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plex Systems, System Dynamics In this paper we introduce a new method for specifying,
detecting and analysing emergent behaviours that preserve
Abstract their underlying and contributory structure.

We introduce a method for analysing emergent behaviours Agent-based simulations have been widely used in many
in multi-agent simulations usingomplex eventsComplex domains to study dynamic systems which also have dynamic
events are composed of interrelated events, and they can bB&uctures. Rules are defined at the level of agents, with
defined at any level of spatio-temporal abstraction (equathe behaviour of each type of agent being governed by its
to or above the lowest level of abstraction given by theown set of rules. From these agent-level behaviours, cer-
model). Minimaltypesof complex events define sets, which tain properties can emerge at the ‘macro-level’; these ean b
are equated with particular emergent behaviours and can emporal patterns/structures or temporally extende@-pro
detected in simulation. erties, i.e. behaviours. While atemporal emergent pattern
Since complex events are derived from the agent-base¢an be described and analysed in terms of configurations of
model itself, they provide significant benefits when comgare agent states, there seems to be no corresponding structure-
with traditional state-aggregation methods. First, theyjsle  preserving method for doing this for temporally extended
a method ofspecifyingemergent behaviour, so that such be-emergent properties. Instead, two types of approachegare t
haviour can be monitored. Second, they provide a mechanisimally used to measure ‘macro-level’ behaviour:
thatretains the underlying structuref that behaviour. This . )
latter property supports analysis of the mechanisms atrlowe 1- The aggregation of agent states (“State Aggregation”)
levels that give rise to emergent behaviours, and identifica N0 & macro-variable or set of macro-variables (see

tion of patterns between levels. In other words, multi-agen [ 3] for examples). Changes in the macro-variable(s)
simulations become less ‘opaque’[1]. over the course of the simulation represent changes at

the macro-level (see Figure 1).

1. INTRODUCTION 2. Human observation of the simulation, and of qualitative
changes in the dynamics e.g. flocking behaviour from
non-flocking behaviour [4] (a method for quantifying
this is given in [5]).

Emergent behaviour in real-world systems is notoriously
unpredictable. When the UK government ordered the Na-
tional Health Service (NHS) to reduce the average time that
patients spent waiting for treatment, the emergent bebavio

at some hospitals was unexpected: quick operations were Pon about thestructure of behaviour e.g. which agent in-

oritised over longer operations; patients were given unnec - . ) .
9 P b 9 teractions have given rise to the behaviour, and how these

essary treatment to move them down the waiting list; a new . N .
) Y . . interactions are related in time and space. Since a set of

role of “hello nurse” was invented to greet patients (so they : . : . .
states is aggregated into a single measure, the relatpnshi

Wzrsonlc:j Ir?]r;%irl a"rﬁ'ts'f‘mg )}algvgocl'ggn leéreISy sthn:]eslp(f:l# ;fst between the high-level behaviour and the underlying agent
w u ) imu plex syst u . r1‘?ehaviours (generated from the agent-based model (ABM))
NHS, describe and observe emergent behaviours, and inv

: . €% lost. This lack of understanding as to how the agent level
tigate those behaviours to understdmvthey were created . gast gen

; . . relates to higher levels of observation is what makes simula
(i.e. what were the constituent components or behaviows at

. . tions ‘opaque’ [1]. On the other hand, human observation of
lower level of abstraction that caused the behaviour to gener the simulation does preserve structure (which structures a
at the higher level?). However, it is difficult to model the be P

. R . . identified depends very much on the expertise and objectives
haviour “prioritising a quick operation over a longer oper-

. X A of the observer), but as a scientific method it is insuffidient

ation” since the more interesting instances have many sub-__ . :
precise or methodical.

