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19 Abstract: Despite the influence of other geological and geomorphological factors, 

20 chemical weathering at the Earth’s surface is strongly controlled by climate. Thus, a 

21 measure of weathering intensity determined from soils or sediments should provide 

22 information about the climatic conditions associated with their formation. Available 

23 geochemical and mineralogical data on modern fluvial and marine muds from different 

24 regions of southern Africa and its Atlantic continental margin are used to review the 

25 links between sediment composition and climatic properties together with the 

26 possible causes of variance. Although river muds may not be generated exclusively in a 

27 single sedimentary cycle and erosion and weathering processes do not necessarily take 

28 place in a spatially homogeneous way, significant relationships between mineralogical 

29 and geochemical signatures of river mud and rainfall in the corresponding catchment 

30 area were recognised. Our study shows that the composition of clay is strongly 

31 influenced by climatically-driven weathering, whilst coarser mud fractions tend to be 

32 more affected by provenance, grain size, hydraulic sorting, and recycling. In the marine 

33 environment the climatic signal may be lost even in clay, because of hydraulic 

34 fractionation, authigenic mineral growth and mixing with foreign particles. Given the 

35 ubiquitous character of fluvial muds, and the easy and non-expensive methods 

36 available for separating and analysing clay fractions, their geochemical fingerprints 

37 represent a most precious source of information concerning climate. Any geochemical 

38 parameter used as a regional proxy of climate, however, still requires that the diversity 

39 of geological, geomorphological, and biological factors that affect its value are 

40 cautiously considered. 

41 Keywords: Chemical weathering; Mud composition; Climate; SW African margin; 

42 Congo; Rainfall proxies
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43

44 1. Introduction

45

46 Paleo-climate records from continental settings are crucial to test the performance of 

47 general circulation models and to understand forcing factors of different components of 

48 the climate system. The quest for climatic proxies has shown that isotope data 

49 determined in mammals’ teeth and bones (Grimes et al., 2008; Bernard et al., 2009; 

50 Royer et al., 2013), speleothems (McDermott, 2004), fresh-water biota (Schmitz and 

51 Andreasson, 2001), vegetal remains (Diefendorf et al., 2010), authigenic lake sediments 

52 (Leng and Marshal, 2004) and other materials are able to provide robust information on 

53 local environmental conditions. However, speleothems are found only in very specific 

54 settings and the organic components are not always present or sufficiently well 

55 preserved in continental deposits to make accurate isotopic analysis.

56 Siliciclastic deposits can be regarded as excellent archives of past environmental 

57 conditions, and the composition of loess (e.g., Porter, 2001; Yang et al., 2004; Schatz et 

58 al., 2015) and fine-grained fluvial units (e.g., Dinis et al., 2017; Guo et al., 2018) are 

59 particularly suitable for climatic reconstructions. The postulated links between fluvial 

60 mud composition and climate are based on the fact that most fine-grained sediment 

61 carried in suspension is eroded soil derived from the source areas whose mineralogy 

62 and geochemistry, namely the levels of depletion in mobile elements relative to parent 

63 rocks, are largely dependent on weathering intensity (Viers et al., 2009). Furthermore, 

64 weathering rate has a crucial role in feedback mechanisms of the climate system (Walker 

65 et al., 1981; Berner et al., 1983), making its investigations particularly pertinent. A 
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66 reliable climate proxy based on the geochemical and mineralogical composition of the 

67 widespread worldwide river mud deposits would thus allow a much broader 

68 understanding of past climatic conditions in continental settings. Unfortunately, the 

69 interpretation of the climatic control on the composition of muds is not a 

70 straightforward task. Mud geochemistry and mineralogy are controlled by many diverse 

71 factors (Singer, 1980; Fedo et al., 1995; Gaillardet et al., 1999; Thiry, 2000; Borges et al., 

72 2008; Garzanti et al., 2011; von Eynatten, 2012, 2016) so that the role of climate is 

73 difficult to single out. 

74 The present research arises from previous works focused on the weathering influence 

75 on the mineralogy and geochemistry of present-day river mud deposits from equatorial 

76 to sub-tropical southern Africa (Garzanti et al., 2013, 2014; Dinis et al., 2017). 

77 Complementing earlier approaches, we make use here of an extended set of river mud 

78 samples, include also marine muds collected offshore of the Congo river-mouth, and 

79 specifically consider geochemical data for the clay fraction. Ultimately, compositional 

80 data obtained for different silt and clay size fractions are tested as regional proxies of 

81 climatic variables. We also show how other exogenous factors may control mud 

82 composition and discuss opportunities to minimize biased climatic interpretations based 

83 on the composition of mud deposits. 

84

85 2. The climate-weathering link 

86

87 2.1 Weathering intensity versus weathering rate
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88 Weathering rate reflects the rates of dissolution of bedrock by surficial fluids and 

89 removal of ions in solution and is usually expressed as the amount of mobilised material 

90 per units of area and time (von Blanckenburg et al., 2005). A review of the methods used 

91 to estimate weathering rates was presented by Minasny et al. (2015). The intensity of 

92 chemical weathering affecting a given region is frequently assessed through the 

93 composition of the produced soils or sediments using ratios of elements or sets of 

94 elements that respond differently to chemical decomposition of rock-forming minerals 

95 in exogenous environments. There is a global agreement that the intensity of 

96 weathering at the Earth’s surface largely depends on climate, being higher in warmer 

97 and more humid settings. Several authors postulate that the rate of mineral 

98 decomposition at the watershed scale increases with temperature following the 

99 Arrhenius equation (Bradly and Carrol, 1994; White and Blum, 1995; Dessert et al., 

100 2003). In this equation, temperature is a power variable responsible for doubling the 

101 rate of the reaction for each 10ºC rise. In addition, the influence of temperature on 

102 weathering rates would be dependent on precipitation, being substantially higher in 

103 more humid watersheds (White and Blum, 1995). 

104 However, there is no consensus about the effective role of climate on weathering rates. 

105 While some argue that temperature and precipitation/runoff exert a strong influence 

106 (White and Blum, 1995; West et al., 2002), others showed that the exposure of fresh 

107 material is probably the most important controlling factor (Huh and Edmond, 1999; 

108 Oliva et al., 2003). In either case, physical denudation rates must exert a fundamental 

109 control on weathering intensity (Riebe et al., 2004; West et al., 2005; Gabet and Mudd, 

110 2009). In slowly eroding settings, surface sediment suffers intense decomposition 

111 before removal and the rate of weathering is limited by the supply of fresh material 
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112 (“supply-limited” conditions). Where denudation is high, the rate of weathering tends 

113 to be limited by the kinetics of surface reactions, the so-called “weathering-limited” 

114 (Riebe et al., 2004) or “kinetic-limited” (West et al., 2005) conditions, and depends on 

115 the time available for weathering reactions and the kinetics of the reaction, which is 

116 controlled by temperature, water supply, and vegetation cover (West et al., 2005). A 

117 weak relationship between climatic variables and weathering rate can be detected, but 

118 just after removing the effects of physical denudations, which play a dominant role 

119 (Dupré et al., 2003; Riebe 2004; von Blanckenburg, 2005).

120 Weathering profiles are expected to be thicker and their upper levels more depleted in 

121 mobile elements in wetter and warmer environments, hence revealing higher 

122 weathering intensities. But a thick regolith cover will limit weathering rates because 

123 freshly exposed material tends to weather more rapidly than the old material that is 

124 already depleted in the most reactive components, thus explaining the high weathering 

125 rates in watersheds under strong denudation stress (Riebe et al., 2004; Gabet and Mudd, 

126 2009) or in dry/cold settings influenced by mechanical break-down caused by frost 

127 action (Huh, 2003; Gabet et al., 2010). This is why, at a global scale, an increase in 

128 weathering rate is expected when frost action becomes effective and low rates occur in 

129 warm/humid regions with thick regolith sequences (Huh, 2003). As summarized by 

130 Humphreys and Wilkinson (2007), soil production may either decrease exponentially 

131 with soil thickness or reach maximum at a certain soil thickness, but is invariably low in 

132 regions with thick regolith cover. High soil production in areas under rapid denudation 

133 that tend to have thin regoliths accounts for the inverse relation between suspended 

134 load and weathering intensity in big rivers (Gaillardet et al, 1999). From the previous 

135 discussion it is clear that weathering rates and weathering intensities respond to climate 
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136 differently. Only a tangible property influenced by climate and measured from 

137 weathering products can be used to approximate paleoclimatic conditions.

