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Abstract 

MCM-41-type mesoporous silica was used as a support for poly(furfuryl alcohol) deposition. 

This material was produced by precipitation-polycondensation of furfuryl alcohol (FA) in 

aqueous slurry of the SiO2 support followed by controlled partial carbonization. By tuning the 

FA/MCM-41 mass ratio in the reaction mixture, various amounts of polymer particles were 

introduced on the inner and outer surface of the MCM support. The thermal decomposition of 

the PFA/MCM-41 composites was studied by thermogravimetry (TG) and spectroscopic 

techniques (DRIFT, XPS), whereas the evolution of textural parameters with increasing 

polymer content was investigated using low-temperature adsorption of nitrogen. The 

mechanism of thermal transformations of PFA deposited on the MCM-41 surface was 

discussed in detail. It was found that heating at a temperature of about 523 K resulted in 

opening of the furan rings and the formation of γ-diketone moieties, which were found to be 
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the highest effective surface species for the adsorption of polar volatile organic compounds. A 

further increase in calcination temperature caused a drop in the amounts of surface carbonyls 

and the appearance of condensed aromatic domains. 

 

Keywords: MCM-41; Precipitation-polycondensation; Poly(furfuryl alcohol); Adsorption; 

Volatile Organic Compounds 

 

1. Introduction 

Among many types of known adsorptive materials (zeolites, silica gels, clays, molecular 

sieves) [1-5], activated carbons (ACs) are widely used in commercial scale due to low costs of 

large-capacity production and desirable microstructural properties. The process of ACs 

manufacture consists of two essential steps: (i) carbonization of raw carbon-containing 

material under controlled (usually oxygen-free) conditions and (ii) physical or chemical 

activation resulting in a formation of eligible porosity and/or surface composition [6,7]. 

Activated carbons find a large number of applications, mainly in environmental protection 

(e.g. adsorption of volatile organic compounds (VOCs) [8-12] and CO2 [13-15] as well as 

purification of waste water by the removal of heavy metal ions [16] or phenols [17,18]), 

chemical industry (as a catalyst support) [19,20] and electrochemistry [21,22]. Many different 

raw materials are used for the fabrication of ACs, for instance: coal, charcoal, biomass or 

waste synthetic polymers [5,23-32]. The use of synthetic polymeric materials seems to be one 

of the most promising methods for the production of special quality activated carbons due to 

the possibility of tailoring and control of the properties of the final adsorbent as well as its 

high reproducibility. Obviously, the raw polymer used strictly determines the structural, 

textural and surface properties of the final carbon adsorbent. In this role, for example, 
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phenolic resins, polyvinyl chloride, various acrylic polymers, and copolymers of 

divinylbenzene [33-35] have been tested. 

Furfural, an aldehyde obtained as the hydrolysis product of pentosan-rich biomass, e.g. 

baggase, corn, birch wood or wheat [36], is one of the very promising, environmental-friendly 

and cheap initial base substances for the production of carbon adsorbents. This aldehyde can 

be easily transformed into furfuryl alcohol (FA), this being a monomer for the synthesis of 

poly(furfuryl alcohol) (PFA). PFA was found to be a useful polymer for the fabrication of 

high quality, reproducible and stable carbon-based, microporous adsorbents by pyrolysis and 

optionally subsequent modification [37-43]. Polyacrylonitrile (PAN), a high-melting and 

spinnable duroplast, is another extensively studied raw material for the production of carbon 

fibers, filaments and films [6,8,44-48].  

In recent years a lot of attention has been focused on various hybrid carbon-inorganic 

materials that combine characteristics of both components [6,8,40,41,43]. Partially carbonized 

and properly functionalized organic compounds dispersed on porous silica supports were 

studied, for example, as catalysts for various industrial processes. Toda et al. [49] reported the 

application of incompletely carbonized sugars (D-glucose and sucrose) sulfonated with 

sulfuric acid as catalysts in the biodiesel production. Similar materials dispersed on SBA-15 

were used in esterification of long-chain fatty acids and transesterification of soybean oil with 

methanol [50], liquid-phase Beckmann rearrangement of cyclohexanone oxime to ε-

caprolactam, condensation of various aldehydes with ethylene glycol [51], as well as selective 

dimerization of α-methylstyrene [52]. Furthermore, incompletely carbonized and sulfonated 

sucrose deposited on MCM-48 was successfully tested as a catalyst for esterification of higher 

fatty acids with ethanol [53]. 

Among various methods of modification of SiO2 surface, the introduction of organic species 

by atom transfer radical polymerization (ATRP) seems to be very interesting [54]. Poly-p-
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styrenesulfonic acid grafted by this route on SBA-15 silica appeared to be an active catalyst of 

esterification processes [55,56]. Although there are a few papers dealing with using the ATRP 

method for the modification of SBA-15, silica materials exhibiting narrower pores (e.g. 

MCM-41) have been much less studied.  

Our goal is the investigation of the carbon surface, efficient in adsorption of VOCs, obtained 

by the deposition of polymeric species (PFA-derived) on mesoporous MCM-41 support, 

followed by partial carbonization, to avoid the diffusion limitations typical for commercial 

microporous ACs. MCM-41 with deposited carbon has smaller pores but larger than 

microporous PFA-based carbon alone and shows higher adsorption of polar volatile organic 

compound. On the other hand, the proposed synthesis route allows to omit the complicated 

methods of mesoporous PFA-based carbon synthesis reported earlier [57,58]. In this work, we 

propose a new, simplified method for the synthesis of poly(furfuryl alcohol)-derived carbon 

supported on mesoporous MCM-41 silica molecular sieve. Various amounts of polymer were 

introduced by acid-catalyzed precipitation-polycondensation of FA in aqueous slurry of the 

support, followed by partial carbonization. Thermally degraded PFA supported on the 

mesoporous silica appeared to be an efficient adsorbent of methyl-ethyl ketone (MEK) 

vapour. To understand the role of the different types of surface species, formed during PFA 

decomposition, on the adsorption capacity of MEK we investigated the mechanism of low-

temperature transformations of bulky PFA and silica-supported polymer. For this purpose, 

thermogravimetry coupled with IR (TG/DTG/FT-IR), DRIFT and XPS measurements were 

performed.  
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2. Experimental 

2.1. Synthesis 

Mesoporous MCM-41 molecular sieve was synthesized using a molar gel composition: 1.00 

tetraethylorthosilicate (TEOS): 0.16 hexadecyltrimethylammonium chloride (C16TMACl): 