Lhttp:/www.blairwatch.co.uk/node/1692 What we lack is a systematic method for describing emer-

http://www.24dash.com/health/19024.htm gent behaviours in terms of the agent-based model. In some

The use of State Aggregation results in loss of informa-




Section 3. explains how events can be composed to
give complex events by specifying temporal, spatial and

o ) oY) ® " component-based relationships between constituent gvent
o o] [E———— e : : den.
O .. ® ® o and Section 3.2. shows how emergent behaviours can be iden
® tified with setsof complex events. This provides a systematic
method for specifying temporally extended emergent proper
© ties (behaviours and entities) in terms of the underlyireyég
4 I s based model.
| ) . . .
S o illustrate our method, we give a simple worked exam-
o To illustrat thod, we g ple worked
£ stateats, el ple and then run simulations to demonstrate the detectidn an
decomposition of of emergent behaviours. The final section
\ time briefly summarises and concludes.

Figure 1. Caricature of the traditional view of multi-agent
simulation as a series of still frames. Each frame is a sr@psh 2. DEFINITIONSAND ASSUMPTIONS

of the system at a given time. The definition of terms such as ‘emergence’ and ‘levels’ is
heavily contested in the literature [6, 7]. In order to make e
plicit our assumptions therefore, we first give our defimtio
cases, this greatly hampers the contribution that ABM carof the emergence-related terms used throughout the paper. W
make to our understanding of a complex system. For exampléhen give a generalised description of agent-based models.
one might view the higher-level emergent behaviours of the
NHS as a consequence of its members’ behaviours (doctorg, 1. Emergence and Emergent Properties
managers, consultants, staff, patients, etc.). We migiigde  |n this paper, we assume a particular definition of emer-
and run a multi-agent simulation of this successfully whichgence, based largely on the recent contributions fronsitati
produces the expected changes in the system's overall pega| mechanics that have sought to formalise emergence (see
formance. However, if this change in overall performance iggj for a review); in particular, we use many of the definiton
represented by a single variable, we lose a substantial@mougiven in [9]. While we acknowledge that these definitions wil
of useful information even though it is in our simulation. We ot he accepted by all who work in the field, we argue that for
fail to identify the underlying agent interactions and amga  oyr current purposes they are useful definitions and pravide
sational behaviours that give rise to the higher-level @igr  sound framework for defining emergence in multi-agent sim-
behaviour. How does bad management contribute to unde(yations. For our assumed definitions, we must first intreduc
performance? Are operational inefficiencies important? Wene concepts of scope and resolution.
fail to identify these emergent behaviours in a simulatien b The scope of a representation of the system is the ‘set of
cause they not been described in terms of what is going on &mponents within the boundary between the associated sys-
the agent level. Yet answers to these types of questions giem and its environment' [9% (at a given resolution). The
us important information about the workings of the systemgcopes of a temporally extended system can be considered
and which events are most significant in causing failure. o pe made up of its temporal scope which defines the set

We propose a method for addressing this issue of how tgf moments of time over which the system is represented and
specify, detect and analyse emergent behaviours in multiy spatial scops,.

agent simulationsn terms of the agent-based mod&he Resolution is the number of states that can be distin-

method applies to any level of spatio-temporal abstractioyished i.e. given the same scope, a higher-resolutiorr)fine

that can be composed from the agent-based model and henggyresentation will be able to distinguish a greater nurober

allows us to relate different levels to one another using th‘?)ossibilities. Again, there is both a spatial aspegtand a

underlying agent model as a common denominator. Using &smporal asped®; which together define the overall resolu-

simple example, we will demonstrate that our new methodjon R

supports an improved understanding of emergent behaviour A |evel of abstraction is then a function of the scope and

that cannot be provided by State Aggregation. resolution, where a higher level of abstractMrhas a greater
scope and/or a lower resolution than a lower level of abstrac

1.1. Structure of the Paper tion p (see equations (1), (2) and (3)):

Since our work is based on certain assumptions about com-
plex systems and emergence, those assumptions are made ex- Rv <Ry )

P"Cit in Section 2. We also give a brief generalised descrip  27pe system’s environment is considered to be outside theesobrep-
tion of agent-based models. resentation.




Sv>Su (2) inanagent-based model are specified from the perspective of
a given component type.