138

139 2.2 Proxies of weathering intensity 

140 The intensity of chemical weathering affecting a specific region can be estimated 

141 through diverse compositional indices applied to soils and sedimentary deposits (Table 

142 1). Since the definition of the Weathering Index of Parker (WIP; Parker, 1970) and, in 

143 particular, of the Chemical Index of Alteration (CIA; Nesbitt and Young, 1982), the 

144 chemical composition of siliciclastic sediments has been widely used to infer 

145 paleoclimate (e.g., Kalm et al., 1996; Ehrmann, 1998; Hodell et al., 1999; Hong et al., 

146 2007; Liu et al., 2014; Clift et al., 2014; Hessler et al., 2017). The CIA is probably the most 

147 popular geochemical weathering index, although others are commonly used as well, 

148 namely the Chemical Index of Weathering (CIW; Harnois, 1988), the Plagioclase Index of 

149 Alteration (PIA; Fedo et al., 1995), the Chemical Proxy of Alteration (CPA; Buggle et al., 

150 2011) and the modified CIA index (CIX; Garzanti et al., 2014). Overviews of the rationale 

151 of these weathering indices were presented in previous studies (Price and Veldel, 2003; 

152 Sheldon and Tabor, 2009; Guo et al., 2018). The alternatives to CIA were proposed to 

153 overcome recognised drawbacks on its application, such as the non-consistent 

154 behaviour of K during weathering (Harnois, 1988; Maynard, 1992), the occurrence of K-

155 metasomatism/illitization (Fedo et al., 1995; Buggle et al., 2011), and the difficulties in 

156 establishing carbonate bound CaO (Buggle et al., 2011; Garzanti and Resentini, 2016). 

157 All of these parameters estimate weathering intensity based on the molar proportions 

158 of silicate-bound major elements. Excepting the WIP, where the value of the index is 
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159 proportional to the concentration of mobile elements, they rely on a ratio between the 

160 non-mobile element Al (Al2O3 minus K2O in PIA) and a set of non-mobile components 

161 that tend to be leached out during feldspar decomposition. Hence the value of the index 

162 tends to increase with weathering intensity.

163 Because most of these compositional parameters provide no information about the fate 

164 of Fe and Mg (only WIP considers Mg), which are preferentially hosted in olivine, 

165 amphibole, and pyroxene, other procedures were proposed to estimate weathering 

166 intensity affecting source rocks with these elements. The Mafic Index of Alteration 

167 (MIA(o) and MIA(r); Babechuck et al., 2014) is defined in a similar way as the CIA, but 

168 includes Fe in the group of mobile elements if the environment is reduced or added to 

169 Al in an oxidative environment. Additional multi-element approaches were also 

170 proposed. Using a Principal Component Analysis (PCA) applied to igneous rocks and their 

171 weathering products, Ohta and Arai (2007) defined a Mafic-Felsic-Weathering ternary 

172 diagram (MFW) in which the values for each vertex are obtained through mathematical 

173 expressions based on the weight percentage of major elements (SiO2, Al2O3, Fe2O3, TiO2, 

174 MgO, K2O, Na2O and silicate-bound CaO). In that work, it was proposed that the way 

175 samples plot in the MFW diagram reflects both the relative contribution of mafic/felsic 

176 source rocks and the weathering intensity. The diagram M+-4Si-R2+ of Meunier et al. 

177 (2013) is also intended to tackle the problem of different source-rock composition and 

178 weathering intensity with a ternary diagram. In that article, composition is expressed as 

179 monocationic millimoles (M+=Na++K++2Ca2+; 4Si=Si/4; R2+=F2++Mg2+). Sediments derived 

180 from felsic to ultra-mafic rocks appear in different fields parallel to the M+-R2+ border, 

181 and weathering intensity progresses towards the kaolinite pole represented by the 4Si 

182 vertex.
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183 Many other ratios between two elements with different mobility were used as proxies 

184 of weathering intensity, including K2O/Al2O3 and Na2O/Al2O3 (Gallet et al., 1995), Th/U 

185 (Gu et al., 2002), Th/K (Deconinck et al., 2003), K/Na and Rb/Sr (Yang et al., 2004), Cs/Ti 

186 and Rb/Ti (Yan et al., 2007), and Rb/K (Roy et al., 2008). These ratios are not applicable 

187 for instance where the value is lower than in the UCC (Upper Continental Crust) standard 

188 (e.g., Th/U), or where chemical decomposition is too strong (e.g., K/Na and Rb/Sr) or too 

189 weak (e.g., K2O/Al2O3, K2O/Th, Rb/K). Gaillardet et al. (1999) defined alfa (αE) weathering 

190 indices for different mobile elements by comparing their concentrations with that of a 

191 non-mobile element with similar magmatic compatibility in the sample and in the Upper 

192 Continental Crust (UCC) standard. Alfa indices were thus defined as the ratio between a 

193 non-mobile and a mobile element normalised by the same ratio in the UCC (e.g., 

194 αMg=[Al/Mg]sample/[Al/Mg]UCC; αNa=[Sm/Na]sample/[Sm/Na]UCC). With the exception of Al, 

195 the suggested non-mobile elements (Ti, Th, Sm and Nd) are strongly affected by the 

196 sorting processes that control heavy-mineral concentration (Garzanti et al., 2009). 

197 Hence, to avoid the bias introduced by hydraulic sorting, Garzanti et al. (2013) suggested 

198 referring all elements to Al (αAl
E), which is hosted in minerals with different density (e.g. 

199 feldspar and garnet) and shape (e.g., tectosilicates and phyllosilicates) and is thus much 

200 less markedly influenced by hydraulic-sorting processes. When dealing with source 

201 areas that are not akin to the UCC, such as volcanic islands or continental flood basalts, 

202 different appropriate reference materials (e.g., average composition of volcanic or 

203 plutonic source rocks) should be used to establish the levels of depletion (Garzanti et 

204 al., 2013; Dinis et al., 2019).

205 Since the mid-20th century, also clay mineralogy is widely used as a tracer of 

206 paleoclimate (Klingebiel, 1963; Sittler and Millot, 1964; Power, 1969; Bierkland, 1969). 
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207 The assumption that clay assemblages reflect coeval climate conditions is supported by 

208 the long known distribution of clay minerals around the world’s oceans, which largely 

209 reflects climate and weathering intensity in adjacent continental areas (Biscaye, 1965; 

210 Griffin et al., 1968). For example, kaolinite is abundant in wet areas where chemical 

211 decomposition is intense, smectite is common in warm regions with a well-defined dry 

212 season characterized by intense evaporation, and illite and chlorite dominate where 

213 erosion is chiefly physical and decomposition is minor (Chamley, 1989; Velde, 1996). A 

214 discussion on the weakness of clay assemblages as proxies of weathering intensity is 

215 presented below. Other authors used a Mineralogical Index of Alteration (MIA) based 

216 on the proportions of quartz and feldspar (Rieu et al., 2007; Hessler et al., 2017). The 

217 proportion of these minerals, however, largely depends on sediment grain-size, 

218 hampering the application of such index in interpretation of climate-driven weathering 

219 (Garzanti et al., 2019).

220

221 3. Congo and southwest Africa case-study

222

223 Southwest Africa has excellent conditions to review the links between sediment 

224 composition, weathering intensity and climate. This vast region is characterized by a 

225 stark contrast in climatic conditions (Fig, 1), and also the other factors that affect mud 

226 composition are spatially variable, namely physiography (e.g., slope, size of drainage 

227 basins, elevation of flat and steep areas, relationships between topography and climatic 

228 variables) and geology (e.g., crystalline rocks of different composition, lava fields, 

229 proportion of multicycle sedimentary successions; Fig. 2; Appendix A). 
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230

231 3.1. Geology and geomorphology 

232 3.1.1. Atlantic margin

233 Several Cretaceous and Cenozoic stages of uplift affected the western margin of 

234 southern Africa after initial opening of the South Atlantic Ocean (Burke and Gunnell, 

235 2008; Guillocheau et al., 2018). These tectonic processes, which controlled the 

236 development of Meso-Cenozoic sedimentary basins and the configuration of the 

237 drainage network, are most prominent in southern locations where more than 4000 m 

238 of crustal uplift is estimated (Jackson et al., 2005; Guiraud et al., 2010). Along the 

239 Atlantic margin of the Democratic Republic of Congo (DRC) and Angola, an Upper 

240 Cretaceous to Holocene sedimentary succession reaching several km in thickness is 

241 widely exposed in onshore areas of the Lower Congo (~85 km), Kwanza (~ 135 km), and 

242 Namibe (~50 km) basins (e.g., Moulin et al., 2010; Chaboureau et al., 2013 and 

243 references herein). The succession starts with coarse-grained alluvial deposits that are 

244 followed by thick evaporites and diverse marine or coastal siliciclastic and carbonate 

245 units (Guiraud et al., 2010). This continental margin is mainly volcanic-poor (Contrucci 

246 et al., 2004; Séranne and Anka, 2005), although Lower Cretaceous syn-rift mafic volcanic 

247 rocks occur (Marzoli et al., 1999).

