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ABSTRACT
Cellular accumulation of aggregated forms of the protein tau is a defining feature of so-called tauopathies such as
Alzheimer’s disease, progressive supranuclear palsy, and chronic traumatic encephalopathy. A growing body of
literature suggests that conformational characteristics of tau filaments, along with regional vulnerability to tau pa-
thology, account for the distinct histopathological morphologies, biochemical composition, and affected cell types
seen across these disorders. In this review, we describe and discuss recent evidence from human postmortem and
clinical biomarker studies addressing the differential vulnerability of brain areas to tau pathology, its cell-to-cell
transmission, and characteristics of the different strains that tau aggregates can adopt. Cellular biosensor assays
are increasingly used in human tissue to detect the earliest forms of tau pathology, before overt histopathological
lesions (i.e., neurofibrillary tangles) are apparent. Animal models with localized tau expression are used to uncover the
mechanisms that influence spreading of tau aggregates. Further, studies of human postmortem-derived tau filaments
from different tauopathies injected in rodents have led to striking findings that recapitulate neuropathology-based
staging of tau. Furthermore, the recent advent of tau positron emission tomography and novel fluid-based bio-
markers render it possible to study the temporal progression of tau pathology in vivo. Ultimately, evidence from these
approaches must be integrated to better understand the onset and progression of tau pathology across tauopathies.
This will lead to improved methods for the detection and monitoring of disease progression and, hopefully, to the
development and refinement of tau-based therapeutics.
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Tauopathies are a heterogeneous class of diseases charac-
terized by cellular accumulation of aggregated tau. Alzheimer’s
disease (AD) is the most prevalent tauopathy, currently
affecting approximately 50 million people worldwide (1).
Whereas AD is also characterized by extracellular plaques
composed of aggregated fibrillar amyloid-b (Ab), other tauo-
pathies such as corticobasal degeneration (CBD), progressive
supranuclear palsy (PSP), Pick’s disease, chronic traumatic
encephalopathy (CTE), and aging-related tau astrogliopathy
are primarily characterized by tau pathology (2,3). Interestingly,
the morphology of the cellular aggregates and affected cell
types can vary between these diseases. For example, while AD
mainly features neurofibrillary tangles (NFTs) and neuropil
threads within neurons, together with dystrophic neurites
surrounding Ab plaques (4), PSP and CBD present with
prominent astrocytic and oligodendroglial tau pathology
(Figure 1) (3). The different tauopathies also have distinct
anatomical distribution of pathology and present as unique
clinical syndromes (3). Owing to its close correlation with
neurodegeneration and cognitive symptoms (5,6), there is a
growing interest in the biology of tau propagation throughout
the human brain in different tauopathies. This review provides
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an AD-focused overview of the literature, with the goal of
integrating the existing knowledge obtained from human
postmortem studies, animal models, tau positron emission
tomography (PET), and fluid biomarkers.

TAU PATHOBIOLOGY

Tau protein is themajor constituent of NFTs in AD (7–10) and the
lesions found in PSP and Pick’s disease (11–13). Tau is an
abundant axonal microtubule–binding protein with a variety of
physiological functions (14). It can be subdivided into several
domains: the structurally disordered N-terminal, the proline rich
mid-domain, and the highly conserved C-terminal domain
(Figure 2) (15–17). The C-terminal half of the protein contains the
microtubule binding repeats, which are partly incorporated into
the core of tau filaments (17–20). Tau protein is encoded by the
MAPT gene on chromosome 17q21.31, and various mutations
in this gene have been linked to an increased risk of tau pa-
thology and clinical symptoms, thereby strongly indicating tau
pathology as causal to neurodegeneration (21–23). The MAPT
gene messenger RNA in the central nervous system can be
alternatively spliced to encode 6 isoforms of the tau protein,
containing either 0, 1, or 2 N-terminal inserts and 3 or 4
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Figure 1. Heterogeneity of tau pathology in different tauopathies. All figures show AT8 (p202/205) staining on paraffin sections. (A) Neurofibrillary tangles
(NFTs) and neuropil threads in the hippocampus of a patient with Alzheimer’s disease (AD). (B) Neuritic plaques in the hippocampus of a patient with AD. (C)
Pick bodies in the granular cells of the hippocampus of a patient with Pick’s disease (PiD). (D) Oligodendrocytic coiled body in the caudate nucleus of a patient
with corticobasal degeneration (CBD). (E) Tufted astrocytes in the caudate nucleus of a patient with progressive supranuclear palsy (PSP). (F) Astrocytic
plaques in the caudate nucleus of a patient with CBD.
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microtubule binding repeats (24,25). The difference between the
3-repeat (3R) and 4-repeat (4R) isoforms is that the 4R isoform
includes the second repeat encoded by exon 10, which is
spliced out in 3R tau. Tau protein is subject to many post-
translation modifications, such as phosphorylation, acetyla-
tion, and truncation (14). Interestingly, it was already discovered
early on that the tau proteins incorporated in the fibrils are
hyperphosphorylated (25). The precise role of post-translation
modifications in the initiation of tau pathology is currently
unresolved. However, several studies indicate that N- and
C-terminal truncation of tau may be an important early event in
tangle formation and that truncated tau potently induces
neurofibrillary degeneration in transgenic animals (26–28).