(Rw,Sm) # (R, ) 3)
Emergence is closely related to level of abstraction.lyirst 3., COMPLEX EVENTS
we stipulate that aemergent property must be at a higher | this section we introduce our new conceptooinplex

level of abstraction than its constituent properties. 8680  events which are events that comprise one or more related
an emergent property must not be detectable at a lower levepnstituent events (the constituent events can also beleamp
can not be detectelnly lower level components). Finally, the  simple evenSE (with no further constituents) or two complex

reason why an emergent property is not detectable at lowgkyents linked by a specified relationship
levels is because it consists of a particular set of relatigrs

between its components as well as the components itself. CE :: SE|CE;<CE (4)
We further distinguish three types of emergent property:
Relating Two Complex Events
1. emergengtate: an identifiable state at a particular level  \we define the relationshig to be a temporal operatoy
of abstraction that results_ from a_configuration of Statesoptionally followed by descriptions of (i) space consttain
at lower levels of abstraction, defined atemporally and (i) constraints pertaining to the variables or compuse
of the two related complex events. A detailed explanation of

2. emergenentity: an identifiable entity at a particular ® and the two types of constraint is provided in Section 3.1.

level of abstraction that is able to persist through time ~
(has temporal extension) and which is subject to theSmpleEvents _ _
rules operating at that level of abstraction, but whose ex- We define a simple ever8E as a change in state (given

istence is dependent on entities and/or processes at lowBy a state transition functiotrans()) that occurs in time
levels of abstractiofi. with a non-negative duration (duratiom 0) — see Equa-

tion 5, wherexq,, ... Xi¢; are specific variables in simulation,
3. emergentbehaviour: an identifiable temporally ex- andtgat andteng are respectively the start and end times of
tended process at a particular level of abstraction thathe simple event. The variables may belong to different com-
results from a set of processes operating at a lower levglonents (e.g. agents), and the source component identity fo
of abstraction that anelated to one anotheemporally  each variable may be specified as part of the subsddpts

and/or spatially. id, etc.
Each simple eventis an instance cfimple event typesg,
2.2. Generalised Description of ABMs which specifies (i) a transition function to be applied tospe

ified variable types, and (ii) a duration — see Equation 6,
wheret; are the types of the variables addenotes the dura-
‘,Hon (arange, or defined value). An event type specifies a set
while an actual event is a member of such a set. Two simple

a history. Various classes of components (e.g. agents;tsbje ev;ar}ﬁhare thelrettr)]re of thef sar?e t)t/p(teh(members tht)lr];same
unencapsulated state variables) might exist in the model; a>® ) if they apply the same function to the same variablestype

though by definition agents should always be present, norfO" the same duration.
agent component classes might also feature. Specifications SE -
. . . = (transXig,, - - - Xid; ), [t t 5

for component types define the set of possible states that in- (trans(Xa, - - Xa;), [tstart,ten) )
stances of the type can take, and are usually given in the form .

P a yar . Tee o (trang(ty,...t), d) (6)
of rules governing state transitions sfatetransition ruleis
a function that changes the values of a set of variables whe8tate Transition Rules
a particular condition is satisfied. Agents and objects aie s In Section 2.2. we defined a state transition rule as a func-
to encapsulata set of variables, which together represent thetion that changes the values of a set of variables when a par-
state of that agent or object. Most of the state transitidesru ticular condition is satisfied. Thus Equation 7 gives thegyn

An agent-based model (ABM) consists of a set of specifica
tions for different component types,camponent being any
element in the system that can be uniquely identified and th
can persist through time i.e. has an identity and is ableve ha

3An atemporal definition means one that doesintrnally refer to time SE.g. a typical rule governing agent ‘actions’ has the forrifatn agent
e.g. being blue. So while we can talk about states with reter¢o time e.g.  instance of typeA ‘perceives’ that conditiorx is satisfied in its ‘neighbour-
say that a state persists in time, the description of the #&#lf does not hood’, transitionf occurs, withx and f being defined relative to tha in-
include a reference to time. stance rather than to some global frame of reference (am@naan be

