinery. This correlation is 156 
also technically biased because the majority of RNA-seq reads covering a circRNA transcript will not 157 
contain the circRNA-defining backsplice junction and thus be incorrectly counted as originating from a 158 
linear mRNA rather than a circRNA transcript. For example, linear forms of circCDR1-AS are expressed at 159 
such low levels33 that they have been historically undetectable23,33. However, we observe ‘linear’ CDR1-160 
AS counts in our linear mRNA quantification, consistent with the technical bias. This artifact is expected 161 
to bias circRNA AD-associations to the null when the relatively less abundant circRNAs are included 162 
together in the same regression models as their cognate linear mRNAs. Nevertheless, we demonstrate 163 
that a majority of CDR-associated changes in circRNA expression are independent from CDR-associated 164 
changes in their cognate linear mRNAs using this regression-based approach.  165 

In the meta-analysis of the discovery and replication linear and circRNA combined regression results, we 166 
observe that 109 of 146 circRNAs retain a significant association (p-value < 0.05, Supplementary Table 167 
16) with CDR, for example circHOMER1 (p-value: 3.11×10-06) or circDOCK1 (p-value: 1.65×10-05), 168 
demonstrating an independent association. In addition, 62 CDR-associated circRNAs had association p-169 
values less than the association p-values of their cognate linear mRNA and 78 CDR-associated circRNAs 170 
explained as much or more of the variation in CDR compared to their cognate linear mRNAs 171 
(Supplementary Table 16). In a separate analysis, we employ the same regression-based approach to 172 
demonstrate that most (106 of 148, Supplementary Table 17) CDR-associated circRNAs - for example 173 
circHOMER1 (p-value: 8.15×10-13) or circDOCK1 (p-value: 1.03×10-05) - are similarly independent of AD-174 
associated neuronal and other estimated brain cell-type proportion changes34 (Supplementary Results). 175 
Together, these results demonstrate that the majority of AD-circRNA associations are independent of 176 
AD-associated changes in linear mRNA or brain cell-type proportions.  177 

 178 

AD-associated changes in circRNA expression are consistent across cortical regions  179 

The MSBB dataset also includes RNA-seq data derived from three additional brain cortical regions: BM10 180 
(Supplementary Table 2), BM22 (Supplementary Table 3), and BM36 (Supplementary Table 4). To 181 
determine if AD-associated changes in circRNA expression were consistent across the cortex, we 182 
performed circular-transcriptome-wide analyses in these additional datasets. As before, we investigated 183 
for circRNA correlation with CDR (Supplementary Tables 18-20) and Braak score (Supplementary Tables 184 
21-23), and association with AD case-control status (Supplementary Tables 24-26). We performed three 185 
sets of meta-analyses with the parietal discovery results, one for each of the additional cortical regions: 186 
BM10 (Supplementary Tables 27-29), BM22 (Supplementary Tables 30-32), and BM36 (Supplementary 187 
Tables 33-35). We then compared these results with the BM44 meta-analysis results to identify 188 
consistent AD-associated circRNA expression changes.  189 
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We identified 23 circRNAs that were significantly associated with CDR in all four meta-analyses, with 190 
comparable effect sizes and the same directions of effect (overlap p-value: 1.60×10-94, Supplementary 191 
Figure 6A). Similarly, we identified 14 circRNAs that were significantly associated with Braak score 192 
(overlap p-value: 1.38×10-70, Supplementary Figure 6B) and five that were significantly associated with 193 
AD case status (overlap p-value: 3.90×10-26, Supplementary Figure 6C) with consistent directions of 194 
effect in all four meta-analyses. Three circRNAs: circHOMER1, circKCNN2, and circMAN2A1, were 195 
significantly associated with all three AD traits in all four meta-analyses. Eleven circRNAs were 196 
associated with the two quantitative AD traits in all four meta-analyses: circDGKB, circDNAJC6, 197 
circDOCK1, circERBIN, circFMN1, circHOMER1, circKCNN2, circMAN2A1, circMAP7, circSLAIN1, and 198 
circST18. 199 

The MSBB dataset includes an additional measure of neuropathological severity, mean number of 200 
amyloid plaques. Results for circRNA correlation with mean number of plaques were consistent with the 201 
other traits in all MSBB cortical regions (Supplementary Tables 36-39, Supplementary Figure 7 and 202 
Supplementary Results). Together, these results suggest that expression changes in some circRNAs are a 203 
consistent phenomenon across cortical regions in the context of AD.  204 

 205 

Evidence supporting circRNA differential expression in pre-symptomatic AD   206 

We investigated for early AD-related changes in circRNA expression in a small number (nDiscovery = 6 and 207 
nReplication = 6) of individuals with pre-symptomatic AD – i.e., neuropathological evidence of AD but, at 208 
most, very mild dementia (CDR <= 0.5). 209 

We first compared circRNA expression between pre-symptomatic AD (PreSympAD) versus controls 210 
(control nDiscovery = 13, control nReplication = 40) in each dataset individually, but failed to detect significant 211 
circRNA differential expression. Nevertheless, we did identify several nominal associations with 212 
directions and magnitudes of effect (log2 fold change) consistent with those observed in complementary 213 
analyses identifying circRNA differential expression between symptomatic (CDR >= 1) individuals with 214 
AD neuropathology (SympAD) versus controls in the BM44 dataset (nSympAD = 137 Supplementary Tables 215 
40), but not in the smaller parietal dataset (nSympAD = 77, Supplementary Table 41). 216 

These results suggested that changes in circRNA expression occur in PreSympAD, but we had too few 217 
individuals to detect this on a transcriptome-wide basis. If this hypothesis is correct, then the effect size 218 
correlation between nominally PreSympAD-associated circRNAs and significantly SympAD-associated 219 
circRNAs should be stronger for the SympAD-associated circRNAs compared to the background, non-220 
SympAD-associated circRNAs. Thus we generated bootstrapped confidence intervals35 for the Pearson 221 
correlation between effect sizes.  222 

We observed that the bootstrapped effect size correlation coefficient distribution for the SympAD-223 
associated circRNAs was significantly higher than the background distribution in both the parietal 224 
discovery (14 SympAD-associated circRNAs, effect size correlation: 0.67 [0.43, 0.90] versus 713 225 
background circRNAs, effect size correlation: 0.21 [0.14, 0.29], p-value: < 2.2×10-16; Figure 2) and the 226 



8 
 

BM44 replication (100 SympAD-associated circRNAs, effect size correlation: 0.78 [0.68, 0.85] versus 227 
1544 background circRNAs, effect size correlation: 0.36 [0.31, 0.41], p-value < 2.2×10-16) datasets 228 
(Supplementary Table 42).  229 

When we extended these analyses to the three other cortical regions of the MSBB dataset 230 
(Supplementary Tables 43-45), we also observed evidence for pre-symptomatic changes in circRNA 231 
expression (Supplementary Table 42, p-values: < 2.2×10-16). The SympAD-associated circRNA effect size 232 
correlation distribution width varied by cortical region (Supplementary Table 42): BM44 ~ BM36 < BM22 233 
< parietal cortex < BM10, in a sequence reminiscent of the observed spatiotemporal progression of AD 234 
pathology within the cortex18,36. Together, these results support early changes in circRNA expression in 235 
multiple cortical regions in PreSympAD. 236 

 237 

Changes in circRNA expression are more severe in individuals with autosomal dominant AD  238 

Autosomal dominant AD (ADAD) is an early-onset form of AD caused by pathogenic mutations in APP, 239 
PSEN1, or PSEN237. We investigated whether changes in circRNA expression also occur in the context of 240 
ADAD by generating parietal cortex-derived RNA-seq data from 21 brains donated by individuals with 241 
ADAD who were enrolled in the Dominantly Inherited Alzheimer Network (DIAN) study. ADAD 242 
participant demographic, clinical, and neuropathological data is presented in Supplementary Table 1. 243 
We generated the ADAD RNA-seq data at the same time as the discovery RNA-seq data and called and 244 
filtered circRNAs in both datasets simultaneously.  245 

