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Abstract

Kinetic models of chemical and biochemical phenomena are frequently built from
simplifying assumptions. Whenever a model is falsified by data, its mathematical
structure should be modified embracing the available experimental evidence. A frame-
work based on maximum likelihood inference is illustrated in this work for diagnosing
model misspecification and improving the structure of approximated models. In the
proposed framework, statistical evidence provides a measure to justify a modification
of the model structure, namely a reduction of complexity through the removal of irrele-
vant parameters and/or an increase of complexity through the replacement of relevant
parameters with more complex state-dependent expressions. A tailored Lagrange mul-
tipliers test is proposed to support the scientist in the improvement of parametric
models when an increase in model complexity is required.
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1 Introduction

The accurate description of kinetic phenomena requires the construction of systems of dif-
ferential and algebraic equations where a high number of parameters and state variables
may be involved. The complexity associated with kinetic phenomena frequently leads to the
construction of model structures characterised by some degree of approximation. Whenever
an approximated kinetic model is falsified by observations, its mathematical structure shall
be modified embracing the available experimental evidence. Nonetheless, the selection of an
appropriate update for the model equations is generally not obvious, making the modelling
of kinetic phenomena a time and resource intensive task.

In standard model building frameworks, the modelling activity typically begins with the
construction of a set of competing model structures (Asprey and Macchietto, 2000). The pa-
rameters involved in the available models are estimated by fitting the available experimental
data (Bard, [1974). One may then compare the relative performance of the available models
using an information criterion, e.g. the Akaike information criterion (Akaike, 1974) or the



Bayesian information criterion (Neath and Cavanaugh, 2012). Nevertheless, information cri-
teria provide a relative measure of merit to compare alternative model structures but do not
directly quantify the model performance in representing the distribution of the data. One
may check model adequacy with a statistical test on the goodness-of-fit (Silvey, |1975)). The
goodness-of-fit test may inform on the presence of some modelling error, namely over-fitting
or under-fitting, but it does not provide detailed information on how to improve a model
structure. Hence, models which fail the goodness-of-fit test are typically rejected. This
modelling approach heavily relies on the presence of experienced researchers for proposing
a reasonable set of candidate models. Furthermore, it is important to notice that all the
candidate models may fail the goodness-of-fit test, i.e. none of the proposed models may be
adequate for representing the experimental observations.

The solution space of potentially valid model structures may be large and an exhaus-
tive search may be impossible to perform. Genetic programming was proposed as a mean
of exploring effectively vast solution spaces (Banzhaf et al., 2015). Applications of genetic
programming to structural equation modelling are also available in the literature (Florin M.
et al., 2004; Gandomi and Alavi, 2011; |Xiao-lei Yuan et al| 2008). However, genetic ap-
proaches rely on the construction and identification of a substantial number of model struc-
tures. The estimation of parameters in a high number of kinetic models may be impractical,
especially if the models are nonlinear in the parameters (Florin M. et al., 2004; Transtrum
et al.l 2010) and affected by problems of identifiability, i.e. measured model responses may
be poorly sensitive to a change in the value of some parameters and/or parameters may be
affected by extreme correlation (Lopez Céardenas et al., 2015). Due to the difficulty of imple-
menting physical awareness and identifiability constraints in genetic algorithms, the scientist
may prefer to devote efforts on improving the predictive performance of an approximated
kinetic model structure that is already available.

Statistical and numerical tools have been proposed in the literature as computationally
tractable means for improving the performance of misspecified parametric models. When the
model is over-fitting, one may employ known regularisation techniques to achieve a better
trade-off between the bias and the variance of the model predictions (Barz et al., 2016)). Pop-
ular regularisation techniques are the Tikhonov regularisation (Bardow| 2008; [Hansen|, [2005}
Johansen,| (1997)), the truncated singular value decomposition (Hansen, 2005} |Lépez Cardenas
et al.l [2015) and the parameter subset selection (Barz et al., |2013; Lopez Cardenas et al.
2015).

When the model is under-fitting, a significant process-model mismatch is observed. Ap-
proaches have been proposed in the literature to improve the predictive performance of
under-fitting models. Some approaches aim at modelling the observed mismatch as an un-
known disturbance (Galvanin et al.,| 2011, [2012; Hewing et al.,2017)). These methods however
do not provide a diagnosis for the observed process-model mismatch and the identification
of the model components that require revision typically relies solely on human intuition.
The importance of diagnosing process-model mismatch is recognised in the literature on
process monitoring (Badwe et al., 2009; Wang et al., 2012), but the problem is considered
only in the context of linear, black-box models for control applications. An approach for di-
agnosing process-model mismatch in phenomenological models was proposed by Meneghetti
et al.[ (2014), where a latent variable model is used to detect differences between process and
model in the distribution of some auxiliary variables. These auxiliary variables represent
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Figure 1: Tuning of complexity in parametric models. Model parameters (#) that are relevant
to fit the data are substituted with more complex expressions and parameters that are
irrelevant for model fitting are removed from the model. The model structure is trimmed
until an appropriate level of complexity is achieved.

user-defined combinations of state variables and parameters appearing in the model. How-
ever, defining opportune auxiliary variables may not be obvious and the diagnosis is sensitive
to their definition.