Insights into structural features of tau that are involved in the
aggregation process have been obtained by studying recom-
binant tau in vitro. Although a natively unfolded protein, tau does
appear to have a global physiological structure in which the C-
terminal folds over the microtubule binding repeats and both
ends of themolecule approach each other (29). Themicrotubule
binding repeats of tau contains 2 hexapeptides that can form
intermolecular b-sheet rich structures: aa275-280 (VQIINK) inR2
and aa306-311 (VQIVYK) in R3 (30,31). Under pathological
conditions, tau can adopt an abnormal conformation that ex-
poses these residues and increases its propensity for self-
aggregation (32,33). Physiological tau monomers can be
incorporated into aggregates; this process is known as tem-
plated misfolding or seeded nucleation and results in the rapid
elongation of aggregates (34). The seeding process starts with
the misfolding and aggregation of tau monomers, which then
form the building unit for the formation of oligomers and ulti-
mately highly structured fibrils that are insoluble in detergents
such as sarkosyl (34,35). In AD, these tau filaments can take the
form of paired helical filaments and straight filaments, which
accumulate as a mixture within the cell in the form of NFTs (36).
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Tau research is increasingly focused on the highly reactive
detergent-soluble oligomers, rather than on the relatively inert,
larger detergent-insoluble fibrils (37). In AD, neurons with NFTs
can survive for decades (38). Additionally, neuronal loss cor-
relates with but exceeds NFTs in AD (39,40). Furthermore,
suppression of tau overexpression in a mouse model with
aggressive tauopathy led to rescue of neurodegeneration and
cognitive deficits. Interestingly, NFTs continued to develop,
indicating that the toxicity mainly originates from soluble tau
that is not sequestered by insoluble tau fibrils (41). Indeed,
overexpression of an aggregation-prone version of tau rapidly
induced the formation of Gallyas-positive NFTs but reduced
the neurotoxicity of soluble tau (42). It is still conceivable that
larger tau aggregates may exert toxicity by taking up space in
the crowded environment of the cell. However, the soluble
oligomers can easily diffuse throughout the cell, interact in a
nonphysiological manner with a wide range of cellular proteins,
and cause synaptotoxicity (43).

Smaller tau species can also propagate from cell to cell and
seed physiological tau in healthy neurons (44–46). Both
physiological and aggregated tau are secreted into the inter-
stitial fluid, with this process increased by synaptic activity
(47–50). The current in vitro evidence suggests that tau
secretion occurs via 1) release from synaptic vesicles (51), 2)
secretion in extracellular vesicles such as exosomes (52), 3)
direct translocation across the membrane (53), and/or 4)
transport through tunneling nanotubes (54). Tau can be taken
up from the extracellular space via additional mechanisms: 1)
bulk endocytosis (55), 2) macropinocytosis by heparan sulfate
proteoglycans (56), and/or 3) clathrin-mediated endocytosis
(57,58). After tau seeds enter the neuron, they can leak via
damaged vesicles into the cytosol and seed physiological
monomers to propagate the pathological process (59,60).
Additionally, microglia and astrocytes can phagocytose
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Figure 2. Domains of tau and identified truncation
sites in the brain and cerebrospinal fluid tau. Tau
protein is depicted here as the longest isoforms
(2N4R). Tau protein can be subdivided into the
projection region at the N-terminal, the proline rich
mid-domain, the microtubule-binding domain, and
the distal C-terminal. Each of 6 possible tau isoforms
contains 0, 1, or 2 N-terminal inserts (blue and green
boxes with N), and either 3 or 4 repeats (orange and
pink boxes with R), as R2 (pink) can be spliced out in