In a circular-transcriptome-wide analysis of circRNA differential expression between ADAD (n=21) and 246 
discovery dataset controls (n=13), we identified 236 ADAD-associated circRNAs that were significant 247 
under the FDR threshold (Supplementary Table 46). These included almost all (8/9) AD case-control 248 
status-associated circRNAs identified in the discovery analysis, with consistent direction of effect 249 
(Supplementary Figure 8). However, the magnitudes of effect were greater in the ADAD versus control 250 
analysis (e.g. circHOMER1: AD versus control, log2 fold-change: -0.64; ADAD versus control log2 fold-251 
change: -0.95). 252 

To investigate whether the larger effect size was due to the greater pathological severity in the ADAD 253 
brains (Supplementary Table 1), we performed a Braak score-adjusted circRNA differential expression 254 
analysis between ADAD and discovery dataset AD (samples with available Braak score: nADAD = 17, nAD = 255 
73). We identified 77 significantly differentially expressed circRNAs (Supplementary Table 47) and 59/77 256 
of these were identified in the ADAD versus controls analysis (Supplementary Figure 8). As before, these 257 
59 differentially expressed circRNAs had consistent directions of effect, and the majority (56/59) had 258 
greater magnitudes of effect when comparing controls versus AD versus ADAD. Altogether, these results 259 
demonstrate that changes in circRNA expression also occur in the context of ADAD and are more severe 260 
in magnitude, even when adjusting for neuropathological severity. 261 

 262 
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AD-associated circRNAs explain more of the variation in AD quantitative measures than number of 263 
APOE4 alleles or estimated neuronal proportion  264 

We performed relative importance analyses38 to assess the contribution of circRNA expression to the 265 
variation in AD quantitative traits: CDR and Braak score compared to two known contributors: number 266 
of APOE4 alleles (APOE4) – the most common genetic risk factor for AD16 – and the estimated 267 
proportion of neurons (EstNeuron)34.  268 

We selected the meta-analysis top 10 most significantly CDR-associated circRNAs for the proportion of 269 
variation explained analyses. In the discovery dataset (nCDR = 96), these circRNAs - included in the same 270 
multivariate model as APOE4 and EstNeuron – explained a total of 31.1% of the observed variation in 271 
CDR (Figure 3A and Supplementary Table 48). Our BM44 replication dataset (nCDR = 195) results with the 272 
same circRNAs were consistent, with the circRNAs explaining a total of 23.8% to the variation in CDR 273 
(Figure 3B, Supplementary Table 49). In both the discovery and replication datasets, we observed some 274 
circRNAs individually, and the top 10 circRNAs together, to explain more of the variation in CDR 275 
compared to APOE4 and EstNeuron (Figure 3A-B). We observed the same pattern when assessing the 276 
relative contribution of circRNAs to the observed variation in Braak score (Supplementary Figure 9 and 277 
Supplementary Tables 50-51) and when analyzing the other MSBB tissues for contribution of circRNAs to 278 
variation in CDR (Supplementary Tables 52-54), Braak score (Supplementary Tables 55-57), and mean 279 
number of plaques (Supplementary Tables 58-61 and Supplementary results). Finally, we also observed 280 
that circRNAs explain more of the variation in Braak score in individuals with ADAD than APOE4 and 281 
EstNeuron (Supplementary Table 62 and Supplementary Results).  282 

In addition to the proportion of variation analyses, we also compared the AD predictive ability of the 283 
same meta-analysis 10 most significant CDR-associated circRNAs to the AD predictive ability of baseline 284 
models that include number of APOE4 alleles and the differential expression covariates. Consistent with 285 
the relative importance analyses, we found that circRNAs alone provided similar or greater predictive 286 
value compared with the baseline genetic-demographic models, and even improved the predictive 287 
ability when combined with the baseline genetic-demographic data (Supplementary Table 63, 288 
Supplementary Figure 10, and Supplementary Results).  Altogether, these results demonstrate that 289 
circRNA expression is strongly associated with AD quantitative traits and contributes significantly to the 290 
variation in these AD severity measures.  291 

 292 

Differentially expressed circRNAs co-express with AD-relevant genes and pathways 293 

Analyzing circRNA co-expression with linear transcripts provides an opportunity to infer the biological 294 
and pathological relevance of circRNAs. We computed co-expression networks in the discovery parietal 295 
dataset (Supplementary Tables 64-65) as well as in each of the cortical regions of the MSBB dataset: 296 
BM10 (Supplementary Tables 66-67), BM22 (Supplementary Tables 68-69), BM36 (Supplementary 297 
Tables 70-71), and BM44 (Supplementary Tables 72-73) based on Spearman correlation using MEGENA 298 
software39. We further calculated the correlation between the eigengenes40 of these networks and CDR.  299 
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In the parietal dataset, we identified 49 hierarchical co-expression modules that were significantly 300 
correlated with CDR (Supplementary Table 64) and contained at least one AD-associated circRNA 301 
(Supplementary Table 65). Similarly, in the MSBB BM44 dataset, we identified 20 hierarchical co-302 
expression modules that significantly correlated with CDR (Supplementary Table 72) and contained at 303 
least one AD-associated circRNA (Supplementary Table 73). CircHOMER1 expressed in module c1_16 304 
(module correlation with CDR, p-value: 5.94×10-04) in the parietal dataset. This module included linear 305 
transcripts that are significantly enriched for AD pathways (KEGG Alzheimer’s Disease, 66/156 genes, 306 
adjusted p-value: 1.07×10-15) and oxidative phosphorylation-related genes (KEGG Oxidative 307 
Phosphorylation, 58/115 genes, adjusted p-value: 2.76×10-18). Similarly, the AD-associated circRNA, 308 
circCORO1C, co-expressed in BM44 dataset module c1_46 (module correlation with CDR, p-value: 309 
1.52×10-07), which also included the AD genes APP and SNCA (Figure 4). 310 

Our MEGENA results in the other cortical regions of the MSBB dataset were consistent with AD-311 
associated circRNAs co-expressing with AD-related genes and pathways. For example, we observed APP 312 
co-expressing with several AD-associated circRNAs (Supplementary Table 69) in the BM22 module c1_14 313 
(module correlation with CDR, p-value: 2.39×10-06). Altogether, these results suggest an important role 314 
for circRNAs in AD.  315 

 316 

AD-associated circRNAs contain binding sites for microRNAs that potentially regulate AD-associated 317 
pathways and genes.  318 

The functional consequences of circRNA expression is an area of active research. While recent studies 319 
have demonstrated that circRNAs can regulate transcription2 and even be translated13,14, their most 320 
well-characterized function is in miRNA regulation via sequestration2,15. For example, circCDR1-AS 321 
contains over 70 binding sites for miR-72,23 and reducing circCDR1-AS expression results in the 322 
downregulation of miR-7 target mRNAs2,5,15. However, even a single miRNA binding site on a circRNA 323 
appears sufficient to regulate miRNA function41. 324 

To identify miRNAs potentially regulated by AD-associated circRNAs, we utilized TargetScan70 325 
software42 to predict miRNA binding sites in circRNA sequences (Supplementary Tables 74-75). We 326 
replicated the previously reported finding of over 70 miR-7 predicted binding sites in the circCDR1-AS 327 
sequence (Supplementary Table 74) and predicted binding sites for several intriguing miRNAs in the 328 
other AD-associated circRNAs. CircATRNL1 contained 18 predicted binding sites for miR-136 329 
(Supplementary Tables 74-75), an miRNA whose increased expression triggers apoptosis in glioma 330 
cells43. circHOMER1 contained 5 predicted binding sites for miR-651 (Supplementary Tables 74-75), 331 
which is an miRNA predicted to target the AD-related genes PSEN1 and PSEN242. Finally, circCORO1C 332 
which we identified as co-expressing with the AD-related genes APP and SNCA (Supplementary Table 73) 333 
contains two predicted binding sites for miR-105 (Supplementary Table 74), which is an miRNA 334 
predicted to target APP and SNCA42. While these bioinformatics results require functional validation in 335 
future studies, they suggest that some AD-associated circRNAs may exert functional effects through 336 
miRNA regulation.  337 