2.76 NH3: 140.13 H2O. Amounts of 525 ml of distilled water, 45.3 ml of C16TMACl (25% 

water solution, Aldrich) and 44 ml of ammonia solution (25%, Polish Chemical Reagents) 

were mixed in a 1000 ml beaker and stirred for 30 min at room temperature. Then, 48.6 ml of 

TEOS (98%, Aldrich) was added dropwise. Next, the resulting white suspension was stirred 

for 1 h. Subsequently, the product was filtered, washed with distilled water and dried at 295 K 

for 48 h. Finally, the organic template was removed by calcination of the material at 825 K for 

8 h at a heating rate of 1 K/min. The low-angle XRD pattern of calcined MCM-41 shows the 

characteristics of a highly ordered hexagonal structure (p6mm) with a cell parameter equal to 

3.81 nm. The isotherm of N2 adsorption confirms obtaining well-defined MCM-41 structure 

with the BET surface area equal to 1037 m2/g and the total pore volume of 0.87 cm3/g, 

whereas the mean pore size is about 3.7 nm (Supplementary information, Fig. S1 and S2). 

PFAx/MCM-41 (where x = 0.1, 0.4, 1.0 and 2.0 means an intended PFA/SiO2 mass ratio) 

composite materials were synthesized by acid-catalyzed precipitation polycondensation of 

furfuryl alcohol (FA) in aqueous slurry of MCM-41 support. Typically, 1.0 g of freshly 

calcined support was introduced into a three-necked flask (250 ml) equipped with a reflux 

condenser and placed in an oil bath on a magnetic stirrer. Then, adequate volumes of water 

and FA (98%, Acros Organics) were added to obtain a total mixture volume of 140 ml. The 

intended PFA/SiO2 mass ratios were achieved by adding appropriate amount of FA. The 

mixture was stirred for 0.5 h at room temperature. Subsequently, the proper volume of HCl 

(33%, Polish Chemical Reagents), being an acid catalyst of polycondensation, was added. The 

HCl/FA molar ratio was kept at a constant level of 6. The polycondensation process was 
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performed at 373 K for 6 h. The obtained dark-brown composite was isolated by filtration, 

washed with distilled water and dried at 333 K overnight. Eventually, the PFA/MCM-41 

precursors were partially carbonized in a tubular furnace at the temperature range of 423-

1023 K (N2; 40 ml/min; a heating rate of 5 K/min and an isothermal period of 4 h). The 

thermally treated samples are labelled as calcined-PFAx/MCM-41.  

Reference polymer materials were synthesized by the same procedure without using a silica 

support. 

 

2.2. Characterization 

Powder X-ray diffraction measurements were performed using Bruker D2 Phaser equipped 

with a LYNXEYE detector in the 2θ angle range of 0.8–5.0°. A JEM (JEOL) 2010 

transmission electron microscope equipped with an INCA Energy TEM 100 analyzer and SIS 

MegaView II camera was used to collect TEM images. The used accelerating voltage was 200 

kV; a sample was placed on a copper holder coated with LASEY carbon film.  

The textural parameters of molecular sieve MCM-41 and thermally transformed samples were 

determined based on the low temperature (77 K) nitrogen adsorption-desorption isotherms. 

The isotherms were collected in a home-made fully automated equipment designed and 

constructed by the Advanced Materials group (LMA), commercialized as N2Gsorb-6 (Gas to 

Materials Technologies). The samples were preliminary outgassed at 473 for 4 h at a base 

pressure of 1.3·10-3 Pa. The dried PFA/MCM-41 composites were analyzed by 

thermogravimetric method (TG) in an oxidizing or inert atmosphere (air (100 ml/min) or 

nitrogen (20 ml/min), ca. 5 mg of sample placed in a corundum crucible, outgassing at room 

temperature in flowing gas for 1 h, temperature range = 303-1273 K, heating rate = 20 K/min) 

using a SDT Q600 apparatus (TA Instruments). The composition of the volatile products 

evolved during thermal decomposition of PFA/MCM-41 precursor in an inert atmosphere was 
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investigated using TG/FT-IR interface (Thermo Scientific) connected on-line with Nicolet 

6700 FTIR spectrometer. The spectra were collected in a region of 400–4000 cm-1 at a 

resolution of 4 cm-1 and a time interval of 3 s. 

The PFA/MCM-41 precursors and the samples decomposed in the temperature range of 473–

673 K were examined by DRIFT and XPS. Prior to the DRIFT measurements the samples 

were diluted to 2% by weight in potassium bromide and softly milled in an agate mortar. The 

mid infrared spectra (200 scans each) were collected on a Nicolet 6700 FTIR (Thermo 

Scientific) spectrometer at a resolution of 4 cm-1. The XPS measurements were performed 

with a Prevac photoelectron spectrometer equipped with a hemispherical analyzer VG 

SCIENTA R3000. The spectra were taken using a monochromatized aluminum source AlKα 

(E=1486.6 eV) and a low energy electron flood gun (FS40A–PS) to compensate charge 

accumulation on the surface of nonconductive samples. The base pressure in the analytical 

chamber was 5 · 10-9 mbar. The surface composition was studied based on the areas and 

binding energies of C 1s, O 1s and Si 2p core levels. The binding energy values of measured 

regions were referenced to the Si 2p core level (103.6 eV). 

 

2.3. Adsorption tests 

An amount of ca. 50 mg of sample was weighted in a stainless steel sample cell with a total 

volume of 1.2 ml. The sample cell was placed in an oven. The constant flow of carrier gas 

(N2, 20 ml/min) was passed through the adsorbent bed and the cell was heated up to 423 K for 

0.5 h (an outgassing step). Then, the sample cell was weighted again in order to determine the 

exact mass of outgassed sample and placed back in the oven kept at 313 K. Subsequently, the 

flow of carrier gas (N2, 20 ml/min), saturated with methyl-ethyl ketone vapor, was passed by 

the adsorbent at 323 K until the flame ionization detector (FID) signal reached a plateau. In 

the next step, the dosage of MEK was interrupted and the system was purged with pure carrier 
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gas in order to remove the loosely adsorbed forms of ketone. Then, the sample cell was heated 

from 323 up to 523 K at a heating rate of 15 K/min in a flow of nitrogen (20 ml/min). No 

clear decomposition of the composite calcined at 473 K was detected during the TPD 

measurement in the temperature range of 473-523 K. The adsorption capacities of the studied 

samples were calculated from the FID signal based on the calibration of the detector response 

by injections of various amounts of liquid MEK. 