3-repeat isoforms. The amino acid numbers below depict examples of identified truncation sites. These truncation sites may play an important role in the
pathogenesis of tau pathology and detection of tau in bodily fluids.
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extracellular tau and are involved in tau spreading (61–63). The
process of tau spreading is now hypothesized to underlie the
progression of tau pathology throughout the brain (Figure 3).
FINDINGS FROM POSTMORTEM PATIENT STUDIES
USING IN VITRO BIOSENSOR ASSAYS AND
STRUCTURAL BIOLOGY

A seminal postmortem study in 1991 described the stereo-
typical appearance and progression of tau pathology in AD
(64), which was later associated with the progression of
cognitive symptoms (65). This pattern was developed into a
staging scheme based on the histological detection of NFTs
and subsequent cross-sectional comparisons between AD
brain tissue at different disease stages and is widely used in
the research field (64) (Figure 3). Beginning in the rostral medial
temporal lobe (specifically the entorhinal cortex, Braak stage I/
II), tau pathology is thought to then progress to limbic regions
(Braak stage III/IV), including the hippocampus. Tau pathology
ultimately reaches the neocortex (Braak stage V/VI), which is
invariably associated with cognitive symptoms (65). The pri-
mary motor and sensory cortices can remain spared even at
these stages. Tau-associated neurodegeneration of the ento-
rhinal cortex is thought to lead to a functional disconnection of
the hippocampal formation from the cortical association areas,
a process that may underlie the cognitive symptoms in AD (66).

It is currently unclear why the entorhinal cortex is particularly
vulnerable to tau pathology and neurodegeneration in AD. Tau
pathology in AD always seems to affect the same cell type, i.e.,
the large excitatory pyramidal cells in layer II of the entorhinal
cortex that project via the performant pathway to the hippo-
campus. It has been proposed that the regional vulnerability of
these neurons in the entorhinal cortex stems from their high
metabolic rate resulting from high dendritic complexity, long
unmyelinated axons, high degrees of plasticity, and unique
gene expression signature related to tau homeostasis (67–70).
It is worth noting that tau pathology in the primary tauopathies
starts in different brain regions and additionally affects glial
cells. Recent progress, for example, has been made in staging
the progression of astrocytic tau pathology in aging-related tau
astrogliopathy (71). This raises the question of how and why
selective regional vulnerability to tau pathology differs between
different tauopathies. CTE is unique in this regard because the
tau pathology is induced by external trauma, leading to indi-
vidualized progression patterns, which start in the cortex and
later progress to the hippocampus and other brain regions (72).
B

It was originally assumed that the progression of tau pa-
thology throughout the rest of the brain was mediated by
regional vulnerability. As mentioned previously, however, there
is now accumulated evidence that tau aggregates can spread
along neuronal connections and lead to templated misfolding
in healthy cells (73). A sensitive Förster resonance energy
transfer–based biosensor assay was developed by Mark Dia-
mond and is now widely used to measure tau seeding in brain
samples (74). Several studies that have compared neuropa-
thology and tau seeding using this assay at different Braak
stages in patients with AD have shown that tau seeding can be
detected before overt tau pathology in the entorhinal cortex
and connected neuroanatomical regions (75,76). Furthermore,
seed-competent tau was isolated from white matter tracts,
indicating that tau seeds can be transported along neuronal
connections (77). The same study also detected seed-
competent tau in synaptosomes from patients with AD,
which were isolated from brain regions that have not yet
demonstrated tau pathology (77). Though some authors have
hypothesized that tau pathology starts in the locus coeruleus,
no tau seeding was observed in this area in early Braak stages
(76). Two recent studies used size-exclusion chromatography
to isolate a high-molecular-weight tau species from AD brain
tissue and cerebrospinal fluid (CSF), which constituted only a
small fraction of total tau but was highly seed competent and
spread efficiently to other cells (78,79). Tau isolated from AD
cases with Ab plaque pathology was more seed competent
than tau from a case without plaques; this could be experi-
mentally explained by an increased proportion of high-
molecular-weight tau in the presence of plaque pathology (80).