11 
 

DISCUSSION 338 

Transcriptional regulation underlies the complexity of the human nervous system, and its misregulation 339 
can contribute to disease44. Indeed, several studies focused on the linear transcriptome have identified 340 
co-expression networks and changes in splicing associated with AD status19–22. Here, we provide insight 341 
into the AD-associated circular transcriptome.  342 

Using two large and independent brain-derived RNA-seq datasets, we establish that changes in specific 343 
circRNAs are a replicable and highly significant phenomenon in AD. We demonstrate that circRNA 344 
expression levels are robustly correlated with both neuropathological and clinical measures of AD 345 
severity, suggesting an important role in the disease (Table 1). This role is further supported by evidence 346 
for changes in circRNA expression in pre-symptomatic AD. The pathological processes underlying AD 347 
follow a well characterized spatiotemporal progression18 which begins decades before symptom onset. 348 
Thus, changes in circRNA expression during the pre-symptomatic stage, which we observe to occur in a 349 
sequence consistent with the known spatiotemporal progression, may directly contribute to disease 350 
rather than being merely correlated. Our finding that the effect sizes of changes in circRNA expression 351 
were greater in individuals with the genetically-driven ADAD compared to sporadic AD, even after 352 
adjusting for neuropathological severity, also argues against AD-associated circRNAs being merely 353 
correlated with disease. This important role is also supported by our network analyses, which 354 
demonstrate that AD-associated circRNAs co-express with genes known to be part of AD causal 355 
pathways. 356 

We identify 164 AD-associated circRNAs on meta-analysis and perform network co-expression and 357 
microRNA binding site prediction analyses to infer biological context and facilitate the interpretation of 358 
our results. For example, circHOMER1, which was significantly associated with all three AD traits, co-359 
expressed with linear genes involved in AD and oxidative phosphorylation, perhaps suggesting a role for 360 
this circRNA in brain hypometabolism associated with AD45–47. Brain hypometabolism has also been 361 
demonstrated in PSEN1 mutation-driven ADAD48,49 and circHOMER1 contains multiple predicted 362 
bindings sites for miR-651, an miRNA predicted to target PSEN1 and PSEN242. Similarly, we identified 363 
circCORO1C to co-express with the AD-related genes APP and SNCA and further identified the presence 364 
of multiple predicted miR-105 binding sites in circCORO1C. MiR-105 is predicted to target both APP and 365 
SNCA42, suggesting that the co-expression we observe may be mediated through this microRNA. 366 
Importantly, if this and other AD-associated circRNAs exert functional effects through miRNA regulation, 367 
then subtle changes in circRNA expression may have major impacts on downstream gene expression.  368 

Our identification of high-confidence circRNA expression is technically limited by the high depth of 369 
sequencing and large number of samples required to generate sufficient reads for calling and stringently 370 
filtering backsplice junctions. In addition, circRNAs can only be called in ribosomal RNA (rRNA)-depleted 371 
RNA-seq datasets which are currently uncommon. Our results support the generation of additional AD 372 
and control brain rRNA-depleted RNA-seq datasets. As these datasets become available, it will be 373 
important to confirm our findings. In particular, our ADAD analyses should be replicated with age-374 
matched controls and our PreSympAD findings should be replicated in a larger dataset as these are both 375 
limitations of our current study. Another limitation of our study is the fact that our independent 376 
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replication dataset is derived from a different cortical region than our discovery dataset. Nevertheless, 377 
analyzing RNA-seq data from four different cortical regions in the MSBB replication dataset allowed us 378 
to observe changes in circRNA expression as a consistent phenomenon across the cortex in a sequence 379 
following the known spatiotemporal progression of AD.  380 

Our sensitivity analyses demonstrate that the majority of circRNA AD-associations are independent of 381 
cognate linear mRNA or cell-type proportion changes associated with AD – despite the inherent 382 
technical (linear) or biological (cell-type proportion) correlation. Nevertheless, the linear-circular 383 
technical correlation limits the interpretation of co-expression modules that include both AD-associated 384 
circRNAs and their cognate linear mRNAs. In addition, some AD-associated circRNAs may not be 385 
independent of their AD-linear mRNA-associations, but as the biological functions of circRNAs are 386 
different, these AD-associated circRNAs may still be pathologically relevant. Finally, we observe 387 
instances where circRNAs rather than their cognate linear mRNAs appear to be driving the association 388 
with AD. Consequently, circRNA analyses should be conducted alongside traditional linear mRNA 389 
analyses to test for this possibility in other rRNA-depleted RNA-seq datasets.  390 

Future studies to better understand and functionally characterize AD-associated circRNAs may yield 391 
novel quantitative trait loci or even biomarkers and therapeutic targets, as has been recently 392 
demonstrated for acute ischemic stroke41. We observed circRNA expression to yield strong predictive 393 
ability for AD case status, even in the absence of demographic or APOE4 risk factor data. This 394 
observation coupled with the relative stability of circRNAs in biofluids like CSF and plasma7 and their 395 
enrichment in exosomes50 suggests that circRNAs will likely have utility as peripheral biomarkers of pre-396 
symptomatic and symptomatic AD and potentially other neurodegenerative diseases.  397 
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Figure Legends 588 

 589 

Figure 1: Cortical circRNAs are associated with AD traits. Each circular Manhattan plot presents the 590 
results from a meta-analysis of circRNA AD-association results from discovery (parietal cortex) and 591 
replication (inferior frontal gyrus (Brodmann Area 44)) datasets. In order from outermost to innermost 592 
circular plot, the AD traits include: clinical dementia rating at expiration/death (CDR), Braak 593 
neuropathological severity score, and AD case-control status (AD case). Study-wide significance 594 
threshold is based on a false discovery rate of 0.05 and depicted by the red, dashed line. circRNAs that 595 
passed this threshold are displayed with star symbols. Lines extending through all three plots identify 596 
circRNAs that are significantly associated with multiple AD traits – dotted line: 2 traits; solid line: 3 traits.   597 

 598 

Figure 2: Changes in cortical circRNA expression tracks with AD clinical severity. Presented are boxplots 599 
of library-size normalized, differential expression covariate-adjusted counts for two AD-associated 600 
circRNAs: circHOMER1 and circCORO1C in the Knight ADRC parietal dataset. AD: Alzheimer disease. 601 
PreSympAD (Pre-symptomatic AD: neuropathological evidence of AD but, at most, very mild dementia 602 
(Clinical dementia rating <= 0.5). Box plot elements: center line (median), box (first and third quartiles), 603 
whiskers (quartile ± 1.5×interquartile range), dots (outlier points as defined by falling outside of 604 
whiskers).  605 

  606 

Figure 3: AD-associated circRNAs explain more of the observed variation in clinical dementia rating 607 
compared to number of APOE4 alleles or the estimated proportion of neurons. Percent of variation in 608 
clinical dementia rating (CDR) explained by the top 10, most meta-analysis significant CDR-associated 609 
circRNAs compared to two known contributors number of APOE4 alleles – the most common genetic 610 
risk factor for AD – and the estimated proportion of neurons. Knight ADRC: PCtx – parietal discovery 611 
dataset (nCDR = 96); MSBB BM44 – inferior frontal gyrus replication dataset (nCDR = 195).  612 

 613 

Figure 4: AD-associated circRNAs co-express with AD-relevant genes.  614 

Spearman correlation-based network co-expression module c1_46 (module association with clinical 615 
dementia rating (CDR), p-value: 1.52×10-07) in the MSBB BM44 dataset (n = 195). Module association 616 
with CDR was determined from a multivariate linear regression with module eigengene and differential 617 
expression covariates. Significance of the module eigengene association with CDR was determined using 618 
a two-tailed t-test. KEGG, Kyoto Encyclopedia of Genes and Genomes.  619 

  620 
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Table 1 | Cortical circRNAs are significantly associated with AD case status, dementia severity, and 
neuropathological severity 