248 The basement includes Archean rocks of the Congo craton and bordering Proterozoic 

249 orogenic belts associated with the amalgamation of West Gondwana (Basei et al., 2008; 

250 Heilborn et al., 2008; Vaughan and Pankhurst, 2008). At lower latitudes (<10ºS), Meso-

251 Cenozoic strata non-conformably overlie Paleoproterozoic crystalline units (Kimezian; 

252 ~2 Ga) that define a < 100 km-wide elongated ribbon to the west of the Neoproterozoic 
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253 West Congo Belt. The West Congo Supergroup is represented by a mainly Tonian 

254 volcano-sedimentary succession that shows eastward-decreasing deformation and 

255 metamorphic grade and is covered by Cryogenian to Ediacaran siliciclastic and carbonate 

256 strata (Tack et al., 2001; Kadima et al., 2011). Basement geology changes south of ~10º 

257 S, where the Congo craton is mostly represented by Eburnean (~2 Ga) granitoids of the 

258 Angola Block (de Waele et al., 2008). The Angola Block also includes Neoarchean 

259 granitoids, high-grade metamorphic rocks, and mafic complexes at its north-eastern 

260 edge (Carvalho et al., 2000), and large mafic intrusions of the Mesoproterozoic Cunene 

261 Intrusive Complex at its south-eastern edge (Carvalho et al., 2000; Mayer et al., 2004; 

262 Becker et al., 2006). A poly-orogenic complex with reworked Precambrian crystalline 

263 rocks is exposed to the west and reaches~150 km in width in southern sectors. 

264 More than 200 km from the coastline, occurs the mainly Cenozoic, sand-dominated 

265 fluvial and aeolian succession of the Kalahari Basin (Wiggs et al., 1995; Haddon and 

266 McCarthy, 2005). The Kalahari succession is preserved in a relatively continuous 

267 subsiding area between the Republic of South Africa and the DRC, although with discrete 

268 depocenters that started to form during the Late Cretaceous or Early Cenozoic following 

269 uplift of southern African margins (Haddon and McCarthy, 2005). 

270

271 3.1.2. Congo river basin

272 With a catchment area of ~3.7 million km2 and 4200 km-long, the Congo is one of the 

273 largest rivers in the world, draining most of the DRC as well as significant parts of the 

274 Central African Republic, Angola, Zambia, and Tanzania. In central position, a broadly 

275 circular intracratonic basin 1000-1300 km in diameter (Congo Basin or Cuvette Centrale) 
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276 coincides with a pronounced negative long-wavelength gravimetric anomaly (Crosby et 

277 al., 2010). The Congo Basin is an old subsiding continental area bounded by topographic 

278 highs that started to develop during the Late Proterozoic, probably in relation with 

279 failed-rift processes, and presents a thick sedimentary fill (up to 9 km) ranging in age 

280 from the late Neoproterozoic to the Holocene (Daily et al., 1992; Kadima et al., 2011).

281 The Congo Basin fill, thicker in a central area dominated by Cenozoic sediments, 

282 becomes thinner towards the margins where older units are exposed. Jurassic to upper 

283 Paleozoic outcrops only occur along its eastern flank (Daily et al., 1992; Giresse, 2005; 

284 Férnandez et al., 2015). Five major sequences were identified by Daly et al. (1992), whilst 

285 Kadima et al. (2011) considered three seismo-stratigraphic units separated by basin-

286 wide unconformities. Meso-Cenozoic strata, making sequence 5 of Daly et al. (1992) and 

287 seismo-straigraphic unit C of Kadima et al. (2011), crop out in wide areas of the Congo 

288 Basin. The Cenozoic is well represented in the southern sector by Paleogene-Neogene 

289 deposits of the Kalahari Supergroup and by Plio-Pleistocene alluvial units in the basin 

290 centre (Fernandez-Alonso et al., 2015). These sediments were deposited when the 

291 borders of the Cuvette Centrale were uplifted, hampering marine incursions (Giresse, 

292 2005). Cretaceous outcrops are most extensive along its southern edge, but occur also 

293 in numerous valleys along the eastern and northern margins of the Cuvette Centrale. 

294 Upper Jurassic and Upper Triassic strata are exposed along the banks of the Congo River 

295 and its tributaries in the eastern part of the basin (Fernandez-Alonso et al., 2015). 

296 Although Jurassic-Cretaceous strata are mainly continental, occasional marine 

297 incursions cannot be ruled out (Giresse, 2005). Older middle to upper Paleozoic redbeds, 

298 black shales, diamictites, along with other mudrocks and sandstone-dominated strata 
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299 (seismo-stratigraphic unit B of Kadima et al, 2011; sequences 3 and 4 of Daly et al, 1992) 

300 are common along the eastern edge of the basin.

301 The oldest seismo-stratigraphic unit, Neoproterozoic to early Paleozoic in age 

302 (sequences 1 and 2 of Daly et al., 1992) are exposed in three major bordering regions of 

303 the Congo Basin, making the Cataractes and Inkisi Groups  along the western margin of 

304 the basin, the Lindi Supergroup to the N and NE, and the Katanga Supergroup to the SE 

305 (Fig. 2). They consist of diverse siliciclastic and carbonate rocks, including stromatolitic 

306 and evaporitic sequences deposited in marine to lagoonal environments, followed by 

307 clastic deposits (Daly et al, 1992; Kadima et al., 2011). The Precambrian basement crops 

308 out in the elevated massifs that surround the Congo Basin. Archean cratonic cores are 

309 found in the Chailu-Gabon block to the west, in the Kasai block to the south, in the 

310 North-East Congo block to the NE, and in the Tanzania craton to the east. These massifs 

311 are separated by domains with mainly Paleoproterozoic (Eburnean) and 

312 Mesoproterozoic crystalline units, and by Pan-African orogenic belts (Fig. 2).

313

314 3.2. Climate in SW Africa

315 In SW Africa, a pronounced climatic gradient is marked by a continuous increase in 

316 rainfall from hyperarid Namibia and southern Angola to hyperhumid Congo. An 

317 oceanward decrease in humidity, usually restricted to the westernmost 200-300 km of 

318 the Atlantic margin, is recognised south of 2ºS, whereas high rainfall occurs in coastal 

319 areas to the north (Fig. 1B). Unlike rainfall, average annual temperatures do not vary 

320 significantly, ranging between 20 and 30ºC. Lower average temperatures occur only in 

321 the most elevated highlands near the eastern and southern borders of the Congo 
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322 drainage basin and in coastal mountains of Angola. Given these patterns of variation of 

323 rainfall and temperature, climate is equatorial at lower latitudes, ranging from desert 

324 near the coastline to humid subtropical or temperate-highland tropical with dry winters 

325 in inner locations of higher latitudes (Peel et al., 2007).

326 Extending in latitude between ~9º N and 14º N, the Congo drainage basin is almost 

327 entirely situated in the subequatorial zone of high rainfall and temperature. Annual 

328 rainfall, with the exception of some eastern and southern marginal areas, is invariably 

329 higher than 1000 mm and reaches more than 2000 mm in wide lower-latitude sectors. 

330 The warm Angola Current explains the higher coastal humidity in equatorial and sub-

331 equatorial areas, contrasting with southern coastal regions where aridity is linked with 

332 the Benguela upwelling system (Gordon and Bosley, 1991; Wacongne and Piton, 1992; 

333 Stramma and Schott, 1999). The intensity of the two currents and the position of their 

334 convergence zone are seasonally variable (Shannon and Nelson, 1996; Kostianoy and 

335 Lutjeharms, 1999; Hardman-Mountford et al., 2003). With the exception of the year-

336 round humid equatorial region and the dry coastal fringe to the south, regional climates 

337 are usually characterized by alternating wet and dry seasons varying with latitude and 

338 distance from the coastline under the influence of the African monsoon system. 

339

340 4. Methods

341 Twenty catchment areas from southwestern Africa with diverse geology and climate 

342 were selected for this study (Table 2). A Digital Elevation Model based on a Shuttle Radar 

343 Topography Mission (SRTM; spatial resolution of ~30 m) was applied to perform the 

344 delimitation of the catchment areas that drain to the sampling points using the 
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345 Hydrology tool package of ArcGIS 10. ArcGIS tools were also adopted for the 

346 quantification of the outcrop areas of the main geological units in each drainage basin 

347 and for the analysis of the spatial distribution of temperature and rainfall. Climatic 

348 variables were downloaded from WorldClim version 2 (http://www.worldclim.org/; Fick 

349 and Hijmans, 2017).