A recent study also used Förster resonance energy transfer–
based cellular biosensor assay to demonstrate that primary
microglia, derived from patients with AD or other tauopathies,
secrete seed-competent tau into the extracellular space (63).
The results of this study suggest that while microglia phago-
cytose extracellular tau, they seem unable to fully degrade it,
secreting it back into the extracellular space; in this way,
microglia may contribute to the propagation of tau pathology
(63). The region-dependent differences in phagocytic capacity
and the sensitivity of this process to aging (81,82) may provide
a link between regional vulnerability and tau spreading.

As mentioned previously, there is considerable heteroge-
neity in tau pathology across tauopathies. Recent cryo-
electron microscopy studies have provided unprecedented
insight into how structural differences in aggregates may lead
to these differences. Tau filaments extracted from the brain of
a patient with AD showed that the core is located at residues
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 3
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Figure 3. Propagation of tau pathology in Alz-
heimer’s disease. (A) Mechanisms of tau spreading.
1) Release of tau into the extracellular space can
occur via (from top to bottom) synaptic vesicles,
direct translocation across the membrane, or extra-
cellular vesicles. 2) Tau seeds can be taken up by
healthy neurons via (from top to bottom) direct
translocation across the membrane, macro-
pinocytosis via heparan sulfate proteoglycans, bulk
endocytosis, clathrin-mediated endocytosis, or
fusion of extracellular vesicles with the plasma
membrane. 3) Tau seeds that are taken up damage
endocytic vesicles and thereby escape into the
cytosolic compartment. 4) Tau seeds can then seed
physiological tau, leading to the growth of the fibrils
and propagation of the aggregation process. (B)
Progression of tau pathology in AD as described by
the Braak staging scheme using postmortem his-
tology. Adapted with permission from Goedert et al.
(150).
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306 to 378 and that the configurations of paired helical fila-
ments and straight filaments are slightly different (83). These
residues are in the third and fourth repeats and part of the
distal C-terminus, which may explain why both 3R and 4R tau
can be incorporated into AD fibrils. The core of filaments from
CTE is also located in the third and fourth repeats and thereby
also consists of both 3R and 4R tau. However, CTE filaments
also exhibit a structure distinct from AD fibrils, which encloses
an additional density that is not connected to tau (84). This
suggests that tau pathology in CTE may be caused by a
cellular co-factor that promotes nucleation. In contrast, fila-
ments derived from Pick’s disease tissue adopt a radically
different fold compared with AD or CTE, with the core between
residues 254 and 378 and with an inability to incorporate 4R
tau isoforms (85). These filaments also expose surface resi-
dues and phospho-epitopes that are distinct from AD filaments
(85). Data on 4R tauopathies such as PSP or CBD are not yet
available, but this will likely reveal yet another fold that ex-
cludes the 3R isoform. Important outstanding areas of inves-
tigation are what biophysical mechanisms cause tau to fold
into distinct filaments, why this happens in distinct brain re-
gions in different tauopathies, and what explains the presence
or absence of glial tau pathology in the different tauopathies.
ANIMAL-BASED TAU SPREADING MODELS

Animal models of tauopathy have significantly advanced our
understanding of tau pathobiology. In vivo spreading models
can be roughly subdivided into 3 groups: 1) transgenic models,
2) viral vector models, and 3) seeding models (Table 1).
Transgenic models overexpress human tau or its fragments
that usually have mutations or amino acid deletions that in-
crease the propensity of tau to aggregate. Transgenic models
4 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
are widely used to study tau pathology, neuroinflammation,
and tau-associated neurodegeneration (86). With an increased
focus on tau spreading, transgenic models have been devel-
oped that selectively express the transgene in the entorhinal
cortex (87,88). These models show spreading of human tau to
neighboring and synaptically connected neurons, albeit only at
advanced ages (12–21 months). For example, these models
have been used to show that the presence of Ab deposition
accelerates the propagation of tau (89). Additionally, opto-
genetically increasing the activity of neurons in the entorhinal
cortex speeds up spreading in this model (90).