CDR - Discovery CDR - Replication Meta-Analysis 

circRNA Chr  
log2 
FC p-value  

log2
FC p-value  

CDR 
p-value 

Braak 
p-value 

AD Case 
p-value 

circHOMER1 5 -0.28 8.22×10-12 -0.13 2.27×10-09 2.21×10-18 4.77×10-12 4.35×10-10 

circDOCK1 10 0.30 8.49×10-06 0.20 7.55×10-08 6.47×10-12 8.68×10-07 3.74×10-06 

circKCNN2 5 -0.12 7.27×10-04 -0.12 1.93×10-09 1.47×10-11 4.43×10-08 8.38×10-08 

circMAN2A1 5 0.23 2.46×10-04 0.17 2.92×10-07 5.59×10-10 1.25×10-06 3.75×10-09 

circST18 8 0.37 1.27×10-04 0.28 6.60×10-07 6.80×10-10 7.30×10-06 1.22×10-09 

circATRNL1 10 -0.13 2.42×10-03 -0.13 4.15×10-08 9.47×10-10 4.26×10-05 2.73×10-06 

circEXOSC1 10 0.14 3.66×10-02 0.18 8.13×10-09 7.92×10-09 6.22×10-05 1.27×10-06 

circICA1 7 -0.16 7.40×10-05 -0.11 2.33×10-05 1.77×10-08 3.43×10-02 2.08×10-06 

circFMN1 15 -0.16 1.01×10-04 -0.11 2.13×10-05 2.07×10-08 2.12×10-06 3.79×10-06 

circRTN4 2 0.14 8.36×10-03 0.13 2.72×10-07 2.18×10-08 6.96×10-08 4.81×10-09 

circCDR1-AS 23 0.17 3.18×10-02 0.19 4.90×10-08 2.83×10-08 1.54×10-03 5.29×10-12 

circMAP7 6 0.17 1.83×10-05 0.10 1.66×10-04 5.51×10-08 1.07×10-06 5.41×10-08 

circTTLL7 1 0.18 2.59×10-03 0.16 3.42×10-06 6.18×10-08 1.22×10-06 1.07×10-07 

circFANCL 2 0.21 9.12×10-03 0.15 9.88×10-07 7.65×10-08 1.75×10-03 1.11×10-03 

circEPB41L5 2 -0.13 1.12×10-03 -0.09 1.02×10-05 7.84×10-08 1.71×10-05 2.67×10-04 

circCORO1C 12 0.12 7.19×10-04 0.11 2.20×10-05 1.14×10-07 7.97×10-06 2.45×10-07 

circDGKI 7 -0.12 3.86×10-02 -0.14 2.42×10-07 1.41×10-07 3.78×10-03 1.05×10-03 

circKATNAL2 18 -0.14 2.39×10-02 -0.21 5.78×10-07 1.55×10-07 2.11×10-03 8.74×10-05 

circWDR78 1 0.14 5.84×10-04 0.11 3.59×10-05 1.57×10-07 2.62×10-04 2.95×10-05 

circADGRB3 6 -0.07 1.10×10-02 -0.07 2.20×10-06 1.94×10-07 5.97×10-03 1.47×10-03 

circPLEKHM3 2 -0.19 6.13×10-06 -0.10 1.00×10-03 2.32×10-07 3.77×10-04 4.13×10-06 

circERBIN 5 0.25 1.34×10-03 0.17 2.92×10-05 2.67×10-07 2.42×10-04 1.20×10-05 

circPICALM 11 0.07 1.29×10-02 0.08 4.63×10-06 4.54×10-07 3.12×10-06 3.35×10-08 

circRNASEH2B 13 0.20 3.57×10-03 0.14 3.13×10-05 7.11×10-07 1.72×10-03 4.63×10-03 

circPDE4B 1 -0.13 5.84×10-03 -0.11 1.98×10-05 7.47×10-07 1.94×10-03 5.33×10-05 

circPHC3 3 0.16 7.43×10-04 0.11 1.40×10-04 7.99×10-07 2.09×10-02 1.01×10-02 

circFAT3 11 -0.23 4.75×10-03 -0.21 3.11×10-05 9.31×10-07 8.21×10-03 2.04×10-04 

circMLIP 6 -0.08 5.75×10-02 -0.10 3.41×10-06 2.24×10-06 7.22×10-06 2.71×10-07 

circLPAR1 9 0.17 2.17×10-02 0.20 1.72×10-05 2.68×10-06 1.49×10-03 4.58×10-06 

circSLAIN2 4 0.14 5.25×10-04 0.12 5.62×10-04 2.70×10-06 2.51×10-02 2.63×10-05 

circSPHKAP 2 -0.39 1.48×10-03 -0.27 3.16×10-04 3.32×10-06 2.88×10-02 2.44×10-01 

circYY1AP1 1  0.20 4.47×10-04  0.11 9.71×10-04  4.40×10-06 1.83×10-04 1.15×10-03 

circDNAJC6 1  0.16 6.63×10-03  0.11 1.27×10-04  4.99×10-06 2.04×10-05 8.21×10-06 
circRNA association with AD traits in the discovery Knight ADRC parietal dataset, replication MSBB Brodmann Area 
44 (BM44) dataset, and meta-analyses.  Presented are the log2 fold changes (log2FC) and p-values generated via a 
Wald-log test for the discovery (nCDR = 96) and replication (nCDR = 195) analyses and the inverse/Stouffer’s method 
combined p-values for the meta-analyses. Discovery and replication analyses were adjusted for post-mortem 
interval, RNA quality (median transcript integrity number), age at death, batch, sex, and genetic ancestry (principal 
components 1-2). Braak, Braak score; CDR, clinical dementia rating at expiration/death; Chr, chromosome. 
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ONLINE METHODS 622 

Code Availability:  623 

A description of how all software has been run for this study, including relevant command flags, is 624 
included in the Online Methods. In addition, the code used for analysis is provided in the included 625 
Supplementary Software.  626 

RNA-sequencing 627 

Discovery (Knight ADRC) and Autosomal Dominant AD (DIAN) datasets 628 

We generated 151 nucleotide (nt), paired-end, rRNA depleted RNA-sequencing (RNA-seq) data from 629 
frozen brain parietal cortex tissue. The frozen brain tissues were donated by participants in either the 630 
prospective Knight Alzheimer’s Disease Research Center (Knight ADRC) Memory and Aging Project study 631 
at Washington University School of Medicine or the Dominantly Inherited Alzheimer’s Network (DIAN) 632 
study. All participants consented to brain donation and neuropathological analysis. We first disrupted 633 
the frozen cortical tissues using a TissueLyser LT and purified the RNA from this disrupted tissue using 634 
RNeasy Mini Kits. (Qiagen, Hilden, Germany). We calculated the RNA Integrity Number (RIN) using a RNA 635 
6000 Pico assay on a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, USA). We also quantified the 636 
extracted RNA using the Quant-iT RNA assay (Invitrogen, Carlsbad, USA) on a Qubit Fluorometer (Fisher 637 
Scientific, Waltham, USA). Prior to library construction, we introduced External RNA Controls 638 
Consortium (ERCC)51 RNA Spike-In Mix (Invitrogen, Carlsbad, USA). rRNA depleted cDNA libraries were 639 
prepared using a TruSeq Stranded Total RNA Sample Prep with Ribo-Zero Gold kit (Illumina, San Diego, 640 
USA) and sequenced on an Illumina HiSeq 4000 at the McDonnell Genome Institute at Washington 641 
University in St. Louis. All samples were randomly assigned to a sequencing pool prior to sequencing and 642 
RNA extraction and sequencing library preparation were performed blind to neuropathological case-643 
control status. The average number of raw sequencing reads per individual was 58,094,683 644 
(Supplementary Table 6). 645 