“Note that thestate of an emergent entiiy not the same as amergent  drawn with local and global coordinates in computer graphithe modi-
state fied variables may be encapsulated by zero or more components



for a state transition rul8TR whereC is the condition that ®, [spacé and [var] can be specified in any number of

needs to be satisfied for an event of tylge to occur: ways using expressions derived from different systems of
logic and representation, depending on the expressivity re
STR:: (Tsg C) (7)  quirements of the specifications. To give an example, we in-

troduce the token identity operator '/’, which is|ear] op-
erator. To specify which variable or component instances ar
shared between two events, it is necessary to ‘get insige’ th
state transition functiofsThe expression follows one of two
patterns:

An evente of type E can be the condition for another event
f of type F if the set of variable values that results from an
event of typeE is always equal to the condition for an event
of typeF, as defined by some state transition rule i.e. if

(Cs ==trang),Vec EVf € F
(trans, (vars),trans, (vars), [e1(var) /ex(var)])
On the other hand, aB-type eventg can be a condition

for an F-type f; even when this relationship does not hold;  ©f

i.e. when the result of applyingans, contingently results in

variable values that form the condition for another evemt. | (srctransg ,sretrans,, [(src)er/(sre)ez)])

a dynamic simulation, the effect of a given event has differ- The first pattern constrains the variabler in e; to be

ent consequences depending on previously and concurrentiife sameas the variablevar in e — e.g. their subscripts
occurring events; i.e. depending on context (both spatidl a must show that they are encapsulated by the same compo-
temporal), the effect of an event can lead to different subsenent (agent) and they must have the same namms.stands

quent eventst(ans==C; in some contexts andtans== for the variables involved in each state transition funttio

in others). The second pattern uses the synsagtrans, to denote
the source component (agent) that gave rise to the tramsitio

3.1. Specifying Complex Events trans, (via evente, as the result of some state transition

The concept of event composition has previously been infule). The token identity operator expressi@nc)e; / (src)e;
troduced in related work in the context of ABM e.g. [10, 11] then constrains the source component (agent) for eetot
but such compositions mainly relate to individaglentbe- ~ Pethe sameas the source component (agent) for ewent
haviours; the approach presented here builds on this wdrk blComplex Event Types
is more general since it addresses other relationshipseetw A complex event typdce is specified by specifying the
events besides temporal ones. constituent event types and the relationships that musatbe s

In Section 3. we defined a complex event as being either &fied between instances of these types. More than one in-
simple event or a relationship between two complex eventsstance of an event type can be required in the complex event
i.e.Cy 1 Cy. As stated previously, we define the relationshipso that when a complex event type is instantiated, each event
>q to be a temporal operatop optionally followed by de- instance plays a particular role in the complex event.
scriptions of (i) space constraints and (ii) constraintgge- We can represent a complex event type specification as a
ing to the variables or components of the two related complexlirected multi-graph (see Figure 2). A multi-graph is a det o
events. Thus, the syntactic pattern for a complex event relanodesN, indexed by integers and a directed adjacency rela-

tionshipr< is given in Equation 8. tionship arc(nl,n2) defined for pairs of distinct nodes and
returning a non-negative integer value. The arcs are cate-
e X e I e ® [spacé|var] e (8) gorised by colour (the colours are greyscales in the figure)
to support more than one type of adjacency relationship i.e.
where {arcA(n1,n2),arcB(nl,n2),arcC(nl,n2)...}, each of which

may or may not be satisfied between two nodes i.e. returns
trueor false This means that no more than one instance of an
adjacency relationship type (arc colour) (arc shade) cést ex
between two nodes. A colour function is a funct@mour(n)
associated with a set of nodes; for each nodeolour(n) is
e Thespatial constraint ‘space: defines the space within the colour of that node. _ _

which e, should occur relative te;: and The nodes represent the event instances in the complex
event type, with the colours standing for the event types. Th

e Thetemporal operator ‘®’: may for example specify
that the second evest is initiated at the same tim¢l”,
before <’, after ‘-’, or immediately after ;" the first
eventey;

* The com_ponept or variable Cc_)nStral nt ‘var': defines 6Note that if distinct instances of a type of variable areutited inside
the relationships between variables or components of thg yansition function e.g¢ andxy, this must be preserved. The operator ‘/
two events; ande,. only equates variable or component instances widiffierentevents.