Viral vector models are a practical improvement on trans-
genic spreading models, as they have been shown to induce
spreading from the entorhinal cortex to the dentate gyrus in as
little as 4 weeks after injection (61). For example, an adeno-
associated virus (AAV) model has been used to show that
when microglia were depleted, spreading was greatly dimin-
ished, thereby providing the first evidence that microglia play
an important role in tau propagation (61). An advantage of AAV
models is that they can be modified to express both human tau
and fluorophores in a 1:1 ratio without fusing the proteins,
thereby labeling the transduced cells (91). This method pro-
vides strong evidence for spreading, as it is unlikely that the
synaptically connected cells were transduced by the AAV if
they lack the fluorophore. AAV models can also be easily
combined with existing transgenic models to study the
mechanisms behind tau spreading, such as how proteins in
pathways related to AD risk genes (e.g., DAP12) affect tau
propagation (92).

Another interesting approach is to induce pathology and
spreading by injecting aggregated tau isolated from the brains
of transgenic animals or patients with tauopathy into mouse
and rat tauopathy models (93–97). The introduction of existing
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Table 1. Comparison of Different Widely Used Approaches to Study Spreading of Tau Pathology

Approach Strengths Limitations

FRET-based cellular biosensor
assays (74–77)

Sensitive detection of tau seeding in brain tissue
Allows for studying of cellular mechanisms of tau

seed uptake

FRET signal is based on proximity of 2 tau
molecules, not aggregation

Transgenic spreading mouse
models (87–90)

No brain injection required Overexpressed tau construct is artificial
Very slow spreading (12–21 months)

Patient derived tau-based
seeding models in mice (93,94)

Disease-specific conformation
Recapitulates disease features not found

in transgenic models

Requires brain injection
Unclear which neurons take up tau, limits

interpretation for spreading

Viral vector–based models
in mice (91,92)

Rapid spreading
Included fluorophore for determination of spreading

Requires injection of virus into the brain

FRET, Förster resonance energy transfer.
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fibrils bypasses the need for nucleation, which is the rate-
limiting step in the aggregation process. These fibrils can
therefore immediately seed overexpressed human tau or
physiological mouse tau. The spreading in these models was
predominantly observed along neuronal connections, indi-
cating that synaptic spreading is the dominant mode of tau
propagation (98). In an interesting study, tau aggregates were
isolated from seeded cells in vitro, then injected in animals, and
the brain lysates were applied to cells again. By creating
several tau “strains,” this study demonstrated that the con-
formations of different types of tau aggregates can be stably
maintained when repeating this process multiple times (99). A
follow-up study also showed that different strains lead to
unique cellular pathologies, aggregation properties, and
anatomical spreading patterns (100).

Intriguingly, this strain hypothesis is now being extended by
showing that tau isolated from patients with AD or patients
with primary tauopathies (e.g., CBD, PSP) led to recapitulation
of the original tau pathology in these diseases (e.g., histo-
pathological morphology and cell-type specificity) (93,101).
These models have now been refined to also induce tau pa-
thology in wild-type mice. These studies show that AD-derived
tau filaments are more aggressive than recombinant tau fibrils
(102). In turn, tau filaments derived from CBD and PSP were
more aggressive than AD-derived tau fibrils and also induced
astrocytic or oligodendrocytic tau pathology (97). As tau pa-
thology originates in different brain regions in, for example, AD,
PSP, and CBD, it would be interesting to see if the neurons or
glial cells in these areas give rise to the unique properties of the
aggregates in these tauopathies.