Replication Dataset (MSBB) 646 

We downloaded publicly available RNA-seq data from the Synapse portal (syn3157743, accessed May 647 
2018) from the Advanced Medicine Partnership for AD: Mount Sinai Brain Bank (MSBB) dataset. In short, 648 
this dataset was generated by sequencing RNA derived from four different cortical regions: frontal pole 649 
(Brodmann area (BM) 10), superior temporal gyrus (BM22), parahippocampal gyrus (BM36) and inferior 650 
frontal gyrus tissue (BM44) from 301 individuals. rRNAs was depleted using the Ribo-Zero rRNA Removal 651 
Kit (Human/Mouse/Rat) (Illumina, San Diego, USA). Sequencing libraries were prepared using TruSeq 652 
RNA Sample Preparation kit v2. From these libraries, rRNA-depleted 101nt single-end, and non-stranded 653 
RNA-seq data was generated via an Illumina HiSeq 2500 (Illumina, San Diego, USA)26. The average 654 
number of raw sequencing reads per individual was 35,062,514. 655 

 656 

 657 
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Alzheimer Disease Traits 658 

In this study, we investigated differential expression and correlation of circular RNA (circRNA) expression 659 
in human cortical tissues with Alzheimer Disease (AD) case-control status, autosomal dominant 660 
Alzheimer Disease (ADAD) case-control status, and two AD quantitative traits: clinical dementia rating at 661 
expiration/death (CDR) and Braak score.  662 

Case-control status was determined by post-mortem, neuropathological analysis of study participant 663 
brains following CERAD17 and/or Khachaturian25 criteria. ADAD status was determined via pre-mortem 664 
sequencing of APP, PSEN1, and PSEN2 genes to identify established, pathogenic mutations37. CDR is a 665 
clinical measure of cognitive impairment with a range from 0 (no dementia) to 3 (severe dementia)31. 666 
Braak score is a neuropathological measure of AD severity, as determined by the number and 667 
distribution of neurofibrillary tau tangles through the brain18. Braak scores range from 0 (absent, at most 668 
incidental tau tangles) to 6 (severe, extensive tau tangles in neocortical areas). Importantly, the 669 
neuropathological diagnoses available are based on criteria that require the presence of “neuritic” or 670 
“senile” plaques and thus individuals with neurofibrillary tau tangles but without plaques may still be 671 
considered controls. We identified a subset of the AD brains that were from individuals with pre-672 
symptomatic or pre-clinical AD. These individuals did not have clinically significant dementia (clinical 673 
dementia rating <= 0.5, at most, very mild dementia) but their brains had evidence of AD 674 
neuropathological changes. Finally, the MSBB dataset included an additional AD neuropathological 675 
quantitative trait, mean amyloid plaque number. 676 

Phenotype Processing  677 

Discovery Dataset: Knight ADRC 678 

• We generated genetic ancestry covariates through principal components analysis via PLINK v1.9 679 
software52 using previously generated GWAS data. In brief, we merged genetic microarray data 680 
from the Knight ADRC study participants with the HapMap reference panel53, filtered to only 681 
include variants with a mean allele frequency greater than 5% and a genotype rate greater than 682 
95%, pruned to only include those variants that were not in linkage disequilibrium, and used the 683 
–pca command. We used the first two principal components to represent genetic ancestry for 684 
downstream analyses. We only included parietal cortex-derived samples for differential 685 
expression, correlation, and meta- analyses from individuals for whom all differential expression 686 
analysis covariates (post mortem interval (PMI), median transcript integrity number32 (TIN) – a 687 
measure of RNA quality, age at death (AOD), batch, sex, and genetic ancestry covariates) were 688 
available.  689 

• We excluded samples from individuals who were neuropathologically classified as controls but 690 
had mild or worse dementia (CDR >= 1), i.e. demented controls, as their dementias can be 691 
expected to have non-AD etiologies.  692 

• We excluded four samples as their circular transcriptomic profiles, as measured by the first two 693 
transcriptomic principal components, were outliers compared to the distribution of other 694 
parietal region samples.  695 
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Replication Dataset: MSBB 696 

We downloaded additional data from the MSBB replication dataset, including clinical phenotype and 697 
RNA-seq covariates (syn12178045), whole genome sequencing (WGS) data (syn10901600), and quality 698 
control remapping data (syn12178045) from the Synapse portal (accessed, May 2018). We processed 699 
this data as follows:  700 

• Age at death (AOD) listed as ‘90+’ was reassigned as ‘90’ in order to make the variable 701 
quantitative.  702 

• Post mortem interval (PMI) was adjusted from minutes to hours in order to match the discovery 703 
dataset scale.  704 

• Number of APOE4 alleles was inferred using the WGS data based on the SNP: rs429358. After 705 
confirming that there existed a high concordance between the non-missing number of APOE4 706 
alleles provided in the clinical covariates file and this inferred number, we used the inferred 707 
number of alleles for all downstream analyses as to increase the number of individuals with this 708 
data.  709 

• We generated genetic ancestry covariates from the MSBB WGS data through principal 710 
components analysis via PLINK v1.9 software, as with the discovery dataset.  711 

• We assigned missing batch and RIN information to files that had been resequenced using 712 
information from the original sequencing run, matching the two files on the basis of a common 713 
barcode.  714 

• Between the originally sequenced and resequenced sample, we selected the RNA-seq data with 715 
a greater number of mapped reads.  716 

• We excluded individuals and reassigned sample-swap IDs on the basis of information provided 717 
in the quality control remapping data (syn12178047) file.  718 

• We excluded samples from individuals who were neuropathologically classified as controls but 719 
had mild or worse dementia (CDR >= 1), i.e. demented controls, as their dementias can be 720 
expected to have non-AD etiologies.  721 

• We excluded five samples as their circular transcriptomic profiles, as measured by the first two 722 
transcriptomic principal components, were outliers compared to the distribution of other 723 
samples from that same cortical region.  724 

• We only included samples for differential expression, correlation, and meta-analyses from 725 
individuals for whom data for all differential expression analysis covariates (post mortem 726 
interval (PMI), median TIN, age at death (AOD), batch, sex, and genetic ancestry covariates) 727 
were available.  728 

 729 

RNA-seq Data Processing and Alignment 730 

In order to increase detection power, we processed and aligned RNA-seq data derived from all available 731 
samples in each dataset, not just those from samples that met inclusion criteria for downstream 732 
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analyses. All RNA-seq data processing and alignment was performed blind to neuropathological case-733 
control status.  734 

We aligned raw sequencing reads from the discovery RNA-seq dataset to the primary assembly of the 735 
human reference genome, GRCh38, using STAR v2.5.3a27 in chimeric alignment mode using parameters 736 
suggested by the documentation of the circRNA calling software, DCC29. We first prepared an alignment 737 
index with an overhang splice junction database overhang of 150 (--sjdbOverhang 150) using the 738 
GENCODE v2628 comprehensive gene annotation. We then aligned each mate pair individually and 739 
together, for a total of 3 alignments per sample, using the following parameters:  740 

--outSJfilterOverhangMin 15 15 15 15  741 
--alignSJoverhangMin 15  742 
--alignSJDBoverhangMin 15  743 
--seedSearchStartLmax 30  744 
--outFilterMultimapNmax 20  745 
--outFilterScoreMin 1  746 
--outFilterMatchNmin 1  747 
--outFilterMismatchNmax 2  748 
--chimSegmentMin 15  749 
--chimScoreMin 15  750 
--chimScoreSeparation 10  751 
--chimJunctionOverhangMin 15 752 

The replication MSBB RNA-seq dataset was provided as aligned and unmapped files and thus required 753 
additional processing prior to alignment. After downloading aligned and unmapped files for each sample 754 
from the Synapse web portal (syn3157743), we used Picard tools’ RevertSam, FastqToSam, and 755 
MergeSamFiles (http://broadinstitute.github.io/picard/) functions to generate raw, unaligned files. We 756 
aligned these generated files as above using STAR v2.5.3a but with an alignment index suitable for 101n 757 
reads (--sjdbOverhang 100) and only once per sample due to its single-ended nature.   758 

For all alignments, we soft-clipped any adapter sequence from the reads based on the generic Illumina 759 
adapter sequence. 760 