arcs represent directed relationships between two evatfits w the emergent behaviour described by the%et.
colours standing for particular types of relationship exg. For example, the set of minimal complex event types for
distance= 3. A simulation can also be represented as a diflocking behaviour are all those where two boids within a de-
rected multi-graph with coloured nodes and coloured arc$ined spatial distancé from one another move through space
(many of whose colours we have no knowledge of). We carin the same direction over some minimum length of time
therefore identify instances of complex events by identify So we can say that an emergent behaviour is modelled by a
ing subgraphs in the simulation graph which are isomorphiset of minimal complex event types and instantiated in sim-
with the complex event type graphd.his provides us with a  ulation when one of these minimal complex events is instan-
means of detecting the complex event types we have specifigihted (see Figure 3). Any further complexity that may be re-
when they are instantiated in simulation. quired for specifying or detecting emergent behaviour may b
incorporated via the specification of more elaborate cormple

simulation graph can scheme can be extended to incorporate fuzzy set concepts
complex event types [12, 13] by allowing different degrees of membership fortbot
complex event type sets and emergent behaviour sets.

complex
event type

) events.
subgraphs of the ’\ Although we use crisp sets in the current discussion, our

setX: complex event
types that exemplify
or contain the
minimal complex
event type X

set of complex event types that
instantiate emergent behaviour £
in the simulation

imulation

setY: complex
Figure 2. A simulation can be represented by a coloured e"e““lﬂ;es that
multi-graph with coloured arcs. Different node colourgpfre ﬁ’éﬁ?ﬁiﬂﬁf
resented here by different shades of grey) stand for therdiff minimal
ent event types. Arcs represent relationships (some oftwhic complex event
are of no interest to the modeller) with the colours (repre- type ¥
sented here by different line types — solid and dashed) stand

ing for different relation types. We say that a complex event-igure 3. The emergent behaviot is said to be instanti-
type is instantiated in simulation when we can identify a-sub ated in a simulation when an event of one of the event types

graph in the simulation graph that is isomorphic with thein the setsetX or setY is instantiated. The set of complex
complex event type graph. event types that represdatis the union of the setsetXand

setY.

3.2. Specifying Emergent Behaviour with Sets 4. EXAMPLE: PREDATOR-PREY MODEL
of Complex Event Types To demonstrate our method for understanding simulations

Obviously, it is not feasible to specify all the possible com in terms of complex events and emergent behaviours, we use
plex event types that model an emergent behaviour or eme# Simple predator-prey model. However, instead of only con-
gent entity, since these can be realised in many differepswa Sidering overall population changes, we also try to undeibt
(many of which we have no explicit knowledge of). Rather, the way these come about through emergent group behaviours
we should be able to define classes or sets of complex evehy detecting the the complex events associated with them.
types that model an emergent behaviour. Each member of a

set then represents an exemplar of a particular emergentbg:1, Model: Agent Rules and Validation
haviour. Each Complex Event must contain at least one com- |, our model, there are two species: lions and antelopes.

plex event typelce that isminimal — i.e. they capture the | jons are the predator species and antelopes the prey.
minimal behaviour that can be categorised as an example of the simulation rules for a lion, and associated state transi

tion rules, are:

“Note, also that a given component can participate in manghgrat
the same time. This equates to its participation in diffeex@nts at various 8The minimal complex event type specifications themselvéisela set
levels of abstraction. of event types.




(I=lion; a=antelopex andy are coordinates) 2. A new antelope is born at random location with proba-

1. If an antelope is detected within distart;&ill antelope bility p(aBirth)

with probability p(kill ). The killing of an antelope takes

place instantly. (ABirth, Cagirth)