350 Twenty-two river mud samples, one for each catchment area, except for the Congo River 

351 with three samples collected in the lower Congo course, were investigated in more 

352 detail. The geochemical composition of these samples was determined for the grain-size 

353 fractions <32 µm and <2 µm, obtained from split aliquots by wet sieving and by 

354 centrifugation according to Stokes’ law, respectively. Major oxides were determined by 

355 ICP-AES (using a Spectro Ciros/Arcos equipment) and trace elements by ICP-MS (using 

356 an ICPMS ELAN 9000 equipment) at Bureau Veritas laboratories (Vancouver). For further 

357 information on adopted procedures, geostandards used and precision see 

358 http://acmelab.com (group 4A-4B and code LF202). Element concentrations were 

359 compared to UCC composition (Rudnick and Gao, 2003; Hu and Gao 2008). For 

360 simplicity, Rare Earth Elements (REE) are grouped here as LREE (light REE; La, Ce, Pr, Nd 

361 and Sm), Eu, and HREE (heavy REE; Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu). The mineralogy of 

362 the <2 µm fraction was determined by X-ray powder-diffraction (XRD) on oriented 

363 mounts, with a Philips® PW 3710 equipment with CuKα radiation using the software 

364 APD-PW1877 (version 3.6J). Diffractograms were obtained for air-dried mounts (2θ in 

365 the range 2-30º), and after treatment by ethylene glycol and heating to 550 °C (2θ in the 

366 range 2-15º). Mineral proportions were evaluated semi-quantitatively from diagnostic 

367 XRD peak areas, as estimated from intensity and width values, weighted by empirical 

368 factors using an in-house spreadsheet.
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369 Muds collected offshore of the Congo river mouth during the Meteor cruises M6-6 

370 (Wefer et al., 1988) and M20-2 (Schulz et al., 1992) were also investigated. For these 

371 samples, the sand fraction (> 63 µm) was removed via wet sieving and then the clay 

372 fraction (<5 µm) was separated by settling velocity, using Atterberg separation after 

373 Stokes' Law (Köhn, 1928). The elemental composition of each fraction was measured 

374 using a PANalytical Epsilon3-XL XRF spectrometer equipped with a rhodium tube, 

375 several filters and a SSD5 detector. Samples were dried and ground before 

376 measurements. A calibration based on certified standard materials (GBW07309, 

377 GBW07316, MAG-1) was applied to quantify elemental counts (c.f. Govin et al. 2014).

378 This dataset complements previously published results on mud composition of southern 

379 Africa. Namely for the clay mineralogy and the geochemistry of the <32µm fraction of 

380 SW African rivers (Garzanti et al., 2014; Dinis et al., 2017); for the clay mineralogy and 

381 the geochemistry of the<63m fraction of upper Congo rivers (Garzanti et al., 2013); and 

382 for the clay mineralogy of marine muds (Petschick et al., 1996).

383

384 5. Exogenous processes and mud composition

385

386 5.1. Levels of depletion and enrichment in different grain-size fractions

387 Significant depletions relative to the UCC were observed for Na, Ca, Mg, Si and K in the 

388 fractions <2 µm and <32 µm of the studied samples. Only the coarser fraction of a few 

389 mud samples collected in small rivers of the higher-latitude Atlantic margin show K2O 

390 content comparable or slightly higher than the UCC. The <32 µm fraction is invariably 
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391 enriched in TiO2 and Eu relative to the UCC. The other elements can be either depleted 

392 or enriched in both fractions (Fig. 3). Intersample compositional variability is particularly 

393 high for those elements most depleted relative to the UCC (Na and Ca), but significant 

394 variability is observed also for a few elements that are frequently enriched relative to 

395 the UCC (e.g., light REE, Nb). Silica, Al2O3 and TiO2 display the lowest variability.

396 Considering intrasample compositional variability, the <2 µm fraction tends to be 

397 enriched in Al, Fe, Rb, Sc and V, and strongly depleted in Zr, Hf, Na and Ca relative to the 

398 <32 µm fraction. (Fig. 3A). The Mucope sample, which is entirely fed by recycled 

399 sediments from the Kalahari Basin, is a notable exception yielding higher Na and Ca and 

400 lower Rb in the <2 µm fraction. The concentration of other elements can be higher in 

401 either fraction, being usually approximately the same for Mg, REE, Y, and Nb. The 

402 concentration of Si and Ti also tends to be higher in the <32 µm fraction.

403 Joint statistical analysis of selected geochemical parameters (SiO2, Al2O3, Fe2O3, MgO, 

404 CaO, Na2O, K2O, TiO2, P2O5, MnO, Cs, Ba, Sc, LREE, HREE, Th, U, Zr, Nb, W and Co) was 

405 carried out by Principal Component Analysis (PCA) and visualised as compositional 

406 biplots (Fig. 4; Aitchison and Greenacre, 2002). The PCA configuration of the samples 

407 strongly suggests that weathering has a major effect on sediment composition, with 

408 river muds from wet (low latitude) and dry (high latitude) climates plotting at opposite 

409 ends of the biplots. The genetic reasons for the observed latitudinal trends are revealed 

410 by the vector loadings (arrows) of the biplot.

411 For the <32 µm fraction (Fig. 4A), the end points of the arrows define two directions (or 

412 ‘links’, Aitchison and Greenacre, 2002). The first link runs diagonally across the biplot 

413 and parallel to the aforementioned latitudinal trend. It connects the mobile elements 
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414 Ca and Na in the lower left corner to the immobile elements Al and Ti in the upper right 

415 corner. The second link runs perpendicular to the first one and connects elements that 

416 are compatible with mafic minerals (Co, Mn and Mg, upper left corner) with elements 

417 that are enriched in felsic minerals (U, Th, lower right corner). This trend suggests that 

418 the second link is controlled by sediment provenance. For the <2 µm fraction (Fig. 4B), 

419 the links are less clearly defined. Although the weathering trend is still clearly visible in 

420 the sample configuration, the provenance trend is less obvious. This supports the notion 

421 that the composition of the clay fraction is largely determined by weathering processes, 

422 which have erased most pre-existing provenance signature.

423 In order to better compare the levels of depletion or enrichment in different elements 

424 in the two fractions, a concentration factor αAl
E (see section 2.2) was calculated for all 

425 elements. A ratio close to 1 means that the concentration of element E relative to non-

426 mobile Al is comparable to that of the UCC. Substantially higher values indicate 

427 depletion, which can be ascribed to weathering; lower values indicate enrichment.As a 

428 direct consequence of phyllosilicate concentration in finer fractions, the Si/Al ratio 

429 notoriously reflects grain-size. Thus, the values of αAl
E measured for most mobile 

430 elements tend to be higher in the <2 µm fraction, where Al-rich clay minerals are 

431 concentrated. Non-mobile elements such as Sc, Y, REE, Ti, Nb tend to be relatively 

432 enriched during weathering and hence frequently show αAl
E values <1. As already shown 

433 elsewhere (Dupré et al., 1996; Gaillardet et al., 1999; Viers et al., 2009; Garzanti et al., 

434 2013, 2014), Na is generally the most mobile element. For the <2 µm fraction, Na (6.8 < 

435 αAl
Na

 <201) is far more depleted than all other mobile elements, namely Ca (3.0 < αAl
Ca

 

436 <22), Sr (1.8 < αAl
Sr

 <19), K (1.6 < αAl
K

 <5.7) and Mg (1.4 <αAl
Mg

 <5.4). In muds, Th, U, LREE 
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437 and Fe are the most enriched elements relative to the UCC. TiO2, HREE, Y and Nb also 

438 tend to yield αAl
E values <1 in the <32 µm fraction.

439 The high variability in concentration factors determined for some of the most mobile 

440 elements, such as Na and Ca, can be interpreted as evidence of strong weathering 

441 influence (Viers et al., 2009). A positive correlation between αAl
E values in the two size-

442 fractions is expected, whereas the poor correlation among elements such as Ti, Zr, Hf 

443 and Y hosted preferentially in the densest minerals (Fig. 5B) can be largely ascribed to 

444 hydraulic-sorting processes. The influence of provenance coupled with hydraulic sorting 

445 is particularly evident for Zr (Fig. 5C). Factors αAl
Zr in the two fractions of fluvial muds 

446 sampled in higher-latitude regions are similar, whereas in mid-latitude regions the levels 

447 of depletion are notably lower for the <32 µm fraction. This may be ascribed to the 

448 presence of zircon grains sourced from the felsic-rich Eburnean massifs.