 761 

Calling circRNA-defining backsplices 762 

We used DCC software v0.4.429 to detect, annotate, quantify, filter, and call circRNA-defining backsplices 763 
from the chimeric junctions identified during STAR alignment. We performed additional filtering 764 
following DCC software documentation: backsplice junctions were excluded if they were located in 765 
repetitive regions of the genome (as defined in the UCSC Genome Browser: RepeatMasker and Simple 766 
Repeats tables), spanned multiple gene annotations, or were located in the mitochondrial chromosome. 767 
When analyzing paired-end data, DCC software takes into account chimeric junctions identified in both 768 
mates individually and together to improve sensitivity. DCC software can also assign the circRNA strand 769 
of origin based on sequence if it is provided with non-stranded data.  770 

For the discovery dataset, we ran DCC in paired-end, stranded mode with the following parameters:  771 
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-D -R GRCh38_Repeats_simpleRepeats_RepeatMasker.gtf -an gencode.v26.primary_a772 
ssembly.annotation.gtf -Pi -F -M -Nr 1 1 -fg -G -A GRCh38.primary_assembly.ge773 
nome.fa 774 

For the replication dataset, we ran DCC in single-end, non-stranded mode with the following 775 
parameters: 776 

-D -N -R GRCh38_Repeats_simpleRepeats_RepeatMasker.gtf -an gencode.v26.primar777 
y_assembly.annotation.gtf -F -M -Nr 1 1 -fg -G -A GRCh38.primary_assembly.gen778 
ome.fa 779 

We also called backsplices using an additional software package, circRNA_finder3, observing an average 780 
Pearson correlation of 0.99 between the counts called by the two methods. Similar to DCC, 781 
circRNA_finder calls backsplices from the chimeric junctions identified via STAR, but does not have 782 
parameters to adjust for type of RNA-seq data. Due to this limitation, the DCC-called backsplices were 783 
retained for downstream analyses. Backsplice calling was performed blind to neuropathological case-784 
control status. 785 

Filtering and collapsing annotated backsplices to identify high-confidence circRNAs 786 

circRNAs are detected in RNA-seq data by calling backsplices from chimeric junctions. Such junctions can 787 
form artifactually during library preparation via a template switching process54. As these artifactual 788 
junctions are formed randomly, filtering called backsplices by the number of samples in which they are 789 
observed as well as the minimum ratio of linearly-aligning versus chimerically-aligning reads (circ:linear 790 
ratio) at each backsplice junction allows for the selection of a high-confidence set of backsplices. In 791 
order to empirically determine the number of samples and circ:linear ratio filtering thresholds, we called 792 
artifactual backsplices identified in spiked-in linear (External RNA Controls Consortium) ERCC51 RNAs 793 
from our discovery dataset. As these spike-in RNAs are linear, backsplices identified in ERCC sequences 794 
are expected to arise artifactually during the library preparation.  As before, we aligned the raw 795 
sequencing reads using STAR v2.5.3a using the same parameters as the discovery dataset but used the 796 
ERCC92 fasta and gtf files (Invitrogen, Carlsbad, USA) rather than the human reference genome files, in 797 
order to identify the artifactual junctions. We also used DCC in stranded, paired-end mode, but without 798 
filtering for human genome annotations. As expected, we were able to detect artifactual backsplices in 799 
the ERCC spike-in RNA (Supplementary Table 6 and Supplementary Figure 11). Based on this data, we 800 
selected a highly conservative threshold of being observed in at least 3 samples and having a minimum 801 
circ:linear ratio of 0.1 for inclusion in downstream analyses.  802 

In our discovery, parietal cortex dataset, the majority (5,090/7,450) of the backsplice junctions we 803 
identified using this calling and filtering approach have been previously identified using a different 804 
calling algorithm in an independent analysis of healthy parietal cortex tissue10,55. After identifying high-805 
confidence backsplice junctions, we collapsed each of them on to its annotated linear gene of origin / 806 
cognate linear mRNA for downstream differential expression and correlation analyses. Backsplices 807 
without a linear gene of origin annotation were excluded from the analysis. For the MSBB replication 808 
dataset circRNA calls - which are derived from non-stranded data - we updated the strand and linear 809 
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gene of origin annotation to match that of the stranded parietal dataset, but only if the backsplice calls 810 
had the same chromosome, start, and end positions.  811 

Overall, we called a total of 3,547 well-supported circRNAs in the discovery dataset and 4,330 in the 812 
larger replication dataset. There were 3,146 well-supported circRNAs common to both the discovery and 813 
replication datasets. We visualized the overlap between the circRNAs called in each dataset using the 814 
Venn tool at: http://bioinformatics.psb.ugent.be/webtools/Venn/ (Supplementary Figure 1). All circRNA 815 
identification was performed blind to neuropathological case-control status. 816 

 817 

Calling linear transcripts 818 

We called linear transcripts using Salmon software v0.8.256 in quasi-mapping-based alignment mode. In 819 
short, we generated a quasi-mapping index using the primary assembly of the human reference 820 
genome, GRCh38, and the GENCODE v2628 comprehensive gene annotation. We then quantified the 821 
linear transcript expression from the raw, unaligned RNA-seq files for both the discovery and replication 822 
datasets using the default Salmon pipeline parameters. All linear transcript calling was performed blind 823 
to neuropathological case-control status. 824 

 825 

Measuring Transcript Integrity Number  826 

Transcript integrity number (TIN) is measure of RNA quality that is derived from the sequencing data 827 
and directly measures the degradation of mRNA32. The median TIN score for each sample has been 828 
demonstrated to have robust concordance with the RNA integrity number (RIN) – a commonly used 829 
measure of mRNA integrity based on ribosomal RNA amounts - in multiple independent RNA-seq 830 
datasets. We calculated TIN for representative, protein-coding transcripts in each sample using the 831 
RSeQC software v2.6.457 in order to provide a consistent quality control covariate for our differential 832 
expression and correlation analyses. In brief, we utilized STAR-aligned RNA-seq data and the 833 
representative (annotated as “basic”) protein-coding transcript annotations in GENCODE v26 to 834 
calculate median TIN for each sample in the discovery and replication datasets (Supplementary Table 6).  835 

 836 

Differential expression and correlation analyses 837 

We performed differential expression and correlation analyses between the sets of high-confidence 838 
cortical circRNA counts and AD traits using the negative binominal family logistic regression and two-839 
tailed statistical Wald test capabilities of DESeq2 v.1.18.130. Our analysis approach follows previously 840 
published studies that include analyses of circRNA differential expression8,10. In general, differential 841 
expression analyses assume that the background distribution of RNA expression to be equivalent 842 
between samples with observed differences being attributable to adjustable technical differences (such 843 
as sequencing depth / library size or RNA quality), adjustable biological differences (such as sex or age of 844 
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death), or finally due to biological traits of interest (such as disease status or severity). Our DESeq2 845 
analysis approach takes all these factors into account. Prior to performing the logistic regression and 846 
Wald test, circRNA counts for each sample were normalized on the basis of sequencing depth / library 847 
size-derived size factor, estimated using circRNA counts from all samples derived from the same cortical 848 
region. Following this normalization, the samples were subsetted as to only include samples for which 849 
complete information – including differential expression covariate data - was available for the particular 850 
AD trait under investigation. For example, Braak score was only available for 86/96 participants in the 851 
discovery dataset and thus the sample size for discovery Braak score circRNA correlation analysis was 852 
86. We performed all differential expression and correlation analyses with these subsets, and, in 853 
general, adjusted for the following covariates: post mortem interval (PMI), median TIN, age at death 854 
(AOD), batch, sex, and genetic ancestry - represented by the first two principal components derived 855 
from genetic data. Importantly, restricting the discovery analysis to only individuals of European genetic 856 
ancestry, i.e. dropping the 6 black individuals (5 AD cases and 1 control), yielded consistent results 857 
(effect size, Pearson correlation for CDR-associated circRNAs in the European-only vs. original discovery 858 
analysis: 0.94).  We did not adjust the analyses that included ADAD samples for AOD. ADAD is early-859 
onset37 and ADAD brains were donated by individuals who had a younger AOD compared to both control 860 
and AD participants (Supplementary Table 1), rendering AOD collinear with status. In addition, as GWAS 861 
data to calculate genetic ancestry covariates was unavailable for ADAD samples, we substituted self-862 
reported ethnicity for genetic ancestry covariates in all analyses that included ADAD samples. We 863 
restricted analyses to only include samples for which complete information for all included differential 864 
expression covariates was available. We set a statistical significance false discovery rate (FDR) threshold 865 
of 0.05 and present uncorrected p-values, noting if they pass FDR correction. DESeq2 software 866 
automatically filters out circRNAs with low expression prior to statistical analyses.  867 