 

3. Results and discussion 

3.1. Effectiveness of deposition of PFA on MCM-41 surface 

The real content of poly(furfuryl alcohol) introduced onto the MCM-41 support was 

determined by thermogravimetric measurements performed in the oxidizing atmosphere. The 

TG/DTG curves as well as the polymer/silica mass ratios, calculated from the mass losses 

detected above 393 K, are shown in Fig. 1. It is found that the real PFA loadings are lower 

than the intended values for all the studied samples. Obviously, the higher concentration of 

FA in the reaction slurry provided more effective deposition onto the silica support. The 

efficiency of PFA deposition is equal to 39.0, 54.3, 34.0 and 60.7% for the expected 

PFA/support ratios of 0.1, 0.4, 1.0 and 2.0, respectively. This means that the real PFA/MCM-

41 mass ratios of 0.04, 0.22, 0.34 and 1.21, respectively, were achieved. During 

polycondensation the PFA species are formed on the inner and outer surface of the MCM-41 

support as well as outside the silica particles. When the oligomeric molecule reaches the 

critical molecular mass, it ceases to be water soluble and it precipitates on the silica surface. A 

part of monomer molecules is grafted on the surface silanol groups and therefore ‘surface-

anchored’ polymer is also formed. However, the isolation of solid materials from the reaction 

medium after the syntheses leads to leaching short-chain, water-soluble oligomers resulting in 

a decrease in the deposition yield.  
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The distribution of deposited PFA on the MCM-41 support was investigated by collecting 

low-temperature N2 adsorption isotherms for the materials after partial carbonization at 

523 K. The measured isotherms and pore size distributions calculated with the NLDFT 

equilibrium model are comparatively shown in Fig. 2. The amount of adsorbed nitrogen drops 

with an increase in the content of PFA-derived species. The changes in the shape of the 

isotherms in a p/p0 range of about 0.2–0.3 suggest the reduction of the volume of accessible 

mesopores caused by their gradual blocking with the increase of the polymer content. For the 

calcined-PFA2.0/MCM-41 material, the recorded isotherm with a loss of the capillary 

condensation step is typical for a poorly porous solid, revealing that the formed polymer 

totally filled the mesopore system and/or blocked the pore mouths. Furthermore, the 

deposition of polymer species on the MCM-41 surface followed by partial carbonization 

resulted in a gradual decrease in the pore size (Fig. 2B) as well as the BET surface area and 

total pore volume (Fig. 3 and Table 1S). A linear correlation between the PFA content and the 

total pore volume of the material was found. Extrapolation of these values for Vtotal→0 allows 

us to conclude that the blockage of the pore system by formed polymer would be observed at 

the real PFA/MCM-41 mass ratio between 0.5 and 0.6. In spite of mouths of a few pores can 

be blocked by the PFA particles, the chemical composition and textural properties as well as 

the collected TEM images (Fig. 4) confirm homogeneous dispersion of precipitated PFA on 

the complete surface (both outer and inner) of the silica support. The phenomenon of gradual 

filling of the silica mesochannels with organic species was reported earlier by several authors 

[59,60]. The described approach to the calculation of the polymer layer thickness inspired us 

to determine the thickness of PFA film deposited on the MCM-41 surface. Fig. S3 (see 

Supplementary information) shows the results obtained from the difference in the pore size of 

MCM-41 before and after deposition of PFA (determined by NLDFT) correlated with the real 

polymer/MCM-41 mass ratio (determined by TG).  
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3.2. Adsorption capacity of partially carbonized PFA/MCM-41 composites 

The synthesized calcined-PFA/MCM-41 composites were tested as adsorbents of methyl-

ethyl ketone vapor chosen as a representative molecule of polar derivatives of hydrocarbons. 

The measurements were performed in the dynamic adsorption system with the determination 

of amount of MEK adsorbed by temperature-programmed desorption (TPD). It was found that 

two parameters, namely the content of carbonaceous species and temperature of thermal 

treatment, affect strongly the adsorption properties of the calcined-PFA/MCM-41 composites. 

We observed that the MCM-41 modified with small amounts of PFA exhibits higher 

adsorption capacity compared to the pristine silica (Fig. 5B). On the contrary, the introduction 

of larger amounts of polymer species into the pore system of MCM-41 support results in 

blocking of the pore system and ipso facto reduction of the accessibility of the inner 

adsorption centers, as is confirmed by the textural parameters (Fig. 3 and Table 1). Therefore, 

we chose the PFA0.4/MCM-41 sample to investigate the influence of temperature of the heat 

treatment on the adsorption capacity (Fig. 5A). It can be seen that the calcination temperature 

plays a crucial role in tuning the adsorption properties. It is noticed that the material calcined 

at 523 K shows the best adsorption capacity of 0.29 gMEK/gads, which is about 26% higher 

than that measured for the unmodified support. It should be noticed that the adsorption 

capacity of bulky PFA calcined at the same temperature is below the detection limit. The 

unsupported polymer exhibits an increase in the adsorption efficiency after carbonization at 

temperatures above 700 K, while an opposite effect is observed for the composite samples. 

This fact suggests that bulky PFA calcined at elevated temperatures forms a type of carbon 

microstructure that is efficient in the removal of organic molecules from the gas phase. The 

low-temperature adsorption of N2 showed (cf. Fig. S4, Supplementary information) that the 

bulky PFA becomes a porous material after carbonization at temperature of 773 K or higher. 

On the other hand, in the case of the PFA/MCM-41 composites the appearance of specific 
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surface species exhibiting a high affinity to MEK is expected after the thermal treatment at 

523 K.  

 

3.3. Thermal stability of PFA deposited on MCM-41 support 

In order to recognize the mechanism of thermal decomposition of deposited polymer, bulky 

PFA and the PFA/MCM-41 composites were studied by thermal analysis in inert atmosphere. 

The collected thermograms are shown in Fig. 6A. Moreover, the corresponding FTIR maps of 

the evolved gases for bulky PFA, PFA0.4/MCM-41 and PFA1.0/MCM-41 are illustrated in 

Fig. 6B.  