_ where
(KIllA, Giiia) ABirth = (transasirn( (%.)),0)

where transagirh((X,y)) = new@)at(xs,y1); randomnix, y1)
KillA = (transcina (8, (x,Y)),0) Cagirth = random< p(aBirth)
transqiia (a, (x,y)) = deada)at(x,y)
Ckina = existga)within(d) A (random< p(kill )) 4.2. Experiment: What are the Mechanisms
Underlying Population Dynamics?
To illustrate the specification and detection of emergent
ehaviours using complex events, we introduce two dif-
ferent emergent behaviourBetweedion_overhuntingand
samelion_overhuntingto give us insight into the mecha-
(LBirth,Cigirtn) nisms underlying changes in lion population. While track-
where ing the numbers of lions and antelopes would permit mea-
L , surement of overall system behaviour, this overall system
LBirth = (trang girtn ((X,Y)), 1) behaviour can have different underlying causes. We distin-
trang ginn ((x,y)) = replacel,a)at((x.y)) guish betweerbetweedion_overhunting where more than
Cigirth = deadA(X,Y)) one lion within a particular area makes a kill resulting in
o - . . ] starvationin the area osamelion_overhuntingwhere a sin-
3. Die with probabilityp(IDeath) (instantly) if there isno e Jion kills twice in immediate succession and then starve

2. Ifthe antelope is killed, a new lion is born at the location
of the dead antelope (which is then removed from th
system). The birth of a new lion takes place after a dela?j
of one time step.

antelope within distance. In our experiment, we ensure the lions will become extinct
(LDeath Cypeath) by makmg them voracious k!llers — we sp(k|ll). =1so

that a lion always kills when it has an antelope in its neigh-
where . : : -

bourhood. Since a lion cannot die when killing an antelope,
LDeath= (trang peatn(l, (x,Y)),0) its death must be a consequence of not having an antelope
trang peatn(l, (X, ¥)) = emptyx,y) nearby; we will then investigate the emergent behaviour to
Clpeath = (—Ckia) A (random< p(LDeath)) determine whether extinction is caused by the overhunting o

single lions, or by the competition of two or more lions hunt-
4. Move one step in a random direction at each time step iing in close proximity.
no killing of antelopes or death has taken place. We define starvation betweedion_overhunting and
samelion_overhuntingbehaviours as follows.

(MoveL, CyvioveL)
where e starvation A lion goes for three time steps without see-
MovelL= (transyoveL(l, (X,¥))),0) ing an antelope and then dies.

transwover (I, (X,y)) = Move(l)to(xq,y1); new(xa, y1)

CmoveL = (—Ckilla ) A (—CLpeath) Movely; [samél)|Movely

The simulation rules and state transition rules for an ante- ;[samél)|Movel,; [samél)|LDeathy

lope are:

1. Move one step in a random direction at each time step wheresamél) is:

(if not dead).
(MOVEAChtoned (transuovets( (). transuovet (1, (%,Y)).

where [Movelyg(l)/Movels(1)])

MOVGAZ (tranSMoveA(av (Xa y)))70) b t d h t T df‘f t | th
_ . e betweedion_overhunting Two different lions within a
tranSuovea(a, (x,Y)) = Move(a)to(x, y1); newixs, 1) given distanceangel from one another each kill an an-

CMovea= any telope (either the same or different antelope) at the same



time (*||"). After this, there is at least one starvation eventinfrequently. This is likely to be due to the low antelope rum
in the area inhabited by these two liomar{ge?). bers, which means that it is unlikely for the same individoal
make a kill twice. Also, whilesamelion_overhuntings lim-
(1.KillA | [within(rangel)][~(1)saméKill A, !ted by t_he number of |nd|\_/|FiuaIb,etweed|_on_0ve_rhunt|ng
o _ is not, since the same individual can participate in mora tha
; [within(range2)|starvation one instance dfetweedion_overhunting
Both betweedion_overhunting and

e samelion_overhunting The same lion kills an antelope
two time steps in succession and then dies from starv.
tion.

as_amelion_overhunting complex event types define a
particular set of relationships between events that are tem
porally and spatially structured and which can be detected

_ ) in simulation. By contrast, State Aggregation methods lose

LKillAg; [(I)samél KillA3 information about the deep structure of emergent behaviour

:[(I'saméstarvation Also, assigning variables to particular quantities, eugnber

of agents and number of deaths, does not enable us to identify
or quantify emergertiehaviourssince the variables are based
on systemstatesat different points in time and hence only
measure theonsequencesf behaviours at particular times.
(trang ina, (@, (X, y)),trang kiia, (& (X,Y)), On the other hand, human observation of the simulation does
[(DKillAo/ ((KillA1)]) not relate directly to the model. Because complex events are
defined ultimately in terms of the agent-based model itself

Figure 4 shows how these complex event types can péts events and rule_s), we are able to understand hov_\_/ model

represented by graphs. rules relate to multi-level behaviours and how alterations

these rules are likely to affect these behaviours.