In this manuscript, a model building framework based on maximum likelihood inference
is proposed where the structure of an available kinetic model is iteratively refined until
an appropriate level of complexity is achieved. A qualitative sketch is given in Figure
to illustrate the proposed approach. In the framework, statistical evidence provides an
index to the scientist to justify changes in the model structure. Whenever over-fitting is
detected, model complexity is reduced by removing irrelevant free parameters from the model
structure. A Wald test (Wald},[1943) is employed to detect which parameters are unnecessary
for fitting the data. If under-fitting is detected, model complexity is increased by substituting
relevant free parameters with state-dependent functions. A tailored Lagrange multipliers test
(Silvey, |1959) is introduced in this manuscript to support the improvement of approximated
model structures towards a higher level of complexity. A model modification index (MMI)
is defined as a function of the Lagrange multipliers statistic and is proposed as a heuristic
measure of model misspecification. Parameters with the highest associated MMI are those
that are expected to improve the model fitting quality the most should they be replaced with
state-dependent quantities.

The present manuscript is structured as follows. A brief overview of the statistical tests
employed in the proposed framework is given in Section [2l The proposed modelling ap-
proach is illustrated in Section |3| where particular emphasis is given to the description of
the proposed Lagrange multipliers test. In Section [4] the proposed test is demonstrated on
simulated case studies with a baker’s yeast growth model and a glucose-insulin interaction
model. A discussion on the MMI distribution is given in Section [5}
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Figure 2: A graphical interpretation of the Likelihood Ratio (LR), Wald and Lagrange
Multiplier (LM) statistics for hypothesis testing in model identification frameworks based
on maximum likelihood inference.

2 Hypothesis tests in likelihood-based inference

Whenever a kinetic model structure is proposed, the estimation of its kinetic coefficients
requires the fitting of experimental data. The construction of increasingly complex paramet-
ric models for describing kinetic phenomena has led to a significant reliance on maximum
likelihood inference both for parameter estimation and hypothesis testing (Bard, |1974} |Wal-
ter and Pronzatol, 1997). In likelihood-based inference, model parameters are estimated
by maximising the likelihood function (or equivalently the log-likelihood function) and the
modelling hypotheses are checked using a goodness-of-fit test (Silveyl [1975). A two-tailed
goodness-of-fit test based on y? can inform on the appropriateness of the model in repre-
senting the data. Nonetheless, whenever over-fitting or under-fitting is detected by a failed
goodness-of-fit test, no information is obtained on how the model structure can be improved.
More targeted tests can be performed to support the refinement of parametric models in
a likelihood-based modelling framework. More specifically, the likelihood ratio test, the Wald
test and the Lagrange multipliers test (Buse, 1982)) are regularly applied for structural equa-
tion modelling in many applied sciences including psychometrics and econometrics (Anselinl,
1988 |(Chou and Bentler] [1990; Engle|, 1984; Green et al., [1999). These tests were proposed
to evaluate the generic null hypothesis that model parameters satisfy certain constraints. As
an example, one may use the aforementioned tests to challenge the hypothesis that some
parameters equal zero. If there is not sufficient evidence from the data for disproving this
hypothesis, the considered parameters should be fixed to zero and treated as constants.
The aforementioned tests are asymptotically equivalent and assume the same null hy-
pothesis, but they differ significantly in the construction of their test statistics (Chandra
and Joshi, 1983). A graphical interpretation of the statistics for the different tests is given
in Figure 2 The Wald statistic is a measure of the distance between the unconstrained and



the constrained maximum likelihood estimates in the parameter space (Wald, 1943). The
Lagrange multipliers statistic is a function of the log-likelihood gradient at the constrained
estimate (Bera and Bilias| 2001; Rao, |1948; Silvey, [1959). The statistic used in the likelihood
ratio test quantifies the distance between the constrained and the unconstrained estimates
in terms of log-likelihood values (Wilks, |1938)). Depending on the specific case, one statistic
may be significantly more convenient to compute than the others (Engle, [1984). In fact,
while the likelihood ratio test requires both the constrained and the unconstrained estimates
to be computed, the Wald test and Lagrange multipliers test require respectively only the
unconstrained and the constrained estimate.

Whenever a proposed kinetic model is falsified for over-fitting, one may regard its pa-
rameter estimates as an unconstrained estimate. A Wald test may then inform on which
parameters can be constrained to zero and removed from the model structure. When under-
fitting is detected, a change in the model structure may be required. An approach for
increasing model complexity consists of regarding the proposed model as a constrained in-
stance of one or multiple alternative superstructures (Breusch and Pagan, |1980; |Engle|, 1982]).
A Lagrange multipliers test is then performed to challenge the constrained model against the
more complex alternatives. A limitation of this approach is that the definition of appropriate
superstructures relies entirely on the intuition of the modeller.

In the following section, a model building framework is proposed where the model struc-
ture is iteratively trimmed until an appropriate level of complexity is achieved. A tailored
Lagrange multipliers test is used in the framework to diagnose model misspecification in
conditions of under-fitting. The test does not require the definition of alternative model
structures or the definition of superstructures. Instead, the test aims at disproving the null
hypothesis that a given model parameter is a state-independent constant. A failed test on a
parameter under diagnosis suggests that a significant improvement on the fitting quality is
expected if that parameter were replaced a more complex expression of the state variables.