In our discovery and ADAD datasets, we used this approach to investigate for cortical circRNAs that are 868 
significantly differentially expressed between AD versus controls and ADAD versus controls. We also 869 
investigated for cortical circRNAs that are significantly differentially expressed between ADAD versus 870 
AD, adjusting for neuropathological severity as measured by Braak score. We investigated for cortical 871 
circRNAs that were significantly correlated with CDR and similarly, investigated for circRNAs that were 872 
significantly correlated with Braak score in the discovery dataset samples for which these AD traits were 873 
available. To replicate these findings, we performed similar analyses in the MSBB datasets. We selected 874 
BM44 to be our primary replication dataset, but performed the analyses in all cortical regions 875 
separately. We investigated for differential cortical circRNA expression between definite AD versus 876 
control status, significant correlation between CDR and cortical circRNA expression, and significant 877 
correlation between Braak score and cortical circRNA expression. Finally, we performed analyses to 878 
investigate for significant correlations between circRNAs and mean number of plaques in the MSBB 879 
dataset. With the exception of invalid statistical models due to collinearity between the quality control 880 
metric and the particular AD trait under investigation, substituting  median TIN or RIN quality control 881 
metrics, yielded similar differential expression and correlation results. For example, the effect size 882 
Pearson correlation for the 31 discovery analysis CDR-associated circRNAs obtained after substituting 883 
RIN for TIN is 0.99 (p-value: 5.43×10-26). 884 
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Validating RNA-seq Counts and Direction of Effect via Quantitative PCR 885 
We designed divergent primers to the backsplice junction of circHOMER1 (Forward 5’- 886 
TTTGGAAGACATGAGCTCGA -3'; Reverse 5’- AAGGGCTGAACCAACTCAGA -3’), circKCNN2 (Forward 5’- 887 
GACTGTCCGAGCTTGTGAAA -3'; Reverse 5’- GGCCGTCCATGTGAATGTAT -3’), circMAN2A1 (Forward 5’- 888 
TGAAAGAAGACTCACGGAGGA -3'; Reverse 5’- TAGCAAACGCTCCAAATGGT -3’), circICA1 (Forward 5’- 889 
TTGATGATTTGGGGAGAAGG -3'; Reverse 5’- TGGATGAAGGACGTGTCTCA -3’), circFMN1 (Forward 5’- 890 
GGTGGCTATGCAGAGAAAGC -3'; Reverse 5’- CAGGGAAGACCACAGCTGAG -3’), circRNA transcripts based 891 
on circRNA fasta sequences extracted via the getcircfasta.py script provided with DCC software29. 892 
Divergent primers face outwards - as opposed to inward facing, typical primers – and as a result they will 893 
only produce a PCR product if there exists a backsplice junction formed via circularization of a transcript 894 
or rarely by tandem exon duplication1. We confirmed that these primers were divergent through in silico 895 
PCR (https://genome.ucsc.edu/cgi-bin/hgPcr) and confirmed that the amplication efficiency of each 896 
divergent primer pair was suitable for quantitative PCR (qPCR). We then selected 13 parietal cortex-897 
derived RNA samples from individuals in the discovery study (3 controls, 3 PreSympAD, and 7 AD) to 898 
generate GAPDH-normalized (Forward 5’- TGCACCACCAACTGCTTAGC -3'; Reverse 5’- 899 
GCCATGGACTGTGGTCATGAG -3’) expression values to correlate with our RNA-seq-derived counts. We 900 
generated cDNA from the RNA samples using SuperScript VILO cDNA synthesis kit (Invitrogen) following 901 
the manufacturer’s recommended protocol. With this cDNA, we performed the qPCR experiment using 902 
PowerUp SYBR Green Master Mix (Applied Biosystems) on a QuantStudio 12K Flex Real-Time PCR 903 
System. We calculated the relative expression following the standard DeltaDeltaCt method.  In brief, we 904 
averaged the triplicate readings of Ct for each primer pair and subtracted the average linear GAPDH Ct 905 
from the average circRNA Ct to calculate DeltaCt. We further calculated the DeltaDeltaCt of each 906 
circRNA by subtracting the average control (n=3) DeltaCt for each primer from the DeltaCts. Finally, we 907 
generated relative expression using the following formula: Relative Expression = 2-ΔΔCt. 908 

 909 

Meta-analyses and Overlap calculations 910 

We performed meta-analyses of the cortical circRNA differential expression and correlation discovery 911 
and replication results using the metaRNA-seq R package v1.0.2. We chose to combine the p-values of 912 
the circRNAs common to both replication and discovery results using the inverse/Stouffer method due 913 
to the differences in sample size between the datasets. As before, we set a statistical significance 914 
threshold and false discovery rate (FDR) threshold of 0.05 and present uncorrected p-values, noting if 915 
they pass FDR correction. We visualized the results of our meta-analyses using the CMplot R package 916 
v3.3.1.  917 

We visualized overlap between meta-analysis results using the VennDiagram R package v1.6.20 and 918 
calculated significance of overlap using the SuperExactTest R package V 1.0.0, which reports one-tailed 919 
p-values58.  920 

 921 
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Independence of Circular versus Cognate Linear RNA AD-Associations or AD-Associated Changes in 922 
Estimated Brain Cell-type Proportions via Regression-Based Analyses 923 

To demonstrate the independence of circular versus their cognate linear mRNA AD-associations, we 924 
included library-size normalized counts for the CDR-associated circRNAs and their cognate linear mRNAs 925 
in the same regression models predicting CDR. The regression models also included the differential 926 
expression covariates: PMI, median TIN, AOD, batch, sex, and genetic ancestry. Given the fact that 927 
circRNA expression levels are lower than their cognate linear mRNA expression levels, and the majority 928 
of RNA-sequencing reads covering a circRNA will not include the backsplice (thereby inflating the 929 
cognate linear mRNA counts); we consider circRNAs to demonstrate an independent association with 930 
CDR if they retain a significant (p-value < 0.05) association in the combined regression model. We 931 
perform these regression analyses for the CDR-associated circRNAs in both the discovery and replication 932 
datasets and combine the results using a fixed effects meta-analysis. In addition, we calculate the 933 
proportion of variation in CDR explained by circRNAs versus their cognate linear mRNAs38 and present 934 
the average proportion of variation explained in the two datasets. Two of 148 meta-analysis, CDR-935 
associated circRNAs did not have a cognate linear RNA and were excluded from these analyses. 936 

We demonstrated the independence of circRNA AD-associations from AD-associated changes in brain 937 
cell-type proportions using a similar regression-based approach. We included library-size normalized 938 
counts for the CDR-associated circRNAs and computationally-deconvoluted34 estimated proportions of 939 
neurons, oligodendrocytes, and microglia. We did not include the deconvoluted estimated astrocyte 940 
proportion to avoid multicollinearity and also because we have previously reported that astrocyte and 941 
neuron estimated proportions are strongly inversely correlated34. AD-associated circRNAs that retained 942 
a significant (p-value < 0.05) association in these combined models are considered independent. We 943 
perform these regression analyses for all 148 CDR-associated circRNAs in both the discovery and 944 
replication datasets and combine the results using a fixed effects meta-analysis. 945 

 946 

Pre-symptomatic AD Bootstrapped Correlation Coefficient Analyses 947 

In our discovery and replication datasets, a small number of individuals with pre-symptomatic AD 948 
(PreSympAD) – i.e., neuropathological evidence of AD but, at most, very mild dementia (CDR <= 0.5) 949 
were included. We investigated if changes in expression in the PreSympAD brains were similar to the 950 
changes observed in symptomatic AD (SympAD) – i.e., neuropathological evidence of AD and dementia 951 
(CDR >= 1).  952 