Moisture is removed from the sample surface at low temperature (below 400 K). The essential 

decomposition of the samples, unsupported PFA and PFA/MCM-41, starts in inert 

atmosphere at about 400 K and proceeds in two overlapping stages. The first mass loss of 

bulky PFA, with a DTG maximum at about 630 K, is connected with the emission of CO2 

(absorption bands at 2305 and 2360 cm-1 in the FTIR map), small amounts of CO (weak 

bands at 2170 and 2110 cm-1) and H2O (broad bands at 1300–1800 and 3500–4000 cm-1). The 

absorption bands characteristic for carbonyl species (1700 cm-1) and ether linkage (1020 cm-1) 

are also observed in the FTIR spectra of gases evolved in this temperature range. Guigo et al. 

[36] ascribed such carbonyl groups to the formation of acetone, butan-2-one and pentan-2-one 

due to the scissions of furan ring and methylene. The second decomposition step, with a 

maximum at 710 K, corresponds to the emission of the COx, H2O and CH4 (weak absorption 

bands at about 3017 and 1300 cm-1) [61]. At temperatures above 710 K the bands ascribed to 

H2O, COx and CH4 are still detected, but the rate of mass loss gradually decreases.  

It is interesting to see that the decomposition of supported poly(furfuryl alcohol) shows a 

higher mass loss compared to bulky PFA when normalized to the real content of polymer in 

the studied material. For example, in the case of PFA1.0/MCM-41 96.2% of polymer mass 
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loss is observed over the entire temperature range, whereas for pure PFA only 54.5% of its 

initial mass is lost. Moreover, there are differences in the mechanism of polymer 

decomposition. For PFA0.4/MCM-41 and PFA1.0/MCM-41, all the decomposition stages are 

widely overlapping. Obviously, the FTIR band intensities for PFA0.4/MCM-41 are weaker 

compared to the PFA1.0/MCM-41 sample in the whole temperature range due to the lower 

content of organic species (cf. Fig. 6B). In the first decomposition step, the emission of COx 

and H2O starts at lower temperature both the PFA/MCM-41 composites than for unsupported 

PFA (cf. Fig. 6B). In the subsequent step, starting above 540 K, the emission of small 

amounts of methane is found. This effect is much weaker compared to that observed for the 

bulk polymer. Contrary to the bulky PFA, the emission of COx and H2O at higher 

temperatures (above 700 K) is kept on a constant level. It can be therefore concluded that PFA 

supported on MCM-41 exhibits lower thermal stability regardless of the polymer content in 

the composite. This effect, probably caused by the relatively easy furan ring-opening 

occurring during the decomposition of polymer deposited on the silica surface, is opposite to 

that reported by Guigo et al. [36]. However, the thermal stability of the hybrid PFA/silica 

materials discussed in [36] cannot be simply compared to that of the composites presented 

herein. The samples studied by Guigo et al. [36] were prepared by simultaneous inorganic 

mesophase formation and furfuryl alcohol polycondensation. Finally, they obtained materials 

composed of nanometric clusters branched together through condensation reaction to form the 

3D organic-inorganic network. In our synthesis, PFA is introduced by the post-synthesis 

modification of MCM-41: the prepared silica support is gradually coated with the 2D PFA 

layers by the precipitation polycondensation of furfuryl alcohol in a water slurry of silica. 

Thus, Guigo et al. [36] discussed the thermal behavior of non-porous, bulky sample, whereas 

our composites exhibit porosity. It should be therefore assumed that the bulky PFA/silica 
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composite may show some differences in the thermal stability compared to the thin layers of 

PFA deposited on the mesoporous silica support as we proved.  

 

3.4. Mechanism of PFA decomposition 

A type of polymeric species evolved on the mesoporous silica was identified by spectroscopic 

techniques. The DRIFT spectra collected for bulky PFA as well as the PFA0.4/MCM-41 and 

PFA1.0/MCM-41 composites calcined at elevated temperatures showed that many of the 

absorption bands characteristics for PFA are still present (Fig. S5, Supplementary 

information).  

The main characteristic peaks for neat PFA (Fig. S5, A) are observed at 3400 cm-1 (–OH 

stretching), 3119 cm-1 (–CH in aromatic rings), 2970, 2921 and 2850 cm-1 (aliphatic –CH and 

–CH2 stretching vibrations), 1600 cm-1 (aromatic C=C), 1550 and 1500 cm-1 (furan ring 

vibrations), 1425 cm-1 (asymmetric bending CH2 vibrations), 1355 cm-1 (–CH furan ring 

deformation), 1100 cm-1 (C–O stretching), 1020 cm-1 (asymmetric and symmetric =C–O–C= 

vibrations in 2-substituted furan ring) and 795 cm-1 (the vibrations of C–C bonds in 2,5-

disubstituted furan rings forming the polymer chain). A sharp, intensive band at 1709 cm-1 

indicates the presence of carbonyl groups (stretching vibrations). These groups appear as a 

result of acid-catalyzed ring opening of furan rings [62]. In this process, γ-diketone species 

are formed by the electrophilic attack of water molecules being a by-product of FA 

polycondensation on furan ring in the polymer chain. Increasing the heat treatment 

temperature to 523–673 K we find the main differences in the region of carbonyl (1709 cm-1) 

and aliphatic –CH and –CH2 stretching vibrations (2970, 2921 and 2850 cm-1). The relative 

intensity of these bands gradually decreases, while the intensity of aromatic C=C band (1600 

cm-1) clearly increases. These effects are due to the decomposition of oxygen-containing 

groups connected with loss of carbon oxides and water resulting in the formation of 
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condensed aromatic species. Thus, we can conclude that polyaromatic domains and partially 

decomposed polymer chains coexist in the samples thermally treated in the temperature range 

of 523–673 K. 

The DRIFT spectrum collected for both PFA0.4/MCM-41 and PFA1.0/MCM-41 composites 

demonstrates the presence of characteristic bands of both the components, silica and 

poly(furfuryl alcohol) (Fig. S5, B and C). The sharp band at 3744 cm-1 is ascribed to the 

stretching vibrations of terminal surface silanol groups, the broad band at 3000–3750 cm-1 

proves the presence of hydrogen bridges between the adjacent silanol groups. It is noteworthy 

that in case of the sample decorated with low PFA amount the intensity of the band at 3744 

cm-1 increases with the calcination temperature, while the decrease in the intensity of the band 

at 3000–3750 cm-1 is observed. This effect is ascribed to the decay of hydrogen bridges 

between adjacent silanol surface groups and a consequent formation of terminal silanol 

groups. The bands at 1000–1250 cm-1 and 800 cm-1 are assigned to Si–O stretching vibrations, 

whereas the absorption at 963 cm-1 corresponds to Si–OH stretching vibrations. The 

unexpected evolution of the aliphatic stretching –CH and –CH2 (2970, 2921 and 2850 cm-1) is 

noticed. As seen, the intensity of these bands increases significantly for the composite 

calcined at temperature up to 523 K. We ascribed this effect to opening the furan ring and the 

formation of γ-diketone moieties. The thermal treatment at higher temperature causes a 

gradual decrease in amounts of aliphatic carbon and deeper carbonization connected with the 

creation of higher condensed polyunsaturated graphite-like species [63-68]. This conclusion is 

strongly supported by the foregoing TG-FTIR studies. 