3 Proposed methodology

A setup is assumed to be available to perform experiments on and collect samples from a
physical system of interest. A set u of N, control variables can be manipulated in the setup
and a set y of IV, physical quantities can be sampled from the setup during the experiments.
Samples are affected by multivariate Gaussian measurement noise with covariance 3, [NV, x
N,]. It is also assumed that a dataset Y = {y,,...,yy} consisting of N samples of y is
collected for identifying a model for the process under study. Let ¢, denote the set of
experimental conditions adopted for the collection of the i-th sample in Y.

A framework for kinetic model building is introduced in Figure 3] The framework begins
with the construction of an approximated model structure M. Model M may be either
an empirical input-output relationship or a set of phenomenological equations derived from
mechanistic insight on the system. Without loss of generality, in the following it is assumed
that the scientist proposes a model in the form of a set of differential and algebraic equations

Jf(x,x,u,t,0) =0
LR v W



where y is an IV, x 1 array of model predictions for the sampled physical quantities y, x is
an N, x 1 array of state variables and x is an N, x 1 array of time derivatives for the state

variables.

The variable time is denoted as ¢. f and h are respectively an Ny x 1 and an

N, x 1 array of functions. The identification of model M involves the estimation of a set of
Ny parameters © = [0y, ...,0y,]". Tt is assumed that model M satisfies the requirement for
practical identifiability given the available dataset Y (Raue et al., 2009). In different words,
the model parameters © can be uniquely estimated by fitting the dataset Y.

The framework then involves the following sequential steps:

1. Parameter estimation. The model parameters are fitted to the available dataset using
a maximum likelihood approach (Bard, [1974)).

2. Goodness-of-fit test. The adequacy of the model in representing the dataset is assessed
with a two-tailed test on the goodness-of-fit (Silvey} [1975). A two-tailed test is em-
ployed to detect modeling errors either when model residuals are too small or too large
compared with the level of measurement noise present in the system. The test has
three possible outcomes:

(a)
(b)

Passed. The model is not falsified and its complexity is adequate for representing
the dataset. There is no evidence for justifying a change in the model structure.

Fuiled for over-fitting. The model is too complex for representing the process. If
over-fitting is detected, one shall proceed by performing a Wald test (Wald, 1943])
for parameter significance. Unnecessary parameters are removed from the model
structure and the procedure is repeated from step 1.

Failed for under-fitting. The model is not sufficiently complex to capture the un-
derlying mechanisms of the physical system. A tailored Lagrange multipliers test
(Silvey, [1959) is proposed in this work to challenge the hypothesis that a given
parameter is a state-independent quantity. This Lagrange multipliers statistic
is used to compute a heuristic Model Modification Index (MMI), which is pro-
posed as a measure of model misspecification. The MMI quantifies the expected
improvement on the model fitting quality should a given parameter be replaced
with a state-dependent function. The scientist shall select appropriate functions
of the state variables to replace the parameters with the highest MMI. After an
appropriate modification of the model structure, the procedure is repeated from
step 1.

The illustrated procedure is further detailed in the following subsections assuming that
the goodness-of-fit test is failed for under-fitting. Particular emphasis is given to the de-
scription of the Lagrange multipliers test, which is proposed to diagnose model descriptive
limits and inform the scientist on possible model components that should be considered for

revision.
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Figure 3: Proposed framework for kinetic model building. In the proposed approach, statis-
tical tests are performed to diagnose model misspecification and to support the scientist in
the improvement of misspecified model structures.

3.1 Parameter estimation

Model parameters 0 are estimated with a maximum likelihood approach (Bard, [1974). The
log-likelihood function @ is given by:

o(0]Y) = [N In (27) + In(det(2,))]

1Y S A (2)
_52 YZ ‘917"‘70]\/9)] Zy [yZ‘_Yi<(917”'76N9)]

=1

where y, denotes the model prediction for the i-th sample in the dataset, i.e. y,. The
maximum likelihood estimate = [él, e 0 N, )T is computed by maximising the unconstrained
log-likelihood function R

0 = arg max o(0]Y) (3)

The maximum likelihood estimate satisfies the unconstrained likelihood equations
Vo(6|Y) =0 (4)

where the symbol V denotes the gradient operator in the parameter space.

3.2 Goodness-of-fit test

Once the model parameters are fitted to the available dataset, the adequacy of the model is
checked with a two-tailed x? test. Under the hypothesis of the proposed model being ezact,
the sum of normalised squared residuals x% is distributed as a x? distribution with degree
of freedom N - N, — Np:

= Z[yz - yi(é)]ngjl[Yi - yz(é)] ~ X?V‘Ny—Ng (5)



In this work, a two-tailed x? test with 90% of significance is used. If the statistic x3- lies
between the 5% and the 95% percentiles of the y? distribution, the model is considered as
an adequate representation of the physical system. Whenever x? is below the 5% percentile,
the model is falsified for over-fitting. If x% is above the 95% percentile, the model is falsified
for under-fitting.