When AD-derived tau filaments were injected in transgenic
mice with Ab plaque pathology, this led to the formation of all 3
major types of AD tau pathology in an animal model (i.e., NFTs,
neuropil threads, and tau aggregates in dystrophic neurites)
(103,104). This is noteworthy because the range of tau pa-
thologies observed in AD has not been observed in previous
transgenic mouse models expressing both Ab and tau pa-
thology (105). These studies therefore demonstrate that mouse
models that are injected with patient-derived fibrils possess
unique translational value in testing tau-based diagnostics and
therapies. Indeed, a recent study described the induction and
hippocampal spreading of tau pathology induced by injecting
AD-derived tau filaments in a rat model overexpressing trun-
cated tau (95). Given the bigger brain size of rats compared
with mice, such models might prove useful for studying real-
time tau spreading in vivo using PET imaging.
B

TAU PET IMAGING IN HUMANS

Though tau pathology is a challenging target for molecular
imaging by means of PET (106)—owing to, for instance, the
intracellular accumulation of tau and the varied ultrastructural
conformations it can assume—remarkable progress has been
achieved in this area over the past several years (107)
(Figure 4). Using so-called first-generation tau ligands (e.g.,
[18F]THK5351, [18F]flortaucipir [AV1451], [11C]PBB3), retention
has been shown to be elevated in patients with AD, as
compared with control subjects (108–110), with uptake pat-
terns matching histopathology-derived staging schemes for
tau (64,111,112). A drawback among first-generation tau li-
gands, however, is their off-target (nonspecific) binding to
non–tau protein deposits, including iron, neuromelanin, and
monoamine oxidase B. Novel tau ligands now entering the field
(e.g., [18F]MK-6240, [18F]RO948, [18F]GTP-1) appear to be less
hampered by this (113,114); this awaits confirmation using
larger samples (115). Studies in patients with primary tauo-
pathies, such as CBD or PSP, while comparatively few in
number, have also shown discrimination from control subjects
and regional uptake relatively consistent with those expected
in these diseases (109,116,117); however, oftentimes ligand
retention appears in regions with known off-target binding,
complicating accurate quantification. Given that existing li-
gands seem to bind preferentially to AD-type 3R/4R paired
helical filament tau, however, it is likely the case that a range of
novel compounds will ultimately be needed to cover the
spectrum of primary tauopathies.

In the few studies hitherto addressing longitudinal tau PET
in control subjects and patients with AD (118–122), increases
in tau PET signal over time have been reported, with the
greatest increases consistently being observed in individuals
with dementia. In the largest of these to date (121), fairly uni-
form rates of tau accumulation were reported across brain
regions, arguing against the histopathology-derived idea that
tau pathology necessarily aggregates in a stepwise fashion.
While not ruling out the concept that tau may spread trans-
synaptically, this finding does conflict with the idea that in-
creases in the level of tau burden in the brain result from its
spread from one unaffected area to another. This discrepancy
between the thus far limited in vivo PET findings and histo-
pathology may, however, be a reflection of the fact that current
ligands lack extensive validation (123) or that the Braak tau
staging scheme amounts to an extrapolation owing to its being
grounded in cross-sectional autopsy data.
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 5
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Figure 4. Progression of tau pathology measured
by positron emission tomography. [18F]Flortaucipir
positron emission tomography–based stages of tau
pathology among cognitively unimpaired and
impaired subjects [for methods and original data,
see Maass et al. (111)]. Images highlight the pro-
gression of tau from the medial temporal lobe to the
parietal/frontal regions and, finally, the association
cortices, corresponding to histopathologically
established Braak stages. Adapted with permission
from Maass et al. (111).
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MEASURES OF TAU IN BODY FLUIDS

Core CSF biomarkers for AD include total tau (T-tau) and tau
phosphorylated at threonine 181 (P-tau). Numerous clinical
studies have consistently shown a marked increase in both AD
and patients with mild cognitive impairment (124). These CSF
biomarkers, together with CSF Ab42, which reflects brain
amyloidosis (125), are now included in research diagnostic
criteria (126,127). In AD, elevated CSF T-tau is thought to
reflect the intensity of neurodegeneration, while CSF P-tau
reflects the phosphorylation state of tau, and likely tau pa-
thology (128). However, with the exception of Creutzfeldt-
Jakob disease, the concentrations of these markers are
within the normal range in the majority of other tauopathies
(129–132). This may be due to reduced secretion of tau into the
extracellular space or simply an alternative processing of full-
length tau in primary tauopathies that are not captured by
the mid-domain immunoassays commonly used for assess-
ment of AD. The possibility that increased CSF T-tau and P-tau
concentrations in AD are not direct markers of neuro-
degeneration and tangle formation per se, but rather reflect
increased tau secretion into the interstitial fluid in response to
Ab pathology (50) or other mechanisms that may lead to
increased tau levels in the CSF, requires further study.