We first performed a cortical circRNA differential expression analysis between SympAD versus controls 953 
and then between PreSympAD versus controls, using the same methods as described above. Then, for 954 
all circRNAs that were not automatically filtered out by DESeq2 due to low expression, we calculated the 955 
correlation between the log2 fold change (log2FC, effect size) observed in the PreSympAD analysis and 956 
the log2FC observed in the SympAD analysis. If the SympAD versus control brain differentially expressed 957 
circRNAs demonstrate similar changes in expression in the PreSympAD, we expect the correlation 958 
between the log2FC values for these circRNAs to be stronger than those from the non-significant, 959 
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background circRNAs. We tested this by performing 10,000 bootstrap simulations to identify a bias 960 
corrected and accelerated35 95% confidence interval for the two log2FC correlation coefficients – one for 961 
the SympAD-associated circRNAs and the other for the non-significant, background circRNAs. We 962 
generated p-values for the significantly associated distribution being higher than the background 963 
distribution using a one-tailed Kolmogorov–Smirnov test. We performed this analysis in the discovery 964 
dataset and in all cortical regions in the replication dataset to assess for regional differences in circRNA 965 
expression changes in PreSympAD. Bootstrap correlation coefficients and confidence intervals were 966 
generated using the boot R package V1.3-20.  967 

 968 

Receiver Operating Characteristic (ROC) curve and Area under the curve (AUC) analyses 969 

To evaluate the predictive ability of AD-associated circRNAs, we calculated logistic regression models 970 
predicting AD case status in both the discovery and replication datasets. We subsetted each dataset as 971 
to only include definite AD cases and controls and calculated three models. The first model (base) 972 
included the following as covariates: PMI, median TIN, AOD, batch, sex, genetic ancestry, and number of 973 
APOE4 alleles. The second model (circ) included the top 10 most significantly CDR-associated circRNAs 974 
from the meta-analysis. The third model (base+circ) combined the variables of the first two models 975 
together. We calculated ROC curves and AUCs using the R package pROC V1.12.1.  976 

 977 

Relative importance analyses 978 

The number of APOE4 alleles – the most common genetic risk factor for AD16 – and the estimated 979 
proportion of neurons34 are known to contribute to the observed variation in AD quantitative traits like 980 
CDR and Braak score. We assessed the relative importance of circRNA expression compared to these 981 
known contributors using the relaimpo R package, v2.2.338. To do this, we first selected the library-size 982 
normalized counts of the top 10 most significant AD-trait associated circRNAs and adjusted them for the 983 
same covariates used in the differential expression analyses: PMI, median TIN, AOD, batch, sex, and 984 
genetic ancestry. We then included these normalized, adjusted counts, first individually and then 985 
together in a multivariate model, with number of APOE4 alleles and estimated neuronal proportion in 986 
the same linear regression model predicting either CDR or Braak score, or mean number of plaques 987 
(only available in the replication MSBB dataset). We assessed the relative contribution of each of the 988 
model variables to the variation in the predicted AD quantitative trait using the lmg method of the 989 
relaimpo package. Thus, we measured the contribution of each of the top 10 most meta-analysis 990 
significant circRNAs compared to number of APOE4 alleles and estimated neuronal proportion both 991 
individually and when included together in the same model. We conducted these analyses in both the 992 
discovery dataset as well as all 4 cortical regions in the replication dataset, selecting the top 10 most 993 
meta-analysis significant circRNAs from each region-specific meta-analysis.   994 

 995 
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Network Co-expression Analyses 996 

We computed circRNA and protein-coding linear transcript co-expression networks from AD and control 997 
samples in order to infer the biological and pathological relevance of circRNAs based on the linear 998 
transcripts they co-expressed with. We first adjusted library size-normalized, circRNA and linear 999 
transcript counts, from the same samples, for the differential-expression analyses covariates – PMI, 1000 
median TIN, AOD, batch, sex, and genetic ancestry – and then combined them together. We included all 1001 
circRNAs and the top 10,000 most variable protein-coding linear transcripts to reduce computational 1002 
burden. We computed gene co-expression networks from these combined counts based on Spearman 1003 
correlation using multiscale embedded gene co-expression network analysis (MEGENA, v1.3.639). Briefly, 1004 
this method leverages planar maximally filtered graph techniques to identify compact gene expression 1005 
networks and has been independently demonstrated to have high module conservation with, and to 1006 
identify more modules than the older WGCNA method59. Importantly, this method identifies 1007 
hierarchical networks with submodules existing within larger parent modules, when possible. As such 1008 
the same linear transcript or circRNA may be assigned to multiple modules. Following module 1009 
identification, we calculated each modules’ eigengene using the WGCNA R package v1.6340. To identify 1010 
significant associations between modules and CDR, we performed two-tailed, p-value generating 1011 
regression analyses between the module eigengenes and CDR adjusting for the differential expression 1012 
covariates. Significance of the module eigengene association with CDR was determined using a two-1013 
tailed t-test. We identified significant gene enrichment and pathway associations for each module by 1014 
extracting the linear transcript module members and processing them through the FUMA software’s 1015 
hypergeometric – one-tailed – test60, with protein coding genes as the background gene list. Finally, we 1016 
visualized networks using the igraph R package v1.2.1.  1017 

 1018 

MicroRNA Binding Site Prediction 1019 

We generated a fasta file of circRNA sequences using the getcircfasta.py script provided with DCC 1020 
software29. We predicted microRNA (miRNA) binding sites in these circRNA sequences using the 1021 
targetscan_70.pl script provided with the TargetScan70 database42, March 2018 release. When multiple 1022 
isoforms of the same circRNA were predicted to have different number of binding sites for the same 1023 
miRNA, we selected the greatest number of predicted binding sites to present at the gene-level. We 1024 
identified predicted targets of miRNA regulation from the March 2018 release of the TargetScanHuman 1025 
database42. 1026 

 1027 

Statistical Analysis 1028 

We tested for differential expression of circRNAs using DESeq2 v.1.18.130 to perform negative binominal 1029 
family logistic regressions and a two-tailed Wald test to determine significance. We tested for circRNA 1030 
association effect size correlations using Pearson correlation with significance determined by a two-1031 
tailed t-test. We demonstrated the independence of circRNA AD-associations from AD-associated 1032 
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changes in cognate linear mRNAs or AD-associated changes in estimated brain cell type proportions 1033 
using linear regression analyses with significance determined by two-tailed t-tests. We calculated one-1034 
tailed p-values for the significance of overlap between different sets of differentially expressed circRNAs 1035 
using the SuperExactTest R package V 1.0.058. We calculated whether bootstrapped effect size 1036 
correlation distributions between SympAD-associated circRNAs was greater than the background 1037 
distribution using a one-tailed Kolmogorov-Smirnov test. We calculated the proportion of variation in 1038 
quantitative AD traits explained by circRNAs and other contributors using linear regression followed by 1039 
relative importance analysis done using the relaimpo R package, v2.2.338. We generated circRNA and 1040 
linear mRNA co-expression network modules based on Spearmann correlation using MEGENA, v1.3.639. 1041 
We calculated module eigengenes and determined their association with CDR using linear regression 1042 
with significance determined by two-tailed t-tests. Co-expression module enrichment for AD-related 1043 
pathways was determined using a one-tailed hypergeometric test performed by FUMA software60. For 1044 
parametric tests, data distribution was assumed to be normal but this was not formally tested. All 1045 
statistical analysis was done using R statistical software61.    1046 

A Life Sciences Reporting Summary for our manuscript is available.  1047 

 1048 

Data Availability:  1049 

Knight ADRC dataset - NG00083 (https://www.niagads.org/datasets/ng00083) 1050 

Sequencing information derived from ADAD samples is protected and requires additional authorization 1051 
from DIAN for access. 1052 

Mount Sinai Brain Bank, replication dataset: https://www.synapse.org/#!Synapse:syn3159438 1053 
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