3.3 Lagrange multipliers test

When the model is under-fitting, a significant discrepancy between experimental observations
and model predictions is observed. It is assumed that the reduction of the discrepancy (and
eventually its elimination to the limit of measurement noise) requires the replacement of a
certain model parameter with an opportune function of the state variables. A statistical test
is proposed to diagnose model misspecification by challenging the hypothesis that a given
parameter #; is a state-independent constant. The proposed test aims at diagnosing whether
it is appropriate to assume a specific model component as a free parameter or whether
a significant improvement in the model fitting quality is expected should that parameter
be replaced with a function of the state variables. Without loss of generality, the test is
detailed assuming that the parameter under diagnosis is the first parameter, i.e. 6; = 6.
The competing hypotheses under test are:

Null hypothesis Hy: ¢, and 6; V j # 1 are all state-independent constants.

Alternative hypothesis H,: 0, is a state-dependent function and 6; V j # 1 are state-
independent constants.

The parameter estimation problem is formulated under the assumptions that #; is a function
g of the experimental conditions, i.e. 6; = g(¢), and 0; Vj # 1 are fixed coeflicients. One shall
notice that no assumption on the functional form of g is required to perform the test. The
N x 1 parameter array 04 (subscript d stands for diagnosis) is defined as 04 = [01 1, ..., 61 n]"
where the i-th element in the array represents the value of g at the experimental conditions
p,;, i.e. 01; = g(p;) Vi = 1,...,N. The log-likelihood function ®4 is constructed under
parametrisation 04:

$,(04]Y) = —g[Ny In (27) + In(det(X,))]

e S . (6)
- 5 Z[yz - yi(01,i7 Oa; ..., GNQ)]TE;l[Yi - yz‘(‘gl,i? 02, ..., 91\79)]
i=1

In @, the i-th element in the sum is a function of parameter 6; ; only. The other model
parameters are set equal to their maximum likelihood value and treated as fixed constants
in the test, i.e. 8; =6; Vj # 1. The set of N — 1 functions s is defined as

s=[011— 012, ....00n-1 — O n]" (7)
The null and alternative hypotheses are then formalised mathematically as the presence/absence
of an N — 1 set of constraints for the functions s as follows
H() : s=0

H,: s#0 ®)



Notice that the imposition of constraints s = 0 is equivalent to assuming that g is a constant
function that is independent from the experimental conditions ¢. The constrained maximum
likelihood estimate 04 = [élyl, e él, ~|T is obtained by maximising the log-likelihood function
®,; under constraints s = 0.

0, = arg maxo, P4(04]Y) (9)
st. s=0

Under constraints s = 0 all the elements in 04 are equal to the unconstrained maximum
likelihood estimate for parameter 6,, i.e. 6,; =6, Vi =1,...,N. The constrained maximum
likelihood estimate 0, also satisfies the set of constrained maximum likelihood equations

Vd,(04]Y) + Vs& =0

c—0 (10)

where & is the N — 1 x 1 array of Lagrange multipliers associated to the constraints. As
demonstrated by |Aitchison and Silvey| (1958) and [Silvey| (1959), under the null hypothesis
being true, the Lagrange multipliers statistic &; is asymptotically distributed as a x? distri-
bution with degree of freedom equal to the number of constraints (i.e. N — 1) as shown in
the following equation

& =& VsTH;'Vsa ~ \3_, (11)

In , H, represents the N x N expected Fisher information matrix for the model under
parametrisation 04, which is approximated by the following expression under null hypothesis
conditions

N
H, =) Vy,(00)%,"'Vy,(01:)" (12)
i=1
Notice that the solution of the constrained maximum likelihood equations is not
required to compute the statistic ;. In fact, §; may be directly computed as a function of
the log-likelihood gradient evaluated setting 04 = 04 as follows

€1 = VOu(04]Y) TH;'VOy(04]Y) ~ x5, (13)

and does not require the evaluation of the Lagrange multipliers & (Rao, [1948)). In this work,
the Lagrange multipliers statistic is computed according to the expression in (|13)).

The illustrated approach for constructing the statistic &;, associated with parameter 6, is
repeated for all model parameters obtaining the set of statistics & Vi =1, ..., Ny. A heuristic
measure of model misspecification, namely a Model Modification Index (MMI), is defined as

&
X&-1(95%)
The MMI represents a ratio between a Lagrange multipliers statistic and the 95% per-

centile of the y? distribution with degree of freedom N — 1. A MMI larger than 1 indicates
that the null hypothesis is falsified by a y? test with 95% of significance. If MMI; > 1,

MMI; = Vi=1,..,Np (14)
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one shall expect a significant improvement in the model fitting quality if parameter 8; were
replaced with a state-dependent function. Conversely, if MMI; < 1 there is no statistical
evidence for justifying the substitution of parameter 6; with a more complex function of
the states. The MMI quantifies the expected rate of increase in the log-likelihood function
associated with an infinitesimal relaxation of the constraints s = 0. Hence, if the MMI is
above 1 for more than one parameter, one shall expect a more significant improvement in the
model fitting quality if the parameters with the highest MMI were replaced with functions.