449 The geochemistry of marine sediments seems to be affected by sorting processes even 

450 more than river muds. The <5 µm fraction displays a clear increase in the Si/Al ratio and 

451 a decrease in Ti and Zr contents with water depth (Fig. 6). Precipitation of authigenic 

452 minerals (e.g., glaucony and carbonates) have a major effect on the levels of 

453 depletion/enrichment of different elements. Moreover, in marine settings far from 

454 fluvial entry points and in deep water the mixing of sediments transported from distant 

455 areas may overprint and blur the climatic signal hold by the mud sourced from adjacent 

456 continental areas, as observed for sands offshore of the Congo mouth (Garzanti et al., 

457 2019). 

458

459 5.2. Clay mineralogy evidence of weathering
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460

461 The clay mineralogy of most fluvial mud samples considered here was presented in 

462 previous works (Garzanti et al., 2013, 2014; Dinis et al., 2017). Six newly analysed 

463 samples from the Congo drainage basin yielded mostly kaolinite with minor amounts of 

464 mica-illite. Two newly analysed samples from the Cunene drainage basin are enriched 

465 in smectite with subordinate amounts of kaolinite, quartz, and mica. The entire dataset 

466 (Fig. 7) confirms the trends for decreasing kaolinite with latitude, which reflects a 

467 decrease in humidity and weathering intensity (Chamley, 1989; Velde, 1995). Expansive 

468 clays (smectite and smectite-illite mixed layers) are more abundant at middle and high 

469 latitudes, where seasonally contrasted climatic conditions characterized by a dry period 

470 of intense evaporation generally occurs, and particularly so where mafic rocks are 

471 exposed in catchment areas. Relatively high mica-illite contents in some river-mud 

472 samples is attributed to the combined effects of feldspar weathering and disintegration 

473 of micaceous minerals inherited from source rocks (Dinis et al., 2017).

474 Offshore sediments of the southeastern Atlantic are kaolinite-rich at low equatorial 

475 latitudes, higher in smectite at middle latitudes (~10-20º) and in illite at higher latitudes 

476 (Petschick et al., 1996). In general, the ratio between kaolinite and mica+chlorite of 

477 marine samples from SW Africa is similar to that in river muds collected at comparable 

478 latitude (Fig. 7A), suggesting major control by river supply from adjacent continental 

479 areas. Smectite content, however, tends to increase with water depth. This is 

480 particularly evident for sediment collected offshore of the Congo River mouth, but it is 

481 also apparent in higher-latitude regions, lacking only at middle-latitude where fluvial 

482 and coastal muds are commonly smectite-rich (Fig. 7B and 7C). Selective settling of 
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483 kaolinite, illite and chlorite, all generally coarser than smectite (Gibbs, 1977; Chamley, 

484 1989; Petschick et al., 1996; Šimkevičius et al., 2003) may account for the observed 

485 basinward trend. Authigenic growth in marine environments is another possible cause 

486 for smectite enrichment (Cole and Shaw, 1983; Parra et al., 1985), and an association to 

487 the degradation of tephra ejected from volcanic centres of the Cameroon Line to the 

488 north was recently proposed for mud deposited on the continental slope and rise 

489 offshore of the Congo mouth (Garzanti et al., 2019). As for sediment geochemistry, it 

490 must be kept in mind that also the clay assemblage is affected by mixing with material 

491 transported by wind and surface or deep currents from distant sources (Petschick et al., 

492 1996).

493

494 6. Weathering indices as climatic proxies

495

496 6.1. Relation between weathering intensity and climate

497 Several compositional features of marine sediments, such as their clay-mineral 

498 assemblage (Biscaye, 1965; Griffin et al., 1968; Petschick et al., 1996) and element ratios 

499 (Govin et al., 2012), point to a close link with climatic conditions on adjacent continental 

500 areas. The possible relationships between compositional features of modern fluvial mud 

501 and climatic variables were tested by several authors. In suspended load of North 

502 American rivers, the concentration of non-mobile elements Al and Fe correlates with 

503 runoff and precipitation, whereas an opposite trend was found for Ca and Mg (Canfield, 

504 1997). Other works showed correlation between climatic (or climatic-driven) variables 

505 and weathering indices. Namely, between temperature and αNa or αK for big world rivers 
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506 (Gaillardet et al., 1999), between runoff and CIA for Southeast Asia (Borges et al., 2008), 

507 and between rainfall and αAl
Na in sand, αAl

Mg in mud, and clay-mineral assemblages in 

508 SW Africa rivers (Dinis et al., 2017). These relationships are ascribed to higher 

509 weathering intensity in wetter settings, with consequent leaching of most mobile 

510 elements and concentration of non-mobile elements in the weathered residue. 

511 However, the scatter attributed to the effect of different geologic and geomorphologic 

512 features of the drainage areas on sediment composition is very high. Such a strong 

513 variability is not surprising, because source lithology influences both the composition of 

514 weathering products (e.g., von Eynatten et al., 2012, 2016; Garzanti and Resentini, 2016) 

515 and the rate of weathering reactions (e.g., Meybeck, 1987; Kump et al., 2000; Amiotte 

516 Suchez et al., 2003; Jansen et al., 2010). Besides geological and geomorphological factors 

517 that control sediment composition, a time-scale problem may be also present, because 

518 a specific weathering stage may needs many thousands of years to be reached, whereas 

519 the climatic record, in terms of measured average temperature and rainfall, refers to 

520 the present day only which may be notably different from past conditions.

521 The compositional data of mud deposits presented for the first time here can be coupled 

522 with the comparable datasets presented in Garzanti et al. (2013, 2014) and Dinis et al 

523 (2017) to better understand the relation between weathering intensity and climate in 

524 southern Africa. Besides the equatorial and sub-tropical Atlantic margin and Congo 

525 system presented here in more detail, our integrated sample set includes data on muds 

526 from the upper branches of the Congo River in southern Burundi, Rwanda, and Tanzania, 

527 from the Zambezi, Limpopo, Okavango and Orange fluvial systems, and from western 

528 Namibian rivers. Climate data provided by WorldClim version 2 

529 (http://www.worldclim.org/; Fick and Hijmans, 2017) for SW Africa indicate that both 
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530 rainfall and temperature display major spatial variability (Fig. 1). Considering the 

531 average values measured in the catchments under investigation in Congo and SW Africa, 

532 rainfall is clearly more variable than temperature (Table 1). Furthermore, the study 

533 region is never as cold as in the case studies where the weathering dependence on 

534 temperature following the Arrhenius law seems to be applicable (e.g., White and Blum, 

535 1991). Probably reflecting the homogenously warmer conditions, no significant relations 

536 were detected between temperature and any compositional feature indicative of 

537 weathering intensity.

538 Conversely, spatially-averaged rainfall co-varies with several compositional features 

539 indicative of weathering intensity (Figs. 8 and 9). Considering only geochemical 

540 parameters characterizing the <32 µm fraction (51 samples; upper Congo muds not 

541 included because the analyses were performed on the <63 µm fraction), αAl
Mg (r=0.70), 

542 αAl
Ca (r=0.59), WIP (r=-0.58), CIA (r=0.56), αAl

Sr (r=0.55), and CIX (r=0.54) reveal the most 

543 significant correlations with rainfall. It must be noted that these correlations become 

544 weaker, or are even lost, if specific climatic and geographic contexts are analysed 

545 separately (Fig. 8). As far as non-mobile elements are concerned, no significant 

546 correlation was observed within the entire dataset, but if only the Congo drainage basin 

547 and the Angolan Atlantic margin are considered, αAl
E for some of these elements anti-

548 correlate with rainfall (r=-0.73 for Ti; r=-0.65 for Zr). A reasonable positive correlation 

549 between the kaolinite proportion in the clay-mineral assemblage and rainfall is also 

550 observed for the entire equatorial to sub-tropical dataset (r=0.63 for 66 samples).

551 Regarding the geochemistry of the <2 µm fraction, the original data presented here 

552 indicate that average rainfall in the catchment area correlates positively with αAl
Mg 
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553 (r=0.69), CIA (r=0.61), and αAl
Sr (r=0.58). Because of quartz dominance in the wettest 

554 settings, the link between rainfall and the WIP is much weaker than in the <32 µm 

555 fraction, and the weakest among all of the other multi-element weathering indices. The 

556 highest negative correlation is found for αAl
Cs (r=-0.57). 