The TG and FITR results are also reflected in the XPS spectra. The XPS spectrum collected 

for the PFA0.4/MCM-41 composite after heat treatment at 473 K (Fig. S6, Supplementary 

information) shows changes in the distribution of species present on the composite’s surface 

(Table 1). A slight decrease in the amount of silicon dioxide is measured, which is caused by 
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the appearance of more condensed, dehydrated and partially degraded PFA covering the 

inorganic support and hindering the X-ray penetration. The highest content of C=O species is 

detected after the thermal treatment at 523 K. A raise of the calcination temperature to 573-

673 K leads to further structural transformations of the polymer. Thus, a decrease in oxygen 

amount, related to presence of carbonyl groups and furan rings, is observed, additionally, 

furan rings begin to coalescence generating a condensed structure.  

Taking into account the results of TG/DTG/FTIR, DRIFT and XPS measurements we propose 

the mechanism of the formation of carbonyl moieties during the synthesis at 373 K and 

further thermal transformation of PFA deposited on the MCM-41 silica as shown in Fig. 7. 

Evidently, the carbonyl groups existing on the sample surface can be considered as the most 

effective in the adsorption of MEK molecules. The maximum concentration of these carbonyl 

groups determined by the aforementioned methods was observed after the calcination at 

523 K. Therefore, the increase in the thermal treatment temperature above 523 K, causing the 

effect of surface C=O decomposition, is undesirable. An active role of carbonyl species in the 

MEK adsorption was confirmed earlier by Monte Carlo simulations [69]. This effect was 

explained by the charge-dipole interactions, which are attributed to the high dipole moment of 

the MEK molecule, as well as the charge-induced dipole interactions due to the high 

polarizability of the MEK molecule. 

 

4. Conclusion 

The precipitation-polymerization is found to be an effective method of homogeneous 

introduction of poly(furfuryl alcohol) on the inner and outer surface of mesoporous MCM-41. 

The amount of deposited polymer can be controlled by furfuryl alcohol/SiO2 mass ratio in the 

reaction mixture. Supported PFA exhibits significantly lower thermal stability compared to 

bulky polymer. It undergoes complex decomposition leading to condensed aromatic domains 
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via opening of furan rings and the formation of γ-diketone moieties. These carbonyl species, 

with the highest surface concentration after calcination at 523 K, are responsible for the high 

sorption capacity of calcined-PFA/MCM-41 adsorbents in the removal of polar volatile 

organic compounds, such as methyl-ethyl ketone. MCM-41 decorated with partially 

carbonized PFA layers exhibits better sorption capacity of MEK compared to microporous 

PFA-based carbon. 

 

Acknowledgement 

This work was supported by the Polish Ministry of Science and Higher Education under the 

grant no. N N507 553238. Rafał Janus wishes to thank the Foundation for Polish Science 

MPD Programme co-financed by the EU European Regional Development Fund for the 

financial support. The research was carried out with equipment purchased thanks to financial 

help from the European Regional Development Fund within the framework of the Polish 

Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08). 

 

 

Supplementary Information Available 

Nine figures: one with the XRD pattern of pristine MCM-41, one with the experimental 

nitrogen adsorption data for MCM-41, one with the PFA layer thickness as a function of real 

polymer/MCM-41 mass ratio, one with the N2 adsorption isotherms collected for bulky PFA 

carbonized at different temperatures, five with the DRIFT and XPS spectra for the studied 

composites. One table with textural parameters of the studied samples. 

 

 

 



 17 

References 

(1) Pires, J.; Carvalho, A.; Veloso, P.; Carvalho, M. B. Preparation of dealuminated 

faujasites for adsorption of volatile organic compounds. J. Mater. Chem. 2002, 12, 3100–

3104. 

(2) Zaitan, H.; Bianchi, D.; Achak, O.; Chafik, T. A comparative study of the adsorption 

and desorption of o-xylene onto bentonite clay and alumina. J. Hazard. Mater. 2008, 153, 

852–859. 

(3) Hung, C. T.; Bai, H. Adsorption behaviors of organic vapors using mesoporous silica 

particles made by evaporation induced self assembly method. Chem. Eng. Sci. 2008, 63, 

1997–2005. 

(4) Hung, C.T.; Bai, H.; Karthik, M. Ordered mesoporous silica particles and Si-MCM-41 

for the adsorption of acetone: a comparative study. Sep. Purif. Technol. 2009, 64, 265–272. 

(5) Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity. Academic Press, 

London, New York, 1982. 

(6) Kuśtrowski, P.; Janus, R.; Kochanowski, A.; Chmielarz, L.; Dudek, B.; Piwowarska, Z.; 

Michalik, M. Adsorption properties of carbonized polyacrylonitrile deposited on γ-alumina 

and silica gel by precipitation polymerization. Mater. Res. Bull. 2010, 45, 787–793. 

(7) Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon. Elsevier Science & Technology 

Books, London, 2006. 

(8) Janus, R.; Kuśtrowski, P.; Dudek, B.; Piwowarska, Z.; Kochanowski, A.; Michalik, M.; 

Cool, P. Removal of methyl-ethyl ketone vapour on polyacrylonitrile-derived 

carbon/mesoporous silica nanocomposite adsorbents. Micropor. Mesopor. Mater. 2011, 145, 

65–73. 



 18 

(9) Saini, K. V.; Andrade, M.; Pinto, M. L.; Carvalho, A. P.; Pires, J. How the adsorption 

properties get changed when going from SBA-15 to its CMK-3 carbon replica. Sep. Purif. 

Technol. 2010, 75, 366–376. 

(10) Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak. M. Adsorption of phenolic 

compounds by activated carbons – critical review. Chemosphere 2005, 58, 1049–1070. 

(11) Silvestre-Albero, A.; Ramos-Fernández, J. M.; Martínez-Escandell, M.; Sepúlveda-

Escribano, A.; Silvestre-Albero, J.; Rodríguez-Reinoso. F. High saturation capacity of 

activated carbons prepared from mesophase pitch in the removal of volatile organic 

compounds. Carbon 2010, 48, 548–556. 