4 Case studies and results

In this section, simulated case studies are proposed to demonstrate the use of the Lagrange
multipliers test proposed in Section on the diagnosis of model misspecification in under-
fitting models. It is shown how the MMI can be used to detect promising parameters that
one may consider to replace with functions to improve the model performance. Two case
studies are presented: a baker’s yeast growth model (Asprey and Macchietto, 2000) and
a more comprehensive case study on a glucose-insulin interaction model (Bergman et al.|
1981). The models considered in the two case studies differ in 7) number of equations Ny
ii) number of measurable states IV, and éii) number of parameters Ny. Furthermore, in
contrast to the baker’s yeast growth model, a discontinuity is present in the glucose-insulin
interaction model. The numerical results presented in this case study were obtained with
Python 3.5 (Python Core Team, [2018]).

4.1 Baker’s yeast growth model

The considered system is a cultivation of yeast in a fed-batch bioreactor. The aim of the
scientist is to model the dynamics of yeast concentration x;(t) [¢ L!] and substrate concen-
tration z5(t) [g L™ as a function of two system inputs, namely the dilution factor u; [h™!]
and the substrate concentration in the feed uy [g L™!]. The system kinetics are assumed to
be described by the following set of differential and algebraic equations:

dx
_dtl = (r—w — 041 (15)
dx rT
W =g, tule-) 1o
(91(132
_ 17
92I1 + X9 ( )

where the rate r follows a Cantois-type kinetic law. The system model involves a set of Ny = 4
parameters 0 whose values are 0 = [0.310,0.180,0.550,0.050]". An array y = [z, 257 of
system states can be sampled in the experiments. Measurements of x; and x5 are corrupted
by uncorrelated Gaussian measurement noise with standard deviation 0.05 g L.

A full factorial experimental design with four dynamic experiments is assumed with two
levels for the dilution factor, i.e. u; = {0.05,0.20} h™!, and two levels for the substrate
concentration in the feed, i.e. us = {5.0,35.0} g L™!. In each experiment, 7 samples of y are
collected at sampling times ts = {3.0,6.0,9.0,12.0,15.0, 18.0,21.0} h. The initial conditions

10



for the differential variables are the same in all the experiments, i.e. z1(0) = 1.0 g L' and
79(0) = 0.01 g L™, The dataset is generated in-silico by integrating the system model and
adding random noise to the responses z;(t) and xo(t) Vt € ts.

It is assumed that the scientist does not know the functional form of the system model
and proposes an approximated model structure. The approximated model includes equations

and with a Monod-type kinetic law:

0129
r =
‘92 + X9

(18)

Table 1: Baker’s yeast system. Goodness-of-fit test and model modification index for all
model parameters. Results are presented both for the system model and for the approximated
model structure.

Model Goodness-of-fit test MMIs associated to
structure X*(5%) Xy x%(95%)  Outcome [0, 0,05, 0,]
System
36.44 61.32 69.83 Passed [0.67, 0.74, 0.77, 0.77]
model
Approximated Failed for

36.44  2210.37  69.83 [16.98, 47.08, 11.90, 18.58]

model under-fitting

The approximated model and the system model differ in the functional form of the rate
expression. More specifically, the element 6,x,; appearing at the denominator in is
modelled as a state independent parameter, i.e. 65, in the denominator of the approximated
rate law ((18)).

When the system model is used to fit the dataset, the sum of squared residuals is x3 =
61.32, which lies within the acceptable range assumed for the two-tailed goodness-of-fit test
with 90% of significance, i.e. 36.44 < x3 < 69.83. The test suggests that there is no evidence
for modifying the model structure. The MMIs associated with the system model are reported
in Table [1] and plotted in the radar chart in Figure dh for visualisation purposes. All the
MMIs associated with the parameters in the system model are below 1. Hence, there is no
evidence to justify the replacement of any parameter with a function of the state variables.

The parameter set involved in the approximated model is estimated by fitting the dataset.
As one can see from Table [T} the approximated model is falsified by the goodness-of-fit test.
More specifically, a sum of squared residuals x3 = 2210.37 larger than the x? value at 95%
of significance highlights the presence of under-fitting. The complexity of the approximated
model shall be increased through the substitution of some parameter with an opportune
function of the state-variables. The MMIs associated with the model parameters are plotted
in Figure [db. The MMI is larger than 1 for all model parameters. Hence, an improvement in
the fitting quality is expected if any of the model parameters were replaced with some state-
dependent function. Nonetheless, the highest MMI is associated to 05, i.e. MMIy, = 47.08,
meaning that the most significant improvement in the fitting quality is expected if 6, were
substituted with an appropriate state-dependent function. The scientist may then focus on
choosing an opportune state-dependent function to replace parameter 5 in the approximated

11



model. The approximated model becomes indistinguishable from the system model if 6, were

replaced with the functional form 6yz;.

The estimation of the model parameters and the computation of the MMIs required only

few seconds of CPU time.
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Figure 4: Baker’s yeast system. Model Modification Index associated with the model pa-
rameters of (a) the system model and (b) the approximated model.