557

558 6.2. Spurious covariance of compositional features and rainfall

559 As shown by Garzanti and Resentini (2016), the values obtained for weathering indices 

560 may be largely determined by source-area lithology. In southern Africa, some co-

561 variances between measured element abundances and rainfall are in fact influenced by 

562 geological  processes not directly related to current rainfall. One evident case is the 

563 abundance of Ca and other mobile elements incorporated in carbonate minerals, which 

564 are expected to be higher where carbonate rocks are exposed. High Ca, Mg, and Sr 

565 actually occur in coarser mud fractions of southern rivers that drain Meso-Cenozoic 

566 basins of the Atlantic Margin characterized by moderately dry to very dry conditions or 

567 hinterland areas prone to pedogenic carbonate precipitation within the Kunene and 

568 Okawango river systems (Caculuvar and Kwando muds). Sorting processes also seem to 

569 have a major effect on the abundances of non-mobile elements in coarser mud fractions, 

570 as suggested before for Zr and Ti, among other elements preferentially hosted in heavy 

571 minerals (Fig. 5). Hence, provenance and sorting processes can exert a major influence  

572 on silt composition, leading to spurious correlations with rainfall. They may have forged 

573 apparent relations between the concentration of mobile/non-mobile elements and 

574 rainfall that are not necessarily linked with present-day climatically-driven chemical 

575 decomposition.
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576

577 6.3 Focus on clay

578 Sediment composition is strongly influenced by the grain-size effect (von Eynatten et al., 

579 2012, 2016). Because mud deposits may contain different proportions of clay and silt, 

580 even an analysis focused on mud may lead to biased interpretations of climate 

581 conditions. A closer relationship between clay mineralogy and chemical weathering than 

582 for the geochemistry of muds comprising silt fractions was already testified by Angolan 

583 Atlantic margin sediments (Dinis et al., 2017). In that research, however, the 

584 geochemistry of clay was not investigated, and mineral abundances estimated by XRD 

585 are not accurate (Moore and Reynolds, 1997; Kahle et al., 2002). For instance, a mixture 

586 in equal proportions of kaolinite, smectite and chlorite, three minerals indicating 

587 profoundly distinct climatic conditions, shows unequal (001) peak areas that depend on 

588 the chemical compositions of the minerals, their preferred orientation, and the 

589 structural arrangement of clay flakes.

590 More accurate results are expected to be obtained from geochemical analysis. Classical 

591 multi-elements weathering indices (e.g., CIA, CIX and CPA) and the αE and αAl
E indices 

592 used to establish element mobility are computed from ratios of the concentration of 

593 one or more mobile elements relative to a non-mobile element. . The concentration of 

594 the elements considered in these indices depend on the mineralogy of the source rock 

595 (e.g., felsic vs. mafic), a dependence that is apparently attenuated in finer fractions (von 

596 Eynatten et al., 2012, 2016; Dinis et al., 2017). The depletion of mobile elements in finer 

597 fractions with formation of residues enriched in Al regardless of source-rock 

598 composition partially accounts for this attenuation trend. In addition, clay fractions are 
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599 not equally influenced by sorting processes, and therefore more likely reflect 

600 weathering processes coeval with deposition (Guo et al., 2018). Given the minor 

601 influence of hydraulic fractionation on clay geochemistry, the originally defined mobility 

602 indices α of Gaillardet et al. (1999) may not be distorted by these processes as much as 

603 when applied to sediments made of coarser particles.

604 Not all weathering parameters obtained from geochemical analysis of the clay fraction 

605 can be considered as robust estimators of climatic variables. For instance, K abundance 

606 in clay may be strongly dependent on source-area geology (von Eynatten et al., 2012, 

607 2016; Garzanti and Resentini, 2016), which necessarily influences all indices that 

608 consider K, such as CIA, WIP, CIX, αTh
K, or αAl

K. Other indices (e.g., CPA, αAl
Na and αSm

Na) 

609 rely on Na as the mobile element, which is generally quite scarce in the clay-mineral 

610 lattice. In SW African river muds, Na2O concentration is locally near the detection level 

611 of 0.01%, hence introducing a supplementary risk of biased interpretation. Magnesium 

612 does not suffer from these issues, because it is invariably present in significant amounts 

613 in clay fractions and, despite overt differences between clays produced from mafic and 

614 felsic rocks in cold settings (Louvat et al., 2008; von Eynatten et al., 2012), the divergence 

615 seems to be reduced as weathering progresses, being apparently minor in wet and warm 

616 settings (von Eynatten et al., 2016). This is confirmed by the fact that in our study αAl
Mg 

617 resulted to be a slightly better estimator of rainfall than all other compositional 

618 parameters (Fig. 9). 

619

620 6.4. Geological and geomorphological causes of scatter

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593



28

621 This section focuses on those factors that are expected to have a specific effect on the 

622 composition of clay, processes influencing compositional variability of coarser fractions 

623 having been discussed above.

624

625 6.4.1. Supply from areas with different climate

626 While evaluating weathering in the source area of sediments, we must keep in mind that 

627 chemical processes generally do not take place in homogenous environmental 

628 conditions. In big drainage basins, sediment derived from the most distant realms tend 

629 to pass through successive phases of transient deposition in alluvial plains and the 

630 composition may be more influenced by processes taking place in more proximal sites. 

631 Sediment composition can be affected also by processes occurring outside the drainage 

632 basins, as observed within or close to arid and semiarid regions, where even a significant 

633 fraction of fine-grained deposits seems to be allochthonous and airborne, generated in 

634 regions of completely different climate rather than within the river basin itself. 

635 Significant amounts of far-travelled sands was recognised in SW Africa (Garzanti et al., 

636 2018a, 2018b) and this is even more plausible for very fine-grained particles. A similar 

637 complication has been discussed for marine deposits above.

638

639 6.4.2. Recycling

640 Even if only sediments produced within the drainage basin are considered, a major and 

641 long-recognised problem is the possible inheritance of compositional features from 

642 older sedimentary rocks (e.g., Singer, 1980; Gaillardet et al., 1999; Borges et al., 2008; 
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643 Garzanti and Resentini, 2016). Therefore, in general weathering indices reflect chemical 

644 processes that were cumulated during multiple depositional cycles, rather than 

645 weathering-related transformations coeval with the depositional unit. This problem is 

646 particularly pertinent in large catchment areas such as that of the Congo River, that 

647 include wide exposures of units formed in diverse previous sedimentary cycles (Duprè 

648 et al., 1996; Gaillardet et al., 1999). Although different methods were proposed to 

649 address the effect of recycling on weathering indices (Gaillardet et al., 1999; Garzanti et 

650 al., 2013; Dinis et al., 2017; Guo et al., 2018), this remains an issue difficult to solve. 

651 Comparing the composition of daughter sediments with parent rocks is a plausible way 

652 to quantitatively assess weathering-driven transformations during the last depositional 

653 cycle (Chetelat et al., 2015; Dinis and Oliveira, 2016). However, it may be quite difficult 

654 to accurately evaluate an average source-rock composition in large catchment areas. 

655 Lithium-isotopes combined with selected element ratios were also used to quantify the 

656 contribution of inherited weathering products in the particulate matter of big rivers 

657 (Dellinger et al., 2014; Wang et al., 2015).

658 Whereas sand is largely the product of physical erosion, clay is chiefly the product of 

659 climatically-driven weathering, which explains their stronger depletion in mobile 

660 elements. However, sand may also show extreme depletion in mobile elements 

661 whenever the effect of chemical processes during weathering and recycling is cumulated 

662 through multiple sedimentary cycles. A long multicyclic history typically ends up in 

663 quartz-enrichment (Garzanti, 2017), which is the case of Congo River sand that only 

664 includes the most chemically durable minerals (Garzanti et al., 2019). Congo muds, 

665 however, yield relatively low silica (34-43% in the <2 µm fraction), which is leached in 

666 association to kaolinite formation, and are enriched in some of the least mobile 
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667 elements (i.e., Al and Ti). Where weathering is not extreme, as in the intracratonic 

668 Kalahari Basin where quartz is present in the clay fraction, recycling may promote silica 

669 enrichment in river muds (up to 58% SiO2 in the <2 µm fraction and up to 66% in the <32 

670 µm fraction). Recycling thus affects the composition of coarse and fine particles 

671 differently.

672 Silt and clay particles in fluvial mud deposits are entrained in suspension and tend to 

673 concentrate at different channel depths during transport (Rouse, 1937; Vanoni, 2006). 