Furthermore, we can define complex events at different
starvation degrees of generality and further investigate their more de
._._._._O tailed structures. For examplagtweendion_overhuntingcan
be subclassed intseameantelopeanddif ferentantelope
Once we have identified a set of complex events belonging
to the same type, we can specify further constraints tordisti

.g - g. ._._._._O guish between these events.

where(l)sameis:

between_lion_overhunting

same_lion_overhunting 40
| i g 30
£25 ety ——
Key: s 20 + [IDegree of
g same_lion_overhunting
. KillA D LBirth —_— ; § 15 +
—O—— [(I)same] —@— [~(I)same] = 10 |
Q LDeath ‘ ABirth — o [same(l)]
—o—o—0— [within(range1)] 54
. Movet <> MoveA —=—=—=— [ywithin(range2)] 0
10x10  15x15 20x20 25x25 30x30
Figure 4. Graphs for complex event typestarvation . .
betweedion_overhuntingand samelion_overhunting With Figure 5. Graph - _showmg .the de-
gree of sameindividual_overhunting and

key below.
ey below betweenndividual.overhunting for different popula-

fion densities (controlled by grid area)p(kill) = 1,
numLions= 50, numAntelopes= 10, p(aBirth) = 0,
p(IDeath) = 0.1. The smallest grid size (highest
ensity) gives the greatest number of instances of
;ﬂeetweedndividual_overhunting

Figure 5 shows the degree to which the above comple
event types occur in simulations with different population
densities before the extinction of lions. In this particuda-
ample, we use a simple additive measure that counts the nu
ber of times the above complex event types are detected in t
simulation. Notice thasamelion_overhuntingoccurs very



5 SUMMARY AND CONCLUSIONS [8] C. R. Shalizi, Methods And Techniques Of Complex
In this paper we have introduced and demonstrated a novel ~ Systems Science: An Overvjesli. Methods and Tech-
method using Complex Events for identifying specific emer- niques of Complex Systems Science: An Overview,

gent behaviours in an agent-based simulation. This can-beap  pp. 33—-114. New York: Springer, 2006.
plied to behaviour at any level of abstraction above the agen
based model level.

Since emergent behaviours are composed of events at the

model level, we do not have to lose information about thej10] T. Stratulat, F. Clerin-Debart, and P. Enjalbert, “Nusr

structure of behaviours at different levels (unlike prexo And Time In Agent-Based Systems,” IBAIL, 2001.
State Aggregation methods). The decomposition of higher

level behaviours into lower level events allows us to predic[11] A. Burns, I. J. Hayes, G. Baxter, and C. J. Fidge, “Mod-
more reliably how changes at the model level (e.g. changesin  elling Temporal Behaviour In Complex Socio-Technical
agent rules) affect behaviours at multiple levels. Systems,” tech. rep., University of York, 2005.

We have demonstrated how the use of Complex Events pr(t- deh. Inf . d |
vides a twofold benefit: it provides a method of specifying 12] L. A. Zadeh, “Fuzzy sets,Information And Contra
emergent behaviour, so that such behaviour can be monjtored vol. 8, pp. 338-353, 1965.
and it provides a mechanism that retains the underlying, con13] B. Kosko, Fuzzy Thinking: The New Science Of Fuzzy
tributory structure of that behaviour. This therefore pdes a Logic. Flamingo, 1993.
rich mechanism for specifying, detecting and analysingreme
gent behaviour.

[9] A. Ryan, “Emergence Is Coupled To Scope, Not Level,”
Nonlinear Science007.
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