4.2 Glucose-insulin interaction model

In this simulated case study, it is assumed that the aim of the modeller is to accurately de-
scribe the dynamic interaction of plasma glucose concentration G(t) [mg dL '] and plasma
insulin concentration 7(¢) [wWU mL™!] in a healthy test subject with basal glucose concen-
tration G, = 93.0 mg dL™!'. The system dynamics are described by the following set of

equations (Bergman et al.l [1981):

dG
E - —el(G—Gb) —‘92XG
dX
— = 03X +1
dt A
604G =85)t if G—05>0
DR_{ 0 if G—05<0
dl
— = IDR — 6¢1
dt 0

12
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(20)
(21)

(22)



In (19422), IDR represents the insulin delivery rate as a function of glucose concentration
in plasma (Toffolo et al., [1980) and X (¢) [uwU min mL~!] represents the insulin action term
associated with the remote insulin receptor (Bergman et al. (1979, 1981} Insel et al., |1975}
Zeleznik and Rothl [1978). The system model involves a set © of Ny = 6 parameters . The
values of the system parameters associated with the test subject are 0* = [2.96 - 1072,6.51 -
107%,1.86 - 1072,5.36 - 1072,9.09 - 10',2.3 - 1071].

It is assumed that G, I and X can be measured from the patient during an intravenous
glucose tolerance test (IVGTT). The experimental design for the IVGTT is the same design
adopted by Bergman et al.| (1981]), where 23 samples are collected from the test subject in
the course of a 182.0 min assay.

The physiologist proposes an approximated model for the system which involves equations
(20H22|) and the following differential equation:

g = —01(G — Gy) — 6, X (23)
dt
The system model and the approximated model differ in the functional form of the
equation describing glucose concentration in plasma. More specifically, the nonlinear term
—0,X G appearing in the system equation (19)) is modelled as a linear term, i.e. —6;X, in
the approximated model equation ([23]).

Table 2: Glucose-Insulin interaction system. Summary of cases considered in the study.

Case IVGTT Measured Measurement

ID  number variables noise
A 1 G, 1 low
B 1 G, 1, X low
C 2 G, 1 low
D 1 G, 1 high

The model identification approach proposed in Section |3|is applied in different conditions
to assess the sensitivity of the MMIs to a change in the experimental design (i.e. different
sets of measured state variables and different initial conditions of the test subject) and to a
change in the level of measurement noise in the system. The cases are summarised in Table
and further described in the following.

Case A. A single IVGTT is performed at initial conditions G(0) = 298.0 mg dL !, I(0) =
333.0 pU mL™!, X(0) = 0.0 U min mL~!. The sample includes measurements for G
and I, i.e. y = [G,I]T. A low level of uncorrelated, Gaussian system noise is assumed
with standard deviations 1.0 mg dL~! for measurements of G and 1.5 pU mL~! for
measurements of I.

Case B. Same as Case A, but measuring also the insulin action X, ie. y = [G, I, X]T.
Measurement noise for X is characterised by a standard deviation of 10.0 uU min
mL!.
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Case C. Same as Case A, but with an additional IVGTT performed at initial conditions
G(0) =276.0 mg AL, 1(0) = 69.0 uU mL~", X(0) = 0.0 uU min mL~".

Case D. Same as Case A, but assuming high system noise with standard deviations 5.0 mg
dL=! for G and 7.5 pU mL~* for 1.

Table 3: Glucose-insulin interaction system. Goodness-of-fit test and model modification
index for all model parameters. Results are presented both for the system model and for the
approximated model structure in the different considered cases.

Case Model Goodness-of-fit test MMIs associated to
ID structure X2(5%)  x%¥  X%(95%)  Outcome (01,0, 03,04, 05, 06]
System
model 26.51  42.05 55.57 Passed [0.61, 0.61, 0.61, 0.70, 0.66, 0.80]
A Approximated Failed for
model 26.51 97.8 55.57 under-fitting [2.20, 2.19, 2.20, 1.18, 1.17, 1.40]
System
model 45.57  64.34 82.57 Passed [0.69, 0.59, 0.64, 0.80, 0.79, 0.71]
B Approximated Failed for
model 45.74  128.75  82.52 under-fitting [2.17, 2.15, 0.68, 0.85, 0.86, 0.76]
System
model 65.62  85.99  108.64 Passed [0.81, 0.80, 0.79, 0.69, 0.69, 0.74]
C Approximated Failed for
65.62 334.71 108.64 . [4.23,4.27, 4.27, 2.39, 1.91, 2.63]
model under-fitting
System
26.51  36.96 55.57 Passed [0.45, 0.45, 0.46, 0.72, 0.65, 0.64]
model
D Approximated
model 26.51  49.17 55.75 Passed [0.81, 0.83, 0.84, 0.77, 0.73, 0.91]

For all the illustrated cases, the parameters of both system model and approximated
model are estimated and a goodness-of-fit test is performed. Numerical results for the
goodness-of-fit test and computed MMIs are reported in Table[3] As one can see from Table
Bl in all cases, the system model passes the goodness-of-fit test and its associated MMIs
are always below 1, suggesting that there is no evidence to justify a change in the model
structure. The approximated model is falsified for under-fitting in Cases A-C. In Case D,
the approximated model is not falsified due to an excessive level of system noise. The MMIs
associated with the system model are plotted in the radar charts in Figure [5| (dotted lines)
together with the MMIs associated with the approximated model (solid lines) for a visual
comparison.