674 Finest-grained particles are kept in motion even in the lowlands when current velocity 

675 is slow and competence decrease, being more likely winnowed in hypopycnal plumes 

676 offshore of the river mouth. The finest particles are also the most easily transported by 

677 wind. Based on these considerations, we hypothesize that the amount of this finest 

678 component is preferentially lost during multiple sedimentary cycles. If this is true, then 

679 the clay component in a modern sediment would represent climatic conditions during 

680 the last cycle far better than coarser fractions, and a ratio of the same weathering index 

681 in different grain-size fractions (e.g., <2 µm vs. <32 µm) may be used to assess recycling 

682 effects. This possibility is supported by the relationship between a ratio calculated with 

683 the levels of depletion of the most mobile element (i.e., ratio of αAl
Na for <2 µm vs. αAl

Na 

684 for <32 µm) with the percentage of Meso-Cenozoic sedimentary units in source areas 

685 (Fig. 10). River muds with similar levels of Na-depletion in the two size fractions that do 

686 not follow this trend occur in arid to semi-arid settings where airborne particles are most 

687 likely present and in catchment areas including sedimentary rocks of the West Congo 

688 Belt. In both cases, sources of recycled material alternative to Meso-Cenozoic 

689 sedimentary successions occur. As for other parameters, however, the influence of 

690 grain-size and source-area geology on coarser mud fractions and the very low Na 
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691 content in the clay fraction where weathering is intense limits the application of this 

692 ratio as an estimator of recycling component.

693

694 6.4.3. Other surface processes

695 The size and relief of the catchment also exert a significant influence on sediment 

696 composition (e.g., Weaver, 1989). In small and relatively steep catchments exposing 

697 different lithological units sediment composition is expected to mirror the composition 

698 of those source rocks that erode faster. In steep areas, chemical decomposition is 

699 frequently hampered by the rapidity of erosion processes (“weathering-limited 

700 regimes” of Riebe et al., 2004, and West et al, 2005) and weathering reactions should 

701 be incomplete. Conversely, because widely different climatic conditions are generally 

702 present in large rivers, the relationship between sediment composition and climatic 

703 parameters is more complex. In addition, sediment temporarily stored in alluvial plains 

704 can suffer additional decomposition (e.g., Johnsson and Meade, 1990). Several authors 

705 maintained that floodplains are likely sites of weathering reactions (Galy and France-

706 Lanord, 1999; West et al., 2002; Moquet et al., 2011), although minor changes in 

707 suspended load after temporary deposition were also reported (Bouchez et al., 2012). 

708 Assessment of climatic conditions from mud composition may thus be more reliable 

709 when dealing with drainage basins of medium size. In the present case, if data from 

710 sediments carried by the huge Congo River and by the rivers with drainage areas smaller 

711 than 2000 km2 are neglected, the correlation between rainfall and αAl
Mg is in fact notably 

712 improved (Fig. 9). A larger dataset with more diversified geomorphological and climatic 
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713 conditions is however required to understand how the size of the drainage may 

714 influence the investigated relationships. 

715 Another factor that should be considered is that water available for weathering 

716 reactions at the Earth’s surface does not depend exclusively on rainfall, as it is also 

717 controlled by the proximity of the water table. Weathering rates strongly depend on 

718 fluid residence time and flow rate (Maher, 2010), and higher weathering intensities tend 

719 to be attained in permeable mediums (Weaver, 1989; Hundert et al., 2006). Finally, the 

720 fluxes of weathering-related elements and soil composition depend on the interactions 

721 with vegetation and nutrient cycling (Minasny et al., 2015). Magnesium, along with 

722 other mobile elements, is an important nutrient influenced by biogeochemical cycles 

723 (White and Bum, 1995; Rufyikiri et al., 2004; Sardans et al., 2008; Barré et al., 2009). The 

724 transfers promoted by plants’ activity are thus likely to be responsible for changes in 

725 inorganic element concentration in the upper levels of soil profiles, which are most 

726 promptly eroded to generate fine particles entrained as suspended load. 

727

728 6.4.5. Post-depositional transformations

729 A detailed description of the compositional transformations during diagenesis falls out 

730 of the scope of the present manuscript, but it must be pointed out that they inevitably 

731 blur the climatic signal in sediments generated and deposited in any environment. Muds 

732 are vulnerable to post-depositional transformations that may affect all weathering 

733 indices discussed before. Several authors have discussed changes in clay mineral 

734 assemblages and element concentrations caused by authigenesis in marine settings 

735 (e.g., Weaver, 1989; Thiry, 2000; Rimstidt et al., 2017), which can be accomplished by 
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736 processes of reverse-weathering that consume silica (Michalopoulos and Aller, 1995; 

737 Tréguer and De La Rocha, 2013). In continental settings, early diagenesis may promote 

738 the enrichment of some mobile elements in weathering profiles (Nesbit and Young, 

739 1989), whereas depletion may occur where permeable beds in regoliths or sedimentary 

740 successions allow water circulation (Hundert et al., 2006). As diagenesis proceeds, the 

741 compositional transformations also continue and may eventually lead to the 

742 replacement of detrital kaolinite and smectite by others minerals with higher Si/Al 

743 ratios, such as illite (Boles and franks, 1979; Hower et al., 1979; Chermak and Rimstidt, 

744 1990; Fedo et al., 1995). 

745

746 7. Concluding remarks

747

748 Weathering intensity, which is largely influenced by climate, can be estimated from the 

749 geochemical and mineralogical composition of sediments. Thus, the relationships 

750 observed on the Earth surface today between sediment composition and climate may 

751 help us to assess past climatic conditions. A series of problems, however, arise whenever 

752 geochemical and mineralogical indices are used as climatic proxies. The composition of 

753 daughter sediments is controlled primarily by the composition of the parent rocks. 

754 Moreover, even where source-area geology is similar, sediment composition will 

755 strongly depend on the grain size of the generated sediments. Mineralogical and 

756 chemical composition of detritus may be strongly influenced by hydraulic-sorting 

757 processes, which control the distribution of minerals with different density and shape in 

758 different size fractions. Other elusive factors that may be difficult to cope with are the 
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759 dependence on the geomorphology of the drainage basin (e.g., size of the catchment, 

760 variable hillslopes and yields from different parts of the basin, proximity of the phreatic 

761 level) and the widespread and commonly overwhelming contribution of detritus 

762 recycled from pre-existing sedimentary units.

763 Climatic conditions are poorly reflected in the mineralogical and chemical composition 

764 of coarse silt and sand. The clay fraction is far more promising because heterogeneities 

765 in particle size tend to be lower and they largely consist of material eroded from coeval 

766 soils, thus more faithfully reflecting the environmental conditions during the last 

767 depositional cycle. In addition, it appears that the composition of clay is somewhat less 

768 dependent on the felsic vs. mafic provenance than coarser detritus. Fairly robust 

769 relationships between clay geochemistry and rainfall were in fact obtained for southern 

770 African river muds. The clay fraction, however, may be more affected by other 

771 interfering factors, such as the presence of allochthonous airborne material, and the 

772 process of plant uptake of mineral nutrients. Links between mud composition and 

773 climatic properties are even more difficult to establish in the marine environment. Here, 

774 mineral segregation by grain-size, mixture with allochthonous sediment transported 

775 from distant continental or intraoceanic areas, and formation of authigenic minerals 

776 commonly have a major effect on clay composition. 

777 Despite these difficulties, regional climatic proxies based on mud composition are not 

778 destined for the dustbin. Mud is found in great abundance in all fluvial deposits 

779 worldwide. Sampling mud deposits, separating their clay fraction and determining their 

780 geochemical and mineralogical composition are simple and non-expensive tasks. The 

781 main challenge is to isolate the role played by the number of sedimentological, 
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782 geomorphological, and biological factors that influence mud composition besides 

783 climatically-driven weathering. This can be partially achieved with large datasets from 

784 distinct size-fractions that are affected differently by diverse controlling factors. 

785 Advances in these issues will improve the performance of mud composition as an 

786 independent tool capable of approximating past climatic conditions in continental 

787 settings.

788
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1219 Figure captions

1220

1221

1222 Fig. 1: General features of the study area. (A) Location in Southern Africa; the dotted 

1223 line indicates the areas studied in Petschick et al. (1996) and Garzanti et al. (2013, 

1224 2014), whose data are used in the present research. (B) Topography, and location of 

1225 fluvial and offshore samples in which the geochemistry of two size fractions and clay 

1226 mineralogy were determined. Numbers for marine samples refer to the GeoB cores. 