(12) Lillo-Ródenas, M. A.; Cazorla-Amorós, D.; Linares-Solano, A. Benzene and toluene 

adsorption at low concentration on activated carbon fibres. Adsorption 2011, 17, 473–481. 

(13) Sevilla, M.; Fuertes, A. B. CO2 adsorption by activated templated carbons. J. Colloid 

Interface Sci. 2012, 366, 147–154. 

(14) Chandrasekar, G.; Son, W. J.; Ahn, W. S. Synthesis of mesoporous materials SBA-15 

and CMK-3 from fly ash and their application for CO2 adsorption. J. Porous. Mater. 2009, 

16, 545–551. 

(15) Silvestre-Albero, J.; Wahby, A.; Sepulveda-Escribano, A.; Martínez-Escandell, M.; 

Kaneko, K.; Rodríguez-Reinoso, F. Ultrahigh CO2 adsorption capacity on carbon molecular 

sieves at room temperature. Chem. Commun. 2011, 47, 6840–6842. 

(16) Ahn, Ch. K.; Park, D.; Woo, S. H.; Park, J. M. Removal of cationic heavy metal from 

aqueous solution by activated carbon impregnated with anionic surfactants. J. Hazard. Mater. 

2009, 164, 1130–1136. 



 19 

(17) Velasco, L. F.; Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Parra, J. B.; 

Ania, C. O. Carbon foams as catalyst supports for phenol photodegradation. J. Hazard. Mater. 

2010, 184, 843–848. 

(18) He, J.; Ma, K.; Jin, J.; Dong, Z.; Wang, J.; Li, R. Preparation and characterization of 

octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption. Micropor. 

Mesopor. Mater. 2009, 121, 173–177. 

(19) Calvillo, L.; Cellorio, V.; Moliner, R.; Lázaro, M. J. Influence of the support on the 

physicochemical properties of Pt electrocatalysts: Comparison of catalysts supported on 

different carbon materials. Mater. Chem. Phys. 2011, 127, 335–341.  

(20) Salgado, J. R. C.; Alcaide, F.; Álvarez, G.; Calvillo, L.; Lázaro, M. J. Pt–Ru 

electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell. J. 

Power Sources 2010, 195, 4022–4029. 

(21) Zhang, H.; Tao, H.; Jiang, Y.; Jiao, Z.; Wu, M.; Zhao, B. Ordered CoO/CMK-3 

nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 

2950–2955. 

(22) Yang, M.; Gao, Q. Copper oxide and ordered mesoporous carbon composite with high 

performance using as anode material for lithium-ion battery. Micropor. Mesopor. Mater. 

2011, 143, 230–235. 

(23) Yue, Z.; Economy, J.; Bordson, G. Preparation and characterization of NaOH-activated 

carbons from phenolic resin. J. Mater. Chem. 2006, 16, 1456–1461. 

(24) Nakagawa, K.; Mukai, S. R.; Tamura, K.; Tamon, H. Mesoporous activated carbons 

from phenolic resins. Chem. Eng. Res. Des. 2007, 85, 1331–1337. 



 20 

(25) Tennison, S. R. Phenolic-resin-derived activated carbons. Appl. Catal., A 1998, 173, 

289–311. 

(26) Miyake, T.; Hanaya, M. Carbon-coated material with bimodal pore-size distribution. J. 

Mater. Sci. 2002, 37, 907–910. 

(27) Chiang, H. L.; Chiang, P. C.; Chiang, Y. C.; Chang, E. E. Diffusivity of microporous 

carbon for benzene and methyl-ethyl ketone adsorption. Chemosphere 1999, 38, 2733–2746. 

(28) Przepiórski, J.; Tryba, B.; Morawski, A. W. Adsorption of carbon dioxide on phenolic 

resin-based carbon spheres. Appl. Surf. Sci. 2002, 196, 296–300. 

(29) Kim, M. I.; Yun, C. H.; Kim, Y. J.; Park, C. R.; Inagaki, M. Changes in pore properties 

of phenol formaldehyde-based carbon with carbonization and oxidation conditions. Carbon 

2002, 40, 2003–2012. 

(30) Leboda, R.; Skubiszewska-Zięba, J.; Tomaszewski, W.; Gun’ko, V. M. Structural and 

adsorptive properties of activated carbons prepared by carbonization and activation of resins. 

J. Coll. Interface Sci. 2003, 263, 533–541. 

(31) Chen, X.; Jeyaseelan, S.; Graham, N. Physical and chemical properties study of the 

activated carbon made from sewage sludge. Waste Manage. 2002, 22, 755–760. 

(32) Yardim, M. F.; Budinova, T.; Ekinci, E.; Petrov, N.; Razvigoroba, M.; Minkova, V. 

Removal of mercury(II) from aqueous solution by activated carbon obtained from furfural. 

Chemosphere 2003, 52, 835–841. 

(33) Sedghi, A.; Farsani, R. E.; Shokuhfar, A. The effect of commercial polyacrylonitrile 

fibers characterizations on the produced carbon fibers properties. J. Mater. Process. Technol. 

2008, 198, 60–67. 



 21 

(34) Gierszal, K. P.; Jaroniec, M.; Kim, T.-W.; Kim, J.; Ryoo, R. High temperature 

treatment of ordered mesoporous carbons prepared by using various carbon precursors and 

ordered mesoporous silica templates. New J. Chem. 2008, 32, 981–993. 

(35) Hirano, Sh. I.; Ozawa, M.; Naka, Sh. Formation of non-graphitizable isothropic 

spherulitic carbon from poly-divinylbenzene by pressure hydrolysis. J. Mater. Sci. 1981, 16, 

1989–1993.  

(36) Guigo, N.; Mija, A.; Zavaglia, R.; Vincent, L.; Sbirrazzuoli, N. New insights on the 

thermal degradation pathways of neat poly(furfuryl alcohol) and poly(furfuryl alcohol)/SiO2 

hybrid materials. Polym. Degrad. Stab. 2009, 94, 908–913. 

(37) Yao, J.; Wang, H.; Liu, J.; Chan, K.-Y.; Zhang, L.; Xu, N. Preparation of colloidal 

microporous carbon spheres from furfuryl alcohol. Carbon 2005, 43, 1709–1715. 