The MMIs associated with the approximated model in Case A are plotted in Figure
(solid line). As one can see from Figure , all the MMIs associated with the approximated
model are higher than 1. The MMIs associated with 6, 65 and 65 are the largest with a value
around 2.20. The analysis suggests that the most significant improvement in the model fitting
quality may be achieved by replacing any of these parameters with some appropriate state-
dependent quantity. The discrepancy between approximated and system model structures
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vanishes if #; were replaced with 0; +60, X (G —1)/(G —G,) or if 03 were replaced with 6,G. A
significant improvement on the fitting quality can also be achieved through the substitution
of 5. In fact, by replacing 63 with a function, it is possible to modify the behaviour of
variable X in order to compensate for the absence of state G in the addend —6,X in ([23)).

A change in equation has the potential of improving the fitting quality for variables
GG and [ without causing a degradation in the fitting quality for X. In fact, variable X is
not observed in Case A. The observed under-fitting vanishes if parameter 63 were replaced
with the function

01+03—%+§—915b+92%

In Case B, measurements of X are included in the log-likelihood function. The MMIs
associated with the approximated model in Case B are plotted in Figure |5p (solid line). In
Case B, only the MMI of parameters ¢#; and 65 are above 1. The Lagrange multipliers test
does not suggest an alteration of parameters 03 — 63. Parameters 63 — ¢ are involved in
the correctly specified equations and (22), and their replacement with functions would
result in a degradation of the fitting quality for the observed states X and I.

In Case C, the inclusion in the log-likelihood function of an additional IVGTT causes an
increase of all MMIs with respect to Case A. The MMIs associated with the approximated
kinetic model in Case C are plotted in Figure (solid line). As in Case A, also in Case
C the state X is not observed and the Lagrange multipliers test suggests that a major
model improvement may be achieved through the substitution of any parameter in the range
01 — 03 with some function of the states. A less significant improvement is expected from an
alteration of parameters 04 — fs. As in Case A, a change in the correctly specified equations
and may result in an improvement of the fitting quality for variable GG, but it would
cause a degradation in the fitting quality for variable I.

In Case D, the approximated model does not fail the goodness-of-fit test. The high
system noise in Case D prevents the falsification of the modelling hypothesis and there is no
evidence to modify the model structure. The MMIs in Case D, plotted in Figure |5d (solid
line) are all below 1, suggesting that no parameter should be altered.

In all the considered cases, the estimation of parameters and the computation of the
MMIs required few seconds of CPU time.

(24)

5 The MMI distribution

The Lagrange multipliers statistic £ is asymptotically distributed as a x? distribution under
the null hypothesis being true. An analysis is proposed in this section to evaluate the effect
of using a finite dataset on the MMIs distribution using both the system model, i.e. when
the null hypothesis is true, and the approximated model.

The MMIs associated with the system model were evaluated for 30 different choices of
the random seed used to generate the in-silico experimental data. When the system model
is adopted to fit the data, the null hypothesis Hy holds and the MMIs are expected to follow
a normalised x? distribution. In this work, the MMI is computed as the ratio between the
Lagrange multipliers statistic £ and x?(95%) as in . Hence, under the null hypothesis
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Figure 5: Glucose-Insulin interaction system. Model Modification Indexes for all model
parameters: (a) Case A: One performed IVGTT; GG, I observed variables; low system noise.
(b) Case B: One performed IVGTT; G, I, X observed variables; low system noise. (c) Case
C: Two performed IVGTTSs; G, I observed variables; low system noise. (d) Case D: One
performed IVGTT; G, I observed variables; high system noise. For all Cases, MMIs are
plotted for the approximated model (solid line) and for the system model (dotted line).
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being true, the MMI is expected to be below 1 for around 95% of the seeds if the number
of samples in the dataset is large. The distribution of the MMIs computed with the system
model of baker’s yeast is plotted in Figure [6a. The distribution of the MMIs associated with
the system model of glucose-insulin interaction (Case A) is given in Figure [6b. In the plots,
solid dots highlight instances where the goodness-of-fit test failed to reject the system model.
The empty dots refer to instances where the system model is falsified for under-fitting, i.e.
empty dots highlight a Type I error associated with the goodness-of-fit test (Silveyl [1975).

As one can see from the plots in Figure [6] the MMIs computed with the system models
exceed 1 only in a limited number of cases. In the baker’s yeast case, the dataset consisted
of N - N, = 54 while in the glucose-insulin case, the dataset included N - N, = 46 measured
values. The analysis suggests that with such datasets, the actual MMI distribution is well
approximated by the asymptotic x? distribution. Nonetheless, it is recognised that with
smaller datasets, a model diagnosis based on the illustrated tests may lead to misleading
results. In such cases, one may prefer to use a more conservative reference value in the tests
and/or apply opportune finite sample corrections to the considered statistics (Cordeiro and
Cribari-Neto| 2014)).