In AD, not all tau species present can be measured with the
traditional mid-domain assays. Several studies suggest that
tau is present as different fragments in CSF, with N-terminal
and midregion tau representing the most abundant variants
(133). This is especially evident in AD, while in primary tauo-
pathies concentrations of truncated tau are surprisingly normal
or even lower than those of control subjects (134,135). Assays
targeting specific tau fragments (e.g., N-123, N-224, x-224, tau
368) have recently been developed and show promise as
candidates to add to the AD and primary tauopathies
biomarker panel (136).

The findings of tau in blood are less clear, particularly owing
to the substantially lower concentration of tau in plasma
compared with CSF. Plasma T-tau is slightly increased in AD
compared with age-matched control subjects (137,138), but
there is a substantial overlap between groups and a very poor
correlation between plasma and CSF levels of T-tau (139).
There are important confounders that explain these findings.
First, although tau is brain enriched, substantial expression of
tau from the salivary gland (140) and kidneys (141) that is
seemingly unrelated to central nervous system pathology is
observed. Second, the short half-life of tau in plasma (hours)
compared with CSF (weeks) (142) makes it an unreliable
biomarker of neurodegeneration. Recent developments have
revealed increases in P-tau (143) and N-terminal tau (144),
which are encouraging findings in need of replication.
6 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
Could detection of tau seeds in biofluids be used as a
biomarker for tauopathies? A recently described technique
called real-time quaking-induced conversion, which exploits
the ability of prion protein to induce self-aggregation, has been
used to develop a diagnostic CSF test for Creutzfeldt-Jakob
disease (145). This method has now also been developed
into a test to detect pathological forms of tau in CSF from
patients with AD or other tauopathies (146,147). Seed-
competent high-molecular-weight tau species have been
detected in human CSF (78), but there is yet no established
method in clinical laboratory practice.

CONCLUSIONS AND OUTLOOK

Interest in how tau pathology progresses through the brain has
been a subject of research since the initial development of the
staging scheme for tau pathology by Braak and Braak (64). The
discovery of tau spreading in cellular and animal models has
led to a surge of scientific efforts on this topic in the past
decade (96). There has been significant progress in humanizing
animal tauopathy models; by injecting patient-derived tau fi-
brils as seeds into rodent brains, the aggregation, histopath-
ological lesions, and cell-type specificity of the patient can be
recapitulated. Such models may provide better translatability
to study the mechanisms of tau pathology in vivo and are
increasingly used to test novel therapeutics (148,149). Impor-
tant outstanding questions that can be studied with these
models are, for example, how microglia, astrocytes, and other
cell types are involved in the progression of tauopathy.

There have also been substantial developments in studying
tau pathology at autopsy. Förster resonance energy transfer–
based cellular biosensor assays can detect tau seeding ac-
tivity before misfolding or hyperphosphorylation of tau, as
detected by traditional histological means (e.g., MC1 or AT8
staining). Though these assays have mostly been applied to
AD tissue, further studies in primary tauopathies are required
to examine differences in regional vulnerability, and cell-to-cell
spreading may vary among the tauopathies. As it is likely that
neurons in certain anatomical regions are more vulnerable to
accumulating tau pathology after taking up extracellular tau
seeds, more studies are needed on the correlation between tau
spreading and the transcriptional profile of vulnerable regions.

While the possibility to regionally map and quantify tau pa-
thology in vivo has been introduced with tau PET ligands, more
data are required for novel tau PET ligands, including compar-
ative studies with CSF measures of tau. Measuring T-tau and
P-tau in CSF has been possible for several decades and has
constituted an important diagnostic tool; however, whether tau
seeds in biofluids such as CSF could be used as clinically
accessible diagnostic biomarkers needs to be established.
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