(38) Men, X. H.; Zhang, Z. Z.; Song, H. J.; Wang, K.; Jiang, W. Functionalization of carbon 

nanotubes to improve the tribological properties of poly(furfuryl alcohol) composite coatings. 

Compos. Sci. Technol. 2008, 68, 1042–1049. 

(39) Cheng, L. T.; Tseng, W. J. Effect of acid treatment on structure and morphology of 

carbons prepared from pyrolysis of polyfurfuryl alcohol. J. Polym. Res. 2010, 17, 391–399. 

(40) Glover, T. G.; Dunne, K. I.; Davis, R. J.; LeVan, M. D. Carbon-silica composite 

adsorbent: Characterization and adsorption of light gases. Micropor. Mesopor. Mater. 2008, 

111, 1–11. 

(41) Príncipe, M.; Suárez, H.; Jimenez, G. H.; Martínez, R.; Spange, S. Composites 

prepared from silica gel and furfuryl alcohol with p-toluenesulphonic acid as the catalyst. 

Polym. Bull. 2007, 58, 619–626. 



 22 

(42) Shi, L.; Yao, J.; Jiang, J.; Zhang, L.; Xu, N. Preparation of mesopore-rich carbons 

using attapulgite as templates and furfuryl alcohol as carbon source through a vapor 

deposition polymerization method Micropor. Mesopor. Mater. 2009, 122, 294–300. 

(43) Müller, H.; Rehak, P.; Jäger, Ch.; Hartmann, J.; Meyer, N.; Spange, S. A concept for 

the fabrication of penetrating carbon/silica hybrid materials. Adv. Mater. 2000, 12, 1671–

1674. 

(44) Nabais, J. M. V.; Carrott, P. J. M.; Ribeiro Carrott, M. M. L. From commercial textile 

fibres to activated carbon fibres: Chemical transformations. Mater. Chem. Phys. 2005, 93, 

100–108. 

(45) Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. A review of heat treatment on 

polyacrylonitrile fiber. Polym. Degrad. Stab. 2007, 92, 1421–1432. 

(46) Jing, M.; Wang, C.; Wang, Q.; Bai, Y.; Zhu, B. Chemical structure evolution and 

mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range 

of 350–600ºC. Polym. Degrad. Stab. 2007, 92, 1737–1742. 

(47) Wangxi, Z.; Jie, L.; Gang, W. Evolution of structure and properties of PAN precursors 

during their conversion to carbon fibers. Carbon 2003, 41, 2805–2812. 

(48) Vitkovskaya, R. F.; Rumynskaya, I. G.; Smirnov, A. Yu. Structural transformations in 

polyacrylonitrile during modification and fabrication of fibers and films with catalytic 

properties. Fibre Chem. 2008, 40, 202–205. 

(49) Toda, M.; Takagaki, A.; Okamura, M.; Kondo, J. N.; Hajashi, S.; Domen, K.; Hara, M. 

Biodiesel made with sugar catalyst. Nature 2005, 438, 178. 



 23 

(50) Fang, L.; Zhang, K.; Li, X.; Wu, H.; Wu, P. Preparation of a carbon-silica mesoporous 

composite functionalized with sulfonic acid groups and its application to the production of 

biodiesel. Chinese J. Catal. 2012, 33, 114–122. 

(51) Xing, R.; Liu, Y.; Wang, Y.; Chen, L.; Wu, H.; Jiang, Y.; He, M.; Wu, P. Active solid 

acid catalysts prepared by sulfonation of carbonization–controlled mesoporous carbon 

materials. Micropor. Mesopor. Mater. 2007, 105, 41–48. 

(52) Nakajima, K.; Okamura, M.; Kondo, J. N.; Domen, K.; Tatsumi, T.; Hayashi, S.; Hara, 

M. Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective 

catalyst. Chem. Mater. 2009, 21, 186–193. 

(53) Liu, Y.; Chen, J.; Yao, J.; Lu, Y.; Zhang, L.; Liu, X. Preparation and properties of 

sulfonated carbon–silica composites from sucrose dispersed on MCM-48. Chem. Eng. J. 

2009, 148, 201–206. 

(54) Kruk, M.; Dufour, B.; Celer, E. B.; Kowalewski, T.; Jaroniec, M.; Matyjaszewski, K. 

Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates 

and polyacrylonitrile as carbon precursor. J. Phys. Chem. B 2005, 109, 9216–9225. 

(55) Martín, A.; Morales, G.; van Grieken, R.; Cao, L.; Kruk, M. Acid hybrid catalysts from 

poly(styrenesulfonic acid) grafted onto ultra-large-pore SBA-15 silica using atom transfer 

radical polymerization. J. Mater. Chem. 2010, 20, 8026–8035. 

(56) Li, C.; Yang, J.; Wang, P.; Liu, J.; Yang, Q. An efficient solid acid catalyst: Poly-p-

styrenesulfonic acid supported on SBA-15 via surface-initiated ATRP. Micropor. Mesopor. 

Mater. 2009, 123, 228–233. 

(57) Zhai, Y.; Tu, B.; Zhao, D. Organosilane-assisted synthesis of ordered mesoporous 

poly(furfuryl alcohol) composites. J. Mater. Chem. 2009, 19, 131–140. 



 24 

(58) Liu, Y.; Ju, M.; Wang, C.; Zhang, L.; Liu, X. Preparation of monodisperse mesoporous 

carbon microspheres from poly-(furfuryl alcohol)–silica composite microspheres produced in 

a microfluidic device. J. Mater. Chem. 2011, 21, 15049–15056. 

(59) Gierszal, K. P.; Jaroniec, M. Large pore volume carbons with uniform mesopores and 

macropores: Synthesis, characterization, and relations between adsorption parameters of silica 

templates and their inverse carbon replicas. J. Phys. Chem. C 2007, 111, 9742–9748. 

(60) Kruk, M.; Jaroniec, M.; Kim, T. W.; Ryoo, R. Synthesis and characterization of 

hexagonally ordered carbon nanopipes. Chem. Mater. 2003, 15, 2815–2823. 

(61) Burket, C. L.; Rajagopalan, R.; Marencic, A. P.; Dronvajjala, K.; Foley, H. C. Genesis 

of porosity in polyfurfuryl alcohol derived nanoporous carbon. Carbon 2006, 44, 2957–2963. 

(62) Chuang, I. S.; Maciel, G. E.; Myers, G. E. 13C NMR study in curing furfuryl alcohol 

resins. Macromolecules 1984, 17, 1087–1090. 