A functional form for the distribution of the MMIs under the null hypothesis being false
is not available (Silvey|, [1959)). A further analysis was conducted to assess the sensitivity
of the MMIs to the randomness of measurements when the null hypothesis is not satisfied.
The MMIs were computed with the approximated models adopting different random seeds.
The distribution of the MMIs is plotted in Figure [7h for the approximated model of baker’s
yeast and in Figure [7p for the approximated model of glucose-insulin interaction (Case A).
In Figure [7], solid dots highlight instances where the goodness-of-fit test failed to reject the
approximated model, i.e. solid dots indicate a Type II error associated with the goodness-
of-fit test (Silveyl, |1975).

As one can see from Figure [7h, in the baker’s yeast case the approximated model was
falsified for all the choices of the random seed. More specifically, the sum of squared residu-
als x% in the range 2020.55-2404.20 is significantly larger than the assumed threshold value
Y2(95%) = 69.83. In all instances, the largest MMI is the one associated with 6y. There-
fore, the model misspecification diagnosis in the baker’s yeast case is not affected by the
randomness in the experimental data.

In the glucose-insulin interaction system, the discrepancy between approximated model
and system model in representing the data is not substantial'] The sum of squared residuals
X% is in the range 47.41-101.96 while the 95% reference value is x*(95%) = 55.57. For some
choices of the random seed the sum of squared residual is within the range of acceptance
considered in the goodness-of-fit test and the approximated model is not falsified. In most
instances, the MMIs associated with parameters 6;-03 are higher than the MMIs associated
with 04-0¢ (see Figure mb) Therefore, the misspecification diagnosis is not significantly af-
fected by the random seed. Nonetheless, it is recognised that a low level of system noise is a
fundamental requirement for diagnosing model misspecification and increase model complex-
ity. When the system noise increases, it becomes increasingly difficult to falsify an inexact
model from the distribution of its normalised residuals, especially if the number of available

! This is compatible with the observations of Bergman et al. (1979) who demonstrated that both model
structures achieve a comparable performance in the fitting of real experimental data.
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samples is small. Similarly, in the presence of high system noise, the Lagrange multipliers
test tends to favour a constrained model and it becomes increasingly challenging to reject a
false null hypothesis with a finite dataset.

2 2
—e— Passed goodness-of-ft test| —o— Failed goodness-of-fit test

—e— Passed goodness-of-fit test

Model Modification Index
Model Modification Index

O 1 1 1 1 O 1 1 1 1 1 1
1 2 3 4 1 2 3 4 5 6
Parameter Parameter
(a) (b)

Figure 6: Model Modification Indexes associated with the system model for different choices
of the random seed used to generate the data in-silico: (a) Baker’s yeast system; (b) Glucose-
Insulin interaction system (Case A). Empty dots indicate indexes computed in cases where
the system model failed the goodness-of-fit test.

6 Conclusion

A diagnostic procedure based on maximum likelihood inference is illustrated in this manuscript
to support the improvement of approximated kinetic model structures. In the proposed
model building framework, modifications in the model structure are justified using experi-
mental evidence. When the model is over-fitting, model parameters that are irrelevant for
representing the data are removed from the model structure. A Wald test is used to determine
which model parameters one shall omit from the model. When the model is in conditions of
under-fitting, relevant model parameters are replaced with more complex state-dependent
functions. A tailored Lagrange multipliers test is proposed in this work to determine which
model parameters one shall consider to substitute with more complex functions of the state
variables.

The proposed Lagrange multipliers test does not require the definition of alternative
model structures or superstructures. In fact, the test aims at disproving the null hypothesis
that a given model parameter is a state-independent constant. A model modification index
(MMI) is introduced as a function of a Lagrange multipliers statistic. Parameters with the
highest MMI are those that are expected to improve the model fitting quality the most if
they were replaced with more complex functions of the state variables. When the MMI is
below unity there is scarce evidence for justifying an alteration of the parameter. The test is
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Figure 7: Model Modification Indexes associated with the approximated model for different
choices of the random seed used to generate the data in-silico: (a) Baker’s yeast system; (b)
Glucose-Insulin interaction system (Case A). Solid dots indicate indexes computed in cases
where the approximated model passed the goodness-of-fit test.

demonstrated on a number of simulated cases with a baker’s yeast growth model and with
a model of glucose-insulin interaction. It is shown that, in the presence of moderate system
noise, the MMIs correctly highlight the parameters that are primarily associated with model
misspecification. When the system noise increases, the falsification of an incorrect modelling
hypothesis for under-fitting becomes increasingly challenging and a decrease in the MMIs
is observed. When the system noise is excessive, the falsification of an incorrectly specified
model structure with a finite dataset may be impractical and the computed MMIs decrease
below unity, suggesting that there is no evidence to justify an increase in model complexity.

In future research activities, additional tests will be developed to support the scientist in
the selection of appropriate functional forms to replace critical model parameters in under-
fitting models. The proposed framework will offer a basis to support the development of
experimental design criteria for model diagnosis and model structure improvement. The
possibility of implementing the proposed approach into automated or supervised search-based
model building algorithms will also be considered. The illustrated modelling framework will
also be validated on further case studies with real experimental data.
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