1227 (C) Rainfall (mm) and (D) temperature (ºC) in the Congo River basin and along the SW 

1228 African Atlantic margin (from Fick and Hijmans, 2017). 

1229

1230

1231 Fig. 2: Schematic geological map of the SW Africa Atlantic Margin and Congo River 

1232 basin. Based on CGMW-BRGM (2016). LCB: Lower Congo Basin; KB: Kwanza Basin; NB: 

1233 Namibe Basin. Drainage basins investigated in this study are outlined.

1234

1235

1236 Fig. 3: Chemical composition of river muds. (A) Ratio between element concentrations 

1237 in the < 2 µm and < 32 µm fractions, (B) Composition of the two mud fractions in the 

1238 lower Congo and SW Atlantic margin, (C) Composition of upper Congo (<63 µm 

1239 fraction) and Namibia (<32 µm fraction) river muds. Element concentrations are 
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1240 normalized to the UCC and the chemical elements are ranked on the X-axis according 

1241 to their increasing enrichment relative to the UCC. Dashed lines indicate maximum and 

1242 minimum values and solid lines indicate average composition.

1243

1244

1245 Fig. 4: Map of the principal components for a selection of chemical elements of the 

1246 <32 µm (A) and <2 µm (B) fractions. PCA performed with the provenance R-package 

1247 (Vermeesch et al., 2016). Geochemical data were subjected to a centred log-ratio 

1248 transformation in order to remove the unit-sum constraint (Aitchison, 1986). The 

1249 vector loadings of the PCA for the <32 µm fraction define two perpendicular links, 

1250 indicating two independent controls on the data (Aitchison and Greenacre, 2002). The 

1251 first link connects the mobile elements (Ca, Na, Al and Ti) and is attributed to 

1252 weathering (blue). The second link connects elements (Mg, Mn, Co, Th, U, W, LREE) 

1253 that are linked to source rock geology (brown). These two components are less visible 

1254 in the fine fraction (<2um). 

1255

1256

1257 Fig. 5: Comparison of the levels of depletion/enrichment in different elements relative 

1258 to the UCC (αAl
E) in the <2 µm and <32 µm fractions of river muds. (A and B) Average 

1259 values of αAl
E in the <2 µm and <32 µm fractions. Na, followed distantly by Ca and Sr, is 

1260 the most depleted element. Non-mobile elements may show values higher than 1 

1261 where Al concentration is even higher. The size of the circle diameter is proportional to 

1262 the observed correlation between the <2 µm and <32 µm fractions. The lack of 
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1263 correlation for CaO is strongly conditioned by the anomalous low Ca content in the 

1264 Congo Estuary (r=0.92 if this sample is excluded). (C) Levels of depletion in Zr (Zr
Al) in 

1265 muds from different regions. Far better correlations occur if muds collected at 

1266 different latitudes are isolated.

1267

1268

1269 Fig. 6: Variation with water depth of different compositional features of offshore 

1270 marine muds. (A) Si/Al and concentration of TiO2 and Zr in the <5 µm fraction. (B) 

1271 Levels of depletion in Mg (αAl
Mg) and K (αAl

K) and CIA in the <5 µm fraction. (C) Levels of 

1272 depletion in Mg and K and CIA in the <63 µm fraction.

1273

1274

1275 Fig. 7: Clay mineral assemblages in river muds and marine deposits from Southern 

1276 Africa (A). Temperate/arid steppe and arid Namibia samples from Garzanti et al. 

1277 (2014); equatorial upper Congo samples from Garzanti et al. (2013); offshore samples 

1278 from Petschick et al. (1996). Variation in smectite content in offshore samples with 

1279 water depth in equatorial (<12.5º latitude; B) and sub-tropical (>12.5º latitude; C)

1280

1281

1282 Fig. 8: Relations between average annual rainfall in the catchment and diverse 

1283 compositional parameters of river muds from Southern Africa (0-30º latitude). CIA (A), 
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1284 WIP (B) and the level of depletion in Mg (αAl
Mg) (C) were obtained for the <32 µm 

1285 fraction, with the exception of samples from equatorial upper Congo (<63 µm). 

1286 Kaolinite proportion in the clay assemblage (D) was determined in the <2 µm fraction 

1287 for all samples. Equatorial upper Congo and temperate/arid steppe and arid Namibia 

1288 samples from Garzanti et al. (2013, 2014). Samples from upper Congo are neglected in 

1289 the calculation of regression lines for geochemical data (CIA, WIP and αAl
Mg).

1290

1291

1292 Fig. 9: Relations between average annual rainfall in the catchment and weathering 

1293 indices determined from the <2 µm fraction. For geochemical data the dispersion can 

1294 be reduced if both smaller rivers (drainage area < 2000 km2) and the huge Congo basin 

1295 are neglected.

1296

1297

1298 Fig. 10: Link between the ratio of Na-depletion in the <2 µm and <32 µm fractions 

1299 ((αAl
Na)2/ (αAl

Na)32) and the areal proportion of Meso-Cenozoic sedimentary units in 

1300 the respective catchments (A). Mucope sand is entirely derived from recycled Kalahari 

1301 sand. Recycled detritus chiefly consisting of quartz is also overwhelming in Congo and 

1302 Congo estuary sand and Caculuvar River (Garzanti et al., 2018b and 2019). The large 

1303 majority of river muds in inset (B) are either from arid to semi-arid settings in coastal 

1304 southwestern Angola (Curoca, Giraul, Bentiaba, and Carujamba) or from humid 

1305 settings in northwestern Angola and Bas-Congo draining the West Congo Belt 
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1306 (Mebridege, Lufu, Lunkunga, Mpozo and Bundi); other sources of recycled material 

1307 besides Meso-Cenozoic sedimentary units can be considered for these rivers.

1308

1309 Table captions

1310 Table 1. A selection of compositional parameters that may reflect weathering intensity. 

1311 (1) Use molar proportions; (2) Uses monocationic millimoles.
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Table 1. A selection of compositional parameters that may reflect weathering intensity. (1) Use 
molar proportions; (2) Uses monocationic millimoles.

Parameter Formula (when necessary); Response to weathering Reference
Geochemical
WIP (Weathering 
Index of Parker)

(CaO*/0.7+2Na2O/0.35+2K2O/0.25+MgO/0.9) X 100 (1); 
Decreases

Parker (1970)

CIA (Chemical Index 
of Alteration)

Al2O3 / (Al2O3+K2O+CaO*+Na2O) X 100 (1); Increases Nesbitt and Young 
(1982)

CIW (Chemical Index 
of Weathering)

Al2O3 / (Al2O3+CaO+Na2O) X 100 (1); Increases Harnois (1988)

PIA (Plagioclase Index 
of Alteration)

(Al2O3-K2O )/(Al2O3+K2O+Na2O) X 100 (1); Increases Fedo et al. (1995)

Th/U Increases if Th/U>4 McLennan et al. (1995), 
Gu et al. (2002)

Th/K Increases Deconinck et al (2003)
αME (ImE/ME)sample/(ImE/ME)UCC, being ME a mobile element 

(Mg, Ca, Na, Sr, K, Ba) and ImE a non-mobile element 
with similar magmatic compatibility (Al for Mg, Ti for Ca, 
Sm for Na, Nd for Sr, and Th for K and Ba); Increases

Gaillardet et al. (1999)

K/Na and Rb/Sr Increases Yang et al. (2004)
Cs/Ti and Rb/Ti Decreases Yan et al. (2007)
W in M-F-W diagram Long formulation (see cited reference); Progress 

towards vertex W of M-F-W ternary diagram
Ohta and Arai (2007)

Rb/K Increases Roy et al. (2008)
CPA (Chemical Proxy 
of Alteration)

Al2O3 / (Al2O3+Na2O) X 100 (1); Increases Buggle et al. (2011)

4Si in M+-4Si-R2+ 
diagram

Long formulation (see cited reference) (2); Progress 
towards vertex 4Si of M+-4Si-R2+ ternary diagram

Meunier et al. (2012)

αAl
E (Al/E)sample/(Al/E)UCC, being E a mobile elemento; 

Increases
Garzanti et al. (2013a)

MIA(o) (Mafic Index of 
Alteration for 
oxidative weathering)

(Al2O3+Fe2O3) X 100 / (Al2O3+K2O+CaO*+Na2O+MgO); 
Increases

Babechuck et al. (2014)

MIA(r) (Mafic Index of 
Alteration for 
reductive weathering)

(Al2O) X 100 / (Al2O3+K2O+CaO*+Na2O+MgO+FeO);
Increases

Babechuck et al. (2014)

CIX (modified CIA) Al2O3 / (Al2O3+K2O+Na2O) X 100 (1); Increases Garzanti et al. (2014)

Mineralogical
Kaolinite proportion Increases E.g., Chamley (1989), 

Velde (1996)
MIA (Mineralogical 
Index of Alteration)

Quartz%/(Quartz%+Feldspar%) X 100; Increases Rieu et al. (2007); 
Hessler et al. (2017)