(63) Smith, M. A.; Foley, H. C.; Lobo, R. F. A simple model describes the PDF of a non 

graphitizing carbon. Carbon 2004, 42, 2041–2048. 

(64) Eckert, H.; Levendis, Y. A.; Flagant, R. C. Glassy carbons from poly(furfuryl alcohol) 

copolymers: structural studies by high-resolution solid state NMR techniques. J. Phys. Chem. 

1988, 92, 5011–5019. 

(65) Kumar, A.; Lobo, R. F.; Wagner, N. J. Porous amorphous carbon models from periodic 

Gaussian chains of amorphous polymers. Carbon 2005, 43, 3099–3111. 

(66) Mariwala, R. K.; Foley, H. C. Evolution of ultramicroporous adsorptive structure in 

poly(furfuryl alcohol)-derived carbogenic molecular sieves. Ind. Eng. Chem. Res. 1994, 33, 

607–615. 



 25 

(67) Li, G.; Lu, Z.; Huang, B.; Wang, Z.; Huang, H.; Xue, R.; Chen, L. Raman scattering 

investigation of carbons obtained by heat treatment of a polyfurfuryl alcohol. Solid State 

Ionics 1996, 89, 327–331. 

(68) Wang, Z.; Lu, Z.; Huang, Y.; Xue, R.; Huang, X.; Chen, L. Characterizations of 

crystalline structure and electrical properties of pyrolyzed polyfurfuryl alcohol. J. Appl. Phys. 

1997, 82, 5705–5710. 

(69) Kotdawala, R. R. Adsorption Studies of Hazardous Air Pollutants in Microporous 

Adsorbents using Statistical and Molecular Simulation Techniques. Ph.D. Dissertation, 

Worcester Polytechnic Institute, MA, 2007. 



 26 

Figure captions 

 

Fig. 1. TG and DTG curves measured for the PFA/MCM-41 samples in the oxidizing 

atmosphere (A) and determined PFA loading in the studied composites (B) 

Fig. 2. Adsorption-desorption isotherms (A) (N2, 77 K) and NLDFT pore size distribution 

curves based on adsorption branch of isotherm (B) for the pristine support and the 

calcined PFA/MCM-41 composites (pristine MCM-41 (a) and PFA/MCM-41 samples 

thermally treated at 523 K with intended polymer/SiO2 mass ratios of 0.1 (b), 0.4 (c), 

1.0 (d) and 2.0 (e)) 

Fig. 3. BET surface area and total pore volume of the parent support and thermally treated 

PFA/MCM-41 composites (Vtotal determined by single point method at p/p0=0.98; the 

intended PFA/MCM-41 mass ratios are declared above the bars) 

Fig. 4. TEM images taken for pristine MCM-41 support (A) and PFA0.6/MCM-41 calcined at 

523 K (B) 

Fig. 5. MEK adsorption capacities of thermally treated bulky PFA and the PFA0.4/MCM-41 

composite (A) and adsorption capacities of the composites partially carbonized at 523 K 

containing various amounts of polymeric species (B), measured by dynamic method (the 

intended PFA/MCM-41 mass ratios are declared above the bars) 

Fig. 6. TG/DTG curves collected in inert atmosphere for bulky PFA and the PFA/MCM-41 

composites containing various amounts of polymeric material (A) and FTIR maps of the 

gaseous products evolved during the PFA decomposition for neat PFA and the 

PFA0.4/MCM-41 and PFA1.0/MCM-41 samples in inert atmosphere (B) 

Fig. 7. The proposed mechanism of thermal transformation of PFA deposited on MCM-41  



 27 

 

300 400 500 600 700 800 900 1000 1100 1200 1300
0

25

50

75

100

-0,05

0,00

0,05

0,10

DTG

 

 
M

as
s 

[%
]

Temperature [K]

TG Deriv. m
ass [m

g/K]

A

 PFA0.1/MCM-41
 PFA0.4/MCM-41
 PFA1.0/MCM-41
 PFA2.0/MCM-41  

 

0,0

0,5

1,0

1,5

2,0

0.04
0.21

0.34

0.4

B

2.00.1

 

 

Re
al

 P
FA

/s
up

po
rt 

m
as

s 
ra

tio

Intended PFA/support ratio 
1.0

1.21

 

 

Fig. 1. Janus et al. 

 



 28 

 

0,00 0,25 0,50 0,75 1,00
0

200

400

600

d

e

c

b

 adsorption
 desorption

 

 

 
Vo

lu
m

e 
ad

so
rb

ed
 S

TP
 [c

m
3 /g

]

p/p0

aA

 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.00

0.75

1.50

2.25

3.00

e

d  (+0.5)

 

 

dV
/d

D 
[c

m
3 /(g

 x
 n

m
)]

D [nm]

c  (+1.0)

b  (+1.5)

a  (+2.0)

B

 

 

Fig. 2. Janus et al. 

 



 29 

 

0,0

0,3

0,6

0,9

0,0 0,2 0,4 0,6 0,8 1,0 1,2
0

350

700

1050

1400

2.0

1.0

0.4

0.1

 

V
total  [cm

3/g]
S BE

T [
m

2 /g
]

Real PFA/MCM-41 mass ratio

MCM-41

 

 

Fig. 3. Janus et al. 

 



 30 

 

Fig. 4. Janus et al.
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Table 1. Atomic contributions of surface species detected in PFA0.4/MCM-41 (at. %; binding energies given in brackets) 
 

Sample 

 Si 2p 
 

 

O 1s  C 1s 

 SiO2 

(103.6 eV) 

C=O 

(531.7±0.1 eV) 

–OH, SiO2, C–O–C 

(532.9±0.2 eV) 

C=C, C–C, CH2 

(284.5±0.3 eV) 

C–OH, C–O 

(286.0 eV) 

C=O 

(287.4±0.2 eV) 

MCM-41 

PFA0.4/MCM-41 

PFA0.4/MCM-41 473 K 

PFA0.4/MCM-41 523 K 

PFA0.4/MCM-41 573 K 

PFA0.4/MCM-41 673 K 

 34.4 

25.0 

24.0 

24.3 

25.1 

27.0 

 

– 

1.3 

1.8 

1.9 

1.4 

0.7 

65.6 

52.7 

48.4 

48.4 

48.8 

49.3 

 

– 

15.9 

20.5 

20.6 

20.7 

20.4 

– 

3.7 

3.5 

2.9 

2.6 

2.1 

– 

1.3 

1.8 

1.9 

1.4 

0.7 


